xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision cc374d8056990a4c6df44173ad7ef59474ba498b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
57 #include "llvm/IR/AttributeMask.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/ProfileSummary.h"
64 #include "llvm/ProfileData/InstrProfReader.h"
65 #include "llvm/ProfileData/SampleProf.h"
66 #include "llvm/Support/CRC.h"
67 #include "llvm/Support/CodeGen.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/ConvertUTF.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/RISCVISAInfo.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/Triple.h"
75 #include "llvm/TargetParser/X86TargetParser.h"
76 #include <optional>
77 
78 using namespace clang;
79 using namespace CodeGen;
80 
81 static llvm::cl::opt<bool> LimitedCoverage(
82     "limited-coverage-experimental", llvm::cl::Hidden,
83     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
84 
85 static const char AnnotationSection[] = "llvm.metadata";
86 
87 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
88   switch (CGM.getContext().getCXXABIKind()) {
89   case TargetCXXABI::AppleARM64:
90   case TargetCXXABI::Fuchsia:
91   case TargetCXXABI::GenericAArch64:
92   case TargetCXXABI::GenericARM:
93   case TargetCXXABI::iOS:
94   case TargetCXXABI::WatchOS:
95   case TargetCXXABI::GenericMIPS:
96   case TargetCXXABI::GenericItanium:
97   case TargetCXXABI::WebAssembly:
98   case TargetCXXABI::XL:
99     return CreateItaniumCXXABI(CGM);
100   case TargetCXXABI::Microsoft:
101     return CreateMicrosoftCXXABI(CGM);
102   }
103 
104   llvm_unreachable("invalid C++ ABI kind");
105 }
106 
107 static std::unique_ptr<TargetCodeGenInfo>
108 createTargetCodeGenInfo(CodeGenModule &CGM) {
109   const TargetInfo &Target = CGM.getTarget();
110   const llvm::Triple &Triple = Target.getTriple();
111   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
112 
113   switch (Triple.getArch()) {
114   default:
115     return createDefaultTargetCodeGenInfo(CGM);
116 
117   case llvm::Triple::le32:
118     return createPNaClTargetCodeGenInfo(CGM);
119   case llvm::Triple::m68k:
120     return createM68kTargetCodeGenInfo(CGM);
121   case llvm::Triple::mips:
122   case llvm::Triple::mipsel:
123     if (Triple.getOS() == llvm::Triple::NaCl)
124       return createPNaClTargetCodeGenInfo(CGM);
125     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
126 
127   case llvm::Triple::mips64:
128   case llvm::Triple::mips64el:
129     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
130 
131   case llvm::Triple::avr: {
132     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
133     // on avrtiny. For passing return value, R18~R25 are used on avr, and
134     // R22~R25 are used on avrtiny.
135     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
136     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
137     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
138   }
139 
140   case llvm::Triple::aarch64:
141   case llvm::Triple::aarch64_32:
142   case llvm::Triple::aarch64_be: {
143     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
144     if (Target.getABI() == "darwinpcs")
145       Kind = AArch64ABIKind::DarwinPCS;
146     else if (Triple.isOSWindows())
147       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
148 
149     return createAArch64TargetCodeGenInfo(CGM, Kind);
150   }
151 
152   case llvm::Triple::wasm32:
153   case llvm::Triple::wasm64: {
154     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
155     if (Target.getABI() == "experimental-mv")
156       Kind = WebAssemblyABIKind::ExperimentalMV;
157     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
158   }
159 
160   case llvm::Triple::arm:
161   case llvm::Triple::armeb:
162   case llvm::Triple::thumb:
163   case llvm::Triple::thumbeb: {
164     if (Triple.getOS() == llvm::Triple::Win32)
165       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
166 
167     ARMABIKind Kind = ARMABIKind::AAPCS;
168     StringRef ABIStr = Target.getABI();
169     if (ABIStr == "apcs-gnu")
170       Kind = ARMABIKind::APCS;
171     else if (ABIStr == "aapcs16")
172       Kind = ARMABIKind::AAPCS16_VFP;
173     else if (CodeGenOpts.FloatABI == "hard" ||
174              (CodeGenOpts.FloatABI != "soft" &&
175               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
176                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
177                Triple.getEnvironment() == llvm::Triple::EABIHF)))
178       Kind = ARMABIKind::AAPCS_VFP;
179 
180     return createARMTargetCodeGenInfo(CGM, Kind);
181   }
182 
183   case llvm::Triple::ppc: {
184     if (Triple.isOSAIX())
185       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
186 
187     bool IsSoftFloat =
188         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
189     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
190   }
191   case llvm::Triple::ppcle: {
192     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
193     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
194   }
195   case llvm::Triple::ppc64:
196     if (Triple.isOSAIX())
197       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
198 
199     if (Triple.isOSBinFormatELF()) {
200       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
201       if (Target.getABI() == "elfv2")
202         Kind = PPC64_SVR4_ABIKind::ELFv2;
203       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
204 
205       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
206     }
207     return createPPC64TargetCodeGenInfo(CGM);
208   case llvm::Triple::ppc64le: {
209     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
210     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
211     if (Target.getABI() == "elfv1")
212       Kind = PPC64_SVR4_ABIKind::ELFv1;
213     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
214 
215     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
216   }
217 
218   case llvm::Triple::nvptx:
219   case llvm::Triple::nvptx64:
220     return createNVPTXTargetCodeGenInfo(CGM);
221 
222   case llvm::Triple::msp430:
223     return createMSP430TargetCodeGenInfo(CGM);
224 
225   case llvm::Triple::riscv32:
226   case llvm::Triple::riscv64: {
227     StringRef ABIStr = Target.getABI();
228     unsigned XLen = Target.getPointerWidth(LangAS::Default);
229     unsigned ABIFLen = 0;
230     if (ABIStr.ends_with("f"))
231       ABIFLen = 32;
232     else if (ABIStr.ends_with("d"))
233       ABIFLen = 64;
234     bool EABI = ABIStr.ends_with("e");
235     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
236   }
237 
238   case llvm::Triple::systemz: {
239     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
240     bool HasVector = !SoftFloat && Target.getABI() == "vector";
241     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
242   }
243 
244   case llvm::Triple::tce:
245   case llvm::Triple::tcele:
246     return createTCETargetCodeGenInfo(CGM);
247 
248   case llvm::Triple::x86: {
249     bool IsDarwinVectorABI = Triple.isOSDarwin();
250     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
251 
252     if (Triple.getOS() == llvm::Triple::Win32) {
253       return createWinX86_32TargetCodeGenInfo(
254           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
255           CodeGenOpts.NumRegisterParameters);
256     }
257     return createX86_32TargetCodeGenInfo(
258         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
259         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
260   }
261 
262   case llvm::Triple::x86_64: {
263     StringRef ABI = Target.getABI();
264     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
265                                : ABI == "avx"  ? X86AVXABILevel::AVX
266                                                : X86AVXABILevel::None);
267 
268     switch (Triple.getOS()) {
269     case llvm::Triple::Win32:
270       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
271     default:
272       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
273     }
274   }
275   case llvm::Triple::hexagon:
276     return createHexagonTargetCodeGenInfo(CGM);
277   case llvm::Triple::lanai:
278     return createLanaiTargetCodeGenInfo(CGM);
279   case llvm::Triple::r600:
280     return createAMDGPUTargetCodeGenInfo(CGM);
281   case llvm::Triple::amdgcn:
282     return createAMDGPUTargetCodeGenInfo(CGM);
283   case llvm::Triple::sparc:
284     return createSparcV8TargetCodeGenInfo(CGM);
285   case llvm::Triple::sparcv9:
286     return createSparcV9TargetCodeGenInfo(CGM);
287   case llvm::Triple::xcore:
288     return createXCoreTargetCodeGenInfo(CGM);
289   case llvm::Triple::arc:
290     return createARCTargetCodeGenInfo(CGM);
291   case llvm::Triple::spir:
292   case llvm::Triple::spir64:
293     return createCommonSPIRTargetCodeGenInfo(CGM);
294   case llvm::Triple::spirv32:
295   case llvm::Triple::spirv64:
296     return createSPIRVTargetCodeGenInfo(CGM);
297   case llvm::Triple::ve:
298     return createVETargetCodeGenInfo(CGM);
299   case llvm::Triple::csky: {
300     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
301     bool hasFP64 =
302         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
303     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
304                                             : hasFP64   ? 64
305                                                         : 32);
306   }
307   case llvm::Triple::bpfeb:
308   case llvm::Triple::bpfel:
309     return createBPFTargetCodeGenInfo(CGM);
310   case llvm::Triple::loongarch32:
311   case llvm::Triple::loongarch64: {
312     StringRef ABIStr = Target.getABI();
313     unsigned ABIFRLen = 0;
314     if (ABIStr.ends_with("f"))
315       ABIFRLen = 32;
316     else if (ABIStr.ends_with("d"))
317       ABIFRLen = 64;
318     return createLoongArchTargetCodeGenInfo(
319         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
320   }
321   }
322 }
323 
324 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
325   if (!TheTargetCodeGenInfo)
326     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
327   return *TheTargetCodeGenInfo;
328 }
329 
330 CodeGenModule::CodeGenModule(ASTContext &C,
331                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
332                              const HeaderSearchOptions &HSO,
333                              const PreprocessorOptions &PPO,
334                              const CodeGenOptions &CGO, llvm::Module &M,
335                              DiagnosticsEngine &diags,
336                              CoverageSourceInfo *CoverageInfo)
337     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
338       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
339       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
340       VMContext(M.getContext()), Types(*this), VTables(*this),
341       SanitizerMD(new SanitizerMetadata(*this)) {
342 
343   // Initialize the type cache.
344   llvm::LLVMContext &LLVMContext = M.getContext();
345   VoidTy = llvm::Type::getVoidTy(LLVMContext);
346   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
347   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
348   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
349   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
350   HalfTy = llvm::Type::getHalfTy(LLVMContext);
351   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
352   FloatTy = llvm::Type::getFloatTy(LLVMContext);
353   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
354   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
355   PointerAlignInBytes =
356       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
357           .getQuantity();
358   SizeSizeInBytes =
359     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
360   IntAlignInBytes =
361     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
362   CharTy =
363     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
364   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
365   IntPtrTy = llvm::IntegerType::get(LLVMContext,
366     C.getTargetInfo().getMaxPointerWidth());
367   Int8PtrTy = llvm::PointerType::get(LLVMContext, 0);
368   const llvm::DataLayout &DL = M.getDataLayout();
369   AllocaInt8PtrTy =
370       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
371   GlobalsInt8PtrTy =
372       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
373   ConstGlobalsPtrTy = llvm::PointerType::get(
374       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
375   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
376 
377   // Build C++20 Module initializers.
378   // TODO: Add Microsoft here once we know the mangling required for the
379   // initializers.
380   CXX20ModuleInits =
381       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
382                                        ItaniumMangleContext::MK_Itanium;
383 
384   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
385 
386   if (LangOpts.ObjC)
387     createObjCRuntime();
388   if (LangOpts.OpenCL)
389     createOpenCLRuntime();
390   if (LangOpts.OpenMP)
391     createOpenMPRuntime();
392   if (LangOpts.CUDA)
393     createCUDARuntime();
394   if (LangOpts.HLSL)
395     createHLSLRuntime();
396 
397   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
398   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
399       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
400     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
401                                getCXXABI().getMangleContext()));
402 
403   // If debug info or coverage generation is enabled, create the CGDebugInfo
404   // object.
405   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
406       CodeGenOpts.CoverageNotesFile.size() ||
407       CodeGenOpts.CoverageDataFile.size())
408     DebugInfo.reset(new CGDebugInfo(*this));
409 
410   Block.GlobalUniqueCount = 0;
411 
412   if (C.getLangOpts().ObjC)
413     ObjCData.reset(new ObjCEntrypoints());
414 
415   if (CodeGenOpts.hasProfileClangUse()) {
416     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
417         CodeGenOpts.ProfileInstrumentUsePath, *FS,
418         CodeGenOpts.ProfileRemappingFile);
419     // We're checking for profile read errors in CompilerInvocation, so if
420     // there was an error it should've already been caught. If it hasn't been
421     // somehow, trip an assertion.
422     assert(ReaderOrErr);
423     PGOReader = std::move(ReaderOrErr.get());
424   }
425 
426   // If coverage mapping generation is enabled, create the
427   // CoverageMappingModuleGen object.
428   if (CodeGenOpts.CoverageMapping)
429     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
430 
431   // Generate the module name hash here if needed.
432   if (CodeGenOpts.UniqueInternalLinkageNames &&
433       !getModule().getSourceFileName().empty()) {
434     std::string Path = getModule().getSourceFileName();
435     // Check if a path substitution is needed from the MacroPrefixMap.
436     for (const auto &Entry : LangOpts.MacroPrefixMap)
437       if (Path.rfind(Entry.first, 0) != std::string::npos) {
438         Path = Entry.second + Path.substr(Entry.first.size());
439         break;
440       }
441     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
442   }
443 }
444 
445 CodeGenModule::~CodeGenModule() {}
446 
447 void CodeGenModule::createObjCRuntime() {
448   // This is just isGNUFamily(), but we want to force implementors of
449   // new ABIs to decide how best to do this.
450   switch (LangOpts.ObjCRuntime.getKind()) {
451   case ObjCRuntime::GNUstep:
452   case ObjCRuntime::GCC:
453   case ObjCRuntime::ObjFW:
454     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
455     return;
456 
457   case ObjCRuntime::FragileMacOSX:
458   case ObjCRuntime::MacOSX:
459   case ObjCRuntime::iOS:
460   case ObjCRuntime::WatchOS:
461     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
462     return;
463   }
464   llvm_unreachable("bad runtime kind");
465 }
466 
467 void CodeGenModule::createOpenCLRuntime() {
468   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
469 }
470 
471 void CodeGenModule::createOpenMPRuntime() {
472   // Select a specialized code generation class based on the target, if any.
473   // If it does not exist use the default implementation.
474   switch (getTriple().getArch()) {
475   case llvm::Triple::nvptx:
476   case llvm::Triple::nvptx64:
477   case llvm::Triple::amdgcn:
478     assert(getLangOpts().OpenMPIsTargetDevice &&
479            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
480     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
481     break;
482   default:
483     if (LangOpts.OpenMPSimd)
484       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
485     else
486       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
487     break;
488   }
489 }
490 
491 void CodeGenModule::createCUDARuntime() {
492   CUDARuntime.reset(CreateNVCUDARuntime(*this));
493 }
494 
495 void CodeGenModule::createHLSLRuntime() {
496   HLSLRuntime.reset(new CGHLSLRuntime(*this));
497 }
498 
499 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
500   Replacements[Name] = C;
501 }
502 
503 void CodeGenModule::applyReplacements() {
504   for (auto &I : Replacements) {
505     StringRef MangledName = I.first;
506     llvm::Constant *Replacement = I.second;
507     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
508     if (!Entry)
509       continue;
510     auto *OldF = cast<llvm::Function>(Entry);
511     auto *NewF = dyn_cast<llvm::Function>(Replacement);
512     if (!NewF) {
513       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
514         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
515       } else {
516         auto *CE = cast<llvm::ConstantExpr>(Replacement);
517         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
518                CE->getOpcode() == llvm::Instruction::GetElementPtr);
519         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
520       }
521     }
522 
523     // Replace old with new, but keep the old order.
524     OldF->replaceAllUsesWith(Replacement);
525     if (NewF) {
526       NewF->removeFromParent();
527       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
528                                                        NewF);
529     }
530     OldF->eraseFromParent();
531   }
532 }
533 
534 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
535   GlobalValReplacements.push_back(std::make_pair(GV, C));
536 }
537 
538 void CodeGenModule::applyGlobalValReplacements() {
539   for (auto &I : GlobalValReplacements) {
540     llvm::GlobalValue *GV = I.first;
541     llvm::Constant *C = I.second;
542 
543     GV->replaceAllUsesWith(C);
544     GV->eraseFromParent();
545   }
546 }
547 
548 // This is only used in aliases that we created and we know they have a
549 // linear structure.
550 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
551   const llvm::Constant *C;
552   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
553     C = GA->getAliasee();
554   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
555     C = GI->getResolver();
556   else
557     return GV;
558 
559   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
560   if (!AliaseeGV)
561     return nullptr;
562 
563   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
564   if (FinalGV == GV)
565     return nullptr;
566 
567   return FinalGV;
568 }
569 
570 static bool checkAliasedGlobal(
571     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
572     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
573     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
574     SourceRange AliasRange) {
575   GV = getAliasedGlobal(Alias);
576   if (!GV) {
577     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
578     return false;
579   }
580 
581   if (GV->hasCommonLinkage()) {
582     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
583     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
584       Diags.Report(Location, diag::err_alias_to_common);
585       return false;
586     }
587   }
588 
589   if (GV->isDeclaration()) {
590     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
591     Diags.Report(Location, diag::note_alias_requires_mangled_name)
592         << IsIFunc << IsIFunc;
593     // Provide a note if the given function is not found and exists as a
594     // mangled name.
595     for (const auto &[Decl, Name] : MangledDeclNames) {
596       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
597         if (ND->getName() == GV->getName()) {
598           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
599               << Name
600               << FixItHint::CreateReplacement(
601                      AliasRange,
602                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
603                          .str());
604         }
605       }
606     }
607     return false;
608   }
609 
610   if (IsIFunc) {
611     // Check resolver function type.
612     const auto *F = dyn_cast<llvm::Function>(GV);
613     if (!F) {
614       Diags.Report(Location, diag::err_alias_to_undefined)
615           << IsIFunc << IsIFunc;
616       return false;
617     }
618 
619     llvm::FunctionType *FTy = F->getFunctionType();
620     if (!FTy->getReturnType()->isPointerTy()) {
621       Diags.Report(Location, diag::err_ifunc_resolver_return);
622       return false;
623     }
624   }
625 
626   return true;
627 }
628 
629 void CodeGenModule::checkAliases() {
630   // Check if the constructed aliases are well formed. It is really unfortunate
631   // that we have to do this in CodeGen, but we only construct mangled names
632   // and aliases during codegen.
633   bool Error = false;
634   DiagnosticsEngine &Diags = getDiags();
635   for (const GlobalDecl &GD : Aliases) {
636     const auto *D = cast<ValueDecl>(GD.getDecl());
637     SourceLocation Location;
638     SourceRange Range;
639     bool IsIFunc = D->hasAttr<IFuncAttr>();
640     if (const Attr *A = D->getDefiningAttr()) {
641       Location = A->getLocation();
642       Range = A->getRange();
643     } else
644       llvm_unreachable("Not an alias or ifunc?");
645 
646     StringRef MangledName = getMangledName(GD);
647     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
648     const llvm::GlobalValue *GV = nullptr;
649     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
650                             MangledDeclNames, Range)) {
651       Error = true;
652       continue;
653     }
654 
655     llvm::Constant *Aliasee =
656         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
657                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
658 
659     llvm::GlobalValue *AliaseeGV;
660     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
661       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
662     else
663       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
664 
665     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
666       StringRef AliasSection = SA->getName();
667       if (AliasSection != AliaseeGV->getSection())
668         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
669             << AliasSection << IsIFunc << IsIFunc;
670     }
671 
672     // We have to handle alias to weak aliases in here. LLVM itself disallows
673     // this since the object semantics would not match the IL one. For
674     // compatibility with gcc we implement it by just pointing the alias
675     // to its aliasee's aliasee. We also warn, since the user is probably
676     // expecting the link to be weak.
677     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
678       if (GA->isInterposable()) {
679         Diags.Report(Location, diag::warn_alias_to_weak_alias)
680             << GV->getName() << GA->getName() << IsIFunc;
681         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
682             GA->getAliasee(), Alias->getType());
683 
684         if (IsIFunc)
685           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
686         else
687           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
688       }
689     }
690   }
691   if (!Error)
692     return;
693 
694   for (const GlobalDecl &GD : Aliases) {
695     StringRef MangledName = getMangledName(GD);
696     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
697     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
698     Alias->eraseFromParent();
699   }
700 }
701 
702 void CodeGenModule::clear() {
703   DeferredDeclsToEmit.clear();
704   EmittedDeferredDecls.clear();
705   DeferredAnnotations.clear();
706   if (OpenMPRuntime)
707     OpenMPRuntime->clear();
708 }
709 
710 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
711                                        StringRef MainFile) {
712   if (!hasDiagnostics())
713     return;
714   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
715     if (MainFile.empty())
716       MainFile = "<stdin>";
717     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
718   } else {
719     if (Mismatched > 0)
720       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
721 
722     if (Missing > 0)
723       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
724   }
725 }
726 
727 static std::optional<llvm::GlobalValue::VisibilityTypes>
728 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
729   // Map to LLVM visibility.
730   switch (K) {
731   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
732     return std::nullopt;
733   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
734     return llvm::GlobalValue::DefaultVisibility;
735   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
736     return llvm::GlobalValue::HiddenVisibility;
737   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
738     return llvm::GlobalValue::ProtectedVisibility;
739   }
740   llvm_unreachable("unknown option value!");
741 }
742 
743 void setLLVMVisibility(llvm::GlobalValue &GV,
744                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
745   if (!V)
746     return;
747 
748   // Reset DSO locality before setting the visibility. This removes
749   // any effects that visibility options and annotations may have
750   // had on the DSO locality. Setting the visibility will implicitly set
751   // appropriate globals to DSO Local; however, this will be pessimistic
752   // w.r.t. to the normal compiler IRGen.
753   GV.setDSOLocal(false);
754   GV.setVisibility(*V);
755 }
756 
757 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
758                                              llvm::Module &M) {
759   if (!LO.VisibilityFromDLLStorageClass)
760     return;
761 
762   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
763       getLLVMVisibility(LO.getDLLExportVisibility());
764 
765   std::optional<llvm::GlobalValue::VisibilityTypes>
766       NoDLLStorageClassVisibility =
767           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
768 
769   std::optional<llvm::GlobalValue::VisibilityTypes>
770       ExternDeclDLLImportVisibility =
771           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
772 
773   std::optional<llvm::GlobalValue::VisibilityTypes>
774       ExternDeclNoDLLStorageClassVisibility =
775           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
776 
777   for (llvm::GlobalValue &GV : M.global_values()) {
778     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
779       continue;
780 
781     if (GV.isDeclarationForLinker())
782       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
783                                     llvm::GlobalValue::DLLImportStorageClass
784                                 ? ExternDeclDLLImportVisibility
785                                 : ExternDeclNoDLLStorageClassVisibility);
786     else
787       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
788                                     llvm::GlobalValue::DLLExportStorageClass
789                                 ? DLLExportVisibility
790                                 : NoDLLStorageClassVisibility);
791 
792     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
793   }
794 }
795 
796 static bool isStackProtectorOn(const LangOptions &LangOpts,
797                                const llvm::Triple &Triple,
798                                clang::LangOptions::StackProtectorMode Mode) {
799   if (Triple.isAMDGPU() || Triple.isNVPTX())
800     return false;
801   return LangOpts.getStackProtector() == Mode;
802 }
803 
804 void CodeGenModule::Release() {
805   Module *Primary = getContext().getCurrentNamedModule();
806   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
807     EmitModuleInitializers(Primary);
808   EmitDeferred();
809   DeferredDecls.insert(EmittedDeferredDecls.begin(),
810                        EmittedDeferredDecls.end());
811   EmittedDeferredDecls.clear();
812   EmitVTablesOpportunistically();
813   applyGlobalValReplacements();
814   applyReplacements();
815   emitMultiVersionFunctions();
816 
817   if (Context.getLangOpts().IncrementalExtensions &&
818       GlobalTopLevelStmtBlockInFlight.first) {
819     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
820     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
821     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
822   }
823 
824   // Module implementations are initialized the same way as a regular TU that
825   // imports one or more modules.
826   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
827     EmitCXXModuleInitFunc(Primary);
828   else
829     EmitCXXGlobalInitFunc();
830   EmitCXXGlobalCleanUpFunc();
831   registerGlobalDtorsWithAtExit();
832   EmitCXXThreadLocalInitFunc();
833   if (ObjCRuntime)
834     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
835       AddGlobalCtor(ObjCInitFunction);
836   if (Context.getLangOpts().CUDA && CUDARuntime) {
837     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
838       AddGlobalCtor(CudaCtorFunction);
839   }
840   if (OpenMPRuntime) {
841     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
842     OpenMPRuntime->clear();
843   }
844   if (PGOReader) {
845     getModule().setProfileSummary(
846         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
847         llvm::ProfileSummary::PSK_Instr);
848     if (PGOStats.hasDiagnostics())
849       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
850   }
851   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
852     return L.LexOrder < R.LexOrder;
853   });
854   EmitCtorList(GlobalCtors, "llvm.global_ctors");
855   EmitCtorList(GlobalDtors, "llvm.global_dtors");
856   EmitGlobalAnnotations();
857   EmitStaticExternCAliases();
858   checkAliases();
859   EmitDeferredUnusedCoverageMappings();
860   CodeGenPGO(*this).setValueProfilingFlag(getModule());
861   if (CoverageMapping)
862     CoverageMapping->emit();
863   if (CodeGenOpts.SanitizeCfiCrossDso) {
864     CodeGenFunction(*this).EmitCfiCheckFail();
865     CodeGenFunction(*this).EmitCfiCheckStub();
866   }
867   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
868     finalizeKCFITypes();
869   emitAtAvailableLinkGuard();
870   if (Context.getTargetInfo().getTriple().isWasm())
871     EmitMainVoidAlias();
872 
873   if (getTriple().isAMDGPU()) {
874     // Emit amdgpu_code_object_version module flag, which is code object version
875     // times 100.
876     if (getTarget().getTargetOpts().CodeObjectVersion !=
877         llvm::CodeObjectVersionKind::COV_None) {
878       getModule().addModuleFlag(llvm::Module::Error,
879                                 "amdgpu_code_object_version",
880                                 getTarget().getTargetOpts().CodeObjectVersion);
881     }
882 
883     // Currently, "-mprintf-kind" option is only supported for HIP
884     if (LangOpts.HIP) {
885       auto *MDStr = llvm::MDString::get(
886           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
887                              TargetOptions::AMDGPUPrintfKind::Hostcall)
888                                 ? "hostcall"
889                                 : "buffered");
890       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
891                                 MDStr);
892     }
893   }
894 
895   // Emit a global array containing all external kernels or device variables
896   // used by host functions and mark it as used for CUDA/HIP. This is necessary
897   // to get kernels or device variables in archives linked in even if these
898   // kernels or device variables are only used in host functions.
899   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
900     SmallVector<llvm::Constant *, 8> UsedArray;
901     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
902       GlobalDecl GD;
903       if (auto *FD = dyn_cast<FunctionDecl>(D))
904         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
905       else
906         GD = GlobalDecl(D);
907       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
908           GetAddrOfGlobal(GD), Int8PtrTy));
909     }
910 
911     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
912 
913     auto *GV = new llvm::GlobalVariable(
914         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
915         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
916     addCompilerUsedGlobal(GV);
917   }
918 
919   emitLLVMUsed();
920   if (SanStats)
921     SanStats->finish();
922 
923   if (CodeGenOpts.Autolink &&
924       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
925     EmitModuleLinkOptions();
926   }
927 
928   // On ELF we pass the dependent library specifiers directly to the linker
929   // without manipulating them. This is in contrast to other platforms where
930   // they are mapped to a specific linker option by the compiler. This
931   // difference is a result of the greater variety of ELF linkers and the fact
932   // that ELF linkers tend to handle libraries in a more complicated fashion
933   // than on other platforms. This forces us to defer handling the dependent
934   // libs to the linker.
935   //
936   // CUDA/HIP device and host libraries are different. Currently there is no
937   // way to differentiate dependent libraries for host or device. Existing
938   // usage of #pragma comment(lib, *) is intended for host libraries on
939   // Windows. Therefore emit llvm.dependent-libraries only for host.
940   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
941     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
942     for (auto *MD : ELFDependentLibraries)
943       NMD->addOperand(MD);
944   }
945 
946   // Record mregparm value now so it is visible through rest of codegen.
947   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
948     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
949                               CodeGenOpts.NumRegisterParameters);
950 
951   if (CodeGenOpts.DwarfVersion) {
952     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
953                               CodeGenOpts.DwarfVersion);
954   }
955 
956   if (CodeGenOpts.Dwarf64)
957     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
958 
959   if (Context.getLangOpts().SemanticInterposition)
960     // Require various optimization to respect semantic interposition.
961     getModule().setSemanticInterposition(true);
962 
963   if (CodeGenOpts.EmitCodeView) {
964     // Indicate that we want CodeView in the metadata.
965     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
966   }
967   if (CodeGenOpts.CodeViewGHash) {
968     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
969   }
970   if (CodeGenOpts.ControlFlowGuard) {
971     // Function ID tables and checks for Control Flow Guard (cfguard=2).
972     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
973   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
974     // Function ID tables for Control Flow Guard (cfguard=1).
975     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
976   }
977   if (CodeGenOpts.EHContGuard) {
978     // Function ID tables for EH Continuation Guard.
979     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
980   }
981   if (Context.getLangOpts().Kernel) {
982     // Note if we are compiling with /kernel.
983     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
984   }
985   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
986     // We don't support LTO with 2 with different StrictVTablePointers
987     // FIXME: we could support it by stripping all the information introduced
988     // by StrictVTablePointers.
989 
990     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
991 
992     llvm::Metadata *Ops[2] = {
993               llvm::MDString::get(VMContext, "StrictVTablePointers"),
994               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
995                   llvm::Type::getInt32Ty(VMContext), 1))};
996 
997     getModule().addModuleFlag(llvm::Module::Require,
998                               "StrictVTablePointersRequirement",
999                               llvm::MDNode::get(VMContext, Ops));
1000   }
1001   if (getModuleDebugInfo())
1002     // We support a single version in the linked module. The LLVM
1003     // parser will drop debug info with a different version number
1004     // (and warn about it, too).
