xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision cac068600e55e489844156d3581b61eeecee7d4e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ProfileSummary.h"
57 #include "llvm/ProfileData/InstrProfReader.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/ConvertUTF.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MD5.h"
63 #include "llvm/Support/TimeProfiler.h"
64 
65 using namespace clang;
66 using namespace CodeGen;
67 
68 static llvm::cl::opt<bool> LimitedCoverage(
69     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
70     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
71     llvm::cl::init(false));
72 
73 static const char AnnotationSection[] = "llvm.metadata";
74 
75 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
76   switch (CGM.getTarget().getCXXABI().getKind()) {
77   case TargetCXXABI::Fuchsia:
78   case TargetCXXABI::GenericAArch64:
79   case TargetCXXABI::GenericARM:
80   case TargetCXXABI::iOS:
81   case TargetCXXABI::iOS64:
82   case TargetCXXABI::WatchOS:
83   case TargetCXXABI::GenericMIPS:
84   case TargetCXXABI::GenericItanium:
85   case TargetCXXABI::WebAssembly:
86   case TargetCXXABI::XL:
87     return CreateItaniumCXXABI(CGM);
88   case TargetCXXABI::Microsoft:
89     return CreateMicrosoftCXXABI(CGM);
90   }
91 
92   llvm_unreachable("invalid C++ ABI kind");
93 }
94 
95 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
96                              const PreprocessorOptions &PPO,
97                              const CodeGenOptions &CGO, llvm::Module &M,
98                              DiagnosticsEngine &diags,
99                              CoverageSourceInfo *CoverageInfo)
100     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
101       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
102       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
103       VMContext(M.getContext()), Types(*this), VTables(*this),
104       SanitizerMD(new SanitizerMetadata(*this)) {
105 
106   // Initialize the type cache.
107   llvm::LLVMContext &LLVMContext = M.getContext();
108   VoidTy = llvm::Type::getVoidTy(LLVMContext);
109   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
110   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
111   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
112   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
113   HalfTy = llvm::Type::getHalfTy(LLVMContext);
114   FloatTy = llvm::Type::getFloatTy(LLVMContext);
115   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
116   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
117   PointerAlignInBytes =
118     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
119   SizeSizeInBytes =
120     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
121   IntAlignInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
123   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
124   IntPtrTy = llvm::IntegerType::get(LLVMContext,
125     C.getTargetInfo().getMaxPointerWidth());
126   Int8PtrTy = Int8Ty->getPointerTo(0);
127   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
128   AllocaInt8PtrTy = Int8Ty->getPointerTo(
129       M.getDataLayout().getAllocaAddrSpace());
130   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
131 
132   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
133 
134   if (LangOpts.ObjC)
135     createObjCRuntime();
136   if (LangOpts.OpenCL)
137     createOpenCLRuntime();
138   if (LangOpts.OpenMP)
139     createOpenMPRuntime();
140   if (LangOpts.CUDA)
141     createCUDARuntime();
142 
143   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
144   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
145       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
146     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
147                                getCXXABI().getMangleContext()));
148 
149   // If debug info or coverage generation is enabled, create the CGDebugInfo
150   // object.
151   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
152       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
153     DebugInfo.reset(new CGDebugInfo(*this));
154 
155   Block.GlobalUniqueCount = 0;
156 
157   if (C.getLangOpts().ObjC)
158     ObjCData.reset(new ObjCEntrypoints());
159 
160   if (CodeGenOpts.hasProfileClangUse()) {
161     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
162         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
163     if (auto E = ReaderOrErr.takeError()) {
164       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
165                                               "Could not read profile %0: %1");
166       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
167         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
168                                   << EI.message();
169       });
170     } else
171       PGOReader = std::move(ReaderOrErr.get());
172   }
173 
174   // If coverage mapping generation is enabled, create the
175   // CoverageMappingModuleGen object.
176   if (CodeGenOpts.CoverageMapping)
177     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
178 }
179 
180 CodeGenModule::~CodeGenModule() {}
181 
182 void CodeGenModule::createObjCRuntime() {
183   // This is just isGNUFamily(), but we want to force implementors of
184   // new ABIs to decide how best to do this.
185   switch (LangOpts.ObjCRuntime.getKind()) {
186   case ObjCRuntime::GNUstep:
187   case ObjCRuntime::GCC:
188   case ObjCRuntime::ObjFW:
189     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
190     return;
191 
192   case ObjCRuntime::FragileMacOSX:
193   case ObjCRuntime::MacOSX:
194   case ObjCRuntime::iOS:
195   case ObjCRuntime::WatchOS:
196     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
197     return;
198   }
199   llvm_unreachable("bad runtime kind");
200 }
201 
202 void CodeGenModule::createOpenCLRuntime() {
203   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
204 }
205 
206 void CodeGenModule::createOpenMPRuntime() {
207   // Select a specialized code generation class based on the target, if any.
208   // If it does not exist use the default implementation.
209   switch (getTriple().getArch()) {
210   case llvm::Triple::nvptx:
211   case llvm::Triple::nvptx64:
212     assert(getLangOpts().OpenMPIsDevice &&
213            "OpenMP NVPTX is only prepared to deal with device code.");
214     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
215     break;
216   default:
217     if (LangOpts.OpenMPSimd)
218       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
219     else
220       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
221     break;
222   }
223 
224   // The OpenMP-IR-Builder should eventually replace the above runtime codegens
225   // but we are not there yet so they both reside in CGModule for now and the
226   // OpenMP-IR-Builder is opt-in only.
227   if (LangOpts.OpenMPIRBuilder) {
228     OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
229     OMPBuilder->initialize();
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 void CodeGenModule::Release() {
405   EmitDeferred();
406   EmitVTablesOpportunistically();
407   applyGlobalValReplacements();
408   applyReplacements();
409   checkAliases();
410   emitMultiVersionFunctions();
411   EmitCXXGlobalInitFunc();
412   EmitCXXGlobalDtorFunc();
413   registerGlobalDtorsWithAtExit();
414   EmitCXXThreadLocalInitFunc();
415   if (ObjCRuntime)
416     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
417       AddGlobalCtor(ObjCInitFunction);
418   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
419       CUDARuntime) {
420     if (llvm::Function *CudaCtorFunction =
421             CUDARuntime->makeModuleCtorFunction())
422       AddGlobalCtor(CudaCtorFunction);
423   }
424   if (OpenMPRuntime) {
425     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
426             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
427       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
428     }
429     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
430     OpenMPRuntime->clear();
431   }
432   if (PGOReader) {
433     getModule().setProfileSummary(
434         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
435         llvm::ProfileSummary::PSK_Instr);
436     if (PGOStats.hasDiagnostics())
437       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
438   }
439   EmitCtorList(GlobalCtors, "llvm.global_ctors");
440   EmitCtorList(GlobalDtors, "llvm.global_dtors");
441   EmitGlobalAnnotations();
442   EmitStaticExternCAliases();
443   EmitDeferredUnusedCoverageMappings();
444   if (CoverageMapping)
445     CoverageMapping->emit();
446   if (CodeGenOpts.SanitizeCfiCrossDso) {
447     CodeGenFunction(*this).EmitCfiCheckFail();
448     CodeGenFunction(*this).EmitCfiCheckStub();
449   }
450   emitAtAvailableLinkGuard();
451   if (Context.getTargetInfo().getTriple().isWasm() &&
452       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
453     EmitMainVoidAlias();
454   }
455   emitLLVMUsed();
456   if (SanStats)
457     SanStats->finish();
458 
459   if (CodeGenOpts.Autolink &&
460       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
461     EmitModuleLinkOptions();
462   }
463 
464   // On ELF we pass the dependent library specifiers directly to the linker
465   // without manipulating them. This is in contrast to other platforms where
466   // they are mapped to a specific linker option by the compiler. This
467   // difference is a result of the greater variety of ELF linkers and the fact
468   // that ELF linkers tend to handle libraries in a more complicated fashion
469   // than on other platforms. This forces us to defer handling the dependent
470   // libs to the linker.
471   //
472   // CUDA/HIP device and host libraries are different. Currently there is no
473   // way to differentiate dependent libraries for host or device. Existing
474   // usage of #pragma comment(lib, *) is intended for host libraries on
475   // Windows. Therefore emit llvm.dependent-libraries only for host.
476   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
477     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
478     for (auto *MD : ELFDependentLibraries)
479       NMD->addOperand(MD);
480   }
481 
482   // Record mregparm value now so it is visible through rest of codegen.
483   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
484     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
485                               CodeGenOpts.NumRegisterParameters);
486 
487   if (CodeGenOpts.DwarfVersion) {
488     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
489                               CodeGenOpts.DwarfVersion);
490   }
491 
492   if (Context.getLangOpts().SemanticInterposition)
493     // Require various optimization to respect semantic interposition.
494     getModule().setSemanticInterposition(1);
495 
496   if (CodeGenOpts.EmitCodeView) {
497     // Indicate that we want CodeView in the metadata.
498     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
499   }
500   if (CodeGenOpts.CodeViewGHash) {
501     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
502   }
503   if (CodeGenOpts.ControlFlowGuard) {
504     // Function ID tables and checks for Control Flow Guard (cfguard=2).
505     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
506   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
507     // Function ID tables for Control Flow Guard (cfguard=1).
508     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
509   }
510   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
511     // We don't support LTO with 2 with different StrictVTablePointers
512     // FIXME: we could support it by stripping all the information introduced
513     // by StrictVTablePointers.
514 
515     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
516 
517     llvm::Metadata *Ops[2] = {
518               llvm::MDString::get(VMContext, "StrictVTablePointers"),
519               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
520                   llvm::Type::getInt32Ty(VMContext), 1))};
521 
522     getModule().addModuleFlag(llvm::Module::Require,
523                               "StrictVTablePointersRequirement",
524                               llvm::MDNode::get(VMContext, Ops));
525   }
526   if (DebugInfo)
527     // We support a single version in the linked module. The LLVM
528     // parser will drop debug info with a different version number
529     // (and warn about it, too).
530     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
531                               llvm::DEBUG_METADATA_VERSION);
532 
533   // We need to record the widths of enums and wchar_t, so that we can generate
534   // the correct build attributes in the ARM backend. wchar_size is also used by
535   // TargetLibraryInfo.
536   uint64_t WCharWidth =
537       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
538   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
539 
540   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
541   if (   Arch == llvm::Triple::arm
542       || Arch == llvm::Triple::armeb
543       || Arch == llvm::Triple::thumb
544       || Arch == llvm::Triple::thumbeb) {
545     // The minimum width of an enum in bytes
546     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
547     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
548   }
549 
550   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
551     StringRef ABIStr = Target.getABI();
552     llvm::LLVMContext &Ctx = TheModule.getContext();
553     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
554                               llvm::MDString::get(Ctx, ABIStr));
555   }
556 
557   if (CodeGenOpts.SanitizeCfiCrossDso) {
558     // Indicate that we want cross-DSO control flow integrity checks.
559     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
560   }
561 
562   if (CodeGenOpts.WholeProgramVTables) {
563     // Indicate whether VFE was enabled for this module, so that the
564     // vcall_visibility metadata added under whole program vtables is handled
565     // appropriately in the optimizer.
566     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
567                               CodeGenOpts.VirtualFunctionElimination);
568   }
569 
570   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
571     getModule().addModuleFlag(llvm::Module::Override,
572                               "CFI Canonical Jump Tables",
573                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
574   }
575 
576   if (CodeGenOpts.CFProtectionReturn &&
577       Target.checkCFProtectionReturnSupported(getDiags())) {
578     // Indicate that we want to instrument return control flow protection.
579     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
580                               1);
581   }
582 
583   if (CodeGenOpts.CFProtectionBranch &&
584       Target.checkCFProtectionBranchSupported(getDiags())) {
585     // Indicate that we want to instrument branch control flow protection.
586     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
587                               1);
588   }
589 
590   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
591     // Indicate whether __nvvm_reflect should be configured to flush denormal
592     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
593     // property.)
594     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
595                               CodeGenOpts.FP32DenormalMode.Output !=
596                                   llvm::DenormalMode::IEEE);
597   }
598 
599   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
600   if (LangOpts.OpenCL) {
601     EmitOpenCLMetadata();
602     // Emit SPIR version.
603     if (getTriple().isSPIR()) {
604       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
605       // opencl.spir.version named metadata.
606       // C++ is backwards compatible with OpenCL v2.0.
607       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
608       llvm::Metadata *SPIRVerElts[] = {
609           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
610               Int32Ty, Version / 100)),
611           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
612               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
613       llvm::NamedMDNode *SPIRVerMD =
614           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
615       llvm::LLVMContext &Ctx = TheModule.getContext();
616       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
617     }
618   }
619 
620   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
621     assert(PLevel < 3 && "Invalid PIC Level");
622     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
623     if (Context.getLangOpts().PIE)
624       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
625   }
626 
627   if (getCodeGenOpts().CodeModel.size() > 0) {
628     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
629                   .Case("tiny", llvm::CodeModel::Tiny)
630                   .Case("small", llvm::CodeModel::Small)
631                   .Case("kernel", llvm::CodeModel::Kernel)
632                   .Case("medium", llvm::CodeModel::Medium)
633                   .Case("large", llvm::CodeModel::Large)
634                   .Default(~0u);
635     if (CM != ~0u) {
636       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
637       getModule().setCodeModel(codeModel);
638     }
639   }
640 
641   if (CodeGenOpts.NoPLT)
642     getModule().setRtLibUseGOT();
643 
644   SimplifyPersonality();
645 
646   if (getCodeGenOpts().EmitDeclMetadata)
647     EmitDeclMetadata();
648 
649   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
650     EmitCoverageFile();
651 
652   if (DebugInfo)
653     DebugInfo->finalize();
654 
655   if (getCodeGenOpts().EmitVersionIdentMetadata)
656     EmitVersionIdentMetadata();
657 
658   if (!getCodeGenOpts().RecordCommandLine.empty())
659     EmitCommandLineMetadata();
660 
661   EmitTargetMetadata();
662 }
663 
664 void CodeGenModule::EmitOpenCLMetadata() {
665   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
666   // opencl.ocl.version named metadata node.
667   // C++ is backwards compatible with OpenCL v2.0.
668   // FIXME: We might need to add CXX version at some point too?
669   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
670   llvm::Metadata *OCLVerElts[] = {
671       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
672           Int32Ty, Version / 100)),
673       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
674           Int32Ty, (Version % 100) / 10))};
675   llvm::NamedMDNode *OCLVerMD =
676       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
677   llvm::LLVMContext &Ctx = TheModule.getContext();
678   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
679 }
680 
681 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
682   // Make sure that this type is translated.
683   Types.UpdateCompletedType(TD);
684 }
685 
686 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
687   // Make sure that this type is translated.
688   Types.RefreshTypeCacheForClass(RD);
689 }
690 
691 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
692   if (!TBAA)
693     return nullptr;
694   return TBAA->getTypeInfo(QTy);
695 }
696 
697 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
698   if (!TBAA)
699     return TBAAAccessInfo();
700   return TBAA->getAccessInfo(AccessType);
701 }
702 
703 TBAAAccessInfo
704 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
705   if (!TBAA)
706     return TBAAAccessInfo();
707   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
708 }
709 
710 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
711   if (!TBAA)
712     return nullptr;
713   return TBAA->getTBAAStructInfo(QTy);
714 }
715 
716 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
717   if (!TBAA)
718     return nullptr;
719   return TBAA->getBaseTypeInfo(QTy);
720 }
721 
722 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
723   if (!TBAA)
724     return nullptr;
725   return TBAA->getAccessTagInfo(Info);
726 }
727 
728 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
729                                                    TBAAAccessInfo TargetInfo) {
730   if (!TBAA)
731     return TBAAAccessInfo();
732   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
733 }
734 
735 TBAAAccessInfo
736 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
737                                                    TBAAAccessInfo InfoB) {
738   if (!TBAA)
739     return TBAAAccessInfo();
740   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
741 }
742 
743 TBAAAccessInfo
744 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
745                                               TBAAAccessInfo SrcInfo) {
746   if (!TBAA)
747     return TBAAAccessInfo();
748   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
749 }
750 
751 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
752                                                 TBAAAccessInfo TBAAInfo) {
753   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
754     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
755 }
756 
757 void CodeGenModule::DecorateInstructionWithInvariantGroup(
758     llvm::Instruction *I, const CXXRecordDecl *RD) {
759   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
760                  llvm::MDNode::get(getLLVMContext(), {}));
761 }
762 
763 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
764   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
765   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
766 }
767 
768 /// ErrorUnsupported - Print out an error that codegen doesn't support the
769 /// specified stmt yet.
770 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
771   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
772                                                "cannot compile this %0 yet");
773   std::string Msg = Type;
774   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
775       << Msg << S->getSourceRange();
776 }
777 
778 /// ErrorUnsupported - Print out an error that codegen doesn't support the
779 /// specified decl yet.
780 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
781   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
782                                                "cannot compile this %0 yet");
783   std::string Msg = Type;
784   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
785 }
786 
787 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
788   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
789 }
790 
791 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
792                                         const NamedDecl *D) const {
793   if (GV->hasDLLImportStorageClass())
794     return;
795   // Internal definitions always have default visibility.
796   if (GV->hasLocalLinkage()) {
797     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
798     return;
799   }
800   if (!D)
801     return;
802   // Set visibility for definitions, and for declarations if requested globally
803   // or set explicitly.
804   LinkageInfo LV = D->getLinkageAndVisibility();
805   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
806       !GV->isDeclarationForLinker())
807     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
808 }
809 
810 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
811                                  llvm::GlobalValue *GV) {
812   if (GV->hasLocalLinkage())
813     return true;
814 
815   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
816     return true;
817 
818   // DLLImport explicitly marks the GV as external.
819   if (GV->hasDLLImportStorageClass())
820     return false;
821 
822   const llvm::Triple &TT = CGM.getTriple();
823   if (TT.isWindowsGNUEnvironment()) {
824     // In MinGW, variables without DLLImport can still be automatically
825     // imported from a DLL by the linker; don't mark variables that
826     // potentially could come from another DLL as DSO local.
827     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
828         !GV->isThreadLocal())
829       return false;
830   }
831 
832   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
833   // remain unresolved in the link, they can be resolved to zero, which is
834   // outside the current DSO.
835   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
836     return false;
837 
838   // Every other GV is local on COFF.
839   // Make an exception for windows OS in the triple: Some firmware builds use
840   // *-win32-macho triples. This (accidentally?) produced windows relocations
841   // without GOT tables in older clang versions; Keep this behaviour.
842   // FIXME: even thread local variables?
843   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
844     return true;
845 
846   // Only handle COFF and ELF for now.
847   if (!TT.isOSBinFormatELF())
848     return false;
849 
850   // If this is not an executable, don't assume anything is local.
851   const auto &CGOpts = CGM.getCodeGenOpts();
852   llvm::Reloc::Model RM = CGOpts.RelocationModel;
853   const auto &LOpts = CGM.getLangOpts();
854   if (RM != llvm::Reloc::Static && !LOpts.PIE)
855     return false;
856 
857   // A definition cannot be preempted from an executable.
858   if (!GV->isDeclarationForLinker())
859     return true;
860 
861   // Most PIC code sequences that assume that a symbol is local cannot produce a
862   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
863   // depended, it seems worth it to handle it here.
864   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
865     return false;
866 
867   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
868   llvm::Triple::ArchType Arch = TT.getArch();
869   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
870       Arch == llvm::Triple::ppc64le)
871     return false;
872 
873   // If we can use copy relocations we can assume it is local.
874   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
875     if (!Var->isThreadLocal() &&
876         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
877       return true;
878 
879   // If we can use a plt entry as the symbol address we can assume it
880   // is local.
881   // FIXME: This should work for PIE, but the gold linker doesn't support it.
882   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
883     return true;
884 
885   // Otherwise don't assume it is local.
886   return false;
887 }
888 
889 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
890   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
891 }
892 
893 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
894                                           GlobalDecl GD) const {
895   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
896   // C++ destructors have a few C++ ABI specific special cases.
897   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
898     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
899     return;
900   }
901   setDLLImportDLLExport(GV, D);
902 }
903 
904 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
905                                           const NamedDecl *D) const {
906   if (D && D->isExternallyVisible()) {
907     if (D->hasAttr<DLLImportAttr>())
908       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
909     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
910       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
911   }
912 }
913 
914 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
915                                     GlobalDecl GD) const {
916   setDLLImportDLLExport(GV, GD);
917   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
918 }
919 
920 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
921                                     const NamedDecl *D) const {
922   setDLLImportDLLExport(GV, D);
923   setGVPropertiesAux(GV, D);
924 }
925 
926 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
927                                        const NamedDecl *D) const {
928   setGlobalVisibility(GV, D);
929   setDSOLocal(GV);
930   GV->setPartition(CodeGenOpts.SymbolPartition);
931 }
932 
933 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
934   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
935       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
936       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
937       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
938       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
939 }
940 
941 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
942     CodeGenOptions::TLSModel M) {
943   switch (M) {
944   case CodeGenOptions::GeneralDynamicTLSModel:
945     return llvm::GlobalVariable::GeneralDynamicTLSModel;
946   case CodeGenOptions::LocalDynamicTLSModel:
947     return llvm::GlobalVariable::LocalDynamicTLSModel;
948   case CodeGenOptions::InitialExecTLSModel:
949     return llvm::GlobalVariable::InitialExecTLSModel;
950   case CodeGenOptions::LocalExecTLSModel:
951     return llvm::GlobalVariable::LocalExecTLSModel;
952   }
953   llvm_unreachable("Invalid TLS model!");
954 }
955 
956 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
957   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
958 
959   llvm::GlobalValue::ThreadLocalMode TLM;
960   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
961 
962   // Override the TLS model if it is explicitly specified.
963   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
964     TLM = GetLLVMTLSModel(Attr->getModel());
965   }
966 
967   GV->setThreadLocalMode(TLM);
968 }
969 
970 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
971                                           StringRef Name) {
972   const TargetInfo &Target = CGM.getTarget();
973   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
974 }
975 
976 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
977                                                  const CPUSpecificAttr *Attr,
978                                                  unsigned CPUIndex,
979                                                  raw_ostream &Out) {
980   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
981   // supported.
