1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericMIPS: 68 case TargetCXXABI::GenericItanium: 69 return CreateItaniumCXXABI(CGM); 70 case TargetCXXABI::Microsoft: 71 return CreateMicrosoftCXXABI(CGM); 72 } 73 74 llvm_unreachable("invalid C++ ABI kind"); 75 } 76 77 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 78 const PreprocessorOptions &PPO, 79 const CodeGenOptions &CGO, llvm::Module &M, 80 DiagnosticsEngine &diags, 81 CoverageSourceInfo *CoverageInfo) 82 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 83 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 84 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 85 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 86 Types(*this), VTables(*this), ObjCRuntime(nullptr), 87 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 88 DebugInfo(nullptr), ARCData(nullptr), 89 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 90 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 91 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 92 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 93 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 94 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 95 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 96 97 // Initialize the type cache. 98 llvm::LLVMContext &LLVMContext = M.getContext(); 99 VoidTy = llvm::Type::getVoidTy(LLVMContext); 100 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 101 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 102 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 103 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 104 FloatTy = llvm::Type::getFloatTy(LLVMContext); 105 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 106 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 107 PointerAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 111 Int8PtrTy = Int8Ty->getPointerTo(0); 112 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 113 114 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 115 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 116 117 if (LangOpts.ObjC1) 118 createObjCRuntime(); 119 if (LangOpts.OpenCL) 120 createOpenCLRuntime(); 121 if (LangOpts.OpenMP) 122 createOpenMPRuntime(); 123 if (LangOpts.CUDA) 124 createCUDARuntime(); 125 126 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 127 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 128 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 129 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 130 getCXXABI().getMangleContext()); 131 132 // If debug info or coverage generation is enabled, create the CGDebugInfo 133 // object. 134 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 135 CodeGenOpts.EmitGcovArcs || 136 CodeGenOpts.EmitGcovNotes) 137 DebugInfo = new CGDebugInfo(*this); 138 139 Block.GlobalUniqueCount = 0; 140 141 if (C.getLangOpts().ObjCAutoRefCount) 142 ARCData = new ARCEntrypoints(); 143 RRData = new RREntrypoints(); 144 145 if (!CodeGenOpts.InstrProfileInput.empty()) { 146 auto ReaderOrErr = 147 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 148 if (std::error_code EC = ReaderOrErr.getError()) { 149 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 150 "Could not read profile %0: %1"); 151 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 152 << EC.message(); 153 } else 154 PGOReader = std::move(ReaderOrErr.get()); 155 } 156 157 // If coverage mapping generation is enabled, create the 158 // CoverageMappingModuleGen object. 159 if (CodeGenOpts.CoverageMapping) 160 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 161 } 162 163 CodeGenModule::~CodeGenModule() { 164 delete ObjCRuntime; 165 delete OpenCLRuntime; 166 delete OpenMPRuntime; 167 delete CUDARuntime; 168 delete TheTargetCodeGenInfo; 169 delete TBAA; 170 delete DebugInfo; 171 delete ARCData; 172 delete RRData; 173 } 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime = CreateGNUObjCRuntime(*this); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 ObjCRuntime = CreateMacObjCRuntime(*this); 189 return; 190 } 191 llvm_unreachable("bad runtime kind"); 192 } 193 194 void CodeGenModule::createOpenCLRuntime() { 195 OpenCLRuntime = new CGOpenCLRuntime(*this); 196 } 197 198 void CodeGenModule::createOpenMPRuntime() { 199 OpenMPRuntime = new CGOpenMPRuntime(*this); 200 } 201 202 void CodeGenModule::createCUDARuntime() { 203 CUDARuntime = CreateNVCUDARuntime(*this); 204 } 205 206 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 207 Replacements[Name] = C; 208 } 209 210 void CodeGenModule::applyReplacements() { 211 for (auto &I : Replacements) { 212 StringRef MangledName = I.first(); 213 llvm::Constant *Replacement = I.second; 214 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 215 if (!Entry) 216 continue; 217 auto *OldF = cast<llvm::Function>(Entry); 218 auto *NewF = dyn_cast<llvm::Function>(Replacement); 219 if (!NewF) { 220 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 221 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 222 } else { 223 auto *CE = cast<llvm::ConstantExpr>(Replacement); 224 assert(CE->getOpcode() == llvm::Instruction::BitCast || 225 CE->getOpcode() == llvm::Instruction::GetElementPtr); 226 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 227 } 228 } 229 230 // Replace old with new, but keep the old order. 231 OldF->replaceAllUsesWith(Replacement); 232 if (NewF) { 233 NewF->removeFromParent(); 234 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 235 } 236 OldF->eraseFromParent(); 237 } 238 } 239 240 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 241 GlobalValReplacements.push_back(std::make_pair(GV, C)); 242 } 243 244 void CodeGenModule::applyGlobalValReplacements() { 245 for (auto &I : GlobalValReplacements) { 246 llvm::GlobalValue *GV = I.first; 247 llvm::Constant *C = I.second; 248 249 GV->replaceAllUsesWith(C); 250 GV->eraseFromParent(); 251 } 252 } 253 254 // This is only used in aliases that we created and we know they have a 255 // linear structure. 256 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 257 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 258 const llvm::Constant *C = &GA; 259 for (;;) { 260 C = C->stripPointerCasts(); 261 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 262 return GO; 263 // stripPointerCasts will not walk over weak aliases. 264 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 265 if (!GA2) 266 return nullptr; 267 if (!Visited.insert(GA2).second) 268 return nullptr; 269 C = GA2->getAliasee(); 270 } 271 } 272 273 void CodeGenModule::checkAliases() { 274 // Check if the constructed aliases are well formed. It is really unfortunate 275 // that we have to do this in CodeGen, but we only construct mangled names 276 // and aliases during codegen. 277 bool Error = false; 278 DiagnosticsEngine &Diags = getDiags(); 279 for (const GlobalDecl &GD : Aliases) { 280 const auto *D = cast<ValueDecl>(GD.getDecl()); 281 const AliasAttr *AA = D->getAttr<AliasAttr>(); 282 StringRef MangledName = getMangledName(GD); 283 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 284 auto *Alias = cast<llvm::GlobalAlias>(Entry); 285 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 286 if (!GV) { 287 Error = true; 288 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 289 } else if (GV->isDeclaration()) { 290 Error = true; 291 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 292 } 293 294 llvm::Constant *Aliasee = Alias->getAliasee(); 295 llvm::GlobalValue *AliaseeGV; 296 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 297 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 298 else 299 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 300 301 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 302 StringRef AliasSection = SA->getName(); 303 if (AliasSection != AliaseeGV->getSection()) 304 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 305 << AliasSection; 306 } 307 308 // We have to handle alias to weak aliases in here. LLVM itself disallows 309 // this since the object semantics would not match the IL one. For 310 // compatibility with gcc we implement it by just pointing the alias 311 // to its aliasee's aliasee. We also warn, since the user is probably 312 // expecting the link to be weak. 313 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 314 if (GA->mayBeOverridden()) { 315 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 316 << GV->getName() << GA->getName(); 317 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 318 GA->getAliasee(), Alias->getType()); 319 Alias->setAliasee(Aliasee); 320 } 321 } 322 } 323 if (!Error) 324 return; 325 326 for (const GlobalDecl &GD : Aliases) { 327 StringRef MangledName = getMangledName(GD); 328 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 329 auto *Alias = cast<llvm::GlobalAlias>(Entry); 330 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 331 Alias->eraseFromParent(); 332 } 333 } 334 335 void CodeGenModule::clear() { 336 DeferredDeclsToEmit.clear(); 337 if (OpenMPRuntime) 338 OpenMPRuntime->clear(); 339 } 340 341 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 342 StringRef MainFile) { 343 if (!hasDiagnostics()) 344 return; 345 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 346 if (MainFile.empty()) 347 MainFile = "<stdin>"; 348 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 349 } else 350 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 351 << Mismatched; 352 } 353 354 void CodeGenModule::Release() { 355 EmitDeferred(); 356 applyGlobalValReplacements(); 357 applyReplacements(); 358 checkAliases(); 359 EmitCXXGlobalInitFunc(); 360 EmitCXXGlobalDtorFunc(); 361 EmitCXXThreadLocalInitFunc(); 362 if (ObjCRuntime) 363 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 364 AddGlobalCtor(ObjCInitFunction); 365 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 366 CUDARuntime) { 367 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 368 AddGlobalCtor(CudaCtorFunction); 369 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 370 AddGlobalDtor(CudaDtorFunction); 371 } 372 if (PGOReader && PGOStats.hasDiagnostics()) 373 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 374 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 375 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 376 EmitGlobalAnnotations(); 377 EmitStaticExternCAliases(); 378 EmitDeferredUnusedCoverageMappings(); 379 if (CoverageMapping) 380 CoverageMapping->emit(); 381 emitLLVMUsed(); 382 383 if (CodeGenOpts.Autolink && 384 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 385 EmitModuleLinkOptions(); 386 } 387 if (CodeGenOpts.DwarfVersion) { 388 // We actually want the latest version when there are conflicts. 389 // We can change from Warning to Latest if such mode is supported. 390 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 391 CodeGenOpts.DwarfVersion); 392 } 393 if (CodeGenOpts.EmitCodeView) { 394 // Indicate that we want CodeView in the metadata. 395 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 396 } 397 if (DebugInfo) 398 // We support a single version in the linked module. The LLVM 399 // parser will drop debug info with a different version number 400 // (and warn about it, too). 401 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 402 llvm::DEBUG_METADATA_VERSION); 403 404 // We need to record the widths of enums and wchar_t, so that we can generate 405 // the correct build attributes in the ARM backend. 406 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 407 if ( Arch == llvm::Triple::arm 408 || Arch == llvm::Triple::armeb 409 || Arch == llvm::Triple::thumb 410 || Arch == llvm::Triple::thumbeb) { 411 // Width of wchar_t in bytes 412 uint64_t WCharWidth = 413 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 414 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 415 416 // The minimum width of an enum in bytes 417 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 418 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 419 } 420 421 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 422 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 423 switch (PLevel) { 424 case 0: break; 425 case 1: PL = llvm::PICLevel::Small; break; 426 case 2: PL = llvm::PICLevel::Large; break; 427 default: llvm_unreachable("Invalid PIC Level"); 428 } 429 430 getModule().setPICLevel(PL); 431 } 432 433 SimplifyPersonality(); 434 435 if (getCodeGenOpts().EmitDeclMetadata) 436 EmitDeclMetadata(); 437 438 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 439 EmitCoverageFile(); 440 441 if (DebugInfo) 442 DebugInfo->finalize(); 443 444 EmitVersionIdentMetadata(); 445 446 EmitTargetMetadata(); 447 } 448 449 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 450 // Make sure that this type is translated. 451 Types.UpdateCompletedType(TD); 452 } 453 454 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 455 if (!TBAA) 456 return nullptr; 457 return TBAA->getTBAAInfo(QTy); 458 } 459 460 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 461 if (!TBAA) 462 return nullptr; 463 return TBAA->getTBAAInfoForVTablePtr(); 464 } 465 466 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 467 if (!TBAA) 468 return nullptr; 469 return TBAA->getTBAAStructInfo(QTy); 470 } 471 472 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 473 if (!TBAA) 474 return nullptr; 475 return TBAA->getTBAAStructTypeInfo(QTy); 476 } 477 478 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 479 llvm::MDNode *AccessN, 480 uint64_t O) { 481 if (!TBAA) 482 return nullptr; 483 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 484 } 485 486 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 487 /// and struct-path aware TBAA, the tag has the same format: 488 /// base type, access type and offset. 489 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 490 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 491 llvm::MDNode *TBAAInfo, 492 bool ConvertTypeToTag) { 493 if (ConvertTypeToTag && TBAA) 494 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 495 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 496 else 497 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 498 } 499 500 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 501 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 502 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 503 } 504 505 /// ErrorUnsupported - Print out an error that codegen doesn't support the 506 /// specified stmt yet. 507 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 508 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 509 "cannot compile this %0 yet"); 510 std::string Msg = Type; 511 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 512 << Msg << S->getSourceRange(); 513 } 514 515 /// ErrorUnsupported - Print out an error that codegen doesn't support the 516 /// specified decl yet. 517 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 518 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 519 "cannot compile this %0 yet"); 520 std::string Msg = Type; 521 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 522 } 523 524 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 525 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 526 } 527 528 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 529 const NamedDecl *D) const { 530 // Internal definitions always have default visibility. 531 if (GV->hasLocalLinkage()) { 532 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 533 return; 534 } 535 536 // Set visibility for definitions. 537 LinkageInfo LV = D->getLinkageAndVisibility(); 538 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 539 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 540 } 541 542 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 543 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 544 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 545 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 546 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 547 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 548 } 549 550 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 551 CodeGenOptions::TLSModel M) { 552 switch (M) { 553 case CodeGenOptions::GeneralDynamicTLSModel: 554 return llvm::GlobalVariable::GeneralDynamicTLSModel; 555 case CodeGenOptions::LocalDynamicTLSModel: 556 return llvm::GlobalVariable::LocalDynamicTLSModel; 557 case CodeGenOptions::InitialExecTLSModel: 558 return llvm::GlobalVariable::InitialExecTLSModel; 559 case CodeGenOptions::LocalExecTLSModel: 560 return llvm::GlobalVariable::LocalExecTLSModel; 561 } 562 llvm_unreachable("Invalid TLS model!"); 563 } 564 565 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 566 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 567 568 llvm::GlobalValue::ThreadLocalMode TLM; 569 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 570 571 // Override the TLS model if it is explicitly specified. 