1005     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1006                               llvm::DEBUG_METADATA_VERSION);
1007 
1008   // We need to record the widths of enums and wchar_t, so that we can generate
1009   // the correct build attributes in the ARM backend. wchar_size is also used by
1010   // TargetLibraryInfo.
1011   uint64_t WCharWidth =
1012       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1013   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1014 
1015   if (getTriple().isOSzOS()) {
1016     getModule().addModuleFlag(llvm::Module::Warning,
1017                               "zos_product_major_version",
1018                               uint32_t(CLANG_VERSION_MAJOR));
1019     getModule().addModuleFlag(llvm::Module::Warning,
1020                               "zos_product_minor_version",
1021                               uint32_t(CLANG_VERSION_MINOR));
1022     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1023                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1024     std::string ProductId = getClangVendor() + "clang";
1025     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1026                               llvm::MDString::get(VMContext, ProductId));
1027 
1028     // Record the language because we need it for the PPA2.
1029     StringRef lang_str = languageToString(
1030         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1031     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1032                               llvm::MDString::get(VMContext, lang_str));
1033 
1034     time_t TT = PreprocessorOpts.SourceDateEpoch
1035                     ? *PreprocessorOpts.SourceDateEpoch
1036                     : std::time(nullptr);
1037     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1038                               static_cast<uint64_t>(TT));
1039 
1040     // Multiple modes will be supported here.
1041     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1042                               llvm::MDString::get(VMContext, "ascii"));
1043   }
1044 
1045   llvm::Triple T = Context.getTargetInfo().getTriple();
1046   if (T.isARM() || T.isThumb()) {
1047     // The minimum width of an enum in bytes
1048     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1049     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1050   }
1051 
1052   if (T.isRISCV()) {
1053     StringRef ABIStr = Target.getABI();
1054     llvm::LLVMContext &Ctx = TheModule.getContext();
1055     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1056                               llvm::MDString::get(Ctx, ABIStr));
1057 
1058     // Add the canonical ISA string as metadata so the backend can set the ELF
1059     // attributes correctly. We use AppendUnique so LTO will keep all of the
1060     // unique ISA strings that were linked together.
1061     const std::vector<std::string> &Features =
1062         getTarget().getTargetOpts().Features;
1063     auto ParseResult =
1064         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1065     if (!errorToBool(ParseResult.takeError()))
1066       getModule().addModuleFlag(
1067           llvm::Module::AppendUnique, "riscv-isa",
1068           llvm::MDNode::get(
1069               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1070   }
1071 
1072   if (CodeGenOpts.SanitizeCfiCrossDso) {
1073     // Indicate that we want cross-DSO control flow integrity checks.
1074     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1075   }
1076 
1077   if (CodeGenOpts.WholeProgramVTables) {
1078     // Indicate whether VFE was enabled for this module, so that the
1079     // vcall_visibility metadata added under whole program vtables is handled
1080     // appropriately in the optimizer.
1081     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1082                               CodeGenOpts.VirtualFunctionElimination);
1083   }
1084 
1085   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1086     getModule().addModuleFlag(llvm::Module::Override,
1087                               "CFI Canonical Jump Tables",
1088                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1089   }
1090 
1091   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1092     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1093     // KCFI assumes patchable-function-prefix is the same for all indirectly
1094     // called functions. Store the expected offset for code generation.
1095     if (CodeGenOpts.PatchableFunctionEntryOffset)
1096       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1097                                 CodeGenOpts.PatchableFunctionEntryOffset);
1098   }
1099 
1100   if (CodeGenOpts.CFProtectionReturn &&
1101       Target.checkCFProtectionReturnSupported(getDiags())) {
1102     // Indicate that we want to instrument return control flow protection.
1103     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1104                               1);
1105   }
1106 
1107   if (CodeGenOpts.CFProtectionBranch &&
1108       Target.checkCFProtectionBranchSupported(getDiags())) {
1109     // Indicate that we want to instrument branch control flow protection.
1110     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1111                               1);
1112   }
1113 
1114   if (CodeGenOpts.FunctionReturnThunks)
1115     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1116 
1117   if (CodeGenOpts.IndirectBranchCSPrefix)
1118     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1119 
1120   // Add module metadata for return address signing (ignoring
1121   // non-leaf/all) and stack tagging. These are actually turned on by function
1122   // attributes, but we use module metadata to emit build attributes. This is
1123   // needed for LTO, where the function attributes are inside bitcode
1124   // serialised into a global variable by the time build attributes are
1125   // emitted, so we can't access them. LTO objects could be compiled with
1126   // different flags therefore module flags are set to "Min" behavior to achieve
1127   // the same end result of the normal build where e.g BTI is off if any object
1128   // doesn't support it.
1129   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1130       LangOpts.getSignReturnAddressScope() !=
1131           LangOptions::SignReturnAddressScopeKind::None)
1132     getModule().addModuleFlag(llvm::Module::Override,
1133                               "sign-return-address-buildattr", 1);
1134   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1135     getModule().addModuleFlag(llvm::Module::Override,
1136                               "tag-stack-memory-buildattr", 1);
1137 
1138   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1139     if (LangOpts.BranchTargetEnforcement)
1140       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1141                                 1);
1142     if (LangOpts.BranchProtectionPAuthLR)
1143       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1144                                 1);
1145     if (LangOpts.GuardedControlStack)
1146       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1147     if (LangOpts.hasSignReturnAddress())
1148       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1149     if (LangOpts.isSignReturnAddressScopeAll())
1150       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1151                                 1);
1152     if (!LangOpts.isSignReturnAddressWithAKey())
1153       getModule().addModuleFlag(llvm::Module::Min,
1154                                 "sign-return-address-with-bkey", 1);
1155   }
1156 
1157   if (CodeGenOpts.StackClashProtector)
1158     getModule().addModuleFlag(
1159         llvm::Module::Override, "probe-stack",
1160         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1161 
1162   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1163     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1164                               CodeGenOpts.StackProbeSize);
1165 
1166   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1167     llvm::LLVMContext &Ctx = TheModule.getContext();
1168     getModule().addModuleFlag(
1169         llvm::Module::Error, "MemProfProfileFilename",
1170         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1171   }
1172 
1173   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1174     // Indicate whether __nvvm_reflect should be configured to flush denormal
1175     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1176     // property.)
1177     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1178                               CodeGenOpts.FP32DenormalMode.Output !=
1179                                   llvm::DenormalMode::IEEE);
1180   }
1181 
1182   if (LangOpts.EHAsynch)
1183     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1184 
1185   // Indicate whether this Module was compiled with -fopenmp
1186   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1187     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1188   if (getLangOpts().OpenMPIsTargetDevice)
1189     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1190                               LangOpts.OpenMP);
1191 
1192   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1193   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1194     EmitOpenCLMetadata();
1195     // Emit SPIR version.
1196     if (getTriple().isSPIR()) {
1197       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1198       // opencl.spir.version named metadata.
1199       // C++ for OpenCL has a distinct mapping for version compatibility with
1200       // OpenCL.
1201       auto Version = LangOpts.getOpenCLCompatibleVersion();
1202       llvm::Metadata *SPIRVerElts[] = {
1203           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1204               Int32Ty, Version / 100)),
1205           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1206               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1207       llvm::NamedMDNode *SPIRVerMD =
1208           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1209       llvm::LLVMContext &Ctx = TheModule.getContext();
1210       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1211     }
1212   }
1213 
1214   // HLSL related end of code gen work items.
1215   if (LangOpts.HLSL)
1216     getHLSLRuntime().finishCodeGen();
1217 
1218   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1219     assert(PLevel < 3 && "Invalid PIC Level");
1220     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1221     if (Context.getLangOpts().PIE)
1222       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1223   }
1224 
1225   if (getCodeGenOpts().CodeModel.size() > 0) {
1226     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1227                   .Case("tiny", llvm::CodeModel::Tiny)
1228                   .Case("small", llvm::CodeModel::Small)
1229                   .Case("kernel", llvm::CodeModel::Kernel)
1230                   .Case("medium", llvm::CodeModel::Medium)
1231                   .Case("large", llvm::CodeModel::Large)
1232                   .Default(~0u);
1233     if (CM != ~0u) {
1234       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1235       getModule().setCodeModel(codeModel);
1236 
1237       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1238           Context.getTargetInfo().getTriple().getArch() ==
1239               llvm::Triple::x86_64) {
1240         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1241       }
1242     }
1243   }
1244 
1245   if (CodeGenOpts.NoPLT)
1246     getModule().setRtLibUseGOT();
1247   if (getTriple().isOSBinFormatELF() &&
1248       CodeGenOpts.DirectAccessExternalData !=
1249           getModule().getDirectAccessExternalData()) {
1250     getModule().setDirectAccessExternalData(
1251         CodeGenOpts.DirectAccessExternalData);
1252   }
1253   if (CodeGenOpts.UnwindTables)
1254     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1255 
1256   switch (CodeGenOpts.getFramePointer()) {
1257   case CodeGenOptions::FramePointerKind::None:
1258     // 0 ("none") is the default.
1259     break;
1260   case CodeGenOptions::FramePointerKind::NonLeaf:
1261     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1262     break;
1263   case CodeGenOptions::FramePointerKind::All:
1264     getModule().setFramePointer(llvm::FramePointerKind::All);
1265     break;
1266   }
1267 
1268   SimplifyPersonality();
1269 
1270   if (getCodeGenOpts().EmitDeclMetadata)
1271     EmitDeclMetadata();
1272 
1273   if (getCodeGenOpts().CoverageNotesFile.size() ||
1274       getCodeGenOpts().CoverageDataFile.size())
1275     EmitCoverageFile();
1276 
1277   if (CGDebugInfo *DI = getModuleDebugInfo())
1278     DI->finalize();
1279 
1280   if (getCodeGenOpts().EmitVersionIdentMetadata)
1281     EmitVersionIdentMetadata();
1282 
1283   if (!getCodeGenOpts().RecordCommandLine.empty())
1284     EmitCommandLineMetadata();
1285 
1286   if (!getCodeGenOpts().StackProtectorGuard.empty())
1287     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1288   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1289     getModule().setStackProtectorGuardReg(
1290         getCodeGenOpts().StackProtectorGuardReg);
1291   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1292     getModule().setStackProtectorGuardSymbol(
1293         getCodeGenOpts().StackProtectorGuardSymbol);
1294   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1295     getModule().setStackProtectorGuardOffset(
1296         getCodeGenOpts().StackProtectorGuardOffset);
1297   if (getCodeGenOpts().StackAlignment)
1298     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1299   if (getCodeGenOpts().SkipRaxSetup)
1300     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1301   if (getLangOpts().RegCall4)
1302     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1303 
1304   if (getContext().getTargetInfo().getMaxTLSAlign())
1305     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1306                               getContext().getTargetInfo().getMaxTLSAlign());
1307 
1308   getTargetCodeGenInfo().emitTargetGlobals(*this);
1309 
1310   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1311 
1312   EmitBackendOptionsMetadata(getCodeGenOpts());
1313 
1314   // If there is device offloading code embed it in the host now.
1315   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1316 
1317   // Set visibility from DLL storage class
1318   // We do this at the end of LLVM IR generation; after any operation
1319   // that might affect the DLL storage class or the visibility, and
1320   // before anything that might act on these.
1321   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1322 }
1323 
1324 void CodeGenModule::EmitOpenCLMetadata() {
1325   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1326   // opencl.ocl.version named metadata node.
1327   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1328   auto Version = LangOpts.getOpenCLCompatibleVersion();
1329   llvm::Metadata *OCLVerElts[] = {
1330       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1331           Int32Ty, Version / 100)),
1332       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1333           Int32Ty, (Version % 100) / 10))};
1334   llvm::NamedMDNode *OCLVerMD =
1335       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1336   llvm::LLVMContext &Ctx = TheModule.getContext();
1337   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1338 }
1339 
1340 void CodeGenModule::EmitBackendOptionsMetadata(
1341     const CodeGenOptions &CodeGenOpts) {
1342   if (getTriple().isRISCV()) {
1343     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1344                               CodeGenOpts.SmallDataLimit);
1345   }
1346 }
1347 
1348 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1349   // Make sure that this type is translated.
1350   Types.UpdateCompletedType(TD);
1351 }
1352 
1353 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1354   // Make sure that this type is translated.
1355   Types.RefreshTypeCacheForClass(RD);
1356 }
1357 
1358 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1359   if (!TBAA)
1360     return nullptr;
1361   return TBAA->getTypeInfo(QTy);
1362 }
1363 
1364 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1365   if (!TBAA)
1366     return TBAAAccessInfo();
1367   if (getLangOpts().CUDAIsDevice) {
1368     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1369     // access info.
1370     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1371       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1372           nullptr)
1373         return TBAAAccessInfo();
1374     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1375       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1376           nullptr)
1377         return TBAAAccessInfo();
1378     }
1379   }
1380   return TBAA->getAccessInfo(AccessType);
1381 }
1382 
1383 TBAAAccessInfo
1384 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1385   if (!TBAA)
1386     return TBAAAccessInfo();
1387   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1388 }
1389 
1390 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1391   if (!TBAA)
1392     return nullptr;
1393   return TBAA->getTBAAStructInfo(QTy);
1394 }
1395 
1396 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1397   if (!TBAA)
1398     return nullptr;
1399   return TBAA->getBaseTypeInfo(QTy);
1400 }
1401 
1402 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1403   if (!TBAA)
1404     return nullptr;
1405   return TBAA->getAccessTagInfo(Info);
1406 }
1407 
1408 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1409                                                    TBAAAccessInfo TargetInfo) {
1410   if (!TBAA)
1411     return TBAAAccessInfo();
1412   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1413 }
1414 
1415 TBAAAccessInfo
1416 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1417                                                    TBAAAccessInfo InfoB) {
1418   if (!TBAA)
1419     return TBAAAccessInfo();
1420   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1421 }
1422 
1423 TBAAAccessInfo
1424 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1425                                               TBAAAccessInfo SrcInfo) {
1426   if (!TBAA)
1427     return TBAAAccessInfo();
1428   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1429 }
1430 
1431 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1432                                                 TBAAAccessInfo TBAAInfo) {
1433   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1434     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1435 }
1436 
1437 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1438     llvm::Instruction *I, const CXXRecordDecl *RD) {
1439   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1440                  llvm::MDNode::get(getLLVMContext(), {}));
1441 }
1442 
1443 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1444   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1445   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1446 }
1447 
1448 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1449 /// specified stmt yet.
1450 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1451   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1452                                                "cannot compile this %0 yet");
1453   std::string Msg = Type;
1454   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1455       << Msg << S->getSourceRange();
1456 }
1457 
1458 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1459 /// specified decl yet.
1460 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1461   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1462                                                "cannot compile this %0 yet");
1463   std::string Msg = Type;
1464   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1465 }
1466 
1467 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1468   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1469 }
1470 
1471 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1472                                         const NamedDecl *D) const {
1473   // Internal definitions always have default visibility.
1474   if (GV->hasLocalLinkage()) {
1475     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1476     return;
1477   }
1478   if (!D)
1479     return;
1480 
1481   // Set visibility for definitions, and for declarations if requested globally
1482   // or set explicitly.
1483   LinkageInfo LV = D->getLinkageAndVisibility();
1484 
1485   // OpenMP declare target variables must be visible to the host so they can
1486   // be registered. We require protected visibility unless the variable has
1487   // the DT_nohost modifier and does not need to be registered.
1488   if (Context.getLangOpts().OpenMP &&
1489       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1490       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1491       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1492           OMPDeclareTargetDeclAttr::DT_NoHost &&
1493       LV.getVisibility() == HiddenVisibility) {
1494     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1495     return;
1496   }
1497 
1498   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1499     // Reject incompatible dlllstorage and visibility annotations.
1500     if (!LV.isVisibilityExplicit())
1501       return;
1502     if (GV->hasDLLExportStorageClass()) {
1503       if (LV.getVisibility() == HiddenVisibility)
1504         getDiags().Report(D->getLocation(),
1505                           diag::err_hidden_visibility_dllexport);
1506     } else if (LV.getVisibility() != DefaultVisibility) {
1507       getDiags().Report(D->getLocation(),
1508                         diag::err_non_default_visibility_dllimport);
1509     }
1510     return;
1511   }
1512 
1513   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1514       !GV->isDeclarationForLinker())
1515     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1516 }
1517 
1518 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1519                                  llvm::GlobalValue *GV) {
1520   if (GV->hasLocalLinkage())
1521     return true;
1522 
1523   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1524     return true;
1525 
1526   // DLLImport explicitly marks the GV as external.
1527   if (GV->hasDLLImportStorageClass())
1528     return false;
1529 
1530   const llvm::Triple &TT = CGM.getTriple();
1531   const auto &CGOpts = CGM.getCodeGenOpts();
1532   if (TT.isWindowsGNUEnvironment()) {
1533     // In MinGW, variables without DLLImport can still be automatically
1534     // imported from a DLL by the linker; don't mark variables that
1535     // potentially could come from another DLL as DSO local.
1536 
1537     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1538     // (and this actually happens in the public interface of libstdc++), so
1539     // such variables can't be marked as DSO local. (Native TLS variables
1540     // can't be dllimported at all, though.)
1541     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1542         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1543         CGOpts.AutoImport)
1544       return false;
1545   }
1546 
1547   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1548   // remain unresolved in the link, they can be resolved to zero, which is
1549   // outside the current DSO.
1550   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1551     return false;
1552 
1553   // Every other GV is local on COFF.
1554   // Make an exception for windows OS in the triple: Some firmware builds use
1555   // *-win32-macho triples. This (accidentally?) produced windows relocations
1556   // without GOT tables in older clang versions; Keep this behaviour.
1557   // FIXME: even thread local variables?
1558   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1559     return true;
1560 
1561   // Only handle COFF and ELF for now.
1562   if (!TT.isOSBinFormatELF())
1563     return false;
1564 
1565   // If this is not an executable, don't assume anything is local.
1566   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1567   const auto &LOpts = CGM.getLangOpts();
1568   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1569     // On ELF, if -fno-semantic-interposition is specified and the target
1570     // supports local aliases, there will be neither CC1
1571     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1572     // dso_local on the function if using a local alias is preferable (can avoid
1573     // PLT indirection).
1574     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1575       return false;
1576     return !(CGM.getLangOpts().SemanticInterposition ||
1577              CGM.getLangOpts().HalfNoSemanticInterposition);
1578   }
1579 
1580   // A definition cannot be preempted from an executable.
1581   if (!GV->isDeclarationForLinker())
1582     return true;
1583 
1584   // Most PIC code sequences that assume that a symbol is local cannot produce a
1585   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1586   // depended, it seems worth it to handle it here.
1587   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1588     return false;
1589 
1590   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1591   if (TT.isPPC64())
1592     return false;
1593 
1594   if (CGOpts.DirectAccessExternalData) {
1595     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1596     // for non-thread-local variables. If the symbol is not defined in the
1597     // executable, a copy relocation will be needed at link time. dso_local is
1598     // excluded for thread-local variables because they generally don't support
1599     // copy relocations.
1600     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1601       if (!Var->isThreadLocal())
1602         return true;
1603 
1604     // -fno-pic sets dso_local on a function declaration to allow direct
1605     // accesses when taking its address (similar to a data symbol). If the
1606     // function is not defined in the executable, a canonical PLT entry will be
1607     // needed at link time. -fno-direct-access-external-data can avoid the
1608     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1609     // it could just cause trouble without providing perceptible benefits.
1610     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1611       return true;
1612   }
1613 
1614   // If we can use copy relocations we can assume it is local.
1615 
1616   // Otherwise don't assume it is local.
1617   return false;
1618 }
1619 
1620 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1621   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1622 }
1623 
1624 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1625                                           GlobalDecl GD) const {
1626   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1627   // C++ destructors have a few C++ ABI specific special cases.
1628   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1629     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1630     return;
1631   }
1632   setDLLImportDLLExport(GV, D);
1633 }
1634 
1635 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1636                                           const NamedDecl *D) const {
1637   if (D && D->isExternallyVisible()) {
1638     if (D->hasAttr<DLLImportAttr>())
1639       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1640     else if ((D->hasAttr<DLLExportAttr>() ||
1641               shouldMapVisibilityToDLLExport(D)) &&
1642              !GV->isDeclarationForLinker())
1643       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1644   }
1645 }
1646 
1647 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1648                                     GlobalDecl GD) const {
1649   setDLLImportDLLExport(GV, GD);
1650   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1651 }
1652 
1653 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1654                                     const NamedDecl *D) const {
1655   setDLLImportDLLExport(GV, D);
1656   setGVPropertiesAux(GV, D);
1657 }
1658 
1659 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1660                                        const NamedDecl *D) const {
1661   setGlobalVisibility(GV, D);
1662   setDSOLocal(GV);
1663   GV->setPartition(CodeGenOpts.SymbolPartition);
1664 }
1665 
1666 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1667   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1668       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1669       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1670       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1671       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1672 }
1673 
1674 llvm::GlobalVariable::ThreadLocalMode
1675 CodeGenModule::GetDefaultLLVMTLSModel() const {
1676   switch (CodeGenOpts.getDefaultTLSModel()) {
1677   case CodeGenOptions::GeneralDynamicTLSModel:
1678     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1679   case CodeGenOptions::LocalDynamicTLSModel:
1680     return llvm::GlobalVariable::LocalDynamicTLSModel;
1681   case CodeGenOptions::InitialExecTLSModel:
1682     return llvm::GlobalVariable::InitialExecTLSModel;
1683   case CodeGenOptions::LocalExecTLSModel:
1684     return llvm::GlobalVariable::LocalExecTLSModel;
1685   }
1686   llvm_unreachable("Invalid TLS model!");
1687 }
1688 
1689 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1690   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1691 
1692   llvm::GlobalValue::ThreadLocalMode TLM;
1693   TLM = GetDefaultLLVMTLSModel();
1694 
1695   // Override the TLS model if it is explicitly specified.
1696   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1697     TLM = GetLLVMTLSModel(Attr->getModel());
1698   }
1699 
1700   GV->setThreadLocalMode(TLM);
1701 }
1702 
1703 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1704                                           StringRef Name) {
1705   const TargetInfo &Target = CGM.getTarget();
1706   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1707 }
1708 
1709 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1710                                                  const CPUSpecificAttr *Attr,
1711                                                  unsigned CPUIndex,
1712                                                  raw_ostream &Out) {
1713   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1714   // supported.
1715   if (Attr)
1716     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1717   else if (CGM.getTarget().supportsIFunc())
1718     Out << ".resolver";
1719 }
1720 
1721 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1722                                         const TargetVersionAttr *Attr,
1723                                         raw_ostream &Out) {
1724   if (Attr->isDefaultVersion()) {
1725     Out << ".default";
1726     return;
1727   }
1728   Out << "._";
1729   const TargetInfo &TI = CGM.getTarget();
1730   llvm::SmallVector<StringRef, 8> Feats;
1731   Attr->getFeatures(Feats);
1732   llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1733     return TI.multiVersionSortPriority(FeatL) <
1734            TI.multiVersionSortPriority(FeatR);
1735   });
1736   for (const auto &Feat : Feats) {
1737     Out << 'M';
1738     Out << Feat;
1739   }
1740 }
1741 
1742 static void AppendTargetMangling(const CodeGenModule &CGM,
1743                                  const TargetAttr *Attr, raw_ostream &Out) {
1744   if (Attr->isDefaultVersion())
1745     return;
1746 
1747   Out << '.';
1748   const TargetInfo &Target = CGM.getTarget();
1749   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1750   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1751     // Multiversioning doesn't allow "no-${feature}", so we can
1752     // only have "+" prefixes here.
1753     assert(LHS.starts_with("+") && RHS.starts_with("+") &&
1754            "Features should always have a prefix.");
1755     return Target.multiVersionSortPriority(LHS.substr(1)) >
1756            Target.multiVersionSortPriority(RHS.substr(1));
1757   });
1758 
1759   bool IsFirst = true;
1760 
1761   if (!Info.CPU.empty()) {
1762     IsFirst = false;
1763     Out << "arch_" << Info.CPU;
1764   }
1765 
1766   for (StringRef Feat : Info.Features) {
1767     if (!IsFirst)
1768       Out << '_';
1769     IsFirst = false;
1770     Out << Feat.substr(1);
1771   }
1772 }
1773 
1774 // Returns true if GD is a function decl with internal linkage and
1775 // needs a unique suffix after the mangled name.
1776 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1777                                         CodeGenModule &CGM) {
1778   const Decl *D = GD.getDecl();
1779   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1780          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1781 }
1782 
1783 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1784                                        const TargetClonesAttr *Attr,
1785                                        unsigned VersionIndex,
1786                                        raw_ostream &Out) {
1787   const TargetInfo &TI = CGM.getTarget();
1788   if (TI.getTriple().isAArch64()) {
1789     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1790     if (FeatureStr == "default") {
1791       Out << ".default";
1792       return;
1793     }
1794     Out << "._";
1795     SmallVector<StringRef, 8> Features;
1796     FeatureStr.split(Features, "+");
1797     llvm::stable_sort(Features,
1798                       [&TI](const StringRef FeatL, const StringRef FeatR) {
1799                         return TI.multiVersionSortPriority(FeatL) <
1800                                TI.multiVersionSortPriority(FeatR);
1801                       });
1802     for (auto &Feat : Features) {
1803       Out << 'M';
1804       Out << Feat;
1805     }
1806   } else {
1807     Out << '.';
1808     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1809     if (FeatureStr.starts_with("arch="))
1810       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1811     else
1812       Out << FeatureStr;
1813 
1814     Out << '.' << Attr->getMangledIndex(VersionIndex);
1815   }
1816 }
1817 
1818 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1819                                       const NamedDecl *ND,
1820                                       bool OmitMultiVersionMangling = false) {
1821   SmallString<256> Buffer;
1822   llvm::raw_svector_ostream Out(Buffer);
1823   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1824   if (!CGM.getModuleNameHash().empty())
1825     MC.needsUniqueInternalLinkageNames();
1826   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1827   if (ShouldMangle)
1828     MC.mangleName(GD.getWithDecl(ND), Out);
1829   else {
1830     IdentifierInfo *II = ND->getIdentifier();
1831     assert(II && "Attempt to mangle unnamed decl.");
1832     const auto *FD = dyn_cast<FunctionDecl>(ND);
1833 
1834     if (FD &&
1835         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1836       if (CGM.getLangOpts().RegCall4)
1837         Out << "__regcall4__" << II->getName();
1838       else
1839         Out << "__regcall3__" << II->getName();
1840     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1841                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1842       Out << "__device_stub__" << II->getName();
1843     } else {
1844       Out << II->getName();
1845     }
1846   }
1847 
1848   // Check if the module name hash should be appended for internal linkage
1849   // symbols.   This should come before multi-version target suffixes are
1850   // appended. This is to keep the name and module hash suffix of the
1851   // internal linkage function together.  The unique suffix should only be
1852   // added when name mangling is done to make sure that the final name can
1853   // be properly demangled.  For example, for C functions without prototypes,
1854   // name mangling is not done and the unique suffix should not be appeneded
1855   // then.
1856   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1857     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1858            "Hash computed when not explicitly requested");
1859     Out << CGM.getModuleNameHash();
1860   }
1861 
1862   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1863     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1864       switch (FD->getMultiVersionKind()) {
1865       case MultiVersionKind::CPUDispatch:
1866       case MultiVersionKind::CPUSpecific:
1867         AppendCPUSpecificCPUDispatchMangling(CGM,
1868                                              FD->getAttr<CPUSpecificAttr>(),
1869                                              GD.getMultiVersionIndex(), Out);
1870         break;
1871       case MultiVersionKind::Target:
1872         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1873         break;
1874       case MultiVersionKind::TargetVersion:
1875         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1876         break;
1877       case MultiVersionKind::TargetClones:
1878         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1879                                    GD.getMultiVersionIndex(), Out);
1880         break;
1881       case MultiVersionKind::None:
1882         llvm_unreachable("None multiversion type isn't valid here");
1883       }
1884     }
1885 
1886   // Make unique name for device side static file-scope variable for HIP.
1887   if (CGM.getContext().shouldExternalize(ND) &&
1888       CGM.getLangOpts().GPURelocatableDeviceCode &&
1889       CGM.getLangOpts().CUDAIsDevice)
1890     CGM.printPostfixForExternalizedDecl(Out, ND);
1891 
1892   return std::string(Out.str());
1893 }
1894 
1895 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1896                                             const FunctionDecl *FD,
1897                                             StringRef &CurName) {
1898   if (!FD->isMultiVersion())
1899     return;
1900 
1901   // Get the name of what this would be without the 'target' attribute.  This
1902   // allows us to lookup the version that was emitted when this wasn't a
1903   // multiversion function.
1904   std::string NonTargetName =
1905       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1906   GlobalDecl OtherGD;
1907   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1908     assert(OtherGD.getCanonicalDecl()
1909                .getDecl()
1910                ->getAsFunction()
1911                ->isMultiVersion() &&
1912            "Other GD should now be a multiversioned function");
1913     // OtherFD is the version of this function that was mangled BEFORE
1914     // becoming a MultiVersion function.  It potentially needs to be updated.
1915     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1916                                       .getDecl()
1917                                       ->getAsFunction()
1918                                       ->getMostRecentDecl();
1919     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1920     // This is so that if the initial version was already the 'default'
1921     // version, we don't try to update it.
1922     if (OtherName != NonTargetName) {
1923       // Remove instead of erase, since others may have stored the StringRef
1924       // to this.
1925       const auto ExistingRecord = Manglings.find(NonTargetName);
1926       if (ExistingRecord != std::end(Manglings))
1927         Manglings.remove(&(*ExistingRecord));
1928       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1929       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1930           Result.first->first();
1931       // If this is the current decl is being created, make sure we update the name.