982   if (Attr)
983     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
984   else if (CGM.getTarget().supportsIFunc())
985     Out << ".resolver";
986 }
987 
988 static void AppendTargetMangling(const CodeGenModule &CGM,
989                                  const TargetAttr *Attr, raw_ostream &Out) {
990   if (Attr->isDefaultVersion())
991     return;
992 
993   Out << '.';
994   const TargetInfo &Target = CGM.getTarget();
995   ParsedTargetAttr Info =
996       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
997         // Multiversioning doesn't allow "no-${feature}", so we can
998         // only have "+" prefixes here.
999         assert(LHS.startswith("+") && RHS.startswith("+") &&
1000                "Features should always have a prefix.");
1001         return Target.multiVersionSortPriority(LHS.substr(1)) >
1002                Target.multiVersionSortPriority(RHS.substr(1));
1003       });
1004 
1005   bool IsFirst = true;
1006 
1007   if (!Info.Architecture.empty()) {
1008     IsFirst = false;
1009     Out << "arch_" << Info.Architecture;
1010   }
1011 
1012   for (StringRef Feat : Info.Features) {
1013     if (!IsFirst)
1014       Out << '_';
1015     IsFirst = false;
1016     Out << Feat.substr(1);
1017   }
1018 }
1019 
1020 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1021                                       const NamedDecl *ND,
1022                                       bool OmitMultiVersionMangling = false) {
1023   SmallString<256> Buffer;
1024   llvm::raw_svector_ostream Out(Buffer);
1025   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1026   if (MC.shouldMangleDeclName(ND)) {
1027     llvm::raw_svector_ostream Out(Buffer);
1028     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
1029       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
1030     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
1031       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
1032     else
1033       MC.mangleName(ND, Out);
1034   } else {
1035     IdentifierInfo *II = ND->getIdentifier();
1036     assert(II && "Attempt to mangle unnamed decl.");
1037     const auto *FD = dyn_cast<FunctionDecl>(ND);
1038 
1039     if (FD &&
1040         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1041       llvm::raw_svector_ostream Out(Buffer);
1042       Out << "__regcall3__" << II->getName();
1043     } else {
1044       Out << II->getName();
1045     }
1046   }
1047 
1048   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1049     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1050       switch (FD->getMultiVersionKind()) {
1051       case MultiVersionKind::CPUDispatch:
1052       case MultiVersionKind::CPUSpecific:
1053         AppendCPUSpecificCPUDispatchMangling(CGM,
1054                                              FD->getAttr<CPUSpecificAttr>(),
1055                                              GD.getMultiVersionIndex(), Out);
1056         break;
1057       case MultiVersionKind::Target:
1058         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1059         break;
1060       case MultiVersionKind::None:
1061         llvm_unreachable("None multiversion type isn't valid here");
1062       }
1063     }
1064 
1065   return std::string(Out.str());
1066 }
1067 
1068 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1069                                             const FunctionDecl *FD) {
1070   if (!FD->isMultiVersion())
1071     return;
1072 
1073   // Get the name of what this would be without the 'target' attribute.  This
1074   // allows us to lookup the version that was emitted when this wasn't a
1075   // multiversion function.
1076   std::string NonTargetName =
1077       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1078   GlobalDecl OtherGD;
1079   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1080     assert(OtherGD.getCanonicalDecl()
1081                .getDecl()
1082                ->getAsFunction()
1083                ->isMultiVersion() &&
1084            "Other GD should now be a multiversioned function");
1085     // OtherFD is the version of this function that was mangled BEFORE
1086     // becoming a MultiVersion function.  It potentially needs to be updated.
1087     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1088                                       .getDecl()
1089                                       ->getAsFunction()
1090                                       ->getMostRecentDecl();
1091     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1092     // This is so that if the initial version was already the 'default'
1093     // version, we don't try to update it.
1094     if (OtherName != NonTargetName) {
1095       // Remove instead of erase, since others may have stored the StringRef
1096       // to this.
1097       const auto ExistingRecord = Manglings.find(NonTargetName);
1098       if (ExistingRecord != std::end(Manglings))
1099         Manglings.remove(&(*ExistingRecord));
1100       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1101       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1102       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1103         Entry->setName(OtherName);
1104     }
1105   }
1106 }
1107 
1108 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1109   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1110 
1111   // Some ABIs don't have constructor variants.  Make sure that base and
1112   // complete constructors get mangled the same.
1113   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1114     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1115       CXXCtorType OrigCtorType = GD.getCtorType();
1116       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1117       if (OrigCtorType == Ctor_Base)
1118         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1119     }
1120   }
1121 
1122   auto FoundName = MangledDeclNames.find(CanonicalGD);
1123   if (FoundName != MangledDeclNames.end())
1124     return FoundName->second;
1125 
1126   // Keep the first result in the case of a mangling collision.
1127   const auto *ND = cast<NamedDecl>(GD.getDecl());
1128   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1129 
1130   // Adjust kernel stub mangling as we may need to be able to differentiate
1131   // them from the kernel itself (e.g., for HIP).
1132   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1133     if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1134       MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1135 
1136   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1137   return MangledDeclNames[CanonicalGD] = Result.first->first();
1138 }
1139 
1140 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1141                                              const BlockDecl *BD) {
1142   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1143   const Decl *D = GD.getDecl();
1144 
1145   SmallString<256> Buffer;
1146   llvm::raw_svector_ostream Out(Buffer);
1147   if (!D)
1148     MangleCtx.mangleGlobalBlock(BD,
1149       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1150   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1151     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1152   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1153     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1154   else
1155     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1156 
1157   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1158   return Result.first->first();
1159 }
1160 
1161 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1162   return getModule().getNamedValue(Name);
1163 }
1164 
1165 /// AddGlobalCtor - Add a function to the list that will be called before
1166 /// main() runs.
1167 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1168                                   llvm::Constant *AssociatedData) {
1169   // FIXME: Type coercion of void()* types.
1170   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1171 }
1172 
1173 /// AddGlobalDtor - Add a function to the list that will be called
1174 /// when the module is unloaded.
1175 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1176   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1177     DtorsUsingAtExit[Priority].push_back(Dtor);
1178     return;
1179   }
1180 
1181   // FIXME: Type coercion of void()* types.
1182   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1183 }
1184 
1185 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1186   if (Fns.empty()) return;
1187 
1188   // Ctor function type is void()*.
1189   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1190   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1191       TheModule.getDataLayout().getProgramAddressSpace());
1192 
1193   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1194   llvm::StructType *CtorStructTy = llvm::StructType::get(
1195       Int32Ty, CtorPFTy, VoidPtrTy);
1196 
1197   // Construct the constructor and destructor arrays.
1198   ConstantInitBuilder builder(*this);
1199   auto ctors = builder.beginArray(CtorStructTy);
1200   for (const auto &I : Fns) {
1201     auto ctor = ctors.beginStruct(CtorStructTy);
1202     ctor.addInt(Int32Ty, I.Priority);
1203     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1204     if (I.AssociatedData)
1205       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1206     else
1207       ctor.addNullPointer(VoidPtrTy);
1208     ctor.finishAndAddTo(ctors);
1209   }
1210 
1211   auto list =
1212     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1213                                 /*constant*/ false,
1214                                 llvm::GlobalValue::AppendingLinkage);
1215 
1216   // The LTO linker doesn't seem to like it when we set an alignment
1217   // on appending variables.  Take it off as a workaround.
1218   list->setAlignment(llvm::None);
1219 
1220   Fns.clear();
1221 }
1222 
1223 llvm::GlobalValue::LinkageTypes
1224 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1225   const auto *D = cast<FunctionDecl>(GD.getDecl());
1226 
1227   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1228 
1229   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1230     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1231 
1232   if (isa<CXXConstructorDecl>(D) &&
1233       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1234       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1235     // Our approach to inheriting constructors is fundamentally different from
1236     // that used by the MS ABI, so keep our inheriting constructor thunks
1237     // internal rather than trying to pick an unambiguous mangling for them.
1238     return llvm::GlobalValue::InternalLinkage;
1239   }
1240 
1241   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1242 }
1243 
1244 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1245   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1246   if (!MDS) return nullptr;
1247 
1248   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1249 }
1250 
1251 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1252                                               const CGFunctionInfo &Info,
1253                                               llvm::Function *F) {
1254   unsigned CallingConv;
1255   llvm::AttributeList PAL;
1256   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1257   F->setAttributes(PAL);
1258   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1259 }
1260 
1261 static void removeImageAccessQualifier(std::string& TyName) {
1262   std::string ReadOnlyQual("__read_only");
1263   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1264   if (ReadOnlyPos != std::string::npos)
1265     // "+ 1" for the space after access qualifier.
1266     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1267   else {
1268     std::string WriteOnlyQual("__write_only");
1269     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1270     if (WriteOnlyPos != std::string::npos)
1271       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1272     else {
1273       std::string ReadWriteQual("__read_write");
1274       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1275       if (ReadWritePos != std::string::npos)
1276         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1277     }
1278   }
1279 }
1280 
1281 // Returns the address space id that should be produced to the
1282 // kernel_arg_addr_space metadata. This is always fixed to the ids
1283 // as specified in the SPIR 2.0 specification in order to differentiate
1284 // for example in clGetKernelArgInfo() implementation between the address
1285 // spaces with targets without unique mapping to the OpenCL address spaces
1286 // (basically all single AS CPUs).
1287 static unsigned ArgInfoAddressSpace(LangAS AS) {
1288   switch (AS) {
1289   case LangAS::opencl_global:   return 1;
1290   case LangAS::opencl_constant: return 2;
1291   case LangAS::opencl_local:    return 3;
1292   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1293   default:
1294     return 0; // Assume private.
1295   }
1296 }
1297 
1298 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1299                                          const FunctionDecl *FD,
1300                                          CodeGenFunction *CGF) {
1301   assert(((FD && CGF) || (!FD && !CGF)) &&
1302          "Incorrect use - FD and CGF should either be both null or not!");
1303   // Create MDNodes that represent the kernel arg metadata.
1304   // Each MDNode is a list in the form of "key", N number of values which is
1305   // the same number of values as their are kernel arguments.
1306 
1307   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1308 
1309   // MDNode for the kernel argument address space qualifiers.
1310   SmallVector<llvm::Metadata *, 8> addressQuals;
1311 
1312   // MDNode for the kernel argument access qualifiers (images only).
1313   SmallVector<llvm::Metadata *, 8> accessQuals;
1314 
1315   // MDNode for the kernel argument type names.
1316   SmallVector<llvm::Metadata *, 8> argTypeNames;
1317 
1318   // MDNode for the kernel argument base type names.
1319   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1320 
1321   // MDNode for the kernel argument type qualifiers.
1322   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1323 
1324   // MDNode for the kernel argument names.
1325   SmallVector<llvm::Metadata *, 8> argNames;
1326 
1327   if (FD && CGF)
1328     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1329       const ParmVarDecl *parm = FD->getParamDecl(i);
1330       QualType ty = parm->getType();
1331       std::string typeQuals;
1332 
1333       if (ty->isPointerType()) {
1334         QualType pointeeTy = ty->getPointeeType();
1335 
1336         // Get address qualifier.
1337         addressQuals.push_back(
1338             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1339                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1340 
1341         // Get argument type name.
1342         std::string typeName =
1343             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1344 
1345         // Turn "unsigned type" to "utype"
1346         std::string::size_type pos = typeName.find("unsigned");
1347         if (pointeeTy.isCanonical() && pos != std::string::npos)
1348           typeName.erase(pos + 1, 8);
1349 
1350         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1351 
1352         std::string baseTypeName =
1353             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1354                 Policy) +
1355             "*";
1356 
1357         // Turn "unsigned type" to "utype"
1358         pos = baseTypeName.find("unsigned");
1359         if (pos != std::string::npos)
1360           baseTypeName.erase(pos + 1, 8);
1361 
1362         argBaseTypeNames.push_back(
1363             llvm::MDString::get(VMContext, baseTypeName));
1364 
1365         // Get argument type qualifiers:
1366         if (ty.isRestrictQualified())
1367           typeQuals = "restrict";
1368         if (pointeeTy.isConstQualified() ||
1369             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1370           typeQuals += typeQuals.empty() ? "const" : " const";
1371         if (pointeeTy.isVolatileQualified())
1372           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1373       } else {
1374         uint32_t AddrSpc = 0;
1375         bool isPipe = ty->isPipeType();
1376         if (ty->isImageType() || isPipe)
1377           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1378 
1379         addressQuals.push_back(
1380             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1381 
1382         // Get argument type name.
1383         std::string typeName;
1384         if (isPipe)
1385           typeName = ty.getCanonicalType()
1386                          ->castAs<PipeType>()
1387                          ->getElementType()
1388                          .getAsString(Policy);
1389         else
1390           typeName = ty.getUnqualifiedType().getAsString(Policy);
1391 
1392         // Turn "unsigned type" to "utype"
1393         std::string::size_type pos = typeName.find("unsigned");
1394         if (ty.isCanonical() && pos != std::string::npos)
1395           typeName.erase(pos + 1, 8);
1396 
1397         std::string baseTypeName;
1398         if (isPipe)
1399           baseTypeName = ty.getCanonicalType()
1400                              ->castAs<PipeType>()
1401                              ->getElementType()
1402                              .getCanonicalType()
1403                              .getAsString(Policy);
1404         else
1405           baseTypeName =
1406               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1407 
1408         // Remove access qualifiers on images
1409         // (as they are inseparable from type in clang implementation,
1410         // but OpenCL spec provides a special query to get access qualifier
1411         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1412         if (ty->isImageType()) {
1413           removeImageAccessQualifier(typeName);
1414           removeImageAccessQualifier(baseTypeName);
1415         }
1416 
1417         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1418 
1419         // Turn "unsigned type" to "utype"
1420         pos = baseTypeName.find("unsigned");
1421         if (pos != std::string::npos)
1422           baseTypeName.erase(pos + 1, 8);
1423 
1424         argBaseTypeNames.push_back(
1425             llvm::MDString::get(VMContext, baseTypeName));
1426 
1427         if (isPipe)
1428           typeQuals = "pipe";
1429       }
1430 
1431       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1432 
1433       // Get image and pipe access qualifier:
1434       if (ty->isImageType() || ty->isPipeType()) {
1435         const Decl *PDecl = parm;
1436         if (auto *TD = dyn_cast<TypedefType>(ty))
1437           PDecl = TD->getDecl();
1438         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1439         if (A && A->isWriteOnly())
1440           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1441         else if (A && A->isReadWrite())
1442           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1443         else
1444           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1445       } else
1446         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1447 
1448       // Get argument name.
1449       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1450     }
1451 
1452   Fn->setMetadata("kernel_arg_addr_space",
1453                   llvm::MDNode::get(VMContext, addressQuals));
1454   Fn->setMetadata("kernel_arg_access_qual",
1455                   llvm::MDNode::get(VMContext, accessQuals));
1456   Fn->setMetadata("kernel_arg_type",
1457                   llvm::MDNode::get(VMContext, argTypeNames));
1458   Fn->setMetadata("kernel_arg_base_type",
1459                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1460   Fn->setMetadata("kernel_arg_type_qual",
1461                   llvm::MDNode::get(VMContext, argTypeQuals));
1462   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1463     Fn->setMetadata("kernel_arg_name",
1464                     llvm::MDNode::get(VMContext, argNames));
1465 }
1466 
1467 /// Determines whether the language options require us to model
1468 /// unwind exceptions.  We treat -fexceptions as mandating this
1469 /// except under the fragile ObjC ABI with only ObjC exceptions
1470 /// enabled.  This means, for example, that C with -fexceptions
1471 /// enables this.
1472 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1473   // If exceptions are completely disabled, obviously this is false.
1474   if (!LangOpts.Exceptions) return false;
1475 
1476   // If C++ exceptions are enabled, this is true.
1477   if (LangOpts.CXXExceptions) return true;
1478 
1479   // If ObjC exceptions are enabled, this depends on the ABI.
1480   if (LangOpts.ObjCExceptions) {
1481     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1482   }
1483 
1484   return true;
1485 }
1486 
1487 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1488                                                       const CXXMethodDecl *MD) {
1489   // Check that the type metadata can ever actually be used by a call.
1490   if (!CGM.getCodeGenOpts().LTOUnit ||
1491       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1492     return false;
1493 
1494   // Only functions whose address can be taken with a member function pointer
1495   // need this sort of type metadata.
1496   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1497          !isa<CXXDestructorDecl>(MD);
1498 }
1499 
1500 std::vector<const CXXRecordDecl *>
1501 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1502   llvm::SetVector<const CXXRecordDecl *> MostBases;
1503 
1504   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1505   CollectMostBases = [&](const CXXRecordDecl *RD) {
1506     if (RD->getNumBases() == 0)
1507       MostBases.insert(RD);
1508     for (const CXXBaseSpecifier &B : RD->bases())
1509       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1510   };
1511   CollectMostBases(RD);
1512   return MostBases.takeVector();
1513 }
1514 
1515 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1516                                                            llvm::Function *F) {
1517   llvm::AttrBuilder B;
1518 
1519   if (CodeGenOpts.UnwindTables)
1520     B.addAttribute(llvm::Attribute::UWTable);
1521 
1522   if (CodeGenOpts.StackClashProtector)
1523     B.addAttribute("probe-stack", "inline-asm");
1524 
1525   if (!hasUnwindExceptions(LangOpts))
1526     B.addAttribute(llvm::Attribute::NoUnwind);
1527 
1528   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1529     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1530       B.addAttribute(llvm::Attribute::StackProtect);
1531     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1532       B.addAttribute(llvm::Attribute::StackProtectStrong);
1533     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1534       B.addAttribute(llvm::Attribute::StackProtectReq);
1535   }
1536 
1537   if (!D) {
1538     // If we don't have a declaration to control inlining, the function isn't
1539     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1540     // disabled, mark the function as noinline.
1541     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1542         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1543       B.addAttribute(llvm::Attribute::NoInline);
1544 
1545     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1546     return;
1547   }
1548 
1549   // Track whether we need to add the optnone LLVM attribute,
1550   // starting with the default for this optimization level.
1551   bool ShouldAddOptNone =
1552       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1553   // We can't add optnone in the following cases, it won't pass the verifier.
1554   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1555   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1556 
1557   // Add optnone, but do so only if the function isn't always_inline.
1558   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1559       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1560     B.addAttribute(llvm::Attribute::OptimizeNone);
1561 
1562     // OptimizeNone implies noinline; we should not be inlining such functions.
1563     B.addAttribute(llvm::Attribute::NoInline);
1564 
1565     // We still need to handle naked functions even though optnone subsumes
1566     // much of their semantics.
1567     if (D->hasAttr<NakedAttr>())
1568       B.addAttribute(llvm::Attribute::Naked);
1569 
1570     // OptimizeNone wins over OptimizeForSize and MinSize.
1571     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1572     F->removeFnAttr(llvm::Attribute::MinSize);
1573   } else if (D->hasAttr<NakedAttr>()) {
1574     // Naked implies noinline: we should not be inlining such functions.
1575     B.addAttribute(llvm::Attribute::Naked);
1576     B.addAttribute(llvm::Attribute::NoInline);
1577   } else if (D->hasAttr<NoDuplicateAttr>()) {
1578     B.addAttribute(llvm::Attribute::NoDuplicate);
1579   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1580     // Add noinline if the function isn't always_inline.
1581     B.addAttribute(llvm::Attribute::NoInline);
1582   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1583              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1584     // (noinline wins over always_inline, and we can't specify both in IR)
1585     B.addAttribute(llvm::Attribute::AlwaysInline);
1586   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1587     // If we're not inlining, then force everything that isn't always_inline to
1588     // carry an explicit noinline attribute.
1589     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1590       B.addAttribute(llvm::Attribute::NoInline);
1591   } else {
1592     // Otherwise, propagate the inline hint attribute and potentially use its
1593     // absence to mark things as noinline.
1594     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1595       // Search function and template pattern redeclarations for inline.
1596       auto CheckForInline = [](const FunctionDecl *FD) {
1597         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1598           return Redecl->isInlineSpecified();
1599         };
1600         if (any_of(FD->redecls(), CheckRedeclForInline))
1601           return true;
1602         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1603         if (!Pattern)
1604           return false;
1605         return any_of(Pattern->redecls(), CheckRedeclForInline);
1606       };
1607       if (CheckForInline(FD)) {
1608         B.addAttribute(llvm::Attribute::InlineHint);
1609       } else if (CodeGenOpts.getInlining() ==
1610                      CodeGenOptions::OnlyHintInlining &&
1611                  !FD->isInlined() &&
1612                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1613         B.addAttribute(llvm::Attribute::NoInline);
1614       }
1615     }
1616   }
1617 
1618   // Add other optimization related attributes if we are optimizing this
1619   // function.
1620   if (!D->hasAttr<OptimizeNoneAttr>()) {
1621     if (D->hasAttr<ColdAttr>()) {
1622       if (!ShouldAddOptNone)
1623         B.addAttribute(llvm::Attribute::OptimizeForSize);
1624       B.addAttribute(llvm::Attribute::Cold);
1625     }
1626 
1627     if (D->hasAttr<MinSizeAttr>())
1628       B.addAttribute(llvm::Attribute::MinSize);
1629   }
1630 
1631   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1632 
1633   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1634   if (alignment)
1635     F->setAlignment(llvm::Align(alignment));
1636 
1637   if (!D->hasAttr<AlignedAttr>())
1638     if (LangOpts.FunctionAlignment)
1639       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1640 
1641   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1642   // reserve a bit for differentiating between virtual and non-virtual member
1643   // functions. If the current target's C++ ABI requires this and this is a
1644   // member function, set its alignment accordingly.
1645   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1646     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1647       F->setAlignment(llvm::Align(2));
1648   }
1649 
1650   // In the cross-dso CFI mode with canonical jump tables, we want !type
1651   // attributes on definitions only.
1652   if (CodeGenOpts.SanitizeCfiCrossDso &&
1653       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1654     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1655       // Skip available_externally functions. They won't be codegen'ed in the
1656       // current module anyway.
1657       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1658         CreateFunctionTypeMetadataForIcall(FD, F);
1659     }
1660   }
1661 
1662   // Emit type metadata on member functions for member function pointer checks.
