xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c9f439461b86a8d208ddb8b91a43b1c689a16b9c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 static const char AnnotationSection[] = "llvm.metadata";
52 
53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58   }
59 
60   llvm_unreachable("invalid C++ ABI kind");
61 }
62 
63 
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::TargetData &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)),
70     Types(*this),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74     RRData(0), CFConstantStringClassRef(0),
75     ConstantStringClassRef(0), NSConstantStringType(0),
76     VMContext(M.getContext()),
77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78     BlockObjectAssign(0), BlockObjectDispose(0),
79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
80 
81   // Initialize the type cache.
82   llvm::LLVMContext &LLVMContext = M.getContext();
83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91   PointerAlignInBytes =
92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95   Int8PtrTy = Int8Ty->getPointerTo(0);
96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97 
98   if (LangOpts.ObjC1)
99     createObjCRuntime();
100   if (LangOpts.OpenCL)
101     createOpenCLRuntime();
102   if (LangOpts.CUDA)
103     createCUDARuntime();
104 
105   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106   if (LangOpts.ThreadSanitizer ||
107       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                            ABI.getMangleContext());
110 
111   // If debug info or coverage generation is enabled, create the CGDebugInfo
112   // object.
113   if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
114       CodeGenOpts.EmitGcovArcs ||
115       CodeGenOpts.EmitGcovNotes)
116     DebugInfo = new CGDebugInfo(*this);
117 
118   Block.GlobalUniqueCount = 0;
119 
120   if (C.getLangOpts().ObjCAutoRefCount)
121     ARCData = new ARCEntrypoints();
122   RRData = new RREntrypoints();
123 }
124 
125 CodeGenModule::~CodeGenModule() {
126   delete ObjCRuntime;
127   delete OpenCLRuntime;
128   delete CUDARuntime;
129   delete TheTargetCodeGenInfo;
130   delete &ABI;
131   delete TBAA;
132   delete DebugInfo;
133   delete ARCData;
134   delete RRData;
135 }
136 
137 void CodeGenModule::createObjCRuntime() {
138   // This is just isGNUFamily(), but we want to force implementors of
139   // new ABIs to decide how best to do this.
140   switch (LangOpts.ObjCRuntime.getKind()) {
141   case ObjCRuntime::GNU:
142   case ObjCRuntime::FragileGNU:
143     ObjCRuntime = CreateGNUObjCRuntime(*this);
144     return;
145 
146   case ObjCRuntime::FragileMacOSX:
147   case ObjCRuntime::MacOSX:
148   case ObjCRuntime::iOS:
149     ObjCRuntime = CreateMacObjCRuntime(*this);
150     return;
151   }
152   llvm_unreachable("bad runtime kind");
153 }
154 
155 void CodeGenModule::createOpenCLRuntime() {
156   OpenCLRuntime = new CGOpenCLRuntime(*this);
157 }
158 
159 void CodeGenModule::createCUDARuntime() {
160   CUDARuntime = CreateNVCUDARuntime(*this);
161 }
162 
163 void CodeGenModule::Release() {
164   EmitDeferred();
165   EmitCXXGlobalInitFunc();
166   EmitCXXGlobalDtorFunc();
167   if (ObjCRuntime)
168     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
169       AddGlobalCtor(ObjCInitFunction);
170   EmitCtorList(GlobalCtors, "llvm.global_ctors");
171   EmitCtorList(GlobalDtors, "llvm.global_dtors");
172   EmitGlobalAnnotations();
173   EmitLLVMUsed();
174 
175   SimplifyPersonality();
176 
177   if (getCodeGenOpts().EmitDeclMetadata)
178     EmitDeclMetadata();
179 
180   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
181     EmitCoverageFile();
182 
183   if (DebugInfo)
184     DebugInfo->finalize();
185 }
186 
187 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
188   // Make sure that this type is translated.