1932       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1933         CurName = OtherNameRef;
1934       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1935         Entry->setName(OtherName);
1936     }
1937   }
1938 }
1939 
1940 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1941   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1942 
1943   // Some ABIs don't have constructor variants.  Make sure that base and
1944   // complete constructors get mangled the same.
1945   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1946     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1947       CXXCtorType OrigCtorType = GD.getCtorType();
1948       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1949       if (OrigCtorType == Ctor_Base)
1950         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1951     }
1952   }
1953 
1954   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1955   // static device variable depends on whether the variable is referenced by
1956   // a host or device host function. Therefore the mangled name cannot be
1957   // cached.
1958   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1959     auto FoundName = MangledDeclNames.find(CanonicalGD);
1960     if (FoundName != MangledDeclNames.end())
1961       return FoundName->second;
1962   }
1963 
1964   // Keep the first result in the case of a mangling collision.
1965   const auto *ND = cast<NamedDecl>(GD.getDecl());
1966   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1967 
1968   // Ensure either we have different ABIs between host and device compilations,
1969   // says host compilation following MSVC ABI but device compilation follows
1970   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1971   // mangling should be the same after name stubbing. The later checking is
1972   // very important as the device kernel name being mangled in host-compilation
1973   // is used to resolve the device binaries to be executed. Inconsistent naming
1974   // result in undefined behavior. Even though we cannot check that naming
1975   // directly between host- and device-compilations, the host- and
1976   // device-mangling in host compilation could help catching certain ones.
1977   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1978          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1979          (getContext().getAuxTargetInfo() &&
1980           (getContext().getAuxTargetInfo()->getCXXABI() !=
1981            getContext().getTargetInfo().getCXXABI())) ||
1982          getCUDARuntime().getDeviceSideName(ND) ==
1983              getMangledNameImpl(
1984                  *this,
1985                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1986                  ND));
1987 
1988   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1989   return MangledDeclNames[CanonicalGD] = Result.first->first();
1990 }
1991 
1992 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1993                                              const BlockDecl *BD) {
1994   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1995   const Decl *D = GD.getDecl();
1996 
1997   SmallString<256> Buffer;
1998   llvm::raw_svector_ostream Out(Buffer);
1999   if (!D)
2000     MangleCtx.mangleGlobalBlock(BD,
2001       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2002   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2003     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2004   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2005     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2006   else
2007     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2008 
2009   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2010   return Result.first->first();
2011 }
2012 
2013 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2014   auto it = MangledDeclNames.begin();
2015   while (it != MangledDeclNames.end()) {
2016     if (it->second == Name)
2017       return it->first;
2018     it++;
2019   }
2020   return GlobalDecl();
2021 }
2022 
2023 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2024   return getModule().getNamedValue(Name);
2025 }
2026 
2027 /// AddGlobalCtor - Add a function to the list that will be called before
2028 /// main() runs.
2029 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2030                                   unsigned LexOrder,
2031                                   llvm::Constant *AssociatedData) {
2032   // FIXME: Type coercion of void()* types.
2033   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2034 }
2035 
2036 /// AddGlobalDtor - Add a function to the list that will be called
2037 /// when the module is unloaded.
2038 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2039                                   bool IsDtorAttrFunc) {
2040   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2041       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2042     DtorsUsingAtExit[Priority].push_back(Dtor);
2043     return;
2044   }
2045 
2046   // FIXME: Type coercion of void()* types.
2047   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2048 }
2049 
2050 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2051   if (Fns.empty()) return;
2052 
2053   // Ctor function type is void()*.
2054   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2055   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2056       TheModule.getDataLayout().getProgramAddressSpace());
2057 
2058   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2059   llvm::StructType *CtorStructTy = llvm::StructType::get(
2060       Int32Ty, CtorPFTy, VoidPtrTy);
2061 
2062   // Construct the constructor and destructor arrays.
2063   ConstantInitBuilder builder(*this);
2064   auto ctors = builder.beginArray(CtorStructTy);
2065   for (const auto &I : Fns) {
2066     auto ctor = ctors.beginStruct(CtorStructTy);
2067     ctor.addInt(Int32Ty, I.Priority);
2068     ctor.add(I.Initializer);
2069     if (I.AssociatedData)
2070       ctor.add(I.AssociatedData);
2071     else
2072       ctor.addNullPointer(VoidPtrTy);
2073     ctor.finishAndAddTo(ctors);
2074   }
2075 
2076   auto list =
2077     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2078                                 /*constant*/ false,
2079                                 llvm::GlobalValue::AppendingLinkage);
2080 
2081   // The LTO linker doesn't seem to like it when we set an alignment
2082   // on appending variables.  Take it off as a workaround.
2083   list->setAlignment(std::nullopt);
2084 
2085   Fns.clear();
2086 }
2087 
2088 llvm::GlobalValue::LinkageTypes
2089 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2090   const auto *D = cast<FunctionDecl>(GD.getDecl());
2091 
2092   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2093 
2094   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2095     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2096 
2097   return getLLVMLinkageForDeclarator(D, Linkage);
2098 }
2099 
2100 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2101   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2102   if (!MDS) return nullptr;
2103 
2104   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2105 }
2106 
2107 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2108   if (auto *FnType = T->getAs<FunctionProtoType>())
2109     T = getContext().getFunctionType(
2110         FnType->getReturnType(), FnType->getParamTypes(),
2111         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2112 
2113   std::string OutName;
2114   llvm::raw_string_ostream Out(OutName);
2115   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2116       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2117 
2118   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2119     Out << ".normalized";
2120 
2121   return llvm::ConstantInt::get(Int32Ty,
2122                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2123 }
2124 
2125 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2126                                               const CGFunctionInfo &Info,
2127                                               llvm::Function *F, bool IsThunk) {
2128   unsigned CallingConv;
2129   llvm::AttributeList PAL;
2130   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2131                          /*AttrOnCallSite=*/false, IsThunk);
2132   F->setAttributes(PAL);
2133   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2134 }
2135 
2136 static void removeImageAccessQualifier(std::string& TyName) {
2137   std::string ReadOnlyQual("__read_only");
2138   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2139   if (ReadOnlyPos != std::string::npos)
2140     // "+ 1" for the space after access qualifier.
2141     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2142   else {
2143     std::string WriteOnlyQual("__write_only");
2144     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2145     if (WriteOnlyPos != std::string::npos)
2146       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2147     else {
2148       std::string ReadWriteQual("__read_write");
2149       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2150       if (ReadWritePos != std::string::npos)
2151         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2152     }
2153   }
2154 }
2155 
2156 // Returns the address space id that should be produced to the
2157 // kernel_arg_addr_space metadata. This is always fixed to the ids
2158 // as specified in the SPIR 2.0 specification in order to differentiate
2159 // for example in clGetKernelArgInfo() implementation between the address
2160 // spaces with targets without unique mapping to the OpenCL address spaces
2161 // (basically all single AS CPUs).
2162 static unsigned ArgInfoAddressSpace(LangAS AS) {
2163   switch (AS) {
2164   case LangAS::opencl_global:
2165     return 1;
2166   case LangAS::opencl_constant:
2167     return 2;
2168   case LangAS::opencl_local:
2169     return 3;
2170   case LangAS::opencl_generic:
2171     return 4; // Not in SPIR 2.0 specs.
2172   case LangAS::opencl_global_device:
2173     return 5;
2174   case LangAS::opencl_global_host:
2175     return 6;
2176   default:
2177     return 0; // Assume private.
2178   }
2179 }
2180 
2181 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2182                                          const FunctionDecl *FD,
2183                                          CodeGenFunction *CGF) {
2184   assert(((FD && CGF) || (!FD && !CGF)) &&
2185          "Incorrect use - FD and CGF should either be both null or not!");
2186   // Create MDNodes that represent the kernel arg metadata.
2187   // Each MDNode is a list in the form of "key", N number of values which is
2188   // the same number of values as their are kernel arguments.
2189 
2190   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2191 
2192   // MDNode for the kernel argument address space qualifiers.
2193   SmallVector<llvm::Metadata *, 8> addressQuals;
2194 
2195   // MDNode for the kernel argument access qualifiers (images only).
2196   SmallVector<llvm::Metadata *, 8> accessQuals;
2197 
2198   // MDNode for the kernel argument type names.
2199   SmallVector<llvm::Metadata *, 8> argTypeNames;
2200 
2201   // MDNode for the kernel argument base type names.
2202   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2203 
2204   // MDNode for the kernel argument type qualifiers.
2205   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2206 
2207   // MDNode for the kernel argument names.
2208   SmallVector<llvm::Metadata *, 8> argNames;
2209 
2210   if (FD && CGF)
2211     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2212       const ParmVarDecl *parm = FD->getParamDecl(i);
2213       // Get argument name.
2214       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2215 
2216       if (!getLangOpts().OpenCL)
2217         continue;
2218       QualType ty = parm->getType();
2219       std::string typeQuals;
2220 
2221       // Get image and pipe access qualifier:
2222       if (ty->isImageType() || ty->isPipeType()) {
2223         const Decl *PDecl = parm;
2224         if (const auto *TD = ty->getAs<TypedefType>())
2225           PDecl = TD->getDecl();
2226         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2227         if (A && A->isWriteOnly())
2228           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2229         else if (A && A->isReadWrite())
2230           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2231         else
2232           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2233       } else
2234         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2235 
2236       auto getTypeSpelling = [&](QualType Ty) {
2237         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2238 
2239         if (Ty.isCanonical()) {
2240           StringRef typeNameRef = typeName;
2241           // Turn "unsigned type" to "utype"
2242           if (typeNameRef.consume_front("unsigned "))
2243             return std::string("u") + typeNameRef.str();
2244           if (typeNameRef.consume_front("signed "))
2245             return typeNameRef.str();
2246         }
2247 
2248         return typeName;
2249       };
2250 
2251       if (ty->isPointerType()) {
2252         QualType pointeeTy = ty->getPointeeType();
2253 
2254         // Get address qualifier.
2255         addressQuals.push_back(
2256             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2257                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2258 
2259         // Get argument type name.
2260         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2261         std::string baseTypeName =
2262             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2263         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2264         argBaseTypeNames.push_back(
2265             llvm::MDString::get(VMContext, baseTypeName));
2266 
2267         // Get argument type qualifiers:
2268         if (ty.isRestrictQualified())
2269           typeQuals = "restrict";
2270         if (pointeeTy.isConstQualified() ||
2271             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2272           typeQuals += typeQuals.empty() ? "const" : " const";
2273         if (pointeeTy.isVolatileQualified())
2274           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2275       } else {
2276         uint32_t AddrSpc = 0;
2277         bool isPipe = ty->isPipeType();
2278         if (ty->isImageType() || isPipe)
2279           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2280 
2281         addressQuals.push_back(
2282             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2283 
2284         // Get argument type name.
2285         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2286         std::string typeName = getTypeSpelling(ty);
2287         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2288 
2289         // Remove access qualifiers on images
2290         // (as they are inseparable from type in clang implementation,
2291         // but OpenCL spec provides a special query to get access qualifier
2292         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2293         if (ty->isImageType()) {
2294           removeImageAccessQualifier(typeName);
2295           removeImageAccessQualifier(baseTypeName);
2296         }
2297 
2298         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2299         argBaseTypeNames.push_back(
2300             llvm::MDString::get(VMContext, baseTypeName));
2301 
2302         if (isPipe)
2303           typeQuals = "pipe";
2304       }
2305       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2306     }
2307 
2308   if (getLangOpts().OpenCL) {
2309     Fn->setMetadata("kernel_arg_addr_space",
2310                     llvm::MDNode::get(VMContext, addressQuals));
2311     Fn->setMetadata("kernel_arg_access_qual",
2312                     llvm::MDNode::get(VMContext, accessQuals));
2313     Fn->setMetadata("kernel_arg_type",
2314                     llvm::MDNode::get(VMContext, argTypeNames));
2315     Fn->setMetadata("kernel_arg_base_type",
2316                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2317     Fn->setMetadata("kernel_arg_type_qual",
2318                     llvm::MDNode::get(VMContext, argTypeQuals));
2319   }
2320   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2321       getCodeGenOpts().HIPSaveKernelArgName)
2322     Fn->setMetadata("kernel_arg_name",
2323                     llvm::MDNode::get(VMContext, argNames));
2324 }
2325 
2326 /// Determines whether the language options require us to model
2327 /// unwind exceptions.  We treat -fexceptions as mandating this
2328 /// except under the fragile ObjC ABI with only ObjC exceptions
2329 /// enabled.  This means, for example, that C with -fexceptions
2330 /// enables this.
2331 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2332   // If exceptions are completely disabled, obviously this is false.
2333   if (!LangOpts.Exceptions) return false;
2334 
2335   // If C++ exceptions are enabled, this is true.
2336   if (LangOpts.CXXExceptions) return true;
2337 
2338   // If ObjC exceptions are enabled, this depends on the ABI.
2339   if (LangOpts.ObjCExceptions) {
2340     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2341   }
2342 
2343   return true;
2344 }
2345 
2346 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2347                                                       const CXXMethodDecl *MD) {
2348   // Check that the type metadata can ever actually be used by a call.
2349   if (!CGM.getCodeGenOpts().LTOUnit ||
2350       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2351     return false;
2352 
2353   // Only functions whose address can be taken with a member function pointer
2354   // need this sort of type metadata.
2355   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2356          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2357 }
2358 
2359 SmallVector<const CXXRecordDecl *, 0>
2360 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2361   llvm::SetVector<const CXXRecordDecl *> MostBases;
2362 
2363   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2364   CollectMostBases = [&](const CXXRecordDecl *RD) {
2365     if (RD->getNumBases() == 0)
2366       MostBases.insert(RD);
2367     for (const CXXBaseSpecifier &B : RD->bases())
2368       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2369   };
2370   CollectMostBases(RD);
2371   return MostBases.takeVector();
2372 }
2373 
2374 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2375                                                            llvm::Function *F) {
2376   llvm::AttrBuilder B(F->getContext());
2377 
2378   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2379     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2380 
2381   if (CodeGenOpts.StackClashProtector)
2382     B.addAttribute("probe-stack", "inline-asm");
2383 
2384   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2385     B.addAttribute("stack-probe-size",
2386                    std::to_string(CodeGenOpts.StackProbeSize));
2387 
2388   if (!hasUnwindExceptions(LangOpts))
2389     B.addAttribute(llvm::Attribute::NoUnwind);
2390 
2391   if (D && D->hasAttr<NoStackProtectorAttr>())
2392     ; // Do nothing.
2393   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2394            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2395     B.addAttribute(llvm::Attribute::StackProtectStrong);
2396   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2397     B.addAttribute(llvm::Attribute::StackProtect);
2398   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2399     B.addAttribute(llvm::Attribute::StackProtectStrong);
2400   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2401     B.addAttribute(llvm::Attribute::StackProtectReq);
2402 
2403   if (!D) {
2404     // If we don't have a declaration to control inlining, the function isn't
2405     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2406     // disabled, mark the function as noinline.
2407     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2408         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2409       B.addAttribute(llvm::Attribute::NoInline);
2410 
2411     F->addFnAttrs(B);
2412     return;
2413   }
2414 
2415   // Handle SME attributes that apply to function definitions,
2416   // rather than to function prototypes.
2417   if (D->hasAttr<ArmLocallyStreamingAttr>())
2418     B.addAttribute("aarch64_pstate_sm_body");
2419 
2420   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2421     if (Attr->isNewZA())
2422       B.addAttribute("aarch64_new_za");
2423     if (Attr->isNewZT0())
2424       B.addAttribute("aarch64_new_zt0");
2425   }
2426 
2427   // Track whether we need to add the optnone LLVM attribute,
2428   // starting with the default for this optimization level.
2429   bool ShouldAddOptNone =
2430       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2431   // We can't add optnone in the following cases, it won't pass the verifier.
2432   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2433   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2434 
2435   // Add optnone, but do so only if the function isn't always_inline.
2436   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2437       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2438     B.addAttribute(llvm::Attribute::OptimizeNone);
2439 
2440     // OptimizeNone implies noinline; we should not be inlining such functions.
2441     B.addAttribute(llvm::Attribute::NoInline);
2442 
2443     // We still need to handle naked functions even though optnone subsumes
2444     // much of their semantics.
2445     if (D->hasAttr<NakedAttr>())
2446       B.addAttribute(llvm::Attribute::Naked);
2447 
2448     // OptimizeNone wins over OptimizeForSize and MinSize.
2449     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2450     F->removeFnAttr(llvm::Attribute::MinSize);
2451   } else if (D->hasAttr<NakedAttr>()) {
2452     // Naked implies noinline: we should not be inlining such functions.
2453     B.addAttribute(llvm::Attribute::Naked);
2454     B.addAttribute(llvm::Attribute::NoInline);
2455   } else if (D->hasAttr<NoDuplicateAttr>()) {
2456     B.addAttribute(llvm::Attribute::NoDuplicate);
2457   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2458     // Add noinline if the function isn't always_inline.
2459     B.addAttribute(llvm::Attribute::NoInline);
2460   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2461              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2462     // (noinline wins over always_inline, and we can't specify both in IR)
2463     B.addAttribute(llvm::Attribute::AlwaysInline);
2464   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2465     // If we're not inlining, then force everything that isn't always_inline to
2466     // carry an explicit noinline attribute.
2467     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2468       B.addAttribute(llvm::Attribute::NoInline);
2469   } else {
2470     // Otherwise, propagate the inline hint attribute and potentially use its
2471     // absence to mark things as noinline.
2472     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2473       // Search function and template pattern redeclarations for inline.
2474       auto CheckForInline = [](const FunctionDecl *FD) {
2475         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2476           return Redecl->isInlineSpecified();
2477         };
2478         if (any_of(FD->redecls(), CheckRedeclForInline))
2479           return true;
2480         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2481         if (!Pattern)
2482           return false;
2483         return any_of(Pattern->redecls(), CheckRedeclForInline);
2484       };
2485       if (CheckForInline(FD)) {
2486         B.addAttribute(llvm::Attribute::InlineHint);
2487       } else if (CodeGenOpts.getInlining() ==
2488                      CodeGenOptions::OnlyHintInlining &&
2489                  !FD->isInlined() &&
2490                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2491         B.addAttribute(llvm::Attribute::NoInline);
2492       }
2493     }
2494   }
2495 
2496   // Add other optimization related attributes if we are optimizing this
2497   // function.
2498   if (!D->hasAttr<OptimizeNoneAttr>()) {
2499     if (D->hasAttr<ColdAttr>()) {
2500       if (!ShouldAddOptNone)
2501         B.addAttribute(llvm::Attribute::OptimizeForSize);
2502       B.addAttribute(llvm::Attribute::Cold);
2503     }
2504     if (D->hasAttr<HotAttr>())
2505       B.addAttribute(llvm::Attribute::Hot);
2506     if (D->hasAttr<MinSizeAttr>())
2507       B.addAttribute(llvm::Attribute::MinSize);
2508   }
2509 
2510   F->addFnAttrs(B);
2511 
2512   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2513   if (alignment)
2514     F->setAlignment(llvm::Align(alignment));
2515 
2516   if (!D->hasAttr<AlignedAttr>())
2517     if (LangOpts.FunctionAlignment)
2518       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2519 
2520   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2521   // reserve a bit for differentiating between virtual and non-virtual member
2522   // functions. If the current target's C++ ABI requires this and this is a
2523   // member function, set its alignment accordingly.
2524   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2525     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2526       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2527   }
2528 
2529   // In the cross-dso CFI mode with canonical jump tables, we want !type
2530   // attributes on definitions only.
2531   if (CodeGenOpts.SanitizeCfiCrossDso &&
2532       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2533     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2534       // Skip available_externally functions. They won't be codegen'ed in the
2535       // current module anyway.
2536       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2537         CreateFunctionTypeMetadataForIcall(FD, F);
2538     }
2539   }
2540 
2541   // Emit type metadata on member functions for member function pointer checks.
2542   // These are only ever necessary on definitions; we're guaranteed that the
2543   // definition will be present in the LTO unit as a result of LTO visibility.
2544   auto *MD = dyn_cast<CXXMethodDecl>(D);
2545   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2546     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2547       llvm::Metadata *Id =
2548           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2549               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2550       F->addTypeMetadata(0, Id);
2551     }
2552   }
2553 }
2554 
2555 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2556   const Decl *D = GD.getDecl();
2557   if (isa_and_nonnull<NamedDecl>(D))
2558     setGVProperties(GV, GD);
2559   else
2560     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2561 
2562   if (D && D->hasAttr<UsedAttr>())
2563     addUsedOrCompilerUsedGlobal(GV);
2564 
2565   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2566       VD &&
2567       ((CodeGenOpts.KeepPersistentStorageVariables &&
2568         (VD->getStorageDuration() == SD_Static ||
2569          VD->getStorageDuration() == SD_Thread)) ||
2570        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2571         VD->getType().isConstQualified())))
2572     addUsedOrCompilerUsedGlobal(GV);
2573 }
2574 
2575 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2576                                                 llvm::AttrBuilder &Attrs,
2577                                                 bool SetTargetFeatures) {
2578   // Add target-cpu and target-features attributes to functions. If
2579   // we have a decl for the function and it has a target attribute then
2580   // parse that and add it to the feature set.
2581   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2582   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2583   std::vector<std::string> Features;
2584   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2585   FD = FD ? FD->getMostRecentDecl() : FD;
2586   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2587   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2588   assert((!TD || !TV) && "both target_version and target specified");
2589   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2590   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2591   bool AddedAttr = false;
2592   if (TD || TV || SD || TC) {
2593     llvm::StringMap<bool> FeatureMap;
2594     getContext().getFunctionFeatureMap(FeatureMap, GD);
2595 
2596     // Produce the canonical string for this set of features.
2597     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2598       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2599 
2600     // Now add the target-cpu and target-features to the function.
2601     // While we populated the feature map above, we still need to
2602     // get and parse the target attribute so we can get the cpu for
2603     // the function.
2604     if (TD) {
2605       ParsedTargetAttr ParsedAttr =
2606           Target.parseTargetAttr(TD->getFeaturesStr());
2607       if (!ParsedAttr.CPU.empty() &&
2608           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2609         TargetCPU = ParsedAttr.CPU;
2610         TuneCPU = ""; // Clear the tune CPU.
2611       }
2612       if (!ParsedAttr.Tune.empty() &&
2613           getTarget().isValidCPUName(ParsedAttr.Tune))
2614         TuneCPU = ParsedAttr.Tune;
2615     }
2616 
2617     if (SD) {
2618       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2619       // favor this processor.
2620       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2621     }
2622   } else {
2623     // Otherwise just add the existing target cpu and target features to the
2624     // function.
2625     Features = getTarget().getTargetOpts().Features;
2626   }
2627 
2628   if (!TargetCPU.empty()) {
2629     Attrs.addAttribute("target-cpu", TargetCPU);
2630     AddedAttr = true;
2631   }
2632   if (!TuneCPU.empty()) {
2633     Attrs.addAttribute("tune-cpu", TuneCPU);
2634     AddedAttr = true;
2635   }
2636   if (!Features.empty() && SetTargetFeatures) {
2637     llvm::erase_if(Features, [&](const std::string& F) {
2638        return getTarget().isReadOnlyFeature(F.substr(1));
2639     });
2640     llvm::sort(Features);
2641     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2642     AddedAttr = true;
2643   }
2644 
2645   return AddedAttr;
2646 }
2647 
2648 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2649                                           llvm::GlobalObject *GO) {
2650   const Decl *D = GD.getDecl();
2651   SetCommonAttributes(GD, GO);
2652 
2653   if (D) {
2654     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2655       if (D->hasAttr<RetainAttr>())
2656         addUsedGlobal(GV);
2657       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2658         GV->addAttribute("bss-section", SA->getName());
2659       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2660         GV->addAttribute("data-section", SA->getName());
2661       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2662         GV->addAttribute("rodata-section", SA->getName());
2663       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2664         GV->addAttribute("relro-section", SA->getName());
2665     }
2666 
2667     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2668       if (D->hasAttr<RetainAttr>())
2669         addUsedGlobal(F);
2670       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2671         if (!D->getAttr<SectionAttr>())
2672           F->addFnAttr("implicit-section-name", SA->getName());
2673 
2674       llvm::AttrBuilder Attrs(F->getContext());
2675       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2676         // We know that GetCPUAndFeaturesAttributes will always have the
2677         // newest set, since it has the newest possible FunctionDecl, so the
2678         // new ones should replace the old.
2679         llvm::AttributeMask RemoveAttrs;
2680         RemoveAttrs.addAttribute("target-cpu");
2681         RemoveAttrs.addAttribute("target-features");
2682         RemoveAttrs.addAttribute("tune-cpu");
2683         F->removeFnAttrs(RemoveAttrs);
2684         F->addFnAttrs(Attrs);
2685       }
2686     }
2687 
2688     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2689       GO->setSection(CSA->getName());
2690     else if (const auto *SA = D->getAttr<SectionAttr>())
2691       GO->setSection(SA->getName());
2692   }
2693 
2694   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2695 }
2696 
2697 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2698                                                   llvm::Function *F,
2699                                                   const CGFunctionInfo &FI) {
2700   const Decl *D = GD.getDecl();
2701   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2702   SetLLVMFunctionAttributesForDefinition(D, F);
2703 
2704   F->setLinkage(llvm::Function::InternalLinkage);
2705 
2706   setNonAliasAttributes(GD, F);
2707 }
2708 
2709 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2710   // Set linkage and visibility in case we never see a definition.
2711   LinkageInfo LV = ND->getLinkageAndVisibility();
2712   // Don't set internal linkage on declarations.
2713   // "extern_weak" is overloaded in LLVM; we probably should have
2714   // separate linkage types for this.
2715   if (isExternallyVisible(LV.getLinkage()) &&
2716       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2717     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2718 }
2719 
2720 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2721                                                        llvm::Function *F) {
2722   // Only if we are checking indirect calls.
2723   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2724     return;
2725 
2726   // Non-static class methods are handled via vtable or member function pointer
2727   // checks elsewhere.
2728   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2729     return;
2730 
2731   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2732   F->addTypeMetadata(0, MD);
2733   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2734 
2735   // Emit a hash-based bit set entry for cross-DSO calls.
2736   if (CodeGenOpts.SanitizeCfiCrossDso)
2737     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2738       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2739 }
2740 
2741 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2742   llvm::LLVMContext &Ctx = F->getContext();
2743   llvm::MDBuilder MDB(Ctx);
2744   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2745                  llvm::MDNode::get(
2746                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2747 }
2748 
2749 static bool allowKCFIIdentifier(StringRef Name) {
2750   // KCFI type identifier constants are only necessary for external assembly
2751   // functions, which means it's safe to skip unusual names. Subset of
2752   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2753   return llvm::all_of(Name, [](const char &C) {
2754     return llvm::isAlnum(C) || C == '_' || C == '.';
2755   });
2756 }
2757 
2758 void CodeGenModule::finalizeKCFITypes() {
2759   llvm::Module &M = getModule();
2760   for (auto &F : M.functions()) {
2761     // Remove KCFI type metadata from non-address-taken local functions.
2762     bool AddressTaken = F.hasAddressTaken();
2763     if (!AddressTaken && F.hasLocalLinkage())
2764       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2765 
2766     // Generate a constant with the expected KCFI type identifier for all
2767     // address-taken function declarations to support annotating indirectly
2768     // called assembly functions.
2769     if (!AddressTaken || !F.isDeclaration())
2770       continue;
2771 
2772     const llvm::ConstantInt *Type;
2773     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2774       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2775     else
2776       continue;
2777 
2778     StringRef Name = F.getName();
2779     if (!allowKCFIIdentifier(Name))
2780       continue;
2781 
2782     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2783                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2784                           .str();
2785     M.appendModuleInlineAsm(Asm);
2786   }
2787 }
2788 
2789 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2790                                           bool IsIncompleteFunction,
2791                                           bool IsThunk) {
2792 
2793   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2794     // If this is an intrinsic function, set the function's attributes
2795     // to the intrinsic's attributes.
2796     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2797     return;
2798   }
2799 
2800   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2801 
2802   if (!IsIncompleteFunction)
2803     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2804                               IsThunk);
2805 
2806   // Add the Returned attribute for "this", except for iOS 5 and earlier
2807   // where substantial code, including the libstdc++ dylib, was compiled with
2808   // GCC and does not actually return "this".
2809   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2810       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2811     assert(!F->arg_empty() &&
2812            F->arg_begin()->getType()
2813              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2814            "unexpected this return");
2815     F->addParamAttr(0, llvm::Attribute::Returned);
2816   }
2817 
2818   // Only a few attributes are set on declarations; these may later be
2819   // overridden by a definition.
2820 
2821   setLinkageForGV(F, FD);
2822   setGVProperties(F, FD);
2823 
2824   // Setup target-specific attributes.
2825   if (!IsIncompleteFunction && F->isDeclaration())
2826     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2827 
2828   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2829     F->setSection(CSA->getName());
2830   else if (const auto *SA = FD->getAttr<SectionAttr>())
2831      F->setSection(SA->getName());
2832 
2833   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2834     if (EA->isError())
2835       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2836     else if (EA->isWarning())
2837       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2838   }
2839 
2840   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2841   if (FD->isInlineBuiltinDeclaration()) {
2842     const FunctionDecl *FDBody;
2843     bool HasBody = FD->hasBody(FDBody);
2844     (void)HasBody;
2845     assert(HasBody && "Inline builtin declarations should always have an "
2846                       "available body!");
2847     if (shouldEmitFunction(FDBody))
2848       F->addFnAttr(llvm::Attribute::NoBuiltin);
2849   }
2850 
2851   if (FD->isReplaceableGlobalAllocationFunction()) {
2852     // A replaceable global allocation function does not act like a builtin by
2853     // default, only if it is invoked by a new-expression or delete-expression.