572 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 573 TLM = GetLLVMTLSModel(Attr->getModel()); 574 } 575 576 GV->setThreadLocalMode(TLM); 577 } 578 579 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 580 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 581 if (!FoundStr.empty()) 582 return FoundStr; 583 584 const auto *ND = cast<NamedDecl>(GD.getDecl()); 585 SmallString<256> Buffer; 586 StringRef Str; 587 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 588 llvm::raw_svector_ostream Out(Buffer); 589 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 590 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 591 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 592 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 593 else 594 getCXXABI().getMangleContext().mangleName(ND, Out); 595 Str = Out.str(); 596 } else { 597 IdentifierInfo *II = ND->getIdentifier(); 598 assert(II && "Attempt to mangle unnamed decl."); 599 Str = II->getName(); 600 } 601 602 // Keep the first result in the case of a mangling collision. 603 auto Result = Manglings.insert(std::make_pair(Str, GD)); 604 return FoundStr = Result.first->first(); 605 } 606 607 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 608 const BlockDecl *BD) { 609 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 610 const Decl *D = GD.getDecl(); 611 612 SmallString<256> Buffer; 613 llvm::raw_svector_ostream Out(Buffer); 614 if (!D) 615 MangleCtx.mangleGlobalBlock(BD, 616 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 617 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 618 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 619 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 620 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 621 else 622 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 623 624 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 625 return Result.first->first(); 626 } 627 628 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 629 return getModule().getNamedValue(Name); 630 } 631 632 /// AddGlobalCtor - Add a function to the list that will be called before 633 /// main() runs. 634 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 635 llvm::Constant *AssociatedData) { 636 // FIXME: Type coercion of void()* types. 637 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 638 } 639 640 /// AddGlobalDtor - Add a function to the list that will be called 641 /// when the module is unloaded. 642 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 643 // FIXME: Type coercion of void()* types. 644 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 645 } 646 647 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 648 // Ctor function type is void()*. 649 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 650 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 651 652 // Get the type of a ctor entry, { i32, void ()*, i8* }. 653 llvm::StructType *CtorStructTy = llvm::StructType::get( 654 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 655 656 // Construct the constructor and destructor arrays. 657 SmallVector<llvm::Constant *, 8> Ctors; 658 for (const auto &I : Fns) { 659 llvm::Constant *S[] = { 660 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 661 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 662 (I.AssociatedData 663 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 664 : llvm::Constant::getNullValue(VoidPtrTy))}; 665 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 666 } 667 668 if (!Ctors.empty()) { 669 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 670 new llvm::GlobalVariable(TheModule, AT, false, 671 llvm::GlobalValue::AppendingLinkage, 672 llvm::ConstantArray::get(AT, Ctors), 673 GlobalName); 674 } 675 } 676 677 llvm::GlobalValue::LinkageTypes 678 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 679 const auto *D = cast<FunctionDecl>(GD.getDecl()); 680 681 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 682 683 if (isa<CXXDestructorDecl>(D) && 684 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 685 GD.getDtorType())) { 686 // Destructor variants in the Microsoft C++ ABI are always internal or 687 // linkonce_odr thunks emitted on an as-needed basis. 688 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 689 : llvm::GlobalValue::LinkOnceODRLinkage; 690 } 691 692 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 693 } 694 695 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 696 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 697 698 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 699 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 700 // Don't dllexport/import destructor thunks. 701 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 702 return; 703 } 704 } 705 706 if (FD->hasAttr<DLLImportAttr>()) 707 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 708 else if (FD->hasAttr<DLLExportAttr>()) 709 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 710 else 711 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 712 } 713 714 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 715 llvm::Function *F) { 716 setNonAliasAttributes(D, F); 717 } 718 719 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 720 const CGFunctionInfo &Info, 721 llvm::Function *F) { 722 unsigned CallingConv; 723 AttributeListType AttributeList; 724 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 725 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 726 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 727 } 728 729 /// Determines whether the language options require us to model 730 /// unwind exceptions. We treat -fexceptions as mandating this 731 /// except under the fragile ObjC ABI with only ObjC exceptions 732 /// enabled. This means, for example, that C with -fexceptions 733 /// enables this. 734 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 735 // If exceptions are completely disabled, obviously this is false. 736 if (!LangOpts.Exceptions) return false; 737 738 // If C++ exceptions are enabled, this is true. 739 if (LangOpts.CXXExceptions) return true; 740 741 // If ObjC exceptions are enabled, this depends on the ABI. 742 if (LangOpts.ObjCExceptions) { 743 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 744 } 745 746 return true; 747 } 748 749 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 750 llvm::Function *F) { 751 llvm::AttrBuilder B; 752 753 if (CodeGenOpts.UnwindTables) 754 B.addAttribute(llvm::Attribute::UWTable); 755 756 if (!hasUnwindExceptions(LangOpts)) 757 B.addAttribute(llvm::Attribute::NoUnwind); 758 759 if (D->hasAttr<NakedAttr>()) { 760 // Naked implies noinline: we should not be inlining such functions. 761 B.addAttribute(llvm::Attribute::Naked); 762 B.addAttribute(llvm::Attribute::NoInline); 763 } else if (D->hasAttr<NoDuplicateAttr>()) { 764 B.addAttribute(llvm::Attribute::NoDuplicate); 765 } else if (D->hasAttr<NoInlineAttr>()) { 766 B.addAttribute(llvm::Attribute::NoInline); 767 } else if (D->hasAttr<AlwaysInlineAttr>() && 768 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 769 llvm::Attribute::NoInline)) { 770 // (noinline wins over always_inline, and we can't specify both in IR) 771 B.addAttribute(llvm::Attribute::AlwaysInline); 772 } 773 774 if (D->hasAttr<ColdAttr>()) { 775 if (!D->hasAttr<OptimizeNoneAttr>()) 776 B.addAttribute(llvm::Attribute::OptimizeForSize); 777 B.addAttribute(llvm::Attribute::Cold); 778 } 779 780 if (D->hasAttr<MinSizeAttr>()) 781 B.addAttribute(llvm::Attribute::MinSize); 782 783 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 784 B.addAttribute(llvm::Attribute::StackProtect); 785 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 786 B.addAttribute(llvm::Attribute::StackProtectStrong); 787 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 788 B.addAttribute(llvm::Attribute::StackProtectReq); 789 790 F->addAttributes(llvm::AttributeSet::FunctionIndex, 791 llvm::AttributeSet::get( 792 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 793 794 if (D->hasAttr<OptimizeNoneAttr>()) { 795 // OptimizeNone implies noinline; we should not be inlining such functions. 796 F->addFnAttr(llvm::Attribute::OptimizeNone); 797 F->addFnAttr(llvm::Attribute::NoInline); 798 799 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 800 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 801 "OptimizeNone and OptimizeForSize on same function!"); 802 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 803 "OptimizeNone and MinSize on same function!"); 804 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 805 "OptimizeNone and AlwaysInline on same function!"); 806 807 // Attribute 'inlinehint' has no effect on 'optnone' functions. 808 // Explicitly remove it from the set of function attributes. 809 F->removeFnAttr(llvm::Attribute::InlineHint); 810 } 811 812 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 813 F->setUnnamedAddr(true); 814 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 815 if (MD->isVirtual()) 816 F->setUnnamedAddr(true); 817 818 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 819 if (alignment) 820 F->setAlignment(alignment); 821 822 // C++ ABI requires 2-byte alignment for member functions. 823 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 824 F->setAlignment(2); 825 } 826 827 void CodeGenModule::SetCommonAttributes(const Decl *D, 828 llvm::GlobalValue *GV) { 829 if (const auto *ND = dyn_cast<NamedDecl>(D)) 830 setGlobalVisibility(GV, ND); 831 else 832 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 833 834 if (D->hasAttr<UsedAttr>()) 835 addUsedGlobal(GV); 836 } 837 838 void CodeGenModule::setAliasAttributes(const Decl *D, 839 llvm::GlobalValue *GV) { 840 SetCommonAttributes(D, GV); 841 842 // Process the dllexport attribute based on whether the original definition 843 // (not necessarily the aliasee) was exported. 844 if (D->hasAttr<DLLExportAttr>()) 845 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 846 } 847 848 void CodeGenModule::setNonAliasAttributes(const Decl *D, 849 llvm::GlobalObject *GO) { 850 SetCommonAttributes(D, GO); 851 852 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 853 GO->setSection(SA->getName()); 854 855 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 856 } 857 858 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 859 llvm::Function *F, 860 const CGFunctionInfo &FI) { 861 SetLLVMFunctionAttributes(D, FI, F); 862 SetLLVMFunctionAttributesForDefinition(D, F); 863 864 F->setLinkage(llvm::Function::InternalLinkage); 865 866 setNonAliasAttributes(D, F); 867 } 868 869 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 870 const NamedDecl *ND) { 871 // Set linkage and visibility in case we never see a definition. 872 LinkageInfo LV = ND->getLinkageAndVisibility(); 873 if (LV.getLinkage() != ExternalLinkage) { 874 // Don't set internal linkage on declarations. 875 } else { 876 if (ND->hasAttr<DLLImportAttr>()) { 877 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 878 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 879 } else if (ND->hasAttr<DLLExportAttr>()) { 880 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 881 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 882 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 883 // "extern_weak" is overloaded in LLVM; we probably should have 884 // separate linkage types for this. 885 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 886 } 887 888 // Set visibility on a declaration only if it's explicit. 889 if (LV.isVisibilityExplicit()) 890 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 891 } 892 } 893 894 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 895 bool IsIncompleteFunction, 896 bool IsThunk) { 897 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 898 // If this is an intrinsic function, set the function's attributes 899 // to the intrinsic's attributes. 900 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 901 return; 902 } 903 904 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 905 906 if (!IsIncompleteFunction) 907 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 908 909 // Add the Returned attribute for "this", except for iOS 5 and earlier 910 // where substantial code, including the libstdc++ dylib, was compiled with 911 // GCC and does not actually return "this". 912 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 913 !(getTarget().getTriple().isiOS() && 914 getTarget().getTriple().isOSVersionLT(6))) { 915 assert(!F->arg_empty() && 916 F->arg_begin()->getType() 917 ->canLosslesslyBitCastTo(F->getReturnType()) && 918 "unexpected this return"); 919 F->addAttribute(1, llvm::Attribute::Returned); 920 } 921 922 // Only a few attributes are set on declarations; these may later be 923 // overridden by a definition. 924 925 setLinkageAndVisibilityForGV(F, FD); 926 927 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 928 F->setSection(SA->getName()); 929 930 // A replaceable global allocation function does not act like a builtin by 931 // default, only if it is invoked by a new-expression or delete-expression. 932 if (FD->isReplaceableGlobalAllocationFunction()) 933 F->addAttribute(llvm::AttributeSet::FunctionIndex, 934 llvm::Attribute::NoBuiltin); 935 } 936 937 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 938 assert(!GV->isDeclaration() && 939 "Only globals with definition can force usage."); 940 LLVMUsed.emplace_back(GV); 941 } 942 943 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 944 assert(!GV->isDeclaration() && 945 "Only globals with definition can force usage."); 946 LLVMCompilerUsed.emplace_back(GV); 947 } 948 949 static void emitUsed(CodeGenModule &CGM, StringRef Name, 950 std::vector<llvm::WeakVH> &List) { 951 // Don't create llvm.used if there is no need. 952 if (List.empty()) 953 return; 954 955 // Convert List to what ConstantArray needs. 956 SmallVector<llvm::Constant*, 8> UsedArray; 957 UsedArray.resize(List.size()); 958 for (unsigned i = 0, e = List.size(); i != e; ++i) { 959 UsedArray[i] = 960 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 961 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 962 } 963 964 if (UsedArray.empty()) 965 return; 966 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 967 968 auto *GV = new llvm::GlobalVariable( 969 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 970 llvm::ConstantArray::get(ATy, UsedArray), Name); 971 972 GV->setSection("llvm.metadata"); 973 } 974 975 void CodeGenModule::emitLLVMUsed() { 976 emitUsed(*this, "llvm.used", LLVMUsed); 977 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 978 } 979 980 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 981 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 982 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 983 } 984 985 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 986 llvm::SmallString<32> Opt; 987 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 988 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 989 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 990 } 991 992 void CodeGenModule::AddDependentLib(StringRef Lib) { 993 llvm::SmallString<24> Opt; 994 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 995 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 996 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 997 } 998 999 /// \brief Add link options implied by the given module, including modules 1000 /// it depends on, using a postorder walk. 1001 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1002 SmallVectorImpl<llvm::Metadata *> &Metadata, 1003 llvm::SmallPtrSet<Module *, 16> &Visited) { 1004 // Import this module's parent. 1005 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1006 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1007 } 1008 1009 // Import this module's dependencies. 1010 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1011 if (Visited.insert(Mod->Imports[I - 1]).second) 1012 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1013 } 1014 1015 // Add linker options to link against the libraries/frameworks 1016 // described by this module. 1017 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1018 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1019 // Link against a framework. Frameworks are currently Darwin only, so we 1020 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1021 if (Mod->LinkLibraries[I-1].IsFramework) { 1022 llvm::Metadata *Args[2] = { 1023 llvm::MDString::get(Context, "-framework"), 1024 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1025 1026 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1027 continue; 1028 } 1029 1030 // Link against a library. 