189   Types.UpdateCompletedType(TD);
190 }
191 
192 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
193   if (!TBAA)
194     return 0;
195   return TBAA->getTBAAInfo(QTy);
196 }
197 
198 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
199   if (!TBAA)
200     return 0;
201   return TBAA->getTBAAInfoForVTablePtr();
202 }
203 
204 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
205                                         llvm::MDNode *TBAAInfo) {
206   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
207 }
208 
209 bool CodeGenModule::isTargetDarwin() const {
210   return getContext().getTargetInfo().getTriple().isOSDarwin();
211 }
212 
213 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
214   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
215   getDiags().Report(Context.getFullLoc(loc), diagID);
216 }
217 
218 /// ErrorUnsupported - Print out an error that codegen doesn't support the
219 /// specified stmt yet.
220 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
221                                      bool OmitOnError) {
222   if (OmitOnError && getDiags().hasErrorOccurred())
223     return;
224   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
225                                                "cannot compile this %0 yet");
226   std::string Msg = Type;
227   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
228     << Msg << S->getSourceRange();
229 }
230 
231 /// ErrorUnsupported - Print out an error that codegen doesn't support the
232 /// specified decl yet.
233 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
234                                      bool OmitOnError) {
235   if (OmitOnError && getDiags().hasErrorOccurred())
236     return;
237   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
238                                                "cannot compile this %0 yet");
239   std::string Msg = Type;
240   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
241 }
242 
243 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
244   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
245 }
246 
247 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
248                                         const NamedDecl *D) const {
249   // Internal definitions always have default visibility.
250   if (GV->hasLocalLinkage()) {
251     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
252     return;
253   }
254 
255   // Set visibility for definitions.
256   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
257   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
258     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
259 }
260 
261 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
262   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
263       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
264       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
265       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
266       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
267 }
268 
269 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
270     CodeGenOptions::TLSModel M) {
271   switch (M) {
272   case CodeGenOptions::GeneralDynamicTLSModel:
273     return llvm::GlobalVariable::GeneralDynamicTLSModel;
274   case CodeGenOptions::LocalDynamicTLSModel:
275     return llvm::GlobalVariable::LocalDynamicTLSModel;
276   case CodeGenOptions::InitialExecTLSModel:
277     return llvm::GlobalVariable::InitialExecTLSModel;
278   case CodeGenOptions::LocalExecTLSModel:
279     return llvm::GlobalVariable::LocalExecTLSModel;
280   }
281   llvm_unreachable("Invalid TLS model!");
282 }
283 
284 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
285                                const VarDecl &D) const {
286   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
287 
288   llvm::GlobalVariable::ThreadLocalMode TLM;
289   TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel);
290 
291   // Override the TLS model if it is explicitly specified.
292   if (D.hasAttr<TLSModelAttr>()) {
293     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
294     TLM = GetLLVMTLSModel(Attr->getModel());
295   }
296 
297   GV->setThreadLocalMode(TLM);
298 }
299 
300 /// Set the symbol visibility of type information (vtable and RTTI)
301 /// associated with the given type.
302 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
303                                       const CXXRecordDecl *RD,
304                                       TypeVisibilityKind TVK) const {
305   setGlobalVisibility(GV, RD);
306 
307   if (!CodeGenOpts.HiddenWeakVTables)
308     return;
309 
310   // We never want to drop the visibility for RTTI names.
311   if (TVK == TVK_ForRTTIName)
312     return;
313 
314   // We want to drop the visibility to hidden for weak type symbols.
315   // This isn't possible if there might be unresolved references
316   // elsewhere that rely on this symbol being visible.
317 
318   // This should be kept roughly in sync with setThunkVisibility
319   // in CGVTables.cpp.
320 
321   // Preconditions.
322   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
323       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
324     return;
325 
326   // Don't override an explicit visibility attribute.
327   if (RD->getExplicitVisibility())
328     return;
329 
330   switch (RD->getTemplateSpecializationKind()) {
331   // We have to disable the optimization if this is an EI definition
332   // because there might be EI declarations in other shared objects.
333   case TSK_ExplicitInstantiationDefinition:
334   case TSK_ExplicitInstantiationDeclaration:
335     return;
336 
337   // Every use of a non-template class's type information has to emit it.
338   case TSK_Undeclared:
339     break;
340 
341   // In theory, implicit instantiations can ignore the possibility of
342   // an explicit instantiation declaration because there necessarily
343   // must be an EI definition somewhere with default visibility.  In
344   // practice, it's possible to have an explicit instantiation for
345   // an arbitrary template class, and linkers aren't necessarily able
346   // to deal with mixed-visibility symbols.
