1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericMIPS: 68 case TargetCXXABI::GenericItanium: 69 return CreateItaniumCXXABI(CGM); 70 case TargetCXXABI::Microsoft: 71 return CreateMicrosoftCXXABI(CGM); 72 } 73 74 llvm_unreachable("invalid C++ ABI kind"); 75 } 76 77 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 78 const PreprocessorOptions &PPO, 79 const CodeGenOptions &CGO, llvm::Module &M, 80 DiagnosticsEngine &diags, 81 CoverageSourceInfo *CoverageInfo) 82 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 83 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 84 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 85 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 86 Types(*this), VTables(*this), ObjCRuntime(nullptr), 87 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 88 DebugInfo(nullptr), ARCData(nullptr), 89 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 90 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 91 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 92 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 93 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 94 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 95 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 96 97 // Initialize the type cache. 98 llvm::LLVMContext &LLVMContext = M.getContext(); 99 VoidTy = llvm::Type::getVoidTy(LLVMContext); 100 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 101 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 102 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 103 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 104 FloatTy = llvm::Type::getFloatTy(LLVMContext); 105 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 106 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 107 PointerAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 111 Int8PtrTy = Int8Ty->getPointerTo(0); 112 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 113 114 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 115 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 116 117 if (LangOpts.ObjC1) 118 createObjCRuntime(); 119 if (LangOpts.OpenCL) 120 createOpenCLRuntime(); 121 if (LangOpts.OpenMP) 122 createOpenMPRuntime(); 123 if (LangOpts.CUDA) 124 createCUDARuntime(); 125 126 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 127 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 128 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 129 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 130 getCXXABI().getMangleContext()); 131 132 // If debug info or coverage generation is enabled, create the CGDebugInfo 133 // object. 134 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 135 CodeGenOpts.EmitGcovArcs || 136 CodeGenOpts.EmitGcovNotes) 137 DebugInfo = new CGDebugInfo(*this); 138 139 Block.GlobalUniqueCount = 0; 140 141 if (C.getLangOpts().ObjCAutoRefCount) 142 ARCData = new ARCEntrypoints(); 143 RRData = new RREntrypoints(); 144 145 if (!CodeGenOpts.InstrProfileInput.empty()) { 146 auto ReaderOrErr = 147 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 148 if (std::error_code EC = ReaderOrErr.getError()) { 149 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 150 "Could not read profile %0: %1"); 151 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 152 << EC.message(); 153 } else 154 PGOReader = std::move(ReaderOrErr.get()); 155 } 156 157 // If coverage mapping generation is enabled, create the 158 // CoverageMappingModuleGen object. 159 if (CodeGenOpts.CoverageMapping) 160 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 161 } 162 163 CodeGenModule::~CodeGenModule() { 164 delete ObjCRuntime; 165 delete OpenCLRuntime; 166 delete OpenMPRuntime; 167 delete CUDARuntime; 168 delete TheTargetCodeGenInfo; 169 delete TBAA; 170 delete DebugInfo; 171 delete ARCData; 172 delete RRData; 173 } 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime = CreateGNUObjCRuntime(*this); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 ObjCRuntime = CreateMacObjCRuntime(*this); 189 return; 190 } 191 llvm_unreachable("bad runtime kind"); 192 } 193 194 void CodeGenModule::createOpenCLRuntime() { 195 OpenCLRuntime = new CGOpenCLRuntime(*this); 196 } 197 198 void CodeGenModule::createOpenMPRuntime() { 199 OpenMPRuntime = new CGOpenMPRuntime(*this); 200 } 201 202 void CodeGenModule::createCUDARuntime() { 203 CUDARuntime = CreateNVCUDARuntime(*this); 204 } 205 206 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 207 Replacements[Name] = C; 208 } 209 210 void CodeGenModule::applyReplacements() { 211 for (auto &I : Replacements) { 212 StringRef MangledName = I.first(); 213 llvm::Constant *Replacement = I.second; 214 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 215 if (!Entry) 216 continue; 217 auto *OldF = cast<llvm::Function>(Entry); 218 auto *NewF = dyn_cast<llvm::Function>(Replacement); 219 if (!NewF) { 220 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 221 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 222 } else { 223 auto *CE = cast<llvm::ConstantExpr>(Replacement); 224 assert(CE->getOpcode() == llvm::Instruction::BitCast || 225 CE->getOpcode() == llvm::Instruction::GetElementPtr); 226 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 227 } 228 } 229 230 // Replace old with new, but keep the old order. 231 OldF->replaceAllUsesWith(Replacement); 232 if (NewF) { 233 NewF->removeFromParent(); 234 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 235 } 236 OldF->eraseFromParent(); 237 } 238 } 239 240 // This is only used in aliases that we created and we know they have a 241 // linear structure. 242 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 243 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 244 const llvm::Constant *C = &GA; 245 for (;;) { 246 C = C->stripPointerCasts(); 247 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 248 return GO; 249 // stripPointerCasts will not walk over weak aliases. 250 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 251 if (!GA2) 252 return nullptr; 253 if (!Visited.insert(GA2).second) 254 return nullptr; 255 C = GA2->getAliasee(); 256 } 257 } 258 259 void CodeGenModule::checkAliases() { 260 // Check if the constructed aliases are well formed. It is really unfortunate 261 // that we have to do this in CodeGen, but we only construct mangled names 262 // and aliases during codegen. 263 bool Error = false; 264 DiagnosticsEngine &Diags = getDiags(); 265 for (const GlobalDecl &GD : Aliases) { 266 const auto *D = cast<ValueDecl>(GD.getDecl()); 267 const AliasAttr *AA = D->getAttr<AliasAttr>(); 268 StringRef MangledName = getMangledName(GD); 269 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 270 auto *Alias = cast<llvm::GlobalAlias>(Entry); 271 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 272 if (!GV) { 273 Error = true; 274 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 275 } else if (GV->isDeclaration()) { 276 Error = true; 277 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 278 } 279 280 llvm::Constant *Aliasee = Alias->getAliasee(); 281 llvm::GlobalValue *AliaseeGV; 282 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 283 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 284 else 285 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 286 287 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 288 StringRef AliasSection = SA->getName(); 289 if (AliasSection != AliaseeGV->getSection()) 290 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 291 << AliasSection; 292 } 293 294 // We have to handle alias to weak aliases in here. LLVM itself disallows 295 // this since the object semantics would not match the IL one. For 296 // compatibility with gcc we implement it by just pointing the alias 297 // to its aliasee's aliasee. We also warn, since the user is probably 298 // expecting the link to be weak. 299 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 300 if (GA->mayBeOverridden()) { 301 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 302 << GV->getName() << GA->getName(); 303 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 304 GA->getAliasee(), Alias->getType()); 305 Alias->setAliasee(Aliasee); 306 } 307 } 308 } 309 if (!Error) 310 return; 311 312 for (const GlobalDecl &GD : Aliases) { 313 StringRef MangledName = getMangledName(GD); 314 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 315 auto *Alias = cast<llvm::GlobalAlias>(Entry); 316 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 317 Alias->eraseFromParent(); 318 } 319 } 320 321 void CodeGenModule::clear() { 322 DeferredDeclsToEmit.clear(); 323 if (OpenMPRuntime) 324 OpenMPRuntime->clear(); 325 } 326 327 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 328 StringRef MainFile) { 329 if (!hasDiagnostics()) 330 return; 331 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 332 if (MainFile.empty()) 333 MainFile = "<stdin>"; 334 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 335 } else 336 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 337 << Mismatched; 338 } 339 340 void CodeGenModule::Release() { 341 EmitDeferred(); 342 applyReplacements(); 343 checkAliases(); 344 EmitCXXGlobalInitFunc(); 345 EmitCXXGlobalDtorFunc(); 346 EmitCXXThreadLocalInitFunc(); 347 if (ObjCRuntime) 348 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 349 AddGlobalCtor(ObjCInitFunction); 350 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 351 CUDARuntime) { 352 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 353 AddGlobalCtor(CudaCtorFunction); 354 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 355 AddGlobalDtor(CudaDtorFunction); 356 } 357 if (PGOReader && PGOStats.hasDiagnostics()) 358 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 359 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 360 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 361 EmitGlobalAnnotations(); 362 EmitStaticExternCAliases(); 363 EmitDeferredUnusedCoverageMappings(); 364 if (CoverageMapping) 365 CoverageMapping->emit(); 366 emitLLVMUsed(); 367 368 if (CodeGenOpts.Autolink && 369 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 370 EmitModuleLinkOptions(); 371 } 372 if (CodeGenOpts.DwarfVersion) 373 // We actually want the latest version when there are conflicts. 374 // We can change from Warning to Latest if such mode is supported. 375 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 376 CodeGenOpts.DwarfVersion); 377 if (DebugInfo) 378 // We support a single version in the linked module. The LLVM 379 // parser will drop debug info with a different version number 380 // (and warn about it, too). 381 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 382 llvm::DEBUG_METADATA_VERSION); 383 384 // We need to record the widths of enums and wchar_t, so that we can generate 385 // the correct build attributes in the ARM backend. 386 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 387 if ( Arch == llvm::Triple::arm 388 || Arch == llvm::Triple::armeb 389 || Arch == llvm::Triple::thumb 390 || Arch == llvm::Triple::thumbeb) { 391 // Width of wchar_t in bytes 392 uint64_t WCharWidth = 393 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 394 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 395 396 // The minimum width of an enum in bytes 397 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 398 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 399 } 400 401 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 402 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 403 switch (PLevel) { 404 case 0: break; 405 case 1: PL = llvm::PICLevel::Small; break; 406 case 2: PL = llvm::PICLevel::Large; break; 407 default: llvm_unreachable("Invalid PIC Level"); 408 } 409 410 getModule().setPICLevel(PL); 411 } 412 413 SimplifyPersonality(); 414 415 if (getCodeGenOpts().EmitDeclMetadata) 416 EmitDeclMetadata(); 417 418 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 419 EmitCoverageFile(); 420 421 if (DebugInfo) 422 DebugInfo->finalize(); 423 424 EmitVersionIdentMetadata(); 425 426 EmitTargetMetadata(); 427 } 428 429 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 430 // Make sure that this type is translated. 431 Types.UpdateCompletedType(TD); 432 } 433 434 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 435 if (!TBAA) 436 return nullptr; 437 return TBAA->getTBAAInfo(QTy); 438 } 439 440 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 441 if (!TBAA) 442 return nullptr; 443 return TBAA->getTBAAInfoForVTablePtr(); 444 } 445 446 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 447 if (!TBAA) 448 return nullptr; 449 return TBAA->getTBAAStructInfo(QTy); 450 } 451 452 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 453 if (!TBAA) 454 return nullptr; 455 return TBAA->getTBAAStructTypeInfo(QTy); 456 } 457 458 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 459 llvm::MDNode *AccessN, 460 uint64_t O) { 461 if (!TBAA) 462 return nullptr; 463 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 464 } 465 466 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 467 /// and struct-path aware TBAA, the tag has the same format: 468 /// base type, access type and offset. 469 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 470 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 471 llvm::MDNode *TBAAInfo, 472 bool ConvertTypeToTag) { 473 if (ConvertTypeToTag && TBAA) 474 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 475 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 476 else 477 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 478 } 479 480 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 481 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 482 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 483 } 484 485 /// ErrorUnsupported - Print out an error that codegen doesn't support the 486 /// specified stmt yet. 487 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 488 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 489 "cannot compile this %0 yet"); 490 std::string Msg = Type; 491 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 492 << Msg << S->getSourceRange(); 493 } 494 495 /// ErrorUnsupported - Print out an error that codegen doesn't support the 496 /// specified decl yet. 497 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 498 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 499 "cannot compile this %0 yet"); 500 std::string Msg = Type; 501 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 502 } 503 504 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 505 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 506 } 507 508 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 509 const NamedDecl *D) const { 510 // Internal definitions always have default visibility. 511 if (GV->hasLocalLinkage()) { 512 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 513 return; 514 } 515 516 // Set visibility for definitions. 517 LinkageInfo LV = D->getLinkageAndVisibility(); 518 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 519 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 520 } 521 522 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 523 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 524 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 525 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 526 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 527 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 528 } 529 530 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 531 CodeGenOptions::TLSModel M) { 532 switch (M) { 533 case CodeGenOptions::GeneralDynamicTLSModel: 534 return llvm::GlobalVariable::GeneralDynamicTLSModel; 535 case CodeGenOptions::LocalDynamicTLSModel: 536 return llvm::GlobalVariable::LocalDynamicTLSModel; 537 case CodeGenOptions::InitialExecTLSModel: 538 return llvm::GlobalVariable::InitialExecTLSModel; 539 case CodeGenOptions::LocalExecTLSModel: 540 return llvm::GlobalVariable::LocalExecTLSModel; 541 } 542 llvm_unreachable("Invalid TLS model!"); 543 } 544 545 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 546 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 547 548 llvm::GlobalValue::ThreadLocalMode TLM; 549 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 550 551 // Override the TLS model if it is explicitly specified. 