1031 llvm::SmallString<24> Opt; 1032 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1033 Mod->LinkLibraries[I-1].Library, Opt); 1034 auto *OptString = llvm::MDString::get(Context, Opt); 1035 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1036 } 1037 } 1038 1039 void CodeGenModule::EmitModuleLinkOptions() { 1040 // Collect the set of all of the modules we want to visit to emit link 1041 // options, which is essentially the imported modules and all of their 1042 // non-explicit child modules. 1043 llvm::SetVector<clang::Module *> LinkModules; 1044 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1045 SmallVector<clang::Module *, 16> Stack; 1046 1047 // Seed the stack with imported modules. 1048 for (Module *M : ImportedModules) 1049 if (Visited.insert(M).second) 1050 Stack.push_back(M); 1051 1052 // Find all of the modules to import, making a little effort to prune 1053 // non-leaf modules. 1054 while (!Stack.empty()) { 1055 clang::Module *Mod = Stack.pop_back_val(); 1056 1057 bool AnyChildren = false; 1058 1059 // Visit the submodules of this module. 1060 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1061 SubEnd = Mod->submodule_end(); 1062 Sub != SubEnd; ++Sub) { 1063 // Skip explicit children; they need to be explicitly imported to be 1064 // linked against. 1065 if ((*Sub)->IsExplicit) 1066 continue; 1067 1068 if (Visited.insert(*Sub).second) { 1069 Stack.push_back(*Sub); 1070 AnyChildren = true; 1071 } 1072 } 1073 1074 // We didn't find any children, so add this module to the list of 1075 // modules to link against. 1076 if (!AnyChildren) { 1077 LinkModules.insert(Mod); 1078 } 1079 } 1080 1081 // Add link options for all of the imported modules in reverse topological 1082 // order. We don't do anything to try to order import link flags with respect 1083 // to linker options inserted by things like #pragma comment(). 1084 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1085 Visited.clear(); 1086 for (Module *M : LinkModules) 1087 if (Visited.insert(M).second) 1088 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1089 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1090 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1091 1092 // Add the linker options metadata flag. 1093 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1094 llvm::MDNode::get(getLLVMContext(), 1095 LinkerOptionsMetadata)); 1096 } 1097 1098 void CodeGenModule::EmitDeferred() { 1099 // Emit code for any potentially referenced deferred decls. Since a 1100 // previously unused static decl may become used during the generation of code 1101 // for a static function, iterate until no changes are made. 1102 1103 if (!DeferredVTables.empty()) { 1104 EmitDeferredVTables(); 1105 1106 // Emitting a v-table doesn't directly cause more v-tables to 1107 // become deferred, although it can cause functions to be 1108 // emitted that then need those v-tables. 1109 assert(DeferredVTables.empty()); 1110 } 1111 1112 // Stop if we're out of both deferred v-tables and deferred declarations. 1113 if (DeferredDeclsToEmit.empty()) 1114 return; 1115 1116 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1117 // work, it will not interfere with this. 1118 std::vector<DeferredGlobal> CurDeclsToEmit; 1119 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1120 1121 for (DeferredGlobal &G : CurDeclsToEmit) { 1122 GlobalDecl D = G.GD; 1123 llvm::GlobalValue *GV = G.GV; 1124 G.GV = nullptr; 1125 1126 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1127 // to get GlobalValue with exactly the type we need, not something that 1128 // might had been created for another decl with the same mangled name but 1129 // different type. 1130 // FIXME: Support for variables is not implemented yet. 1131 if (isa<FunctionDecl>(D.getDecl())) 1132 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1133 else 1134 if (!GV) 1135 GV = GetGlobalValue(getMangledName(D)); 1136 1137 // Check to see if we've already emitted this. This is necessary 1138 // for a couple of reasons: first, decls can end up in the 1139 // deferred-decls queue multiple times, and second, decls can end 1140 // up with definitions in unusual ways (e.g. by an extern inline 1141 // function acquiring a strong function redefinition). Just 1142 // ignore these cases. 1143 if (GV && !GV->isDeclaration()) 1144 continue; 1145 1146 // Otherwise, emit the definition and move on to the next one. 1147 EmitGlobalDefinition(D, GV); 1148 1149 // If we found out that we need to emit more decls, do that recursively. 1150 // This has the advantage that the decls are emitted in a DFS and related 1151 // ones are close together, which is convenient for testing. 1152 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1153 EmitDeferred(); 1154 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1155 } 1156 } 1157 } 1158 1159 void CodeGenModule::EmitGlobalAnnotations() { 1160 if (Annotations.empty()) 1161 return; 1162 1163 // Create a new global variable for the ConstantStruct in the Module. 1164 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1165 Annotations[0]->getType(), Annotations.size()), Annotations); 1166 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1167 llvm::GlobalValue::AppendingLinkage, 1168 Array, "llvm.global.annotations"); 1169 gv->setSection(AnnotationSection); 1170 } 1171 1172 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1173 llvm::Constant *&AStr = AnnotationStrings[Str]; 1174 if (AStr) 1175 return AStr; 1176 1177 // Not found yet, create a new global. 1178 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1179 auto *gv = 1180 new llvm::GlobalVariable(getModule(), s->getType(), true, 1181 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1182 gv->setSection(AnnotationSection); 1183 gv->setUnnamedAddr(true); 1184 AStr = gv; 1185 return gv; 1186 } 1187 1188 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1189 SourceManager &SM = getContext().getSourceManager(); 1190 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1191 if (PLoc.isValid()) 1192 return EmitAnnotationString(PLoc.getFilename()); 1193 return EmitAnnotationString(SM.getBufferName(Loc)); 1194 } 1195 1196 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1197 SourceManager &SM = getContext().getSourceManager(); 1198 PresumedLoc PLoc = SM.getPresumedLoc(L); 1199 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1200 SM.getExpansionLineNumber(L); 1201 return llvm::ConstantInt::get(Int32Ty, LineNo); 1202 } 1203 1204 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1205 const AnnotateAttr *AA, 1206 SourceLocation L) { 1207 // Get the globals for file name, annotation, and the line number. 1208 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1209 *UnitGV = EmitAnnotationUnit(L), 1210 *LineNoCst = EmitAnnotationLineNo(L); 1211 1212 // Create the ConstantStruct for the global annotation. 1213 llvm::Constant *Fields[4] = { 1214 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1215 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1216 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1217 LineNoCst 1218 }; 1219 return llvm::ConstantStruct::getAnon(Fields); 1220 } 1221 1222 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1223 llvm::GlobalValue *GV) { 1224 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1225 // Get the struct elements for these annotations. 1226 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1227 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1228 } 1229 1230 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1231 SourceLocation Loc) const { 1232 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1233 // Blacklist by function name. 1234 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1235 return true; 1236 // Blacklist by location. 1237 if (!Loc.isInvalid()) 1238 return SanitizerBL.isBlacklistedLocation(Loc); 1239 // If location is unknown, this may be a compiler-generated function. Assume 1240 // it's located in the main file. 1241 auto &SM = Context.getSourceManager(); 1242 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1243 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1244 } 1245 return false; 1246 } 1247 1248 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1249 SourceLocation Loc, QualType Ty, 1250 StringRef Category) const { 1251 // For now globals can be blacklisted only in ASan and KASan. 1252 if (!LangOpts.Sanitize.hasOneOf( 1253 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1254 return false; 1255 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1256 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1257 return true; 1258 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1259 return true; 1260 // Check global type. 1261 if (!Ty.isNull()) { 1262 // Drill down the array types: if global variable of a fixed type is 1263 // blacklisted, we also don't instrument arrays of them. 1264 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1265 Ty = AT->getElementType(); 1266 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1267 // We allow to blacklist only record types (classes, structs etc.) 1268 if (Ty->isRecordType()) { 1269 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1270 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1271 return true; 1272 } 1273 } 1274 return false; 1275 } 1276 1277 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1278 // Never defer when EmitAllDecls is specified. 1279 if (LangOpts.EmitAllDecls) 1280 return true; 1281 1282 return getContext().DeclMustBeEmitted(Global); 1283 } 1284 1285 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1286 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1287 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1288 // Implicit template instantiations may change linkage if they are later 1289 // explicitly instantiated, so they should not be emitted eagerly. 1290 return false; 1291 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1292 // codegen for global variables, because they may be marked as threadprivate. 1293 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1294 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1295 return false; 1296 1297 return true; 1298 } 1299 1300 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1301 const CXXUuidofExpr* E) { 1302 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1303 // well-formed. 1304 StringRef Uuid = E->getUuidAsStringRef(Context); 1305 std::string Name = "_GUID_" + Uuid.lower(); 1306 std::replace(Name.begin(), Name.end(), '-', '_'); 1307 1308 // Look for an existing global. 1309 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1310 return GV; 1311 1312 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1313 assert(Init && "failed to initialize as constant"); 1314 1315 auto *GV = new llvm::GlobalVariable( 1316 getModule(), Init->getType(), 1317 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1318 if (supportsCOMDAT()) 1319 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1320 return GV; 1321 } 1322 1323 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1324 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1325 assert(AA && "No alias?"); 1326 1327 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1328 1329 // See if there is already something with the target's name in the module. 1330 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1331 if (Entry) { 1332 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1333 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1334 } 1335 1336 llvm::Constant *Aliasee; 1337 if (isa<llvm::FunctionType>(DeclTy)) 1338 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1339 GlobalDecl(cast<FunctionDecl>(VD)), 1340 /*ForVTable=*/false); 1341 else 1342 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1343 llvm::PointerType::getUnqual(DeclTy), 1344 nullptr); 1345 1346 auto *F = cast<llvm::GlobalValue>(Aliasee); 1347 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1348 WeakRefReferences.insert(F); 1349 1350 return Aliasee; 1351 } 1352 1353 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1354 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1355 1356 // Weak references don't produce any output by themselves. 1357 if (Global->hasAttr<WeakRefAttr>()) 1358 return; 1359 1360 // If this is an alias definition (which otherwise looks like a declaration) 1361 // emit it now. 1362 if (Global->hasAttr<AliasAttr>()) 1363 return EmitAliasDefinition(GD); 1364 1365 // If this is CUDA, be selective about which declarations we emit. 1366 if (LangOpts.CUDA) { 1367 if (LangOpts.CUDAIsDevice) { 1368 if (!Global->hasAttr<CUDADeviceAttr>() && 1369 !Global->hasAttr<CUDAGlobalAttr>() && 1370 !Global->hasAttr<CUDAConstantAttr>() && 1371 !Global->hasAttr<CUDASharedAttr>()) 1372 return; 1373 } else { 1374 if (!Global->hasAttr<CUDAHostAttr>() && ( 1375 Global->hasAttr<CUDADeviceAttr>() || 1376 Global->hasAttr<CUDAConstantAttr>() || 1377 Global->hasAttr<CUDASharedAttr>())) 1378 return; 1379 } 1380 } 1381 1382 // Ignore declarations, they will be emitted on their first use. 1383 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1384 // Forward declarations are emitted lazily on first use. 1385 if (!FD->doesThisDeclarationHaveABody()) { 1386 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1387 return; 1388 1389 StringRef MangledName = getMangledName(GD); 1390 1391 // Compute the function info and LLVM type. 1392 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1393 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1394 1395 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1396 /*DontDefer=*/false); 1397 return; 1398 } 1399 } else { 1400 const auto *VD = cast<VarDecl>(Global); 1401 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1402 1403 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1404 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1405 return; 1406 } 1407 1408 // Defer code generation to first use when possible, e.g. if this is an inline 1409 // function. If the global must always be emitted, do it eagerly if possible 1410 // to benefit from cache locality. 1411 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1412 // Emit the definition if it can't be deferred. 1413 EmitGlobalDefinition(GD); 1414 return; 1415 } 1416 1417 // If we're deferring emission of a C++ variable with an 1418 // initializer, remember the order in which it appeared in the file. 1419 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1420 cast<VarDecl>(Global)->hasInit()) { 1421 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1422 CXXGlobalInits.push_back(nullptr); 1423 } 1424 1425 StringRef MangledName = getMangledName(GD); 1426 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1427 // The value has already been used and should therefore be emitted. 1428 addDeferredDeclToEmit(GV, GD); 1429 } else if (MustBeEmitted(Global)) { 1430 // The value must be emitted, but cannot be emitted eagerly. 1431 assert(!MayBeEmittedEagerly(Global)); 1432 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1433 } else { 1434 // Otherwise, remember that we saw a deferred decl with this name. The 1435 // first use of the mangled name will cause it to move into 1436 // DeferredDeclsToEmit. 1437 DeferredDecls[MangledName] = GD; 1438 } 1439 } 1440 1441 namespace { 1442 struct FunctionIsDirectlyRecursive : 1443 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1444 const StringRef Name; 1445 const Builtin::Context &BI; 1446 bool Result; 1447 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1448 Name(N), BI(C), Result(false) { 1449 } 1450 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1451 1452 bool TraverseCallExpr(CallExpr *E) { 1453 const FunctionDecl *FD = E->getDirectCallee(); 1454 if (!FD) 1455 return true; 1456 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1457 if (Attr && Name == Attr->getLabel()) { 1458 Result = true; 1459 return false; 1460 } 1461 unsigned BuiltinID = FD->getBuiltinID(); 1462 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1463 return true; 1464 StringRef BuiltinName = BI.getName(BuiltinID); 1465 if (BuiltinName.startswith("__builtin_") && 1466 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1467 Result = true; 1468 return false; 1469 } 1470 return true; 1471 } 1472 }; 1473 1474 struct DLLImportFunctionVisitor 1475 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1476 bool SafeToInline = true; 1477 1478 bool VisitVarDecl(VarDecl *VD) { 1479 // A thread-local variable cannot be imported. 1480 SafeToInline = !VD->getTLSKind(); 1481 return SafeToInline; 1482 } 1483 1484 // Make sure we're not referencing non-imported vars or functions. 