347   case TSK_ExplicitSpecialization:
348   case TSK_ImplicitInstantiation:
349     if (!CodeGenOpts.HiddenWeakTemplateVTables)
350       return;
351     break;
352   }
353 
354   // If there's a key function, there may be translation units
355   // that don't have the key function's definition.  But ignore
356   // this if we're emitting RTTI under -fno-rtti.
357   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
358     if (Context.getKeyFunction(RD))
359       return;
360   }
361 
362   // Otherwise, drop the visibility to hidden.
363   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
364   GV->setUnnamedAddr(true);
365 }
366 
367 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
368   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
369 
370   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
371   if (!Str.empty())
372     return Str;
373 
374   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
375     IdentifierInfo *II = ND->getIdentifier();
376     assert(II && "Attempt to mangle unnamed decl.");
377 
378     Str = II->getName();
379     return Str;
380   }
381 
382   SmallString<256> Buffer;
383   llvm::raw_svector_ostream Out(Buffer);
384   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
385     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
386   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
387     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
388   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
389     getCXXABI().getMangleContext().mangleBlock(BD, Out,
390       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
391   else
392     getCXXABI().getMangleContext().mangleName(ND, Out);
393 
394   // Allocate space for the mangled name.
395   Out.flush();
396   size_t Length = Buffer.size();
397   char *Name = MangledNamesAllocator.Allocate<char>(Length);
398   std::copy(Buffer.begin(), Buffer.end(), Name);
399 
400   Str = StringRef(Name, Length);
401 
402   return Str;
403 }
404 
405 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
406                                         const BlockDecl *BD) {
407   MangleContext &MangleCtx = getCXXABI().getMangleContext();
408   const Decl *D = GD.getDecl();
409   llvm::raw_svector_ostream Out(Buffer.getBuffer());
410   if (D == 0)
411     MangleCtx.mangleGlobalBlock(BD,
412       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
413   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
414     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
415   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
416     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
417   else
418     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
419 }
420 
421 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
422   return getModule().getNamedValue(Name);
423 }
424 
425 /// AddGlobalCtor - Add a function to the list that will be called before
426 /// main() runs.
427 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
428   // FIXME: Type coercion of void()* types.
429   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
430 }
431 
432 /// AddGlobalDtor - Add a function to the list that will be called
433 /// when the module is unloaded.
434 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
435   // FIXME: Type coercion of void()* types.
436   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
437 }
438 
439 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
440   // Ctor function type is void()*.
441   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
442   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
443 
444   // Get the type of a ctor entry, { i32, void ()* }.
445   llvm::StructType *CtorStructTy =
446     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
447 
448   // Construct the constructor and destructor arrays.
449   SmallVector<llvm::Constant*, 8> Ctors;
450   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
451     llvm::Constant *S[] = {
452       llvm::ConstantInt::get(Int32Ty, I->second, false),
453       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
454     };
455     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
456   }
457 
458   if (!Ctors.empty()) {
459     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
460     new llvm::GlobalVariable(TheModule, AT, false,
461                              llvm::GlobalValue::AppendingLinkage,
462                              llvm::ConstantArray::get(AT, Ctors),
463                              GlobalName);
464   }
465 }
466 
467 llvm::GlobalValue::LinkageTypes
468 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
469   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
470 
471   if (Linkage == GVA_Internal)
472     return llvm::Function::InternalLinkage;
473 
474   if (D->hasAttr<DLLExportAttr>())
475     return llvm::Function::DLLExportLinkage;
476 
477   if (D->hasAttr<WeakAttr>())
478     return llvm::Function::WeakAnyLinkage;
479 
480   // In C99 mode, 'inline' functions are guaranteed to have a strong
481   // definition somewhere else, so we can use available_externally linkage.
482   if (Linkage == GVA_C99Inline)
483     return llvm::Function::AvailableExternallyLinkage;
484 
485   // Note that Apple's kernel linker doesn't support symbol
486   // coalescing, so we need to avoid linkonce and weak linkages there.
487   // Normally, this means we just map to internal, but for explicit
488   // instantiations we'll map to external.