552 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 553 TLM = GetLLVMTLSModel(Attr->getModel()); 554 } 555 556 GV->setThreadLocalMode(TLM); 557 } 558 559 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 560 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 561 if (!FoundStr.empty()) 562 return FoundStr; 563 564 const auto *ND = cast<NamedDecl>(GD.getDecl()); 565 SmallString<256> Buffer; 566 StringRef Str; 567 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 568 llvm::raw_svector_ostream Out(Buffer); 569 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 570 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 571 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 572 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 573 else 574 getCXXABI().getMangleContext().mangleName(ND, Out); 575 Str = Out.str(); 576 } else { 577 IdentifierInfo *II = ND->getIdentifier(); 578 assert(II && "Attempt to mangle unnamed decl."); 579 Str = II->getName(); 580 } 581 582 // Keep the first result in the case of a mangling collision. 583 auto Result = Manglings.insert(std::make_pair(Str, GD)); 584 return FoundStr = Result.first->first(); 585 } 586 587 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 588 const BlockDecl *BD) { 589 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 590 const Decl *D = GD.getDecl(); 591 592 SmallString<256> Buffer; 593 llvm::raw_svector_ostream Out(Buffer); 594 if (!D) 595 MangleCtx.mangleGlobalBlock(BD, 596 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 597 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 598 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 599 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 600 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 601 else 602 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 603 604 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 605 return Result.first->first(); 606 } 607 608 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 609 return getModule().getNamedValue(Name); 610 } 611 612 /// AddGlobalCtor - Add a function to the list that will be called before 613 /// main() runs. 614 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 615 llvm::Constant *AssociatedData) { 616 // FIXME: Type coercion of void()* types. 617 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 618 } 619 620 /// AddGlobalDtor - Add a function to the list that will be called 621 /// when the module is unloaded. 622 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 623 // FIXME: Type coercion of void()* types. 624 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 625 } 626 627 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 628 // Ctor function type is void()*. 629 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 630 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 631 632 // Get the type of a ctor entry, { i32, void ()*, i8* }. 633 llvm::StructType *CtorStructTy = llvm::StructType::get( 634 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 635 636 // Construct the constructor and destructor arrays. 637 SmallVector<llvm::Constant *, 8> Ctors; 638 for (const auto &I : Fns) { 639 llvm::Constant *S[] = { 640 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 641 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 642 (I.AssociatedData 643 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 644 : llvm::Constant::getNullValue(VoidPtrTy))}; 645 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 646 } 647 648 if (!Ctors.empty()) { 649 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 650 new llvm::GlobalVariable(TheModule, AT, false, 651 llvm::GlobalValue::AppendingLinkage, 652 llvm::ConstantArray::get(AT, Ctors), 653 GlobalName); 654 } 655 } 656 657 llvm::GlobalValue::LinkageTypes 658 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 659 const auto *D = cast<FunctionDecl>(GD.getDecl()); 660 661 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 662 663 if (isa<CXXDestructorDecl>(D) && 664 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 665 GD.getDtorType())) { 666 // Destructor variants in the Microsoft C++ ABI are always internal or 667 // linkonce_odr thunks emitted on an as-needed basis. 668 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 669 : llvm::GlobalValue::LinkOnceODRLinkage; 670 } 671 672 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 673 } 674 675 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 676 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 677 678 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 679 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 680 // Don't dllexport/import destructor thunks. 681 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 682 return; 683 } 684 } 685 686 if (FD->hasAttr<DLLImportAttr>()) 687 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 688 else if (FD->hasAttr<DLLExportAttr>()) 689 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 690 else 691 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 692 } 693 694 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 695 llvm::Function *F) { 696 setNonAliasAttributes(D, F); 697 } 698 699 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 700 const CGFunctionInfo &Info, 701 llvm::Function *F) { 702 unsigned CallingConv; 703 AttributeListType AttributeList; 704 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 705 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 706 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 707 } 708 709 /// Determines whether the language options require us to model 710 /// unwind exceptions. We treat -fexceptions as mandating this 711 /// except under the fragile ObjC ABI with only ObjC exceptions 712 /// enabled. This means, for example, that C with -fexceptions 713 /// enables this. 714 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 715 // If exceptions are completely disabled, obviously this is false. 716 if (!LangOpts.Exceptions) return false; 717 718 // If C++ exceptions are enabled, this is true. 719 if (LangOpts.CXXExceptions) return true; 720 721 // If ObjC exceptions are enabled, this depends on the ABI. 722 if (LangOpts.ObjCExceptions) { 723 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 724 } 725 726 return true; 727 } 728 729 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 730 llvm::Function *F) { 731 llvm::AttrBuilder B; 732 733 if (CodeGenOpts.UnwindTables) 734 B.addAttribute(llvm::Attribute::UWTable); 735 736 if (!hasUnwindExceptions(LangOpts)) 737 B.addAttribute(llvm::Attribute::NoUnwind); 738 739 if (D->hasAttr<NakedAttr>()) { 740 // Naked implies noinline: we should not be inlining such functions. 741 B.addAttribute(llvm::Attribute::Naked); 742 B.addAttribute(llvm::Attribute::NoInline); 743 } else if (D->hasAttr<NoDuplicateAttr>()) { 744 B.addAttribute(llvm::Attribute::NoDuplicate); 745 } else if (D->hasAttr<NoInlineAttr>()) { 746 B.addAttribute(llvm::Attribute::NoInline); 747 } else if (D->hasAttr<AlwaysInlineAttr>() && 748 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 749 llvm::Attribute::NoInline)) { 750 // (noinline wins over always_inline, and we can't specify both in IR) 751 B.addAttribute(llvm::Attribute::AlwaysInline); 752 } 753 754 if (D->hasAttr<ColdAttr>()) { 755 if (!D->hasAttr<OptimizeNoneAttr>()) 756 B.addAttribute(llvm::Attribute::OptimizeForSize); 757 B.addAttribute(llvm::Attribute::Cold); 758 } 759 760 if (D->hasAttr<MinSizeAttr>()) 761 B.addAttribute(llvm::Attribute::MinSize); 762 763 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 764 B.addAttribute(llvm::Attribute::StackProtect); 765 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 766 B.addAttribute(llvm::Attribute::StackProtectStrong); 767 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 768 B.addAttribute(llvm::Attribute::StackProtectReq); 769 770 F->addAttributes(llvm::AttributeSet::FunctionIndex, 771 llvm::AttributeSet::get( 772 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 773 774 if (D->hasAttr<OptimizeNoneAttr>()) { 775 // OptimizeNone implies noinline; we should not be inlining such functions. 776 F->addFnAttr(llvm::Attribute::OptimizeNone); 777 F->addFnAttr(llvm::Attribute::NoInline); 778 779 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 780 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 781 "OptimizeNone and OptimizeForSize on same function!"); 782 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 783 "OptimizeNone and MinSize on same function!"); 784 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 785 "OptimizeNone and AlwaysInline on same function!"); 786 787 // Attribute 'inlinehint' has no effect on 'optnone' functions. 788 // Explicitly remove it from the set of function attributes. 789 F->removeFnAttr(llvm::Attribute::InlineHint); 790 } 791 792 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 793 F->setUnnamedAddr(true); 794 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 795 if (MD->isVirtual()) 796 F->setUnnamedAddr(true); 797 798 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 799 if (alignment) 800 F->setAlignment(alignment); 801 802 // C++ ABI requires 2-byte alignment for member functions. 803 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 804 F->setAlignment(2); 805 } 806 807 void CodeGenModule::SetCommonAttributes(const Decl *D, 808 llvm::GlobalValue *GV) { 809 if (const auto *ND = dyn_cast<NamedDecl>(D)) 810 setGlobalVisibility(GV, ND); 811 else 812 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 813 814 if (D->hasAttr<UsedAttr>()) 815 addUsedGlobal(GV); 816 } 817 818 void CodeGenModule::setAliasAttributes(const Decl *D, 819 llvm::GlobalValue *GV) { 820 SetCommonAttributes(D, GV); 821 822 // Process the dllexport attribute based on whether the original definition 823 // (not necessarily the aliasee) was exported. 824 if (D->hasAttr<DLLExportAttr>()) 825 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 826 } 827 828 void CodeGenModule::setNonAliasAttributes(const Decl *D, 829 llvm::GlobalObject *GO) { 830 SetCommonAttributes(D, GO); 831 832 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 833 GO->setSection(SA->getName()); 834 835 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 836 } 837 838 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 839 llvm::Function *F, 840 const CGFunctionInfo &FI) { 841 SetLLVMFunctionAttributes(D, FI, F); 842 SetLLVMFunctionAttributesForDefinition(D, F); 843 844 F->setLinkage(llvm::Function::InternalLinkage); 845 846 setNonAliasAttributes(D, F); 847 } 848 849 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 850 const NamedDecl *ND) { 851 // Set linkage and visibility in case we never see a definition. 852 LinkageInfo LV = ND->getLinkageAndVisibility(); 853 if (LV.getLinkage() != ExternalLinkage) { 854 // Don't set internal linkage on declarations. 855 } else { 856 if (ND->hasAttr<DLLImportAttr>()) { 857 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 858 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 859 } else if (ND->hasAttr<DLLExportAttr>()) { 860 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 861 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 862 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 863 // "extern_weak" is overloaded in LLVM; we probably should have 864 // separate linkage types for this. 865 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 866 } 867 868 // Set visibility on a declaration only if it's explicit. 869 if (LV.isVisibilityExplicit()) 870 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 871 } 872 } 873 874 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 875 bool IsIncompleteFunction, 876 bool IsThunk) { 877 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 878 // If this is an intrinsic function, set the function's attributes 879 // to the intrinsic's attributes. 880 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 881 return; 882 } 883 884 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 885 886 if (!IsIncompleteFunction) 887 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 888 889 // Add the Returned attribute for "this", except for iOS 5 and earlier 890 // where substantial code, including the libstdc++ dylib, was compiled with 891 // GCC and does not actually return "this". 892 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 893 !(getTarget().getTriple().isiOS() && 894 getTarget().getTriple().isOSVersionLT(6))) { 895 assert(!F->arg_empty() && 896 F->arg_begin()->getType() 897 ->canLosslesslyBitCastTo(F->getReturnType()) && 898 "unexpected this return"); 899 F->addAttribute(1, llvm::Attribute::Returned); 900 } 901 902 // Only a few attributes are set on declarations; these may later be 903 // overridden by a definition. 904 905 setLinkageAndVisibilityForGV(F, FD); 906 907 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 908 F->setSection(SA->getName()); 909 910 // A replaceable global allocation function does not act like a builtin by 911 // default, only if it is invoked by a new-expression or delete-expression. 912 if (FD->isReplaceableGlobalAllocationFunction()) 913 F->addAttribute(llvm::AttributeSet::FunctionIndex, 914 llvm::Attribute::NoBuiltin); 915 } 916 917 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 918 assert(!GV->isDeclaration() && 919 "Only globals with definition can force usage."); 920 LLVMUsed.emplace_back(GV); 921 } 922 923 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 924 assert(!GV->isDeclaration() && 925 "Only globals with definition can force usage."); 926 LLVMCompilerUsed.emplace_back(GV); 927 } 928 929 static void emitUsed(CodeGenModule &CGM, StringRef Name, 930 std::vector<llvm::WeakVH> &List) { 931 // Don't create llvm.used if there is no need. 932 if (List.empty()) 933 return; 934 935 // Convert List to what ConstantArray needs. 936 SmallVector<llvm::Constant*, 8> UsedArray; 937 UsedArray.resize(List.size()); 938 for (unsigned i = 0, e = List.size(); i != e; ++i) { 939 UsedArray[i] = 940 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 941 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 942 } 943 944 if (UsedArray.empty()) 945 return; 946 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 947 948 auto *GV = new llvm::GlobalVariable( 949 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 950 llvm::ConstantArray::get(ATy, UsedArray), Name); 951 952 GV->setSection("llvm.metadata"); 953 } 954 955 void CodeGenModule::emitLLVMUsed() { 956 emitUsed(*this, "llvm.used", LLVMUsed); 957 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 958 } 959 960 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 961 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 962 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 963 } 964 965 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 966 llvm::SmallString<32> Opt; 967 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 968 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 969 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 970 } 971 972 void CodeGenModule::AddDependentLib(StringRef Lib) { 973 llvm::SmallString<24> Opt; 974 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 975 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 976 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 977 } 978 979 /// \brief Add link options implied by the given module, including modules 980 /// it depends on, using a postorder walk. 981 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 982 SmallVectorImpl<llvm::Metadata *> &Metadata, 983 llvm::SmallPtrSet<Module *, 16> &Visited) { 984 // Import this module's parent. 985 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 986 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 987 } 988 989 // Import this module's dependencies. 990 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 991 if (Visited.insert(Mod->Imports[I - 1]).second) 992 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 993 } 994 995 // Add linker options to link against the libraries/frameworks 996 // described by this module. 