1485 bool VisitDeclRefExpr(DeclRefExpr *E) { 1486 ValueDecl *VD = E->getDecl(); 1487 if (isa<FunctionDecl>(VD)) 1488 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1489 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1490 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1491 return SafeToInline; 1492 } 1493 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1494 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1495 return SafeToInline; 1496 } 1497 bool VisitCXXNewExpr(CXXNewExpr *E) { 1498 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1499 return SafeToInline; 1500 } 1501 }; 1502 } 1503 1504 // isTriviallyRecursive - Check if this function calls another 1505 // decl that, because of the asm attribute or the other decl being a builtin, 1506 // ends up pointing to itself. 1507 bool 1508 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1509 StringRef Name; 1510 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1511 // asm labels are a special kind of mangling we have to support. 1512 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1513 if (!Attr) 1514 return false; 1515 Name = Attr->getLabel(); 1516 } else { 1517 Name = FD->getName(); 1518 } 1519 1520 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1521 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1522 return Walker.Result; 1523 } 1524 1525 bool 1526 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1527 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1528 return true; 1529 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1530 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1531 return false; 1532 1533 if (F->hasAttr<DLLImportAttr>()) { 1534 // Check whether it would be safe to inline this dllimport function. 1535 DLLImportFunctionVisitor Visitor; 1536 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1537 if (!Visitor.SafeToInline) 1538 return false; 1539 } 1540 1541 // PR9614. Avoid cases where the source code is lying to us. An available 1542 // externally function should have an equivalent function somewhere else, 1543 // but a function that calls itself is clearly not equivalent to the real 1544 // implementation. 1545 // This happens in glibc's btowc and in some configure checks. 1546 return !isTriviallyRecursive(F); 1547 } 1548 1549 /// If the type for the method's class was generated by 1550 /// CGDebugInfo::createContextChain(), the cache contains only a 1551 /// limited DIType without any declarations. Since EmitFunctionStart() 1552 /// needs to find the canonical declaration for each method, we need 1553 /// to construct the complete type prior to emitting the method. 1554 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1555 if (!D->isInstance()) 1556 return; 1557 1558 if (CGDebugInfo *DI = getModuleDebugInfo()) 1559 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1560 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1561 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1562 } 1563 } 1564 1565 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1566 const auto *D = cast<ValueDecl>(GD.getDecl()); 1567 1568 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1569 Context.getSourceManager(), 1570 "Generating code for declaration"); 1571 1572 if (isa<FunctionDecl>(D)) { 1573 // At -O0, don't generate IR for functions with available_externally 1574 // linkage. 1575 if (!shouldEmitFunction(GD)) 1576 return; 1577 1578 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1579 CompleteDIClassType(Method); 1580 // Make sure to emit the definition(s) before we emit the thunks. 1581 // This is necessary for the generation of certain thunks. 1582 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1583 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1584 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1585 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1586 else 1587 EmitGlobalFunctionDefinition(GD, GV); 1588 1589 if (Method->isVirtual()) 1590 getVTables().EmitThunks(GD); 1591 1592 return; 1593 } 1594 1595 return EmitGlobalFunctionDefinition(GD, GV); 1596 } 1597 1598 if (const auto *VD = dyn_cast<VarDecl>(D)) 1599 return EmitGlobalVarDefinition(VD); 1600 1601 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1602 } 1603 1604 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1605 llvm::Function *NewFn); 1606 1607 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1608 /// module, create and return an llvm Function with the specified type. If there 1609 /// is something in the module with the specified name, return it potentially 1610 /// bitcasted to the right type. 1611 /// 1612 /// If D is non-null, it specifies a decl that correspond to this. This is used 1613 /// to set the attributes on the function when it is first created. 1614 llvm::Constant * 1615 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1616 llvm::Type *Ty, 1617 GlobalDecl GD, bool ForVTable, 1618 bool DontDefer, bool IsThunk, 1619 llvm::AttributeSet ExtraAttrs, 1620 bool IsForDefinition) { 1621 const Decl *D = GD.getDecl(); 1622 1623 // Lookup the entry, lazily creating it if necessary. 1624 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1625 if (Entry) { 1626 if (WeakRefReferences.erase(Entry)) { 1627 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1628 if (FD && !FD->hasAttr<WeakAttr>()) 1629 Entry->setLinkage(llvm::Function::ExternalLinkage); 1630 } 1631 1632 // Handle dropped DLL attributes. 1633 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1634 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1635 1636 // If there are two attempts to define the same mangled name, issue an 1637 // error. 1638 if (IsForDefinition && !Entry->isDeclaration()) { 1639 GlobalDecl OtherGD; 1640 // Check that GD is not yet in ExplicitDefinitions is required to make 1641 // sure that we issue an error only once. 1642 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1643 (GD.getCanonicalDecl().getDecl() != 1644 OtherGD.getCanonicalDecl().getDecl()) && 1645 DiagnosedConflictingDefinitions.insert(GD).second) { 1646 getDiags().Report(D->getLocation(), 1647 diag::err_duplicate_mangled_name); 1648 getDiags().Report(OtherGD.getDecl()->getLocation(), 1649 diag::note_previous_definition); 1650 } 1651 } 1652 1653 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1654 (Entry->getType()->getElementType() == Ty)) { 1655 return Entry; 1656 } 1657 1658 // Make sure the result is of the correct type. 1659 // (If function is requested for a definition, we always need to create a new 1660 // function, not just return a bitcast.) 1661 if (!IsForDefinition) 1662 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1663 } 1664 1665 // This function doesn't have a complete type (for example, the return 1666 // type is an incomplete struct). Use a fake type instead, and make 1667 // sure not to try to set attributes. 1668 bool IsIncompleteFunction = false; 1669 1670 llvm::FunctionType *FTy; 1671 if (isa<llvm::FunctionType>(Ty)) { 1672 FTy = cast<llvm::FunctionType>(Ty); 1673 } else { 1674 FTy = llvm::FunctionType::get(VoidTy, false); 1675 IsIncompleteFunction = true; 1676 } 1677 1678 llvm::Function *F = 1679 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1680 Entry ? StringRef() : MangledName, &getModule()); 1681 1682 // If we already created a function with the same mangled name (but different 1683 // type) before, take its name and add it to the list of functions to be 1684 // replaced with F at the end of CodeGen. 1685 // 1686 // This happens if there is a prototype for a function (e.g. "int f()") and 1687 // then a definition of a different type (e.g. "int f(int x)"). 1688 if (Entry) { 1689 F->takeName(Entry); 1690 1691 // This might be an implementation of a function without a prototype, in 1692 // which case, try to do special replacement of calls which match the new 1693 // prototype. The really key thing here is that we also potentially drop 1694 // arguments from the call site so as to make a direct call, which makes the 1695 // inliner happier and suppresses a number of optimizer warnings (!) about 1696 // dropping arguments. 1697 if (!Entry->use_empty()) { 1698 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1699 Entry->removeDeadConstantUsers(); 1700 } 1701 1702 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1703 F, Entry->getType()->getElementType()->getPointerTo()); 1704 addGlobalValReplacement(Entry, BC); 1705 } 1706 1707 assert(F->getName() == MangledName && "name was uniqued!"); 1708 if (D) 1709 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1710 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1711 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1712 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1713 llvm::AttributeSet::get(VMContext, 1714 llvm::AttributeSet::FunctionIndex, 1715 B)); 1716 } 1717 1718 if (!DontDefer) { 1719 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1720 // each other bottoming out with the base dtor. Therefore we emit non-base 1721 // dtors on usage, even if there is no dtor definition in the TU. 1722 if (D && isa<CXXDestructorDecl>(D) && 1723 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1724 GD.getDtorType())) 1725 addDeferredDeclToEmit(F, GD); 1726 1727 // This is the first use or definition of a mangled name. If there is a 1728 // deferred decl with this name, remember that we need to emit it at the end 1729 // of the file. 1730 auto DDI = DeferredDecls.find(MangledName); 1731 if (DDI != DeferredDecls.end()) { 1732 // Move the potentially referenced deferred decl to the 1733 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1734 // don't need it anymore). 1735 addDeferredDeclToEmit(F, DDI->second); 1736 DeferredDecls.erase(DDI); 1737 1738 // Otherwise, there are cases we have to worry about where we're 1739 // using a declaration for which we must emit a definition but where 1740 // we might not find a top-level definition: 1741 // - member functions defined inline in their classes 1742 // - friend functions defined inline in some class 1743 // - special member functions with implicit definitions 1744 // If we ever change our AST traversal to walk into class methods, 1745 // this will be unnecessary. 1746 // 1747 // We also don't emit a definition for a function if it's going to be an 1748 // entry in a vtable, unless it's already marked as used. 1749 } else if (getLangOpts().CPlusPlus && D) { 1750 // Look for a declaration that's lexically in a record. 1751 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1752 FD = FD->getPreviousDecl()) { 1753 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1754 if (FD->doesThisDeclarationHaveABody()) { 1755 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1756 break; 1757 } 1758 } 1759 } 1760 } 1761 } 1762 1763 // Make sure the result is of the requested type. 1764 if (!IsIncompleteFunction) { 1765 assert(F->getType()->getElementType() == Ty); 1766 return F; 1767 } 1768 1769 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1770 return llvm::ConstantExpr::getBitCast(F, PTy); 1771 } 1772 1773 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1774 /// non-null, then this function will use the specified type if it has to 1775 /// create it (this occurs when we see a definition of the function). 1776 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1777 llvm::Type *Ty, 1778 bool ForVTable, 1779 bool DontDefer, 1780 bool IsForDefinition) { 1781 // If there was no specific requested type, just convert it now. 1782 if (!Ty) 1783 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1784 1785 StringRef MangledName = getMangledName(GD); 1786 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1787 /*IsThunk=*/false, llvm::AttributeSet(), 1788 IsForDefinition); 1789 } 1790 1791 /// CreateRuntimeFunction - Create a new runtime function with the specified 1792 /// type and name. 1793 llvm::Constant * 1794 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1795 StringRef Name, 1796 llvm::AttributeSet ExtraAttrs) { 1797 llvm::Constant *C = 1798 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1799 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1800 if (auto *F = dyn_cast<llvm::Function>(C)) 1801 if (F->empty()) 1802 F->setCallingConv(getRuntimeCC()); 1803 return C; 1804 } 1805 1806 /// CreateBuiltinFunction - Create a new builtin function with the specified 1807 /// type and name. 1808 llvm::Constant * 1809 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1810 StringRef Name, 1811 llvm::AttributeSet ExtraAttrs) { 1812 llvm::Constant *C = 1813 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1814 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1815 if (auto *F = dyn_cast<llvm::Function>(C)) 1816 if (F->empty()) 1817 F->setCallingConv(getBuiltinCC()); 1818 return C; 1819 } 1820 1821 /// isTypeConstant - Determine whether an object of this type can be emitted 1822 /// as a constant. 1823 /// 1824 /// If ExcludeCtor is true, the duration when the object's constructor runs 1825 /// will not be considered. The caller will need to verify that the object is 1826 /// not written to during its construction. 1827 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1828 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1829 return false; 1830 1831 if (Context.getLangOpts().CPlusPlus) { 1832 if (const CXXRecordDecl *Record 1833 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1834 return ExcludeCtor && !Record->hasMutableFields() && 1835 Record->hasTrivialDestructor(); 1836 } 1837 1838 return true; 1839 } 1840 1841 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1842 /// create and return an llvm GlobalVariable with the specified type. If there 1843 /// is something in the module with the specified name, return it potentially 1844 /// bitcasted to the right type. 1845 /// 1846 /// If D is non-null, it specifies a decl that correspond to this. This is used 1847 /// to set the attributes on the global when it is first created. 1848 llvm::Constant * 1849 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1850 llvm::PointerType *Ty, 1851 const VarDecl *D) { 1852 // Lookup the entry, lazily creating it if necessary. 1853 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1854 if (Entry) { 1855 if (WeakRefReferences.erase(Entry)) { 1856 if (D && !D->hasAttr<WeakAttr>()) 1857 Entry->setLinkage(llvm::Function::ExternalLinkage); 1858 } 1859 1860 // Handle dropped DLL attributes. 1861 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1862 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1863 1864 if (Entry->getType() == Ty) 1865 return Entry; 1866 1867 // Make sure the result is of the correct type. 1868 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1869 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1870 1871 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1872 } 1873 1874 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1875 auto *GV = new llvm::GlobalVariable( 1876 getModule(), Ty->getElementType(), false, 1877 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1878 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1879 1880 // This is the first use or definition of a mangled name. If there is a 1881 // deferred decl with this name, remember that we need to emit it at the end 1882 // of the file. 1883 auto DDI = DeferredDecls.find(MangledName); 1884 if (DDI != DeferredDecls.end()) { 1885 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1886 // list, and remove it from DeferredDecls (since we don't need it anymore). 1887 addDeferredDeclToEmit(GV, DDI->second); 1888 DeferredDecls.erase(DDI); 1889 } 1890 1891 // Handle things which are present even on external declarations. 1892 if (D) { 1893 // FIXME: This code is overly simple and should be merged with other global 1894 // handling. 1895 GV->setConstant(isTypeConstant(D->getType(), false)); 1896 1897 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1898 1899 setLinkageAndVisibilityForGV(GV, D); 1900 1901 if (D->getTLSKind()) { 1902 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1903 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1904 setTLSMode(GV, *D); 1905 } 1906 1907 // If required by the ABI, treat declarations of static data members with 1908 // inline initializers as definitions. 1909 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1910 EmitGlobalVarDefinition(D); 1911 } 1912 1913 // Handle XCore specific ABI requirements. 