489 
490   // In C++, the compiler has to emit a definition in every translation unit
491   // that references the function.  We should use linkonce_odr because
492   // a) if all references in this translation unit are optimized away, we
493   // don't need to codegen it.  b) if the function persists, it needs to be
494   // merged with other definitions. c) C++ has the ODR, so we know the
495   // definition is dependable.
496   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
497     return !Context.getLangOpts().AppleKext
498              ? llvm::Function::LinkOnceODRLinkage
499              : llvm::Function::InternalLinkage;
500 
501   // An explicit instantiation of a template has weak linkage, since
502   // explicit instantiations can occur in multiple translation units
503   // and must all be equivalent. However, we are not allowed to
504   // throw away these explicit instantiations.
505   if (Linkage == GVA_ExplicitTemplateInstantiation)
506     return !Context.getLangOpts().AppleKext
507              ? llvm::Function::WeakODRLinkage
508              : llvm::Function::ExternalLinkage;
509 
510   // Otherwise, we have strong external linkage.
511   assert(Linkage == GVA_StrongExternal);
512   return llvm::Function::ExternalLinkage;
513 }
514 
515 
516 /// SetFunctionDefinitionAttributes - Set attributes for a global.
517 ///
518 /// FIXME: This is currently only done for aliases and functions, but not for
519 /// variables (these details are set in EmitGlobalVarDefinition for variables).
520 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
521                                                     llvm::GlobalValue *GV) {
522   SetCommonAttributes(D, GV);
523 }
524 
525 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
526                                               const CGFunctionInfo &Info,
527                                               llvm::Function *F) {
528   unsigned CallingConv;
529   AttributeListType AttributeList;
530   ConstructAttributeList(Info, D, AttributeList, CallingConv);
531   F->setAttributes(llvm::AttrListPtr::get(AttributeList));
532   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
533 }
534 
535 /// Determines whether the language options require us to model
536 /// unwind exceptions.  We treat -fexceptions as mandating this
537 /// except under the fragile ObjC ABI with only ObjC exceptions
538 /// enabled.  This means, for example, that C with -fexceptions
539 /// enables this.
540 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
541   // If exceptions are completely disabled, obviously this is false.
542   if (!LangOpts.Exceptions) return false;
543 
544   // If C++ exceptions are enabled, this is true.
545   if (LangOpts.CXXExceptions) return true;
546 
547   // If ObjC exceptions are enabled, this depends on the ABI.
548   if (LangOpts.ObjCExceptions) {
549     if (LangOpts.ObjCRuntime.isFragile()) return false;
550   }
551 
552   return true;
553 }
554 
555 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
556                                                            llvm::Function *F) {
557   if (CodeGenOpts.UnwindTables)
558     F->setHasUWTable();
559 
560   if (!hasUnwindExceptions(LangOpts))
561     F->addFnAttr(llvm::Attribute::NoUnwind);
562 
563   if (D->hasAttr<NakedAttr>()) {
564     // Naked implies noinline: we should not be inlining such functions.
565     F->addFnAttr(llvm::Attribute::Naked);
566     F->addFnAttr(llvm::Attribute::NoInline);
567   }
568 
569   if (D->hasAttr<NoInlineAttr>())
570     F->addFnAttr(llvm::Attribute::NoInline);
571 
572   // (noinline wins over always_inline, and we can't specify both in IR)
573   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
574       !F->hasFnAttr(llvm::Attribute::NoInline))
575     F->addFnAttr(llvm::Attribute::AlwaysInline);
576 
577   // FIXME: Communicate hot and cold attributes to LLVM more directly.
578   if (D->hasAttr<ColdAttr>())
579     F->addFnAttr(llvm::Attribute::OptimizeForSize);
580 
581   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
582     F->setUnnamedAddr(true);
583 
584   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
585     F->addFnAttr(llvm::Attribute::StackProtect);
586   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
587     F->addFnAttr(llvm::Attribute::StackProtectReq);
588 
589   if (LangOpts.AddressSanitizer) {
590     // When AddressSanitizer is enabled, set AddressSafety attribute
591     // unless __attribute__((no_address_safety_analysis)) is used.
592     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
593       F->addFnAttr(llvm::Attribute::AddressSafety);
594   }
595 
596   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
597   if (alignment)
598     F->setAlignment(alignment);
599 
600   // C++ ABI requires 2-byte alignment for member functions.