997 llvm::LLVMContext &Context = CGM.getLLVMContext(); 998 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 999 // Link against a framework. Frameworks are currently Darwin only, so we 1000 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1001 if (Mod->LinkLibraries[I-1].IsFramework) { 1002 llvm::Metadata *Args[2] = { 1003 llvm::MDString::get(Context, "-framework"), 1004 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1005 1006 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1007 continue; 1008 } 1009 1010 // Link against a library. 1011 llvm::SmallString<24> Opt; 1012 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1013 Mod->LinkLibraries[I-1].Library, Opt); 1014 auto *OptString = llvm::MDString::get(Context, Opt); 1015 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1016 } 1017 } 1018 1019 void CodeGenModule::EmitModuleLinkOptions() { 1020 // Collect the set of all of the modules we want to visit to emit link 1021 // options, which is essentially the imported modules and all of their 1022 // non-explicit child modules. 1023 llvm::SetVector<clang::Module *> LinkModules; 1024 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1025 SmallVector<clang::Module *, 16> Stack; 1026 1027 // Seed the stack with imported modules. 1028 for (Module *M : ImportedModules) 1029 if (Visited.insert(M).second) 1030 Stack.push_back(M); 1031 1032 // Find all of the modules to import, making a little effort to prune 1033 // non-leaf modules. 1034 while (!Stack.empty()) { 1035 clang::Module *Mod = Stack.pop_back_val(); 1036 1037 bool AnyChildren = false; 1038 1039 // Visit the submodules of this module. 1040 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1041 SubEnd = Mod->submodule_end(); 1042 Sub != SubEnd; ++Sub) { 1043 // Skip explicit children; they need to be explicitly imported to be 1044 // linked against. 1045 if ((*Sub)->IsExplicit) 1046 continue; 1047 1048 if (Visited.insert(*Sub).second) { 1049 Stack.push_back(*Sub); 1050 AnyChildren = true; 1051 } 1052 } 1053 1054 // We didn't find any children, so add this module to the list of 1055 // modules to link against. 1056 if (!AnyChildren) { 1057 LinkModules.insert(Mod); 1058 } 1059 } 1060 1061 // Add link options for all of the imported modules in reverse topological 1062 // order. We don't do anything to try to order import link flags with respect 1063 // to linker options inserted by things like #pragma comment(). 1064 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1065 Visited.clear(); 1066 for (Module *M : LinkModules) 1067 if (Visited.insert(M).second) 1068 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1069 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1070 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1071 1072 // Add the linker options metadata flag. 1073 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1074 llvm::MDNode::get(getLLVMContext(), 1075 LinkerOptionsMetadata)); 1076 } 1077 1078 void CodeGenModule::EmitDeferred() { 1079 // Emit code for any potentially referenced deferred decls. Since a 1080 // previously unused static decl may become used during the generation of code 1081 // for a static function, iterate until no changes are made. 1082 1083 if (!DeferredVTables.empty()) { 1084 EmitDeferredVTables(); 1085 1086 // Emitting a v-table doesn't directly cause more v-tables to 1087 // become deferred, although it can cause functions to be 1088 // emitted that then need those v-tables. 1089 assert(DeferredVTables.empty()); 1090 } 1091 1092 // Stop if we're out of both deferred v-tables and deferred declarations. 1093 if (DeferredDeclsToEmit.empty()) 1094 return; 1095 1096 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1097 // work, it will not interfere with this. 1098 std::vector<DeferredGlobal> CurDeclsToEmit; 1099 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1100 1101 for (DeferredGlobal &G : CurDeclsToEmit) { 1102 GlobalDecl D = G.GD; 1103 llvm::GlobalValue *GV = G.GV; 1104 G.GV = nullptr; 1105 1106 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1107 if (!GV) 1108 GV = GetGlobalValue(getMangledName(D)); 1109 1110 // Check to see if we've already emitted this. This is necessary 1111 // for a couple of reasons: first, decls can end up in the 1112 // deferred-decls queue multiple times, and second, decls can end 1113 // up with definitions in unusual ways (e.g. by an extern inline 1114 // function acquiring a strong function redefinition). Just 1115 // ignore these cases. 1116 if (GV && !GV->isDeclaration()) 1117 continue; 1118 1119 // Otherwise, emit the definition and move on to the next one. 1120 EmitGlobalDefinition(D, GV); 1121 1122 // If we found out that we need to emit more decls, do that recursively. 1123 // This has the advantage that the decls are emitted in a DFS and related 1124 // ones are close together, which is convenient for testing. 1125 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1126 EmitDeferred(); 1127 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1128 } 1129 } 1130 } 1131 1132 void CodeGenModule::EmitGlobalAnnotations() { 1133 if (Annotations.empty()) 1134 return; 1135 1136 // Create a new global variable for the ConstantStruct in the Module. 1137 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1138 Annotations[0]->getType(), Annotations.size()), Annotations); 1139 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1140 llvm::GlobalValue::AppendingLinkage, 1141 Array, "llvm.global.annotations"); 1142 gv->setSection(AnnotationSection); 1143 } 1144 1145 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1146 llvm::Constant *&AStr = AnnotationStrings[Str]; 1147 if (AStr) 1148 return AStr; 1149 1150 // Not found yet, create a new global. 1151 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1152 auto *gv = 1153 new llvm::GlobalVariable(getModule(), s->getType(), true, 1154 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1155 gv->setSection(AnnotationSection); 1156 gv->setUnnamedAddr(true); 1157 AStr = gv; 1158 return gv; 1159 } 1160 1161 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1162 SourceManager &SM = getContext().getSourceManager(); 1163 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1164 if (PLoc.isValid()) 1165 return EmitAnnotationString(PLoc.getFilename()); 1166 return EmitAnnotationString(SM.getBufferName(Loc)); 1167 } 1168 1169 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1170 SourceManager &SM = getContext().getSourceManager(); 1171 PresumedLoc PLoc = SM.getPresumedLoc(L); 1172 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1173 SM.getExpansionLineNumber(L); 1174 return llvm::ConstantInt::get(Int32Ty, LineNo); 1175 } 1176 1177 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1178 const AnnotateAttr *AA, 1179 SourceLocation L) { 1180 // Get the globals for file name, annotation, and the line number. 1181 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1182 *UnitGV = EmitAnnotationUnit(L), 1183 *LineNoCst = EmitAnnotationLineNo(L); 1184 1185 // Create the ConstantStruct for the global annotation. 1186 llvm::Constant *Fields[4] = { 1187 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1188 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1189 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1190 LineNoCst 1191 }; 1192 return llvm::ConstantStruct::getAnon(Fields); 1193 } 1194 1195 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1196 llvm::GlobalValue *GV) { 1197 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1198 // Get the struct elements for these annotations. 1199 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1200 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1201 } 1202 1203 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1204 SourceLocation Loc) const { 1205 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1206 // Blacklist by function name. 1207 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1208 return true; 1209 // Blacklist by location. 1210 if (!Loc.isInvalid()) 1211 return SanitizerBL.isBlacklistedLocation(Loc); 1212 // If location is unknown, this may be a compiler-generated function. Assume 1213 // it's located in the main file. 1214 auto &SM = Context.getSourceManager(); 1215 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1216 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1217 } 1218 return false; 1219 } 1220 1221 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1222 SourceLocation Loc, QualType Ty, 1223 StringRef Category) const { 1224 // For now globals can be blacklisted only in ASan and KASan. 1225 if (!LangOpts.Sanitize.hasOneOf( 1226 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1227 return false; 1228 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1229 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1230 return true; 1231 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1232 return true; 1233 // Check global type. 1234 if (!Ty.isNull()) { 1235 // Drill down the array types: if global variable of a fixed type is 1236 // blacklisted, we also don't instrument arrays of them. 1237 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1238 Ty = AT->getElementType(); 1239 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1240 // We allow to blacklist only record types (classes, structs etc.) 1241 if (Ty->isRecordType()) { 1242 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1243 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1244 return true; 1245 } 1246 } 1247 return false; 1248 } 1249 1250 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1251 // Never defer when EmitAllDecls is specified. 1252 if (LangOpts.EmitAllDecls) 1253 return true; 1254 1255 return getContext().DeclMustBeEmitted(Global); 1256 } 1257 1258 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1259 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1260 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1261 // Implicit template instantiations may change linkage if they are later 1262 // explicitly instantiated, so they should not be emitted eagerly. 1263 return false; 1264 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1265 // codegen for global variables, because they may be marked as threadprivate. 1266 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1267 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1268 return false; 1269 1270 return true; 1271 } 1272 1273 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1274 const CXXUuidofExpr* E) { 1275 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1276 // well-formed. 1277 StringRef Uuid = E->getUuidAsStringRef(Context); 1278 std::string Name = "_GUID_" + Uuid.lower(); 1279 std::replace(Name.begin(), Name.end(), '-', '_'); 1280 1281 // Look for an existing global. 1282 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1283 return GV; 1284 1285 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1286 assert(Init && "failed to initialize as constant"); 1287 1288 auto *GV = new llvm::GlobalVariable( 1289 getModule(), Init->getType(), 1290 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1291 if (supportsCOMDAT()) 1292 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1293 return GV; 1294 } 1295 1296 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1297 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1298 assert(AA && "No alias?"); 1299 1300 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1301 1302 // See if there is already something with the target's name in the module. 1303 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1304 if (Entry) { 1305 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1306 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1307 } 1308 1309 llvm::Constant *Aliasee; 1310 if (isa<llvm::FunctionType>(DeclTy)) 1311 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1312 GlobalDecl(cast<FunctionDecl>(VD)), 1313 /*ForVTable=*/false); 1314 else 1315 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1316 llvm::PointerType::getUnqual(DeclTy), 1317 nullptr); 1318 1319 auto *F = cast<llvm::GlobalValue>(Aliasee); 1320 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1321 WeakRefReferences.insert(F); 1322 1323 return Aliasee; 1324 } 1325 1326 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1327 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1328 1329 // Weak references don't produce any output by themselves. 1330 if (Global->hasAttr<WeakRefAttr>()) 1331 return; 1332 1333 // If this is an alias definition (which otherwise looks like a declaration) 1334 // emit it now. 1335 if (Global->hasAttr<AliasAttr>()) 1336 return EmitAliasDefinition(GD); 1337 1338 // If this is CUDA, be selective about which declarations we emit. 1339 if (LangOpts.CUDA) { 1340 if (LangOpts.CUDAIsDevice) { 1341 if (!Global->hasAttr<CUDADeviceAttr>() && 1342 !Global->hasAttr<CUDAGlobalAttr>() && 1343 !Global->hasAttr<CUDAConstantAttr>() && 1344 !Global->hasAttr<CUDASharedAttr>()) 1345 return; 1346 } else { 1347 if (!Global->hasAttr<CUDAHostAttr>() && ( 1348 Global->hasAttr<CUDADeviceAttr>() || 1349 Global->hasAttr<CUDAConstantAttr>() || 1350 Global->hasAttr<CUDASharedAttr>())) 1351 return; 1352 } 1353 } 1354 1355 // Ignore declarations, they will be emitted on their first use. 1356 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1357 // Forward declarations are emitted lazily on first use. 1358 if (!FD->doesThisDeclarationHaveABody()) { 1359 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1360 return; 1361 1362 StringRef MangledName = getMangledName(GD); 1363 1364 // Compute the function info and LLVM type. 1365 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1366 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1367 1368 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1369 /*DontDefer=*/false); 1370 return; 1371 } 1372 } else { 1373 const auto *VD = cast<VarDecl>(Global); 1374 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1375 1376 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1377 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1378 return; 1379 } 1380 1381 // Defer code generation to first use when possible, e.g. if this is an inline 1382 // function. If the global must always be emitted, do it eagerly if possible 1383 // to benefit from cache locality. 1384 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1385 // Emit the definition if it can't be deferred. 1386 EmitGlobalDefinition(GD); 1387 return; 1388 } 1389 1390 // If we're deferring emission of a C++ variable with an 1391 // initializer, remember the order in which it appeared in the file. 1392 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1393 cast<VarDecl>(Global)->hasInit()) { 1394 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1395 CXXGlobalInits.push_back(nullptr); 1396 } 1397 1398 StringRef MangledName = getMangledName(GD); 1399 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1400 // The value has already been used and should therefore be emitted. 1401 addDeferredDeclToEmit(GV, GD); 1402 } else if (MustBeEmitted(Global)) { 1403 // The value must be emitted, but cannot be emitted eagerly. 1404 assert(!MayBeEmittedEagerly(Global)); 1405 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1406 } else { 1407 // Otherwise, remember that we saw a deferred decl with this name. The 1408 // first use of the mangled name will cause it to move into 1409 // DeferredDeclsToEmit. 1410 DeferredDecls[MangledName] = GD; 1411 } 1412 } 1413 1414 namespace { 1415 struct FunctionIsDirectlyRecursive : 1416 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1417 const StringRef Name; 1418 const Builtin::Context &BI; 1419 bool Result; 1420 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1421 Name(N), BI(C), Result(false) { 1422 } 1423 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1424 1425 bool TraverseCallExpr(CallExpr *E) { 1426 const FunctionDecl *FD = E->getDirectCallee(); 1427 if (!FD) 1428 return true; 1429 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1430 if (Attr && Name == Attr->getLabel()) { 1431 Result = true; 1432 return false; 1433 } 1434 unsigned BuiltinID = FD->getBuiltinID(); 1435 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1436 return true; 1437 StringRef BuiltinName = BI.GetName(BuiltinID); 1438 if (BuiltinName.startswith("__builtin_") && 1439 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1440 Result = true; 1441 return false; 1442 } 1443 return true; 1444 } 1445 }; 1446 } 1447 1448 // isTriviallyRecursive - Check if this function calls another 1449 // decl that, because of the asm attribute or the other decl being a builtin, 1450 // ends up pointing to itself. 