1663   // These are only ever necessary on definitions; we're guaranteed that the
1664   // definition will be present in the LTO unit as a result of LTO visibility.
1665   auto *MD = dyn_cast<CXXMethodDecl>(D);
1666   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1667     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1668       llvm::Metadata *Id =
1669           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1670               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1671       F->addTypeMetadata(0, Id);
1672     }
1673   }
1674 }
1675 
1676 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1677   const Decl *D = GD.getDecl();
1678   if (dyn_cast_or_null<NamedDecl>(D))
1679     setGVProperties(GV, GD);
1680   else
1681     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1682 
1683   if (D && D->hasAttr<UsedAttr>())
1684     addUsedGlobal(GV);
1685 
1686   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1687     const auto *VD = cast<VarDecl>(D);
1688     if (VD->getType().isConstQualified() &&
1689         VD->getStorageDuration() == SD_Static)
1690       addUsedGlobal(GV);
1691   }
1692 }
1693 
1694 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1695                                                 llvm::AttrBuilder &Attrs) {
1696   // Add target-cpu and target-features attributes to functions. If
1697   // we have a decl for the function and it has a target attribute then
1698   // parse that and add it to the feature set.
1699   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1700   std::vector<std::string> Features;
1701   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1702   FD = FD ? FD->getMostRecentDecl() : FD;
1703   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1704   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1705   bool AddedAttr = false;
1706   if (TD || SD) {
1707     llvm::StringMap<bool> FeatureMap;
1708     getContext().getFunctionFeatureMap(FeatureMap, GD);
1709 
1710     // Produce the canonical string for this set of features.
1711     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1712       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1713 
1714     // Now add the target-cpu and target-features to the function.
1715     // While we populated the feature map above, we still need to
1716     // get and parse the target attribute so we can get the cpu for
1717     // the function.
1718     if (TD) {
1719       ParsedTargetAttr ParsedAttr = TD->parse();
1720       if (ParsedAttr.Architecture != "" &&
1721           getTarget().isValidCPUName(ParsedAttr.Architecture))
1722         TargetCPU = ParsedAttr.Architecture;
1723     }
1724   } else {
1725     // Otherwise just add the existing target cpu and target features to the
1726     // function.
1727     Features = getTarget().getTargetOpts().Features;
1728   }
1729 
1730   if (TargetCPU != "") {
1731     Attrs.addAttribute("target-cpu", TargetCPU);
1732     AddedAttr = true;
1733   }
1734   if (!Features.empty()) {
1735     llvm::sort(Features);
1736     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1737     AddedAttr = true;
1738   }
1739 
1740   return AddedAttr;
1741 }
1742 
1743 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1744                                           llvm::GlobalObject *GO) {
1745   const Decl *D = GD.getDecl();
1746   SetCommonAttributes(GD, GO);
1747 
1748   if (D) {
1749     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1750       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1751         GV->addAttribute("bss-section", SA->getName());
1752       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1753         GV->addAttribute("data-section", SA->getName());
1754       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1755         GV->addAttribute("rodata-section", SA->getName());
1756       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1757         GV->addAttribute("relro-section", SA->getName());
1758     }
1759 
1760     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1761       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1762         if (!D->getAttr<SectionAttr>())
1763           F->addFnAttr("implicit-section-name", SA->getName());
1764 
1765       llvm::AttrBuilder Attrs;
1766       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1767         // We know that GetCPUAndFeaturesAttributes will always have the
1768         // newest set, since it has the newest possible FunctionDecl, so the
1769         // new ones should replace the old.
1770         F->removeFnAttr("target-cpu");
1771         F->removeFnAttr("target-features");
1772         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1773       }
1774     }
1775 
1776     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1777       GO->setSection(CSA->getName());
1778     else if (const auto *SA = D->getAttr<SectionAttr>())
1779       GO->setSection(SA->getName());
1780   }
1781 
1782   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1783 }
1784 
1785 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1786                                                   llvm::Function *F,
1787                                                   const CGFunctionInfo &FI) {
1788   const Decl *D = GD.getDecl();
1789   SetLLVMFunctionAttributes(GD, FI, F);
1790   SetLLVMFunctionAttributesForDefinition(D, F);
1791 
1792   F->setLinkage(llvm::Function::InternalLinkage);
1793 
1794   setNonAliasAttributes(GD, F);
1795 }
1796 
1797 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1798   // Set linkage and visibility in case we never see a definition.
1799   LinkageInfo LV = ND->getLinkageAndVisibility();
1800   // Don't set internal linkage on declarations.
1801   // "extern_weak" is overloaded in LLVM; we probably should have
1802   // separate linkage types for this.
1803   if (isExternallyVisible(LV.getLinkage()) &&
1804       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1805     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1806 }
1807 
1808 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1809                                                        llvm::Function *F) {
1810   // Only if we are checking indirect calls.
1811   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1812     return;
1813 
1814   // Non-static class methods are handled via vtable or member function pointer
1815   // checks elsewhere.
1816   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1817     return;
1818 
1819   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1820   F->addTypeMetadata(0, MD);
1821   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1822 
1823   // Emit a hash-based bit set entry for cross-DSO calls.
1824   if (CodeGenOpts.SanitizeCfiCrossDso)
1825     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1826       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1827 }
1828 
1829 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1830                                           bool IsIncompleteFunction,
1831                                           bool IsThunk) {
1832 
1833   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1834     // If this is an intrinsic function, set the function's attributes
1835     // to the intrinsic's attributes.
1836     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1837     return;
1838   }
1839 
1840   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1841 
1842   if (!IsIncompleteFunction)
1843     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1844 
1845   // Add the Returned attribute for "this", except for iOS 5 and earlier
1846   // where substantial code, including the libstdc++ dylib, was compiled with
1847   // GCC and does not actually return "this".
1848   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1849       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1850     assert(!F->arg_empty() &&
1851            F->arg_begin()->getType()
1852              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1853            "unexpected this return");
1854     F->addAttribute(1, llvm::Attribute::Returned);
1855   }
1856 
1857   // Only a few attributes are set on declarations; these may later be
1858   // overridden by a definition.
1859 
1860   setLinkageForGV(F, FD);
1861   setGVProperties(F, FD);
1862 
1863   // Setup target-specific attributes.
1864   if (!IsIncompleteFunction && F->isDeclaration())
1865     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1866 
1867   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1868     F->setSection(CSA->getName());
1869   else if (const auto *SA = FD->getAttr<SectionAttr>())
1870      F->setSection(SA->getName());
1871 
1872   if (FD->isInlineBuiltinDeclaration()) {
1873     F->addAttribute(llvm::AttributeList::FunctionIndex,
1874                     llvm::Attribute::NoBuiltin);
1875   }
1876 
1877   if (FD->isReplaceableGlobalAllocationFunction()) {
1878     // A replaceable global allocation function does not act like a builtin by
1879     // default, only if it is invoked by a new-expression or delete-expression.
1880     F->addAttribute(llvm::AttributeList::FunctionIndex,
1881                     llvm::Attribute::NoBuiltin);
1882   }
1883 
1884   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1885     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1886   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1887     if (MD->isVirtual())
1888       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1889 
1890   // Don't emit entries for function declarations in the cross-DSO mode. This
1891   // is handled with better precision by the receiving DSO. But if jump tables
1892   // are non-canonical then we need type metadata in order to produce the local
1893   // jump table.
1894   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1895       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1896     CreateFunctionTypeMetadataForIcall(FD, F);
1897 
1898   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1899     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1900 
1901   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1902     // Annotate the callback behavior as metadata:
1903     //  - The callback callee (as argument number).
1904     //  - The callback payloads (as argument numbers).
1905     llvm::LLVMContext &Ctx = F->getContext();
1906     llvm::MDBuilder MDB(Ctx);
1907 
1908     // The payload indices are all but the first one in the encoding. The first
1909     // identifies the callback callee.
1910     int CalleeIdx = *CB->encoding_begin();
1911     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1912     F->addMetadata(llvm::LLVMContext::MD_callback,
1913                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1914                                                CalleeIdx, PayloadIndices,
1915                                                /* VarArgsArePassed */ false)}));
1916   }
1917 }
1918 
1919 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV, bool SkipCheck) {
1920   assert(SkipCheck || (!GV->isDeclaration() &&
1921                        "Only globals with definition can force usage."));
1922   LLVMUsed.emplace_back(GV);
1923 }
1924 
1925 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1926   assert(!GV->isDeclaration() &&
1927          "Only globals with definition can force usage.");
1928   LLVMCompilerUsed.emplace_back(GV);
1929 }
1930 
1931 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1932                      std::vector<llvm::WeakTrackingVH> &List) {
1933   // Don't create llvm.used if there is no need.
1934   if (List.empty())
1935     return;
1936 
1937   // Convert List to what ConstantArray needs.
1938   SmallVector<llvm::Constant*, 8> UsedArray;
1939   UsedArray.resize(List.size());
1940   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1941     UsedArray[i] =
1942         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1943             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1944   }
1945 
1946   if (UsedArray.empty())
1947     return;
1948   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1949 
1950   auto *GV = new llvm::GlobalVariable(
1951       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1952       llvm::ConstantArray::get(ATy, UsedArray), Name);
1953 
1954   GV->setSection("llvm.metadata");
1955 }
1956 
1957 void CodeGenModule::emitLLVMUsed() {
1958   emitUsed(*this, "llvm.used", LLVMUsed);
1959   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1960 }
1961 
1962 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1963   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1964   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1965 }
1966 
1967 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1968   llvm::SmallString<32> Opt;
1969   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1970   if (Opt.empty())
1971     return;
1972   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1973   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1974 }
1975 
1976 void CodeGenModule::AddDependentLib(StringRef Lib) {
1977   auto &C = getLLVMContext();
1978   if (getTarget().getTriple().isOSBinFormatELF()) {
1979       ELFDependentLibraries.push_back(
1980         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1981     return;
1982   }
1983 
1984   llvm::SmallString<24> Opt;
1985   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1986   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1987   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1988 }
1989 
1990 /// Add link options implied by the given module, including modules
1991 /// it depends on, using a postorder walk.
1992 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1993                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1994                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1995   // Import this module's parent.
1996   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1997     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1998   }
1999 
2000   // Import this module's dependencies.
2001   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2002     if (Visited.insert(Mod->Imports[I - 1]).second)
2003       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2004   }
2005 
2006   // Add linker options to link against the libraries/frameworks
2007   // described by this module.
2008   llvm::LLVMContext &Context = CGM.getLLVMContext();
2009   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2010 
2011   // For modules that use export_as for linking, use that module
2012   // name instead.
2013   if (Mod->UseExportAsModuleLinkName)
2014     return;
2015 
2016   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2017     // Link against a framework.  Frameworks are currently Darwin only, so we
2018     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2019     if (Mod->LinkLibraries[I-1].IsFramework) {
2020       llvm::Metadata *Args[2] = {
2021           llvm::MDString::get(Context, "-framework"),
2022           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2023 
2024       Metadata.push_back(llvm::MDNode::get(Context, Args));
2025       continue;
2026     }
2027 
2028     // Link against a library.
2029     if (IsELF) {
2030       llvm::Metadata *Args[2] = {
2031           llvm::MDString::get(Context, "lib"),
2032           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2033       };
2034       Metadata.push_back(llvm::MDNode::get(Context, Args));
2035     } else {
2036       llvm::SmallString<24> Opt;
2037       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2038           Mod->LinkLibraries[I - 1].Library, Opt);
2039       auto *OptString = llvm::MDString::get(Context, Opt);
2040       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2041     }
2042   }
2043 }
2044 
2045 void CodeGenModule::EmitModuleLinkOptions() {
2046   // Collect the set of all of the modules we want to visit to emit link
2047   // options, which is essentially the imported modules and all of their
2048   // non-explicit child modules.
2049   llvm::SetVector<clang::Module *> LinkModules;
2050   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2051   SmallVector<clang::Module *, 16> Stack;
2052 
2053   // Seed the stack with imported modules.
2054   for (Module *M : ImportedModules) {
2055     // Do not add any link flags when an implementation TU of a module imports
2056     // a header of that same module.
2057     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2058         !getLangOpts().isCompilingModule())
2059       continue;
2060     if (Visited.insert(M).second)
2061       Stack.push_back(M);
2062   }
2063 
2064   // Find all of the modules to import, making a little effort to prune
2065   // non-leaf modules.
2066   while (!Stack.empty()) {
2067     clang::Module *Mod = Stack.pop_back_val();
2068 
2069     bool AnyChildren = false;
2070 
2071     // Visit the submodules of this module.
2072     for (const auto &SM : Mod->submodules()) {
2073       // Skip explicit children; they need to be explicitly imported to be
2074       // linked against.
2075       if (SM->IsExplicit)
2076         continue;
2077 
2078       if (Visited.insert(SM).second) {
2079         Stack.push_back(SM);
2080         AnyChildren = true;
2081       }
2082     }
2083 
2084     // We didn't find any children, so add this module to the list of
2085     // modules to link against.
2086     if (!AnyChildren) {
2087       LinkModules.insert(Mod);
2088     }
2089   }
2090 
2091   // Add link options for all of the imported modules in reverse topological
2092   // order.  We don't do anything to try to order import link flags with respect
2093   // to linker options inserted by things like #pragma comment().
2094   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2095   Visited.clear();
2096   for (Module *M : LinkModules)
2097     if (Visited.insert(M).second)
2098       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2099   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2100   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2101 
2102   // Add the linker options metadata flag.
2103   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2104   for (auto *MD : LinkerOptionsMetadata)
2105     NMD->addOperand(MD);
2106 }
2107 
2108 void CodeGenModule::EmitDeferred() {
2109   // Emit deferred declare target declarations.
2110   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2111     getOpenMPRuntime().emitDeferredTargetDecls();
2112 
2113   // Emit code for any potentially referenced deferred decls.  Since a
2114   // previously unused static decl may become used during the generation of code
2115   // for a static function, iterate until no changes are made.
2116 
2117   if (!DeferredVTables.empty()) {
2118     EmitDeferredVTables();
2119 
2120     // Emitting a vtable doesn't directly cause more vtables to
2121     // become deferred, although it can cause functions to be
2122     // emitted that then need those vtables.
2123     assert(DeferredVTables.empty());
2124   }
2125 
2126   // Stop if we're out of both deferred vtables and deferred declarations.
2127   if (DeferredDeclsToEmit.empty())
2128     return;
2129 
2130   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2131   // work, it will not interfere with this.
2132   std::vector<GlobalDecl> CurDeclsToEmit;
2133   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2134 
2135   for (GlobalDecl &D : CurDeclsToEmit) {
2136     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2137     // to get GlobalValue with exactly the type we need, not something that
2138     // might had been created for another decl with the same mangled name but
2139     // different type.
2140     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2141         GetAddrOfGlobal(D, ForDefinition));
2142 
2143     // In case of different address spaces, we may still get a cast, even with
2144     // IsForDefinition equal to true. Query mangled names table to get
2145     // GlobalValue.
2146     if (!GV)
2147       GV = GetGlobalValue(getMangledName(D));
2148 
2149     // Make sure GetGlobalValue returned non-null.
2150     assert(GV);
2151 
2152     // Check to see if we've already emitted this.  This is necessary
2153     // for a couple of reasons: first, decls can end up in the
2154     // deferred-decls queue multiple times, and second, decls can end
2155     // up with definitions in unusual ways (e.g. by an extern inline
2156     // function acquiring a strong function redefinition).  Just
2157     // ignore these cases.
2158     if (!GV->isDeclaration())
2159       continue;
2160 
2161     // If this is OpenMP, check if it is legal to emit this global normally.
2162     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2163       continue;
2164 
2165     // Otherwise, emit the definition and move on to the next one.
2166     EmitGlobalDefinition(D, GV);
2167 
2168     // If we found out that we need to emit more decls, do that recursively.
2169     // This has the advantage that the decls are emitted in a DFS and related
2170     // ones are close together, which is convenient for testing.
2171     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2172       EmitDeferred();
2173       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2174     }
2175   }
2176 }
2177 
2178 void CodeGenModule::EmitVTablesOpportunistically() {
2179   // Try to emit external vtables as available_externally if they have emitted
2180   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2181   // is not allowed to create new references to things that need to be emitted
2182   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2183 
2184   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2185          && "Only emit opportunistic vtables with optimizations");
2186 
2187   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2188     assert(getVTables().isVTableExternal(RD) &&
2189            "This queue should only contain external vtables");
2190     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2191       VTables.GenerateClassData(RD);
2192   }
2193   OpportunisticVTables.clear();
2194 }
2195 
2196 void CodeGenModule::EmitGlobalAnnotations() {
2197   if (Annotations.empty())
2198     return;
2199 
2200   // Create a new global variable for the ConstantStruct in the Module.
2201   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2202     Annotations[0]->getType(), Annotations.size()), Annotations);
2203   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2204                                       llvm::GlobalValue::AppendingLinkage,
2205                                       Array, "llvm.global.annotations");
2206   gv->setSection(AnnotationSection);
2207 }
2208 
2209 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2210   llvm::Constant *&AStr = AnnotationStrings[Str];
2211   if (AStr)
2212     return AStr;
2213 
2214   // Not found yet, create a new global.
2215   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2216   auto *gv =
2217       new llvm::GlobalVariable(getModule(), s->getType(), true,
2218                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2219   gv->setSection(AnnotationSection);
2220   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2221   AStr = gv;
2222   return gv;
2223 }
2224 
2225 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2226   SourceManager &SM = getContext().getSourceManager();
2227   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2228   if (PLoc.isValid())
2229     return EmitAnnotationString(PLoc.getFilename());
2230   return EmitAnnotationString(SM.getBufferName(Loc));
2231 }
2232 
2233 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2234   SourceManager &SM = getContext().getSourceManager();
2235   PresumedLoc PLoc = SM.getPresumedLoc(L);
2236   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2237     SM.getExpansionLineNumber(L);
2238   return llvm::ConstantInt::get(Int32Ty, LineNo);
2239 }
2240 
2241 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2242                                                 const AnnotateAttr *AA,
2243                                                 SourceLocation L) {
2244   // Get the globals for file name, annotation, and the line number.
2245   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2246                  *UnitGV = EmitAnnotationUnit(L),
2247                  *LineNoCst = EmitAnnotationLineNo(L);
2248 
2249   llvm::Constant *ASZeroGV = GV;
2250   if (GV->getAddressSpace() != 0) {
2251     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2252                    GV, GV->getValueType()->getPointerTo(0));
2253   }
2254 
2255   // Create the ConstantStruct for the global annotation.
2256   llvm::Constant *Fields[4] = {
2257     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2258     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2259     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2260     LineNoCst
2261   };
2262   return llvm::ConstantStruct::getAnon(Fields);
2263 }
2264 
2265 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2266                                          llvm::GlobalValue *GV) {
2267   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2268   // Get the struct elements for these annotations.
2269   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2270     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2271 }
2272 
2273 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2274                                            llvm::Function *Fn,
2275                                            SourceLocation Loc) const {
2276   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2277   // Blacklist by function name.
2278   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2279     return true;
2280   // Blacklist by location.
2281   if (Loc.isValid())
2282     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2283   // If location is unknown, this may be a compiler-generated function. Assume
2284   // it's located in the main file.
2285   auto &SM = Context.getSourceManager();
2286   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2287     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2288   }
2289   return false;
2290 }
2291 
2292 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2293                                            SourceLocation Loc, QualType Ty,
2294                                            StringRef Category) const {
2295   // For now globals can be blacklisted only in ASan and KASan.
2296   const SanitizerMask EnabledAsanMask =
2297       LangOpts.Sanitize.Mask &
2298       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2299        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2300        SanitizerKind::MemTag);
2301   if (!EnabledAsanMask)
2302     return false;
2303   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2304   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2305     return true;
2306   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2307     return true;
2308   // Check global type.
2309   if (!Ty.isNull()) {
2310     // Drill down the array types: if global variable of a fixed type is
2311     // blacklisted, we also don't instrument arrays of them.
2312     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2313       Ty = AT->getElementType();
2314     Ty = Ty.getCanonicalType().getUnqualifiedType();
2315     // We allow to blacklist only record types (classes, structs etc.)
2316     if (Ty->isRecordType()) {
2317       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2318       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2319         return true;
2320     }
2321   }
2322   return false;
2323 }
2324 
2325 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2326                                    StringRef Category) const {
2327   const auto &XRayFilter = getContext().getXRayFilter();
2328   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2329   auto Attr = ImbueAttr::NONE;
2330   if (Loc.isValid())
2331     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2332   if (Attr == ImbueAttr::NONE)
2333     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2334   switch (Attr) {
2335   case ImbueAttr::NONE:
2336     return false;
2337   case ImbueAttr::ALWAYS:
2338     Fn->addFnAttr("function-instrument", "xray-always");
2339     break;
2340   case ImbueAttr::ALWAYS_ARG1:
2341     Fn->addFnAttr("function-instrument", "xray-always");
2342     Fn->addFnAttr("xray-log-args", "1");
2343     break;
2344   case ImbueAttr::NEVER:
2345     Fn->addFnAttr("function-instrument", "xray-never");
2346     break;
2347   }
2348   return true;
2349 }
2350 
2351 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2352   // Never defer when EmitAllDecls is specified.
2353   if (LangOpts.EmitAllDecls)
2354     return true;
2355 
2356   if (CodeGenOpts.KeepStaticConsts) {
2357     const auto *VD = dyn_cast<VarDecl>(Global);
2358     if (VD && VD->getType().isConstQualified() &&
2359         VD->getStorageDuration() == SD_Static)
2360       return true;
2361   }
2362 
2363   return getContext().DeclMustBeEmitted(Global);
2364 }
2365 
2366 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2367   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2368     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2369       // Implicit template instantiations may change linkage if they are later
2370       // explicitly instantiated, so they should not be emitted eagerly.
2371       return false;
2372     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2373     // not emit them eagerly unless we sure that the function must be emitted on
2374     // the host.
2375     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2376         !LangOpts.OpenMPIsDevice &&
2377         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2378         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2379       return false;
2380   }
2381   if (const auto *VD = dyn_cast<VarDecl>(Global))
2382     if (Context.getInlineVariableDefinitionKind(VD) ==
2383         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2384       // A definition of an inline constexpr static data member may change
2385       // linkage later if it's redeclared outside the class.