1914 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1915 D->getLanguageLinkage() == CLanguageLinkage && 1916 D->getType().isConstant(Context) && 1917 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1918 GV->setSection(".cp.rodata"); 1919 } 1920 1921 if (AddrSpace != Ty->getAddressSpace()) 1922 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1923 1924 return GV; 1925 } 1926 1927 llvm::Constant * 1928 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 1929 bool IsForDefinition) { 1930 if (isa<CXXConstructorDecl>(GD.getDecl())) 1931 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 1932 getFromCtorType(GD.getCtorType()), 1933 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1934 /*DontDefer=*/false, IsForDefinition); 1935 else if (isa<CXXDestructorDecl>(GD.getDecl())) 1936 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 1937 getFromDtorType(GD.getDtorType()), 1938 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1939 /*DontDefer=*/false, IsForDefinition); 1940 else if (isa<CXXMethodDecl>(GD.getDecl())) { 1941 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 1942 cast<CXXMethodDecl>(GD.getDecl())); 1943 auto Ty = getTypes().GetFunctionType(*FInfo); 1944 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 1945 IsForDefinition); 1946 } else if (isa<FunctionDecl>(GD.getDecl())) { 1947 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1948 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1949 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 1950 IsForDefinition); 1951 } else 1952 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 1953 } 1954 1955 llvm::GlobalVariable * 1956 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1957 llvm::Type *Ty, 1958 llvm::GlobalValue::LinkageTypes Linkage) { 1959 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1960 llvm::GlobalVariable *OldGV = nullptr; 1961 1962 if (GV) { 1963 // Check if the variable has the right type. 1964 if (GV->getType()->getElementType() == Ty) 1965 return GV; 1966 1967 // Because C++ name mangling, the only way we can end up with an already 1968 // existing global with the same name is if it has been declared extern "C". 1969 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1970 OldGV = GV; 1971 } 1972 1973 // Create a new variable. 1974 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1975 Linkage, nullptr, Name); 1976 1977 if (OldGV) { 1978 // Replace occurrences of the old variable if needed. 1979 GV->takeName(OldGV); 1980 1981 if (!OldGV->use_empty()) { 1982 llvm::Constant *NewPtrForOldDecl = 1983 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1984 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1985 } 1986 1987 OldGV->eraseFromParent(); 1988 } 1989 1990 if (supportsCOMDAT() && GV->isWeakForLinker() && 1991 !GV->hasAvailableExternallyLinkage()) 1992 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1993 1994 return GV; 1995 } 1996 1997 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1998 /// given global variable. If Ty is non-null and if the global doesn't exist, 1999 /// then it will be created with the specified type instead of whatever the 2000 /// normal requested type would be. 2001 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2002 llvm::Type *Ty) { 2003 assert(D->hasGlobalStorage() && "Not a global variable"); 2004 QualType ASTTy = D->getType(); 2005 if (!Ty) 2006 Ty = getTypes().ConvertTypeForMem(ASTTy); 2007 2008 llvm::PointerType *PTy = 2009 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2010 2011 StringRef MangledName = getMangledName(D); 2012 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2013 } 2014 2015 /// CreateRuntimeVariable - Create a new runtime global variable with the 2016 /// specified type and name. 2017 llvm::Constant * 2018 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2019 StringRef Name) { 2020 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2021 } 2022 2023 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2024 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2025 2026 if (!MustBeEmitted(D)) { 2027 // If we have not seen a reference to this variable yet, place it 2028 // into the deferred declarations table to be emitted if needed 2029 // later. 2030 StringRef MangledName = getMangledName(D); 2031 if (!GetGlobalValue(MangledName)) { 2032 DeferredDecls[MangledName] = D; 2033 return; 2034 } 2035 } 2036 2037 // The tentative definition is the only definition. 2038 EmitGlobalVarDefinition(D); 2039 } 2040 2041 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2042 return Context.toCharUnitsFromBits( 2043 getDataLayout().getTypeStoreSizeInBits(Ty)); 2044 } 2045 2046 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2047 unsigned AddrSpace) { 2048 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2049 if (D->hasAttr<CUDAConstantAttr>()) 2050 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2051 else if (D->hasAttr<CUDASharedAttr>()) 2052 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2053 else 2054 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2055 } 2056 2057 return AddrSpace; 2058 } 2059 2060 template<typename SomeDecl> 2061 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2062 llvm::GlobalValue *GV) { 2063 if (!getLangOpts().CPlusPlus) 2064 return; 2065 2066 // Must have 'used' attribute, or else inline assembly can't rely on 2067 // the name existing. 2068 if (!D->template hasAttr<UsedAttr>()) 2069 return; 2070 2071 // Must have internal linkage and an ordinary name. 2072 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2073 return; 2074 2075 // Must be in an extern "C" context. Entities declared directly within 2076 // a record are not extern "C" even if the record is in such a context. 2077 const SomeDecl *First = D->getFirstDecl(); 2078 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2079 return; 2080 2081 // OK, this is an internal linkage entity inside an extern "C" linkage 2082 // specification. Make a note of that so we can give it the "expected" 2083 // mangled name if nothing else is using that name. 2084 std::pair<StaticExternCMap::iterator, bool> R = 2085 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2086 2087 // If we have multiple internal linkage entities with the same name 2088 // in extern "C" regions, none of them gets that name. 2089 if (!R.second) 2090 R.first->second = nullptr; 2091 } 2092 2093 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2094 if (!CGM.supportsCOMDAT()) 2095 return false; 2096 2097 if (D.hasAttr<SelectAnyAttr>()) 2098 return true; 2099 2100 GVALinkage Linkage; 2101 if (auto *VD = dyn_cast<VarDecl>(&D)) 2102 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2103 else 2104 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2105 2106 switch (Linkage) { 2107 case GVA_Internal: 2108 case GVA_AvailableExternally: 2109 case GVA_StrongExternal: 2110 return false; 2111 case GVA_DiscardableODR: 2112 case GVA_StrongODR: 2113 return true; 2114 } 2115 llvm_unreachable("No such linkage"); 2116 } 2117 2118 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2119 llvm::GlobalObject &GO) { 2120 if (!shouldBeInCOMDAT(*this, D)) 2121 return; 2122 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2123 } 2124 2125 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2126 llvm::Constant *Init = nullptr; 2127 QualType ASTTy = D->getType(); 2128 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2129 bool NeedsGlobalCtor = false; 2130 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2131 2132 const VarDecl *InitDecl; 2133 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2134 2135 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2136 // of their declaration." 2137 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2138 && D->hasAttr<CUDASharedAttr>()) { 2139 if (InitExpr) { 2140 Error(D->getLocation(), 2141 "__shared__ variable cannot have an initialization."); 2142 } 2143 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2144 } else if (!InitExpr) { 2145 // This is a tentative definition; tentative definitions are 2146 // implicitly initialized with { 0 }. 2147 // 2148 // Note that tentative definitions are only emitted at the end of 2149 // a translation unit, so they should never have incomplete 2150 // type. In addition, EmitTentativeDefinition makes sure that we 2151 // never attempt to emit a tentative definition if a real one 2152 // exists. A use may still exists, however, so we still may need 2153 // to do a RAUW. 2154 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2155 Init = EmitNullConstant(D->getType()); 2156 } else { 2157 initializedGlobalDecl = GlobalDecl(D); 2158 Init = EmitConstantInit(*InitDecl); 2159 2160 if (!Init) { 2161 QualType T = InitExpr->getType(); 2162 if (D->getType()->isReferenceType()) 2163 T = D->getType(); 2164 2165 if (getLangOpts().CPlusPlus) { 2166 Init = EmitNullConstant(T); 2167 NeedsGlobalCtor = true; 2168 } else { 2169 ErrorUnsupported(D, "static initializer"); 2170 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2171 } 2172 } else { 2173 // We don't need an initializer, so remove the entry for the delayed 2174 // initializer position (just in case this entry was delayed) if we 2175 // also don't need to register a destructor. 2176 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2177 DelayedCXXInitPosition.erase(D); 2178 } 2179 } 2180 2181 llvm::Type* InitType = Init->getType(); 2182 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2183 2184 // Strip off a bitcast if we got one back. 2185 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2186 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2187 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2188 // All zero index gep. 2189 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2190 Entry = CE->getOperand(0); 2191 } 2192 2193 // Entry is now either a Function or GlobalVariable. 2194 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2195 2196 // We have a definition after a declaration with the wrong type. 2197 // We must make a new GlobalVariable* and update everything that used OldGV 2198 // (a declaration or tentative definition) with the new GlobalVariable* 2199 // (which will be a definition). 2200 // 2201 // This happens if there is a prototype for a global (e.g. 2202 // "extern int x[];") and then a definition of a different type (e.g. 2203 // "int x[10];"). This also happens when an initializer has a different type 2204 // from the type of the global (this happens with unions). 2205 if (!GV || 2206 GV->getType()->getElementType() != InitType || 2207 GV->getType()->getAddressSpace() != 2208 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2209 2210 // Move the old entry aside so that we'll create a new one. 2211 Entry->setName(StringRef()); 2212 2213 // Make a new global with the correct type, this is now guaranteed to work. 2214 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2215 2216 // Replace all uses of the old global with the new global 2217 llvm::Constant *NewPtrForOldDecl = 2218 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2219 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2220 2221 // Erase the old global, since it is no longer used. 2222 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2223 } 2224 2225 MaybeHandleStaticInExternC(D, GV); 2226 2227 if (D->hasAttr<AnnotateAttr>()) 2228 AddGlobalAnnotations(D, GV); 2229 2230 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2231 // the device. [...]" 2232 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2233 // __device__, declares a variable that: [...] 2234 // Is accessible from all the threads within the grid and from the host 2235 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2236 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2237 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2238 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2239 GV->setExternallyInitialized(true); 2240 } 2241 GV->setInitializer(Init); 2242 2243 // If it is safe to mark the global 'constant', do so now. 2244 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2245 isTypeConstant(D->getType(), true)); 2246 2247 // If it is in a read-only section, mark it 'constant'. 2248 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2249 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2250 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2251 GV->setConstant(true); 2252 } 2253 2254 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2255 2256 // Set the llvm linkage type as appropriate. 2257 llvm::GlobalValue::LinkageTypes Linkage = 2258 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2259 2260 // On Darwin, the backing variable for a C++11 thread_local variable always 2261 // has internal linkage; all accesses should just be calls to the 2262 // Itanium-specified entry point, which has the normal linkage of the 2263 // variable. 2264 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2265 Context.getTargetInfo().getTriple().isMacOSX()) 2266 Linkage = llvm::GlobalValue::InternalLinkage; 2267 2268 GV->setLinkage(Linkage); 2269 if (D->hasAttr<DLLImportAttr>()) 2270 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2271 else if (D->hasAttr<DLLExportAttr>()) 2272 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2273 else 2274 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2275 2276 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2277 // common vars aren't constant even if declared const. 2278 GV->setConstant(false); 2279 2280 setNonAliasAttributes(D, GV); 2281 2282 if (D->getTLSKind() && !GV->isThreadLocal()) { 2283 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2284 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2285 setTLSMode(GV, *D); 2286 } 2287 2288 maybeSetTrivialComdat(*D, *GV); 2289 2290 // Emit the initializer function if necessary. 2291 if (NeedsGlobalCtor || NeedsGlobalDtor) 2292 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2293 2294 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2295 2296 // Emit global variable debug information. 2297 if (CGDebugInfo *DI = getModuleDebugInfo()) 2298 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2299 DI->EmitGlobalVariable(GV, D); 2300 } 2301 2302 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2303 CodeGenModule &CGM, const VarDecl *D, 2304 bool NoCommon) { 2305 // Don't give variables common linkage if -fno-common was specified unless it 2306 // was overridden by a NoCommon attribute. 2307 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2308 return true; 2309 2310 // C11 6.9.2/2: 2311 // A declaration of an identifier for an object that has file scope without 2312 // an initializer, and without a storage-class specifier or with the 2313 // storage-class specifier static, constitutes a tentative definition. 2314 if (D->getInit() || D->hasExternalStorage()) 2315 return true; 2316 2317 // A variable cannot be both common and exist in a section. 2318 if (D->hasAttr<SectionAttr>()) 2319 return true; 2320 2321 // Thread local vars aren't considered common linkage. 2322 if (D->getTLSKind()) 2323 return true; 2324 2325 // Tentative definitions marked with WeakImportAttr are true definitions. 2326 if (D->hasAttr<WeakImportAttr>()) 2327 return true; 2328 2329 // A variable cannot be both common and exist in a comdat. 2330 if (shouldBeInCOMDAT(CGM, *D)) 2331 return true; 2332 2333 // Declarations with a required alignment do not have common linakge in MSVC 2334 // mode. 2335 if (Context.getLangOpts().MSVCCompat) { 2336 if (D->hasAttr<AlignedAttr>()) 2337 return true; 2338 QualType VarType = D->getType(); 2339 if (Context.isAlignmentRequired(VarType)) 2340 return true; 2341 2342 if (const auto *RT = VarType->getAs<RecordType>()) { 2343 const RecordDecl *RD = RT->getDecl(); 2344 for (const FieldDecl *FD : RD->fields()) { 2345 if (FD->isBitField()) 2346 continue; 2347 if (FD->hasAttr<AlignedAttr>()) 2348 return true; 2349 if (Context.isAlignmentRequired(FD->getType())) 2350 return true; 2351 } 2352 } 2353 } 2354 2355 return false; 2356 } 2357 2358 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2359 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2360 if (Linkage == GVA_Internal) 2361 return llvm::Function::InternalLinkage; 2362 2363 if (D->hasAttr<WeakAttr>()) { 2364 if (IsConstantVariable) 2365 return llvm::GlobalVariable::WeakODRLinkage; 2366 else 2367 return llvm::GlobalVariable::WeakAnyLinkage; 2368 } 2369 2370 // We are guaranteed to have a strong definition somewhere else, 2371 // so we can use available_externally linkage. 2372 if (Linkage == GVA_AvailableExternally) 2373 return llvm::Function::AvailableExternallyLinkage; 2374 2375 // Note that Apple's kernel linker doesn't support symbol 2376 // coalescing, so we need to avoid linkonce and weak linkages there. 2377 // Normally, this means we just map to internal, but for explicit 2378 // instantiations we'll map to external. 2379 2380 // In C++, the compiler has to emit a definition in every translation unit 2381 // that references the function. We should use linkonce_odr because 2382 // a) if all references in this translation unit are optimized away, we 2383 // don't need to codegen it. b) if the function persists, it needs to be 2384 // merged with other definitions. c) C++ has the ODR, so we know the 2385 // definition is dependable. 