1451 bool 1452 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1453 StringRef Name; 1454 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1455 // asm labels are a special kind of mangling we have to support. 1456 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1457 if (!Attr) 1458 return false; 1459 Name = Attr->getLabel(); 1460 } else { 1461 Name = FD->getName(); 1462 } 1463 1464 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1465 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1466 return Walker.Result; 1467 } 1468 1469 bool 1470 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1471 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1472 return true; 1473 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1474 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1475 return false; 1476 // PR9614. Avoid cases where the source code is lying to us. An available 1477 // externally function should have an equivalent function somewhere else, 1478 // but a function that calls itself is clearly not equivalent to the real 1479 // implementation. 1480 // This happens in glibc's btowc and in some configure checks. 1481 return !isTriviallyRecursive(F); 1482 } 1483 1484 /// If the type for the method's class was generated by 1485 /// CGDebugInfo::createContextChain(), the cache contains only a 1486 /// limited DIType without any declarations. Since EmitFunctionStart() 1487 /// needs to find the canonical declaration for each method, we need 1488 /// to construct the complete type prior to emitting the method. 1489 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1490 if (!D->isInstance()) 1491 return; 1492 1493 if (CGDebugInfo *DI = getModuleDebugInfo()) 1494 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1495 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1496 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1497 } 1498 } 1499 1500 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1501 const auto *D = cast<ValueDecl>(GD.getDecl()); 1502 1503 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1504 Context.getSourceManager(), 1505 "Generating code for declaration"); 1506 1507 if (isa<FunctionDecl>(D)) { 1508 // At -O0, don't generate IR for functions with available_externally 1509 // linkage. 1510 if (!shouldEmitFunction(GD)) 1511 return; 1512 1513 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1514 CompleteDIClassType(Method); 1515 // Make sure to emit the definition(s) before we emit the thunks. 1516 // This is necessary for the generation of certain thunks. 1517 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1518 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1519 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1520 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1521 else 1522 EmitGlobalFunctionDefinition(GD, GV); 1523 1524 if (Method->isVirtual()) 1525 getVTables().EmitThunks(GD); 1526 1527 return; 1528 } 1529 1530 return EmitGlobalFunctionDefinition(GD, GV); 1531 } 1532 1533 if (const auto *VD = dyn_cast<VarDecl>(D)) 1534 return EmitGlobalVarDefinition(VD); 1535 1536 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1537 } 1538 1539 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1540 /// module, create and return an llvm Function with the specified type. If there 1541 /// is something in the module with the specified name, return it potentially 1542 /// bitcasted to the right type. 1543 /// 1544 /// If D is non-null, it specifies a decl that correspond to this. This is used 1545 /// to set the attributes on the function when it is first created. 1546 llvm::Constant * 1547 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1548 llvm::Type *Ty, 1549 GlobalDecl GD, bool ForVTable, 1550 bool DontDefer, bool IsThunk, 1551 llvm::AttributeSet ExtraAttrs) { 1552 const Decl *D = GD.getDecl(); 1553 1554 // Lookup the entry, lazily creating it if necessary. 1555 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1556 if (Entry) { 1557 if (WeakRefReferences.erase(Entry)) { 1558 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1559 if (FD && !FD->hasAttr<WeakAttr>()) 1560 Entry->setLinkage(llvm::Function::ExternalLinkage); 1561 } 1562 1563 // Handle dropped DLL attributes. 1564 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1565 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1566 1567 if (Entry->getType()->getElementType() == Ty) 1568 return Entry; 1569 1570 // Make sure the result is of the correct type. 1571 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1572 } 1573 1574 // This function doesn't have a complete type (for example, the return 1575 // type is an incomplete struct). Use a fake type instead, and make 1576 // sure not to try to set attributes. 1577 bool IsIncompleteFunction = false; 1578 1579 llvm::FunctionType *FTy; 1580 if (isa<llvm::FunctionType>(Ty)) { 1581 FTy = cast<llvm::FunctionType>(Ty); 1582 } else { 1583 FTy = llvm::FunctionType::get(VoidTy, false); 1584 IsIncompleteFunction = true; 1585 } 1586 1587 llvm::Function *F = llvm::Function::Create(FTy, 1588 llvm::Function::ExternalLinkage, 1589 MangledName, &getModule()); 1590 assert(F->getName() == MangledName && "name was uniqued!"); 1591 if (D) 1592 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1593 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1594 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1595 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1596 llvm::AttributeSet::get(VMContext, 1597 llvm::AttributeSet::FunctionIndex, 1598 B)); 1599 } 1600 1601 if (!DontDefer) { 1602 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1603 // each other bottoming out with the base dtor. Therefore we emit non-base 1604 // dtors on usage, even if there is no dtor definition in the TU. 1605 if (D && isa<CXXDestructorDecl>(D) && 1606 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1607 GD.getDtorType())) 1608 addDeferredDeclToEmit(F, GD); 1609 1610 // This is the first use or definition of a mangled name. If there is a 1611 // deferred decl with this name, remember that we need to emit it at the end 1612 // of the file. 1613 auto DDI = DeferredDecls.find(MangledName); 1614 if (DDI != DeferredDecls.end()) { 1615 // Move the potentially referenced deferred decl to the 1616 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1617 // don't need it anymore). 1618 addDeferredDeclToEmit(F, DDI->second); 1619 DeferredDecls.erase(DDI); 1620 1621 // Otherwise, there are cases we have to worry about where we're 1622 // using a declaration for which we must emit a definition but where 1623 // we might not find a top-level definition: 1624 // - member functions defined inline in their classes 1625 // - friend functions defined inline in some class 1626 // - special member functions with implicit definitions 1627 // If we ever change our AST traversal to walk into class methods, 1628 // this will be unnecessary. 1629 // 1630 // We also don't emit a definition for a function if it's going to be an 1631 // entry in a vtable, unless it's already marked as used. 1632 } else if (getLangOpts().CPlusPlus && D) { 1633 // Look for a declaration that's lexically in a record. 1634 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1635 FD = FD->getPreviousDecl()) { 1636 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1637 if (FD->doesThisDeclarationHaveABody()) { 1638 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1639 break; 1640 } 1641 } 1642 } 1643 } 1644 } 1645 1646 // Make sure the result is of the requested type. 1647 if (!IsIncompleteFunction) { 1648 assert(F->getType()->getElementType() == Ty); 1649 return F; 1650 } 1651 1652 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1653 return llvm::ConstantExpr::getBitCast(F, PTy); 1654 } 1655 1656 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1657 /// non-null, then this function will use the specified type if it has to 1658 /// create it (this occurs when we see a definition of the function). 1659 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1660 llvm::Type *Ty, 1661 bool ForVTable, 1662 bool DontDefer) { 1663 // If there was no specific requested type, just convert it now. 1664 if (!Ty) 1665 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1666 1667 StringRef MangledName = getMangledName(GD); 1668 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1669 } 1670 1671 /// CreateRuntimeFunction - Create a new runtime function with the specified 1672 /// type and name. 1673 llvm::Constant * 1674 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1675 StringRef Name, 1676 llvm::AttributeSet ExtraAttrs) { 1677 llvm::Constant *C = 1678 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1679 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1680 if (auto *F = dyn_cast<llvm::Function>(C)) 1681 if (F->empty()) 1682 F->setCallingConv(getRuntimeCC()); 1683 return C; 1684 } 1685 1686 /// CreateBuiltinFunction - Create a new builtin function with the specified 1687 /// type and name. 1688 llvm::Constant * 1689 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1690 StringRef Name, 1691 llvm::AttributeSet ExtraAttrs) { 1692 llvm::Constant *C = 1693 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1694 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1695 if (auto *F = dyn_cast<llvm::Function>(C)) 1696 if (F->empty()) 1697 F->setCallingConv(getBuiltinCC()); 1698 return C; 1699 } 1700 1701 /// isTypeConstant - Determine whether an object of this type can be emitted 1702 /// as a constant. 1703 /// 1704 /// If ExcludeCtor is true, the duration when the object's constructor runs 1705 /// will not be considered. The caller will need to verify that the object is 1706 /// not written to during its construction. 1707 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1708 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1709 return false; 1710 1711 if (Context.getLangOpts().CPlusPlus) { 1712 if (const CXXRecordDecl *Record 1713 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1714 return ExcludeCtor && !Record->hasMutableFields() && 1715 Record->hasTrivialDestructor(); 1716 } 1717 1718 return true; 1719 } 1720 1721 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1722 /// create and return an llvm GlobalVariable with the specified type. If there 1723 /// is something in the module with the specified name, return it potentially 1724 /// bitcasted to the right type. 1725 /// 1726 /// If D is non-null, it specifies a decl that correspond to this. This is used 1727 /// to set the attributes on the global when it is first created. 1728 llvm::Constant * 1729 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1730 llvm::PointerType *Ty, 1731 const VarDecl *D) { 1732 // Lookup the entry, lazily creating it if necessary. 1733 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1734 if (Entry) { 1735 if (WeakRefReferences.erase(Entry)) { 1736 if (D && !D->hasAttr<WeakAttr>()) 1737 Entry->setLinkage(llvm::Function::ExternalLinkage); 1738 } 1739 1740 // Handle dropped DLL attributes. 1741 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1742 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1743 1744 if (Entry->getType() == Ty) 1745 return Entry; 1746 1747 // Make sure the result is of the correct type. 1748 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1749 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1750 1751 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1752 } 1753 1754 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1755 auto *GV = new llvm::GlobalVariable( 1756 getModule(), Ty->getElementType(), false, 1757 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1758 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1759 1760 // This is the first use or definition of a mangled name. If there is a 1761 // deferred decl with this name, remember that we need to emit it at the end 1762 // of the file. 1763 auto DDI = DeferredDecls.find(MangledName); 1764 if (DDI != DeferredDecls.end()) { 1765 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1766 // list, and remove it from DeferredDecls (since we don't need it anymore). 1767 addDeferredDeclToEmit(GV, DDI->second); 1768 DeferredDecls.erase(DDI); 1769 } 1770 1771 // Handle things which are present even on external declarations. 1772 if (D) { 1773 // FIXME: This code is overly simple and should be merged with other global 1774 // handling. 1775 GV->setConstant(isTypeConstant(D->getType(), false)); 1776 1777 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1778 1779 setLinkageAndVisibilityForGV(GV, D); 1780 1781 if (D->getTLSKind()) { 1782 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1783 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1784 setTLSMode(GV, *D); 1785 } 1786 1787 // If required by the ABI, treat declarations of static data members with 1788 // inline initializers as definitions. 1789 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1790 EmitGlobalVarDefinition(D); 1791 } 1792 1793 // Handle XCore specific ABI requirements. 1794 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1795 D->getLanguageLinkage() == CLanguageLinkage && 1796 D->getType().isConstant(Context) && 1797 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1798 GV->setSection(".cp.rodata"); 1799 } 1800 1801 if (AddrSpace != Ty->getAddressSpace()) 1802 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1803 1804 return GV; 1805 } 1806 1807 1808 llvm::GlobalVariable * 1809 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1810 llvm::Type *Ty, 1811 llvm::GlobalValue::LinkageTypes Linkage) { 1812 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1813 llvm::GlobalVariable *OldGV = nullptr; 1814 1815 if (GV) { 1816 // Check if the variable has the right type. 1817 if (GV->getType()->getElementType() == Ty) 1818 return GV; 1819 1820 // Because C++ name mangling, the only way we can end up with an already 1821 // existing global with the same name is if it has been declared extern "C". 1822 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1823 OldGV = GV; 1824 } 1825 1826 // Create a new variable. 1827 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1828 Linkage, nullptr, Name); 1829 1830 if (OldGV) { 1831 // Replace occurrences of the old variable if needed. 1832 GV->takeName(OldGV); 1833 1834 if (!OldGV->use_empty()) { 1835 llvm::Constant *NewPtrForOldDecl = 1836 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1837 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1838 } 1839 1840 OldGV->eraseFromParent(); 1841 } 1842 1843 if (supportsCOMDAT() && GV->isWeakForLinker() && 1844 !GV->hasAvailableExternallyLinkage()) 1845 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1846 1847 return GV; 1848 } 1849 1850 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1851 /// given global variable. If Ty is non-null and if the global doesn't exist, 1852 /// then it will be created with the specified type instead of whatever the 1853 /// normal requested type would be. 1854 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1855 llvm::Type *Ty) { 1856 assert(D->hasGlobalStorage() && "Not a global variable"); 1857 QualType ASTTy = D->getType(); 1858 if (!Ty) 1859 Ty = getTypes().ConvertTypeForMem(ASTTy); 1860 1861 llvm::PointerType *PTy = 1862 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1863 1864 StringRef MangledName = getMangledName(D); 1865 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1866 } 1867 1868 /// CreateRuntimeVariable - Create a new runtime global variable with the 1869 /// specified type and name. 1870 llvm::Constant * 1871 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1872 StringRef Name) { 1873 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1874 } 1875 1876 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1877 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1878 1879 if (!MustBeEmitted(D)) { 1880 // If we have not seen a reference to this variable yet, place it 1881 // into the deferred declarations table to be emitted if needed 1882 // later. 