2854     F->addFnAttr(llvm::Attribute::NoBuiltin);
2855   }
2856 
2857   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2858     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2859   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2860     if (MD->isVirtual())
2861       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2862 
2863   // Don't emit entries for function declarations in the cross-DSO mode. This
2864   // is handled with better precision by the receiving DSO. But if jump tables
2865   // are non-canonical then we need type metadata in order to produce the local
2866   // jump table.
2867   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2868       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2869     CreateFunctionTypeMetadataForIcall(FD, F);
2870 
2871   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2872     setKCFIType(FD, F);
2873 
2874   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2875     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2876 
2877   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2878     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2879 
2880   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2881     // Annotate the callback behavior as metadata:
2882     //  - The callback callee (as argument number).
2883     //  - The callback payloads (as argument numbers).
2884     llvm::LLVMContext &Ctx = F->getContext();
2885     llvm::MDBuilder MDB(Ctx);
2886 
2887     // The payload indices are all but the first one in the encoding. The first
2888     // identifies the callback callee.
2889     int CalleeIdx = *CB->encoding_begin();
2890     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2891     F->addMetadata(llvm::LLVMContext::MD_callback,
2892                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2893                                                CalleeIdx, PayloadIndices,
2894                                                /* VarArgsArePassed */ false)}));
2895   }
2896 }
2897 
2898 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2899   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2900          "Only globals with definition can force usage.");
2901   LLVMUsed.emplace_back(GV);
2902 }
2903 
2904 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2905   assert(!GV->isDeclaration() &&
2906          "Only globals with definition can force usage.");
2907   LLVMCompilerUsed.emplace_back(GV);
2908 }
2909 
2910 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2911   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2912          "Only globals with definition can force usage.");
2913   if (getTriple().isOSBinFormatELF())
2914     LLVMCompilerUsed.emplace_back(GV);
2915   else
2916     LLVMUsed.emplace_back(GV);
2917 }
2918 
2919 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2920                      std::vector<llvm::WeakTrackingVH> &List) {
2921   // Don't create llvm.used if there is no need.
2922   if (List.empty())
2923     return;
2924 
2925   // Convert List to what ConstantArray needs.
2926   SmallVector<llvm::Constant*, 8> UsedArray;
2927   UsedArray.resize(List.size());
2928   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2929     UsedArray[i] =
2930         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2931             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2932   }
2933 
2934   if (UsedArray.empty())
2935     return;
2936   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2937 
2938   auto *GV = new llvm::GlobalVariable(
2939       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2940       llvm::ConstantArray::get(ATy, UsedArray), Name);
2941 
2942   GV->setSection("llvm.metadata");
2943 }
2944 
2945 void CodeGenModule::emitLLVMUsed() {
2946   emitUsed(*this, "llvm.used", LLVMUsed);
2947   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2948 }
2949 
2950 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2951   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2952   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2953 }
2954 
2955 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2956   llvm::SmallString<32> Opt;
2957   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2958   if (Opt.empty())
2959     return;
2960   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2961   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2962 }
2963 
2964 void CodeGenModule::AddDependentLib(StringRef Lib) {
2965   auto &C = getLLVMContext();
2966   if (getTarget().getTriple().isOSBinFormatELF()) {
2967       ELFDependentLibraries.push_back(
2968         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2969     return;
2970   }
2971 
2972   llvm::SmallString<24> Opt;
2973   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2974   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2975   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2976 }
2977 
2978 /// Add link options implied by the given module, including modules
2979 /// it depends on, using a postorder walk.
2980 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2981                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2982                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2983   // Import this module's parent.
2984   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2985     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2986   }
2987 
2988   // Import this module's dependencies.
2989   for (Module *Import : llvm::reverse(Mod->Imports)) {
2990     if (Visited.insert(Import).second)
2991       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2992   }
2993 
2994   // Add linker options to link against the libraries/frameworks
2995   // described by this module.
2996   llvm::LLVMContext &Context = CGM.getLLVMContext();
2997   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2998 
2999   // For modules that use export_as for linking, use that module
3000   // name instead.
3001   if (Mod->UseExportAsModuleLinkName)
3002     return;
3003 
3004   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3005     // Link against a framework.  Frameworks are currently Darwin only, so we
3006     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3007     if (LL.IsFramework) {
3008       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3009                                  llvm::MDString::get(Context, LL.Library)};
3010 
3011       Metadata.push_back(llvm::MDNode::get(Context, Args));
3012       continue;
3013     }
3014 
3015     // Link against a library.
3016     if (IsELF) {
3017       llvm::Metadata *Args[2] = {
3018           llvm::MDString::get(Context, "lib"),
3019           llvm::MDString::get(Context, LL.Library),
3020       };
3021       Metadata.push_back(llvm::MDNode::get(Context, Args));
3022     } else {
3023       llvm::SmallString<24> Opt;
3024       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3025       auto *OptString = llvm::MDString::get(Context, Opt);
3026       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3027     }
3028   }
3029 }
3030 
3031 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3032   assert(Primary->isNamedModuleUnit() &&
3033          "We should only emit module initializers for named modules.");
3034 
3035   // Emit the initializers in the order that sub-modules appear in the
3036   // source, first Global Module Fragments, if present.
3037   if (auto GMF = Primary->getGlobalModuleFragment()) {
3038     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3039       if (isa<ImportDecl>(D))
3040         continue;
3041       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3042       EmitTopLevelDecl(D);
3043     }
3044   }
3045   // Second any associated with the module, itself.
3046   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3047     // Skip import decls, the inits for those are called explicitly.
3048     if (isa<ImportDecl>(D))
3049       continue;
3050     EmitTopLevelDecl(D);
3051   }
3052   // Third any associated with the Privat eMOdule Fragment, if present.
3053   if (auto PMF = Primary->getPrivateModuleFragment()) {
3054     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3055       // Skip import decls, the inits for those are called explicitly.
3056       if (isa<ImportDecl>(D))
3057         continue;
3058       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3059       EmitTopLevelDecl(D);
3060     }
3061   }
3062 }
3063 
3064 void CodeGenModule::EmitModuleLinkOptions() {
3065   // Collect the set of all of the modules we want to visit to emit link
3066   // options, which is essentially the imported modules and all of their
3067   // non-explicit child modules.
3068   llvm::SetVector<clang::Module *> LinkModules;
3069   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3070   SmallVector<clang::Module *, 16> Stack;
3071 
3072   // Seed the stack with imported modules.
3073   for (Module *M : ImportedModules) {
3074     // Do not add any link flags when an implementation TU of a module imports
3075     // a header of that same module.
3076     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3077         !getLangOpts().isCompilingModule())
3078       continue;
3079     if (Visited.insert(M).second)
3080       Stack.push_back(M);
3081   }
3082 
3083   // Find all of the modules to import, making a little effort to prune
3084   // non-leaf modules.
3085   while (!Stack.empty()) {
3086     clang::Module *Mod = Stack.pop_back_val();
3087 
3088     bool AnyChildren = false;
3089 
3090     // Visit the submodules of this module.
3091     for (const auto &SM : Mod->submodules()) {
3092       // Skip explicit children; they need to be explicitly imported to be
3093       // linked against.
3094       if (SM->IsExplicit)
3095         continue;
3096 
3097       if (Visited.insert(SM).second) {
3098         Stack.push_back(SM);
3099         AnyChildren = true;
3100       }
3101     }
3102 
3103     // We didn't find any children, so add this module to the list of
3104     // modules to link against.
3105     if (!AnyChildren) {
3106       LinkModules.insert(Mod);
3107     }
3108   }
3109 
3110   // Add link options for all of the imported modules in reverse topological
3111   // order.  We don't do anything to try to order import link flags with respect
3112   // to linker options inserted by things like #pragma comment().
3113   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3114   Visited.clear();
3115   for (Module *M : LinkModules)
3116     if (Visited.insert(M).second)
3117       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3118   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3119   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3120 
3121   // Add the linker options metadata flag.
3122   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3123   for (auto *MD : LinkerOptionsMetadata)
3124     NMD->addOperand(MD);
3125 }
3126 
3127 void CodeGenModule::EmitDeferred() {
3128   // Emit deferred declare target declarations.
3129   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3130     getOpenMPRuntime().emitDeferredTargetDecls();
3131 
3132   // Emit code for any potentially referenced deferred decls.  Since a
3133   // previously unused static decl may become used during the generation of code
3134   // for a static function, iterate until no changes are made.
3135 
3136   if (!DeferredVTables.empty()) {
3137     EmitDeferredVTables();
3138 
3139     // Emitting a vtable doesn't directly cause more vtables to
3140     // become deferred, although it can cause functions to be
3141     // emitted that then need those vtables.
3142     assert(DeferredVTables.empty());
3143   }
3144 
3145   // Emit CUDA/HIP static device variables referenced by host code only.
3146   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3147   // needed for further handling.
3148   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3149     llvm::append_range(DeferredDeclsToEmit,
3150                        getContext().CUDADeviceVarODRUsedByHost);
3151 
3152   // Stop if we're out of both deferred vtables and deferred declarations.
3153   if (DeferredDeclsToEmit.empty())
3154     return;
3155 
3156   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3157   // work, it will not interfere with this.
3158   std::vector<GlobalDecl> CurDeclsToEmit;
3159   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3160 
3161   for (GlobalDecl &D : CurDeclsToEmit) {
3162     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3163     // to get GlobalValue with exactly the type we need, not something that
3164     // might had been created for another decl with the same mangled name but
3165     // different type.
3166     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3167         GetAddrOfGlobal(D, ForDefinition));
3168 
3169     // In case of different address spaces, we may still get a cast, even with
3170     // IsForDefinition equal to true. Query mangled names table to get
3171     // GlobalValue.
3172     if (!GV)
3173       GV = GetGlobalValue(getMangledName(D));
3174 
3175     // Make sure GetGlobalValue returned non-null.
3176     assert(GV);
3177 
3178     // Check to see if we've already emitted this.  This is necessary
3179     // for a couple of reasons: first, decls can end up in the
3180     // deferred-decls queue multiple times, and second, decls can end
3181     // up with definitions in unusual ways (e.g. by an extern inline
3182     // function acquiring a strong function redefinition).  Just
3183     // ignore these cases.
3184     if (!GV->isDeclaration())
3185       continue;
3186 
3187     // If this is OpenMP, check if it is legal to emit this global normally.
3188     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3189       continue;
3190 
3191     // Otherwise, emit the definition and move on to the next one.
3192     EmitGlobalDefinition(D, GV);
3193 
3194     // If we found out that we need to emit more decls, do that recursively.
3195     // This has the advantage that the decls are emitted in a DFS and related
3196     // ones are close together, which is convenient for testing.
3197     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3198       EmitDeferred();
3199       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3200     }
3201   }
3202 }
3203 
3204 void CodeGenModule::EmitVTablesOpportunistically() {
3205   // Try to emit external vtables as available_externally if they have emitted
3206   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3207   // is not allowed to create new references to things that need to be emitted
3208   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3209 
3210   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3211          && "Only emit opportunistic vtables with optimizations");
3212 
3213   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3214     assert(getVTables().isVTableExternal(RD) &&
3215            "This queue should only contain external vtables");
3216     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3217       VTables.GenerateClassData(RD);
3218   }
3219   OpportunisticVTables.clear();
3220 }
3221 
3222 void CodeGenModule::EmitGlobalAnnotations() {
3223   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3224     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3225     if (GV)
3226       AddGlobalAnnotations(VD, GV);
3227   }
3228   DeferredAnnotations.clear();
3229 
3230   if (Annotations.empty())
3231     return;
3232 
3233   // Create a new global variable for the ConstantStruct in the Module.
3234   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3235     Annotations[0]->getType(), Annotations.size()), Annotations);
3236   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3237                                       llvm::GlobalValue::AppendingLinkage,
3238                                       Array, "llvm.global.annotations");
3239   gv->setSection(AnnotationSection);
3240 }
3241 
3242 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3243   llvm::Constant *&AStr = AnnotationStrings[Str];
3244   if (AStr)
3245     return AStr;
3246 
3247   // Not found yet, create a new global.
3248   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3249   auto *gv = new llvm::GlobalVariable(
3250       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3251       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3252       ConstGlobalsPtrTy->getAddressSpace());
3253   gv->setSection(AnnotationSection);
3254   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3255   AStr = gv;
3256   return gv;
3257 }
3258 
3259 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3260   SourceManager &SM = getContext().getSourceManager();
3261   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3262   if (PLoc.isValid())
3263     return EmitAnnotationString(PLoc.getFilename());
3264   return EmitAnnotationString(SM.getBufferName(Loc));
3265 }
3266 
3267 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3268   SourceManager &SM = getContext().getSourceManager();
3269   PresumedLoc PLoc = SM.getPresumedLoc(L);
3270   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3271     SM.getExpansionLineNumber(L);
3272   return llvm::ConstantInt::get(Int32Ty, LineNo);
3273 }
3274 
3275 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3276   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3277   if (Exprs.empty())
3278     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3279 
3280   llvm::FoldingSetNodeID ID;
3281   for (Expr *E : Exprs) {
3282     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3283   }
3284   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3285   if (Lookup)
3286     return Lookup;
3287 
3288   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3289   LLVMArgs.reserve(Exprs.size());
3290   ConstantEmitter ConstEmiter(*this);
3291   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3292     const auto *CE = cast<clang::ConstantExpr>(E);
3293     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3294                                     CE->getType());
3295   });
3296   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3297   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3298                                       llvm::GlobalValue::PrivateLinkage, Struct,
3299                                       ".args");
3300   GV->setSection(AnnotationSection);
3301   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3302 
3303   Lookup = GV;
3304   return GV;
3305 }
3306 
3307 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3308                                                 const AnnotateAttr *AA,
3309                                                 SourceLocation L) {
3310   // Get the globals for file name, annotation, and the line number.
3311   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3312                  *UnitGV = EmitAnnotationUnit(L),
3313                  *LineNoCst = EmitAnnotationLineNo(L),
3314                  *Args = EmitAnnotationArgs(AA);
3315 
3316   llvm::Constant *GVInGlobalsAS = GV;
3317   if (GV->getAddressSpace() !=
3318       getDataLayout().getDefaultGlobalsAddressSpace()) {
3319     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3320         GV,
3321         llvm::PointerType::get(
3322             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3323   }
3324 
3325   // Create the ConstantStruct for the global annotation.
3326   llvm::Constant *Fields[] = {
3327       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3328   };
3329   return llvm::ConstantStruct::getAnon(Fields);
3330 }
3331 
3332 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3333                                          llvm::GlobalValue *GV) {
3334   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3335   // Get the struct elements for these annotations.
3336   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3337     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3338 }
3339 
3340 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3341                                        SourceLocation Loc) const {
3342   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3343   // NoSanitize by function name.
3344   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3345     return true;
3346   // NoSanitize by location. Check "mainfile" prefix.
3347   auto &SM = Context.getSourceManager();
3348   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3349   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3350     return true;
3351 
3352   // Check "src" prefix.
3353   if (Loc.isValid())
3354     return NoSanitizeL.containsLocation(Kind, Loc);
3355   // If location is unknown, this may be a compiler-generated function. Assume
3356   // it's located in the main file.
3357   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3358 }
3359 
3360 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3361                                        llvm::GlobalVariable *GV,
3362                                        SourceLocation Loc, QualType Ty,
3363                                        StringRef Category) const {
3364   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3365   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3366     return true;
3367   auto &SM = Context.getSourceManager();
3368   if (NoSanitizeL.containsMainFile(
3369           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3370           Category))
3371     return true;
3372   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3373     return true;
3374 
3375   // Check global type.
3376   if (!Ty.isNull()) {
3377     // Drill down the array types: if global variable of a fixed type is
3378     // not sanitized, we also don't instrument arrays of them.
3379     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3380       Ty = AT->getElementType();
3381     Ty = Ty.getCanonicalType().getUnqualifiedType();
3382     // Only record types (classes, structs etc.) are ignored.
3383     if (Ty->isRecordType()) {
3384       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3385       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3386         return true;
3387     }
3388   }
3389   return false;
3390 }
3391 
3392 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3393                                    StringRef Category) const {
3394   const auto &XRayFilter = getContext().getXRayFilter();
3395   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3396   auto Attr = ImbueAttr::NONE;
3397   if (Loc.isValid())
3398     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3399   if (Attr == ImbueAttr::NONE)
3400     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3401   switch (Attr) {
3402   case ImbueAttr::NONE:
3403     return false;
3404   case ImbueAttr::ALWAYS:
3405     Fn->addFnAttr("function-instrument", "xray-always");
3406     break;
3407   case ImbueAttr::ALWAYS_ARG1:
3408     Fn->addFnAttr("function-instrument", "xray-always");
3409     Fn->addFnAttr("xray-log-args", "1");
3410     break;
3411   case ImbueAttr::NEVER:
3412     Fn->addFnAttr("function-instrument", "xray-never");
3413     break;
3414   }
3415   return true;
3416 }
3417 
3418 ProfileList::ExclusionType
3419 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3420                                               SourceLocation Loc) const {
3421   const auto &ProfileList = getContext().getProfileList();
3422   // If the profile list is empty, then instrument everything.
3423   if (ProfileList.isEmpty())
3424     return ProfileList::Allow;
3425   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3426   // First, check the function name.
3427   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3428     return *V;
3429   // Next, check the source location.
3430   if (Loc.isValid())
3431     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3432       return *V;
3433   // If location is unknown, this may be a compiler-generated function. Assume
3434   // it's located in the main file.
3435   auto &SM = Context.getSourceManager();
3436   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3437     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3438       return *V;
3439   return ProfileList.getDefault(Kind);
3440 }
3441 
3442 ProfileList::ExclusionType
3443 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3444                                                  SourceLocation Loc) const {
3445   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3446   if (V != ProfileList::Allow)
3447     return V;
3448 
3449   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3450   if (NumGroups > 1) {
3451     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3452     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3453       return ProfileList::Skip;
3454   }
3455   return ProfileList::Allow;
3456 }
3457 
3458 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3459   // Never defer when EmitAllDecls is specified.
3460   if (LangOpts.EmitAllDecls)
3461     return true;
3462 
3463   const auto *VD = dyn_cast<VarDecl>(Global);
3464   if (VD &&
3465       ((CodeGenOpts.KeepPersistentStorageVariables &&
3466         (VD->getStorageDuration() == SD_Static ||
3467          VD->getStorageDuration() == SD_Thread)) ||
3468        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3469         VD->getType().isConstQualified())))
3470     return true;
3471 
3472   return getContext().DeclMustBeEmitted(Global);
3473 }
3474 
3475 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3476   // In OpenMP 5.0 variables and function may be marked as
3477   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3478   // that they must be emitted on the host/device. To be sure we need to have
3479   // seen a declare target with an explicit mentioning of the function, we know
3480   // we have if the level of the declare target attribute is -1. Note that we
3481   // check somewhere else if we should emit this at all.
3482   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3483     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3484         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3485     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3486       return false;
3487   }
3488 
3489   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3490     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3491       // Implicit template instantiations may change linkage if they are later
3492       // explicitly instantiated, so they should not be emitted eagerly.
3493       return false;
3494   }
3495   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3496     if (Context.getInlineVariableDefinitionKind(VD) ==
3497         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3498       // A definition of an inline constexpr static data member may change
3499       // linkage later if it's redeclared outside the class.
3500       return false;
3501     if (CXX20ModuleInits && VD->getOwningModule() &&
3502         !VD->getOwningModule()->isModuleMapModule()) {
3503       // For CXX20, module-owned initializers need to be deferred, since it is
3504       // not known at this point if they will be run for the current module or
3505       // as part of the initializer for an imported one.
3506       return false;
3507     }
3508   }
3509   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3510   // codegen for global variables, because they may be marked as threadprivate.
3511   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3512       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3513       !Global->getType().isConstantStorage(getContext(), false, false) &&
3514       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3515     return false;
3516 
3517   return true;
3518 }
3519 
3520 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3521   StringRef Name = getMangledName(GD);
3522 
3523   // The UUID descriptor should be pointer aligned.
3524   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3525 
3526   // Look for an existing global.
3527   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3528     return ConstantAddress(GV, GV->getValueType(), Alignment);
3529 
3530   ConstantEmitter Emitter(*this);
3531   llvm::Constant *Init;
3532 
3533   APValue &V = GD->getAsAPValue();
3534   if (!V.isAbsent()) {
3535     // If possible, emit the APValue version of the initializer. In particular,
3536     // this gets the type of the constant right.
3537     Init = Emitter.emitForInitializer(
3538         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3539   } else {
3540     // As a fallback, directly construct the constant.
3541     // FIXME: This may get padding wrong under esoteric struct layout rules.
3542     // MSVC appears to create a complete type 'struct __s_GUID' that it
3543     // presumably uses to represent these constants.
3544     MSGuidDecl::Parts Parts = GD->getParts();
3545     llvm::Constant *Fields[4] = {
3546         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3547         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3548         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3549         llvm::ConstantDataArray::getRaw(
3550             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3551             Int8Ty)};
3552     Init = llvm::ConstantStruct::getAnon(Fields);
3553   }
3554 
3555   auto *GV = new llvm::GlobalVariable(
3556       getModule(), Init->getType(),
3557       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3558   if (supportsCOMDAT())
3559     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3560   setDSOLocal(GV);
3561 
3562   if (!V.isAbsent()) {
3563     Emitter.finalize(GV);
3564     return ConstantAddress(GV, GV->getValueType(), Alignment);
3565   }
3566 
3567   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3568   return ConstantAddress(GV, Ty, Alignment);
3569 }
3570 
3571 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3572     const UnnamedGlobalConstantDecl *GCD) {
3573   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3574 
3575   llvm::GlobalVariable **Entry = nullptr;
3576   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3577   if (*Entry)
3578     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3579 
3580   ConstantEmitter Emitter(*this);
3581   llvm::Constant *Init;
3582 
3583   const APValue &V = GCD->getValue();
3584 
3585   assert(!V.isAbsent());
3586   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3587                                     GCD->getType());
3588 
3589   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3590                                       /*isConstant=*/true,
3591                                       llvm::GlobalValue::PrivateLinkage, Init,
3592                                       ".constant");
3593   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3594   GV->setAlignment(Alignment.getAsAlign());
3595 
3596   Emitter.finalize(GV);
3597 
3598   *Entry = GV;
3599   return ConstantAddress(GV, GV->getValueType(), Alignment);
3600 }
3601 
3602 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3603     const TemplateParamObjectDecl *TPO) {
3604   StringRef Name = getMangledName(TPO);
3605   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3606 
3607   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3608     return ConstantAddress(GV, GV->getValueType(), Alignment);
3609 
3610   ConstantEmitter Emitter(*this);
3611   llvm::Constant *Init = Emitter.emitForInitializer(
3612         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3613 
3614   if (!Init) {
3615     ErrorUnsupported(TPO, "template parameter object");
3616     return ConstantAddress::invalid();
3617   }
3618 
3619   llvm::GlobalValue::LinkageTypes Linkage =
3620       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3621           ? llvm::GlobalValue::LinkOnceODRLinkage
3622           : llvm::GlobalValue::InternalLinkage;
3623   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3624                                       /*isConstant=*/true, Linkage, Init, Name);
3625   setGVProperties(GV, TPO);
3626   if (supportsCOMDAT())
3627     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3628   Emitter.finalize(GV);
3629 
3630     return ConstantAddress(GV, GV->getValueType(), Alignment);
3631 }
3632 
3633 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3634   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3635   assert(AA && "No alias?");
3636 
3637   CharUnits Alignment = getContext().getDeclAlign(VD);
3638   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3639 
3640   // See if there is already something with the target's name in the module.
3641   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3642   if (Entry)
3643     return ConstantAddress(Entry, DeclTy, Alignment);
3644 
3645   llvm::Constant *Aliasee;
3646   if (isa<llvm::FunctionType>(DeclTy))
3647     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3648                                       GlobalDecl(cast<FunctionDecl>(VD)),
3649                                       /*ForVTable=*/false);
3650   else
3651     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3652                                     nullptr);
3653 
3654   auto *F = cast<llvm::GlobalValue>(Aliasee);
3655   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3656   WeakRefReferences.insert(F);
3657 
3658   return ConstantAddress(Aliasee, DeclTy, Alignment);
3659 }
3660 
3661 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3662   if (!D)
3663     return false;
3664   if (auto *A = D->getAttr<AttrT>())
3665     return A->isImplicit();
3666   return D->isImplicit();
3667 }
3668 
3669 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3670   const auto *Global = cast<ValueDecl>(GD.getDecl());
3671 
3672   // Weak references don't produce any output by themselves.
3673   if (Global->hasAttr<WeakRefAttr>())
3674     return;
3675 
3676   // If this is an alias definition (which otherwise looks like a declaration)
3677   // emit it now.
3678   if (Global->hasAttr<AliasAttr>())
3679     return EmitAliasDefinition(GD);
3680 
3681   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3682   if (Global->hasAttr<IFuncAttr>())
3683     return emitIFuncDefinition(GD);
3684 
3685   // If this is a cpu_dispatch multiversion function, emit the resolver.
3686   if (Global->hasAttr<CPUDispatchAttr>())
3687     return emitCPUDispatchDefinition(GD);
3688 
3689   // If this is CUDA, be selective about which declarations we emit.
3690   // Non-constexpr non-lambda implicit host device functions are not emitted
3691   // unless they are used on device side.
3692   if (LangOpts.CUDA) {
3693     if (LangOpts.CUDAIsDevice) {
3694       const auto *FD = dyn_cast<FunctionDecl>(Global);
3695       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3696            (LangOpts.OffloadImplicitHostDeviceTemplates && FD &&
3697             hasImplicitAttr<CUDAHostAttr>(FD) &&
3698             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3699             !isLambdaCallOperator(FD) &&
3700             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3701           !Global->hasAttr<CUDAGlobalAttr>() &&
3702           !Global->hasAttr<CUDAConstantAttr>() &&
3703           !Global->hasAttr<CUDASharedAttr>() &&
3704           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3705           !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3706           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3707             !Global->hasAttr<CUDAHostAttr>()))
3708         return;
3709     } else {
3710       // We need to emit host-side 'shadows' for all global
3711       // device-side variables because the CUDA runtime needs their
3712       // size and host-side address in order to provide access to
3713       // their device-side incarnations.
3714 
3715       // So device-only functions are the only things we skip.
3716       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3717           Global->hasAttr<CUDADeviceAttr>())
3718         return;
3719 
3720       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3721              "Expected Variable or Function");
3722     }
3723   }
3724 
3725   if (LangOpts.OpenMP) {
3726     // If this is OpenMP, check if it is legal to emit this global normally.
3727     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3728       return;
3729     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3730       if (MustBeEmitted(Global))
3731         EmitOMPDeclareReduction(DRD);
3732       return;
3733     }
3734     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3735       if (MustBeEmitted(Global))
3736         EmitOMPDeclareMapper(DMD);
3737       return;
3738     }
3739   }
3740 
3741   // Ignore declarations, they will be emitted on their first use.
3742   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3743     // Update deferred annotations with the latest declaration if the function
3744     // function was already used or defined.
3745     if (FD->hasAttr<AnnotateAttr>()) {
3746       StringRef MangledName = getMangledName(GD);
3747       if (GetGlobalValue(MangledName))
3748         DeferredAnnotations[MangledName] = FD;
3749     }
3750 
3751     // Forward declarations are emitted lazily on first use.
3752     if (!FD->doesThisDeclarationHaveABody()) {
3753       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3754         return;
3755 
3756       StringRef MangledName = getMangledName(GD);
3757 
3758       // Compute the function info and LLVM type.
3759       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3760       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3761 
3762       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3763                               /*DontDefer=*/false);
3764       return;
3765     }
3766   } else {
3767     const auto *VD = cast<VarDecl>(Global);
3768     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3769     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3770         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3771       if (LangOpts.OpenMP) {
3772         // Emit declaration of the must-be-emitted declare target variable.
3773         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3774                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3775 
3776           // If this variable has external storage and doesn't require special
3777           // link handling we defer to its canonical definition.
3778           if (VD->hasExternalStorage() &&
3779               Res != OMPDeclareTargetDeclAttr::MT_Link)
3780             return;
3781 
3782           bool UnifiedMemoryEnabled =
3783               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3784           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3785                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3786               !UnifiedMemoryEnabled) {
3787             (void)GetAddrOfGlobalVar(VD);
3788           } else {
3789             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3790                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3791                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3792                      UnifiedMemoryEnabled)) &&
3793                    "Link clause or to clause with unified memory expected.");
3794             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3795           }
3796 
3797           return;
3798         }
3799       }
3800       // If this declaration may have caused an inline variable definition to
3801       // change linkage, make sure that it's emitted.
3802       if (Context.getInlineVariableDefinitionKind(VD) ==
3803           ASTContext::InlineVariableDefinitionKind::Strong)
3804         GetAddrOfGlobalVar(VD);
3805       return;
3806     }
3807   }
3808 
3809   // Defer code generation to first use when possible, e.g. if this is an inline
3810   // function. If the global must always be emitted, do it eagerly if possible
3811   // to benefit from cache locality.
3812   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3813     // Emit the definition if it can't be deferred.
3814     EmitGlobalDefinition(GD);
3815     addEmittedDeferredDecl(GD);
3816     return;
3817   }
3818 
3819   // If we're deferring emission of a C++ variable with an
3820   // initializer, remember the order in which it appeared in the file.
3821   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3822       cast<VarDecl>(Global)->hasInit()) {
3823     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3824     CXXGlobalInits.push_back(nullptr);
3825   }
3826 
3827   StringRef MangledName = getMangledName(GD);
3828   if (GetGlobalValue(MangledName) != nullptr) {
3829     // The value has already been used and should therefore be emitted.
3830     addDeferredDeclToEmit(GD);
3831   } else if (MustBeEmitted(Global)) {
3832     // The value must be emitted, but cannot be emitted eagerly.