601   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
602     F->setAlignment(2);
603 }
604 
605 void CodeGenModule::SetCommonAttributes(const Decl *D,
606                                         llvm::GlobalValue *GV) {
607   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
608     setGlobalVisibility(GV, ND);
609   else
610     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
611 
612   if (D->hasAttr<UsedAttr>())
613     AddUsedGlobal(GV);
614 
615   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
616     GV->setSection(SA->getName());
617 
618   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
619 }
620 
621 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
622                                                   llvm::Function *F,
623                                                   const CGFunctionInfo &FI) {
624   SetLLVMFunctionAttributes(D, FI, F);
625   SetLLVMFunctionAttributesForDefinition(D, F);
626 
627   F->setLinkage(llvm::Function::InternalLinkage);
628 
629   SetCommonAttributes(D, F);
630 }
631 
632 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
633                                           llvm::Function *F,
634                                           bool IsIncompleteFunction) {
635   if (unsigned IID = F->getIntrinsicID()) {
636     // If this is an intrinsic function, set the function's attributes
637     // to the intrinsic's attributes.
638     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
639     return;
640   }
641 
642   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
643 
644   if (!IsIncompleteFunction)
645     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
646 
647   // Only a few attributes are set on declarations; these may later be
648   // overridden by a definition.
649 
650   if (FD->hasAttr<DLLImportAttr>()) {
651     F->setLinkage(llvm::Function::DLLImportLinkage);
652   } else if (FD->hasAttr<WeakAttr>() ||
653              FD->isWeakImported()) {
654     // "extern_weak" is overloaded in LLVM; we probably should have
655     // separate linkage types for this.
656     F->setLinkage(llvm::Function::ExternalWeakLinkage);
657   } else {
658     F->setLinkage(llvm::Function::ExternalLinkage);
659 
660     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
661     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
662       F->setVisibility(GetLLVMVisibility(LV.visibility()));
663     }
664   }
665 
666   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
667     F->setSection(SA->getName());
668 }
669 
670 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
671   assert(!GV->isDeclaration() &&
672          "Only globals with definition can force usage.");
673   LLVMUsed.push_back(GV);
674 }
675 
676 void CodeGenModule::EmitLLVMUsed() {
677   // Don't create llvm.used if there is no need.
678   if (LLVMUsed.empty())
679     return;
680 
681   // Convert LLVMUsed to what ConstantArray needs.
682   SmallVector<llvm::Constant*, 8> UsedArray;
683   UsedArray.resize(LLVMUsed.size());
684   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
685     UsedArray[i] =
686      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
687                                     Int8PtrTy);
688   }
689 
690   if (UsedArray.empty())
691     return;
692   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
693 
694   llvm::GlobalVariable *GV =
695     new llvm::GlobalVariable(getModule(), ATy, false,
696                              llvm::GlobalValue::AppendingLinkage,
697                              llvm::ConstantArray::get(ATy, UsedArray),
698                              "llvm.used");
699 
700   GV->setSection("llvm.metadata");
701 }
702 
703 void CodeGenModule::EmitDeferred() {
704   // Emit code for any potentially referenced deferred decls.  Since a
705   // previously unused static decl may become used during the generation of code
706   // for a static function, iterate until no changes are made.
707 
708   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
709     if (!DeferredVTables.empty()) {
710       const CXXRecordDecl *RD = DeferredVTables.back();
711       DeferredVTables.pop_back();
712       getCXXABI().EmitVTables(RD);
713       continue;
714     }
715 
716     GlobalDecl D = DeferredDeclsToEmit.back();
717     DeferredDeclsToEmit.pop_back();
718 
719     // Check to see if we've already emitted this.  This is necessary
720     // for a couple of reasons: first, decls can end up in the
721     // deferred-decls queue multiple times, and second, decls can end
722     // up with definitions in unusual ways (e.g. by an extern inline
723     // function acquiring a strong function redefinition).  Just
724     // ignore these cases.
725     //
726     // TODO: That said, looking this up multiple times is very wasteful.
727     StringRef Name = getMangledName(D);
728     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
729     assert(CGRef && "Deferred decl wasn't referenced?");
730 
731     if (!CGRef->isDeclaration())
732       continue;
733 
734     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
735     // purposes an alias counts as a definition.