1883 StringRef MangledName = getMangledName(D); 1884 if (!GetGlobalValue(MangledName)) { 1885 DeferredDecls[MangledName] = D; 1886 return; 1887 } 1888 } 1889 1890 // The tentative definition is the only definition. 1891 EmitGlobalVarDefinition(D); 1892 } 1893 1894 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1895 return Context.toCharUnitsFromBits( 1896 getDataLayout().getTypeStoreSizeInBits(Ty)); 1897 } 1898 1899 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1900 unsigned AddrSpace) { 1901 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 1902 if (D->hasAttr<CUDAConstantAttr>()) 1903 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1904 else if (D->hasAttr<CUDASharedAttr>()) 1905 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1906 else 1907 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1908 } 1909 1910 return AddrSpace; 1911 } 1912 1913 template<typename SomeDecl> 1914 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1915 llvm::GlobalValue *GV) { 1916 if (!getLangOpts().CPlusPlus) 1917 return; 1918 1919 // Must have 'used' attribute, or else inline assembly can't rely on 1920 // the name existing. 1921 if (!D->template hasAttr<UsedAttr>()) 1922 return; 1923 1924 // Must have internal linkage and an ordinary name. 1925 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1926 return; 1927 1928 // Must be in an extern "C" context. Entities declared directly within 1929 // a record are not extern "C" even if the record is in such a context. 1930 const SomeDecl *First = D->getFirstDecl(); 1931 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1932 return; 1933 1934 // OK, this is an internal linkage entity inside an extern "C" linkage 1935 // specification. Make a note of that so we can give it the "expected" 1936 // mangled name if nothing else is using that name. 1937 std::pair<StaticExternCMap::iterator, bool> R = 1938 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1939 1940 // If we have multiple internal linkage entities with the same name 1941 // in extern "C" regions, none of them gets that name. 1942 if (!R.second) 1943 R.first->second = nullptr; 1944 } 1945 1946 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 1947 if (!CGM.supportsCOMDAT()) 1948 return false; 1949 1950 if (D.hasAttr<SelectAnyAttr>()) 1951 return true; 1952 1953 GVALinkage Linkage; 1954 if (auto *VD = dyn_cast<VarDecl>(&D)) 1955 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 1956 else 1957 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 1958 1959 switch (Linkage) { 1960 case GVA_Internal: 1961 case GVA_AvailableExternally: 1962 case GVA_StrongExternal: 1963 return false; 1964 case GVA_DiscardableODR: 1965 case GVA_StrongODR: 1966 return true; 1967 } 1968 llvm_unreachable("No such linkage"); 1969 } 1970 1971 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 1972 llvm::GlobalObject &GO) { 1973 if (!shouldBeInCOMDAT(*this, D)) 1974 return; 1975 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 1976 } 1977 1978 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1979 llvm::Constant *Init = nullptr; 1980 QualType ASTTy = D->getType(); 1981 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1982 bool NeedsGlobalCtor = false; 1983 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1984 1985 const VarDecl *InitDecl; 1986 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1987 1988 if (!InitExpr) { 1989 // This is a tentative definition; tentative definitions are 1990 // implicitly initialized with { 0 }. 1991 // 1992 // Note that tentative definitions are only emitted at the end of 1993 // a translation unit, so they should never have incomplete 1994 // type. In addition, EmitTentativeDefinition makes sure that we 1995 // never attempt to emit a tentative definition if a real one 1996 // exists. A use may still exists, however, so we still may need 1997 // to do a RAUW. 1998 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1999 Init = EmitNullConstant(D->getType()); 2000 } else { 2001 initializedGlobalDecl = GlobalDecl(D); 2002 Init = EmitConstantInit(*InitDecl); 2003 2004 if (!Init) { 2005 QualType T = InitExpr->getType(); 2006 if (D->getType()->isReferenceType()) 2007 T = D->getType(); 2008 2009 if (getLangOpts().CPlusPlus) { 2010 Init = EmitNullConstant(T); 2011 NeedsGlobalCtor = true; 2012 } else { 2013 ErrorUnsupported(D, "static initializer"); 2014 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2015 } 2016 } else { 2017 // We don't need an initializer, so remove the entry for the delayed 2018 // initializer position (just in case this entry was delayed) if we 2019 // also don't need to register a destructor. 2020 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2021 DelayedCXXInitPosition.erase(D); 2022 } 2023 } 2024 2025 llvm::Type* InitType = Init->getType(); 2026 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2027 2028 // Strip off a bitcast if we got one back. 2029 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2030 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2031 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2032 // All zero index gep. 2033 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2034 Entry = CE->getOperand(0); 2035 } 2036 2037 // Entry is now either a Function or GlobalVariable. 2038 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2039 2040 // We have a definition after a declaration with the wrong type. 2041 // We must make a new GlobalVariable* and update everything that used OldGV 2042 // (a declaration or tentative definition) with the new GlobalVariable* 2043 // (which will be a definition). 2044 // 2045 // This happens if there is a prototype for a global (e.g. 2046 // "extern int x[];") and then a definition of a different type (e.g. 2047 // "int x[10];"). This also happens when an initializer has a different type 2048 // from the type of the global (this happens with unions). 2049 if (!GV || 2050 GV->getType()->getElementType() != InitType || 2051 GV->getType()->getAddressSpace() != 2052 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2053 2054 // Move the old entry aside so that we'll create a new one. 2055 Entry->setName(StringRef()); 2056 2057 // Make a new global with the correct type, this is now guaranteed to work. 2058 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2059 2060 // Replace all uses of the old global with the new global 2061 llvm::Constant *NewPtrForOldDecl = 2062 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2063 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2064 2065 // Erase the old global, since it is no longer used. 2066 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2067 } 2068 2069 MaybeHandleStaticInExternC(D, GV); 2070 2071 if (D->hasAttr<AnnotateAttr>()) 2072 AddGlobalAnnotations(D, GV); 2073 2074 GV->setInitializer(Init); 2075 2076 // If it is safe to mark the global 'constant', do so now. 2077 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2078 isTypeConstant(D->getType(), true)); 2079 2080 // If it is in a read-only section, mark it 'constant'. 2081 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2082 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2083 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2084 GV->setConstant(true); 2085 } 2086 2087 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2088 2089 // Set the llvm linkage type as appropriate. 2090 llvm::GlobalValue::LinkageTypes Linkage = 2091 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2092 2093 // On Darwin, the backing variable for a C++11 thread_local variable always 2094 // has internal linkage; all accesses should just be calls to the 2095 // Itanium-specified entry point, which has the normal linkage of the 2096 // variable. 2097 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2098 Context.getTargetInfo().getTriple().isMacOSX()) 2099 Linkage = llvm::GlobalValue::InternalLinkage; 2100 2101 GV->setLinkage(Linkage); 2102 if (D->hasAttr<DLLImportAttr>()) 2103 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2104 else if (D->hasAttr<DLLExportAttr>()) 2105 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2106 else 2107 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2108 2109 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2110 // common vars aren't constant even if declared const. 2111 GV->setConstant(false); 2112 2113 setNonAliasAttributes(D, GV); 2114 2115 if (D->getTLSKind() && !GV->isThreadLocal()) { 2116 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2117 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2118 setTLSMode(GV, *D); 2119 } 2120 2121 maybeSetTrivialComdat(*D, *GV); 2122 2123 // Emit the initializer function if necessary. 2124 if (NeedsGlobalCtor || NeedsGlobalDtor) 2125 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2126 2127 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2128 2129 // Emit global variable debug information. 2130 if (CGDebugInfo *DI = getModuleDebugInfo()) 2131 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2132 DI->EmitGlobalVariable(GV, D); 2133 } 2134 2135 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2136 CodeGenModule &CGM, const VarDecl *D, 2137 bool NoCommon) { 2138 // Don't give variables common linkage if -fno-common was specified unless it 2139 // was overridden by a NoCommon attribute. 2140 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2141 return true; 2142 2143 // C11 6.9.2/2: 2144 // A declaration of an identifier for an object that has file scope without 2145 // an initializer, and without a storage-class specifier or with the 2146 // storage-class specifier static, constitutes a tentative definition. 2147 if (D->getInit() || D->hasExternalStorage()) 2148 return true; 2149 2150 // A variable cannot be both common and exist in a section. 2151 if (D->hasAttr<SectionAttr>()) 2152 return true; 2153 2154 // Thread local vars aren't considered common linkage. 2155 if (D->getTLSKind()) 2156 return true; 2157 2158 // Tentative definitions marked with WeakImportAttr are true definitions. 2159 if (D->hasAttr<WeakImportAttr>()) 2160 return true; 2161 2162 // A variable cannot be both common and exist in a comdat. 2163 if (shouldBeInCOMDAT(CGM, *D)) 2164 return true; 2165 2166 // Declarations with a required alignment do not have common linakge in MSVC 2167 // mode. 2168 if (Context.getLangOpts().MSVCCompat) { 2169 if (D->hasAttr<AlignedAttr>()) 2170 return true; 2171 QualType VarType = D->getType(); 2172 if (Context.isAlignmentRequired(VarType)) 2173 return true; 2174 2175 if (const auto *RT = VarType->getAs<RecordType>()) { 2176 const RecordDecl *RD = RT->getDecl(); 2177 for (const FieldDecl *FD : RD->fields()) { 2178 if (FD->isBitField()) 2179 continue; 2180 if (FD->hasAttr<AlignedAttr>()) 2181 return true; 2182 if (Context.isAlignmentRequired(FD->getType())) 2183 return true; 2184 } 2185 } 2186 } 2187 2188 return false; 2189 } 2190 2191 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2192 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2193 if (Linkage == GVA_Internal) 2194 return llvm::Function::InternalLinkage; 2195 2196 if (D->hasAttr<WeakAttr>()) { 2197 if (IsConstantVariable) 2198 return llvm::GlobalVariable::WeakODRLinkage; 2199 else 2200 return llvm::GlobalVariable::WeakAnyLinkage; 2201 } 2202 2203 // We are guaranteed to have a strong definition somewhere else, 2204 // so we can use available_externally linkage. 2205 if (Linkage == GVA_AvailableExternally) 2206 return llvm::Function::AvailableExternallyLinkage; 2207 2208 // Note that Apple's kernel linker doesn't support symbol 2209 // coalescing, so we need to avoid linkonce and weak linkages there. 2210 // Normally, this means we just map to internal, but for explicit 2211 // instantiations we'll map to external. 2212 2213 // In C++, the compiler has to emit a definition in every translation unit 2214 // that references the function. We should use linkonce_odr because 2215 // a) if all references in this translation unit are optimized away, we 2216 // don't need to codegen it. b) if the function persists, it needs to be 2217 // merged with other definitions. c) C++ has the ODR, so we know the 2218 // definition is dependable. 2219 if (Linkage == GVA_DiscardableODR) 2220 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2221 : llvm::Function::InternalLinkage; 2222 2223 // An explicit instantiation of a template has weak linkage, since 2224 // explicit instantiations can occur in multiple translation units 2225 // and must all be equivalent. However, we are not allowed to 2226 // throw away these explicit instantiations. 2227 if (Linkage == GVA_StrongODR) 2228 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2229 : llvm::Function::ExternalLinkage; 2230 2231 // C++ doesn't have tentative definitions and thus cannot have common 2232 // linkage. 2233 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2234 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2235 CodeGenOpts.NoCommon)) 2236 return llvm::GlobalVariable::CommonLinkage; 2237 2238 // selectany symbols are externally visible, so use weak instead of 2239 // linkonce. MSVC optimizes away references to const selectany globals, so 2240 // all definitions should be the same and ODR linkage should be used. 2241 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2242 if (D->hasAttr<SelectAnyAttr>()) 2243 return llvm::GlobalVariable::WeakODRLinkage; 2244 2245 // Otherwise, we have strong external linkage. 2246 assert(Linkage == GVA_StrongExternal); 2247 return llvm::GlobalVariable::ExternalLinkage; 2248 } 2249 2250 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2251 const VarDecl *VD, bool IsConstant) { 2252 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2253 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2254 } 2255 2256 /// Replace the uses of a function that was declared with a non-proto type. 2257 /// We want to silently drop extra arguments from call sites 2258 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2259 llvm::Function *newFn) { 2260 // Fast path. 2261 if (old->use_empty()) return; 2262 2263 llvm::Type *newRetTy = newFn->getReturnType(); 2264 SmallVector<llvm::Value*, 4> newArgs; 2265 2266 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2267 ui != ue; ) { 2268 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2269 llvm::User *user = use->getUser(); 2270 2271 // Recognize and replace uses of bitcasts. Most calls to 2272 // unprototyped functions will use bitcasts. 2273 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2274 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2275 replaceUsesOfNonProtoConstant(bitcast, newFn); 2276 continue; 2277 } 2278 2279 // Recognize calls to the function. 2280 llvm::CallSite callSite(user); 2281 if (!callSite) continue; 2282 if (!callSite.isCallee(&*use)) continue; 2283 2284 // If the return types don't match exactly, then we can't 2285 // transform this call unless it's dead. 2286 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2287 continue; 2288 2289 // Get the call site's attribute list. 2290 SmallVector<llvm::AttributeSet, 8> newAttrs; 2291 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2292 2293 // Collect any return attributes from the call. 2294 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2295 newAttrs.push_back( 2296 llvm::AttributeSet::get(newFn->getContext(), 2297 oldAttrs.getRetAttributes())); 2298 2299 // If the function was passed too few arguments, don't transform. 2300 unsigned newNumArgs = newFn->arg_size(); 2301 if (callSite.arg_size() < newNumArgs) continue; 2302 2303 // If extra arguments were passed, we silently drop them. 2304 // If any of the types mismatch, we don't transform. 2305 unsigned argNo = 0; 2306 bool dontTransform = false; 2307 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2308 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2309 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2310 dontTransform = true; 2311 break; 2312 } 2313 2314 // Add any parameter attributes. 