3833     assert(!MayBeEmittedEagerly(Global));
3834     addDeferredDeclToEmit(GD);
3835   } else {
3836     // Otherwise, remember that we saw a deferred decl with this name.  The
3837     // first use of the mangled name will cause it to move into
3838     // DeferredDeclsToEmit.
3839     DeferredDecls[MangledName] = GD;
3840   }
3841 }
3842 
3843 // Check if T is a class type with a destructor that's not dllimport.
3844 static bool HasNonDllImportDtor(QualType T) {
3845   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3846     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3847       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3848         return true;
3849 
3850   return false;
3851 }
3852 
3853 namespace {
3854   struct FunctionIsDirectlyRecursive
3855       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3856     const StringRef Name;
3857     const Builtin::Context &BI;
3858     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3859         : Name(N), BI(C) {}
3860 
3861     bool VisitCallExpr(const CallExpr *E) {
3862       const FunctionDecl *FD = E->getDirectCallee();
3863       if (!FD)
3864         return false;
3865       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3866       if (Attr && Name == Attr->getLabel())
3867         return true;
3868       unsigned BuiltinID = FD->getBuiltinID();
3869       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3870         return false;
3871       StringRef BuiltinName = BI.getName(BuiltinID);
3872       if (BuiltinName.starts_with("__builtin_") &&
3873           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3874         return true;
3875       }
3876       return false;
3877     }
3878 
3879     bool VisitStmt(const Stmt *S) {
3880       for (const Stmt *Child : S->children())
3881         if (Child && this->Visit(Child))
3882           return true;
3883       return false;
3884     }
3885   };
3886 
3887   // Make sure we're not referencing non-imported vars or functions.
3888   struct DLLImportFunctionVisitor
3889       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3890     bool SafeToInline = true;
3891 
3892     bool shouldVisitImplicitCode() const { return true; }
3893 
3894     bool VisitVarDecl(VarDecl *VD) {
3895       if (VD->getTLSKind()) {
3896         // A thread-local variable cannot be imported.
3897         SafeToInline = false;
3898         return SafeToInline;
3899       }
3900 
3901       // A variable definition might imply a destructor call.
3902       if (VD->isThisDeclarationADefinition())
3903         SafeToInline = !HasNonDllImportDtor(VD->getType());
3904 
3905       return SafeToInline;
3906     }
3907 
3908     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3909       if (const auto *D = E->getTemporary()->getDestructor())
3910         SafeToInline = D->hasAttr<DLLImportAttr>();
3911       return SafeToInline;
3912     }
3913 
3914     bool VisitDeclRefExpr(DeclRefExpr *E) {
3915       ValueDecl *VD = E->getDecl();
3916       if (isa<FunctionDecl>(VD))
3917         SafeToInline = VD->hasAttr<DLLImportAttr>();
3918       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3919         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3920       return SafeToInline;
3921     }
3922 
3923     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3924       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3925       return SafeToInline;
3926     }
3927 
3928     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3929       CXXMethodDecl *M = E->getMethodDecl();
3930       if (!M) {
3931         // Call through a pointer to member function. This is safe to inline.
3932         SafeToInline = true;
3933       } else {
3934         SafeToInline = M->hasAttr<DLLImportAttr>();
3935       }
3936       return SafeToInline;
3937     }
3938 
3939     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3940       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3941       return SafeToInline;
3942     }
3943 
3944     bool VisitCXXNewExpr(CXXNewExpr *E) {
3945       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3946       return SafeToInline;
3947     }
3948   };
3949 }
3950 
3951 // isTriviallyRecursive - Check if this function calls another
3952 // decl that, because of the asm attribute or the other decl being a builtin,
3953 // ends up pointing to itself.
3954 bool
3955 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3956   StringRef Name;
3957   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3958     // asm labels are a special kind of mangling we have to support.
3959     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3960     if (!Attr)
3961       return false;
3962     Name = Attr->getLabel();
3963   } else {
3964     Name = FD->getName();
3965   }
3966 
3967   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3968   const Stmt *Body = FD->getBody();
3969   return Body ? Walker.Visit(Body) : false;
3970 }
3971 
3972 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3973   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3974     return true;
3975 
3976   const auto *F = cast<FunctionDecl>(GD.getDecl());
3977   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3978     return false;
3979 
3980   // We don't import function bodies from other named module units since that
3981   // behavior may break ABI compatibility of the current unit.
3982   if (const Module *M = F->getOwningModule();
3983       M && M->getTopLevelModule()->isNamedModule() &&
3984       getContext().getCurrentNamedModule() != M->getTopLevelModule())
3985     return false;
3986 
3987   if (F->hasAttr<NoInlineAttr>())
3988     return false;
3989 
3990   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3991     // Check whether it would be safe to inline this dllimport function.
3992     DLLImportFunctionVisitor Visitor;
3993     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3994     if (!Visitor.SafeToInline)
3995       return false;
3996 
3997     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3998       // Implicit destructor invocations aren't captured in the AST, so the
3999       // check above can't see them. Check for them manually here.
4000       for (const Decl *Member : Dtor->getParent()->decls())
4001         if (isa<FieldDecl>(Member))
4002           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4003             return false;
4004       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4005         if (HasNonDllImportDtor(B.getType()))
4006           return false;
4007     }
4008   }
4009 
4010   // Inline builtins declaration must be emitted. They often are fortified
4011   // functions.
4012   if (F->isInlineBuiltinDeclaration())
4013     return true;
4014 
4015   // PR9614. Avoid cases where the source code is lying to us. An available
4016   // externally function should have an equivalent function somewhere else,
4017   // but a function that calls itself through asm label/`__builtin_` trickery is
4018   // clearly not equivalent to the real implementation.
4019   // This happens in glibc's btowc and in some configure checks.
4020   return !isTriviallyRecursive(F);
4021 }
4022 
4023 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4024   return CodeGenOpts.OptimizationLevel > 0;
4025 }
4026 
4027 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4028                                                        llvm::GlobalValue *GV) {
4029   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4030 
4031   if (FD->isCPUSpecificMultiVersion()) {
4032     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4033     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4034       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4035   } else if (FD->isTargetClonesMultiVersion()) {
4036     auto *Clone = FD->getAttr<TargetClonesAttr>();
4037     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
4038       if (Clone->isFirstOfVersion(I))
4039         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4040     // Ensure that the resolver function is also emitted.
4041     GetOrCreateMultiVersionResolver(GD);
4042   } else if (FD->hasAttr<TargetVersionAttr>()) {
4043     GetOrCreateMultiVersionResolver(GD);
4044   } else
4045     EmitGlobalFunctionDefinition(GD, GV);
4046 }
4047 
4048 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4049   const auto *D = cast<ValueDecl>(GD.getDecl());
4050 
4051   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4052                                  Context.getSourceManager(),
4053                                  "Generating code for declaration");
4054 
4055   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4056     // At -O0, don't generate IR for functions with available_externally
4057     // linkage.
4058     if (!shouldEmitFunction(GD))
4059       return;
4060 
4061     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4062       std::string Name;
4063       llvm::raw_string_ostream OS(Name);
4064       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4065                                /*Qualified=*/true);
4066       return Name;
4067     });
4068 
4069     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4070       // Make sure to emit the definition(s) before we emit the thunks.
4071       // This is necessary for the generation of certain thunks.
4072       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4073         ABI->emitCXXStructor(GD);
4074       else if (FD->isMultiVersion())
4075         EmitMultiVersionFunctionDefinition(GD, GV);
4076       else
4077         EmitGlobalFunctionDefinition(GD, GV);
4078 
4079       if (Method->isVirtual())
4080         getVTables().EmitThunks(GD);
4081 
4082       return;
4083     }
4084 
4085     if (FD->isMultiVersion())
4086       return EmitMultiVersionFunctionDefinition(GD, GV);
4087     return EmitGlobalFunctionDefinition(GD, GV);
4088   }
4089 
4090   if (const auto *VD = dyn_cast<VarDecl>(D))
4091     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4092 
4093   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4094 }
4095 
4096 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4097                                                       llvm::Function *NewFn);
4098 
4099 static unsigned
4100 TargetMVPriority(const TargetInfo &TI,
4101                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4102   unsigned Priority = 0;
4103   unsigned NumFeatures = 0;
4104   for (StringRef Feat : RO.Conditions.Features) {
4105     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4106     NumFeatures++;
4107   }
4108 
4109   if (!RO.Conditions.Architecture.empty())
4110     Priority = std::max(
4111         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4112 
4113   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4114 
4115   return Priority;
4116 }
4117 
4118 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4119 // TU can forward declare the function without causing problems.  Particularly
4120 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4121 // work with internal linkage functions, so that the same function name can be
4122 // used with internal linkage in multiple TUs.
4123 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4124                                                        GlobalDecl GD) {
4125   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4126   if (FD->getFormalLinkage() == Linkage::Internal)
4127     return llvm::GlobalValue::InternalLinkage;
4128   return llvm::GlobalValue::WeakODRLinkage;
4129 }
4130 
4131 void CodeGenModule::emitMultiVersionFunctions() {
4132   std::vector<GlobalDecl> MVFuncsToEmit;
4133   MultiVersionFuncs.swap(MVFuncsToEmit);
4134   for (GlobalDecl GD : MVFuncsToEmit) {
4135     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4136     assert(FD && "Expected a FunctionDecl");
4137 
4138     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4139     if (FD->isTargetMultiVersion()) {
4140       getContext().forEachMultiversionedFunctionVersion(
4141           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
4142             GlobalDecl CurGD{
4143                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
4144             StringRef MangledName = getMangledName(CurGD);
4145             llvm::Constant *Func = GetGlobalValue(MangledName);
4146             if (!Func) {
4147               if (CurFD->isDefined()) {
4148                 EmitGlobalFunctionDefinition(CurGD, nullptr);
4149                 Func = GetGlobalValue(MangledName);
4150               } else {
4151                 const CGFunctionInfo &FI =
4152                     getTypes().arrangeGlobalDeclaration(GD);
4153                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4154                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4155                                          /*DontDefer=*/false, ForDefinition);
4156               }
4157               assert(Func && "This should have just been created");
4158             }
4159             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
4160               const auto *TA = CurFD->getAttr<TargetAttr>();
4161               llvm::SmallVector<StringRef, 8> Feats;
4162               TA->getAddedFeatures(Feats);
4163               Options.emplace_back(cast<llvm::Function>(Func),
4164                                    TA->getArchitecture(), Feats);
4165             } else {
4166               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
4167               llvm::SmallVector<StringRef, 8> Feats;
4168               TVA->getFeatures(Feats);
4169               Options.emplace_back(cast<llvm::Function>(Func),
4170                                    /*Architecture*/ "", Feats);
4171             }
4172           });
4173     } else if (FD->isTargetClonesMultiVersion()) {
4174       const auto *TC = FD->getAttr<TargetClonesAttr>();
4175       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
4176            ++VersionIndex) {
4177         if (!TC->isFirstOfVersion(VersionIndex))
4178           continue;
4179         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4180                          VersionIndex};
4181         StringRef Version = TC->getFeatureStr(VersionIndex);
4182         StringRef MangledName = getMangledName(CurGD);
4183         llvm::Constant *Func = GetGlobalValue(MangledName);
4184         if (!Func) {
4185           if (FD->isDefined()) {
4186             EmitGlobalFunctionDefinition(CurGD, nullptr);
4187             Func = GetGlobalValue(MangledName);
4188           } else {
4189             const CGFunctionInfo &FI =
4190                 getTypes().arrangeGlobalDeclaration(CurGD);
4191             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4192             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4193                                      /*DontDefer=*/false, ForDefinition);
4194           }
4195           assert(Func && "This should have just been created");
4196         }
4197 
4198         StringRef Architecture;
4199         llvm::SmallVector<StringRef, 1> Feature;
4200 
4201         if (getTarget().getTriple().isAArch64()) {
4202           if (Version != "default") {
4203             llvm::SmallVector<StringRef, 8> VerFeats;
4204             Version.split(VerFeats, "+");
4205             for (auto &CurFeat : VerFeats)
4206               Feature.push_back(CurFeat.trim());
4207           }
4208         } else {
4209           if (Version.starts_with("arch="))
4210             Architecture = Version.drop_front(sizeof("arch=") - 1);
4211           else if (Version != "default")
4212             Feature.push_back(Version);
4213         }
4214 
4215         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4216       }
4217     } else {
4218       assert(0 && "Expected a target or target_clones multiversion function");
4219       continue;
4220     }
4221 
4222     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4223     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4224       ResolverConstant = IFunc->getResolver();
4225       if (FD->isTargetClonesMultiVersion() ||
4226           FD->isTargetVersionMultiVersion()) {
4227         const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4228         llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4229         std::string MangledName = getMangledNameImpl(
4230             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4231         // In prior versions of Clang, the mangling for ifuncs incorrectly
4232         // included an .ifunc suffix. This alias is generated for backward
4233         // compatibility. It is deprecated, and may be removed in the future.
4234         auto *Alias = llvm::GlobalAlias::create(
4235             DeclTy, 0, getMultiversionLinkage(*this, GD),
4236             MangledName + ".ifunc", IFunc, &getModule());
4237         SetCommonAttributes(FD, Alias);
4238       }
4239     }
4240     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4241 
4242     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4243 
4244     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4245       ResolverFunc->setComdat(
4246           getModule().getOrInsertComdat(ResolverFunc->getName()));
4247 
4248     const TargetInfo &TI = getTarget();
4249     llvm::stable_sort(
4250         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4251                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4252           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4253         });
4254     CodeGenFunction CGF(*this);
4255     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4256   }
4257 
4258   // Ensure that any additions to the deferred decls list caused by emitting a
4259   // variant are emitted.  This can happen when the variant itself is inline and
4260   // calls a function without linkage.
4261   if (!MVFuncsToEmit.empty())
4262     EmitDeferred();
4263 
4264   // Ensure that any additions to the multiversion funcs list from either the
4265   // deferred decls or the multiversion functions themselves are emitted.
4266   if (!MultiVersionFuncs.empty())
4267     emitMultiVersionFunctions();
4268 }
4269 
4270 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4271   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4272   assert(FD && "Not a FunctionDecl?");
4273   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4274   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4275   assert(DD && "Not a cpu_dispatch Function?");
4276 
4277   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4278   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4279 
4280   StringRef ResolverName = getMangledName(GD);
4281   UpdateMultiVersionNames(GD, FD, ResolverName);
4282 
4283   llvm::Type *ResolverType;
4284   GlobalDecl ResolverGD;
4285   if (getTarget().supportsIFunc()) {
4286     ResolverType = llvm::FunctionType::get(
4287         llvm::PointerType::get(DeclTy,
4288                                getTypes().getTargetAddressSpace(FD->getType())),
4289         false);
4290   }
4291   else {
4292     ResolverType = DeclTy;
4293     ResolverGD = GD;
4294   }
4295 
4296   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4297       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4298   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4299   if (supportsCOMDAT())
4300     ResolverFunc->setComdat(
4301         getModule().getOrInsertComdat(ResolverFunc->getName()));
4302 
4303   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4304   const TargetInfo &Target = getTarget();
4305   unsigned Index = 0;
4306   for (const IdentifierInfo *II : DD->cpus()) {
4307     // Get the name of the target function so we can look it up/create it.
4308     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4309                               getCPUSpecificMangling(*this, II->getName());
4310 
4311     llvm::Constant *Func = GetGlobalValue(MangledName);
4312 
4313     if (!Func) {
4314       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4315       if (ExistingDecl.getDecl() &&
4316           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4317         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4318         Func = GetGlobalValue(MangledName);
4319       } else {
4320         if (!ExistingDecl.getDecl())
4321           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4322 
4323       Func = GetOrCreateLLVMFunction(
4324           MangledName, DeclTy, ExistingDecl,
4325           /*ForVTable=*/false, /*DontDefer=*/true,
4326           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4327       }
4328     }
4329 
4330     llvm::SmallVector<StringRef, 32> Features;
4331     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4332     llvm::transform(Features, Features.begin(),
4333                     [](StringRef Str) { return Str.substr(1); });
4334     llvm::erase_if(Features, [&Target](StringRef Feat) {
4335       return !Target.validateCpuSupports(Feat);
4336     });
4337     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4338     ++Index;
4339   }
4340 
4341   llvm::stable_sort(
4342       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4343                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4344         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4345                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4346       });
4347 
4348   // If the list contains multiple 'default' versions, such as when it contains
4349   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4350   // always run on at least a 'pentium'). We do this by deleting the 'least
4351   // advanced' (read, lowest mangling letter).
4352   while (Options.size() > 1 &&
4353          llvm::all_of(llvm::X86::getCpuSupportsMask(
4354                           (Options.end() - 2)->Conditions.Features),
4355                       [](auto X) { return X == 0; })) {
4356     StringRef LHSName = (Options.end() - 2)->Function->getName();
4357     StringRef RHSName = (Options.end() - 1)->Function->getName();
4358     if (LHSName.compare(RHSName) < 0)
4359       Options.erase(Options.end() - 2);
4360     else
4361       Options.erase(Options.end() - 1);
4362   }
4363 
4364   CodeGenFunction CGF(*this);
4365   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4366 
4367   if (getTarget().supportsIFunc()) {
4368     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4369     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4370 
4371     // Fix up function declarations that were created for cpu_specific before
4372     // cpu_dispatch was known
4373     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4374       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4375       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4376                                            &getModule());
4377       GI->takeName(IFunc);
4378       IFunc->replaceAllUsesWith(GI);
4379       IFunc->eraseFromParent();
4380       IFunc = GI;
4381     }
4382 
4383     std::string AliasName = getMangledNameImpl(
4384         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4385     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4386     if (!AliasFunc) {
4387       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4388                                            &getModule());
4389       SetCommonAttributes(GD, GA);
4390     }
4391   }
4392 }
4393 
4394 /// If a dispatcher for the specified mangled name is not in the module, create
4395 /// and return an llvm Function with the specified type.
4396 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4397   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4398   assert(FD && "Not a FunctionDecl?");
4399 
4400   std::string MangledName =
4401       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4402 
4403   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4404   // a separate resolver).
4405   std::string ResolverName = MangledName;
4406   if (getTarget().supportsIFunc()) {
4407     switch (FD->getMultiVersionKind()) {
4408     case MultiVersionKind::None:
4409       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4410     case MultiVersionKind::Target:
4411     case MultiVersionKind::CPUSpecific:
4412     case MultiVersionKind::CPUDispatch:
4413       ResolverName += ".ifunc";
4414       break;
4415     case MultiVersionKind::TargetClones:
4416     case MultiVersionKind::TargetVersion:
4417       break;
4418     }
4419   } else if (FD->isTargetMultiVersion()) {
4420     ResolverName += ".resolver";
4421   }
4422 
4423   // If the resolver has already been created, just return it.
4424   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4425     return ResolverGV;
4426 
4427   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4428   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4429 
4430   // The resolver needs to be created. For target and target_clones, defer
4431   // creation until the end of the TU.
4432   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4433     MultiVersionFuncs.push_back(GD);
4434 
4435   // For cpu_specific, don't create an ifunc yet because we don't know if the
4436   // cpu_dispatch will be emitted in this translation unit.
4437   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4438     llvm::Type *ResolverType = llvm::FunctionType::get(
4439         llvm::PointerType::get(DeclTy,
4440                                getTypes().getTargetAddressSpace(FD->getType())),
4441         false);
4442     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4443         MangledName + ".resolver", ResolverType, GlobalDecl{},
4444         /*ForVTable=*/false);
4445     llvm::GlobalIFunc *GIF =
4446         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4447                                   "", Resolver, &getModule());
4448     GIF->setName(ResolverName);
4449     SetCommonAttributes(FD, GIF);
4450 
4451     return GIF;
4452   }
4453 
4454   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4455       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4456   assert(isa<llvm::GlobalValue>(Resolver) &&
4457          "Resolver should be created for the first time");
4458   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4459   return Resolver;
4460 }
4461 
4462 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4463 /// module, create and return an llvm Function with the specified type. If there
4464 /// is something in the module with the specified name, return it potentially
4465 /// bitcasted to the right type.
4466 ///
4467 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4468 /// to set the attributes on the function when it is first created.
4469 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4470     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4471     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4472     ForDefinition_t IsForDefinition) {
4473   const Decl *D = GD.getDecl();
4474 
4475   // Any attempts to use a MultiVersion function should result in retrieving
4476   // the iFunc instead. Name Mangling will handle the rest of the changes.
4477   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4478     // For the device mark the function as one that should be emitted.
4479     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4480         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4481         !DontDefer && !IsForDefinition) {
4482       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4483         GlobalDecl GDDef;
4484         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4485           GDDef = GlobalDecl(CD, GD.getCtorType());
4486         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4487           GDDef = GlobalDecl(DD, GD.getDtorType());
4488         else
4489           GDDef = GlobalDecl(FDDef);
4490         EmitGlobal(GDDef);
4491       }
4492     }
4493 
4494     if (FD->isMultiVersion()) {
4495       UpdateMultiVersionNames(GD, FD, MangledName);
4496       if (!IsForDefinition)
4497         return GetOrCreateMultiVersionResolver(GD);
4498     }
4499   }
4500 
4501   // Lookup the entry, lazily creating it if necessary.
4502   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4503   if (Entry) {
4504     if (WeakRefReferences.erase(Entry)) {
4505       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4506       if (FD && !FD->hasAttr<WeakAttr>())
4507         Entry->setLinkage(llvm::Function::ExternalLinkage);
4508     }
4509 
4510     // Handle dropped DLL attributes.
4511     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4512         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4513       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4514       setDSOLocal(Entry);
4515     }
4516 
4517     // If there are two attempts to define the same mangled name, issue an
4518     // error.
4519     if (IsForDefinition && !Entry->isDeclaration()) {
4520       GlobalDecl OtherGD;
4521       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4522       // to make sure that we issue an error only once.
4523       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4524           (GD.getCanonicalDecl().getDecl() !=
4525            OtherGD.getCanonicalDecl().getDecl()) &&
4526           DiagnosedConflictingDefinitions.insert(GD).second) {
4527         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4528             << MangledName;
4529         getDiags().Report(OtherGD.getDecl()->getLocation(),
4530                           diag::note_previous_definition);
4531       }
4532     }
4533 
4534     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4535         (Entry->getValueType() == Ty)) {
4536       return Entry;
4537     }
4538 
4539     // Make sure the result is of the correct type.
4540     // (If function is requested for a definition, we always need to create a new
4541     // function, not just return a bitcast.)
4542     if (!IsForDefinition)
4543       return Entry;
4544   }
4545 
4546   // This function doesn't have a complete type (for example, the return
4547   // type is an incomplete struct). Use a fake type instead, and make
4548   // sure not to try to set attributes.
4549   bool IsIncompleteFunction = false;
4550 
4551   llvm::FunctionType *FTy;
4552   if (isa<llvm::FunctionType>(Ty)) {
4553     FTy = cast<llvm::FunctionType>(Ty);
4554   } else {
4555     FTy = llvm::FunctionType::get(VoidTy, false);
4556     IsIncompleteFunction = true;
4557   }
4558 
4559   llvm::Function *F =
4560       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4561                              Entry ? StringRef() : MangledName, &getModule());
4562 
4563   // Store the declaration associated with this function so it is potentially
4564   // updated by further declarations or definitions and emitted at the end.
4565   if (D && D->hasAttr<AnnotateAttr>())
4566     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4567 
4568   // If we already created a function with the same mangled name (but different
4569   // type) before, take its name and add it to the list of functions to be
4570   // replaced with F at the end of CodeGen.
4571   //
4572   // This happens if there is a prototype for a function (e.g. "int f()") and
4573   // then a definition of a different type (e.g. "int f(int x)").
4574   if (Entry) {
4575     F->takeName(Entry);
4576 
4577     // This might be an implementation of a function without a prototype, in
4578     // which case, try to do special replacement of calls which match the new
4579     // prototype.  The really key thing here is that we also potentially drop
4580     // arguments from the call site so as to make a direct call, which makes the
4581     // inliner happier and suppresses a number of optimizer warnings (!) about
4582     // dropping arguments.
4583     if (!Entry->use_empty()) {
4584       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4585       Entry->removeDeadConstantUsers();
4586     }
4587 
4588     addGlobalValReplacement(Entry, F);
4589   }
4590 
4591   assert(F->getName() == MangledName && "name was uniqued!");
4592   if (D)
4593     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4594   if (ExtraAttrs.hasFnAttrs()) {
4595     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4596     F->addFnAttrs(B);
4597   }
4598 
4599   if (!DontDefer) {
4600     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4601     // each other bottoming out with the base dtor.  Therefore we emit non-base
4602     // dtors on usage, even if there is no dtor definition in the TU.
4603     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4604         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4605                                            GD.getDtorType()))
4606       addDeferredDeclToEmit(GD);
4607 
4608     // This is the first use or definition of a mangled name.  If there is a
4609     // deferred decl with this name, remember that we need to emit it at the end
4610     // of the file.
4611     auto DDI = DeferredDecls.find(MangledName);
4612     if (DDI != DeferredDecls.end()) {
4613       // Move the potentially referenced deferred decl to the
4614       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4615       // don't need it anymore).
4616       addDeferredDeclToEmit(DDI->second);
4617       DeferredDecls.erase(DDI);
4618 
4619       // Otherwise, there are cases we have to worry about where we're
4620       // using a declaration for which we must emit a definition but where
4621       // we might not find a top-level definition:
4622       //   - member functions defined inline in their classes
4623       //   - friend functions defined inline in some class
4624       //   - special member functions with implicit definitions
4625       // If we ever change our AST traversal to walk into class methods,
4626       // this will be unnecessary.
4627       //
4628       // We also don't emit a definition for a function if it's going to be an
4629       // entry in a vtable, unless it's already marked as used.
4630     } else if (getLangOpts().CPlusPlus && D) {
4631       // Look for a declaration that's lexically in a record.
4632       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4633            FD = FD->getPreviousDecl()) {
4634         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4635           if (FD->doesThisDeclarationHaveABody()) {
4636             addDeferredDeclToEmit(GD.getWithDecl(FD));
4637             break;
4638           }
4639         }
4640       }
4641     }
4642   }
4643 
4644   // Make sure the result is of the requested type.
4645   if (!IsIncompleteFunction) {
4646     assert(F->getFunctionType() == Ty);
4647     return F;
4648   }
4649 
4650   return F;
4651 }
4652 
4653 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4654 /// non-null, then this function will use the specified type if it has to
4655 /// create it (this occurs when we see a definition of the function).
4656 llvm::Constant *
4657 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4658                                  bool DontDefer,
4659                                  ForDefinition_t IsForDefinition) {
4660   // If there was no specific requested type, just convert it now.
4661   if (!Ty) {
4662     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4663     Ty = getTypes().ConvertType(FD->getType());
4664   }
4665 
4666   // Devirtualized destructor calls may come through here instead of via
4667   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4668   // of the complete destructor when necessary.
4669   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4670     if (getTarget().getCXXABI().isMicrosoft() &&
4671         GD.getDtorType() == Dtor_Complete &&
4672         DD->getParent()->getNumVBases() == 0)
4673       GD = GlobalDecl(DD, Dtor_Base);
4674   }
4675 
4676   StringRef MangledName = getMangledName(GD);
4677   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4678                                     /*IsThunk=*/false, llvm::AttributeList(),
4679                                     IsForDefinition);
4680   // Returns kernel handle for HIP kernel stub function.
4681   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4682       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4683     auto *Handle = getCUDARuntime().getKernelHandle(
4684         cast<llvm::Function>(F->stripPointerCasts()), GD);
4685     if (IsForDefinition)
4686       return F;
4687     return Handle;
4688   }
4689   return F;
4690 }
4691 
4692 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4693   llvm::GlobalValue *F =
4694       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4695 
4696   return llvm::NoCFIValue::get(F);
4697 }
4698 
4699 static const FunctionDecl *
4700 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4701   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4702   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4703 
4704   IdentifierInfo &CII = C.Idents.get(Name);
4705   for (const auto *Result : DC->lookup(&CII))
4706     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4707       return FD;
4708 
4709   if (!C.getLangOpts().CPlusPlus)
4710     return nullptr;
4711 
4712   // Demangle the premangled name from getTerminateFn()
4713   IdentifierInfo &CXXII =
4714       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4715           ? C.Idents.get("terminate")
4716           : C.Idents.get(Name);
4717 
4718   for (const auto &N : {"__cxxabiv1", "std"}) {
4719     IdentifierInfo &NS = C.Idents.get(N);
4720     for (const auto *Result : DC->lookup(&NS)) {
4721       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4722       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4723         for (const auto *Result : LSD->lookup(&NS))
4724           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4725             break;
4726 
4727       if (ND)
4728         for (const auto *Result : ND->lookup(&CXXII))
4729           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4730             return FD;
4731     }
4732   }
4733 
4734   return nullptr;
4735 }
4736 
4737 /// CreateRuntimeFunction - Create a new runtime function with the specified
4738 /// type and name.
4739 llvm::FunctionCallee
4740 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4741                                      llvm::AttributeList ExtraAttrs, bool Local,
4742                                      bool AssumeConvergent) {
4743   if (AssumeConvergent) {
4744     ExtraAttrs =
4745         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4746   }
4747 
4748   llvm::Constant *C =
4749       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4750                               /*DontDefer=*/false, /*IsThunk=*/false,
4751                               ExtraAttrs);
4752 
4753   if (auto *F = dyn_cast<llvm::Function>(C)) {
4754     if (F->empty()) {
4755       F->setCallingConv(getRuntimeCC());
4756 
4757       // In Windows Itanium environments, try to mark runtime functions
4758       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4759       // will link their standard library statically or dynamically. Marking
4760       // functions imported when they are not imported can cause linker errors
4761       // and warnings.