736     if (isa<llvm::GlobalAlias>(CGRef))
737       continue;
738 
739     // Otherwise, emit the definition and move on to the next one.
740     EmitGlobalDefinition(D);
741   }
742 }
743 
744 void CodeGenModule::EmitGlobalAnnotations() {
745   if (Annotations.empty())
746     return;
747 
748   // Create a new global variable for the ConstantStruct in the Module.
749   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
750     Annotations[0]->getType(), Annotations.size()), Annotations);
751   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
752     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
753     "llvm.global.annotations");
754   gv->setSection(AnnotationSection);
755 }
756 
757 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
758   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
759   if (i != AnnotationStrings.end())
760     return i->second;
761 
762   // Not found yet, create a new global.
763   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
764   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
765     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
766   gv->setSection(AnnotationSection);
767   gv->setUnnamedAddr(true);
768   AnnotationStrings[Str] = gv;
769   return gv;
770 }
771 
772 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
773   SourceManager &SM = getContext().getSourceManager();
774   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
775   if (PLoc.isValid())
776     return EmitAnnotationString(PLoc.getFilename());
777   return EmitAnnotationString(SM.getBufferName(Loc));
778 }
779 
780 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
781   SourceManager &SM = getContext().getSourceManager();
782   PresumedLoc PLoc = SM.getPresumedLoc(L);
783   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
784     SM.getExpansionLineNumber(L);
785   return llvm::ConstantInt::get(Int32Ty, LineNo);
786 }
787 
788 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
789                                                 const AnnotateAttr *AA,
790                                                 SourceLocation L) {
791   // Get the globals for file name, annotation, and the line number.
792   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
793                  *UnitGV = EmitAnnotationUnit(L),
794                  *LineNoCst = EmitAnnotationLineNo(L);
795 
796   // Create the ConstantStruct for the global annotation.
797   llvm::Constant *Fields[4] = {
798     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
799     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
800     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
801     LineNoCst
802   };
803   return llvm::ConstantStruct::getAnon(Fields);
804 }
805 
806 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
807                                          llvm::GlobalValue *GV) {
808   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
809   // Get the struct elements for these annotations.
810   for (specific_attr_iterator<AnnotateAttr>
811        ai = D->specific_attr_begin<AnnotateAttr>(),
812        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
813     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
814 }
815 
816 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
817   // Never defer when EmitAllDecls is specified.
818   if (LangOpts.EmitAllDecls)
819     return false;
820 
821   return !getContext().DeclMustBeEmitted(Global);
822 }
823 
824 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
825   const AliasAttr *AA = VD->getAttr<AliasAttr>();
826   assert(AA && "No alias?");
827 
828   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
829 
830   // See if there is already something with the target's name in the module.
831   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
832 
833   llvm::Constant *Aliasee;
834   if (isa<llvm::FunctionType>(DeclTy))
835     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
836                                       /*ForVTable=*/false);
837   else
838     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
839                                     llvm::PointerType::getUnqual(DeclTy), 0);
840   if (!Entry) {
841     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
842     F->setLinkage(llvm::Function::ExternalWeakLinkage);
843     WeakRefReferences.insert(F);
844   }
845 
846   return Aliasee;
847 }
848 
849 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
850   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
851 
852   // Weak references don't produce any output by themselves.
853   if (Global->hasAttr<WeakRefAttr>())
854     return;
855 
856   // If this is an alias definition (which otherwise looks like a declaration)
857   // emit it now.
858   if (Global->hasAttr<AliasAttr>())
859     return EmitAliasDefinition(GD);
860 
861   // If this is CUDA, be selective about which declarations we emit.
862   if (LangOpts.CUDA) {
863     if (CodeGenOpts.CUDAIsDevice) {
864       if (!Global->hasAttr<CUDADeviceAttr>() &&
865           !Global->hasAttr<CUDAGlobalAttr>() &&
866           !Global->hasAttr<CUDAConstantAttr>() &&
867           !Global->hasAttr<CUDASharedAttr>())
868         return;
869     } else {
870       if (!Global->hasAttr<CUDAHostAttr>() && (
871             Global->hasAttr<CUDADeviceAttr>() ||
872             Global->hasAttr<CUDAConstantAttr>() ||
873             Global->hasAttr<CUDASharedAttr>()))
874         return;
875     }
876   }
877 
878   // Ignore declarations, they will be emitted on their first use.