2386       return false;
2387   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2388   // codegen for global variables, because they may be marked as threadprivate.
2389   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2390       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2391       !isTypeConstant(Global->getType(), false) &&
2392       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2393     return false;
2394 
2395   return true;
2396 }
2397 
2398 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2399     const CXXUuidofExpr* E) {
2400   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2401   // well-formed.
2402   StringRef Uuid = E->getUuidStr();
2403   std::string Name = "_GUID_" + Uuid.lower();
2404   std::replace(Name.begin(), Name.end(), '-', '_');
2405 
2406   // The UUID descriptor should be pointer aligned.
2407   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2408 
2409   // Look for an existing global.
2410   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2411     return ConstantAddress(GV, Alignment);
2412 
2413   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2414   assert(Init && "failed to initialize as constant");
2415 
2416   auto *GV = new llvm::GlobalVariable(
2417       getModule(), Init->getType(),
2418       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2419   if (supportsCOMDAT())
2420     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2421   setDSOLocal(GV);
2422   return ConstantAddress(GV, Alignment);
2423 }
2424 
2425 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2426   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2427   assert(AA && "No alias?");
2428 
2429   CharUnits Alignment = getContext().getDeclAlign(VD);
2430   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2431 
2432   // See if there is already something with the target's name in the module.
2433   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2434   if (Entry) {
2435     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2436     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2437     return ConstantAddress(Ptr, Alignment);
2438   }
2439 
2440   llvm::Constant *Aliasee;
2441   if (isa<llvm::FunctionType>(DeclTy))
2442     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2443                                       GlobalDecl(cast<FunctionDecl>(VD)),
2444                                       /*ForVTable=*/false);
2445   else
2446     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2447                                     llvm::PointerType::getUnqual(DeclTy),
2448                                     nullptr);
2449 
2450   auto *F = cast<llvm::GlobalValue>(Aliasee);
2451   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2452   WeakRefReferences.insert(F);
2453 
2454   return ConstantAddress(Aliasee, Alignment);
2455 }
2456 
2457 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2458   const auto *Global = cast<ValueDecl>(GD.getDecl());
2459 
2460   // Weak references don't produce any output by themselves.
2461   if (Global->hasAttr<WeakRefAttr>())
2462     return;
2463 
2464   // If this is an alias definition (which otherwise looks like a declaration)
2465   // emit it now.
2466   if (Global->hasAttr<AliasAttr>())
2467     return EmitAliasDefinition(GD);
2468 
2469   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2470   if (Global->hasAttr<IFuncAttr>())
2471     return emitIFuncDefinition(GD);
2472 
2473   // If this is a cpu_dispatch multiversion function, emit the resolver.
2474   if (Global->hasAttr<CPUDispatchAttr>())
2475     return emitCPUDispatchDefinition(GD);
2476 
2477   // If this is CUDA, be selective about which declarations we emit.
2478   if (LangOpts.CUDA) {
2479     if (LangOpts.CUDAIsDevice) {
2480       if (!Global->hasAttr<CUDADeviceAttr>() &&
2481           !Global->hasAttr<CUDAGlobalAttr>() &&
2482           !Global->hasAttr<CUDAConstantAttr>() &&
2483           !Global->hasAttr<CUDASharedAttr>() &&
2484           !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2485         return;
2486     } else {
2487       // We need to emit host-side 'shadows' for all global
2488       // device-side variables because the CUDA runtime needs their
2489       // size and host-side address in order to provide access to
2490       // their device-side incarnations.
2491 
2492       // So device-only functions are the only things we skip.
2493       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2494           Global->hasAttr<CUDADeviceAttr>())
2495         return;
2496 
2497       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2498              "Expected Variable or Function");
2499     }
2500   }
2501 
2502   if (LangOpts.OpenMP) {
2503     // If this is OpenMP, check if it is legal to emit this global normally.
2504     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2505       return;
2506     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2507       if (MustBeEmitted(Global))
2508         EmitOMPDeclareReduction(DRD);
2509       return;
2510     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2511       if (MustBeEmitted(Global))
2512         EmitOMPDeclareMapper(DMD);
2513       return;
2514     }
2515   }
2516 
2517   // Ignore declarations, they will be emitted on their first use.
2518   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2519     // Forward declarations are emitted lazily on first use.
2520     if (!FD->doesThisDeclarationHaveABody()) {
2521       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2522         return;
2523 
2524       StringRef MangledName = getMangledName(GD);
2525 
2526       // Compute the function info and LLVM type.
2527       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2528       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2529 
2530       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2531                               /*DontDefer=*/false);
2532       return;
2533     }
2534   } else {
2535     const auto *VD = cast<VarDecl>(Global);
2536     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2537     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2538         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2539       if (LangOpts.OpenMP) {
2540         // Emit declaration of the must-be-emitted declare target variable.
2541         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2542                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2543           bool UnifiedMemoryEnabled =
2544               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2545           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2546               !UnifiedMemoryEnabled) {
2547             (void)GetAddrOfGlobalVar(VD);
2548           } else {
2549             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2550                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2551                      UnifiedMemoryEnabled)) &&
2552                    "Link clause or to clause with unified memory expected.");
2553             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2554           }
2555 
2556           return;
2557         }
2558       }
2559       // If this declaration may have caused an inline variable definition to
2560       // change linkage, make sure that it's emitted.
2561       if (Context.getInlineVariableDefinitionKind(VD) ==
2562           ASTContext::InlineVariableDefinitionKind::Strong)
2563         GetAddrOfGlobalVar(VD);
2564       return;
2565     }
2566   }
2567 
2568   // Defer code generation to first use when possible, e.g. if this is an inline
2569   // function. If the global must always be emitted, do it eagerly if possible
2570   // to benefit from cache locality.
2571   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2572     // Emit the definition if it can't be deferred.
2573     EmitGlobalDefinition(GD);
2574     return;
2575   }
2576 
2577     // Check if this must be emitted as declare variant.
2578   if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2579       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2580     return;
2581 
2582   // If we're deferring emission of a C++ variable with an
2583   // initializer, remember the order in which it appeared in the file.
2584   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2585       cast<VarDecl>(Global)->hasInit()) {
2586     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2587     CXXGlobalInits.push_back(nullptr);
2588   }
2589 
2590   StringRef MangledName = getMangledName(GD);
2591   if (GetGlobalValue(MangledName) != nullptr) {
2592     // The value has already been used and should therefore be emitted.
2593     addDeferredDeclToEmit(GD);
2594   } else if (MustBeEmitted(Global)) {
2595     // The value must be emitted, but cannot be emitted eagerly.
2596     assert(!MayBeEmittedEagerly(Global));
2597     addDeferredDeclToEmit(GD);
2598   } else {
2599     // Otherwise, remember that we saw a deferred decl with this name.  The
2600     // first use of the mangled name will cause it to move into
2601     // DeferredDeclsToEmit.
2602     DeferredDecls[MangledName] = GD;
2603   }
2604 }
2605 
2606 // Check if T is a class type with a destructor that's not dllimport.
2607 static bool HasNonDllImportDtor(QualType T) {
2608   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2609     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2610       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2611         return true;
2612 
2613   return false;
2614 }
2615 
2616 namespace {
2617   struct FunctionIsDirectlyRecursive
2618       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2619     const StringRef Name;
2620     const Builtin::Context &BI;
2621     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2622         : Name(N), BI(C) {}
2623 
2624     bool VisitCallExpr(const CallExpr *E) {
2625       const FunctionDecl *FD = E->getDirectCallee();
2626       if (!FD)
2627         return false;
2628       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2629       if (Attr && Name == Attr->getLabel())
2630         return true;
2631       unsigned BuiltinID = FD->getBuiltinID();
2632       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2633         return false;
2634       StringRef BuiltinName = BI.getName(BuiltinID);
2635       if (BuiltinName.startswith("__builtin_") &&
2636           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2637         return true;
2638       }
2639       return false;
2640     }
2641 
2642     bool VisitStmt(const Stmt *S) {
2643       for (const Stmt *Child : S->children())
2644         if (Child && this->Visit(Child))
2645           return true;
2646       return false;
2647     }
2648   };
2649 
2650   // Make sure we're not referencing non-imported vars or functions.
2651   struct DLLImportFunctionVisitor
2652       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2653     bool SafeToInline = true;
2654 
2655     bool shouldVisitImplicitCode() const { return true; }
2656 
2657     bool VisitVarDecl(VarDecl *VD) {
2658       if (VD->getTLSKind()) {
2659         // A thread-local variable cannot be imported.
2660         SafeToInline = false;
2661         return SafeToInline;
2662       }
2663 
2664       // A variable definition might imply a destructor call.
2665       if (VD->isThisDeclarationADefinition())
2666         SafeToInline = !HasNonDllImportDtor(VD->getType());
2667 
2668       return SafeToInline;
2669     }
2670 
2671     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2672       if (const auto *D = E->getTemporary()->getDestructor())
2673         SafeToInline = D->hasAttr<DLLImportAttr>();
2674       return SafeToInline;
2675     }
2676 
2677     bool VisitDeclRefExpr(DeclRefExpr *E) {
2678       ValueDecl *VD = E->getDecl();
2679       if (isa<FunctionDecl>(VD))
2680         SafeToInline = VD->hasAttr<DLLImportAttr>();
2681       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2682         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2683       return SafeToInline;
2684     }
2685 
2686     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2687       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2688       return SafeToInline;
2689     }
2690 
2691     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2692       CXXMethodDecl *M = E->getMethodDecl();
2693       if (!M) {
2694         // Call through a pointer to member function. This is safe to inline.
2695         SafeToInline = true;
2696       } else {
2697         SafeToInline = M->hasAttr<DLLImportAttr>();
2698       }
2699       return SafeToInline;
2700     }
2701 
2702     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2703       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2704       return SafeToInline;
2705     }
2706 
2707     bool VisitCXXNewExpr(CXXNewExpr *E) {
2708       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2709       return SafeToInline;
2710     }
2711   };
2712 }
2713 
2714 // isTriviallyRecursive - Check if this function calls another
2715 // decl that, because of the asm attribute or the other decl being a builtin,
2716 // ends up pointing to itself.
2717 bool
2718 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2719   StringRef Name;
2720   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2721     // asm labels are a special kind of mangling we have to support.
2722     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2723     if (!Attr)
2724       return false;
2725     Name = Attr->getLabel();
2726   } else {
2727     Name = FD->getName();
2728   }
2729 
2730   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2731   const Stmt *Body = FD->getBody();
2732   return Body ? Walker.Visit(Body) : false;
2733 }
2734 
2735 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2736   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2737     return true;
2738   const auto *F = cast<FunctionDecl>(GD.getDecl());
2739   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2740     return false;
2741 
2742   if (F->hasAttr<DLLImportAttr>()) {
2743     // Check whether it would be safe to inline this dllimport function.
2744     DLLImportFunctionVisitor Visitor;
2745     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2746     if (!Visitor.SafeToInline)
2747       return false;
2748 
2749     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2750       // Implicit destructor invocations aren't captured in the AST, so the
2751       // check above can't see them. Check for them manually here.
2752       for (const Decl *Member : Dtor->getParent()->decls())
2753         if (isa<FieldDecl>(Member))
2754           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2755             return false;
2756       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2757         if (HasNonDllImportDtor(B.getType()))
2758           return false;
2759     }
2760   }
2761 
2762   // PR9614. Avoid cases where the source code is lying to us. An available
2763   // externally function should have an equivalent function somewhere else,
2764   // but a function that calls itself is clearly not equivalent to the real
2765   // implementation.
2766   // This happens in glibc's btowc and in some configure checks.
2767   return !isTriviallyRecursive(F);
2768 }
2769 
2770 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2771   return CodeGenOpts.OptimizationLevel > 0;
2772 }
2773 
2774 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2775                                                        llvm::GlobalValue *GV) {
2776   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2777 
2778   if (FD->isCPUSpecificMultiVersion()) {
2779     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2780     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2781       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2782     // Requires multiple emits.
2783   } else
2784     EmitGlobalFunctionDefinition(GD, GV);
2785 }
2786 
2787 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2788     GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2789   assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2790          OpenMPRuntime && "Expected OpenMP device mode.");
2791   const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2792 
2793   // Compute the function info and LLVM type.
2794   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2795   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2796 
2797   // Get or create the prototype for the function.
2798   if (!GV || (GV->getType()->getElementType() != Ty)) {
2799     GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2800         getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2801         /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2802         ForDefinition));
2803     SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2804                           /*IsIncompleteFunction=*/false,
2805                           /*IsThunk=*/false);
2806   }
2807   // We need to set linkage and visibility on the function before
2808   // generating code for it because various parts of IR generation
2809   // want to propagate this information down (e.g. to local static
2810   // declarations).
2811   auto *Fn = cast<llvm::Function>(GV);
2812   setFunctionLinkage(OldGD, Fn);
2813 
2814   // FIXME: this is redundant with part of
2815   // setFunctionDefinitionAttributes
2816   setGVProperties(Fn, OldGD);
2817 
2818   MaybeHandleStaticInExternC(D, Fn);
2819 
2820   maybeSetTrivialComdat(*D, *Fn);
2821 
2822   CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2823 
2824   setNonAliasAttributes(OldGD, Fn);
2825   SetLLVMFunctionAttributesForDefinition(D, Fn);
2826 
2827   if (D->hasAttr<AnnotateAttr>())
2828     AddGlobalAnnotations(D, Fn);
2829 }
2830 
2831 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2832   const auto *D = cast<ValueDecl>(GD.getDecl());
2833 
2834   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2835                                  Context.getSourceManager(),
2836                                  "Generating code for declaration");
2837 
2838   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2839     // At -O0, don't generate IR for functions with available_externally
2840     // linkage.
2841     if (!shouldEmitFunction(GD))
2842       return;
2843 
2844     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2845       std::string Name;
2846       llvm::raw_string_ostream OS(Name);
2847       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2848                                /*Qualified=*/true);
2849       return Name;
2850     });
2851 
2852     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2853       // Make sure to emit the definition(s) before we emit the thunks.
2854       // This is necessary for the generation of certain thunks.
2855       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2856         ABI->emitCXXStructor(GD);
2857       else if (FD->isMultiVersion())
2858         EmitMultiVersionFunctionDefinition(GD, GV);
2859       else
2860         EmitGlobalFunctionDefinition(GD, GV);
2861 
2862       if (Method->isVirtual())
2863         getVTables().EmitThunks(GD);
2864 
2865       return;
2866     }
2867 
2868     if (FD->isMultiVersion())
2869       return EmitMultiVersionFunctionDefinition(GD, GV);
2870     return EmitGlobalFunctionDefinition(GD, GV);
2871   }
2872 
2873   if (const auto *VD = dyn_cast<VarDecl>(D))
2874     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2875 
2876   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2877 }
2878 
2879 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2880                                                       llvm::Function *NewFn);
2881 
2882 static unsigned
2883 TargetMVPriority(const TargetInfo &TI,
2884                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2885   unsigned Priority = 0;
2886   for (StringRef Feat : RO.Conditions.Features)
2887     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2888 
2889   if (!RO.Conditions.Architecture.empty())
2890     Priority = std::max(
2891         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2892   return Priority;
2893 }
2894 
2895 void CodeGenModule::emitMultiVersionFunctions() {
2896   for (GlobalDecl GD : MultiVersionFuncs) {
2897     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2898     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2899     getContext().forEachMultiversionedFunctionVersion(
2900         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2901           GlobalDecl CurGD{
2902               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2903           StringRef MangledName = getMangledName(CurGD);
2904           llvm::Constant *Func = GetGlobalValue(MangledName);
2905           if (!Func) {
2906             if (CurFD->isDefined()) {
2907               EmitGlobalFunctionDefinition(CurGD, nullptr);
2908               Func = GetGlobalValue(MangledName);
2909             } else {
2910               const CGFunctionInfo &FI =
2911                   getTypes().arrangeGlobalDeclaration(GD);
2912               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2913               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2914                                        /*DontDefer=*/false, ForDefinition);
2915             }
2916             assert(Func && "This should have just been created");
2917           }
2918 
2919           const auto *TA = CurFD->getAttr<TargetAttr>();
2920           llvm::SmallVector<StringRef, 8> Feats;
2921           TA->getAddedFeatures(Feats);
2922 
2923           Options.emplace_back(cast<llvm::Function>(Func),
2924                                TA->getArchitecture(), Feats);
2925         });
2926 
2927     llvm::Function *ResolverFunc;
2928     const TargetInfo &TI = getTarget();
2929 
2930     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2931       ResolverFunc = cast<llvm::Function>(
2932           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2933       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2934     } else {
2935       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2936     }
2937 
2938     if (supportsCOMDAT())
2939       ResolverFunc->setComdat(
2940           getModule().getOrInsertComdat(ResolverFunc->getName()));
2941 
2942     llvm::stable_sort(
2943         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2944                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2945           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2946         });
2947     CodeGenFunction CGF(*this);
2948     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2949   }
2950 }
2951 
2952 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2953   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2954   assert(FD && "Not a FunctionDecl?");
2955   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2956   assert(DD && "Not a cpu_dispatch Function?");
2957   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2958 
2959   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2960     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2961     DeclTy = getTypes().GetFunctionType(FInfo);
2962   }
2963 
2964   StringRef ResolverName = getMangledName(GD);
2965 
2966   llvm::Type *ResolverType;
2967   GlobalDecl ResolverGD;
2968   if (getTarget().supportsIFunc())
2969     ResolverType = llvm::FunctionType::get(
2970         llvm::PointerType::get(DeclTy,
2971                                Context.getTargetAddressSpace(FD->getType())),
2972         false);
2973   else {
2974     ResolverType = DeclTy;
2975     ResolverGD = GD;
2976   }
2977 
2978   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2979       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2980   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2981   if (supportsCOMDAT())
2982     ResolverFunc->setComdat(
2983         getModule().getOrInsertComdat(ResolverFunc->getName()));
2984 
2985   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2986   const TargetInfo &Target = getTarget();
2987   unsigned Index = 0;
2988   for (const IdentifierInfo *II : DD->cpus()) {
2989     // Get the name of the target function so we can look it up/create it.
2990     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2991                               getCPUSpecificMangling(*this, II->getName());
2992 
2993     llvm::Constant *Func = GetGlobalValue(MangledName);
2994 
2995     if (!Func) {
2996       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2997       if (ExistingDecl.getDecl() &&
2998           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2999         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3000         Func = GetGlobalValue(MangledName);
3001       } else {
3002         if (!ExistingDecl.getDecl())
3003           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3004 
3005       Func = GetOrCreateLLVMFunction(
3006           MangledName, DeclTy, ExistingDecl,
3007           /*ForVTable=*/false, /*DontDefer=*/true,
3008           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3009       }
3010     }
3011 
3012     llvm::SmallVector<StringRef, 32> Features;
3013     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3014     llvm::transform(Features, Features.begin(),
3015                     [](StringRef Str) { return Str.substr(1); });
3016     Features.erase(std::remove_if(
3017         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3018           return !Target.validateCpuSupports(Feat);
3019         }), Features.end());
3020     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3021     ++Index;
3022   }
3023 
3024   llvm::sort(
3025       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3026                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3027         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3028                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3029       });
3030 
3031   // If the list contains multiple 'default' versions, such as when it contains
3032   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3033   // always run on at least a 'pentium'). We do this by deleting the 'least
3034   // advanced' (read, lowest mangling letter).
3035   while (Options.size() > 1 &&
3036          CodeGenFunction::GetX86CpuSupportsMask(
3037              (Options.end() - 2)->Conditions.Features) == 0) {
3038     StringRef LHSName = (Options.end() - 2)->Function->getName();
3039     StringRef RHSName = (Options.end() - 1)->Function->getName();
3040     if (LHSName.compare(RHSName) < 0)
3041       Options.erase(Options.end() - 2);
3042     else
3043       Options.erase(Options.end() - 1);
3044   }
3045 
3046   CodeGenFunction CGF(*this);
3047   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3048 
3049   if (getTarget().supportsIFunc()) {
3050     std::string AliasName = getMangledNameImpl(
3051         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3052     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3053     if (!AliasFunc) {
3054       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3055           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3056           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3057       auto *GA = llvm::GlobalAlias::create(
3058          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3059       GA->setLinkage(llvm::Function::WeakODRLinkage);
3060       SetCommonAttributes(GD, GA);
3061     }
3062   }
3063 }
3064 
3065 /// If a dispatcher for the specified mangled name is not in the module, create
3066 /// and return an llvm Function with the specified type.
3067 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3068     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3069   std::string MangledName =
3070       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3071 
3072   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3073   // a separate resolver).
3074   std::string ResolverName = MangledName;
3075   if (getTarget().supportsIFunc())
3076     ResolverName += ".ifunc";
3077   else if (FD->isTargetMultiVersion())
3078     ResolverName += ".resolver";
3079 
3080   // If this already exists, just return that one.
3081   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3082     return ResolverGV;
3083 
3084   // Since this is the first time we've created this IFunc, make sure
3085   // that we put this multiversioned function into the list to be
3086   // replaced later if necessary (target multiversioning only).
3087   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3088     MultiVersionFuncs.push_back(GD);
3089 
3090   if (getTarget().supportsIFunc()) {
3091     llvm::Type *ResolverType = llvm::FunctionType::get(
3092         llvm::PointerType::get(
3093             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3094         false);
3095     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3096         MangledName + ".resolver", ResolverType, GlobalDecl{},
3097         /*ForVTable=*/false);
3098     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3099         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3100     GIF->setName(ResolverName);
3101     SetCommonAttributes(FD, GIF);
3102 
3103     return GIF;
3104   }
3105 
3106   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3107       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3108   assert(isa<llvm::GlobalValue>(Resolver) &&
3109          "Resolver should be created for the first time");
3110   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3111   return Resolver;
3112 }
3113 
3114 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3115 /// module, create and return an llvm Function with the specified type. If there
3116 /// is something in the module with the specified name, return it potentially
3117 /// bitcasted to the right type.
3118 ///
3119 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3120 /// to set the attributes on the function when it is first created.
3121 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3122     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3123     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3124     ForDefinition_t IsForDefinition) {
3125   const Decl *D = GD.getDecl();
3126 
3127   // Any attempts to use a MultiVersion function should result in retrieving
3128   // the iFunc instead. Name Mangling will handle the rest of the changes.