2386 if (Linkage == GVA_DiscardableODR) 2387 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2388 : llvm::Function::InternalLinkage; 2389 2390 // An explicit instantiation of a template has weak linkage, since 2391 // explicit instantiations can occur in multiple translation units 2392 // and must all be equivalent. However, we are not allowed to 2393 // throw away these explicit instantiations. 2394 if (Linkage == GVA_StrongODR) 2395 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2396 : llvm::Function::ExternalLinkage; 2397 2398 // C++ doesn't have tentative definitions and thus cannot have common 2399 // linkage. 2400 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2401 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2402 CodeGenOpts.NoCommon)) 2403 return llvm::GlobalVariable::CommonLinkage; 2404 2405 // selectany symbols are externally visible, so use weak instead of 2406 // linkonce. MSVC optimizes away references to const selectany globals, so 2407 // all definitions should be the same and ODR linkage should be used. 2408 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2409 if (D->hasAttr<SelectAnyAttr>()) 2410 return llvm::GlobalVariable::WeakODRLinkage; 2411 2412 // Otherwise, we have strong external linkage. 2413 assert(Linkage == GVA_StrongExternal); 2414 return llvm::GlobalVariable::ExternalLinkage; 2415 } 2416 2417 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2418 const VarDecl *VD, bool IsConstant) { 2419 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2420 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2421 } 2422 2423 /// Replace the uses of a function that was declared with a non-proto type. 2424 /// We want to silently drop extra arguments from call sites 2425 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2426 llvm::Function *newFn) { 2427 // Fast path. 2428 if (old->use_empty()) return; 2429 2430 llvm::Type *newRetTy = newFn->getReturnType(); 2431 SmallVector<llvm::Value*, 4> newArgs; 2432 2433 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2434 ui != ue; ) { 2435 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2436 llvm::User *user = use->getUser(); 2437 2438 // Recognize and replace uses of bitcasts. Most calls to 2439 // unprototyped functions will use bitcasts. 2440 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2441 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2442 replaceUsesOfNonProtoConstant(bitcast, newFn); 2443 continue; 2444 } 2445 2446 // Recognize calls to the function. 2447 llvm::CallSite callSite(user); 2448 if (!callSite) continue; 2449 if (!callSite.isCallee(&*use)) continue; 2450 2451 // If the return types don't match exactly, then we can't 2452 // transform this call unless it's dead. 2453 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2454 continue; 2455 2456 // Get the call site's attribute list. 2457 SmallVector<llvm::AttributeSet, 8> newAttrs; 2458 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2459 2460 // Collect any return attributes from the call. 2461 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2462 newAttrs.push_back( 2463 llvm::AttributeSet::get(newFn->getContext(), 2464 oldAttrs.getRetAttributes())); 2465 2466 // If the function was passed too few arguments, don't transform. 2467 unsigned newNumArgs = newFn->arg_size(); 2468 if (callSite.arg_size() < newNumArgs) continue; 2469 2470 // If extra arguments were passed, we silently drop them. 2471 // If any of the types mismatch, we don't transform. 2472 unsigned argNo = 0; 2473 bool dontTransform = false; 2474 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2475 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2476 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2477 dontTransform = true; 2478 break; 2479 } 2480 2481 // Add any parameter attributes. 2482 if (oldAttrs.hasAttributes(argNo + 1)) 2483 newAttrs. 2484 push_back(llvm:: 2485 AttributeSet::get(newFn->getContext(), 2486 oldAttrs.getParamAttributes(argNo + 1))); 2487 } 2488 if (dontTransform) 2489 continue; 2490 2491 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2492 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2493 oldAttrs.getFnAttributes())); 2494 2495 // Okay, we can transform this. Create the new call instruction and copy 2496 // over the required information. 2497 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2498 2499 llvm::CallSite newCall; 2500 if (callSite.isCall()) { 2501 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2502 callSite.getInstruction()); 2503 } else { 2504 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2505 newCall = llvm::InvokeInst::Create(newFn, 2506 oldInvoke->getNormalDest(), 2507 oldInvoke->getUnwindDest(), 2508 newArgs, "", 2509 callSite.getInstruction()); 2510 } 2511 newArgs.clear(); // for the next iteration 2512 2513 if (!newCall->getType()->isVoidTy()) 2514 newCall->takeName(callSite.getInstruction()); 2515 newCall.setAttributes( 2516 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2517 newCall.setCallingConv(callSite.getCallingConv()); 2518 2519 // Finally, remove the old call, replacing any uses with the new one. 2520 if (!callSite->use_empty()) 2521 callSite->replaceAllUsesWith(newCall.getInstruction()); 2522 2523 // Copy debug location attached to CI. 2524 if (callSite->getDebugLoc()) 2525 newCall->setDebugLoc(callSite->getDebugLoc()); 2526 callSite->eraseFromParent(); 2527 } 2528 } 2529 2530 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2531 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2532 /// existing call uses of the old function in the module, this adjusts them to 2533 /// call the new function directly. 2534 /// 2535 /// This is not just a cleanup: the always_inline pass requires direct calls to 2536 /// functions to be able to inline them. If there is a bitcast in the way, it 2537 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2538 /// run at -O0. 2539 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2540 llvm::Function *NewFn) { 2541 // If we're redefining a global as a function, don't transform it. 2542 if (!isa<llvm::Function>(Old)) return; 2543 2544 replaceUsesOfNonProtoConstant(Old, NewFn); 2545 } 2546 2547 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2548 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2549 // If we have a definition, this might be a deferred decl. If the 2550 // instantiation is explicit, make sure we emit it at the end. 2551 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2552 GetAddrOfGlobalVar(VD); 2553 2554 EmitTopLevelDecl(VD); 2555 } 2556 2557 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2558 llvm::GlobalValue *GV) { 2559 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2560 2561 // Compute the function info and LLVM type. 2562 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2563 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2564 2565 // Get or create the prototype for the function. 2566 if (!GV || (GV->getType()->getElementType() != Ty)) 2567 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2568 /*DontDefer=*/true, 2569 /*IsForDefinition=*/true)); 2570 2571 // Already emitted. 2572 if (!GV->isDeclaration()) 2573 return; 2574 2575 // We need to set linkage and visibility on the function before 2576 // generating code for it because various parts of IR generation 2577 // want to propagate this information down (e.g. to local static 2578 // declarations). 2579 auto *Fn = cast<llvm::Function>(GV); 2580 setFunctionLinkage(GD, Fn); 2581 setFunctionDLLStorageClass(GD, Fn); 2582 2583 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2584 setGlobalVisibility(Fn, D); 2585 2586 MaybeHandleStaticInExternC(D, Fn); 2587 2588 maybeSetTrivialComdat(*D, *Fn); 2589 2590 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2591 2592 setFunctionDefinitionAttributes(D, Fn); 2593 SetLLVMFunctionAttributesForDefinition(D, Fn); 2594 2595 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2596 AddGlobalCtor(Fn, CA->getPriority()); 2597 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2598 AddGlobalDtor(Fn, DA->getPriority()); 2599 if (D->hasAttr<AnnotateAttr>()) 2600 AddGlobalAnnotations(D, Fn); 2601 } 2602 2603 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2604 const auto *D = cast<ValueDecl>(GD.getDecl()); 2605 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2606 assert(AA && "Not an alias?"); 2607 2608 StringRef MangledName = getMangledName(GD); 2609 2610 // If there is a definition in the module, then it wins over the alias. 2611 // This is dubious, but allow it to be safe. Just ignore the alias. 2612 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2613 if (Entry && !Entry->isDeclaration()) 2614 return; 2615 2616 Aliases.push_back(GD); 2617 2618 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2619 2620 // Create a reference to the named value. This ensures that it is emitted 2621 // if a deferred decl. 2622 llvm::Constant *Aliasee; 2623 if (isa<llvm::FunctionType>(DeclTy)) 2624 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2625 /*ForVTable=*/false); 2626 else 2627 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2628 llvm::PointerType::getUnqual(DeclTy), 2629 /*D=*/nullptr); 2630 2631 // Create the new alias itself, but don't set a name yet. 2632 auto *GA = llvm::GlobalAlias::create( 2633 cast<llvm::PointerType>(Aliasee->getType()), 2634 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2635 2636 if (Entry) { 2637 if (GA->getAliasee() == Entry) { 2638 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2639 return; 2640 } 2641 2642 assert(Entry->isDeclaration()); 2643 2644 // If there is a declaration in the module, then we had an extern followed 2645 // by the alias, as in: 2646 // extern int test6(); 2647 // ... 2648 // int test6() __attribute__((alias("test7"))); 2649 // 2650 // Remove it and replace uses of it with the alias. 2651 GA->takeName(Entry); 2652 2653 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2654 Entry->getType())); 2655 Entry->eraseFromParent(); 2656 } else { 2657 GA->setName(MangledName); 2658 } 2659 2660 // Set attributes which are particular to an alias; this is a 2661 // specialization of the attributes which may be set on a global 2662 // variable/function. 2663 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2664 D->isWeakImported()) { 2665 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2666 } 2667 2668 if (const auto *VD = dyn_cast<VarDecl>(D)) 2669 if (VD->getTLSKind()) 2670 setTLSMode(GA, *VD); 2671 2672 setAliasAttributes(D, GA); 2673 } 2674 2675 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2676 ArrayRef<llvm::Type*> Tys) { 2677 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2678 Tys); 2679 } 2680 2681 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2682 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2683 const StringLiteral *Literal, bool TargetIsLSB, 2684 bool &IsUTF16, unsigned &StringLength) { 2685 StringRef String = Literal->getString(); 2686 unsigned NumBytes = String.size(); 2687 2688 // Check for simple case. 2689 if (!Literal->containsNonAsciiOrNull()) { 2690 StringLength = NumBytes; 2691 return *Map.insert(std::make_pair(String, nullptr)).first; 2692 } 2693 2694 // Otherwise, convert the UTF8 literals into a string of shorts. 2695 IsUTF16 = true; 2696 2697 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2698 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2699 UTF16 *ToPtr = &ToBuf[0]; 2700 2701 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2702 &ToPtr, ToPtr + NumBytes, 2703 strictConversion); 2704 2705 // ConvertUTF8toUTF16 returns the length in ToPtr. 2706 StringLength = ToPtr - &ToBuf[0]; 2707 2708 // Add an explicit null. 2709 *ToPtr = 0; 2710 return *Map.insert(std::make_pair( 2711 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2712 (StringLength + 1) * 2), 2713 nullptr)).first; 2714 } 2715 2716 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2717 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2718 const StringLiteral *Literal, unsigned &StringLength) { 2719 StringRef String = Literal->getString(); 2720 StringLength = String.size(); 2721 return *Map.insert(std::make_pair(String, nullptr)).first; 2722 } 2723 2724 llvm::Constant * 2725 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2726 unsigned StringLength = 0; 2727 bool isUTF16 = false; 2728 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2729 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2730 getDataLayout().isLittleEndian(), isUTF16, 2731 StringLength); 2732 2733 if (auto *C = Entry.second) 2734 return C; 2735 2736 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2737 llvm::Constant *Zeros[] = { Zero, Zero }; 2738 llvm::Value *V; 2739 2740 // If we don't already have it, get __CFConstantStringClassReference. 2741 if (!CFConstantStringClassRef) { 2742 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2743 Ty = llvm::ArrayType::get(Ty, 0); 2744 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2745 "__CFConstantStringClassReference"); 2746 // Decay array -> ptr 2747 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2748 CFConstantStringClassRef = V; 2749 } 2750 else 2751 V = CFConstantStringClassRef; 2752 2753 QualType CFTy = getContext().getCFConstantStringType(); 2754 2755 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2756 2757 llvm::Constant *Fields[4]; 2758 2759 // Class pointer. 2760 Fields[0] = cast<llvm::ConstantExpr>(V); 2761 2762 // Flags. 2763 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2764 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2765 llvm::ConstantInt::get(Ty, 0x07C8); 2766 2767 // String pointer. 2768 llvm::Constant *C = nullptr; 2769 if (isUTF16) { 2770 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2771 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2772 Entry.first().size() / 2); 2773 C = llvm::ConstantDataArray::get(VMContext, Arr); 2774 } else { 2775 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2776 } 2777 2778 // Note: -fwritable-strings doesn't make the backing store strings of 2779 // CFStrings writable. (See <rdar://problem/10657500>) 2780 auto *GV = 2781 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2782 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2783 GV->setUnnamedAddr(true); 2784 // Don't enforce the target's minimum global alignment, since the only use 2785 // of the string is via this class initializer. 2786 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2787 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2788 // that changes the section it ends in, which surprises ld64. 2789 if (isUTF16) { 2790 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2791 GV->setAlignment(Align.getQuantity()); 2792 GV->setSection("__TEXT,__ustring"); 2793 } else { 2794 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2795 GV->setAlignment(Align.getQuantity()); 2796 GV->setSection("__TEXT,__cstring,cstring_literals"); 2797 } 2798 2799 // String. 2800 Fields[2] = 2801 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2802 2803 if (isUTF16) 2804 // Cast the UTF16 string to the correct type. 2805 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2806 2807 // String length. 2808 Ty = getTypes().ConvertType(getContext().LongTy); 2809 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2810 2811 // The struct. 2812 C = llvm::ConstantStruct::get(STy, Fields); 2813 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2814 llvm::GlobalVariable::PrivateLinkage, C, 2815 "_unnamed_cfstring_"); 2816 GV->setSection("__DATA,__cfstring"); 2817 Entry.second = GV; 2818 2819 return GV; 2820 } 2821 2822 llvm::GlobalVariable * 2823 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2824 unsigned StringLength = 0; 2825 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2826 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2827 2828 if (auto *C = Entry.second) 2829 return C; 2830 2831 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2832 llvm::Constant *Zeros[] = { Zero, Zero }; 2833 llvm::Value *V; 2834 // If we don't already have it, get _NSConstantStringClassReference. 2835 if (!ConstantStringClassRef) { 2836 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2837 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2838 llvm::Constant *GV; 2839 if (LangOpts.ObjCRuntime.isNonFragile()) { 2840 std::string str = 2841 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2842 : "OBJC_CLASS_$_" + StringClass; 2843 GV = getObjCRuntime().GetClassGlobal(str); 2844 // Make sure the result is of the correct type. 2845 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2846 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2847 ConstantStringClassRef = V; 2848 } else { 2849 std::string str = 2850 StringClass.empty() ? "_NSConstantStringClassReference" 2851 : "_" + StringClass + "ClassReference"; 2852 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2853 GV = CreateRuntimeVariable(PTy, str); 2854 // Decay array -> ptr 2855 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2856 ConstantStringClassRef = V; 2857 } 2858 } else 2859 V = ConstantStringClassRef; 2860 2861 if (!NSConstantStringType) { 2862 // Construct the type for a constant NSString. 