879   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
880     // Forward declarations are emitted lazily on first use.
881     if (!FD->doesThisDeclarationHaveABody()) {
882       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
883         return;
884 
885       const FunctionDecl *InlineDefinition = 0;
886       FD->getBody(InlineDefinition);
887 
888       StringRef MangledName = getMangledName(GD);
889       DeferredDecls.erase(MangledName);
890       EmitGlobalDefinition(InlineDefinition);
891       return;
892     }
893   } else {
894     const VarDecl *VD = cast<VarDecl>(Global);
895     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
896 
897     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
898       return;
899   }
900 
901   // Defer code generation when possible if this is a static definition, inline
902   // function etc.  These we only want to emit if they are used.
903   if (!MayDeferGeneration(Global)) {
904     // Emit the definition if it can't be deferred.
905     EmitGlobalDefinition(GD);
906     return;
907   }
908 
909   // If we're deferring emission of a C++ variable with an
910   // initializer, remember the order in which it appeared in the file.
911   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
912       cast<VarDecl>(Global)->hasInit()) {
913     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
914     CXXGlobalInits.push_back(0);
915   }
916 
917   // If the value has already been used, add it directly to the
918   // DeferredDeclsToEmit list.
919   StringRef MangledName = getMangledName(GD);
920   if (GetGlobalValue(MangledName))
921     DeferredDeclsToEmit.push_back(GD);
922   else {
923     // Otherwise, remember that we saw a deferred decl with this name.  The
924     // first use of the mangled name will cause it to move into
925     // DeferredDeclsToEmit.
926     DeferredDecls[MangledName] = GD;
927   }
928 }
929 
930 namespace {
931   struct FunctionIsDirectlyRecursive :
932     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
933     const StringRef Name;
934     const Builtin::Context &BI;
935     bool Result;
936     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
937       Name(N), BI(C), Result(false) {
938     }
939     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
940 
941     bool TraverseCallExpr(CallExpr *E) {
942       const FunctionDecl *FD = E->getDirectCallee();
943       if (!FD)
944         return true;
945       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
946       if (Attr && Name == Attr->getLabel()) {
947         Result = true;
948         return false;
949       }
950       unsigned BuiltinID = FD->getBuiltinID();
951       if (!BuiltinID)
952         return true;
953       StringRef BuiltinName = BI.GetName(BuiltinID);
954       if (BuiltinName.startswith("__builtin_") &&
955           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
956         Result = true;
957         return false;
958       }
959       return true;
960     }
961   };
962 }
963 
964 // isTriviallyRecursive - Check if this function calls another
965 // decl that, because of the asm attribute or the other decl being a builtin,
966 // ends up pointing to itself.
967 bool
968 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
969   StringRef Name;
970   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
971     // asm labels are a special kind of mangling we have to support.
972     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
973     if (!Attr)
974       return false;
975     Name = Attr->getLabel();
976   } else {
977     Name = FD->getName();
978   }
979 
980   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
981   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
982   return Walker.Result;
983 }
984 
985 bool
986 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
987   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
988     return true;
989   if (CodeGenOpts.OptimizationLevel == 0 &&
990       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
991     return false;
992   // PR9614. Avoid cases where the source code is lying to us. An available
993   // externally function should have an equivalent function somewhere else,
994   // but a function that calls itself is clearly not equivalent to the real
995   // implementation.
996   // This happens in glibc's btowc and in some configure checks.
997   return !isTriviallyRecursive(F);
998 }
999 
1000 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1001   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1002 
1003   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1004                                  Context.getSourceManager(),
1005                                  "Generating code for declaration");
1006 
1007   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1008     // At -O0, don't generate IR for functions with available_externally
1009     // linkage.
1010     if (!shouldEmitFunction(Function))
1011       return;
1012 
1013     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1014       // Make sure to emit the definition(s) before we emit the thunks.
1015       // This is necessary for the generation of certain thunks.