4762       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4763           !getCodeGenOpts().LTOVisibilityPublicStd) {
4764         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4765         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4766           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4767           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4768         }
4769       }
4770       setDSOLocal(F);
4771     }
4772   }
4773 
4774   return {FTy, C};
4775 }
4776 
4777 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4778 /// create and return an llvm GlobalVariable with the specified type and address
4779 /// space. If there is something in the module with the specified name, return
4780 /// it potentially bitcasted to the right type.
4781 ///
4782 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4783 /// to set the attributes on the global when it is first created.
4784 ///
4785 /// If IsForDefinition is true, it is guaranteed that an actual global with
4786 /// type Ty will be returned, not conversion of a variable with the same
4787 /// mangled name but some other type.
4788 llvm::Constant *
4789 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4790                                      LangAS AddrSpace, const VarDecl *D,
4791                                      ForDefinition_t IsForDefinition) {
4792   // Lookup the entry, lazily creating it if necessary.
4793   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4794   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4795   if (Entry) {
4796     if (WeakRefReferences.erase(Entry)) {
4797       if (D && !D->hasAttr<WeakAttr>())
4798         Entry->setLinkage(llvm::Function::ExternalLinkage);
4799     }
4800 
4801     // Handle dropped DLL attributes.
4802     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4803         !shouldMapVisibilityToDLLExport(D))
4804       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4805 
4806     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4807       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4808 
4809     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4810       return Entry;
4811 
4812     // If there are two attempts to define the same mangled name, issue an
4813     // error.
4814     if (IsForDefinition && !Entry->isDeclaration()) {
4815       GlobalDecl OtherGD;
4816       const VarDecl *OtherD;
4817 
4818       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4819       // to make sure that we issue an error only once.
4820       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4821           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4822           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4823           OtherD->hasInit() &&
4824           DiagnosedConflictingDefinitions.insert(D).second) {
4825         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4826             << MangledName;
4827         getDiags().Report(OtherGD.getDecl()->getLocation(),
4828                           diag::note_previous_definition);
4829       }
4830     }
4831 
4832     // Make sure the result is of the correct type.
4833     if (Entry->getType()->getAddressSpace() != TargetAS)
4834       return llvm::ConstantExpr::getAddrSpaceCast(
4835           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4836 
4837     // (If global is requested for a definition, we always need to create a new
4838     // global, not just return a bitcast.)
4839     if (!IsForDefinition)
4840       return Entry;
4841   }
4842 
4843   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4844 
4845   auto *GV = new llvm::GlobalVariable(
4846       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4847       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4848       getContext().getTargetAddressSpace(DAddrSpace));
4849 
4850   // If we already created a global with the same mangled name (but different
4851   // type) before, take its name and remove it from its parent.
4852   if (Entry) {
4853     GV->takeName(Entry);
4854 
4855     if (!Entry->use_empty()) {
4856       Entry->replaceAllUsesWith(GV);
4857     }
4858 
4859     Entry->eraseFromParent();
4860   }
4861 
4862   // This is the first use or definition of a mangled name.  If there is a
4863   // deferred decl with this name, remember that we need to emit it at the end
4864   // of the file.
4865   auto DDI = DeferredDecls.find(MangledName);
4866   if (DDI != DeferredDecls.end()) {
4867     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4868     // list, and remove it from DeferredDecls (since we don't need it anymore).
4869     addDeferredDeclToEmit(DDI->second);
4870     DeferredDecls.erase(DDI);
4871   }
4872 
4873   // Handle things which are present even on external declarations.
4874   if (D) {
4875     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4876       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4877 
4878     // FIXME: This code is overly simple and should be merged with other global
4879     // handling.
4880     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4881 
4882     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4883 
4884     setLinkageForGV(GV, D);
4885 
4886     if (D->getTLSKind()) {
4887       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4888         CXXThreadLocals.push_back(D);
4889       setTLSMode(GV, *D);
4890     }
4891 
4892     setGVProperties(GV, D);
4893 
4894     // If required by the ABI, treat declarations of static data members with
4895     // inline initializers as definitions.
4896     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4897       EmitGlobalVarDefinition(D);
4898     }
4899 
4900     // Emit section information for extern variables.
4901     if (D->hasExternalStorage()) {
4902       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4903         GV->setSection(SA->getName());
4904     }
4905 
4906     // Handle XCore specific ABI requirements.
4907     if (getTriple().getArch() == llvm::Triple::xcore &&
4908         D->getLanguageLinkage() == CLanguageLinkage &&
4909         D->getType().isConstant(Context) &&
4910         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4911       GV->setSection(".cp.rodata");
4912 
4913     // Handle code model attribute
4914     if (const auto *CMA = D->getAttr<CodeModelAttr>())
4915       GV->setCodeModel(CMA->getModel());
4916 
4917     // Check if we a have a const declaration with an initializer, we may be
4918     // able to emit it as available_externally to expose it's value to the
4919     // optimizer.
4920     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4921         D->getType().isConstQualified() && !GV->hasInitializer() &&
4922         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4923       const auto *Record =
4924           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4925       bool HasMutableFields = Record && Record->hasMutableFields();
4926       if (!HasMutableFields) {
4927         const VarDecl *InitDecl;
4928         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4929         if (InitExpr) {
4930           ConstantEmitter emitter(*this);
4931           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4932           if (Init) {
4933             auto *InitType = Init->getType();
4934             if (GV->getValueType() != InitType) {
4935               // The type of the initializer does not match the definition.
4936               // This happens when an initializer has a different type from
4937               // the type of the global (because of padding at the end of a
4938               // structure for instance).
4939               GV->setName(StringRef());
4940               // Make a new global with the correct type, this is now guaranteed
4941               // to work.
4942               auto *NewGV = cast<llvm::GlobalVariable>(
4943                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4944                       ->stripPointerCasts());
4945 
4946               // Erase the old global, since it is no longer used.
4947               GV->eraseFromParent();
4948               GV = NewGV;
4949             } else {
4950               GV->setInitializer(Init);
4951               GV->setConstant(true);
4952               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4953             }
4954             emitter.finalize(GV);
4955           }
4956         }
4957       }
4958     }
4959   }
4960 
4961   if (D &&
4962       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4963     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4964     // External HIP managed variables needed to be recorded for transformation
4965     // in both device and host compilations.
4966     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4967         D->hasExternalStorage())
4968       getCUDARuntime().handleVarRegistration(D, *GV);
4969   }
4970 
4971   if (D)
4972     SanitizerMD->reportGlobal(GV, *D);
4973 
4974   LangAS ExpectedAS =
4975       D ? D->getType().getAddressSpace()
4976         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4977   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4978   if (DAddrSpace != ExpectedAS) {
4979     return getTargetCodeGenInfo().performAddrSpaceCast(
4980         *this, GV, DAddrSpace, ExpectedAS,
4981         llvm::PointerType::get(getLLVMContext(), TargetAS));
4982   }
4983 
4984   return GV;
4985 }
4986 
4987 llvm::Constant *
4988 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4989   const Decl *D = GD.getDecl();
4990 
4991   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4992     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4993                                 /*DontDefer=*/false, IsForDefinition);
4994 
4995   if (isa<CXXMethodDecl>(D)) {
4996     auto FInfo =
4997         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4998     auto Ty = getTypes().GetFunctionType(*FInfo);
4999     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5000                              IsForDefinition);
5001   }
5002 
5003   if (isa<FunctionDecl>(D)) {
5004     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5005     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5006     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5007                              IsForDefinition);
5008   }
5009 
5010   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5011 }
5012 
5013 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5014     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5015     llvm::Align Alignment) {
5016   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5017   llvm::GlobalVariable *OldGV = nullptr;
5018 
5019   if (GV) {
5020     // Check if the variable has the right type.
5021     if (GV->getValueType() == Ty)
5022       return GV;
5023 
5024     // Because C++ name mangling, the only way we can end up with an already
5025     // existing global with the same name is if it has been declared extern "C".
5026     assert(GV->isDeclaration() && "Declaration has wrong type!");
5027     OldGV = GV;
5028   }
5029 
5030   // Create a new variable.
5031   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5032                                 Linkage, nullptr, Name);
5033 
5034   if (OldGV) {
5035     // Replace occurrences of the old variable if needed.
5036     GV->takeName(OldGV);
5037 
5038     if (!OldGV->use_empty()) {
5039       OldGV->replaceAllUsesWith(GV);
5040     }
5041 
5042     OldGV->eraseFromParent();
5043   }
5044 
5045   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5046       !GV->hasAvailableExternallyLinkage())
5047     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5048 
5049   GV->setAlignment(Alignment);
5050 
5051   return GV;
5052 }
5053 
5054 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5055 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5056 /// then it will be created with the specified type instead of whatever the
5057 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5058 /// that an actual global with type Ty will be returned, not conversion of a
5059 /// variable with the same mangled name but some other type.
5060 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5061                                                   llvm::Type *Ty,
5062                                            ForDefinition_t IsForDefinition) {
5063   assert(D->hasGlobalStorage() && "Not a global variable");
5064   QualType ASTTy = D->getType();
5065   if (!Ty)
5066     Ty = getTypes().ConvertTypeForMem(ASTTy);
5067 
5068   StringRef MangledName = getMangledName(D);
5069   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5070                                IsForDefinition);
5071 }
5072 
5073 /// CreateRuntimeVariable - Create a new runtime global variable with the
5074 /// specified type and name.
5075 llvm::Constant *
5076 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5077                                      StringRef Name) {
5078   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5079                                                        : LangAS::Default;
5080   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5081   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5082   return Ret;
5083 }
5084 
5085 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5086   assert(!D->getInit() && "Cannot emit definite definitions here!");
5087 
5088   StringRef MangledName = getMangledName(D);
5089   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5090 
5091   // We already have a definition, not declaration, with the same mangled name.
5092   // Emitting of declaration is not required (and actually overwrites emitted
5093   // definition).
5094   if (GV && !GV->isDeclaration())
5095     return;
5096 
5097   // If we have not seen a reference to this variable yet, place it into the
5098   // deferred declarations table to be emitted if needed later.
5099   if (!MustBeEmitted(D) && !GV) {
5100       DeferredDecls[MangledName] = D;
5101       return;
5102   }
5103 
5104   // The tentative definition is the only definition.
5105   EmitGlobalVarDefinition(D);
5106 }
5107 
5108 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
5109   EmitExternalVarDeclaration(D);
5110 }
5111 
5112 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5113   return Context.toCharUnitsFromBits(
5114       getDataLayout().getTypeStoreSizeInBits(Ty));
5115 }
5116 
5117 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5118   if (LangOpts.OpenCL) {
5119     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5120     assert(AS == LangAS::opencl_global ||
5121            AS == LangAS::opencl_global_device ||
5122            AS == LangAS::opencl_global_host ||
5123            AS == LangAS::opencl_constant ||
5124            AS == LangAS::opencl_local ||
5125            AS >= LangAS::FirstTargetAddressSpace);
5126     return AS;
5127   }
5128 
5129   if (LangOpts.SYCLIsDevice &&
5130       (!D || D->getType().getAddressSpace() == LangAS::Default))
5131     return LangAS::sycl_global;
5132 
5133   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5134     if (D) {
5135       if (D->hasAttr<CUDAConstantAttr>())
5136         return LangAS::cuda_constant;
5137       if (D->hasAttr<CUDASharedAttr>())
5138         return LangAS::cuda_shared;
5139       if (D->hasAttr<CUDADeviceAttr>())
5140         return LangAS::cuda_device;
5141       if (D->getType().isConstQualified())
5142         return LangAS::cuda_constant;
5143     }
5144     return LangAS::cuda_device;
5145   }
5146 
5147   if (LangOpts.OpenMP) {
5148     LangAS AS;
5149     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5150       return AS;
5151   }
5152   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5153 }
5154 
5155 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5156   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5157   if (LangOpts.OpenCL)
5158     return LangAS::opencl_constant;
5159   if (LangOpts.SYCLIsDevice)
5160     return LangAS::sycl_global;
5161   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5162     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5163     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5164     // with OpVariable instructions with Generic storage class which is not
5165     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5166     // UniformConstant storage class is not viable as pointers to it may not be
5167     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5168     return LangAS::cuda_device;
5169   if (auto AS = getTarget().getConstantAddressSpace())
5170     return *AS;
5171   return LangAS::Default;
5172 }
5173 
5174 // In address space agnostic languages, string literals are in default address
5175 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5176 // emitted in constant address space in LLVM IR. To be consistent with other
5177 // parts of AST, string literal global variables in constant address space
5178 // need to be casted to default address space before being put into address
5179 // map and referenced by other part of CodeGen.
5180 // In OpenCL, string literals are in constant address space in AST, therefore
5181 // they should not be casted to default address space.
5182 static llvm::Constant *
5183 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5184                                        llvm::GlobalVariable *GV) {
5185   llvm::Constant *Cast = GV;
5186   if (!CGM.getLangOpts().OpenCL) {
5187     auto AS = CGM.GetGlobalConstantAddressSpace();
5188     if (AS != LangAS::Default)
5189       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5190           CGM, GV, AS, LangAS::Default,
5191           llvm::PointerType::get(
5192               CGM.getLLVMContext(),
5193               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5194   }
5195   return Cast;
5196 }
5197 
5198 template<typename SomeDecl>
5199 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5200                                                llvm::GlobalValue *GV) {
5201   if (!getLangOpts().CPlusPlus)
5202     return;
5203 
5204   // Must have 'used' attribute, or else inline assembly can't rely on
5205   // the name existing.
5206   if (!D->template hasAttr<UsedAttr>())
5207     return;
5208 
5209   // Must have internal linkage and an ordinary name.
5210   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5211     return;
5212 
5213   // Must be in an extern "C" context. Entities declared directly within
5214   // a record are not extern "C" even if the record is in such a context.
5215   const SomeDecl *First = D->getFirstDecl();
5216   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5217     return;
5218 
5219   // OK, this is an internal linkage entity inside an extern "C" linkage
5220   // specification. Make a note of that so we can give it the "expected"
5221   // mangled name if nothing else is using that name.
5222   std::pair<StaticExternCMap::iterator, bool> R =
5223       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5224 
5225   // If we have multiple internal linkage entities with the same name
5226   // in extern "C" regions, none of them gets that name.
5227   if (!R.second)
5228     R.first->second = nullptr;
5229 }
5230 
5231 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5232   if (!CGM.supportsCOMDAT())
5233     return false;
5234 
5235   if (D.hasAttr<SelectAnyAttr>())
5236     return true;
5237 
5238   GVALinkage Linkage;
5239   if (auto *VD = dyn_cast<VarDecl>(&D))
5240     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5241   else
5242     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5243 
5244   switch (Linkage) {
5245   case GVA_Internal:
5246   case GVA_AvailableExternally:
5247   case GVA_StrongExternal:
5248     return false;
5249   case GVA_DiscardableODR:
5250   case GVA_StrongODR:
5251     return true;
5252   }
5253   llvm_unreachable("No such linkage");
5254 }
5255 
5256 bool CodeGenModule::supportsCOMDAT() const {
5257   return getTriple().supportsCOMDAT();
5258 }
5259 
5260 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5261                                           llvm::GlobalObject &GO) {
5262   if (!shouldBeInCOMDAT(*this, D))
5263     return;
5264   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5265 }
5266 
5267 /// Pass IsTentative as true if you want to create a tentative definition.
5268 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5269                                             bool IsTentative) {
5270   // OpenCL global variables of sampler type are translated to function calls,
5271   // therefore no need to be translated.
5272   QualType ASTTy = D->getType();
5273   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5274     return;
5275 
5276   // If this is OpenMP device, check if it is legal to emit this global
5277   // normally.
5278   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5279       OpenMPRuntime->emitTargetGlobalVariable(D))
5280     return;
5281 
5282   llvm::TrackingVH<llvm::Constant> Init;
5283   bool NeedsGlobalCtor = false;
5284   // Whether the definition of the variable is available externally.
5285   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5286   // since this is the job for its original source.
5287   bool IsDefinitionAvailableExternally =
5288       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5289   bool NeedsGlobalDtor =
5290       !IsDefinitionAvailableExternally &&
5291       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5292 
5293   const VarDecl *InitDecl;
5294   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5295 
5296   std::optional<ConstantEmitter> emitter;
5297 
5298   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5299   // as part of their declaration."  Sema has already checked for
5300   // error cases, so we just need to set Init to UndefValue.
5301   bool IsCUDASharedVar =
5302       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5303   // Shadows of initialized device-side global variables are also left
5304   // undefined.
5305   // Managed Variables should be initialized on both host side and device side.
5306   bool IsCUDAShadowVar =
5307       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5308       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5309        D->hasAttr<CUDASharedAttr>());
5310   bool IsCUDADeviceShadowVar =
5311       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5312       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5313        D->getType()->isCUDADeviceBuiltinTextureType());
5314   if (getLangOpts().CUDA &&
5315       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5316     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5317   else if (D->hasAttr<LoaderUninitializedAttr>())
5318     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5319   else if (!InitExpr) {
5320     // This is a tentative definition; tentative definitions are
5321     // implicitly initialized with { 0 }.
5322     //
5323     // Note that tentative definitions are only emitted at the end of
5324     // a translation unit, so they should never have incomplete
5325     // type. In addition, EmitTentativeDefinition makes sure that we
5326     // never attempt to emit a tentative definition if a real one
5327     // exists. A use may still exists, however, so we still may need
5328     // to do a RAUW.
5329     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5330     Init = EmitNullConstant(D->getType());
5331   } else {
5332     initializedGlobalDecl = GlobalDecl(D);
5333     emitter.emplace(*this);
5334     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5335     if (!Initializer) {
5336       QualType T = InitExpr->getType();
5337       if (D->getType()->isReferenceType())
5338         T = D->getType();
5339 
5340       if (getLangOpts().CPlusPlus) {
5341         if (InitDecl->hasFlexibleArrayInit(getContext()))
5342           ErrorUnsupported(D, "flexible array initializer");
5343         Init = EmitNullConstant(T);
5344 
5345         if (!IsDefinitionAvailableExternally)
5346           NeedsGlobalCtor = true;
5347       } else {
5348         ErrorUnsupported(D, "static initializer");
5349         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5350       }
5351     } else {
5352       Init = Initializer;
5353       // We don't need an initializer, so remove the entry for the delayed
5354       // initializer position (just in case this entry was delayed) if we
5355       // also don't need to register a destructor.
5356       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5357         DelayedCXXInitPosition.erase(D);
5358 
5359 #ifndef NDEBUG
5360       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5361                           InitDecl->getFlexibleArrayInitChars(getContext());
5362       CharUnits CstSize = CharUnits::fromQuantity(
5363           getDataLayout().getTypeAllocSize(Init->getType()));
5364       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5365 #endif
5366     }
5367   }
5368 
5369   llvm::Type* InitType = Init->getType();
5370   llvm::Constant *Entry =
5371       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5372 
5373   // Strip off pointer casts if we got them.
5374   Entry = Entry->stripPointerCasts();
5375 
5376   // Entry is now either a Function or GlobalVariable.
5377   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5378 
5379   // We have a definition after a declaration with the wrong type.
5380   // We must make a new GlobalVariable* and update everything that used OldGV
5381   // (a declaration or tentative definition) with the new GlobalVariable*
5382   // (which will be a definition).
5383   //
5384   // This happens if there is a prototype for a global (e.g.
5385   // "extern int x[];") and then a definition of a different type (e.g.
5386   // "int x[10];"). This also happens when an initializer has a different type
5387   // from the type of the global (this happens with unions).
5388   if (!GV || GV->getValueType() != InitType ||
5389       GV->getType()->getAddressSpace() !=
5390           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5391 
5392     // Move the old entry aside so that we'll create a new one.
5393     Entry->setName(StringRef());
5394 
5395     // Make a new global with the correct type, this is now guaranteed to work.
5396     GV = cast<llvm::GlobalVariable>(
5397         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5398             ->stripPointerCasts());
5399 
5400     // Replace all uses of the old global with the new global
5401     llvm::Constant *NewPtrForOldDecl =
5402         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5403                                                              Entry->getType());
5404     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5405 
5406     // Erase the old global, since it is no longer used.
5407     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5408   }
5409 
5410   MaybeHandleStaticInExternC(D, GV);
5411 
5412   if (D->hasAttr<AnnotateAttr>())
5413     AddGlobalAnnotations(D, GV);
5414 
5415   // Set the llvm linkage type as appropriate.
5416   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5417 
5418   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5419   // the device. [...]"
5420   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5421   // __device__, declares a variable that: [...]
5422   // Is accessible from all the threads within the grid and from the host
5423   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5424   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5425   if (LangOpts.CUDA) {
5426     if (LangOpts.CUDAIsDevice) {
5427       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5428           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5429            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5430            D->getType()->isCUDADeviceBuiltinTextureType()))
5431         GV->setExternallyInitialized(true);
5432     } else {
5433       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5434     }
5435     getCUDARuntime().handleVarRegistration(D, *GV);
5436   }
5437 
5438   GV->setInitializer(Init);
5439   if (emitter)
5440     emitter->finalize(GV);
5441 
5442   // If it is safe to mark the global 'constant', do so now.
5443   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5444                   D->getType().isConstantStorage(getContext(), true, true));
5445 
5446   // If it is in a read-only section, mark it 'constant'.
5447   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5448     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5449     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5450       GV->setConstant(true);
5451   }
5452 
5453   CharUnits AlignVal = getContext().getDeclAlign(D);
5454   // Check for alignment specifed in an 'omp allocate' directive.
5455   if (std::optional<CharUnits> AlignValFromAllocate =
5456           getOMPAllocateAlignment(D))
5457     AlignVal = *AlignValFromAllocate;
5458   GV->setAlignment(AlignVal.getAsAlign());
5459 
5460   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5461   // function is only defined alongside the variable, not also alongside
5462   // callers. Normally, all accesses to a thread_local go through the
5463   // thread-wrapper in order to ensure initialization has occurred, underlying
5464   // variable will never be used other than the thread-wrapper, so it can be
5465   // converted to internal linkage.
5466   //
5467   // However, if the variable has the 'constinit' attribute, it _can_ be
5468   // referenced directly, without calling the thread-wrapper, so the linkage
5469   // must not be changed.
5470   //
5471   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5472   // weak or linkonce, the de-duplication semantics are important to preserve,
5473   // so we don't change the linkage.
5474   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5475       Linkage == llvm::GlobalValue::ExternalLinkage &&
5476       Context.getTargetInfo().getTriple().isOSDarwin() &&
5477       !D->hasAttr<ConstInitAttr>())
5478     Linkage = llvm::GlobalValue::InternalLinkage;
5479 
5480   GV->setLinkage(Linkage);
5481   if (D->hasAttr<DLLImportAttr>())
5482     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5483   else if (D->hasAttr<DLLExportAttr>())
5484     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5485   else
5486     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5487 
5488   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5489     // common vars aren't constant even if declared const.
5490     GV->setConstant(false);
5491     // Tentative definition of global variables may be initialized with
5492     // non-zero null pointers. In this case they should have weak linkage
5493     // since common linkage must have zero initializer and must not have
5494     // explicit section therefore cannot have non-zero initial value.
5495     if (!GV->getInitializer()->isNullValue())
5496       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5497   }
5498 
5499   setNonAliasAttributes(D, GV);
5500 
5501   if (D->getTLSKind() && !GV->isThreadLocal()) {
5502     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5503       CXXThreadLocals.push_back(D);
5504     setTLSMode(GV, *D);
5505   }
5506 
5507   maybeSetTrivialComdat(*D, *GV);
5508 
5509   // Emit the initializer function if necessary.
5510   if (NeedsGlobalCtor || NeedsGlobalDtor)
5511     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5512 
5513   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5514 
5515   // Emit global variable debug information.
5516   if (CGDebugInfo *DI = getModuleDebugInfo())
5517     if (getCodeGenOpts().hasReducedDebugInfo())
5518       DI->EmitGlobalVariable(GV, D);
5519 }
5520 
5521 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5522   if (CGDebugInfo *DI = getModuleDebugInfo())
5523     if (getCodeGenOpts().hasReducedDebugInfo()) {
5524       QualType ASTTy = D->getType();
5525       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5526       llvm::Constant *GV =
5527           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5528       DI->EmitExternalVariable(
5529           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5530     }
5531 }
5532 
5533 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5534                                       CodeGenModule &CGM, const VarDecl *D,
5535                                       bool NoCommon) {
5536   // Don't give variables common linkage if -fno-common was specified unless it
5537   // was overridden by a NoCommon attribute.
5538   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5539     return true;
5540 
5541   // C11 6.9.2/2:
5542   //   A declaration of an identifier for an object that has file scope without
5543   //   an initializer, and without a storage-class specifier or with the
5544   //   storage-class specifier static, constitutes a tentative definition.
5545   if (D->getInit() || D->hasExternalStorage())
5546     return true;
5547 
5548   // A variable cannot be both common and exist in a section.
5549   if (D->hasAttr<SectionAttr>())
5550     return true;
5551 
5552   // A variable cannot be both common and exist in a section.
5553   // We don't try to determine which is the right section in the front-end.
5554   // If no specialized section name is applicable, it will resort to default.
5555   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5556       D->hasAttr<PragmaClangDataSectionAttr>() ||
5557       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5558       D->hasAttr<PragmaClangRodataSectionAttr>())
5559     return true;
5560 
5561   // Thread local vars aren't considered common linkage.
5562   if (D->getTLSKind())
5563     return true;
5564 
5565   // Tentative definitions marked with WeakImportAttr are true definitions.
5566   if (D->hasAttr<WeakImportAttr>())
5567     return true;
5568 
5569   // A variable cannot be both common and exist in a comdat.
5570   if (shouldBeInCOMDAT(CGM, *D))
5571     return true;
5572 
5573   // Declarations with a required alignment do not have common linkage in MSVC
5574   // mode.
5575   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5576     if (D->hasAttr<AlignedAttr>())
5577       return true;
5578     QualType VarType = D->getType();
5579     if (Context.isAlignmentRequired(VarType))
5580       return true;
5581 
5582     if (const auto *RT = VarType->getAs<RecordType>()) {
5583       const RecordDecl *RD = RT->getDecl();
5584       for (const FieldDecl *FD : RD->fields()) {
5585         if (FD->isBitField())
5586           continue;
5587         if (FD->hasAttr<AlignedAttr>())
5588           return true;
5589         if (Context.isAlignmentRequired(FD->getType()))
5590           return true;
5591       }
5592     }
5593   }
5594 
5595   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5596   // common symbols, so symbols with greater alignment requirements cannot be
5597   // common.
5598   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5599   // alignments for common symbols via the aligncomm directive, so this
5600   // restriction only applies to MSVC environments.
5601   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5602       Context.getTypeAlignIfKnown(D->getType()) >
5603           Context.toBits(CharUnits::fromQuantity(32)))
5604     return true;
5605 
5606   return false;
5607 }
5608 
5609 llvm::GlobalValue::LinkageTypes
5610 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5611                                            GVALinkage Linkage) {
5612   if (Linkage == GVA_Internal)
5613     return llvm::Function::InternalLinkage;
5614 
5615   if (D->hasAttr<WeakAttr>())
5616     return llvm::GlobalVariable::WeakAnyLinkage;
5617 
5618   if (const auto *FD = D->getAsFunction())
5619     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5620       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5621 
5622   // We are guaranteed to have a strong definition somewhere else,
5623   // so we can use available_externally linkage.
5624   if (Linkage == GVA_AvailableExternally)
5625     return llvm::GlobalValue::AvailableExternallyLinkage;
5626 
5627   // Note that Apple's kernel linker doesn't support symbol
5628   // coalescing, so we need to avoid linkonce and weak linkages there.
5629   // Normally, this means we just map to internal, but for explicit
5630   // instantiations we'll map to external.
5631 
5632   // In C++, the compiler has to emit a definition in every translation unit
5633   // that references the function.  We should use linkonce_odr because
5634   // a) if all references in this translation unit are optimized away, we
5635   // don't need to codegen it.  b) if the function persists, it needs to be
5636   // merged with other definitions. c) C++ has the ODR, so we know the
5637   // definition is dependable.
5638   if (Linkage == GVA_DiscardableODR)
5639     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5640                                             : llvm::Function::InternalLinkage;
5641 
5642   // An explicit instantiation of a template has weak linkage, since
5643   // explicit instantiations can occur in multiple translation units
5644   // and must all be equivalent. However, we are not allowed to
5645   // throw away these explicit instantiations.
5646   //
5647   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5648   // so say that CUDA templates are either external (for kernels) or internal.
5649   // This lets llvm perform aggressive inter-procedural optimizations. For
5650   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5651   // therefore we need to follow the normal linkage paradigm.
5652   if (Linkage == GVA_StrongODR) {
5653     if (getLangOpts().AppleKext)
5654       return llvm::Function::ExternalLinkage;
5655     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5656         !getLangOpts().GPURelocatableDeviceCode)
5657       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5658                                           : llvm::Function::InternalLinkage;
5659     return llvm::Function::WeakODRLinkage;
5660   }
5661 
5662   // C++ doesn't have tentative definitions and thus cannot have common
5663   // linkage.
5664   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5665       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5666                                  CodeGenOpts.NoCommon))
5667     return llvm::GlobalVariable::CommonLinkage;
5668 
5669   // selectany symbols are externally visible, so use weak instead of
5670   // linkonce.  MSVC optimizes away references to const selectany globals, so
5671   // all definitions should be the same and ODR linkage should be used.
5672   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5673   if (D->hasAttr<SelectAnyAttr>())
5674     return llvm::GlobalVariable::WeakODRLinkage;
5675 
5676   // Otherwise, we have strong external linkage.
5677   assert(Linkage == GVA_StrongExternal);
5678   return llvm::GlobalVariable::ExternalLinkage;
5679 }
5680 
5681 llvm::GlobalValue::LinkageTypes
5682 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5683   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5684   return getLLVMLinkageForDeclarator(VD, Linkage);
5685 }
5686 
5687 /// Replace the uses of a function that was declared with a non-proto type.