2315 if (oldAttrs.hasAttributes(argNo + 1)) 2316 newAttrs. 2317 push_back(llvm:: 2318 AttributeSet::get(newFn->getContext(), 2319 oldAttrs.getParamAttributes(argNo + 1))); 2320 } 2321 if (dontTransform) 2322 continue; 2323 2324 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2325 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2326 oldAttrs.getFnAttributes())); 2327 2328 // Okay, we can transform this. Create the new call instruction and copy 2329 // over the required information. 2330 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2331 2332 llvm::CallSite newCall; 2333 if (callSite.isCall()) { 2334 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2335 callSite.getInstruction()); 2336 } else { 2337 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2338 newCall = llvm::InvokeInst::Create(newFn, 2339 oldInvoke->getNormalDest(), 2340 oldInvoke->getUnwindDest(), 2341 newArgs, "", 2342 callSite.getInstruction()); 2343 } 2344 newArgs.clear(); // for the next iteration 2345 2346 if (!newCall->getType()->isVoidTy()) 2347 newCall->takeName(callSite.getInstruction()); 2348 newCall.setAttributes( 2349 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2350 newCall.setCallingConv(callSite.getCallingConv()); 2351 2352 // Finally, remove the old call, replacing any uses with the new one. 2353 if (!callSite->use_empty()) 2354 callSite->replaceAllUsesWith(newCall.getInstruction()); 2355 2356 // Copy debug location attached to CI. 2357 if (callSite->getDebugLoc()) 2358 newCall->setDebugLoc(callSite->getDebugLoc()); 2359 callSite->eraseFromParent(); 2360 } 2361 } 2362 2363 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2364 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2365 /// existing call uses of the old function in the module, this adjusts them to 2366 /// call the new function directly. 2367 /// 2368 /// This is not just a cleanup: the always_inline pass requires direct calls to 2369 /// functions to be able to inline them. If there is a bitcast in the way, it 2370 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2371 /// run at -O0. 2372 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2373 llvm::Function *NewFn) { 2374 // If we're redefining a global as a function, don't transform it. 2375 if (!isa<llvm::Function>(Old)) return; 2376 2377 replaceUsesOfNonProtoConstant(Old, NewFn); 2378 } 2379 2380 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2381 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2382 // If we have a definition, this might be a deferred decl. If the 2383 // instantiation is explicit, make sure we emit it at the end. 2384 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2385 GetAddrOfGlobalVar(VD); 2386 2387 EmitTopLevelDecl(VD); 2388 } 2389 2390 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2391 llvm::GlobalValue *GV) { 2392 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2393 2394 // Compute the function info and LLVM type. 2395 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2396 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2397 2398 // Get or create the prototype for the function. 2399 if (!GV) { 2400 llvm::Constant *C = 2401 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2402 2403 // Strip off a bitcast if we got one back. 2404 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2405 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2406 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2407 } else { 2408 GV = cast<llvm::GlobalValue>(C); 2409 } 2410 } 2411 2412 if (!GV->isDeclaration()) { 2413 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2414 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2415 if (auto *Prev = OldGD.getDecl()) 2416 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2417 return; 2418 } 2419 2420 if (GV->getType()->getElementType() != Ty) { 2421 // If the types mismatch then we have to rewrite the definition. 2422 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2423 2424 // F is the Function* for the one with the wrong type, we must make a new 2425 // Function* and update everything that used F (a declaration) with the new 2426 // Function* (which will be a definition). 2427 // 2428 // This happens if there is a prototype for a function 2429 // (e.g. "int f()") and then a definition of a different type 2430 // (e.g. "int f(int x)"). Move the old function aside so that it 2431 // doesn't interfere with GetAddrOfFunction. 2432 GV->setName(StringRef()); 2433 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2434 2435 // This might be an implementation of a function without a 2436 // prototype, in which case, try to do special replacement of 2437 // calls which match the new prototype. The really key thing here 2438 // is that we also potentially drop arguments from the call site 2439 // so as to make a direct call, which makes the inliner happier 2440 // and suppresses a number of optimizer warnings (!) about 2441 // dropping arguments. 2442 if (!GV->use_empty()) { 2443 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2444 GV->removeDeadConstantUsers(); 2445 } 2446 2447 // Replace uses of F with the Function we will endow with a body. 2448 if (!GV->use_empty()) { 2449 llvm::Constant *NewPtrForOldDecl = 2450 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2451 GV->replaceAllUsesWith(NewPtrForOldDecl); 2452 } 2453 2454 // Ok, delete the old function now, which is dead. 2455 GV->eraseFromParent(); 2456 2457 GV = NewFn; 2458 } 2459 2460 // We need to set linkage and visibility on the function before 2461 // generating code for it because various parts of IR generation 2462 // want to propagate this information down (e.g. to local static 2463 // declarations). 2464 auto *Fn = cast<llvm::Function>(GV); 2465 setFunctionLinkage(GD, Fn); 2466 setFunctionDLLStorageClass(GD, Fn); 2467 2468 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2469 setGlobalVisibility(Fn, D); 2470 2471 MaybeHandleStaticInExternC(D, Fn); 2472 2473 maybeSetTrivialComdat(*D, *Fn); 2474 2475 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2476 2477 setFunctionDefinitionAttributes(D, Fn); 2478 SetLLVMFunctionAttributesForDefinition(D, Fn); 2479 2480 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2481 AddGlobalCtor(Fn, CA->getPriority()); 2482 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2483 AddGlobalDtor(Fn, DA->getPriority()); 2484 if (D->hasAttr<AnnotateAttr>()) 2485 AddGlobalAnnotations(D, Fn); 2486 } 2487 2488 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2489 const auto *D = cast<ValueDecl>(GD.getDecl()); 2490 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2491 assert(AA && "Not an alias?"); 2492 2493 StringRef MangledName = getMangledName(GD); 2494 2495 // If there is a definition in the module, then it wins over the alias. 2496 // This is dubious, but allow it to be safe. Just ignore the alias. 2497 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2498 if (Entry && !Entry->isDeclaration()) 2499 return; 2500 2501 Aliases.push_back(GD); 2502 2503 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2504 2505 // Create a reference to the named value. This ensures that it is emitted 2506 // if a deferred decl. 2507 llvm::Constant *Aliasee; 2508 if (isa<llvm::FunctionType>(DeclTy)) 2509 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2510 /*ForVTable=*/false); 2511 else 2512 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2513 llvm::PointerType::getUnqual(DeclTy), 2514 /*D=*/nullptr); 2515 2516 // Create the new alias itself, but don't set a name yet. 2517 auto *GA = llvm::GlobalAlias::create( 2518 cast<llvm::PointerType>(Aliasee->getType()), 2519 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2520 2521 if (Entry) { 2522 if (GA->getAliasee() == Entry) { 2523 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2524 return; 2525 } 2526 2527 assert(Entry->isDeclaration()); 2528 2529 // If there is a declaration in the module, then we had an extern followed 2530 // by the alias, as in: 2531 // extern int test6(); 2532 // ... 2533 // int test6() __attribute__((alias("test7"))); 2534 // 2535 // Remove it and replace uses of it with the alias. 2536 GA->takeName(Entry); 2537 2538 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2539 Entry->getType())); 2540 Entry->eraseFromParent(); 2541 } else { 2542 GA->setName(MangledName); 2543 } 2544 2545 // Set attributes which are particular to an alias; this is a 2546 // specialization of the attributes which may be set on a global 2547 // variable/function. 2548 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2549 D->isWeakImported()) { 2550 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2551 } 2552 2553 if (const auto *VD = dyn_cast<VarDecl>(D)) 2554 if (VD->getTLSKind()) 2555 setTLSMode(GA, *VD); 2556 2557 setAliasAttributes(D, GA); 2558 } 2559 2560 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2561 ArrayRef<llvm::Type*> Tys) { 2562 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2563 Tys); 2564 } 2565 2566 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2567 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2568 const StringLiteral *Literal, bool TargetIsLSB, 2569 bool &IsUTF16, unsigned &StringLength) { 2570 StringRef String = Literal->getString(); 2571 unsigned NumBytes = String.size(); 2572 2573 // Check for simple case. 2574 if (!Literal->containsNonAsciiOrNull()) { 2575 StringLength = NumBytes; 2576 return *Map.insert(std::make_pair(String, nullptr)).first; 2577 } 2578 2579 // Otherwise, convert the UTF8 literals into a string of shorts. 2580 IsUTF16 = true; 2581 2582 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2583 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2584 UTF16 *ToPtr = &ToBuf[0]; 2585 2586 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2587 &ToPtr, ToPtr + NumBytes, 2588 strictConversion); 2589 2590 // ConvertUTF8toUTF16 returns the length in ToPtr. 2591 StringLength = ToPtr - &ToBuf[0]; 2592 2593 // Add an explicit null. 2594 *ToPtr = 0; 2595 return *Map.insert(std::make_pair( 2596 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2597 (StringLength + 1) * 2), 2598 nullptr)).first; 2599 } 2600 2601 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2602 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2603 const StringLiteral *Literal, unsigned &StringLength) { 2604 StringRef String = Literal->getString(); 2605 StringLength = String.size(); 2606 return *Map.insert(std::make_pair(String, nullptr)).first; 2607 } 2608 2609 llvm::Constant * 2610 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2611 unsigned StringLength = 0; 2612 bool isUTF16 = false; 2613 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2614 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2615 getDataLayout().isLittleEndian(), isUTF16, 2616 StringLength); 2617 2618 if (auto *C = Entry.second) 2619 return C; 2620 2621 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2622 llvm::Constant *Zeros[] = { Zero, Zero }; 2623 llvm::Value *V; 2624 2625 // If we don't already have it, get __CFConstantStringClassReference. 2626 if (!CFConstantStringClassRef) { 2627 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2628 Ty = llvm::ArrayType::get(Ty, 0); 2629 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2630 "__CFConstantStringClassReference"); 2631 // Decay array -> ptr 2632 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2633 CFConstantStringClassRef = V; 2634 } 2635 else 2636 V = CFConstantStringClassRef; 2637 2638 QualType CFTy = getContext().getCFConstantStringType(); 2639 2640 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2641 2642 llvm::Constant *Fields[4]; 2643 2644 // Class pointer. 2645 Fields[0] = cast<llvm::ConstantExpr>(V); 2646 2647 // Flags. 2648 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2649 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2650 llvm::ConstantInt::get(Ty, 0x07C8); 2651 2652 // String pointer. 2653 llvm::Constant *C = nullptr; 2654 if (isUTF16) { 2655 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2656 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2657 Entry.first().size() / 2); 2658 C = llvm::ConstantDataArray::get(VMContext, Arr); 2659 } else { 2660 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2661 } 2662 2663 // Note: -fwritable-strings doesn't make the backing store strings of 2664 // CFStrings writable. (See <rdar://problem/10657500>) 2665 auto *GV = 2666 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2667 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2668 GV->setUnnamedAddr(true); 2669 // Don't enforce the target's minimum global alignment, since the only use 2670 // of the string is via this class initializer. 2671 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2672 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2673 // that changes the section it ends in, which surprises ld64. 2674 if (isUTF16) { 2675 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2676 GV->setAlignment(Align.getQuantity()); 2677 GV->setSection("__TEXT,__ustring"); 2678 } else { 2679 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2680 GV->setAlignment(Align.getQuantity()); 2681 GV->setSection("__TEXT,__cstring,cstring_literals"); 2682 } 2683 2684 // String. 2685 Fields[2] = 2686 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2687 2688 if (isUTF16) 2689 // Cast the UTF16 string to the correct type. 2690 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2691 2692 // String length. 2693 Ty = getTypes().ConvertType(getContext().LongTy); 2694 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2695 2696 // The struct. 2697 C = llvm::ConstantStruct::get(STy, Fields); 2698 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2699 llvm::GlobalVariable::PrivateLinkage, C, 2700 "_unnamed_cfstring_"); 2701 GV->setSection("__DATA,__cfstring"); 2702 Entry.second = GV; 2703 2704 return GV; 2705 } 2706 2707 llvm::GlobalVariable * 2708 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2709 unsigned StringLength = 0; 2710 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2711 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2712 2713 if (auto *C = Entry.second) 2714 return C; 2715 2716 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2717 llvm::Constant *Zeros[] = { Zero, Zero }; 2718 llvm::Value *V; 2719 // If we don't already have it, get _NSConstantStringClassReference. 2720 if (!ConstantStringClassRef) { 2721 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2722 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2723 llvm::Constant *GV; 2724 if (LangOpts.ObjCRuntime.isNonFragile()) { 2725 std::string str = 2726 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2727 : "OBJC_CLASS_$_" + StringClass; 2728 GV = getObjCRuntime().GetClassGlobal(str); 2729 // Make sure the result is of the correct type. 2730 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2731 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2732 ConstantStringClassRef = V; 2733 } else { 2734 std::string str = 2735 StringClass.empty() ? "_NSConstantStringClassReference" 2736 : "_" + StringClass + "ClassReference"; 2737 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2738 GV = CreateRuntimeVariable(PTy, str); 2739 // Decay array -> ptr 2740 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2741 ConstantStringClassRef = V; 2742 } 2743 } else 2744 V = ConstantStringClassRef; 2745 2746 if (!NSConstantStringType) { 2747 // Construct the type for a constant NSString. 2748 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2749 D->startDefinition(); 2750 2751 QualType FieldTypes[3]; 2752 2753 // const int *isa; 2754 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2755 // const char *str; 2756 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2757 // unsigned int length; 2758 FieldTypes[2] = Context.UnsignedIntTy; 2759 2760 // Create fields 2761 for (unsigned i = 0; i < 3; ++i) { 2762 FieldDecl *Field = FieldDecl::Create(Context, D, 2763 SourceLocation(), 2764 SourceLocation(), nullptr, 2765 FieldTypes[i], /*TInfo=*/nullptr, 2766 /*BitWidth=*/nullptr, 2767 /*Mutable=*/false, 2768 ICIS_NoInit); 2769 Field->setAccess(AS_public); 2770 D->addDecl(Field); 2771 } 2772 2773 D->completeDefinition(); 2774 QualType NSTy = Context.getTagDeclType(D); 2775 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2776 } 2777 2778 llvm::Constant *Fields[3]; 2779 2780 // Class pointer. 