2863 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2864 D->startDefinition(); 2865 2866 QualType FieldTypes[3]; 2867 2868 // const int *isa; 2869 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2870 // const char *str; 2871 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2872 // unsigned int length; 2873 FieldTypes[2] = Context.UnsignedIntTy; 2874 2875 // Create fields 2876 for (unsigned i = 0; i < 3; ++i) { 2877 FieldDecl *Field = FieldDecl::Create(Context, D, 2878 SourceLocation(), 2879 SourceLocation(), nullptr, 2880 FieldTypes[i], /*TInfo=*/nullptr, 2881 /*BitWidth=*/nullptr, 2882 /*Mutable=*/false, 2883 ICIS_NoInit); 2884 Field->setAccess(AS_public); 2885 D->addDecl(Field); 2886 } 2887 2888 D->completeDefinition(); 2889 QualType NSTy = Context.getTagDeclType(D); 2890 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2891 } 2892 2893 llvm::Constant *Fields[3]; 2894 2895 // Class pointer. 2896 Fields[0] = cast<llvm::ConstantExpr>(V); 2897 2898 // String pointer. 2899 llvm::Constant *C = 2900 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2901 2902 llvm::GlobalValue::LinkageTypes Linkage; 2903 bool isConstant; 2904 Linkage = llvm::GlobalValue::PrivateLinkage; 2905 isConstant = !LangOpts.WritableStrings; 2906 2907 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2908 Linkage, C, ".str"); 2909 GV->setUnnamedAddr(true); 2910 // Don't enforce the target's minimum global alignment, since the only use 2911 // of the string is via this class initializer. 2912 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2913 GV->setAlignment(Align.getQuantity()); 2914 Fields[1] = 2915 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2916 2917 // String length. 2918 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2919 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2920 2921 // The struct. 2922 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2923 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2924 llvm::GlobalVariable::PrivateLinkage, C, 2925 "_unnamed_nsstring_"); 2926 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2927 const char *NSStringNonFragileABISection = 2928 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2929 // FIXME. Fix section. 2930 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2931 ? NSStringNonFragileABISection 2932 : NSStringSection); 2933 Entry.second = GV; 2934 2935 return GV; 2936 } 2937 2938 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2939 if (ObjCFastEnumerationStateType.isNull()) { 2940 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2941 D->startDefinition(); 2942 2943 QualType FieldTypes[] = { 2944 Context.UnsignedLongTy, 2945 Context.getPointerType(Context.getObjCIdType()), 2946 Context.getPointerType(Context.UnsignedLongTy), 2947 Context.getConstantArrayType(Context.UnsignedLongTy, 2948 llvm::APInt(32, 5), ArrayType::Normal, 0) 2949 }; 2950 2951 for (size_t i = 0; i < 4; ++i) { 2952 FieldDecl *Field = FieldDecl::Create(Context, 2953 D, 2954 SourceLocation(), 2955 SourceLocation(), nullptr, 2956 FieldTypes[i], /*TInfo=*/nullptr, 2957 /*BitWidth=*/nullptr, 2958 /*Mutable=*/false, 2959 ICIS_NoInit); 2960 Field->setAccess(AS_public); 2961 D->addDecl(Field); 2962 } 2963 2964 D->completeDefinition(); 2965 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2966 } 2967 2968 return ObjCFastEnumerationStateType; 2969 } 2970 2971 llvm::Constant * 2972 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2973 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2974 2975 // Don't emit it as the address of the string, emit the string data itself 2976 // as an inline array. 2977 if (E->getCharByteWidth() == 1) { 2978 SmallString<64> Str(E->getString()); 2979 2980 // Resize the string to the right size, which is indicated by its type. 2981 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2982 Str.resize(CAT->getSize().getZExtValue()); 2983 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2984 } 2985 2986 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2987 llvm::Type *ElemTy = AType->getElementType(); 2988 unsigned NumElements = AType->getNumElements(); 2989 2990 // Wide strings have either 2-byte or 4-byte elements. 2991 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2992 SmallVector<uint16_t, 32> Elements; 2993 Elements.reserve(NumElements); 2994 2995 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2996 Elements.push_back(E->getCodeUnit(i)); 2997 Elements.resize(NumElements); 2998 return llvm::ConstantDataArray::get(VMContext, Elements); 2999 } 3000 3001 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3002 SmallVector<uint32_t, 32> Elements; 3003 Elements.reserve(NumElements); 3004 3005 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3006 Elements.push_back(E->getCodeUnit(i)); 3007 Elements.resize(NumElements); 3008 return llvm::ConstantDataArray::get(VMContext, Elements); 3009 } 3010 3011 static llvm::GlobalVariable * 3012 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3013 CodeGenModule &CGM, StringRef GlobalName, 3014 unsigned Alignment) { 3015 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3016 unsigned AddrSpace = 0; 3017 if (CGM.getLangOpts().OpenCL) 3018 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3019 3020 llvm::Module &M = CGM.getModule(); 3021 // Create a global variable for this string 3022 auto *GV = new llvm::GlobalVariable( 3023 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3024 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3025 GV->setAlignment(Alignment); 3026 GV->setUnnamedAddr(true); 3027 if (GV->isWeakForLinker()) { 3028 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3029 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3030 } 3031 3032 return GV; 3033 } 3034 3035 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3036 /// constant array for the given string literal. 3037 llvm::GlobalVariable * 3038 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3039 StringRef Name) { 3040 auto Alignment = 3041 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 3042 3043 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3044 llvm::GlobalVariable **Entry = nullptr; 3045 if (!LangOpts.WritableStrings) { 3046 Entry = &ConstantStringMap[C]; 3047 if (auto GV = *Entry) { 3048 if (Alignment > GV->getAlignment()) 3049 GV->setAlignment(Alignment); 3050 return GV; 3051 } 3052 } 3053 3054 SmallString<256> MangledNameBuffer; 3055 StringRef GlobalVariableName; 3056 llvm::GlobalValue::LinkageTypes LT; 3057 3058 // Mangle the string literal if the ABI allows for it. However, we cannot 3059 // do this if we are compiling with ASan or -fwritable-strings because they 3060 // rely on strings having normal linkage. 3061 if (!LangOpts.WritableStrings && 3062 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3063 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3064 llvm::raw_svector_ostream Out(MangledNameBuffer); 3065 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3066 3067 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3068 GlobalVariableName = MangledNameBuffer; 3069 } else { 3070 LT = llvm::GlobalValue::PrivateLinkage; 3071 GlobalVariableName = Name; 3072 } 3073 3074 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3075 if (Entry) 3076 *Entry = GV; 3077 3078 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3079 QualType()); 3080 return GV; 3081 } 3082 3083 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3084 /// array for the given ObjCEncodeExpr node. 3085 llvm::GlobalVariable * 3086 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3087 std::string Str; 3088 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3089 3090 return GetAddrOfConstantCString(Str); 3091 } 3092 3093 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3094 /// the literal and a terminating '\0' character. 3095 /// The result has pointer to array type. 3096 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 3097 const std::string &Str, const char *GlobalName, unsigned Alignment) { 3098 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3099 if (Alignment == 0) { 3100 Alignment = getContext() 3101 .getAlignOfGlobalVarInChars(getContext().CharTy) 3102 .getQuantity(); 3103 } 3104 3105 llvm::Constant *C = 3106 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3107 3108 // Don't share any string literals if strings aren't constant. 3109 llvm::GlobalVariable **Entry = nullptr; 3110 if (!LangOpts.WritableStrings) { 3111 Entry = &ConstantStringMap[C]; 3112 if (auto GV = *Entry) { 3113 if (Alignment > GV->getAlignment()) 3114 GV->setAlignment(Alignment); 3115 return GV; 3116 } 3117 } 3118 3119 // Get the default prefix if a name wasn't specified. 3120 if (!GlobalName) 3121 GlobalName = ".str"; 3122 // Create a global variable for this. 3123 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3124 GlobalName, Alignment); 3125 if (Entry) 3126 *Entry = GV; 3127 return GV; 3128 } 3129 3130 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 3131 const MaterializeTemporaryExpr *E, const Expr *Init) { 3132 assert((E->getStorageDuration() == SD_Static || 3133 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3134 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3135 3136 // If we're not materializing a subobject of the temporary, keep the 3137 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3138 QualType MaterializedType = Init->getType(); 3139 if (Init == E->GetTemporaryExpr()) 3140 MaterializedType = E->getType(); 3141 3142 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3143 return Slot; 3144 3145 // FIXME: If an externally-visible declaration extends multiple temporaries, 3146 // we need to give each temporary the same name in every translation unit (and 3147 // we also need to make the temporaries externally-visible). 3148 SmallString<256> Name; 3149 llvm::raw_svector_ostream Out(Name); 3150 getCXXABI().getMangleContext().mangleReferenceTemporary( 3151 VD, E->getManglingNumber(), Out); 3152 3153 APValue *Value = nullptr; 3154 if (E->getStorageDuration() == SD_Static) { 3155 // We might have a cached constant initializer for this temporary. Note 3156 // that this might have a different value from the value computed by 3157 // evaluating the initializer if the surrounding constant expression 3158 // modifies the temporary. 3159 Value = getContext().getMaterializedTemporaryValue(E, false); 3160 if (Value && Value->isUninit()) 3161 Value = nullptr; 3162 } 3163 3164 // Try evaluating it now, it might have a constant initializer. 3165 Expr::EvalResult EvalResult; 3166 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3167 !EvalResult.hasSideEffects()) 3168 Value = &EvalResult.Val; 3169 3170 llvm::Constant *InitialValue = nullptr; 3171 bool Constant = false; 3172 llvm::Type *Type; 3173 if (Value) { 3174 // The temporary has a constant initializer, use it. 3175 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3176 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3177 Type = InitialValue->getType(); 3178 } else { 3179 // No initializer, the initialization will be provided when we 3180 // initialize the declaration which performed lifetime extension. 3181 Type = getTypes().ConvertTypeForMem(MaterializedType); 3182 } 3183 3184 // Create a global variable for this lifetime-extended temporary. 3185 llvm::GlobalValue::LinkageTypes Linkage = 3186 getLLVMLinkageVarDefinition(VD, Constant); 3187 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3188 const VarDecl *InitVD; 3189 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3190 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3191 // Temporaries defined inside a class get linkonce_odr linkage because the 3192 // class can be defined in multipe translation units. 3193 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3194 } else { 3195 // There is no need for this temporary to have external linkage if the 3196 // VarDecl has external linkage. 3197 Linkage = llvm::GlobalVariable::InternalLinkage; 3198 } 3199 } 3200 unsigned AddrSpace = GetGlobalVarAddressSpace( 3201 VD, getContext().getTargetAddressSpace(MaterializedType)); 3202 auto *GV = new llvm::GlobalVariable( 3203 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3204 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3205 AddrSpace); 3206 setGlobalVisibility(GV, VD); 3207 GV->setAlignment( 3208 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3209 if (supportsCOMDAT() && GV->isWeakForLinker()) 3210 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3211 if (VD->getTLSKind()) 3212 setTLSMode(GV, *VD); 3213 MaterializedGlobalTemporaryMap[E] = GV; 3214 return GV; 3215 } 3216 3217 /// EmitObjCPropertyImplementations - Emit information for synthesized 3218 /// properties for an implementation. 3219 void CodeGenModule::EmitObjCPropertyImplementations(const 3220 ObjCImplementationDecl *D) { 3221 for (const auto *PID : D->property_impls()) { 3222 // Dynamic is just for type-checking. 3223 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3224 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3225 3226 // Determine which methods need to be implemented, some may have 3227 // been overridden. Note that ::isPropertyAccessor is not the method 3228 // we want, that just indicates if the decl came from a 3229 // property. What we want to know is if the method is defined in 3230 // this implementation. 3231 if (!D->getInstanceMethod(PD->getGetterName())) 3232 CodeGenFunction(*this).GenerateObjCGetter( 3233 const_cast<ObjCImplementationDecl *>(D), PID); 3234 if (!PD->isReadOnly() && 3235 !D->getInstanceMethod(PD->getSetterName())) 3236 CodeGenFunction(*this).GenerateObjCSetter( 3237 const_cast<ObjCImplementationDecl *>(D), PID); 3238 } 3239 } 3240 } 3241 3242 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3243 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3244 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3245 ivar; ivar = ivar->getNextIvar()) 3246 if (ivar->getType().isDestructedType()) 3247 return true; 3248 3249 return false; 3250 } 3251 3252 static bool AllTrivialInitializers(CodeGenModule &CGM, 3253 ObjCImplementationDecl *D) { 3254 CodeGenFunction CGF(CGM); 3255 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3256 E = D->init_end(); B != E; ++B) { 3257 CXXCtorInitializer *CtorInitExp = *B; 3258 Expr *Init = CtorInitExp->getInit(); 3259 if (!CGF.isTrivialInitializer(Init)) 3260 return false; 3261 } 3262 return true; 3263 } 3264 3265 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3266 /// for an implementation. 3267 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3268 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3269 if (needsDestructMethod(D)) { 3270 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3271 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3272 ObjCMethodDecl *DTORMethod = 3273 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3274 cxxSelector, getContext().VoidTy, nullptr, D, 3275 /*isInstance=*/true, /*isVariadic=*/false, 3276 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3277 /*isDefined=*/false, ObjCMethodDecl::Required); 3278 D->addInstanceMethod(DTORMethod); 3279 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3280 D->setHasDestructors(true); 3281 } 3282 3283 // If the implementation doesn't have any ivar initializers, we don't need 3284 // a .cxx_construct. 3285 if (D->getNumIvarInitializers() == 0 || 3286 AllTrivialInitializers(*this, D)) 3287 return; 3288 3289 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3290 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3291 // The constructor returns 'self'. 3292 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3293 D->getLocation(), 3294 D->getLocation(), 3295 cxxSelector, 3296 getContext().getObjCIdType(), 3297 nullptr, D, /*isInstance=*/true, 3298 /*isVariadic=*/false, 3299 /*isPropertyAccessor=*/true, 3300 /*isImplicitlyDeclared=*/true, 3301 /*isDefined=*/false, 3302 ObjCMethodDecl::Required); 3303 D->addInstanceMethod(CTORMethod); 3304 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3305 D->setHasNonZeroConstructors(true); 3306 } 3307 3308 /// EmitNamespace - Emit all declarations in a namespace. 