3129   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3130     // For the device mark the function as one that should be emitted.
3131     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3132         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3133         !DontDefer && !IsForDefinition) {
3134       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3135         GlobalDecl GDDef;
3136         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3137           GDDef = GlobalDecl(CD, GD.getCtorType());
3138         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3139           GDDef = GlobalDecl(DD, GD.getDtorType());
3140         else
3141           GDDef = GlobalDecl(FDDef);
3142         EmitGlobal(GDDef);
3143       }
3144     }
3145     // Check if this must be emitted as declare variant and emit reference to
3146     // the the declare variant function.
3147     if (LangOpts.OpenMP && OpenMPRuntime)
3148       (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3149 
3150     if (FD->isMultiVersion()) {
3151       const auto *TA = FD->getAttr<TargetAttr>();
3152       if (TA && TA->isDefaultVersion())
3153         UpdateMultiVersionNames(GD, FD);
3154       if (!IsForDefinition)
3155         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3156     }
3157   }
3158 
3159   // Lookup the entry, lazily creating it if necessary.
3160   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3161   if (Entry) {
3162     if (WeakRefReferences.erase(Entry)) {
3163       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3164       if (FD && !FD->hasAttr<WeakAttr>())
3165         Entry->setLinkage(llvm::Function::ExternalLinkage);
3166     }
3167 
3168     // Handle dropped DLL attributes.
3169     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3170       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3171       setDSOLocal(Entry);
3172     }
3173 
3174     // If there are two attempts to define the same mangled name, issue an
3175     // error.
3176     if (IsForDefinition && !Entry->isDeclaration()) {
3177       GlobalDecl OtherGD;
3178       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3179       // to make sure that we issue an error only once.
3180       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3181           (GD.getCanonicalDecl().getDecl() !=
3182            OtherGD.getCanonicalDecl().getDecl()) &&
3183           DiagnosedConflictingDefinitions.insert(GD).second) {
3184         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3185             << MangledName;
3186         getDiags().Report(OtherGD.getDecl()->getLocation(),
3187                           diag::note_previous_definition);
3188       }
3189     }
3190 
3191     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3192         (Entry->getType()->getElementType() == Ty)) {
3193       return Entry;
3194     }
3195 
3196     // Make sure the result is of the correct type.
3197     // (If function is requested for a definition, we always need to create a new
3198     // function, not just return a bitcast.)
3199     if (!IsForDefinition)
3200       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3201   }
3202 
3203   // This function doesn't have a complete type (for example, the return
3204   // type is an incomplete struct). Use a fake type instead, and make
3205   // sure not to try to set attributes.
3206   bool IsIncompleteFunction = false;
3207 
3208   llvm::FunctionType *FTy;
3209   if (isa<llvm::FunctionType>(Ty)) {
3210     FTy = cast<llvm::FunctionType>(Ty);
3211   } else {
3212     FTy = llvm::FunctionType::get(VoidTy, false);
3213     IsIncompleteFunction = true;
3214   }
3215 
3216   llvm::Function *F =
3217       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3218                              Entry ? StringRef() : MangledName, &getModule());
3219 
3220   // If we already created a function with the same mangled name (but different
3221   // type) before, take its name and add it to the list of functions to be
3222   // replaced with F at the end of CodeGen.
3223   //
3224   // This happens if there is a prototype for a function (e.g. "int f()") and
3225   // then a definition of a different type (e.g. "int f(int x)").
3226   if (Entry) {
3227     F->takeName(Entry);
3228 
3229     // This might be an implementation of a function without a prototype, in
3230     // which case, try to do special replacement of calls which match the new
3231     // prototype.  The really key thing here is that we also potentially drop
3232     // arguments from the call site so as to make a direct call, which makes the
3233     // inliner happier and suppresses a number of optimizer warnings (!) about
3234     // dropping arguments.
3235     if (!Entry->use_empty()) {
3236       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3237       Entry->removeDeadConstantUsers();
3238     }
3239 
3240     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3241         F, Entry->getType()->getElementType()->getPointerTo());
3242     addGlobalValReplacement(Entry, BC);
3243   }
3244 
3245   assert(F->getName() == MangledName && "name was uniqued!");
3246   if (D)
3247     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3248   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3249     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3250     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3251   }
3252 
3253   if (!DontDefer) {
3254     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3255     // each other bottoming out with the base dtor.  Therefore we emit non-base
3256     // dtors on usage, even if there is no dtor definition in the TU.
3257     if (D && isa<CXXDestructorDecl>(D) &&
3258         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3259                                            GD.getDtorType()))
3260       addDeferredDeclToEmit(GD);
3261 
3262     // This is the first use or definition of a mangled name.  If there is a
3263     // deferred decl with this name, remember that we need to emit it at the end
3264     // of the file.
3265     auto DDI = DeferredDecls.find(MangledName);
3266     if (DDI != DeferredDecls.end()) {
3267       // Move the potentially referenced deferred decl to the
3268       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3269       // don't need it anymore).
3270       addDeferredDeclToEmit(DDI->second);
3271       DeferredDecls.erase(DDI);
3272 
3273       // Otherwise, there are cases we have to worry about where we're
3274       // using a declaration for which we must emit a definition but where
3275       // we might not find a top-level definition:
3276       //   - member functions defined inline in their classes
3277       //   - friend functions defined inline in some class
3278       //   - special member functions with implicit definitions
3279       // If we ever change our AST traversal to walk into class methods,
3280       // this will be unnecessary.
3281       //
3282       // We also don't emit a definition for a function if it's going to be an
3283       // entry in a vtable, unless it's already marked as used.
3284     } else if (getLangOpts().CPlusPlus && D) {
3285       // Look for a declaration that's lexically in a record.
3286       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3287            FD = FD->getPreviousDecl()) {
3288         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3289           if (FD->doesThisDeclarationHaveABody()) {
3290             addDeferredDeclToEmit(GD.getWithDecl(FD));
3291             break;
3292           }
3293         }
3294       }
3295     }
3296   }
3297 
3298   // Make sure the result is of the requested type.
3299   if (!IsIncompleteFunction) {
3300     assert(F->getType()->getElementType() == Ty);
3301     return F;
3302   }
3303 
3304   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3305   return llvm::ConstantExpr::getBitCast(F, PTy);
3306 }
3307 
3308 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3309 /// non-null, then this function will use the specified type if it has to
3310 /// create it (this occurs when we see a definition of the function).
3311 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3312                                                  llvm::Type *Ty,
3313                                                  bool ForVTable,
3314                                                  bool DontDefer,
3315                                               ForDefinition_t IsForDefinition) {
3316   // If there was no specific requested type, just convert it now.
3317   if (!Ty) {
3318     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3319     Ty = getTypes().ConvertType(FD->getType());
3320   }
3321 
3322   // Devirtualized destructor calls may come through here instead of via
3323   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3324   // of the complete destructor when necessary.
3325   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3326     if (getTarget().getCXXABI().isMicrosoft() &&
3327         GD.getDtorType() == Dtor_Complete &&
3328         DD->getParent()->getNumVBases() == 0)
3329       GD = GlobalDecl(DD, Dtor_Base);
3330   }
3331 
3332   StringRef MangledName = getMangledName(GD);
3333   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3334                                  /*IsThunk=*/false, llvm::AttributeList(),
3335                                  IsForDefinition);
3336 }
3337 
3338 static const FunctionDecl *
3339 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3340   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3341   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3342 
3343   IdentifierInfo &CII = C.Idents.get(Name);
3344   for (const auto &Result : DC->lookup(&CII))
3345     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3346       return FD;
3347 
3348   if (!C.getLangOpts().CPlusPlus)
3349     return nullptr;
3350 
3351   // Demangle the premangled name from getTerminateFn()
3352   IdentifierInfo &CXXII =
3353       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3354           ? C.Idents.get("terminate")
3355           : C.Idents.get(Name);
3356 
3357   for (const auto &N : {"__cxxabiv1", "std"}) {
3358     IdentifierInfo &NS = C.Idents.get(N);
3359     for (const auto &Result : DC->lookup(&NS)) {
3360       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3361       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3362         for (const auto &Result : LSD->lookup(&NS))
3363           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3364             break;
3365 
3366       if (ND)
3367         for (const auto &Result : ND->lookup(&CXXII))
3368           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3369             return FD;
3370     }
3371   }
3372 
3373   return nullptr;
3374 }
3375 
3376 /// CreateRuntimeFunction - Create a new runtime function with the specified
3377 /// type and name.
3378 llvm::FunctionCallee
3379 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3380                                      llvm::AttributeList ExtraAttrs, bool Local,
3381                                      bool AssumeConvergent) {
3382   if (AssumeConvergent) {
3383     ExtraAttrs =
3384         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3385                                 llvm::Attribute::Convergent);
3386   }
3387 
3388   llvm::Constant *C =
3389       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3390                               /*DontDefer=*/false, /*IsThunk=*/false,
3391                               ExtraAttrs);
3392 
3393   if (auto *F = dyn_cast<llvm::Function>(C)) {
3394     if (F->empty()) {
3395       F->setCallingConv(getRuntimeCC());
3396 
3397       // In Windows Itanium environments, try to mark runtime functions
3398       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3399       // will link their standard library statically or dynamically. Marking
3400       // functions imported when they are not imported can cause linker errors
3401       // and warnings.
3402       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3403           !getCodeGenOpts().LTOVisibilityPublicStd) {
3404         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3405         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3406           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3407           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3408         }
3409       }
3410       setDSOLocal(F);
3411     }
3412   }
3413 
3414   return {FTy, C};
3415 }
3416 
3417 /// isTypeConstant - Determine whether an object of this type can be emitted
3418 /// as a constant.
3419 ///
3420 /// If ExcludeCtor is true, the duration when the object's constructor runs
3421 /// will not be considered. The caller will need to verify that the object is
3422 /// not written to during its construction.
3423 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3424   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3425     return false;
3426 
3427   if (Context.getLangOpts().CPlusPlus) {
3428     if (const CXXRecordDecl *Record
3429           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3430       return ExcludeCtor && !Record->hasMutableFields() &&
3431              Record->hasTrivialDestructor();
3432   }
3433 
3434   return true;
3435 }
3436 
3437 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3438 /// create and return an llvm GlobalVariable with the specified type.  If there
3439 /// is something in the module with the specified name, return it potentially
3440 /// bitcasted to the right type.
3441 ///
3442 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3443 /// to set the attributes on the global when it is first created.
3444 ///
3445 /// If IsForDefinition is true, it is guaranteed that an actual global with
3446 /// type Ty will be returned, not conversion of a variable with the same
3447 /// mangled name but some other type.
3448 llvm::Constant *
3449 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3450                                      llvm::PointerType *Ty,
3451                                      const VarDecl *D,
3452                                      ForDefinition_t IsForDefinition) {
3453   // Lookup the entry, lazily creating it if necessary.
3454   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3455   if (Entry) {
3456     if (WeakRefReferences.erase(Entry)) {
3457       if (D && !D->hasAttr<WeakAttr>())
3458         Entry->setLinkage(llvm::Function::ExternalLinkage);
3459     }
3460 
3461     // Handle dropped DLL attributes.
3462     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3463       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3464 
3465     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3466       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3467 
3468     if (Entry->getType() == Ty)
3469       return Entry;
3470 
3471     // If there are two attempts to define the same mangled name, issue an
3472     // error.
3473     if (IsForDefinition && !Entry->isDeclaration()) {
3474       GlobalDecl OtherGD;
3475       const VarDecl *OtherD;
3476 
3477       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3478       // to make sure that we issue an error only once.
3479       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3480           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3481           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3482           OtherD->hasInit() &&
3483           DiagnosedConflictingDefinitions.insert(D).second) {
3484         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3485             << MangledName;
3486         getDiags().Report(OtherGD.getDecl()->getLocation(),
3487                           diag::note_previous_definition);
3488       }
3489     }
3490 
3491     // Make sure the result is of the correct type.
3492     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3493       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3494 
3495     // (If global is requested for a definition, we always need to create a new
3496     // global, not just return a bitcast.)
3497     if (!IsForDefinition)
3498       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3499   }
3500 
3501   auto AddrSpace = GetGlobalVarAddressSpace(D);
3502   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3503 
3504   auto *GV = new llvm::GlobalVariable(
3505       getModule(), Ty->getElementType(), false,
3506       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3507       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3508 
3509   // If we already created a global with the same mangled name (but different
3510   // type) before, take its name and remove it from its parent.
3511   if (Entry) {
3512     GV->takeName(Entry);
3513 
3514     if (!Entry->use_empty()) {
3515       llvm::Constant *NewPtrForOldDecl =
3516           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3517       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3518     }
3519 
3520     Entry->eraseFromParent();
3521   }
3522 
3523   // This is the first use or definition of a mangled name.  If there is a
3524   // deferred decl with this name, remember that we need to emit it at the end
3525   // of the file.
3526   auto DDI = DeferredDecls.find(MangledName);
3527   if (DDI != DeferredDecls.end()) {
3528     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3529     // list, and remove it from DeferredDecls (since we don't need it anymore).
3530     addDeferredDeclToEmit(DDI->second);
3531     DeferredDecls.erase(DDI);
3532   }
3533 
3534   // Handle things which are present even on external declarations.
3535   if (D) {
3536     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3537       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3538 
3539     // FIXME: This code is overly simple and should be merged with other global
3540     // handling.
3541     GV->setConstant(isTypeConstant(D->getType(), false));
3542 
3543     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3544 
3545     setLinkageForGV(GV, D);
3546 
3547     if (D->getTLSKind()) {
3548       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3549         CXXThreadLocals.push_back(D);
3550       setTLSMode(GV, *D);
3551     }
3552 
3553     setGVProperties(GV, D);
3554 
3555     // If required by the ABI, treat declarations of static data members with
3556     // inline initializers as definitions.
3557     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3558       EmitGlobalVarDefinition(D);
3559     }
3560 
3561     // Emit section information for extern variables.
3562     if (D->hasExternalStorage()) {
3563       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3564         GV->setSection(SA->getName());
3565     }
3566 
3567     // Handle XCore specific ABI requirements.
3568     if (getTriple().getArch() == llvm::Triple::xcore &&
3569         D->getLanguageLinkage() == CLanguageLinkage &&
3570         D->getType().isConstant(Context) &&
3571         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3572       GV->setSection(".cp.rodata");
3573 
3574     // Check if we a have a const declaration with an initializer, we may be
3575     // able to emit it as available_externally to expose it's value to the
3576     // optimizer.
3577     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3578         D->getType().isConstQualified() && !GV->hasInitializer() &&
3579         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3580       const auto *Record =
3581           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3582       bool HasMutableFields = Record && Record->hasMutableFields();
3583       if (!HasMutableFields) {
3584         const VarDecl *InitDecl;
3585         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3586         if (InitExpr) {
3587           ConstantEmitter emitter(*this);
3588           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3589           if (Init) {
3590             auto *InitType = Init->getType();
3591             if (GV->getType()->getElementType() != InitType) {
3592               // The type of the initializer does not match the definition.
3593               // This happens when an initializer has a different type from
3594               // the type of the global (because of padding at the end of a
3595               // structure for instance).
3596               GV->setName(StringRef());
3597               // Make a new global with the correct type, this is now guaranteed
3598               // to work.
3599               auto *NewGV = cast<llvm::GlobalVariable>(
3600                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3601                       ->stripPointerCasts());
3602 
3603               // Erase the old global, since it is no longer used.
3604               GV->eraseFromParent();
3605               GV = NewGV;
3606             } else {
3607               GV->setInitializer(Init);
3608               GV->setConstant(true);
3609               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3610             }
3611             emitter.finalize(GV);
3612           }
3613         }
3614       }
3615     }
3616   }
3617 
3618   if (GV->isDeclaration())
3619     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3620 
3621   LangAS ExpectedAS =
3622       D ? D->getType().getAddressSpace()
3623         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3624   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3625          Ty->getPointerAddressSpace());
3626   if (AddrSpace != ExpectedAS)
3627     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3628                                                        ExpectedAS, Ty);
3629 
3630   return GV;
3631 }
3632 
3633 llvm::Constant *
3634 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3635                                ForDefinition_t IsForDefinition) {
3636   const Decl *D = GD.getDecl();
3637   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3638     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3639                                 /*DontDefer=*/false, IsForDefinition);
3640   else if (isa<CXXMethodDecl>(D)) {
3641     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3642         cast<CXXMethodDecl>(D));
3643     auto Ty = getTypes().GetFunctionType(*FInfo);
3644     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3645                              IsForDefinition);
3646   } else if (isa<FunctionDecl>(D)) {
3647     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3648     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3649     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3650                              IsForDefinition);
3651   } else
3652     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3653                               IsForDefinition);
3654 }
3655 
3656 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3657     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3658     unsigned Alignment) {
3659   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3660   llvm::GlobalVariable *OldGV = nullptr;
3661 
3662   if (GV) {
3663     // Check if the variable has the right type.
3664     if (GV->getType()->getElementType() == Ty)
3665       return GV;
3666 
3667     // Because C++ name mangling, the only way we can end up with an already
3668     // existing global with the same name is if it has been declared extern "C".
3669     assert(GV->isDeclaration() && "Declaration has wrong type!");
3670     OldGV = GV;
3671   }
3672 
3673   // Create a new variable.
3674   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3675                                 Linkage, nullptr, Name);
3676 
3677   if (OldGV) {
3678     // Replace occurrences of the old variable if needed.
3679     GV->takeName(OldGV);
3680 
3681     if (!OldGV->use_empty()) {
3682       llvm::Constant *NewPtrForOldDecl =
3683       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3684       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3685     }
3686 
3687     OldGV->eraseFromParent();
3688   }
3689 
3690   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3691       !GV->hasAvailableExternallyLinkage())
3692     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3693 
3694   GV->setAlignment(llvm::MaybeAlign(Alignment));
3695 
3696   return GV;
3697 }
3698 
3699 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3700 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3701 /// then it will be created with the specified type instead of whatever the
3702 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3703 /// that an actual global with type Ty will be returned, not conversion of a
3704 /// variable with the same mangled name but some other type.
3705 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3706                                                   llvm::Type *Ty,
3707                                            ForDefinition_t IsForDefinition) {
3708   assert(D->hasGlobalStorage() && "Not a global variable");
3709   QualType ASTTy = D->getType();
3710   if (!Ty)
3711     Ty = getTypes().ConvertTypeForMem(ASTTy);
3712 
3713   llvm::PointerType *PTy =
3714     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3715 
3716   StringRef MangledName = getMangledName(D);
3717   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3718 }
3719 
3720 /// CreateRuntimeVariable - Create a new runtime global variable with the
3721 /// specified type and name.
3722 llvm::Constant *
3723 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3724                                      StringRef Name) {
3725   auto PtrTy =
3726       getContext().getLangOpts().OpenCL
3727           ? llvm::PointerType::get(
3728                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3729           : llvm::PointerType::getUnqual(Ty);
3730   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3731   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3732   return Ret;
3733 }
3734 
3735 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3736   assert(!D->getInit() && "Cannot emit definite definitions here!");
3737 
3738   StringRef MangledName = getMangledName(D);
3739   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3740 
3741   // We already have a definition, not declaration, with the same mangled name.
3742   // Emitting of declaration is not required (and actually overwrites emitted
3743   // definition).
3744   if (GV && !GV->isDeclaration())
3745     return;
3746 
3747   // If we have not seen a reference to this variable yet, place it into the
3748   // deferred declarations table to be emitted if needed later.
3749   if (!MustBeEmitted(D) && !GV) {
3750       DeferredDecls[MangledName] = D;
3751       return;
3752   }
3753 
3754   // The tentative definition is the only definition.
3755   EmitGlobalVarDefinition(D);
3756 }
3757 
3758 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3759   EmitExternalVarDeclaration(D);
3760 }
3761 
3762 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3763   return Context.toCharUnitsFromBits(
3764       getDataLayout().getTypeStoreSizeInBits(Ty));
3765 }
3766 
3767 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3768   LangAS AddrSpace = LangAS::Default;
3769   if (LangOpts.OpenCL) {
3770     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3771     assert(AddrSpace == LangAS::opencl_global ||
3772            AddrSpace == LangAS::opencl_constant ||
3773            AddrSpace == LangAS::opencl_local ||
3774            AddrSpace >= LangAS::FirstTargetAddressSpace);
3775     return AddrSpace;
3776   }
3777 
3778   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3779     if (D && D->hasAttr<CUDAConstantAttr>())
3780       return LangAS::cuda_constant;
3781     else if (D && D->hasAttr<CUDASharedAttr>())
3782       return LangAS::cuda_shared;
3783     else if (D && D->hasAttr<CUDADeviceAttr>())
3784       return LangAS::cuda_device;
3785     else if (D && D->getType().isConstQualified())
3786       return LangAS::cuda_constant;
3787     else
3788       return LangAS::cuda_device;
3789   }
3790 
3791   if (LangOpts.OpenMP) {
3792     LangAS AS;
3793     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3794       return AS;
3795   }
3796   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3797 }
3798 
3799 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3800   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3801   if (LangOpts.OpenCL)
3802     return LangAS::opencl_constant;
3803   if (auto AS = getTarget().getConstantAddressSpace())
3804     return AS.getValue();
3805   return LangAS::Default;
3806 }
3807 
3808 // In address space agnostic languages, string literals are in default address
3809 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3810 // emitted in constant address space in LLVM IR. To be consistent with other
3811 // parts of AST, string literal global variables in constant address space
3812 // need to be casted to default address space before being put into address
3813 // map and referenced by other part of CodeGen.
3814 // In OpenCL, string literals are in constant address space in AST, therefore
3815 // they should not be casted to default address space.
3816 static llvm::Constant *
3817 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3818                                        llvm::GlobalVariable *GV) {
3819   llvm::Constant *Cast = GV;
3820   if (!CGM.getLangOpts().OpenCL) {
3821     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3822       if (AS != LangAS::Default)
3823         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3824             CGM, GV, AS.getValue(), LangAS::Default,
3825             GV->getValueType()->getPointerTo(
3826                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3827     }
3828   }
3829   return Cast;
3830 }
3831 
3832 template<typename SomeDecl>
3833 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3834                                                llvm::GlobalValue *GV) {
3835   if (!getLangOpts().CPlusPlus)
3836     return;
3837 
3838   // Must have 'used' attribute, or else inline assembly can't rely on
3839   // the name existing.