5688 /// We want to silently drop extra arguments from call sites
5689 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5690                                           llvm::Function *newFn) {
5691   // Fast path.
5692   if (old->use_empty()) return;
5693 
5694   llvm::Type *newRetTy = newFn->getReturnType();
5695   SmallVector<llvm::Value*, 4> newArgs;
5696 
5697   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5698          ui != ue; ) {
5699     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5700     llvm::User *user = use->getUser();
5701 
5702     // Recognize and replace uses of bitcasts.  Most calls to
5703     // unprototyped functions will use bitcasts.
5704     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5705       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5706         replaceUsesOfNonProtoConstant(bitcast, newFn);
5707       continue;
5708     }
5709 
5710     // Recognize calls to the function.
5711     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5712     if (!callSite) continue;
5713     if (!callSite->isCallee(&*use))
5714       continue;
5715 
5716     // If the return types don't match exactly, then we can't
5717     // transform this call unless it's dead.
5718     if (callSite->getType() != newRetTy && !callSite->use_empty())
5719       continue;
5720 
5721     // Get the call site's attribute list.
5722     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5723     llvm::AttributeList oldAttrs = callSite->getAttributes();
5724 
5725     // If the function was passed too few arguments, don't transform.
5726     unsigned newNumArgs = newFn->arg_size();
5727     if (callSite->arg_size() < newNumArgs)
5728       continue;
5729 
5730     // If extra arguments were passed, we silently drop them.
5731     // If any of the types mismatch, we don't transform.
5732     unsigned argNo = 0;
5733     bool dontTransform = false;
5734     for (llvm::Argument &A : newFn->args()) {
5735       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5736         dontTransform = true;
5737         break;
5738       }
5739 
5740       // Add any parameter attributes.
5741       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5742       argNo++;
5743     }
5744     if (dontTransform)
5745       continue;
5746 
5747     // Okay, we can transform this.  Create the new call instruction and copy
5748     // over the required information.
5749     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5750 
5751     // Copy over any operand bundles.
5752     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5753     callSite->getOperandBundlesAsDefs(newBundles);
5754 
5755     llvm::CallBase *newCall;
5756     if (isa<llvm::CallInst>(callSite)) {
5757       newCall =
5758           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5759     } else {
5760       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5761       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5762                                          oldInvoke->getUnwindDest(), newArgs,
5763                                          newBundles, "", callSite);
5764     }
5765     newArgs.clear(); // for the next iteration
5766 
5767     if (!newCall->getType()->isVoidTy())
5768       newCall->takeName(callSite);
5769     newCall->setAttributes(
5770         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5771                                  oldAttrs.getRetAttrs(), newArgAttrs));
5772     newCall->setCallingConv(callSite->getCallingConv());
5773 
5774     // Finally, remove the old call, replacing any uses with the new one.
5775     if (!callSite->use_empty())
5776       callSite->replaceAllUsesWith(newCall);
5777 
5778     // Copy debug location attached to CI.
5779     if (callSite->getDebugLoc())
5780       newCall->setDebugLoc(callSite->getDebugLoc());
5781 
5782     callSite->eraseFromParent();
5783   }
5784 }
5785 
5786 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5787 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5788 /// existing call uses of the old function in the module, this adjusts them to
5789 /// call the new function directly.
5790 ///
5791 /// This is not just a cleanup: the always_inline pass requires direct calls to
5792 /// functions to be able to inline them.  If there is a bitcast in the way, it
5793 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5794 /// run at -O0.
5795 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5796                                                       llvm::Function *NewFn) {
5797   // If we're redefining a global as a function, don't transform it.
5798   if (!isa<llvm::Function>(Old)) return;
5799 
5800   replaceUsesOfNonProtoConstant(Old, NewFn);
5801 }
5802 
5803 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5804   auto DK = VD->isThisDeclarationADefinition();
5805   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5806     return;
5807 
5808   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5809   // If we have a definition, this might be a deferred decl. If the
5810   // instantiation is explicit, make sure we emit it at the end.
5811   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5812     GetAddrOfGlobalVar(VD);
5813 
5814   EmitTopLevelDecl(VD);
5815 }
5816 
5817 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5818                                                  llvm::GlobalValue *GV) {
5819   const auto *D = cast<FunctionDecl>(GD.getDecl());
5820 
5821   // Compute the function info and LLVM type.
5822   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5823   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5824 
5825   // Get or create the prototype for the function.
5826   if (!GV || (GV->getValueType() != Ty))
5827     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5828                                                    /*DontDefer=*/true,
5829                                                    ForDefinition));
5830 
5831   // Already emitted.
5832   if (!GV->isDeclaration())
5833     return;
5834 
5835   // We need to set linkage and visibility on the function before
5836   // generating code for it because various parts of IR generation
5837   // want to propagate this information down (e.g. to local static
5838   // declarations).
5839   auto *Fn = cast<llvm::Function>(GV);
5840   setFunctionLinkage(GD, Fn);
5841 
5842   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5843   setGVProperties(Fn, GD);
5844 
5845   MaybeHandleStaticInExternC(D, Fn);
5846 
5847   maybeSetTrivialComdat(*D, *Fn);
5848 
5849   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5850 
5851   setNonAliasAttributes(GD, Fn);
5852   SetLLVMFunctionAttributesForDefinition(D, Fn);
5853 
5854   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5855     AddGlobalCtor(Fn, CA->getPriority());
5856   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5857     AddGlobalDtor(Fn, DA->getPriority(), true);
5858   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5859     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5860 }
5861 
5862 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5863   const auto *D = cast<ValueDecl>(GD.getDecl());
5864   const AliasAttr *AA = D->getAttr<AliasAttr>();
5865   assert(AA && "Not an alias?");
5866 
5867   StringRef MangledName = getMangledName(GD);
5868 
5869   if (AA->getAliasee() == MangledName) {
5870     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5871     return;
5872   }
5873 
5874   // If there is a definition in the module, then it wins over the alias.
5875   // This is dubious, but allow it to be safe.  Just ignore the alias.
5876   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5877   if (Entry && !Entry->isDeclaration())
5878     return;
5879 
5880   Aliases.push_back(GD);
5881 
5882   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5883 
5884   // Create a reference to the named value.  This ensures that it is emitted
5885   // if a deferred decl.
5886   llvm::Constant *Aliasee;
5887   llvm::GlobalValue::LinkageTypes LT;
5888   if (isa<llvm::FunctionType>(DeclTy)) {
5889     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5890                                       /*ForVTable=*/false);
5891     LT = getFunctionLinkage(GD);
5892   } else {
5893     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5894                                     /*D=*/nullptr);
5895     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5896       LT = getLLVMLinkageVarDefinition(VD);
5897     else
5898       LT = getFunctionLinkage(GD);
5899   }
5900 
5901   // Create the new alias itself, but don't set a name yet.
5902   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5903   auto *GA =
5904       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5905 
5906   if (Entry) {
5907     if (GA->getAliasee() == Entry) {
5908       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5909       return;
5910     }
5911 
5912     assert(Entry->isDeclaration());
5913 
5914     // If there is a declaration in the module, then we had an extern followed
5915     // by the alias, as in:
5916     //   extern int test6();
5917     //   ...
5918     //   int test6() __attribute__((alias("test7")));
5919     //
5920     // Remove it and replace uses of it with the alias.
5921     GA->takeName(Entry);
5922 
5923     Entry->replaceAllUsesWith(GA);
5924     Entry->eraseFromParent();
5925   } else {
5926     GA->setName(MangledName);
5927   }
5928 
5929   // Set attributes which are particular to an alias; this is a
5930   // specialization of the attributes which may be set on a global
5931   // variable/function.
5932   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5933       D->isWeakImported()) {
5934     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5935   }
5936 
5937   if (const auto *VD = dyn_cast<VarDecl>(D))
5938     if (VD->getTLSKind())
5939       setTLSMode(GA, *VD);
5940 
5941   SetCommonAttributes(GD, GA);
5942 
5943   // Emit global alias debug information.
5944   if (isa<VarDecl>(D))
5945     if (CGDebugInfo *DI = getModuleDebugInfo())
5946       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5947 }
5948 
5949 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5950   const auto *D = cast<ValueDecl>(GD.getDecl());
5951   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5952   assert(IFA && "Not an ifunc?");
5953 
5954   StringRef MangledName = getMangledName(GD);
5955 
5956   if (IFA->getResolver() == MangledName) {
5957     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5958     return;
5959   }
5960 
5961   // Report an error if some definition overrides ifunc.
5962   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5963   if (Entry && !Entry->isDeclaration()) {
5964     GlobalDecl OtherGD;
5965     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5966         DiagnosedConflictingDefinitions.insert(GD).second) {
5967       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5968           << MangledName;
5969       Diags.Report(OtherGD.getDecl()->getLocation(),
5970                    diag::note_previous_definition);
5971     }
5972     return;
5973   }
5974 
5975   Aliases.push_back(GD);
5976 
5977   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5978   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5979   llvm::Constant *Resolver =
5980       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5981                               /*ForVTable=*/false);
5982   llvm::GlobalIFunc *GIF =
5983       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5984                                 "", Resolver, &getModule());
5985   if (Entry) {
5986     if (GIF->getResolver() == Entry) {
5987       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5988       return;
5989     }
5990     assert(Entry->isDeclaration());
5991 
5992     // If there is a declaration in the module, then we had an extern followed
5993     // by the ifunc, as in:
5994     //   extern int test();
5995     //   ...
5996     //   int test() __attribute__((ifunc("resolver")));
5997     //
5998     // Remove it and replace uses of it with the ifunc.
5999     GIF->takeName(Entry);
6000 
6001     Entry->replaceAllUsesWith(GIF);
6002     Entry->eraseFromParent();
6003   } else
6004     GIF->setName(MangledName);
6005   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
6006     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
6007   }
6008   SetCommonAttributes(GD, GIF);
6009 }
6010 
6011 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6012                                             ArrayRef<llvm::Type*> Tys) {
6013   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6014                                          Tys);
6015 }
6016 
6017 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6018 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6019                          const StringLiteral *Literal, bool TargetIsLSB,
6020                          bool &IsUTF16, unsigned &StringLength) {
6021   StringRef String = Literal->getString();
6022   unsigned NumBytes = String.size();
6023 
6024   // Check for simple case.
6025   if (!Literal->containsNonAsciiOrNull()) {
6026     StringLength = NumBytes;
6027     return *Map.insert(std::make_pair(String, nullptr)).first;
6028   }
6029 
6030   // Otherwise, convert the UTF8 literals into a string of shorts.
6031   IsUTF16 = true;
6032 
6033   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6034   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6035   llvm::UTF16 *ToPtr = &ToBuf[0];
6036 
6037   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6038                                  ToPtr + NumBytes, llvm::strictConversion);
6039 
6040   // ConvertUTF8toUTF16 returns the length in ToPtr.
6041   StringLength = ToPtr - &ToBuf[0];
6042 
6043   // Add an explicit null.
6044   *ToPtr = 0;
6045   return *Map.insert(std::make_pair(
6046                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6047                                    (StringLength + 1) * 2),
6048                          nullptr)).first;
6049 }
6050 
6051 ConstantAddress
6052 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6053   unsigned StringLength = 0;
6054   bool isUTF16 = false;
6055   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6056       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6057                                getDataLayout().isLittleEndian(), isUTF16,
6058                                StringLength);
6059 
6060   if (auto *C = Entry.second)
6061     return ConstantAddress(
6062         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6063 
6064   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
6065   llvm::Constant *Zeros[] = { Zero, Zero };
6066 
6067   const ASTContext &Context = getContext();
6068   const llvm::Triple &Triple = getTriple();
6069 
6070   const auto CFRuntime = getLangOpts().CFRuntime;
6071   const bool IsSwiftABI =
6072       static_cast<unsigned>(CFRuntime) >=
6073       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6074   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6075 
6076   // If we don't already have it, get __CFConstantStringClassReference.
6077   if (!CFConstantStringClassRef) {
6078     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6079     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6080     Ty = llvm::ArrayType::get(Ty, 0);
6081 
6082     switch (CFRuntime) {
6083     default: break;
6084     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6085     case LangOptions::CoreFoundationABI::Swift5_0:
6086       CFConstantStringClassName =
6087           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6088                               : "$s10Foundation19_NSCFConstantStringCN";
6089       Ty = IntPtrTy;
6090       break;
6091     case LangOptions::CoreFoundationABI::Swift4_2:
6092       CFConstantStringClassName =
6093           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6094                               : "$S10Foundation19_NSCFConstantStringCN";
6095       Ty = IntPtrTy;
6096       break;
6097     case LangOptions::CoreFoundationABI::Swift4_1:
6098       CFConstantStringClassName =
6099           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6100                               : "__T010Foundation19_NSCFConstantStringCN";
6101       Ty = IntPtrTy;
6102       break;
6103     }
6104 
6105     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6106 
6107     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6108       llvm::GlobalValue *GV = nullptr;
6109 
6110       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6111         IdentifierInfo &II = Context.Idents.get(GV->getName());
6112         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6113         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6114 
6115         const VarDecl *VD = nullptr;
6116         for (const auto *Result : DC->lookup(&II))
6117           if ((VD = dyn_cast<VarDecl>(Result)))
6118             break;
6119 
6120         if (Triple.isOSBinFormatELF()) {
6121           if (!VD)
6122             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6123         } else {
6124           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6125           if (!VD || !VD->hasAttr<DLLExportAttr>())
6126             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6127           else
6128             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6129         }
6130 
6131         setDSOLocal(GV);
6132       }
6133     }
6134 
6135     // Decay array -> ptr
6136     CFConstantStringClassRef =
6137         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
6138                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
6139   }
6140 
6141   QualType CFTy = Context.getCFConstantStringType();
6142 
6143   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6144 
6145   ConstantInitBuilder Builder(*this);
6146   auto Fields = Builder.beginStruct(STy);
6147 
6148   // Class pointer.
6149   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6150 
6151   // Flags.
6152   if (IsSwiftABI) {
6153     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6154     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6155   } else {
6156     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6157   }
6158 
6159   // String pointer.
6160   llvm::Constant *C = nullptr;
6161   if (isUTF16) {
6162     auto Arr = llvm::ArrayRef(
6163         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6164         Entry.first().size() / 2);
6165     C = llvm::ConstantDataArray::get(VMContext, Arr);
6166   } else {
6167     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6168   }
6169 
6170   // Note: -fwritable-strings doesn't make the backing store strings of
6171   // CFStrings writable.
6172   auto *GV =
6173       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6174                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6175   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6176   // Don't enforce the target's minimum global alignment, since the only use
6177   // of the string is via this class initializer.
6178   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6179                             : Context.getTypeAlignInChars(Context.CharTy);
6180   GV->setAlignment(Align.getAsAlign());
6181 
6182   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6183   // Without it LLVM can merge the string with a non unnamed_addr one during
6184   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6185   if (Triple.isOSBinFormatMachO())
6186     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6187                            : "__TEXT,__cstring,cstring_literals");
6188   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6189   // the static linker to adjust permissions to read-only later on.
6190   else if (Triple.isOSBinFormatELF())
6191     GV->setSection(".rodata");
6192 
6193   // String.
6194   llvm::Constant *Str =
6195       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6196 
6197   Fields.add(Str);
6198 
6199   // String length.
6200   llvm::IntegerType *LengthTy =
6201       llvm::IntegerType::get(getModule().getContext(),
6202                              Context.getTargetInfo().getLongWidth());
6203   if (IsSwiftABI) {
6204     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6205         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6206       LengthTy = Int32Ty;
6207     else
6208       LengthTy = IntPtrTy;
6209   }
6210   Fields.addInt(LengthTy, StringLength);
6211 
6212   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6213   // properly aligned on 32-bit platforms.
6214   CharUnits Alignment =
6215       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6216 
6217   // The struct.
6218   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6219                                     /*isConstant=*/false,
6220                                     llvm::GlobalVariable::PrivateLinkage);
6221   GV->addAttribute("objc_arc_inert");
6222   switch (Triple.getObjectFormat()) {
6223   case llvm::Triple::UnknownObjectFormat:
6224     llvm_unreachable("unknown file format");
6225   case llvm::Triple::DXContainer:
6226   case llvm::Triple::GOFF:
6227   case llvm::Triple::SPIRV:
6228   case llvm::Triple::XCOFF:
6229     llvm_unreachable("unimplemented");
6230   case llvm::Triple::COFF:
6231   case llvm::Triple::ELF:
6232   case llvm::Triple::Wasm:
6233     GV->setSection("cfstring");
6234     break;
6235   case llvm::Triple::MachO:
6236     GV->setSection("__DATA,__cfstring");
6237     break;
6238   }
6239   Entry.second = GV;
6240 
6241   return ConstantAddress(GV, GV->getValueType(), Alignment);
6242 }
6243 
6244 bool CodeGenModule::getExpressionLocationsEnabled() const {
6245   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6246 }
6247 
6248 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6249   if (ObjCFastEnumerationStateType.isNull()) {
6250     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6251     D->startDefinition();
6252 
6253     QualType FieldTypes[] = {
6254         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6255         Context.getPointerType(Context.UnsignedLongTy),
6256         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6257                                      nullptr, ArraySizeModifier::Normal, 0)};
6258 
6259     for (size_t i = 0; i < 4; ++i) {
6260       FieldDecl *Field = FieldDecl::Create(Context,
6261                                            D,
6262                                            SourceLocation(),
6263                                            SourceLocation(), nullptr,
6264                                            FieldTypes[i], /*TInfo=*/nullptr,
6265                                            /*BitWidth=*/nullptr,
6266                                            /*Mutable=*/false,
6267                                            ICIS_NoInit);
6268       Field->setAccess(AS_public);
6269       D->addDecl(Field);
6270     }
6271 
6272     D->completeDefinition();
6273     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6274   }
6275 
6276   return ObjCFastEnumerationStateType;
6277 }
6278 
6279 llvm::Constant *
6280 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6281   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6282 
6283   // Don't emit it as the address of the string, emit the string data itself
6284   // as an inline array.
6285   if (E->getCharByteWidth() == 1) {
6286     SmallString<64> Str(E->getString());
6287 
6288     // Resize the string to the right size, which is indicated by its type.
6289     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6290     assert(CAT && "String literal not of constant array type!");
6291     Str.resize(CAT->getSize().getZExtValue());
6292     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6293   }
6294 
6295   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6296   llvm::Type *ElemTy = AType->getElementType();
6297   unsigned NumElements = AType->getNumElements();
6298 
6299   // Wide strings have either 2-byte or 4-byte elements.
6300   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6301     SmallVector<uint16_t, 32> Elements;
6302     Elements.reserve(NumElements);
6303 
6304     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6305       Elements.push_back(E->getCodeUnit(i));
6306     Elements.resize(NumElements);
6307     return llvm::ConstantDataArray::get(VMContext, Elements);
6308   }
6309 
6310   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6311   SmallVector<uint32_t, 32> Elements;
6312   Elements.reserve(NumElements);
6313 
6314   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6315     Elements.push_back(E->getCodeUnit(i));
6316   Elements.resize(NumElements);
6317   return llvm::ConstantDataArray::get(VMContext, Elements);
6318 }
6319 
6320 static llvm::GlobalVariable *
6321 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6322                       CodeGenModule &CGM, StringRef GlobalName,
6323                       CharUnits Alignment) {
6324   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6325       CGM.GetGlobalConstantAddressSpace());
6326 
6327   llvm::Module &M = CGM.getModule();
6328   // Create a global variable for this string
6329   auto *GV = new llvm::GlobalVariable(
6330       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6331       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6332   GV->setAlignment(Alignment.getAsAlign());
6333   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6334   if (GV->isWeakForLinker()) {
6335     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6336     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6337   }
6338   CGM.setDSOLocal(GV);
6339 
6340   return GV;
6341 }
6342 
6343 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6344 /// constant array for the given string literal.
6345 ConstantAddress
6346 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6347                                                   StringRef Name) {
6348   CharUnits Alignment =
6349       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6350 
6351   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6352   llvm::GlobalVariable **Entry = nullptr;
6353   if (!LangOpts.WritableStrings) {
6354     Entry = &ConstantStringMap[C];
6355     if (auto GV = *Entry) {
6356       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6357         GV->setAlignment(Alignment.getAsAlign());
6358       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6359                              GV->getValueType(), Alignment);
6360     }
6361   }
6362 
6363   SmallString<256> MangledNameBuffer;
6364   StringRef GlobalVariableName;
6365   llvm::GlobalValue::LinkageTypes LT;
6366 
6367   // Mangle the string literal if that's how the ABI merges duplicate strings.
6368   // Don't do it if they are writable, since we don't want writes in one TU to
6369   // affect strings in another.
6370   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6371       !LangOpts.WritableStrings) {
6372     llvm::raw_svector_ostream Out(MangledNameBuffer);
6373     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6374     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6375     GlobalVariableName = MangledNameBuffer;
6376   } else {
6377     LT = llvm::GlobalValue::PrivateLinkage;
6378     GlobalVariableName = Name;
6379   }
6380 
6381   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6382 
6383   CGDebugInfo *DI = getModuleDebugInfo();
6384   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6385     DI->AddStringLiteralDebugInfo(GV, S);
6386 
6387   if (Entry)
6388     *Entry = GV;
6389 
6390   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6391 
6392   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6393                          GV->getValueType(), Alignment);
6394 }
6395 
6396 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6397 /// array for the given ObjCEncodeExpr node.
6398 ConstantAddress
6399 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6400   std::string Str;
6401   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6402 
6403   return GetAddrOfConstantCString(Str);
6404 }
6405 
6406 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6407 /// the literal and a terminating '\0' character.
6408 /// The result has pointer to array type.
6409 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6410     const std::string &Str, const char *GlobalName) {
6411   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6412   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6413       getContext().CharTy, /*VD=*/nullptr);
6414 
6415   llvm::Constant *C =
6416       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6417 
6418   // Don't share any string literals if strings aren't constant.
6419   llvm::GlobalVariable **Entry = nullptr;
6420   if (!LangOpts.WritableStrings) {
6421     Entry = &ConstantStringMap[C];
6422     if (auto GV = *Entry) {
6423       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6424         GV->setAlignment(Alignment.getAsAlign());
6425       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6426                              GV->getValueType(), Alignment);
6427     }
6428   }
6429 
6430   // Get the default prefix if a name wasn't specified.
6431   if (!GlobalName)
6432     GlobalName = ".str";
6433   // Create a global variable for this.
6434   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6435                                   GlobalName, Alignment);
6436   if (Entry)
6437     *Entry = GV;
6438 
6439   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6440                          GV->getValueType(), Alignment);
6441 }
6442 
6443 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6444     const MaterializeTemporaryExpr *E, const Expr *Init) {
6445   assert((E->getStorageDuration() == SD_Static ||
6446           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6447   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6448 
6449   // If we're not materializing a subobject of the temporary, keep the
6450   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6451   QualType MaterializedType = Init->getType();
6452   if (Init == E->getSubExpr())
6453     MaterializedType = E->getType();
6454 
6455   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6456 
6457   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6458   if (!InsertResult.second) {
6459     // We've seen this before: either we already created it or we're in the
6460     // process of doing so.
6461     if (!InsertResult.first->second) {
6462       // We recursively re-entered this function, probably during emission of
6463       // the initializer. Create a placeholder. We'll clean this up in the
6464       // outer call, at the end of this function.
6465       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6466       InsertResult.first->second = new llvm::GlobalVariable(
6467           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6468           nullptr);
6469     }
6470     return ConstantAddress(InsertResult.first->second,
6471                            llvm::cast<llvm::GlobalVariable>(
6472                                InsertResult.first->second->stripPointerCasts())
6473                                ->getValueType(),
6474                            Align);
6475   }
6476 
6477   // FIXME: If an externally-visible declaration extends multiple temporaries,
6478   // we need to give each temporary the same name in every translation unit (and
6479   // we also need to make the temporaries externally-visible).
6480   SmallString<256> Name;
6481   llvm::raw_svector_ostream Out(Name);
6482   getCXXABI().getMangleContext().mangleReferenceTemporary(
6483       VD, E->getManglingNumber(), Out);
6484 
6485   APValue *Value = nullptr;
6486   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6487     // If the initializer of the extending declaration is a constant
6488     // initializer, we should have a cached constant initializer for this
6489     // temporary. Note that this might have a different value from the value
6490     // computed by evaluating the initializer if the surrounding constant
6491     // expression modifies the temporary.
6492     Value = E->getOrCreateValue(false);
6493   }
6494 
6495   // Try evaluating it now, it might have a constant initializer.
6496   Expr::EvalResult EvalResult;
6497   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6498       !EvalResult.hasSideEffects())
6499     Value = &EvalResult.Val;
6500 
6501   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6502 
6503   std::optional<ConstantEmitter> emitter;
6504   llvm::Constant *InitialValue = nullptr;
6505   bool Constant = false;
6506   llvm::Type *Type;
6507   if (Value) {
6508     // The temporary has a constant initializer, use it.
6509     emitter.emplace(*this);
6510     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6511                                                MaterializedType);
6512     Constant =
6513         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6514                                            /*ExcludeDtor*/ false);
6515     Type = InitialValue->getType();
6516   } else {
6517     // No initializer, the initialization will be provided when we
6518     // initialize the declaration which performed lifetime extension.
6519     Type = getTypes().ConvertTypeForMem(MaterializedType);
6520   }
6521 
6522   // Create a global variable for this lifetime-extended temporary.
6523   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6524   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6525     const VarDecl *InitVD;
6526     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6527         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6528       // Temporaries defined inside a class get linkonce_odr linkage because the
6529       // class can be defined in multiple translation units.
6530       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6531     } else {
6532       // There is no need for this temporary to have external linkage if the
6533       // VarDecl has external linkage.
6534       Linkage = llvm::GlobalVariable::InternalLinkage;
6535     }
6536   }
6537   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6538   auto *GV = new llvm::GlobalVariable(
6539       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6540       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6541   if (emitter) emitter->finalize(GV);
6542   // Don't assign dllimport or dllexport to local linkage globals.
6543   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6544     setGVProperties(GV, VD);
6545     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6546       // The reference temporary should never be dllexport.
6547       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6548   }
6549   GV->setAlignment(Align.getAsAlign());
6550   if (supportsCOMDAT() && GV->isWeakForLinker())
6551     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6552   if (VD->getTLSKind())
6553     setTLSMode(GV, *VD);
6554   llvm::Constant *CV = GV;
6555   if (AddrSpace != LangAS::Default)
6556     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6557         *this, GV, AddrSpace, LangAS::Default,
6558         llvm::PointerType::get(
6559             getLLVMContext(),
6560             getContext().getTargetAddressSpace(LangAS::Default)));
6561 
6562   // Update the map with the new temporary. If we created a placeholder above,
6563   // replace it with the new global now.
6564   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6565   if (Entry) {
6566     Entry->replaceAllUsesWith(CV);
6567     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6568   }
6569   Entry = CV;
6570 
6571   return ConstantAddress(CV, Type, Align);
6572 }
6573 
6574 /// EmitObjCPropertyImplementations - Emit information for synthesized
6575 /// properties for an implementation.
6576 void CodeGenModule::EmitObjCPropertyImplementations(const
6577                                                     ObjCImplementationDecl *D) {
6578   for (const auto *PID : D->property_impls()) {
6579     // Dynamic is just for type-checking.
6580     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6581       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6582 
6583       // Determine which methods need to be implemented, some may have
6584       // been overridden. Note that ::isPropertyAccessor is not the method
6585       // we want, that just indicates if the decl came from a
6586       // property. What we want to know is if the method is defined in
6587       // this implementation.
6588       auto *Getter = PID->getGetterMethodDecl();
6589       if (!Getter || Getter->isSynthesizedAccessorStub())
6590         CodeGenFunction(*this).GenerateObjCGetter(
6591             const_cast<ObjCImplementationDecl *>(D), PID);
6592       auto *Setter = PID->getSetterMethodDecl();
6593       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6594         CodeGenFunction(*this).GenerateObjCSetter(
6595                                  const_cast<ObjCImplementationDecl *>(D), PID);
6596     }
6597   }
6598 }
6599 
6600 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6601   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6602   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6603        ivar; ivar = ivar->getNextIvar())
6604     if (ivar->getType().isDestructedType())
6605       return true;
6606 
6607   return false;
6608 }
6609 
6610 static bool AllTrivialInitializers(CodeGenModule &CGM,
6611                                    ObjCImplementationDecl *D) {
6612   CodeGenFunction CGF(CGM);
6613   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6614        E = D->init_end(); B != E; ++B) {
6615     CXXCtorInitializer *CtorInitExp = *B;
6616     Expr *Init = CtorInitExp->getInit();
6617     if (!CGF.isTrivialInitializer(Init))
6618       return false;
6619   }
6620   return true;
6621 }
6622 
6623 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6624 /// for an implementation.
6625 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6626   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6627   if (needsDestructMethod(D)) {
6628     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6629     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6630     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6631         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6632         getContext().VoidTy, nullptr, D,
6633         /*isInstance=*/true, /*isVariadic=*/false,
6634         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6635         /*isImplicitlyDeclared=*/true,
6636         /*isDefined=*/false, ObjCImplementationControl::Required);
6637     D->addInstanceMethod(DTORMethod);
6638     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6639     D->setHasDestructors(true);
6640   }
6641 
6642   // If the implementation doesn't have any ivar initializers, we don't need
6643   // a .cxx_construct.
6644   if (D->getNumIvarInitializers() == 0 ||
6645       AllTrivialInitializers(*this, D))
6646     return;
6647 
6648   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6649   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6650   // The constructor returns 'self'.