3309 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3310 for (auto *I : ND->decls()) { 3311 if (const auto *VD = dyn_cast<VarDecl>(I)) 3312 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3313 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3314 continue; 3315 EmitTopLevelDecl(I); 3316 } 3317 } 3318 3319 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3320 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3321 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3322 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3323 ErrorUnsupported(LSD, "linkage spec"); 3324 return; 3325 } 3326 3327 for (auto *I : LSD->decls()) { 3328 // Meta-data for ObjC class includes references to implemented methods. 3329 // Generate class's method definitions first. 3330 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3331 for (auto *M : OID->methods()) 3332 EmitTopLevelDecl(M); 3333 } 3334 EmitTopLevelDecl(I); 3335 } 3336 } 3337 3338 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3339 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3340 // Ignore dependent declarations. 3341 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3342 return; 3343 3344 switch (D->getKind()) { 3345 case Decl::CXXConversion: 3346 case Decl::CXXMethod: 3347 case Decl::Function: 3348 // Skip function templates 3349 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3350 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3351 return; 3352 3353 EmitGlobal(cast<FunctionDecl>(D)); 3354 // Always provide some coverage mapping 3355 // even for the functions that aren't emitted. 3356 AddDeferredUnusedCoverageMapping(D); 3357 break; 3358 3359 case Decl::Var: 3360 // Skip variable templates 3361 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3362 return; 3363 case Decl::VarTemplateSpecialization: 3364 EmitGlobal(cast<VarDecl>(D)); 3365 break; 3366 3367 // Indirect fields from global anonymous structs and unions can be 3368 // ignored; only the actual variable requires IR gen support. 3369 case Decl::IndirectField: 3370 break; 3371 3372 // C++ Decls 3373 case Decl::Namespace: 3374 EmitNamespace(cast<NamespaceDecl>(D)); 3375 break; 3376 // No code generation needed. 3377 case Decl::UsingShadow: 3378 case Decl::ClassTemplate: 3379 case Decl::VarTemplate: 3380 case Decl::VarTemplatePartialSpecialization: 3381 case Decl::FunctionTemplate: 3382 case Decl::TypeAliasTemplate: 3383 case Decl::Block: 3384 case Decl::Empty: 3385 break; 3386 case Decl::Using: // using X; [C++] 3387 if (CGDebugInfo *DI = getModuleDebugInfo()) 3388 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3389 return; 3390 case Decl::NamespaceAlias: 3391 if (CGDebugInfo *DI = getModuleDebugInfo()) 3392 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3393 return; 3394 case Decl::UsingDirective: // using namespace X; [C++] 3395 if (CGDebugInfo *DI = getModuleDebugInfo()) 3396 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3397 return; 3398 case Decl::CXXConstructor: 3399 // Skip function templates 3400 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3401 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3402 return; 3403 3404 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3405 break; 3406 case Decl::CXXDestructor: 3407 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3408 return; 3409 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3410 break; 3411 3412 case Decl::StaticAssert: 3413 // Nothing to do. 3414 break; 3415 3416 // Objective-C Decls 3417 3418 // Forward declarations, no (immediate) code generation. 3419 case Decl::ObjCInterface: 3420 case Decl::ObjCCategory: 3421 break; 3422 3423 case Decl::ObjCProtocol: { 3424 auto *Proto = cast<ObjCProtocolDecl>(D); 3425 if (Proto->isThisDeclarationADefinition()) 3426 ObjCRuntime->GenerateProtocol(Proto); 3427 break; 3428 } 3429 3430 case Decl::ObjCCategoryImpl: 3431 // Categories have properties but don't support synthesize so we 3432 // can ignore them here. 3433 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3434 break; 3435 3436 case Decl::ObjCImplementation: { 3437 auto *OMD = cast<ObjCImplementationDecl>(D); 3438 EmitObjCPropertyImplementations(OMD); 3439 EmitObjCIvarInitializations(OMD); 3440 ObjCRuntime->GenerateClass(OMD); 3441 // Emit global variable debug information. 3442 if (CGDebugInfo *DI = getModuleDebugInfo()) 3443 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3444 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3445 OMD->getClassInterface()), OMD->getLocation()); 3446 break; 3447 } 3448 case Decl::ObjCMethod: { 3449 auto *OMD = cast<ObjCMethodDecl>(D); 3450 // If this is not a prototype, emit the body. 3451 if (OMD->getBody()) 3452 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3453 break; 3454 } 3455 case Decl::ObjCCompatibleAlias: 3456 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3457 break; 3458 3459 case Decl::LinkageSpec: 3460 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3461 break; 3462 3463 case Decl::FileScopeAsm: { 3464 // File-scope asm is ignored during device-side CUDA compilation. 3465 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3466 break; 3467 auto *AD = cast<FileScopeAsmDecl>(D); 3468 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3469 break; 3470 } 3471 3472 case Decl::Import: { 3473 auto *Import = cast<ImportDecl>(D); 3474 3475 // Ignore import declarations that come from imported modules. 3476 if (Import->getImportedOwningModule()) 3477 break; 3478 if (CGDebugInfo *DI = getModuleDebugInfo()) 3479 DI->EmitImportDecl(*Import); 3480 3481 ImportedModules.insert(Import->getImportedModule()); 3482 break; 3483 } 3484 3485 case Decl::OMPThreadPrivate: 3486 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3487 break; 3488 3489 case Decl::ClassTemplateSpecialization: { 3490 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3491 if (DebugInfo && 3492 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3493 Spec->hasDefinition()) 3494 DebugInfo->completeTemplateDefinition(*Spec); 3495 break; 3496 } 3497 3498 default: 3499 // Make sure we handled everything we should, every other kind is a 3500 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3501 // function. Need to recode Decl::Kind to do that easily. 3502 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3503 break; 3504 } 3505 } 3506 3507 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3508 // Do we need to generate coverage mapping? 3509 if (!CodeGenOpts.CoverageMapping) 3510 return; 3511 switch (D->getKind()) { 3512 case Decl::CXXConversion: 3513 case Decl::CXXMethod: 3514 case Decl::Function: 3515 case Decl::ObjCMethod: 3516 case Decl::CXXConstructor: 3517 case Decl::CXXDestructor: { 3518 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3519 return; 3520 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3521 if (I == DeferredEmptyCoverageMappingDecls.end()) 3522 DeferredEmptyCoverageMappingDecls[D] = true; 3523 break; 3524 } 3525 default: 3526 break; 3527 }; 3528 } 3529 3530 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3531 // Do we need to generate coverage mapping? 3532 if (!CodeGenOpts.CoverageMapping) 3533 return; 3534 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3535 if (Fn->isTemplateInstantiation()) 3536 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3537 } 3538 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3539 if (I == DeferredEmptyCoverageMappingDecls.end()) 3540 DeferredEmptyCoverageMappingDecls[D] = false; 3541 else 3542 I->second = false; 3543 } 3544 3545 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3546 std::vector<const Decl *> DeferredDecls; 3547 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3548 if (!I.second) 3549 continue; 3550 DeferredDecls.push_back(I.first); 3551 } 3552 // Sort the declarations by their location to make sure that the tests get a 3553 // predictable order for the coverage mapping for the unused declarations. 3554 if (CodeGenOpts.DumpCoverageMapping) 3555 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3556 [] (const Decl *LHS, const Decl *RHS) { 3557 return LHS->getLocStart() < RHS->getLocStart(); 3558 }); 3559 for (const auto *D : DeferredDecls) { 3560 switch (D->getKind()) { 3561 case Decl::CXXConversion: 3562 case Decl::CXXMethod: 3563 case Decl::Function: 3564 case Decl::ObjCMethod: { 3565 CodeGenPGO PGO(*this); 3566 GlobalDecl GD(cast<FunctionDecl>(D)); 3567 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3568 getFunctionLinkage(GD)); 3569 break; 3570 } 3571 case Decl::CXXConstructor: { 3572 CodeGenPGO PGO(*this); 3573 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3574 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3575 getFunctionLinkage(GD)); 3576 break; 3577 } 3578 case Decl::CXXDestructor: { 3579 CodeGenPGO PGO(*this); 3580 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3581 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3582 getFunctionLinkage(GD)); 3583 break; 3584 } 3585 default: 3586 break; 3587 }; 3588 } 3589 } 3590 3591 /// Turns the given pointer into a constant. 3592 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3593 const void *Ptr) { 3594 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3595 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3596 return llvm::ConstantInt::get(i64, PtrInt); 3597 } 3598 3599 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3600 llvm::NamedMDNode *&GlobalMetadata, 3601 GlobalDecl D, 3602 llvm::GlobalValue *Addr) { 3603 if (!GlobalMetadata) 3604 GlobalMetadata = 3605 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3606 3607 // TODO: should we report variant information for ctors/dtors? 3608 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3609 llvm::ConstantAsMetadata::get(GetPointerConstant( 3610 CGM.getLLVMContext(), D.getDecl()))}; 3611 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3612 } 3613 3614 /// For each function which is declared within an extern "C" region and marked 3615 /// as 'used', but has internal linkage, create an alias from the unmangled 3616 /// name to the mangled name if possible. People expect to be able to refer 3617 /// to such functions with an unmangled name from inline assembly within the 3618 /// same translation unit. 3619 void CodeGenModule::EmitStaticExternCAliases() { 3620 for (auto &I : StaticExternCValues) { 3621 IdentifierInfo *Name = I.first; 3622 llvm::GlobalValue *Val = I.second; 3623 if (Val && !getModule().getNamedValue(Name->getName())) 3624 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3625 } 3626 } 3627 3628 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3629 GlobalDecl &Result) const { 3630 auto Res = Manglings.find(MangledName); 3631 if (Res == Manglings.end()) 3632 return false; 3633 Result = Res->getValue(); 3634 return true; 3635 } 3636 3637 /// Emits metadata nodes associating all the global values in the 3638 /// current module with the Decls they came from. This is useful for 3639 /// projects using IR gen as a subroutine. 3640 /// 3641 /// Since there's currently no way to associate an MDNode directly 3642 /// with an llvm::GlobalValue, we create a global named metadata 3643 /// with the name 'clang.global.decl.ptrs'. 3644 void CodeGenModule::EmitDeclMetadata() { 3645 llvm::NamedMDNode *GlobalMetadata = nullptr; 3646 3647 // StaticLocalDeclMap 3648 for (auto &I : MangledDeclNames) { 3649 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3650 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3651 } 3652 } 3653 3654 /// Emits metadata nodes for all the local variables in the current 3655 /// function. 3656 void CodeGenFunction::EmitDeclMetadata() { 3657 if (LocalDeclMap.empty()) return; 3658 3659 llvm::LLVMContext &Context = getLLVMContext(); 3660 3661 // Find the unique metadata ID for this name. 3662 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3663 3664 llvm::NamedMDNode *GlobalMetadata = nullptr; 3665 3666 for (auto &I : LocalDeclMap) { 3667 const Decl *D = I.first; 3668 llvm::Value *Addr = I.second; 3669 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3670 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3671 Alloca->setMetadata( 3672 DeclPtrKind, llvm::MDNode::get( 3673 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3674 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3675 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3676 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3677 } 3678 } 3679 } 3680 3681 void CodeGenModule::EmitVersionIdentMetadata() { 3682 llvm::NamedMDNode *IdentMetadata = 3683 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3684 std::string Version = getClangFullVersion(); 3685 llvm::LLVMContext &Ctx = TheModule.getContext(); 3686 3687 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3688 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3689 } 3690 3691 void CodeGenModule::EmitTargetMetadata() { 3692 // Warning, new MangledDeclNames may be appended within this loop. 3693 // We rely on MapVector insertions adding new elements to the end 3694 // of the container. 3695 // FIXME: Move this loop into the one target that needs it, and only 3696 // loop over those declarations for which we couldn't emit the target 3697 // metadata when we emitted the declaration. 3698 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3699 auto Val = *(MangledDeclNames.begin() + I); 3700 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3701 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3702 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3703 } 3704 } 3705 3706 void CodeGenModule::EmitCoverageFile() { 3707 if (!getCodeGenOpts().CoverageFile.empty()) { 3708 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3709 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3710 llvm::LLVMContext &Ctx = TheModule.getContext(); 3711 llvm::MDString *CoverageFile = 3712 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3713 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3714 llvm::MDNode *CU = CUNode->getOperand(i); 3715 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3716 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3717 } 3718 } 3719 } 3720 } 3721 3722 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3723 // Sema has checked that all uuid strings are of the form 3724 // "12345678-1234-1234-1234-1234567890ab". 3725 assert(Uuid.size() == 36); 3726 for (unsigned i = 0; i < 36; ++i) { 3727 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3728 else assert(isHexDigit(Uuid[i])); 3729 } 3730 3731 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3732 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3733 3734 llvm::Constant *Field3[8]; 3735 for (unsigned Idx = 0; Idx < 8; ++Idx) 3736 Field3[Idx] = llvm::ConstantInt::get( 3737 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3738 3739 llvm::Constant *Fields[4] = { 3740 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3741 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3742 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3743 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3744 }; 3745 3746 return llvm::ConstantStruct::getAnon(Fields); 3747 } 3748 3749 llvm::Constant * 3750 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3751 QualType CatchHandlerType) { 3752 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3753 } 3754 3755 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3756 bool ForEH) { 3757 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3758 // FIXME: should we even be calling this method if RTTI is disabled 3759 // and it's not for EH? 3760 if (!ForEH && !getLangOpts().RTTI) 3761 return llvm::Constant::getNullValue(Int8PtrTy); 3762 3763 if (ForEH && Ty->isObjCObjectPointerType() && 3764 LangOpts.ObjCRuntime.isGNUFamily()) 3765 return ObjCRuntime->GetEHType(Ty); 3766 3767 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3768 } 3769 3770 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3771 for (auto RefExpr : D->varlists()) { 3772 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3773 bool PerformInit = 3774 VD->getAnyInitializer() && 3775 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3776 /*ForRef=*/false); 3777 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3778 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit)) 3779 CXXGlobalInits.push_back(InitFunction); 3780 } 3781 } 3782 3783 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3784 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3785 std::string OutName; 3786 llvm::raw_string_ostream Out(OutName); 3787 getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out); 3788 3789 llvm::Metadata *BitsetOps[] = { 3790 llvm::MDString::get(getLLVMContext(), Out.str()), 3791 llvm::ConstantAsMetadata::get(VTable), 3792 llvm::ConstantAsMetadata::get( 3793 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3794 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3795 } 3796