3840   if (!D->template hasAttr<UsedAttr>())
3841     return;
3842 
3843   // Must have internal linkage and an ordinary name.
3844   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3845     return;
3846 
3847   // Must be in an extern "C" context. Entities declared directly within
3848   // a record are not extern "C" even if the record is in such a context.
3849   const SomeDecl *First = D->getFirstDecl();
3850   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3851     return;
3852 
3853   // OK, this is an internal linkage entity inside an extern "C" linkage
3854   // specification. Make a note of that so we can give it the "expected"
3855   // mangled name if nothing else is using that name.
3856   std::pair<StaticExternCMap::iterator, bool> R =
3857       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3858 
3859   // If we have multiple internal linkage entities with the same name
3860   // in extern "C" regions, none of them gets that name.
3861   if (!R.second)
3862     R.first->second = nullptr;
3863 }
3864 
3865 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3866   if (!CGM.supportsCOMDAT())
3867     return false;
3868 
3869   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3870   // them being "merged" by the COMDAT Folding linker optimization.
3871   if (D.hasAttr<CUDAGlobalAttr>())
3872     return false;
3873 
3874   if (D.hasAttr<SelectAnyAttr>())
3875     return true;
3876 
3877   GVALinkage Linkage;
3878   if (auto *VD = dyn_cast<VarDecl>(&D))
3879     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3880   else
3881     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3882 
3883   switch (Linkage) {
3884   case GVA_Internal:
3885   case GVA_AvailableExternally:
3886   case GVA_StrongExternal:
3887     return false;
3888   case GVA_DiscardableODR:
3889   case GVA_StrongODR:
3890     return true;
3891   }
3892   llvm_unreachable("No such linkage");
3893 }
3894 
3895 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3896                                           llvm::GlobalObject &GO) {
3897   if (!shouldBeInCOMDAT(*this, D))
3898     return;
3899   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3900 }
3901 
3902 /// Pass IsTentative as true if you want to create a tentative definition.
3903 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3904                                             bool IsTentative) {
3905   // OpenCL global variables of sampler type are translated to function calls,
3906   // therefore no need to be translated.
3907   QualType ASTTy = D->getType();
3908   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3909     return;
3910 
3911   // If this is OpenMP device, check if it is legal to emit this global
3912   // normally.
3913   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3914       OpenMPRuntime->emitTargetGlobalVariable(D))
3915     return;
3916 
3917   llvm::Constant *Init = nullptr;
3918   bool NeedsGlobalCtor = false;
3919   bool NeedsGlobalDtor =
3920       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3921 
3922   const VarDecl *InitDecl;
3923   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3924 
3925   Optional<ConstantEmitter> emitter;
3926 
3927   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3928   // as part of their declaration."  Sema has already checked for
3929   // error cases, so we just need to set Init to UndefValue.
3930   bool IsCUDASharedVar =
3931       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3932   // Shadows of initialized device-side global variables are also left
3933   // undefined.
3934   bool IsCUDAShadowVar =
3935       !getLangOpts().CUDAIsDevice &&
3936       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3937        D->hasAttr<CUDASharedAttr>());
3938   // HIP pinned shadow of initialized host-side global variables are also
3939   // left undefined.
3940   bool IsHIPPinnedShadowVar =
3941       getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3942   if (getLangOpts().CUDA &&
3943       (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3944     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3945   else if (!InitExpr) {
3946     // This is a tentative definition; tentative definitions are
3947     // implicitly initialized with { 0 }.
3948     //
3949     // Note that tentative definitions are only emitted at the end of
3950     // a translation unit, so they should never have incomplete
3951     // type. In addition, EmitTentativeDefinition makes sure that we
3952     // never attempt to emit a tentative definition if a real one
3953     // exists. A use may still exists, however, so we still may need
3954     // to do a RAUW.
3955     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3956     Init = EmitNullConstant(D->getType());
3957   } else {
3958     initializedGlobalDecl = GlobalDecl(D);
3959     emitter.emplace(*this);
3960     Init = emitter->tryEmitForInitializer(*InitDecl);
3961 
3962     if (!Init) {
3963       QualType T = InitExpr->getType();
3964       if (D->getType()->isReferenceType())
3965         T = D->getType();
3966 
3967       if (getLangOpts().CPlusPlus) {
3968         Init = EmitNullConstant(T);
3969         NeedsGlobalCtor = true;
3970       } else {
3971         ErrorUnsupported(D, "static initializer");
3972         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3973       }
3974     } else {
3975       // We don't need an initializer, so remove the entry for the delayed
3976       // initializer position (just in case this entry was delayed) if we
3977       // also don't need to register a destructor.
3978       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3979         DelayedCXXInitPosition.erase(D);
3980     }
3981   }
3982 
3983   llvm::Type* InitType = Init->getType();
3984   llvm::Constant *Entry =
3985       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3986 
3987   // Strip off pointer casts if we got them.
3988   Entry = Entry->stripPointerCasts();
3989 
3990   // Entry is now either a Function or GlobalVariable.
3991   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3992 
3993   // We have a definition after a declaration with the wrong type.
3994   // We must make a new GlobalVariable* and update everything that used OldGV
3995   // (a declaration or tentative definition) with the new GlobalVariable*
3996   // (which will be a definition).
3997   //
3998   // This happens if there is a prototype for a global (e.g.
3999   // "extern int x[];") and then a definition of a different type (e.g.
4000   // "int x[10];"). This also happens when an initializer has a different type
4001   // from the type of the global (this happens with unions).
4002   if (!GV || GV->getType()->getElementType() != InitType ||
4003       GV->getType()->getAddressSpace() !=
4004           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4005 
4006     // Move the old entry aside so that we'll create a new one.
4007     Entry->setName(StringRef());
4008 
4009     // Make a new global with the correct type, this is now guaranteed to work.
4010     GV = cast<llvm::GlobalVariable>(
4011         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4012             ->stripPointerCasts());
4013 
4014     // Replace all uses of the old global with the new global
4015     llvm::Constant *NewPtrForOldDecl =
4016         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4017     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4018 
4019     // Erase the old global, since it is no longer used.
4020     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4021   }
4022 
4023   MaybeHandleStaticInExternC(D, GV);
4024 
4025   if (D->hasAttr<AnnotateAttr>())
4026     AddGlobalAnnotations(D, GV);
4027 
4028   // Set the llvm linkage type as appropriate.
4029   llvm::GlobalValue::LinkageTypes Linkage =
4030       getLLVMLinkageVarDefinition(D, GV->isConstant());
4031 
4032   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4033   // the device. [...]"
4034   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4035   // __device__, declares a variable that: [...]
4036   // Is accessible from all the threads within the grid and from the host
4037   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4038   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4039   if (GV && LangOpts.CUDA) {
4040     if (LangOpts.CUDAIsDevice) {
4041       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4042           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4043         GV->setExternallyInitialized(true);
4044     } else {
4045       // Host-side shadows of external declarations of device-side
4046       // global variables become internal definitions. These have to
4047       // be internal in order to prevent name conflicts with global
4048       // host variables with the same name in a different TUs.
4049       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4050           D->hasAttr<HIPPinnedShadowAttr>()) {
4051         Linkage = llvm::GlobalValue::InternalLinkage;
4052 
4053         // Shadow variables and their properties must be registered
4054         // with CUDA runtime.
4055         unsigned Flags = 0;
4056         if (!D->hasDefinition())
4057           Flags |= CGCUDARuntime::ExternDeviceVar;
4058         if (D->hasAttr<CUDAConstantAttr>())
4059           Flags |= CGCUDARuntime::ConstantDeviceVar;
4060         // Extern global variables will be registered in the TU where they are
4061         // defined.
4062         if (!D->hasExternalStorage())
4063           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4064       } else if (D->hasAttr<CUDASharedAttr>())
4065         // __shared__ variables are odd. Shadows do get created, but
4066         // they are not registered with the CUDA runtime, so they
4067         // can't really be used to access their device-side
4068         // counterparts. It's not clear yet whether it's nvcc's bug or
4069         // a feature, but we've got to do the same for compatibility.
4070         Linkage = llvm::GlobalValue::InternalLinkage;
4071     }
4072   }
4073 
4074   // HIPPinnedShadowVar should remain in the final code object irrespective of
4075   // whether it is used or not within the code. Add it to used list, so that
4076   // it will not get eliminated when it is unused. Also, it is an extern var
4077   // within device code, and it should *not* get initialized within device code.
4078   if (IsHIPPinnedShadowVar)
4079     addUsedGlobal(GV, /*SkipCheck=*/true);
4080   else
4081     GV->setInitializer(Init);
4082 
4083   if (emitter)
4084     emitter->finalize(GV);
4085 
4086   // If it is safe to mark the global 'constant', do so now.
4087   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4088                   isTypeConstant(D->getType(), true));
4089 
4090   // If it is in a read-only section, mark it 'constant'.
4091   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4092     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4093     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4094       GV->setConstant(true);
4095   }
4096 
4097   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4098 
4099   // On Darwin, if the normal linkage of a C++ thread_local variable is
4100   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4101   // copies within a linkage unit; otherwise, the backing variable has
4102   // internal linkage and all accesses should just be calls to the
4103   // Itanium-specified entry point, which has the normal linkage of the
4104   // variable. This is to preserve the ability to change the implementation
4105   // behind the scenes.
4106   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4107       Context.getTargetInfo().getTriple().isOSDarwin() &&
4108       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4109       !llvm::GlobalVariable::isWeakLinkage(Linkage))
4110     Linkage = llvm::GlobalValue::InternalLinkage;
4111 
4112   GV->setLinkage(Linkage);
4113   if (D->hasAttr<DLLImportAttr>())
4114     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4115   else if (D->hasAttr<DLLExportAttr>())
4116     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4117   else
4118     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4119 
4120   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4121     // common vars aren't constant even if declared const.
4122     GV->setConstant(false);
4123     // Tentative definition of global variables may be initialized with
4124     // non-zero null pointers. In this case they should have weak linkage
4125     // since common linkage must have zero initializer and must not have
4126     // explicit section therefore cannot have non-zero initial value.
4127     if (!GV->getInitializer()->isNullValue())
4128       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4129   }
4130 
4131   setNonAliasAttributes(D, GV);
4132 
4133   if (D->getTLSKind() && !GV->isThreadLocal()) {
4134     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4135       CXXThreadLocals.push_back(D);
4136     setTLSMode(GV, *D);
4137   }
4138 
4139   maybeSetTrivialComdat(*D, *GV);
4140 
4141   // Emit the initializer function if necessary.
4142   if (NeedsGlobalCtor || NeedsGlobalDtor)
4143     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4144 
4145   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4146 
4147   // Emit global variable debug information.
4148   if (CGDebugInfo *DI = getModuleDebugInfo())
4149     if (getCodeGenOpts().hasReducedDebugInfo())
4150       DI->EmitGlobalVariable(GV, D);
4151 }
4152 
4153 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4154   if (CGDebugInfo *DI = getModuleDebugInfo())
4155     if (getCodeGenOpts().hasReducedDebugInfo()) {
4156       QualType ASTTy = D->getType();
4157       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4158       llvm::PointerType *PTy =
4159           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4160       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4161       DI->EmitExternalVariable(
4162           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4163     }
4164 }
4165 
4166 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4167                                       CodeGenModule &CGM, const VarDecl *D,
4168                                       bool NoCommon) {
4169   // Don't give variables common linkage if -fno-common was specified unless it
4170   // was overridden by a NoCommon attribute.
4171   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4172     return true;
4173 
4174   // C11 6.9.2/2:
4175   //   A declaration of an identifier for an object that has file scope without
4176   //   an initializer, and without a storage-class specifier or with the
4177   //   storage-class specifier static, constitutes a tentative definition.
4178   if (D->getInit() || D->hasExternalStorage())
4179     return true;
4180 
4181   // A variable cannot be both common and exist in a section.
4182   if (D->hasAttr<SectionAttr>())
4183     return true;
4184 
4185   // A variable cannot be both common and exist in a section.
4186   // We don't try to determine which is the right section in the front-end.
4187   // If no specialized section name is applicable, it will resort to default.
4188   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4189       D->hasAttr<PragmaClangDataSectionAttr>() ||
4190       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4191       D->hasAttr<PragmaClangRodataSectionAttr>())
4192     return true;
4193 
4194   // Thread local vars aren't considered common linkage.
4195   if (D->getTLSKind())
4196     return true;
4197 
4198   // Tentative definitions marked with WeakImportAttr are true definitions.
4199   if (D->hasAttr<WeakImportAttr>())
4200     return true;
4201 
4202   // A variable cannot be both common and exist in a comdat.
4203   if (shouldBeInCOMDAT(CGM, *D))
4204     return true;
4205 
4206   // Declarations with a required alignment do not have common linkage in MSVC
4207   // mode.
4208   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4209     if (D->hasAttr<AlignedAttr>())
4210       return true;
4211     QualType VarType = D->getType();
4212     if (Context.isAlignmentRequired(VarType))
4213       return true;
4214 
4215     if (const auto *RT = VarType->getAs<RecordType>()) {
4216       const RecordDecl *RD = RT->getDecl();
4217       for (const FieldDecl *FD : RD->fields()) {
4218         if (FD->isBitField())
4219           continue;
4220         if (FD->hasAttr<AlignedAttr>())
4221           return true;
4222         if (Context.isAlignmentRequired(FD->getType()))
4223           return true;
4224       }
4225     }
4226   }
4227 
4228   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4229   // common symbols, so symbols with greater alignment requirements cannot be
4230   // common.
4231   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4232   // alignments for common symbols via the aligncomm directive, so this
4233   // restriction only applies to MSVC environments.
4234   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4235       Context.getTypeAlignIfKnown(D->getType()) >
4236           Context.toBits(CharUnits::fromQuantity(32)))
4237     return true;
4238 
4239   return false;
4240 }
4241 
4242 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4243     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4244   if (Linkage == GVA_Internal)
4245     return llvm::Function::InternalLinkage;
4246 
4247   if (D->hasAttr<WeakAttr>()) {
4248     if (IsConstantVariable)
4249       return llvm::GlobalVariable::WeakODRLinkage;
4250     else
4251       return llvm::GlobalVariable::WeakAnyLinkage;
4252   }
4253 
4254   if (const auto *FD = D->getAsFunction())
4255     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4256       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4257 
4258   // We are guaranteed to have a strong definition somewhere else,
4259   // so we can use available_externally linkage.
4260   if (Linkage == GVA_AvailableExternally)
4261     return llvm::GlobalValue::AvailableExternallyLinkage;
4262 
4263   // Note that Apple's kernel linker doesn't support symbol
4264   // coalescing, so we need to avoid linkonce and weak linkages there.
4265   // Normally, this means we just map to internal, but for explicit
4266   // instantiations we'll map to external.
4267 
4268   // In C++, the compiler has to emit a definition in every translation unit
4269   // that references the function.  We should use linkonce_odr because
4270   // a) if all references in this translation unit are optimized away, we
4271   // don't need to codegen it.  b) if the function persists, it needs to be
4272   // merged with other definitions. c) C++ has the ODR, so we know the
4273   // definition is dependable.
4274   if (Linkage == GVA_DiscardableODR)
4275     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4276                                             : llvm::Function::InternalLinkage;
4277 
4278   // An explicit instantiation of a template has weak linkage, since
4279   // explicit instantiations can occur in multiple translation units
4280   // and must all be equivalent. However, we are not allowed to
4281   // throw away these explicit instantiations.
4282   //
4283   // We don't currently support CUDA device code spread out across multiple TUs,
4284   // so say that CUDA templates are either external (for kernels) or internal.
4285   // This lets llvm perform aggressive inter-procedural optimizations.
4286   if (Linkage == GVA_StrongODR) {
4287     if (Context.getLangOpts().AppleKext)
4288       return llvm::Function::ExternalLinkage;
4289     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4290       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4291                                           : llvm::Function::InternalLinkage;
4292     return llvm::Function::WeakODRLinkage;
4293   }
4294 
4295   // C++ doesn't have tentative definitions and thus cannot have common
4296   // linkage.
4297   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4298       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4299                                  CodeGenOpts.NoCommon))
4300     return llvm::GlobalVariable::CommonLinkage;
4301 
4302   // selectany symbols are externally visible, so use weak instead of
4303   // linkonce.  MSVC optimizes away references to const selectany globals, so
4304   // all definitions should be the same and ODR linkage should be used.
4305   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4306   if (D->hasAttr<SelectAnyAttr>())
4307     return llvm::GlobalVariable::WeakODRLinkage;
4308 
4309   // Otherwise, we have strong external linkage.
4310   assert(Linkage == GVA_StrongExternal);
4311   return llvm::GlobalVariable::ExternalLinkage;
4312 }
4313 
4314 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4315     const VarDecl *VD, bool IsConstant) {
4316   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4317   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4318 }
4319 
4320 /// Replace the uses of a function that was declared with a non-proto type.
4321 /// We want to silently drop extra arguments from call sites
4322 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4323                                           llvm::Function *newFn) {
4324   // Fast path.
4325   if (old->use_empty()) return;
4326 
4327   llvm::Type *newRetTy = newFn->getReturnType();
4328   SmallVector<llvm::Value*, 4> newArgs;
4329   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4330 
4331   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4332          ui != ue; ) {
4333     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4334     llvm::User *user = use->getUser();
4335 
4336     // Recognize and replace uses of bitcasts.  Most calls to
4337     // unprototyped functions will use bitcasts.
4338     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4339       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4340         replaceUsesOfNonProtoConstant(bitcast, newFn);
4341       continue;
4342     }
4343 
4344     // Recognize calls to the function.
4345     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4346     if (!callSite) continue;
4347     if (!callSite->isCallee(&*use))
4348       continue;
4349 
4350     // If the return types don't match exactly, then we can't
4351     // transform this call unless it's dead.
4352     if (callSite->getType() != newRetTy && !callSite->use_empty())
4353       continue;
4354 
4355     // Get the call site's attribute list.
4356     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4357     llvm::AttributeList oldAttrs = callSite->getAttributes();
4358 
4359     // If the function was passed too few arguments, don't transform.
4360     unsigned newNumArgs = newFn->arg_size();
4361     if (callSite->arg_size() < newNumArgs)
4362       continue;
4363 
4364     // If extra arguments were passed, we silently drop them.
4365     // If any of the types mismatch, we don't transform.
4366     unsigned argNo = 0;
4367     bool dontTransform = false;
4368     for (llvm::Argument &A : newFn->args()) {
4369       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4370         dontTransform = true;
4371         break;
4372       }
4373 
4374       // Add any parameter attributes.
4375       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4376       argNo++;
4377     }
4378     if (dontTransform)
4379       continue;
4380 
4381     // Okay, we can transform this.  Create the new call instruction and copy
4382     // over the required information.
4383     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4384 
4385     // Copy over any operand bundles.
4386     callSite->getOperandBundlesAsDefs(newBundles);
4387 
4388     llvm::CallBase *newCall;
4389     if (dyn_cast<llvm::CallInst>(callSite)) {
4390       newCall =
4391           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4392     } else {
4393       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4394       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4395                                          oldInvoke->getUnwindDest(), newArgs,
4396                                          newBundles, "", callSite);
4397     }
4398     newArgs.clear(); // for the next iteration
4399 
4400     if (!newCall->getType()->isVoidTy())
4401       newCall->takeName(callSite);
4402     newCall->setAttributes(llvm::AttributeList::get(
4403         newFn->getContext(), oldAttrs.getFnAttributes(),
4404         oldAttrs.getRetAttributes(), newArgAttrs));
4405     newCall->setCallingConv(callSite->getCallingConv());
4406 
4407     // Finally, remove the old call, replacing any uses with the new one.
4408     if (!callSite->use_empty())
4409       callSite->replaceAllUsesWith(newCall);
4410 
4411     // Copy debug location attached to CI.
4412     if (callSite->getDebugLoc())
4413       newCall->setDebugLoc(callSite->getDebugLoc());
4414 
4415     callSite->eraseFromParent();
4416   }
4417 }
4418 
4419 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4420 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4421 /// existing call uses of the old function in the module, this adjusts them to
4422 /// call the new function directly.
4423 ///
4424 /// This is not just a cleanup: the always_inline pass requires direct calls to
4425 /// functions to be able to inline them.  If there is a bitcast in the way, it
4426 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4427 /// run at -O0.
4428 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4429                                                       llvm::Function *NewFn) {
4430   // If we're redefining a global as a function, don't transform it.
4431   if (!isa<llvm::Function>(Old)) return;
4432 
4433   replaceUsesOfNonProtoConstant(Old, NewFn);
4434 }
4435 
4436 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4437   auto DK = VD->isThisDeclarationADefinition();
4438   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4439     return;
4440 
4441   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4442   // If we have a definition, this might be a deferred decl. If the
4443   // instantiation is explicit, make sure we emit it at the end.
4444   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4445     GetAddrOfGlobalVar(VD);
4446 
4447   EmitTopLevelDecl(VD);
4448 }
4449 
4450 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4451                                                  llvm::GlobalValue *GV) {
4452   // Check if this must be emitted as declare variant.
4453   if (LangOpts.OpenMP && OpenMPRuntime &&
4454       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4455     return;
4456 
4457   const auto *D = cast<FunctionDecl>(GD.getDecl());
4458 
4459   // Compute the function info and LLVM type.
4460   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4461   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4462 
4463   // Get or create the prototype for the function.
4464   if (!GV || (GV->getType()->getElementType() != Ty))
4465     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4466                                                    /*DontDefer=*/true,
4467                                                    ForDefinition));
4468 
4469   // Already emitted.
4470   if (!GV->isDeclaration())
4471     return;
4472 
4473   // We need to set linkage and visibility on the function before
4474   // generating code for it because various parts of IR generation
4475   // want to propagate this information down (e.g. to local static
4476   // declarations).