6651   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6652       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6653       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6654       /*isVariadic=*/false,
6655       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6656       /*isImplicitlyDeclared=*/true,
6657       /*isDefined=*/false, ObjCImplementationControl::Required);
6658   D->addInstanceMethod(CTORMethod);
6659   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6660   D->setHasNonZeroConstructors(true);
6661 }
6662 
6663 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6664 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6665   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6666       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6667     ErrorUnsupported(LSD, "linkage spec");
6668     return;
6669   }
6670 
6671   EmitDeclContext(LSD);
6672 }
6673 
6674 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6675   // Device code should not be at top level.
6676   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6677     return;
6678 
6679   std::unique_ptr<CodeGenFunction> &CurCGF =
6680       GlobalTopLevelStmtBlockInFlight.first;
6681 
6682   // We emitted a top-level stmt but after it there is initialization.
6683   // Stop squashing the top-level stmts into a single function.
6684   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6685     CurCGF->FinishFunction(D->getEndLoc());
6686     CurCGF = nullptr;
6687   }
6688 
6689   if (!CurCGF) {
6690     // void __stmts__N(void)
6691     // FIXME: Ask the ABI name mangler to pick a name.
6692     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6693     FunctionArgList Args;
6694     QualType RetTy = getContext().VoidTy;
6695     const CGFunctionInfo &FnInfo =
6696         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6697     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6698     llvm::Function *Fn = llvm::Function::Create(
6699         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6700 
6701     CurCGF.reset(new CodeGenFunction(*this));
6702     GlobalTopLevelStmtBlockInFlight.second = D;
6703     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6704                           D->getBeginLoc(), D->getBeginLoc());
6705     CXXGlobalInits.push_back(Fn);
6706   }
6707 
6708   CurCGF->EmitStmt(D->getStmt());
6709 }
6710 
6711 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6712   for (auto *I : DC->decls()) {
6713     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6714     // are themselves considered "top-level", so EmitTopLevelDecl on an
6715     // ObjCImplDecl does not recursively visit them. We need to do that in
6716     // case they're nested inside another construct (LinkageSpecDecl /
6717     // ExportDecl) that does stop them from being considered "top-level".
6718     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6719       for (auto *M : OID->methods())
6720         EmitTopLevelDecl(M);
6721     }
6722 
6723     EmitTopLevelDecl(I);
6724   }
6725 }
6726 
6727 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6728 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6729   // Ignore dependent declarations.
6730   if (D->isTemplated())
6731     return;
6732 
6733   // Consteval function shouldn't be emitted.
6734   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6735     return;
6736 
6737   switch (D->getKind()) {
6738   case Decl::CXXConversion:
6739   case Decl::CXXMethod:
6740   case Decl::Function:
6741     EmitGlobal(cast<FunctionDecl>(D));
6742     // Always provide some coverage mapping
6743     // even for the functions that aren't emitted.
6744     AddDeferredUnusedCoverageMapping(D);
6745     break;
6746 
6747   case Decl::CXXDeductionGuide:
6748     // Function-like, but does not result in code emission.
6749     break;
6750 
6751   case Decl::Var:
6752   case Decl::Decomposition:
6753   case Decl::VarTemplateSpecialization:
6754     EmitGlobal(cast<VarDecl>(D));
6755     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6756       for (auto *B : DD->bindings())
6757         if (auto *HD = B->getHoldingVar())
6758           EmitGlobal(HD);
6759     break;
6760 
6761   // Indirect fields from global anonymous structs and unions can be
6762   // ignored; only the actual variable requires IR gen support.
6763   case Decl::IndirectField:
6764     break;
6765 
6766   // C++ Decls
6767   case Decl::Namespace:
6768     EmitDeclContext(cast<NamespaceDecl>(D));
6769     break;
6770   case Decl::ClassTemplateSpecialization: {
6771     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6772     if (CGDebugInfo *DI = getModuleDebugInfo())
6773       if (Spec->getSpecializationKind() ==
6774               TSK_ExplicitInstantiationDefinition &&
6775           Spec->hasDefinition())
6776         DI->completeTemplateDefinition(*Spec);
6777   } [[fallthrough]];
6778   case Decl::CXXRecord: {
6779     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6780     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6781       if (CRD->hasDefinition())
6782         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6783       if (auto *ES = D->getASTContext().getExternalSource())
6784         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6785           DI->completeUnusedClass(*CRD);
6786     }
6787     // Emit any static data members, they may be definitions.
6788     for (auto *I : CRD->decls())
6789       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6790         EmitTopLevelDecl(I);
6791     break;
6792   }
6793     // No code generation needed.
6794   case Decl::UsingShadow:
6795   case Decl::ClassTemplate:
6796   case Decl::VarTemplate:
6797   case Decl::Concept:
6798   case Decl::VarTemplatePartialSpecialization:
6799   case Decl::FunctionTemplate:
6800   case Decl::TypeAliasTemplate:
6801   case Decl::Block:
6802   case Decl::Empty:
6803   case Decl::Binding:
6804     break;
6805   case Decl::Using:          // using X; [C++]
6806     if (CGDebugInfo *DI = getModuleDebugInfo())
6807         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6808     break;
6809   case Decl::UsingEnum: // using enum X; [C++]
6810     if (CGDebugInfo *DI = getModuleDebugInfo())
6811       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6812     break;
6813   case Decl::NamespaceAlias:
6814     if (CGDebugInfo *DI = getModuleDebugInfo())
6815         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6816     break;
6817   case Decl::UsingDirective: // using namespace X; [C++]
6818     if (CGDebugInfo *DI = getModuleDebugInfo())
6819       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6820     break;
6821   case Decl::CXXConstructor:
6822     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6823     break;
6824   case Decl::CXXDestructor:
6825     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6826     break;
6827 
6828   case Decl::StaticAssert:
6829     // Nothing to do.
6830     break;
6831 
6832   // Objective-C Decls
6833 
6834   // Forward declarations, no (immediate) code generation.
6835   case Decl::ObjCInterface:
6836   case Decl::ObjCCategory:
6837     break;
6838 
6839   case Decl::ObjCProtocol: {
6840     auto *Proto = cast<ObjCProtocolDecl>(D);
6841     if (Proto->isThisDeclarationADefinition())
6842       ObjCRuntime->GenerateProtocol(Proto);
6843     break;
6844   }
6845 
6846   case Decl::ObjCCategoryImpl:
6847     // Categories have properties but don't support synthesize so we
6848     // can ignore them here.
6849     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6850     break;
6851 
6852   case Decl::ObjCImplementation: {
6853     auto *OMD = cast<ObjCImplementationDecl>(D);
6854     EmitObjCPropertyImplementations(OMD);
6855     EmitObjCIvarInitializations(OMD);
6856     ObjCRuntime->GenerateClass(OMD);
6857     // Emit global variable debug information.
6858     if (CGDebugInfo *DI = getModuleDebugInfo())
6859       if (getCodeGenOpts().hasReducedDebugInfo())
6860         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6861             OMD->getClassInterface()), OMD->getLocation());
6862     break;
6863   }
6864   case Decl::ObjCMethod: {
6865     auto *OMD = cast<ObjCMethodDecl>(D);
6866     // If this is not a prototype, emit the body.
6867     if (OMD->getBody())
6868       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6869     break;
6870   }
6871   case Decl::ObjCCompatibleAlias:
6872     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6873     break;
6874 
6875   case Decl::PragmaComment: {
6876     const auto *PCD = cast<PragmaCommentDecl>(D);
6877     switch (PCD->getCommentKind()) {
6878     case PCK_Unknown:
6879       llvm_unreachable("unexpected pragma comment kind");
6880     case PCK_Linker:
6881       AppendLinkerOptions(PCD->getArg());
6882       break;
6883     case PCK_Lib:
6884         AddDependentLib(PCD->getArg());
6885       break;
6886     case PCK_Compiler:
6887     case PCK_ExeStr:
6888     case PCK_User:
6889       break; // We ignore all of these.
6890     }
6891     break;
6892   }
6893 
6894   case Decl::PragmaDetectMismatch: {
6895     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6896     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6897     break;
6898   }
6899 
6900   case Decl::LinkageSpec:
6901     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6902     break;
6903 
6904   case Decl::FileScopeAsm: {
6905     // File-scope asm is ignored during device-side CUDA compilation.
6906     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6907       break;
6908     // File-scope asm is ignored during device-side OpenMP compilation.
6909     if (LangOpts.OpenMPIsTargetDevice)
6910       break;
6911     // File-scope asm is ignored during device-side SYCL compilation.
6912     if (LangOpts.SYCLIsDevice)
6913       break;
6914     auto *AD = cast<FileScopeAsmDecl>(D);
6915     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6916     break;
6917   }
6918 
6919   case Decl::TopLevelStmt:
6920     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6921     break;
6922 
6923   case Decl::Import: {
6924     auto *Import = cast<ImportDecl>(D);
6925 
6926     // If we've already imported this module, we're done.
6927     if (!ImportedModules.insert(Import->getImportedModule()))
6928       break;
6929 
6930     // Emit debug information for direct imports.
6931     if (!Import->getImportedOwningModule()) {
6932       if (CGDebugInfo *DI = getModuleDebugInfo())
6933         DI->EmitImportDecl(*Import);
6934     }
6935 
6936     // For C++ standard modules we are done - we will call the module
6937     // initializer for imported modules, and that will likewise call those for
6938     // any imports it has.
6939     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6940         !Import->getImportedOwningModule()->isModuleMapModule())
6941       break;
6942 
6943     // For clang C++ module map modules the initializers for sub-modules are
6944     // emitted here.
6945 
6946     // Find all of the submodules and emit the module initializers.
6947     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6948     SmallVector<clang::Module *, 16> Stack;
6949     Visited.insert(Import->getImportedModule());
6950     Stack.push_back(Import->getImportedModule());
6951 
6952     while (!Stack.empty()) {
6953       clang::Module *Mod = Stack.pop_back_val();
6954       if (!EmittedModuleInitializers.insert(Mod).second)
6955         continue;
6956 
6957       for (auto *D : Context.getModuleInitializers(Mod))
6958         EmitTopLevelDecl(D);
6959 
6960       // Visit the submodules of this module.
6961       for (auto *Submodule : Mod->submodules()) {
6962         // Skip explicit children; they need to be explicitly imported to emit
6963         // the initializers.
6964         if (Submodule->IsExplicit)
6965           continue;
6966 
6967         if (Visited.insert(Submodule).second)
6968           Stack.push_back(Submodule);
6969       }
6970     }
6971     break;
6972   }
6973 
6974   case Decl::Export:
6975     EmitDeclContext(cast<ExportDecl>(D));
6976     break;
6977 
6978   case Decl::OMPThreadPrivate:
6979     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6980     break;
6981 
6982   case Decl::OMPAllocate:
6983     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6984     break;
6985 
6986   case Decl::OMPDeclareReduction:
6987     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6988     break;
6989 
6990   case Decl::OMPDeclareMapper:
6991     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6992     break;
6993 
6994   case Decl::OMPRequires:
6995     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6996     break;
6997 
6998   case Decl::Typedef:
6999   case Decl::TypeAlias: // using foo = bar; [C++11]
7000     if (CGDebugInfo *DI = getModuleDebugInfo())
7001       DI->EmitAndRetainType(
7002           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7003     break;
7004 
7005   case Decl::Record:
7006     if (CGDebugInfo *DI = getModuleDebugInfo())
7007       if (cast<RecordDecl>(D)->getDefinition())
7008         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7009     break;
7010 
7011   case Decl::Enum:
7012     if (CGDebugInfo *DI = getModuleDebugInfo())
7013       if (cast<EnumDecl>(D)->getDefinition())
7014         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7015     break;
7016 
7017   case Decl::HLSLBuffer:
7018     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7019     break;
7020 
7021   default:
7022     // Make sure we handled everything we should, every other kind is a
7023     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7024     // function. Need to recode Decl::Kind to do that easily.
7025     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7026     break;
7027   }
7028 }
7029 
7030 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7031   // Do we need to generate coverage mapping?
7032   if (!CodeGenOpts.CoverageMapping)
7033     return;
7034   switch (D->getKind()) {
7035   case Decl::CXXConversion:
7036   case Decl::CXXMethod:
7037   case Decl::Function:
7038   case Decl::ObjCMethod:
7039   case Decl::CXXConstructor:
7040   case Decl::CXXDestructor: {
7041     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7042       break;
7043     SourceManager &SM = getContext().getSourceManager();
7044     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7045       break;
7046     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7047     break;
7048   }
7049   default:
7050     break;
7051   };
7052 }
7053 
7054 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7055   // Do we need to generate coverage mapping?
7056   if (!CodeGenOpts.CoverageMapping)
7057     return;
7058   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7059     if (Fn->isTemplateInstantiation())
7060       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7061   }
7062   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7063 }
7064 
7065 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7066   // We call takeVector() here to avoid use-after-free.
7067   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7068   // we deserialize function bodies to emit coverage info for them, and that
7069   // deserializes more declarations. How should we handle that case?
7070   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7071     if (!Entry.second)
7072       continue;
7073     const Decl *D = Entry.first;
7074     switch (D->getKind()) {
7075     case Decl::CXXConversion:
7076     case Decl::CXXMethod:
7077     case Decl::Function:
7078     case Decl::ObjCMethod: {
7079       CodeGenPGO PGO(*this);
7080       GlobalDecl GD(cast<FunctionDecl>(D));
7081       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7082                                   getFunctionLinkage(GD));
7083       break;
7084     }
7085     case Decl::CXXConstructor: {
7086       CodeGenPGO PGO(*this);
7087       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7088       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7089                                   getFunctionLinkage(GD));
7090       break;
7091     }
7092     case Decl::CXXDestructor: {
7093       CodeGenPGO PGO(*this);
7094       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7095       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7096                                   getFunctionLinkage(GD));
7097       break;
7098     }
7099     default:
7100       break;
7101     };
7102   }
7103 }
7104 
7105 void CodeGenModule::EmitMainVoidAlias() {
7106   // In order to transition away from "__original_main" gracefully, emit an
7107   // alias for "main" in the no-argument case so that libc can detect when
7108   // new-style no-argument main is in used.
7109   if (llvm::Function *F = getModule().getFunction("main")) {
7110     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7111         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7112       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7113       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7114     }
7115   }
7116 }
7117 
7118 /// Turns the given pointer into a constant.
7119 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7120                                           const void *Ptr) {
7121   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7122   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7123   return llvm::ConstantInt::get(i64, PtrInt);
7124 }
7125 
7126 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7127                                    llvm::NamedMDNode *&GlobalMetadata,
7128                                    GlobalDecl D,
7129                                    llvm::GlobalValue *Addr) {
7130   if (!GlobalMetadata)
7131     GlobalMetadata =
7132       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7133 
7134   // TODO: should we report variant information for ctors/dtors?
7135   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7136                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7137                                CGM.getLLVMContext(), D.getDecl()))};
7138   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7139 }
7140 
7141 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7142                                                  llvm::GlobalValue *CppFunc) {
7143   // Store the list of ifuncs we need to replace uses in.
7144   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7145   // List of ConstantExprs that we should be able to delete when we're done
7146   // here.
7147   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7148 
7149   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7150   if (Elem == CppFunc)
7151     return false;
7152 
7153   // First make sure that all users of this are ifuncs (or ifuncs via a
7154   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7155   // later.
7156   for (llvm::User *User : Elem->users()) {
7157     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7158     // ifunc directly. In any other case, just give up, as we don't know what we
7159     // could break by changing those.
7160     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7161       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7162         return false;
7163 
7164       for (llvm::User *CEUser : ConstExpr->users()) {
7165         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7166           IFuncs.push_back(IFunc);
7167         } else {
7168           return false;
7169         }
7170       }
7171       CEs.push_back(ConstExpr);
7172     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7173       IFuncs.push_back(IFunc);
7174     } else {
7175       // This user is one we don't know how to handle, so fail redirection. This
7176       // will result in an ifunc retaining a resolver name that will ultimately
7177       // fail to be resolved to a defined function.
7178       return false;
7179     }
7180   }
7181 
7182   // Now we know this is a valid case where we can do this alias replacement, we
7183   // need to remove all of the references to Elem (and the bitcasts!) so we can
7184   // delete it.
7185   for (llvm::GlobalIFunc *IFunc : IFuncs)
7186     IFunc->setResolver(nullptr);
7187   for (llvm::ConstantExpr *ConstExpr : CEs)
7188     ConstExpr->destroyConstant();
7189 
7190   // We should now be out of uses for the 'old' version of this function, so we
7191   // can erase it as well.
7192   Elem->eraseFromParent();
7193 
7194   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7195     // The type of the resolver is always just a function-type that returns the
7196     // type of the IFunc, so create that here. If the type of the actual
7197     // resolver doesn't match, it just gets bitcast to the right thing.
7198     auto *ResolverTy =
7199         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7200     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7201         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7202     IFunc->setResolver(Resolver);
7203   }
7204   return true;
7205 }
7206 
7207 /// For each function which is declared within an extern "C" region and marked
7208 /// as 'used', but has internal linkage, create an alias from the unmangled
7209 /// name to the mangled name if possible. People expect to be able to refer
7210 /// to such functions with an unmangled name from inline assembly within the
7211 /// same translation unit.
7212 void CodeGenModule::EmitStaticExternCAliases() {
7213   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7214     return;
7215   for (auto &I : StaticExternCValues) {
7216     IdentifierInfo *Name = I.first;
7217     llvm::GlobalValue *Val = I.second;
7218 
7219     // If Val is null, that implies there were multiple declarations that each
7220     // had a claim to the unmangled name. In this case, generation of the alias
7221     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7222     if (!Val)
7223       break;
7224 
7225     llvm::GlobalValue *ExistingElem =
7226         getModule().getNamedValue(Name->getName());
7227 
7228     // If there is either not something already by this name, or we were able to
7229     // replace all uses from IFuncs, create the alias.
7230     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7231       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7232   }
7233 }
7234 
7235 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7236                                              GlobalDecl &Result) const {
7237   auto Res = Manglings.find(MangledName);
7238   if (Res == Manglings.end())
7239     return false;
7240   Result = Res->getValue();
7241   return true;
7242 }
7243 
7244 /// Emits metadata nodes associating all the global values in the
7245 /// current module with the Decls they came from.  This is useful for
7246 /// projects using IR gen as a subroutine.
7247 ///
7248 /// Since there's currently no way to associate an MDNode directly
7249 /// with an llvm::GlobalValue, we create a global named metadata
7250 /// with the name 'clang.global.decl.ptrs'.
7251 void CodeGenModule::EmitDeclMetadata() {
7252   llvm::NamedMDNode *GlobalMetadata = nullptr;
7253 
7254   for (auto &I : MangledDeclNames) {
7255     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7256     // Some mangled names don't necessarily have an associated GlobalValue
7257     // in this module, e.g. if we mangled it for DebugInfo.
7258     if (Addr)
7259       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7260   }
7261 }
7262 
7263 /// Emits metadata nodes for all the local variables in the current
7264 /// function.
7265 void CodeGenFunction::EmitDeclMetadata() {
7266   if (LocalDeclMap.empty()) return;
7267 
7268   llvm::LLVMContext &Context = getLLVMContext();
7269 
7270   // Find the unique metadata ID for this name.
7271   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7272 
7273   llvm::NamedMDNode *GlobalMetadata = nullptr;
7274 
7275   for (auto &I : LocalDeclMap) {
7276     const Decl *D = I.first;
7277     llvm::Value *Addr = I.second.getPointer();
7278     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7279       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7280       Alloca->setMetadata(
7281           DeclPtrKind, llvm::MDNode::get(
7282                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7283     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7284       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7285       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7286     }
7287   }
7288 }
7289 
7290 void CodeGenModule::EmitVersionIdentMetadata() {
7291   llvm::NamedMDNode *IdentMetadata =
7292     TheModule.getOrInsertNamedMetadata("llvm.ident");
7293   std::string Version = getClangFullVersion();
7294   llvm::LLVMContext &Ctx = TheModule.getContext();
7295 
7296   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7297   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7298 }
7299 
7300 void CodeGenModule::EmitCommandLineMetadata() {
7301   llvm::NamedMDNode *CommandLineMetadata =
7302     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7303   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7304   llvm::LLVMContext &Ctx = TheModule.getContext();
7305 
7306   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7307   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7308 }
7309 
7310 void CodeGenModule::EmitCoverageFile() {
7311   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7312   if (!CUNode)
7313     return;
7314 
7315   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7316   llvm::LLVMContext &Ctx = TheModule.getContext();
7317   auto *CoverageDataFile =
7318       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7319   auto *CoverageNotesFile =
7320       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7321   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7322     llvm::MDNode *CU = CUNode->getOperand(i);
7323     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7324     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7325   }
7326 }
7327 
7328 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7329                                                        bool ForEH) {
7330   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7331   // FIXME: should we even be calling this method if RTTI is disabled
7332   // and it's not for EH?
7333   if (!shouldEmitRTTI(ForEH))
7334     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7335 
7336   if (ForEH && Ty->isObjCObjectPointerType() &&
7337       LangOpts.ObjCRuntime.isGNUFamily())
7338     return ObjCRuntime->GetEHType(Ty);
7339 
7340   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7341 }
7342 
7343 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7344   // Do not emit threadprivates in simd-only mode.
7345   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7346     return;
7347   for (auto RefExpr : D->varlists()) {
7348     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7349     bool PerformInit =
7350         VD->getAnyInitializer() &&
7351         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7352                                                         /*ForRef=*/false);
7353 
7354     Address Addr(GetAddrOfGlobalVar(VD),
7355                  getTypes().ConvertTypeForMem(VD->getType()),
7356                  getContext().getDeclAlign(VD));
7357     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7358             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7359       CXXGlobalInits.push_back(InitFunction);
7360   }
7361 }
7362 
7363 llvm::Metadata *
7364 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7365                                             StringRef Suffix) {
7366   if (auto *FnType = T->getAs<FunctionProtoType>())
7367     T = getContext().getFunctionType(
7368         FnType->getReturnType(), FnType->getParamTypes(),
7369         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7370 
7371   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7372   if (InternalId)
7373     return InternalId;
7374 
7375   if (isExternallyVisible(T->getLinkage())) {
7376     std::string OutName;
7377     llvm::raw_string_ostream Out(OutName);
7378     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7379         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7380 
7381     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7382       Out << ".normalized";
7383 
7384     Out << Suffix;
7385 
7386     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7387   } else {
7388     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7389                                            llvm::ArrayRef<llvm::Metadata *>());
7390   }
7391 
7392   return InternalId;
7393 }
7394 
7395 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7396   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7397 }
7398 
7399 llvm::Metadata *
7400 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7401   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7402 }
7403 
7404 // Generalize pointer types to a void pointer with the qualifiers of the
7405 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7406 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7407 // 'void *'.
7408 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7409   if (!Ty->isPointerType())
7410     return Ty;
7411 
7412   return Ctx.getPointerType(
7413       QualType(Ctx.VoidTy).withCVRQualifiers(
7414           Ty->getPointeeType().getCVRQualifiers()));
7415 }
7416 
7417 // Apply type generalization to a FunctionType's return and argument types
7418 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7419   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7420     SmallVector<QualType, 8> GeneralizedParams;
7421     for (auto &Param : FnType->param_types())
7422       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7423 
7424     return Ctx.getFunctionType(
7425         GeneralizeType(Ctx, FnType->getReturnType()),
7426         GeneralizedParams, FnType->getExtProtoInfo());
7427   }
7428 
7429   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7430     return Ctx.getFunctionNoProtoType(
7431         GeneralizeType(Ctx, FnType->getReturnType()));
7432 
7433   llvm_unreachable("Encountered unknown FunctionType");
7434 }
7435 
7436 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7437   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7438                                       GeneralizedMetadataIdMap, ".generalized");
7439 }
7440 
7441 /// Returns whether this module needs the "all-vtables" type identifier.
7442 bool CodeGenModule::NeedAllVtablesTypeId() const {
7443   // Returns true if at least one of vtable-based CFI checkers is enabled and
7444   // is not in the trapping mode.
7445   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7446            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7447           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7448            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7449           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7450            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7451           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7452            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7453 }
7454 
7455 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7456                                           CharUnits Offset,
7457                                           const CXXRecordDecl *RD) {
7458   llvm::Metadata *MD =
7459       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7460   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7461 
7462   if (CodeGenOpts.SanitizeCfiCrossDso)
7463     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7464       VTable->addTypeMetadata(Offset.getQuantity(),
7465                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7466 
7467   if (NeedAllVtablesTypeId()) {
7468     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7469     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7470   }
7471 }
7472 
7473 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7474   if (!SanStats)
7475     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7476 
7477   return *SanStats;
7478 }
7479 
7480 llvm::Value *
7481 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7482                                                   CodeGenFunction &CGF) {
7483   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7484   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7485   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7486   auto *Call = CGF.EmitRuntimeCall(
7487       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7488   return Call;
7489 }
7490 
7491 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7492     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7493   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7494                                  /* forPointeeType= */ true);
7495 }
7496 
7497 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7498                                                  LValueBaseInfo *BaseInfo,
7499                                                  TBAAAccessInfo *TBAAInfo,
7500                                                  bool forPointeeType) {
7501   if (TBAAInfo)
7502     *TBAAInfo = getTBAAAccessInfo(T);
7503 
7504   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7505   // that doesn't return the information we need to compute BaseInfo.
7506 
7507   // Honor alignment typedef attributes even on incomplete types.
7508   // We also honor them straight for C++ class types, even as pointees;
7509   // there's an expressivity gap here.
7510   if (auto TT = T->getAs<TypedefType>()) {
7511     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7512       if (BaseInfo)
7513         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7514       return getContext().toCharUnitsFromBits(Align);
7515     }
7516   }
7517 
7518   bool AlignForArray = T->isArrayType();
7519 
7520   // Analyze the base element type, so we don't get confused by incomplete
7521   // array types.
7522   T = getContext().getBaseElementType(T);
7523 
7524   if (T->isIncompleteType()) {
7525     // We could try to replicate the logic from
7526     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7527     // type is incomplete, so it's impossible to test. We could try to reuse
7528     // getTypeAlignIfKnown, but that doesn't return the information we need
7529     // to set BaseInfo.  So just ignore the possibility that the alignment is
7530     // greater than one.
7531     if (BaseInfo)
7532       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7533     return CharUnits::One();
7534   }
7535 
7536   if (BaseInfo)
7537     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7538 
7539   CharUnits Alignment;
7540   const CXXRecordDecl *RD;
7541   if (T.getQualifiers().hasUnaligned()) {
7542     Alignment = CharUnits::One();
7543   } else if (forPointeeType && !AlignForArray &&
7544              (RD = T->getAsCXXRecordDecl())) {
7545     // For C++ class pointees, we don't know whether we're pointing at a
7546     // base or a complete object, so we generally need to use the
7547     // non-virtual alignment.
7548     Alignment = getClassPointerAlignment(RD);
7549   } else {
7550     Alignment = getContext().getTypeAlignInChars(T);
7551   }
7552 
7553   // Cap to the global maximum type alignment unless the alignment
7554   // was somehow explicit on the type.
7555   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7556     if (Alignment.getQuantity() > MaxAlign &&
7557         !getContext().isAlignmentRequired(T))
7558       Alignment = CharUnits::fromQuantity(MaxAlign);
7559   }
7560   return Alignment;
7561 }
7562 
7563 bool CodeGenModule::stopAutoInit() {
7564   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7565   if (StopAfter) {
7566     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7567     // used
7568     if (NumAutoVarInit >= StopAfter) {
7569       return true;
7570     }
7571     if (!NumAutoVarInit) {
7572       unsigned DiagID = getDiags().getCustomDiagID(
7573           DiagnosticsEngine::Warning,
7574           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7575           "number of times ftrivial-auto-var-init=%1 gets applied.");
7576       getDiags().Report(DiagID)
7577           << StopAfter
7578           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7579                       LangOptions::TrivialAutoVarInitKind::Zero
7580                   ? "zero"
7581                   : "pattern");
7582     }
7583     ++NumAutoVarInit;
7584   }
7585   return false;
7586 }
7587 
7588 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7589                                                     const Decl *D) const {
7590   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7591   // postfix beginning with '.' since the symbol name can be demangled.
7592   if (LangOpts.HIP)
7593     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7594   else
7595     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7596 
7597   // If the CUID is not specified we try to generate a unique postfix.
7598   if (getLangOpts().CUID.empty()) {
7599     SourceManager &SM = getContext().getSourceManager();
7600     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7601     assert(PLoc.isValid() && "Source location is expected to be valid.");
7602 
7603     // Get the hash of the user defined macros.
7604     llvm::MD5 Hash;
7605     llvm::MD5::MD5Result Result;
7606     for (const auto &Arg : PreprocessorOpts.Macros)
7607       Hash.update(Arg.first);
7608     Hash.final(Result);
7609 
7610     // Get the UniqueID for the file containing the decl.
7611     llvm::sys::fs::UniqueID ID;
7612     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7613       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7614       assert(PLoc.isValid() && "Source location is expected to be valid.");
7615       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7616         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7617             << PLoc.getFilename() << EC.message();
7618     }
7619     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7620        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7621   } else {
7622     OS << getContext().getCUIDHash();
7623   }
7624 }
7625 
7626 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7627   assert(DeferredDeclsToEmit.empty() &&
7628          "Should have emitted all decls deferred to emit.");
7629   assert(NewBuilder->DeferredDecls.empty() &&
7630          "Newly created module should not have deferred decls");
7631   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7632   assert(EmittedDeferredDecls.empty() &&
7633          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7634 
7635   assert(NewBuilder->DeferredVTables.empty() &&
7636          "Newly created module should not have deferred vtables");
7637   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7638 
7639   assert(NewBuilder->MangledDeclNames.empty() &&
7640          "Newly created module should not have mangled decl names");
7641   assert(NewBuilder->Manglings.empty() &&
7642          "Newly created module should not have manglings");
7643   NewBuilder->Manglings = std::move(Manglings);
7644 
7645   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7646 
7647   NewBuilder->TBAA = std::move(TBAA);
7648 
7649   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7650 }
7651