2781 Fields[0] = cast<llvm::ConstantExpr>(V); 2782 2783 // String pointer. 2784 llvm::Constant *C = 2785 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2786 2787 llvm::GlobalValue::LinkageTypes Linkage; 2788 bool isConstant; 2789 Linkage = llvm::GlobalValue::PrivateLinkage; 2790 isConstant = !LangOpts.WritableStrings; 2791 2792 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2793 Linkage, C, ".str"); 2794 GV->setUnnamedAddr(true); 2795 // Don't enforce the target's minimum global alignment, since the only use 2796 // of the string is via this class initializer. 2797 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2798 GV->setAlignment(Align.getQuantity()); 2799 Fields[1] = 2800 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2801 2802 // String length. 2803 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2804 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2805 2806 // The struct. 2807 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2808 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2809 llvm::GlobalVariable::PrivateLinkage, C, 2810 "_unnamed_nsstring_"); 2811 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2812 const char *NSStringNonFragileABISection = 2813 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2814 // FIXME. Fix section. 2815 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2816 ? NSStringNonFragileABISection 2817 : NSStringSection); 2818 Entry.second = GV; 2819 2820 return GV; 2821 } 2822 2823 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2824 if (ObjCFastEnumerationStateType.isNull()) { 2825 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2826 D->startDefinition(); 2827 2828 QualType FieldTypes[] = { 2829 Context.UnsignedLongTy, 2830 Context.getPointerType(Context.getObjCIdType()), 2831 Context.getPointerType(Context.UnsignedLongTy), 2832 Context.getConstantArrayType(Context.UnsignedLongTy, 2833 llvm::APInt(32, 5), ArrayType::Normal, 0) 2834 }; 2835 2836 for (size_t i = 0; i < 4; ++i) { 2837 FieldDecl *Field = FieldDecl::Create(Context, 2838 D, 2839 SourceLocation(), 2840 SourceLocation(), nullptr, 2841 FieldTypes[i], /*TInfo=*/nullptr, 2842 /*BitWidth=*/nullptr, 2843 /*Mutable=*/false, 2844 ICIS_NoInit); 2845 Field->setAccess(AS_public); 2846 D->addDecl(Field); 2847 } 2848 2849 D->completeDefinition(); 2850 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2851 } 2852 2853 return ObjCFastEnumerationStateType; 2854 } 2855 2856 llvm::Constant * 2857 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2858 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2859 2860 // Don't emit it as the address of the string, emit the string data itself 2861 // as an inline array. 2862 if (E->getCharByteWidth() == 1) { 2863 SmallString<64> Str(E->getString()); 2864 2865 // Resize the string to the right size, which is indicated by its type. 2866 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2867 Str.resize(CAT->getSize().getZExtValue()); 2868 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2869 } 2870 2871 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2872 llvm::Type *ElemTy = AType->getElementType(); 2873 unsigned NumElements = AType->getNumElements(); 2874 2875 // Wide strings have either 2-byte or 4-byte elements. 2876 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2877 SmallVector<uint16_t, 32> Elements; 2878 Elements.reserve(NumElements); 2879 2880 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2881 Elements.push_back(E->getCodeUnit(i)); 2882 Elements.resize(NumElements); 2883 return llvm::ConstantDataArray::get(VMContext, Elements); 2884 } 2885 2886 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2887 SmallVector<uint32_t, 32> Elements; 2888 Elements.reserve(NumElements); 2889 2890 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2891 Elements.push_back(E->getCodeUnit(i)); 2892 Elements.resize(NumElements); 2893 return llvm::ConstantDataArray::get(VMContext, Elements); 2894 } 2895 2896 static llvm::GlobalVariable * 2897 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2898 CodeGenModule &CGM, StringRef GlobalName, 2899 unsigned Alignment) { 2900 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2901 unsigned AddrSpace = 0; 2902 if (CGM.getLangOpts().OpenCL) 2903 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2904 2905 llvm::Module &M = CGM.getModule(); 2906 // Create a global variable for this string 2907 auto *GV = new llvm::GlobalVariable( 2908 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 2909 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2910 GV->setAlignment(Alignment); 2911 GV->setUnnamedAddr(true); 2912 if (GV->isWeakForLinker()) { 2913 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 2914 GV->setComdat(M.getOrInsertComdat(GV->getName())); 2915 } 2916 2917 return GV; 2918 } 2919 2920 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2921 /// constant array for the given string literal. 2922 llvm::GlobalVariable * 2923 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2924 StringRef Name) { 2925 auto Alignment = 2926 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2927 2928 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2929 llvm::GlobalVariable **Entry = nullptr; 2930 if (!LangOpts.WritableStrings) { 2931 Entry = &ConstantStringMap[C]; 2932 if (auto GV = *Entry) { 2933 if (Alignment > GV->getAlignment()) 2934 GV->setAlignment(Alignment); 2935 return GV; 2936 } 2937 } 2938 2939 SmallString<256> MangledNameBuffer; 2940 StringRef GlobalVariableName; 2941 llvm::GlobalValue::LinkageTypes LT; 2942 2943 // Mangle the string literal if the ABI allows for it. However, we cannot 2944 // do this if we are compiling with ASan or -fwritable-strings because they 2945 // rely on strings having normal linkage. 2946 if (!LangOpts.WritableStrings && 2947 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2948 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2949 llvm::raw_svector_ostream Out(MangledNameBuffer); 2950 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2951 Out.flush(); 2952 2953 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2954 GlobalVariableName = MangledNameBuffer; 2955 } else { 2956 LT = llvm::GlobalValue::PrivateLinkage; 2957 GlobalVariableName = Name; 2958 } 2959 2960 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2961 if (Entry) 2962 *Entry = GV; 2963 2964 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2965 QualType()); 2966 return GV; 2967 } 2968 2969 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2970 /// array for the given ObjCEncodeExpr node. 2971 llvm::GlobalVariable * 2972 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2973 std::string Str; 2974 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2975 2976 return GetAddrOfConstantCString(Str); 2977 } 2978 2979 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2980 /// the literal and a terminating '\0' character. 2981 /// The result has pointer to array type. 2982 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2983 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2984 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2985 if (Alignment == 0) { 2986 Alignment = getContext() 2987 .getAlignOfGlobalVarInChars(getContext().CharTy) 2988 .getQuantity(); 2989 } 2990 2991 llvm::Constant *C = 2992 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2993 2994 // Don't share any string literals if strings aren't constant. 2995 llvm::GlobalVariable **Entry = nullptr; 2996 if (!LangOpts.WritableStrings) { 2997 Entry = &ConstantStringMap[C]; 2998 if (auto GV = *Entry) { 2999 if (Alignment > GV->getAlignment()) 3000 GV->setAlignment(Alignment); 3001 return GV; 3002 } 3003 } 3004 3005 // Get the default prefix if a name wasn't specified. 3006 if (!GlobalName) 3007 GlobalName = ".str"; 3008 // Create a global variable for this. 3009 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3010 GlobalName, Alignment); 3011 if (Entry) 3012 *Entry = GV; 3013 return GV; 3014 } 3015 3016 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 3017 const MaterializeTemporaryExpr *E, const Expr *Init) { 3018 assert((E->getStorageDuration() == SD_Static || 3019 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3020 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3021 3022 // If we're not materializing a subobject of the temporary, keep the 3023 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3024 QualType MaterializedType = Init->getType(); 3025 if (Init == E->GetTemporaryExpr()) 3026 MaterializedType = E->getType(); 3027 3028 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 3029 if (Slot) 3030 return Slot; 3031 3032 // FIXME: If an externally-visible declaration extends multiple temporaries, 3033 // we need to give each temporary the same name in every translation unit (and 3034 // we also need to make the temporaries externally-visible). 3035 SmallString<256> Name; 3036 llvm::raw_svector_ostream Out(Name); 3037 getCXXABI().getMangleContext().mangleReferenceTemporary( 3038 VD, E->getManglingNumber(), Out); 3039 Out.flush(); 3040 3041 APValue *Value = nullptr; 3042 if (E->getStorageDuration() == SD_Static) { 3043 // We might have a cached constant initializer for this temporary. Note 3044 // that this might have a different value from the value computed by 3045 // evaluating the initializer if the surrounding constant expression 3046 // modifies the temporary. 3047 Value = getContext().getMaterializedTemporaryValue(E, false); 3048 if (Value && Value->isUninit()) 3049 Value = nullptr; 3050 } 3051 3052 // Try evaluating it now, it might have a constant initializer. 3053 Expr::EvalResult EvalResult; 3054 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3055 !EvalResult.hasSideEffects()) 3056 Value = &EvalResult.Val; 3057 3058 llvm::Constant *InitialValue = nullptr; 3059 bool Constant = false; 3060 llvm::Type *Type; 3061 if (Value) { 3062 // The temporary has a constant initializer, use it. 3063 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3064 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3065 Type = InitialValue->getType(); 3066 } else { 3067 // No initializer, the initialization will be provided when we 3068 // initialize the declaration which performed lifetime extension. 3069 Type = getTypes().ConvertTypeForMem(MaterializedType); 3070 } 3071 3072 // Create a global variable for this lifetime-extended temporary. 3073 llvm::GlobalValue::LinkageTypes Linkage = 3074 getLLVMLinkageVarDefinition(VD, Constant); 3075 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3076 const VarDecl *InitVD; 3077 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3078 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3079 // Temporaries defined inside a class get linkonce_odr linkage because the 3080 // class can be defined in multipe translation units. 3081 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3082 } else { 3083 // There is no need for this temporary to have external linkage if the 3084 // VarDecl has external linkage. 3085 Linkage = llvm::GlobalVariable::InternalLinkage; 3086 } 3087 } 3088 unsigned AddrSpace = GetGlobalVarAddressSpace( 3089 VD, getContext().getTargetAddressSpace(MaterializedType)); 3090 auto *GV = new llvm::GlobalVariable( 3091 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3092 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3093 AddrSpace); 3094 setGlobalVisibility(GV, VD); 3095 GV->setAlignment( 3096 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3097 if (supportsCOMDAT() && GV->isWeakForLinker()) 3098 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3099 if (VD->getTLSKind()) 3100 setTLSMode(GV, *VD); 3101 Slot = GV; 3102 return GV; 3103 } 3104 3105 /// EmitObjCPropertyImplementations - Emit information for synthesized 3106 /// properties for an implementation. 3107 void CodeGenModule::EmitObjCPropertyImplementations(const 3108 ObjCImplementationDecl *D) { 3109 for (const auto *PID : D->property_impls()) { 3110 // Dynamic is just for type-checking. 3111 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3112 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3113 3114 // Determine which methods need to be implemented, some may have 3115 // been overridden. Note that ::isPropertyAccessor is not the method 3116 // we want, that just indicates if the decl came from a 3117 // property. What we want to know is if the method is defined in 3118 // this implementation. 3119 if (!D->getInstanceMethod(PD->getGetterName())) 3120 CodeGenFunction(*this).GenerateObjCGetter( 3121 const_cast<ObjCImplementationDecl *>(D), PID); 3122 if (!PD->isReadOnly() && 3123 !D->getInstanceMethod(PD->getSetterName())) 3124 CodeGenFunction(*this).GenerateObjCSetter( 3125 const_cast<ObjCImplementationDecl *>(D), PID); 3126 } 3127 } 3128 } 3129 3130 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3131 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3132 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3133 ivar; ivar = ivar->getNextIvar()) 3134 if (ivar->getType().isDestructedType()) 3135 return true; 3136 3137 return false; 3138 } 3139 3140 static bool AllTrivialInitializers(CodeGenModule &CGM, 3141 ObjCImplementationDecl *D) { 3142 CodeGenFunction CGF(CGM); 3143 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3144 E = D->init_end(); B != E; ++B) { 3145 CXXCtorInitializer *CtorInitExp = *B; 3146 Expr *Init = CtorInitExp->getInit(); 3147 if (!CGF.isTrivialInitializer(Init)) 3148 return false; 3149 } 3150 return true; 3151 } 3152 3153 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3154 /// for an implementation. 3155 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3156 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3157 if (needsDestructMethod(D)) { 3158 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3159 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3160 ObjCMethodDecl *DTORMethod = 3161 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3162 cxxSelector, getContext().VoidTy, nullptr, D, 3163 /*isInstance=*/true, /*isVariadic=*/false, 3164 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3165 /*isDefined=*/false, ObjCMethodDecl::Required); 3166 D->addInstanceMethod(DTORMethod); 3167 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3168 D->setHasDestructors(true); 3169 } 3170 3171 // If the implementation doesn't have any ivar initializers, we don't need 3172 // a .cxx_construct. 3173 if (D->getNumIvarInitializers() == 0 || 3174 AllTrivialInitializers(*this, D)) 3175 return; 3176 3177 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3178 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3179 // The constructor returns 'self'. 3180 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3181 D->getLocation(), 3182 D->getLocation(), 3183 cxxSelector, 3184 getContext().getObjCIdType(), 3185 nullptr, D, /*isInstance=*/true, 3186 /*isVariadic=*/false, 3187 /*isPropertyAccessor=*/true, 3188 /*isImplicitlyDeclared=*/true, 3189 /*isDefined=*/false, 3190 ObjCMethodDecl::Required); 3191 D->addInstanceMethod(CTORMethod); 3192 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3193 D->setHasNonZeroConstructors(true); 3194 } 3195 3196 /// EmitNamespace - Emit all declarations in a namespace. 3197 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3198 for (auto *I : ND->decls()) { 3199 if (const auto *VD = dyn_cast<VarDecl>(I)) 3200 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3201 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3202 continue; 3203 EmitTopLevelDecl(I); 3204 } 3205 } 3206 3207 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3208 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3209 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3210 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3211 ErrorUnsupported(LSD, "linkage spec"); 3212 return; 3213 } 3214 3215 for (auto *I : LSD->decls()) { 3216 // Meta-data for ObjC class includes references to implemented methods. 3217 // Generate class's method definitions first. 