4477   auto *Fn = cast<llvm::Function>(GV);
4478   setFunctionLinkage(GD, Fn);
4479 
4480   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4481   setGVProperties(Fn, GD);
4482 
4483   MaybeHandleStaticInExternC(D, Fn);
4484 
4485 
4486   maybeSetTrivialComdat(*D, *Fn);
4487 
4488   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4489 
4490   setNonAliasAttributes(GD, Fn);
4491   SetLLVMFunctionAttributesForDefinition(D, Fn);
4492 
4493   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4494     AddGlobalCtor(Fn, CA->getPriority());
4495   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4496     AddGlobalDtor(Fn, DA->getPriority());
4497   if (D->hasAttr<AnnotateAttr>())
4498     AddGlobalAnnotations(D, Fn);
4499 }
4500 
4501 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4502   const auto *D = cast<ValueDecl>(GD.getDecl());
4503   const AliasAttr *AA = D->getAttr<AliasAttr>();
4504   assert(AA && "Not an alias?");
4505 
4506   StringRef MangledName = getMangledName(GD);
4507 
4508   if (AA->getAliasee() == MangledName) {
4509     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4510     return;
4511   }
4512 
4513   // If there is a definition in the module, then it wins over the alias.
4514   // This is dubious, but allow it to be safe.  Just ignore the alias.
4515   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4516   if (Entry && !Entry->isDeclaration())
4517     return;
4518 
4519   Aliases.push_back(GD);
4520 
4521   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4522 
4523   // Create a reference to the named value.  This ensures that it is emitted
4524   // if a deferred decl.
4525   llvm::Constant *Aliasee;
4526   llvm::GlobalValue::LinkageTypes LT;
4527   if (isa<llvm::FunctionType>(DeclTy)) {
4528     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4529                                       /*ForVTable=*/false);
4530     LT = getFunctionLinkage(GD);
4531   } else {
4532     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4533                                     llvm::PointerType::getUnqual(DeclTy),
4534                                     /*D=*/nullptr);
4535     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4536                                      D->getType().isConstQualified());
4537   }
4538 
4539   // Create the new alias itself, but don't set a name yet.
4540   auto *GA =
4541       llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4542 
4543   if (Entry) {
4544     if (GA->getAliasee() == Entry) {
4545       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4546       return;
4547     }
4548 
4549     assert(Entry->isDeclaration());
4550 
4551     // If there is a declaration in the module, then we had an extern followed
4552     // by the alias, as in:
4553     //   extern int test6();
4554     //   ...
4555     //   int test6() __attribute__((alias("test7")));
4556     //
4557     // Remove it and replace uses of it with the alias.
4558     GA->takeName(Entry);
4559 
4560     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4561                                                           Entry->getType()));
4562     Entry->eraseFromParent();
4563   } else {
4564     GA->setName(MangledName);
4565   }
4566 
4567   // Set attributes which are particular to an alias; this is a
4568   // specialization of the attributes which may be set on a global
4569   // variable/function.
4570   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4571       D->isWeakImported()) {
4572     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4573   }
4574 
4575   if (const auto *VD = dyn_cast<VarDecl>(D))
4576     if (VD->getTLSKind())
4577       setTLSMode(GA, *VD);
4578 
4579   SetCommonAttributes(GD, GA);
4580 }
4581 
4582 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4583   const auto *D = cast<ValueDecl>(GD.getDecl());
4584   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4585   assert(IFA && "Not an ifunc?");
4586 
4587   StringRef MangledName = getMangledName(GD);
4588 
4589   if (IFA->getResolver() == MangledName) {
4590     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4591     return;
4592   }
4593 
4594   // Report an error if some definition overrides ifunc.
4595   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4596   if (Entry && !Entry->isDeclaration()) {
4597     GlobalDecl OtherGD;
4598     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4599         DiagnosedConflictingDefinitions.insert(GD).second) {
4600       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4601           << MangledName;
4602       Diags.Report(OtherGD.getDecl()->getLocation(),
4603                    diag::note_previous_definition);
4604     }
4605     return;
4606   }
4607 
4608   Aliases.push_back(GD);
4609 
4610   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4611   llvm::Constant *Resolver =
4612       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4613                               /*ForVTable=*/false);
4614   llvm::GlobalIFunc *GIF =
4615       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4616                                 "", Resolver, &getModule());
4617   if (Entry) {
4618     if (GIF->getResolver() == Entry) {
4619       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4620       return;
4621     }
4622     assert(Entry->isDeclaration());
4623 
4624     // If there is a declaration in the module, then we had an extern followed
4625     // by the ifunc, as in:
4626     //   extern int test();
4627     //   ...
4628     //   int test() __attribute__((ifunc("resolver")));
4629     //
4630     // Remove it and replace uses of it with the ifunc.
4631     GIF->takeName(Entry);
4632 
4633     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4634                                                           Entry->getType()));
4635     Entry->eraseFromParent();
4636   } else
4637     GIF->setName(MangledName);
4638 
4639   SetCommonAttributes(GD, GIF);
4640 }
4641 
4642 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4643                                             ArrayRef<llvm::Type*> Tys) {
4644   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4645                                          Tys);
4646 }
4647 
4648 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4649 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4650                          const StringLiteral *Literal, bool TargetIsLSB,
4651                          bool &IsUTF16, unsigned &StringLength) {
4652   StringRef String = Literal->getString();
4653   unsigned NumBytes = String.size();
4654 
4655   // Check for simple case.
4656   if (!Literal->containsNonAsciiOrNull()) {
4657     StringLength = NumBytes;
4658     return *Map.insert(std::make_pair(String, nullptr)).first;
4659   }
4660 
4661   // Otherwise, convert the UTF8 literals into a string of shorts.
4662   IsUTF16 = true;
4663 
4664   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4665   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4666   llvm::UTF16 *ToPtr = &ToBuf[0];
4667 
4668   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4669                                  ToPtr + NumBytes, llvm::strictConversion);
4670 
4671   // ConvertUTF8toUTF16 returns the length in ToPtr.
4672   StringLength = ToPtr - &ToBuf[0];
4673 
4674   // Add an explicit null.
4675   *ToPtr = 0;
4676   return *Map.insert(std::make_pair(
4677                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4678                                    (StringLength + 1) * 2),
4679                          nullptr)).first;
4680 }
4681 
4682 ConstantAddress
4683 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4684   unsigned StringLength = 0;
4685   bool isUTF16 = false;
4686   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4687       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4688                                getDataLayout().isLittleEndian(), isUTF16,
4689                                StringLength);
4690 
4691   if (auto *C = Entry.second)
4692     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4693 
4694   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4695   llvm::Constant *Zeros[] = { Zero, Zero };
4696 
4697   const ASTContext &Context = getContext();
4698   const llvm::Triple &Triple = getTriple();
4699 
4700   const auto CFRuntime = getLangOpts().CFRuntime;
4701   const bool IsSwiftABI =
4702       static_cast<unsigned>(CFRuntime) >=
4703       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4704   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4705 
4706   // If we don't already have it, get __CFConstantStringClassReference.
4707   if (!CFConstantStringClassRef) {
4708     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4709     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4710     Ty = llvm::ArrayType::get(Ty, 0);
4711 
4712     switch (CFRuntime) {
4713     default: break;
4714     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4715     case LangOptions::CoreFoundationABI::Swift5_0:
4716       CFConstantStringClassName =
4717           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4718                               : "$s10Foundation19_NSCFConstantStringCN";
4719       Ty = IntPtrTy;
4720       break;
4721     case LangOptions::CoreFoundationABI::Swift4_2:
4722       CFConstantStringClassName =
4723           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4724                               : "$S10Foundation19_NSCFConstantStringCN";
4725       Ty = IntPtrTy;
4726       break;
4727     case LangOptions::CoreFoundationABI::Swift4_1:
4728       CFConstantStringClassName =
4729           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4730                               : "__T010Foundation19_NSCFConstantStringCN";
4731       Ty = IntPtrTy;
4732       break;
4733     }
4734 
4735     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4736 
4737     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4738       llvm::GlobalValue *GV = nullptr;
4739 
4740       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4741         IdentifierInfo &II = Context.Idents.get(GV->getName());
4742         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4743         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4744 
4745         const VarDecl *VD = nullptr;
4746         for (const auto &Result : DC->lookup(&II))
4747           if ((VD = dyn_cast<VarDecl>(Result)))
4748             break;
4749 
4750         if (Triple.isOSBinFormatELF()) {
4751           if (!VD)
4752             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4753         } else {
4754           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4755           if (!VD || !VD->hasAttr<DLLExportAttr>())
4756             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4757           else
4758             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4759         }
4760 
4761         setDSOLocal(GV);
4762       }
4763     }
4764 
4765     // Decay array -> ptr
4766     CFConstantStringClassRef =
4767         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4768                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4769   }
4770 
4771   QualType CFTy = Context.getCFConstantStringType();
4772 
4773   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4774 
4775   ConstantInitBuilder Builder(*this);
4776   auto Fields = Builder.beginStruct(STy);
4777 
4778   // Class pointer.
4779   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4780 
4781   // Flags.
4782   if (IsSwiftABI) {
4783     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4784     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4785   } else {
4786     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4787   }
4788 
4789   // String pointer.
4790   llvm::Constant *C = nullptr;
4791   if (isUTF16) {
4792     auto Arr = llvm::makeArrayRef(
4793         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4794         Entry.first().size() / 2);
4795     C = llvm::ConstantDataArray::get(VMContext, Arr);
4796   } else {
4797     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4798   }
4799 
4800   // Note: -fwritable-strings doesn't make the backing store strings of
4801   // CFStrings writable. (See <rdar://problem/10657500>)
4802   auto *GV =
4803       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4804                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4805   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4806   // Don't enforce the target's minimum global alignment, since the only use
4807   // of the string is via this class initializer.
4808   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4809                             : Context.getTypeAlignInChars(Context.CharTy);
4810   GV->setAlignment(Align.getAsAlign());
4811 
4812   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4813   // Without it LLVM can merge the string with a non unnamed_addr one during
4814   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4815   if (Triple.isOSBinFormatMachO())
4816     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4817                            : "__TEXT,__cstring,cstring_literals");
4818   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4819   // the static linker to adjust permissions to read-only later on.
4820   else if (Triple.isOSBinFormatELF())
4821     GV->setSection(".rodata");
4822 
4823   // String.
4824   llvm::Constant *Str =
4825       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4826 
4827   if (isUTF16)
4828     // Cast the UTF16 string to the correct type.
4829     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4830   Fields.add(Str);
4831 
4832   // String length.
4833   llvm::IntegerType *LengthTy =
4834       llvm::IntegerType::get(getModule().getContext(),
4835                              Context.getTargetInfo().getLongWidth());
4836   if (IsSwiftABI) {
4837     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4838         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4839       LengthTy = Int32Ty;
4840     else
4841       LengthTy = IntPtrTy;
4842   }
4843   Fields.addInt(LengthTy, StringLength);
4844 
4845   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4846   // properly aligned on 32-bit platforms.
4847   CharUnits Alignment =
4848       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4849 
4850   // The struct.
4851   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4852                                     /*isConstant=*/false,
4853                                     llvm::GlobalVariable::PrivateLinkage);
4854   GV->addAttribute("objc_arc_inert");
4855   switch (Triple.getObjectFormat()) {
4856   case llvm::Triple::UnknownObjectFormat:
4857     llvm_unreachable("unknown file format");
4858   case llvm::Triple::XCOFF:
4859     llvm_unreachable("XCOFF is not yet implemented");
4860   case llvm::Triple::COFF:
4861   case llvm::Triple::ELF:
4862   case llvm::Triple::Wasm:
4863     GV->setSection("cfstring");
4864     break;
4865   case llvm::Triple::MachO:
4866     GV->setSection("__DATA,__cfstring");
4867     break;
4868   }
4869   Entry.second = GV;
4870 
4871   return ConstantAddress(GV, Alignment);
4872 }
4873 
4874 bool CodeGenModule::getExpressionLocationsEnabled() const {
4875   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4876 }
4877 
4878 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4879   if (ObjCFastEnumerationStateType.isNull()) {
4880     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4881     D->startDefinition();
4882 
4883     QualType FieldTypes[] = {
4884       Context.UnsignedLongTy,
4885       Context.getPointerType(Context.getObjCIdType()),
4886       Context.getPointerType(Context.UnsignedLongTy),
4887       Context.getConstantArrayType(Context.UnsignedLongTy,
4888                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4889     };
4890 
4891     for (size_t i = 0; i < 4; ++i) {
4892       FieldDecl *Field = FieldDecl::Create(Context,
4893                                            D,
4894                                            SourceLocation(),
4895                                            SourceLocation(), nullptr,
4896                                            FieldTypes[i], /*TInfo=*/nullptr,
4897                                            /*BitWidth=*/nullptr,
4898                                            /*Mutable=*/false,
4899                                            ICIS_NoInit);
4900       Field->setAccess(AS_public);
4901       D->addDecl(Field);
4902     }
4903 
4904     D->completeDefinition();
4905     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4906   }
4907 
4908   return ObjCFastEnumerationStateType;
4909 }
4910 
4911 llvm::Constant *
4912 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4913   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4914 
4915   // Don't emit it as the address of the string, emit the string data itself
4916   // as an inline array.
4917   if (E->getCharByteWidth() == 1) {
4918     SmallString<64> Str(E->getString());
4919 
4920     // Resize the string to the right size, which is indicated by its type.
4921     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4922     Str.resize(CAT->getSize().getZExtValue());
4923     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4924   }
4925 
4926   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4927   llvm::Type *ElemTy = AType->getElementType();
4928   unsigned NumElements = AType->getNumElements();
4929 
4930   // Wide strings have either 2-byte or 4-byte elements.
4931   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4932     SmallVector<uint16_t, 32> Elements;
4933     Elements.reserve(NumElements);
4934 
4935     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4936       Elements.push_back(E->getCodeUnit(i));
4937     Elements.resize(NumElements);
4938     return llvm::ConstantDataArray::get(VMContext, Elements);
4939   }
4940 
4941   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4942   SmallVector<uint32_t, 32> Elements;
4943   Elements.reserve(NumElements);
4944 
4945   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4946     Elements.push_back(E->getCodeUnit(i));
4947   Elements.resize(NumElements);
4948   return llvm::ConstantDataArray::get(VMContext, Elements);
4949 }
4950 
4951 static llvm::GlobalVariable *
4952 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4953                       CodeGenModule &CGM, StringRef GlobalName,
4954                       CharUnits Alignment) {
4955   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4956       CGM.getStringLiteralAddressSpace());
4957 
4958   llvm::Module &M = CGM.getModule();
4959   // Create a global variable for this string
4960   auto *GV = new llvm::GlobalVariable(
4961       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4962       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4963   GV->setAlignment(Alignment.getAsAlign());
4964   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4965   if (GV->isWeakForLinker()) {
4966     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4967     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4968   }
4969   CGM.setDSOLocal(GV);
4970 
4971   return GV;
4972 }
4973 
4974 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4975 /// constant array for the given string literal.
4976 ConstantAddress
4977 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4978                                                   StringRef Name) {
4979   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4980 
4981   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4982   llvm::GlobalVariable **Entry = nullptr;
4983   if (!LangOpts.WritableStrings) {
4984     Entry = &ConstantStringMap[C];
4985     if (auto GV = *Entry) {
4986       if (Alignment.getQuantity() > GV->getAlignment())
4987         GV->setAlignment(Alignment.getAsAlign());
4988       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4989                              Alignment);
4990     }
4991   }
4992 
4993   SmallString<256> MangledNameBuffer;
4994   StringRef GlobalVariableName;
4995   llvm::GlobalValue::LinkageTypes LT;
4996 
4997   // Mangle the string literal if that's how the ABI merges duplicate strings.
4998   // Don't do it if they are writable, since we don't want writes in one TU to
4999   // affect strings in another.
5000   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5001       !LangOpts.WritableStrings) {
5002     llvm::raw_svector_ostream Out(MangledNameBuffer);
5003     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5004     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5005     GlobalVariableName = MangledNameBuffer;
5006   } else {
5007     LT = llvm::GlobalValue::PrivateLinkage;
5008     GlobalVariableName = Name;
5009   }
5010 
5011   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5012   if (Entry)
5013     *Entry = GV;
5014 
5015   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5016                                   QualType());
5017 
5018   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5019                          Alignment);
5020 }
5021 
5022 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5023 /// array for the given ObjCEncodeExpr node.
5024 ConstantAddress
5025 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5026   std::string Str;
5027   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5028 
5029   return GetAddrOfConstantCString(Str);
5030 }
5031 
5032 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5033 /// the literal and a terminating '\0' character.
5034 /// The result has pointer to array type.
5035 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5036     const std::string &Str, const char *GlobalName) {
5037   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5038   CharUnits Alignment =
5039     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5040 
5041   llvm::Constant *C =
5042       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5043 
5044   // Don't share any string literals if strings aren't constant.
5045   llvm::GlobalVariable **Entry = nullptr;
5046   if (!LangOpts.WritableStrings) {
5047     Entry = &ConstantStringMap[C];
5048     if (auto GV = *Entry) {
5049       if (Alignment.getQuantity() > GV->getAlignment())
5050         GV->setAlignment(Alignment.getAsAlign());
5051       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5052                              Alignment);
5053     }
5054   }
5055 
5056   // Get the default prefix if a name wasn't specified.
5057   if (!GlobalName)
5058     GlobalName = ".str";
5059   // Create a global variable for this.
5060   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5061                                   GlobalName, Alignment);
5062   if (Entry)
5063     *Entry = GV;
5064 
5065   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5066                          Alignment);
5067 }
5068 
5069 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5070     const MaterializeTemporaryExpr *E, const Expr *Init) {
5071   assert((E->getStorageDuration() == SD_Static ||
5072           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5073   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5074 
5075   // If we're not materializing a subobject of the temporary, keep the
5076   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5077   QualType MaterializedType = Init->getType();
5078   if (Init == E->getSubExpr())
5079     MaterializedType = E->getType();
5080 
5081   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5082 
5083   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5084     return ConstantAddress(Slot, Align);
5085 
5086   // FIXME: If an externally-visible declaration extends multiple temporaries,
5087   // we need to give each temporary the same name in every translation unit (and
5088   // we also need to make the temporaries externally-visible).
5089   SmallString<256> Name;
5090   llvm::raw_svector_ostream Out(Name);
5091   getCXXABI().getMangleContext().mangleReferenceTemporary(
5092       VD, E->getManglingNumber(), Out);
5093 
5094   APValue *Value = nullptr;
5095   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5096     // If the initializer of the extending declaration is a constant
5097     // initializer, we should have a cached constant initializer for this
5098     // temporary. Note that this might have a different value from the value
5099     // computed by evaluating the initializer if the surrounding constant
5100     // expression modifies the temporary.
5101     Value = E->getOrCreateValue(false);
5102   }
5103 
5104   // Try evaluating it now, it might have a constant initializer.
5105   Expr::EvalResult EvalResult;
5106   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5107       !EvalResult.hasSideEffects())
5108     Value = &EvalResult.Val;
5109 
5110   LangAS AddrSpace =
5111       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5112 
5113   Optional<ConstantEmitter> emitter;
5114   llvm::Constant *InitialValue = nullptr;
5115   bool Constant = false;
5116   llvm::Type *Type;
5117   if (Value) {
5118     // The temporary has a constant initializer, use it.
5119     emitter.emplace(*this);
5120     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5121                                                MaterializedType);
5122     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5123     Type = InitialValue->getType();
5124   } else {
5125     // No initializer, the initialization will be provided when we
5126     // initialize the declaration which performed lifetime extension.
5127     Type = getTypes().ConvertTypeForMem(MaterializedType);
5128   }
5129 
5130   // Create a global variable for this lifetime-extended temporary.
5131   llvm::GlobalValue::LinkageTypes Linkage =
5132       getLLVMLinkageVarDefinition(VD, Constant);
5133   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5134     const VarDecl *InitVD;
5135     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5136         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5137       // Temporaries defined inside a class get linkonce_odr linkage because the
5138       // class can be defined in multiple translation units.
5139       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5140     } else {
5141       // There is no need for this temporary to have external linkage if the
5142       // VarDecl has external linkage.
5143       Linkage = llvm::GlobalVariable::InternalLinkage;
5144     }
5145   }
5146   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5147   auto *GV = new llvm::GlobalVariable(
5148       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5149       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5150   if (emitter) emitter->finalize(GV);
5151   setGVProperties(GV, VD);
5152   GV->setAlignment(Align.getAsAlign());
5153   if (supportsCOMDAT() && GV->isWeakForLinker())
5154     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5155   if (VD->getTLSKind())
5156     setTLSMode(GV, *VD);
5157   llvm::Constant *CV = GV;
5158   if (AddrSpace != LangAS::Default)
5159     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5160         *this, GV, AddrSpace, LangAS::Default,
5161         Type->getPointerTo(
5162             getContext().getTargetAddressSpace(LangAS::Default)));
5163   MaterializedGlobalTemporaryMap[E] = CV;
5164   return ConstantAddress(CV, Align);
5165 }
5166 
5167 /// EmitObjCPropertyImplementations - Emit information for synthesized
5168 /// properties for an implementation.
5169 void CodeGenModule::EmitObjCPropertyImplementations(const
5170                                                     ObjCImplementationDecl *D) {
5171   for (const auto *PID : D->property_impls()) {
5172     // Dynamic is just for type-checking.
5173     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5174       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5175 
5176       // Determine which methods need to be implemented, some may have
5177       // been overridden. Note that ::isPropertyAccessor is not the method
5178       // we want, that just indicates if the decl came from a
5179       // property. What we want to know is if the method is defined in
5180       // this implementation.
5181       auto *Getter = PID->getGetterMethodDecl();
5182       if (!Getter || Getter->isSynthesizedAccessorStub())
5183         CodeGenFunction(*this).GenerateObjCGetter(
5184             const_cast<ObjCImplementationDecl *>(D), PID);
5185       auto *Setter = PID->getSetterMethodDecl();
5186       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5187         CodeGenFunction(*this).GenerateObjCSetter(
5188                                  const_cast<ObjCImplementationDecl *>(D), PID);
5189     }
5190   }
5191 }
5192 
5193 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5194   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5195   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5196        ivar; ivar = ivar->getNextIvar())
5197     if (ivar->getType().isDestructedType())
5198       return true;
5199 
5200   return false;
5201 }
5202 
5203 static bool AllTrivialInitializers(CodeGenModule &CGM,
5204                                    ObjCImplementationDecl *D) {
5205   CodeGenFunction CGF(CGM);
5206   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5207        E = D->init_end(); B != E; ++B) {
5208     CXXCtorInitializer *CtorInitExp = *B;
5209     Expr *Init = CtorInitExp->getInit();
5210     if (!CGF.isTrivialInitializer(Init))
5211       return false;
5212   }
5213   return true;
5214 }
5215 
5216 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5217 /// for an implementation.