3218 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3219 for (auto *M : OID->methods()) 3220 EmitTopLevelDecl(M); 3221 } 3222 EmitTopLevelDecl(I); 3223 } 3224 } 3225 3226 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3227 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3228 // Ignore dependent declarations. 3229 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3230 return; 3231 3232 switch (D->getKind()) { 3233 case Decl::CXXConversion: 3234 case Decl::CXXMethod: 3235 case Decl::Function: 3236 // Skip function templates 3237 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3238 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3239 return; 3240 3241 EmitGlobal(cast<FunctionDecl>(D)); 3242 // Always provide some coverage mapping 3243 // even for the functions that aren't emitted. 3244 AddDeferredUnusedCoverageMapping(D); 3245 break; 3246 3247 case Decl::Var: 3248 // Skip variable templates 3249 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3250 return; 3251 case Decl::VarTemplateSpecialization: 3252 EmitGlobal(cast<VarDecl>(D)); 3253 break; 3254 3255 // Indirect fields from global anonymous structs and unions can be 3256 // ignored; only the actual variable requires IR gen support. 3257 case Decl::IndirectField: 3258 break; 3259 3260 // C++ Decls 3261 case Decl::Namespace: 3262 EmitNamespace(cast<NamespaceDecl>(D)); 3263 break; 3264 // No code generation needed. 3265 case Decl::UsingShadow: 3266 case Decl::ClassTemplate: 3267 case Decl::VarTemplate: 3268 case Decl::VarTemplatePartialSpecialization: 3269 case Decl::FunctionTemplate: 3270 case Decl::TypeAliasTemplate: 3271 case Decl::Block: 3272 case Decl::Empty: 3273 break; 3274 case Decl::Using: // using X; [C++] 3275 if (CGDebugInfo *DI = getModuleDebugInfo()) 3276 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3277 return; 3278 case Decl::NamespaceAlias: 3279 if (CGDebugInfo *DI = getModuleDebugInfo()) 3280 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3281 return; 3282 case Decl::UsingDirective: // using namespace X; [C++] 3283 if (CGDebugInfo *DI = getModuleDebugInfo()) 3284 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3285 return; 3286 case Decl::CXXConstructor: 3287 // Skip function templates 3288 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3289 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3290 return; 3291 3292 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3293 break; 3294 case Decl::CXXDestructor: 3295 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3296 return; 3297 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3298 break; 3299 3300 case Decl::StaticAssert: 3301 // Nothing to do. 3302 break; 3303 3304 // Objective-C Decls 3305 3306 // Forward declarations, no (immediate) code generation. 3307 case Decl::ObjCInterface: 3308 case Decl::ObjCCategory: 3309 break; 3310 3311 case Decl::ObjCProtocol: { 3312 auto *Proto = cast<ObjCProtocolDecl>(D); 3313 if (Proto->isThisDeclarationADefinition()) 3314 ObjCRuntime->GenerateProtocol(Proto); 3315 break; 3316 } 3317 3318 case Decl::ObjCCategoryImpl: 3319 // Categories have properties but don't support synthesize so we 3320 // can ignore them here. 3321 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3322 break; 3323 3324 case Decl::ObjCImplementation: { 3325 auto *OMD = cast<ObjCImplementationDecl>(D); 3326 EmitObjCPropertyImplementations(OMD); 3327 EmitObjCIvarInitializations(OMD); 3328 ObjCRuntime->GenerateClass(OMD); 3329 // Emit global variable debug information. 3330 if (CGDebugInfo *DI = getModuleDebugInfo()) 3331 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3332 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3333 OMD->getClassInterface()), OMD->getLocation()); 3334 break; 3335 } 3336 case Decl::ObjCMethod: { 3337 auto *OMD = cast<ObjCMethodDecl>(D); 3338 // If this is not a prototype, emit the body. 3339 if (OMD->getBody()) 3340 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3341 break; 3342 } 3343 case Decl::ObjCCompatibleAlias: 3344 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3345 break; 3346 3347 case Decl::LinkageSpec: 3348 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3349 break; 3350 3351 case Decl::FileScopeAsm: { 3352 // File-scope asm is ignored during device-side CUDA compilation. 3353 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3354 break; 3355 auto *AD = cast<FileScopeAsmDecl>(D); 3356 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3357 break; 3358 } 3359 3360 case Decl::Import: { 3361 auto *Import = cast<ImportDecl>(D); 3362 3363 // Ignore import declarations that come from imported modules. 3364 if (clang::Module *Owner = Import->getImportedOwningModule()) { 3365 if (getLangOpts().CurrentModule.empty() || 3366 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3367 break; 3368 } 3369 if (CGDebugInfo *DI = getModuleDebugInfo()) 3370 DI->EmitImportDecl(*Import); 3371 3372 ImportedModules.insert(Import->getImportedModule()); 3373 break; 3374 } 3375 3376 case Decl::OMPThreadPrivate: 3377 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3378 break; 3379 3380 case Decl::ClassTemplateSpecialization: { 3381 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3382 if (DebugInfo && 3383 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3384 Spec->hasDefinition()) 3385 DebugInfo->completeTemplateDefinition(*Spec); 3386 break; 3387 } 3388 3389 default: 3390 // Make sure we handled everything we should, every other kind is a 3391 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3392 // function. Need to recode Decl::Kind to do that easily. 3393 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3394 break; 3395 } 3396 } 3397 3398 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3399 // Do we need to generate coverage mapping? 3400 if (!CodeGenOpts.CoverageMapping) 3401 return; 3402 switch (D->getKind()) { 3403 case Decl::CXXConversion: 3404 case Decl::CXXMethod: 3405 case Decl::Function: 3406 case Decl::ObjCMethod: 3407 case Decl::CXXConstructor: 3408 case Decl::CXXDestructor: { 3409 if (!cast<FunctionDecl>(D)->hasBody()) 3410 return; 3411 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3412 if (I == DeferredEmptyCoverageMappingDecls.end()) 3413 DeferredEmptyCoverageMappingDecls[D] = true; 3414 break; 3415 } 3416 default: 3417 break; 3418 }; 3419 } 3420 3421 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3422 // Do we need to generate coverage mapping? 3423 if (!CodeGenOpts.CoverageMapping) 3424 return; 3425 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3426 if (Fn->isTemplateInstantiation()) 3427 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3428 } 3429 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3430 if (I == DeferredEmptyCoverageMappingDecls.end()) 3431 DeferredEmptyCoverageMappingDecls[D] = false; 3432 else 3433 I->second = false; 3434 } 3435 3436 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3437 std::vector<const Decl *> DeferredDecls; 3438 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3439 if (!I.second) 3440 continue; 3441 DeferredDecls.push_back(I.first); 3442 } 3443 // Sort the declarations by their location to make sure that the tests get a 3444 // predictable order for the coverage mapping for the unused declarations. 3445 if (CodeGenOpts.DumpCoverageMapping) 3446 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3447 [] (const Decl *LHS, const Decl *RHS) { 3448 return LHS->getLocStart() < RHS->getLocStart(); 3449 }); 3450 for (const auto *D : DeferredDecls) { 3451 switch (D->getKind()) { 3452 case Decl::CXXConversion: 3453 case Decl::CXXMethod: 3454 case Decl::Function: 3455 case Decl::ObjCMethod: { 3456 CodeGenPGO PGO(*this); 3457 GlobalDecl GD(cast<FunctionDecl>(D)); 3458 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3459 getFunctionLinkage(GD)); 3460 break; 3461 } 3462 case Decl::CXXConstructor: { 3463 CodeGenPGO PGO(*this); 3464 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3465 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3466 getFunctionLinkage(GD)); 3467 break; 3468 } 3469 case Decl::CXXDestructor: { 3470 CodeGenPGO PGO(*this); 3471 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3472 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3473 getFunctionLinkage(GD)); 3474 break; 3475 } 3476 default: 3477 break; 3478 }; 3479 } 3480 } 3481 3482 /// Turns the given pointer into a constant. 3483 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3484 const void *Ptr) { 3485 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3486 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3487 return llvm::ConstantInt::get(i64, PtrInt); 3488 } 3489 3490 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3491 llvm::NamedMDNode *&GlobalMetadata, 3492 GlobalDecl D, 3493 llvm::GlobalValue *Addr) { 3494 if (!GlobalMetadata) 3495 GlobalMetadata = 3496 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3497 3498 // TODO: should we report variant information for ctors/dtors? 3499 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3500 llvm::ConstantAsMetadata::get(GetPointerConstant( 3501 CGM.getLLVMContext(), D.getDecl()))}; 3502 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3503 } 3504 3505 /// For each function which is declared within an extern "C" region and marked 3506 /// as 'used', but has internal linkage, create an alias from the unmangled 3507 /// name to the mangled name if possible. People expect to be able to refer 3508 /// to such functions with an unmangled name from inline assembly within the 3509 /// same translation unit. 3510 void CodeGenModule::EmitStaticExternCAliases() { 3511 for (auto &I : StaticExternCValues) { 3512 IdentifierInfo *Name = I.first; 3513 llvm::GlobalValue *Val = I.second; 3514 if (Val && !getModule().getNamedValue(Name->getName())) 3515 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3516 } 3517 } 3518 3519 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3520 GlobalDecl &Result) const { 3521 auto Res = Manglings.find(MangledName); 3522 if (Res == Manglings.end()) 3523 return false; 3524 Result = Res->getValue(); 3525 return true; 3526 } 3527 3528 /// Emits metadata nodes associating all the global values in the 3529 /// current module with the Decls they came from. This is useful for 3530 /// projects using IR gen as a subroutine. 3531 /// 3532 /// Since there's currently no way to associate an MDNode directly 3533 /// with an llvm::GlobalValue, we create a global named metadata 3534 /// with the name 'clang.global.decl.ptrs'. 3535 void CodeGenModule::EmitDeclMetadata() { 3536 llvm::NamedMDNode *GlobalMetadata = nullptr; 3537 3538 // StaticLocalDeclMap 3539 for (auto &I : MangledDeclNames) { 3540 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3541 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3542 } 3543 } 3544 3545 /// Emits metadata nodes for all the local variables in the current 3546 /// function. 3547 void CodeGenFunction::EmitDeclMetadata() { 3548 if (LocalDeclMap.empty()) return; 3549 3550 llvm::LLVMContext &Context = getLLVMContext(); 3551 3552 // Find the unique metadata ID for this name. 3553 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3554 3555 llvm::NamedMDNode *GlobalMetadata = nullptr; 3556 3557 for (auto &I : LocalDeclMap) { 3558 const Decl *D = I.first; 3559 llvm::Value *Addr = I.second; 3560 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3561 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3562 Alloca->setMetadata( 3563 DeclPtrKind, llvm::MDNode::get( 3564 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3565 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3566 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3567 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3568 } 3569 } 3570 } 3571 3572 void CodeGenModule::EmitVersionIdentMetadata() { 3573 llvm::NamedMDNode *IdentMetadata = 3574 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3575 std::string Version = getClangFullVersion(); 3576 llvm::LLVMContext &Ctx = TheModule.getContext(); 3577 3578 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3579 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3580 } 3581 3582 void CodeGenModule::EmitTargetMetadata() { 3583 // Warning, new MangledDeclNames may be appended within this loop. 3584 // We rely on MapVector insertions adding new elements to the end 3585 // of the container. 3586 // FIXME: Move this loop into the one target that needs it, and only 3587 // loop over those declarations for which we couldn't emit the target 3588 // metadata when we emitted the declaration. 3589 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3590 auto Val = *(MangledDeclNames.begin() + I); 3591 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3592 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3593 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3594 } 3595 } 3596 3597 void CodeGenModule::EmitCoverageFile() { 3598 if (!getCodeGenOpts().CoverageFile.empty()) { 3599 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3600 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3601 llvm::LLVMContext &Ctx = TheModule.getContext(); 3602 llvm::MDString *CoverageFile = 3603 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3604 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3605 llvm::MDNode *CU = CUNode->getOperand(i); 3606 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3607 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3608 } 3609 } 3610 } 3611 } 3612 3613 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3614 // Sema has checked that all uuid strings are of the form 3615 // "12345678-1234-1234-1234-1234567890ab". 3616 assert(Uuid.size() == 36); 3617 for (unsigned i = 0; i < 36; ++i) { 3618 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3619 else assert(isHexDigit(Uuid[i])); 3620 } 3621 3622 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3623 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3624 3625 llvm::Constant *Field3[8]; 3626 for (unsigned Idx = 0; Idx < 8; ++Idx) 3627 Field3[Idx] = llvm::ConstantInt::get( 3628 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3629 3630 llvm::Constant *Fields[4] = { 3631 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3632 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3633 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3634 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3635 }; 3636 3637 return llvm::ConstantStruct::getAnon(Fields); 3638 } 3639 3640 llvm::Constant * 3641 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3642 QualType CatchHandlerType) { 3643 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3644 } 3645 3646 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3647 bool ForEH) { 3648 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3649 // FIXME: should we even be calling this method if RTTI is disabled 3650 // and it's not for EH? 3651 if (!ForEH && !getLangOpts().RTTI) 3652 return llvm::Constant::getNullValue(Int8PtrTy); 3653 3654 if (ForEH && Ty->isObjCObjectPointerType() && 3655 LangOpts.ObjCRuntime.isGNUFamily()) 3656 return ObjCRuntime->GetEHType(Ty); 3657 3658 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3659 } 3660 3661 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3662 for (auto RefExpr : D->varlists()) { 3663 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3664 bool PerformInit = 3665 VD->getAnyInitializer() && 3666 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3667 /*ForRef=*/false); 3668 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3669 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit)) 3670 CXXGlobalInits.push_back(InitFunction); 3671 } 3672 } 3673 3674 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3675 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3676 std::string OutName; 3677 llvm::raw_string_ostream Out(OutName); 3678 getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out); 3679 3680 llvm::Metadata *BitsetOps[] = { 3681 llvm::MDString::get(getLLVMContext(), Out.str()), 3682 llvm::ConstantAsMetadata::get(VTable), 3683 llvm::ConstantAsMetadata::get( 3684 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3685 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3686 } 3687