5218 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5219   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5220   if (needsDestructMethod(D)) {
5221     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5222     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5223     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5224         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5225         getContext().VoidTy, nullptr, D,
5226         /*isInstance=*/true, /*isVariadic=*/false,
5227         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5228         /*isImplicitlyDeclared=*/true,
5229         /*isDefined=*/false, ObjCMethodDecl::Required);
5230     D->addInstanceMethod(DTORMethod);
5231     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5232     D->setHasDestructors(true);
5233   }
5234 
5235   // If the implementation doesn't have any ivar initializers, we don't need
5236   // a .cxx_construct.
5237   if (D->getNumIvarInitializers() == 0 ||
5238       AllTrivialInitializers(*this, D))
5239     return;
5240 
5241   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5242   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5243   // The constructor returns 'self'.
5244   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5245       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5246       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5247       /*isVariadic=*/false,
5248       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5249       /*isImplicitlyDeclared=*/true,
5250       /*isDefined=*/false, ObjCMethodDecl::Required);
5251   D->addInstanceMethod(CTORMethod);
5252   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5253   D->setHasNonZeroConstructors(true);
5254 }
5255 
5256 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5257 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5258   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5259       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5260     ErrorUnsupported(LSD, "linkage spec");
5261     return;
5262   }
5263 
5264   EmitDeclContext(LSD);
5265 }
5266 
5267 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5268   for (auto *I : DC->decls()) {
5269     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5270     // are themselves considered "top-level", so EmitTopLevelDecl on an
5271     // ObjCImplDecl does not recursively visit them. We need to do that in
5272     // case they're nested inside another construct (LinkageSpecDecl /
5273     // ExportDecl) that does stop them from being considered "top-level".
5274     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5275       for (auto *M : OID->methods())
5276         EmitTopLevelDecl(M);
5277     }
5278 
5279     EmitTopLevelDecl(I);
5280   }
5281 }
5282 
5283 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5284 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5285   // Ignore dependent declarations.
5286   if (D->isTemplated())
5287     return;
5288 
5289   switch (D->getKind()) {
5290   case Decl::CXXConversion:
5291   case Decl::CXXMethod:
5292   case Decl::Function:
5293     EmitGlobal(cast<FunctionDecl>(D));
5294     // Always provide some coverage mapping
5295     // even for the functions that aren't emitted.
5296     AddDeferredUnusedCoverageMapping(D);
5297     break;
5298 
5299   case Decl::CXXDeductionGuide:
5300     // Function-like, but does not result in code emission.
5301     break;
5302 
5303   case Decl::Var:
5304   case Decl::Decomposition:
5305   case Decl::VarTemplateSpecialization:
5306     EmitGlobal(cast<VarDecl>(D));
5307     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5308       for (auto *B : DD->bindings())
5309         if (auto *HD = B->getHoldingVar())
5310           EmitGlobal(HD);
5311     break;
5312 
5313   // Indirect fields from global anonymous structs and unions can be
5314   // ignored; only the actual variable requires IR gen support.
5315   case Decl::IndirectField:
5316     break;
5317 
5318   // C++ Decls
5319   case Decl::Namespace:
5320     EmitDeclContext(cast<NamespaceDecl>(D));
5321     break;
5322   case Decl::ClassTemplateSpecialization: {
5323     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5324     if (DebugInfo &&
5325         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5326         Spec->hasDefinition())
5327       DebugInfo->completeTemplateDefinition(*Spec);
5328   } LLVM_FALLTHROUGH;
5329   case Decl::CXXRecord:
5330     if (DebugInfo) {
5331       if (auto *ES = D->getASTContext().getExternalSource())
5332         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5333           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5334     }
5335     // Emit any static data members, they may be definitions.
5336     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5337       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5338         EmitTopLevelDecl(I);
5339     break;
5340     // No code generation needed.
5341   case Decl::UsingShadow:
5342   case Decl::ClassTemplate:
5343   case Decl::VarTemplate:
5344   case Decl::Concept:
5345   case Decl::VarTemplatePartialSpecialization:
5346   case Decl::FunctionTemplate:
5347   case Decl::TypeAliasTemplate:
5348   case Decl::Block:
5349   case Decl::Empty:
5350   case Decl::Binding:
5351     break;
5352   case Decl::Using:          // using X; [C++]
5353     if (CGDebugInfo *DI = getModuleDebugInfo())
5354         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5355     return;
5356   case Decl::NamespaceAlias:
5357     if (CGDebugInfo *DI = getModuleDebugInfo())
5358         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5359     return;
5360   case Decl::UsingDirective: // using namespace X; [C++]
5361     if (CGDebugInfo *DI = getModuleDebugInfo())
5362       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5363     return;
5364   case Decl::CXXConstructor:
5365     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5366     break;
5367   case Decl::CXXDestructor:
5368     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5369     break;
5370 
5371   case Decl::StaticAssert:
5372     // Nothing to do.
5373     break;
5374 
5375   // Objective-C Decls
5376 
5377   // Forward declarations, no (immediate) code generation.
5378   case Decl::ObjCInterface:
5379   case Decl::ObjCCategory:
5380     break;
5381 
5382   case Decl::ObjCProtocol: {
5383     auto *Proto = cast<ObjCProtocolDecl>(D);
5384     if (Proto->isThisDeclarationADefinition())
5385       ObjCRuntime->GenerateProtocol(Proto);
5386     break;
5387   }
5388 
5389   case Decl::ObjCCategoryImpl:
5390     // Categories have properties but don't support synthesize so we
5391     // can ignore them here.
5392     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5393     break;
5394 
5395   case Decl::ObjCImplementation: {
5396     auto *OMD = cast<ObjCImplementationDecl>(D);
5397     EmitObjCPropertyImplementations(OMD);
5398     EmitObjCIvarInitializations(OMD);
5399     ObjCRuntime->GenerateClass(OMD);
5400     // Emit global variable debug information.
5401     if (CGDebugInfo *DI = getModuleDebugInfo())
5402       if (getCodeGenOpts().hasReducedDebugInfo())
5403         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5404             OMD->getClassInterface()), OMD->getLocation());
5405     break;
5406   }
5407   case Decl::ObjCMethod: {
5408     auto *OMD = cast<ObjCMethodDecl>(D);
5409     // If this is not a prototype, emit the body.
5410     if (OMD->getBody())
5411       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5412     break;
5413   }
5414   case Decl::ObjCCompatibleAlias:
5415     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5416     break;
5417 
5418   case Decl::PragmaComment: {
5419     const auto *PCD = cast<PragmaCommentDecl>(D);
5420     switch (PCD->getCommentKind()) {
5421     case PCK_Unknown:
5422       llvm_unreachable("unexpected pragma comment kind");
5423     case PCK_Linker:
5424       AppendLinkerOptions(PCD->getArg());
5425       break;
5426     case PCK_Lib:
5427         AddDependentLib(PCD->getArg());
5428       break;
5429     case PCK_Compiler:
5430     case PCK_ExeStr:
5431     case PCK_User:
5432       break; // We ignore all of these.
5433     }
5434     break;
5435   }
5436 
5437   case Decl::PragmaDetectMismatch: {
5438     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5439     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5440     break;
5441   }
5442 
5443   case Decl::LinkageSpec:
5444     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5445     break;
5446 
5447   case Decl::FileScopeAsm: {
5448     // File-scope asm is ignored during device-side CUDA compilation.
5449     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5450       break;
5451     // File-scope asm is ignored during device-side OpenMP compilation.
5452     if (LangOpts.OpenMPIsDevice)
5453       break;
5454     auto *AD = cast<FileScopeAsmDecl>(D);
5455     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5456     break;
5457   }
5458 
5459   case Decl::Import: {
5460     auto *Import = cast<ImportDecl>(D);
5461 
5462     // If we've already imported this module, we're done.
5463     if (!ImportedModules.insert(Import->getImportedModule()))
5464       break;
5465 
5466     // Emit debug information for direct imports.
5467     if (!Import->getImportedOwningModule()) {
5468       if (CGDebugInfo *DI = getModuleDebugInfo())
5469         DI->EmitImportDecl(*Import);
5470     }
5471 
5472     // Find all of the submodules and emit the module initializers.
5473     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5474     SmallVector<clang::Module *, 16> Stack;
5475     Visited.insert(Import->getImportedModule());
5476     Stack.push_back(Import->getImportedModule());
5477 
5478     while (!Stack.empty()) {
5479       clang::Module *Mod = Stack.pop_back_val();
5480       if (!EmittedModuleInitializers.insert(Mod).second)
5481         continue;
5482 
5483       for (auto *D : Context.getModuleInitializers(Mod))
5484         EmitTopLevelDecl(D);
5485 
5486       // Visit the submodules of this module.
5487       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5488                                              SubEnd = Mod->submodule_end();
5489            Sub != SubEnd; ++Sub) {
5490         // Skip explicit children; they need to be explicitly imported to emit
5491         // the initializers.
5492         if ((*Sub)->IsExplicit)
5493           continue;
5494 
5495         if (Visited.insert(*Sub).second)
5496           Stack.push_back(*Sub);
5497       }
5498     }
5499     break;
5500   }
5501 
5502   case Decl::Export:
5503     EmitDeclContext(cast<ExportDecl>(D));
5504     break;
5505 
5506   case Decl::OMPThreadPrivate:
5507     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5508     break;
5509 
5510   case Decl::OMPAllocate:
5511     break;
5512 
5513   case Decl::OMPDeclareReduction:
5514     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5515     break;
5516 
5517   case Decl::OMPDeclareMapper:
5518     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5519     break;
5520 
5521   case Decl::OMPRequires:
5522     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5523     break;
5524 
5525   default:
5526     // Make sure we handled everything we should, every other kind is a
5527     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5528     // function. Need to recode Decl::Kind to do that easily.
5529     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5530     break;
5531   }
5532 }
5533 
5534 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5535   // Do we need to generate coverage mapping?
5536   if (!CodeGenOpts.CoverageMapping)
5537     return;
5538   switch (D->getKind()) {
5539   case Decl::CXXConversion:
5540   case Decl::CXXMethod:
5541   case Decl::Function:
5542   case Decl::ObjCMethod:
5543   case Decl::CXXConstructor:
5544   case Decl::CXXDestructor: {
5545     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5546       return;
5547     SourceManager &SM = getContext().getSourceManager();
5548     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5549       return;
5550     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5551     if (I == DeferredEmptyCoverageMappingDecls.end())
5552       DeferredEmptyCoverageMappingDecls[D] = true;
5553     break;
5554   }
5555   default:
5556     break;
5557   };
5558 }
5559 
5560 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5561   // Do we need to generate coverage mapping?
5562   if (!CodeGenOpts.CoverageMapping)
5563     return;
5564   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5565     if (Fn->isTemplateInstantiation())
5566       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5567   }
5568   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5569   if (I == DeferredEmptyCoverageMappingDecls.end())
5570     DeferredEmptyCoverageMappingDecls[D] = false;
5571   else
5572     I->second = false;
5573 }
5574 
5575 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5576   // We call takeVector() here to avoid use-after-free.
5577   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5578   // we deserialize function bodies to emit coverage info for them, and that
5579   // deserializes more declarations. How should we handle that case?
5580   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5581     if (!Entry.second)
5582       continue;
5583     const Decl *D = Entry.first;
5584     switch (D->getKind()) {
5585     case Decl::CXXConversion:
5586     case Decl::CXXMethod:
5587     case Decl::Function:
5588     case Decl::ObjCMethod: {
5589       CodeGenPGO PGO(*this);
5590       GlobalDecl GD(cast<FunctionDecl>(D));
5591       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5592                                   getFunctionLinkage(GD));
5593       break;
5594     }
5595     case Decl::CXXConstructor: {
5596       CodeGenPGO PGO(*this);
5597       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5598       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5599                                   getFunctionLinkage(GD));
5600       break;
5601     }
5602     case Decl::CXXDestructor: {
5603       CodeGenPGO PGO(*this);
5604       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5605       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5606                                   getFunctionLinkage(GD));
5607       break;
5608     }
5609     default:
5610       break;
5611     };
5612   }
5613 }
5614 
5615 void CodeGenModule::EmitMainVoidAlias() {
5616   // In order to transition away from "__original_main" gracefully, emit an
5617   // alias for "main" in the no-argument case so that libc can detect when
5618   // new-style no-argument main is in used.
5619   if (llvm::Function *F = getModule().getFunction("main")) {
5620     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5621         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5622       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5623   }
5624 }
5625 
5626 /// Turns the given pointer into a constant.
5627 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5628                                           const void *Ptr) {
5629   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5630   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5631   return llvm::ConstantInt::get(i64, PtrInt);
5632 }
5633 
5634 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5635                                    llvm::NamedMDNode *&GlobalMetadata,
5636                                    GlobalDecl D,
5637                                    llvm::GlobalValue *Addr) {
5638   if (!GlobalMetadata)
5639     GlobalMetadata =
5640       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5641 
5642   // TODO: should we report variant information for ctors/dtors?
5643   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5644                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5645                                CGM.getLLVMContext(), D.getDecl()))};
5646   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5647 }
5648 
5649 /// For each function which is declared within an extern "C" region and marked
5650 /// as 'used', but has internal linkage, create an alias from the unmangled
5651 /// name to the mangled name if possible. People expect to be able to refer
5652 /// to such functions with an unmangled name from inline assembly within the
5653 /// same translation unit.
5654 void CodeGenModule::EmitStaticExternCAliases() {
5655   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5656     return;
5657   for (auto &I : StaticExternCValues) {
5658     IdentifierInfo *Name = I.first;
5659     llvm::GlobalValue *Val = I.second;
5660     if (Val && !getModule().getNamedValue(Name->getName()))
5661       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5662   }
5663 }
5664 
5665 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5666                                              GlobalDecl &Result) const {
5667   auto Res = Manglings.find(MangledName);
5668   if (Res == Manglings.end())
5669     return false;
5670   Result = Res->getValue();
5671   return true;
5672 }
5673 
5674 /// Emits metadata nodes associating all the global values in the
5675 /// current module with the Decls they came from.  This is useful for
5676 /// projects using IR gen as a subroutine.
5677 ///
5678 /// Since there's currently no way to associate an MDNode directly
5679 /// with an llvm::GlobalValue, we create a global named metadata
5680 /// with the name 'clang.global.decl.ptrs'.
5681 void CodeGenModule::EmitDeclMetadata() {
5682   llvm::NamedMDNode *GlobalMetadata = nullptr;
5683 
5684   for (auto &I : MangledDeclNames) {
5685     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5686     // Some mangled names don't necessarily have an associated GlobalValue
5687     // in this module, e.g. if we mangled it for DebugInfo.
5688     if (Addr)
5689       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5690   }
5691 }
5692 
5693 /// Emits metadata nodes for all the local variables in the current
5694 /// function.
5695 void CodeGenFunction::EmitDeclMetadata() {
5696   if (LocalDeclMap.empty()) return;
5697 
5698   llvm::LLVMContext &Context = getLLVMContext();
5699 
5700   // Find the unique metadata ID for this name.
5701   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5702 
5703   llvm::NamedMDNode *GlobalMetadata = nullptr;
5704 
5705   for (auto &I : LocalDeclMap) {
5706     const Decl *D = I.first;
5707     llvm::Value *Addr = I.second.getPointer();
5708     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5709       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5710       Alloca->setMetadata(
5711           DeclPtrKind, llvm::MDNode::get(
5712                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5713     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5714       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5715       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5716     }
5717   }
5718 }
5719 
5720 void CodeGenModule::EmitVersionIdentMetadata() {
5721   llvm::NamedMDNode *IdentMetadata =
5722     TheModule.getOrInsertNamedMetadata("llvm.ident");
5723   std::string Version = getClangFullVersion();
5724   llvm::LLVMContext &Ctx = TheModule.getContext();
5725 
5726   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5727   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5728 }
5729 
5730 void CodeGenModule::EmitCommandLineMetadata() {
5731   llvm::NamedMDNode *CommandLineMetadata =
5732     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5733   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5734   llvm::LLVMContext &Ctx = TheModule.getContext();
5735 
5736   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5737   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5738 }
5739 
5740 void CodeGenModule::EmitTargetMetadata() {
5741   // Warning, new MangledDeclNames may be appended within this loop.
5742   // We rely on MapVector insertions adding new elements to the end
5743   // of the container.
5744   // FIXME: Move this loop into the one target that needs it, and only
5745   // loop over those declarations for which we couldn't emit the target
5746   // metadata when we emitted the declaration.
5747   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5748     auto Val = *(MangledDeclNames.begin() + I);
5749     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5750     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5751     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5752   }
5753 }
5754 
5755 void CodeGenModule::EmitCoverageFile() {
5756   if (getCodeGenOpts().CoverageDataFile.empty() &&
5757       getCodeGenOpts().CoverageNotesFile.empty())
5758     return;
5759 
5760   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5761   if (!CUNode)
5762     return;
5763 
5764   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5765   llvm::LLVMContext &Ctx = TheModule.getContext();
5766   auto *CoverageDataFile =
5767       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5768   auto *CoverageNotesFile =
5769       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5770   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5771     llvm::MDNode *CU = CUNode->getOperand(i);
5772     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5773     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5774   }
5775 }
5776 
5777 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5778   // Sema has checked that all uuid strings are of the form
5779   // "12345678-1234-1234-1234-1234567890ab".
5780   assert(Uuid.size() == 36);
5781   for (unsigned i = 0; i < 36; ++i) {
5782     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5783     else                                         assert(isHexDigit(Uuid[i]));
5784   }
5785 
5786   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5787   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5788 
5789   llvm::Constant *Field3[8];
5790   for (unsigned Idx = 0; Idx < 8; ++Idx)
5791     Field3[Idx] = llvm::ConstantInt::get(
5792         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5793 
5794   llvm::Constant *Fields[4] = {
5795     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5796     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5797     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5798     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5799   };
5800 
5801   return llvm::ConstantStruct::getAnon(Fields);
5802 }
5803 
5804 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5805                                                        bool ForEH) {
5806   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5807   // FIXME: should we even be calling this method if RTTI is disabled
5808   // and it's not for EH?
5809   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5810       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5811        getTriple().isNVPTX()))
5812     return llvm::Constant::getNullValue(Int8PtrTy);
5813 
5814   if (ForEH && Ty->isObjCObjectPointerType() &&
5815       LangOpts.ObjCRuntime.isGNUFamily())
5816     return ObjCRuntime->GetEHType(Ty);
5817 
5818   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5819 }
5820 
5821 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5822   // Do not emit threadprivates in simd-only mode.
5823   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5824     return;
5825   for (auto RefExpr : D->varlists()) {
5826     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5827     bool PerformInit =
5828         VD->getAnyInitializer() &&
5829         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5830                                                         /*ForRef=*/false);
5831 
5832     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5833     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5834             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5835       CXXGlobalInits.push_back(InitFunction);
5836   }
5837 }
5838 
5839 llvm::Metadata *
5840 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5841                                             StringRef Suffix) {
5842   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5843   if (InternalId)
5844     return InternalId;
5845 
5846   if (isExternallyVisible(T->getLinkage())) {
5847     std::string OutName;
5848     llvm::raw_string_ostream Out(OutName);
5849     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5850     Out << Suffix;
5851 
5852     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5853   } else {
5854     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5855                                            llvm::ArrayRef<llvm::Metadata *>());
5856   }
5857 
5858   return InternalId;
5859 }
5860 
5861 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5862   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5863 }
5864 
5865 llvm::Metadata *
5866 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5867   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5868 }
5869 
5870 // Generalize pointer types to a void pointer with the qualifiers of the
5871 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5872 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5873 // 'void *'.
5874 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5875   if (!Ty->isPointerType())
5876     return Ty;
5877 
5878   return Ctx.getPointerType(
5879       QualType(Ctx.VoidTy).withCVRQualifiers(
5880           Ty->getPointeeType().getCVRQualifiers()));
5881 }
5882 
5883 // Apply type generalization to a FunctionType's return and argument types
5884 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5885   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5886     SmallVector<QualType, 8> GeneralizedParams;
5887     for (auto &Param : FnType->param_types())
5888       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5889 
5890     return Ctx.getFunctionType(
5891         GeneralizeType(Ctx, FnType->getReturnType()),
5892         GeneralizedParams, FnType->getExtProtoInfo());
5893   }
5894 
5895   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5896     return Ctx.getFunctionNoProtoType(
5897         GeneralizeType(Ctx, FnType->getReturnType()));
5898 
5899   llvm_unreachable("Encountered unknown FunctionType");
5900 }
5901 
5902 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5903   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5904                                       GeneralizedMetadataIdMap, ".generalized");
5905 }
5906 
5907 /// Returns whether this module needs the "all-vtables" type identifier.
5908 bool CodeGenModule::NeedAllVtablesTypeId() const {
5909   // Returns true if at least one of vtable-based CFI checkers is enabled and
5910   // is not in the trapping mode.
5911   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5912            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5913           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5914            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5915           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5916            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5917           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5918            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5919 }
5920 
5921 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5922                                           CharUnits Offset,
5923                                           const CXXRecordDecl *RD) {
5924   llvm::Metadata *MD =
5925       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5926   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5927 
5928   if (CodeGenOpts.SanitizeCfiCrossDso)
5929     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5930       VTable->addTypeMetadata(Offset.getQuantity(),
5931                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5932 
5933   if (NeedAllVtablesTypeId()) {
5934     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5935     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5936   }
5937 }
5938 
5939 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5940   if (!SanStats)
5941     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5942 
5943   return *SanStats;
5944 }
5945 llvm::Value *
5946 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5947                                                   CodeGenFunction &CGF) {
5948   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5949   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5950   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5951   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5952                                 "__translate_sampler_initializer"),
5953                                 {C});
5954 }
5955