1016       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1017         EmitCXXConstructor(CD, GD.getCtorType());
1018       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1019         EmitCXXDestructor(DD, GD.getDtorType());
1020       else
1021         EmitGlobalFunctionDefinition(GD);
1022 
1023       if (Method->isVirtual())
1024         getVTables().EmitThunks(GD);
1025 
1026       return;
1027     }
1028 
1029     return EmitGlobalFunctionDefinition(GD);
1030   }
1031 
1032   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1033     return EmitGlobalVarDefinition(VD);
1034 
1035   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1036 }
1037 
1038 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1039 /// module, create and return an llvm Function with the specified type. If there
1040 /// is something in the module with the specified name, return it potentially
1041 /// bitcasted to the right type.
1042 ///
1043 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1044 /// to set the attributes on the function when it is first created.
1045 llvm::Constant *
1046 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1047                                        llvm::Type *Ty,
1048                                        GlobalDecl D, bool ForVTable,
1049                                        llvm::Attributes ExtraAttrs) {
1050   // Lookup the entry, lazily creating it if necessary.
1051   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1052   if (Entry) {
1053     if (WeakRefReferences.count(Entry)) {
1054       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1055       if (FD && !FD->hasAttr<WeakAttr>())
1056         Entry->setLinkage(llvm::Function::ExternalLinkage);
1057 
1058       WeakRefReferences.erase(Entry);
1059     }
1060 
1061     if (Entry->getType()->getElementType() == Ty)
1062       return Entry;
1063 
1064     // Make sure the result is of the correct type.
1065     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1066   }
1067 
1068   // This function doesn't have a complete type (for example, the return
1069   // type is an incomplete struct). Use a fake type instead, and make
1070   // sure not to try to set attributes.
1071   bool IsIncompleteFunction = false;
1072 
1073   llvm::FunctionType *FTy;
1074   if (isa<llvm::FunctionType>(Ty)) {
1075     FTy = cast<llvm::FunctionType>(Ty);
1076   } else {
1077     FTy = llvm::FunctionType::get(VoidTy, false);
1078     IsIncompleteFunction = true;
1079   }
1080 
1081   llvm::Function *F = llvm::Function::Create(FTy,
1082                                              llvm::Function::ExternalLinkage,
1083                                              MangledName, &getModule());
1084   assert(F->getName() == MangledName && "name was uniqued!");
1085   if (D.getDecl())
1086     SetFunctionAttributes(D, F, IsIncompleteFunction);
1087   if (ExtraAttrs != llvm::Attribute::None)
1088     F->addFnAttr(ExtraAttrs);
1089 
1090   // This is the first use or definition of a mangled name.  If there is a
1091   // deferred decl with this name, remember that we need to emit it at the end
1092   // of the file.
1093   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1094   if (DDI != DeferredDecls.end()) {
1095     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1096     // list, and remove it from DeferredDecls (since we don't need it anymore).
1097     DeferredDeclsToEmit.push_back(DDI->second);
1098     DeferredDecls.erase(DDI);
1099 
1100   // Otherwise, there are cases we have to worry about where we're
1101   // using a declaration for which we must emit a definition but where
1102   // we might not find a top-level definition:
1103   //   - member functions defined inline in their classes
1104   //   - friend functions defined inline in some class
1105   //   - special member functions with implicit definitions
1106   // If we ever change our AST traversal to walk into class methods,
1107   // this will be unnecessary.
1108   //
1109   // We also don't emit a definition for a function if it's going to be an entry
1110   // in a vtable, unless it's already marked as used.
1111   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1112     // Look for a declaration that's lexically in a record.
1113     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1114     FD = FD->getMostRecentDecl();
1115     do {
1116       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1117         if (FD->isImplicit() && !ForVTable) {
1118           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1119           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1120           break;
1121         } else if (FD->doesThisDeclarationHaveABody()) {
1122           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1123           break;
1124         }
1125       }
1126       FD = FD->getPreviousDecl();
1127     } while (FD);
1128   }
1129 
1130   // Make sure the result is of the requested type.
1131   if (!IsIncompleteFunction) {
1132     assert(F->getType()->getElementType() == Ty);
1133     return F;
1134   }
1135 
1136   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1137   return llvm::ConstantExpr::getBitCast(F, PTy);
1138 }
1139 
1140 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1141 /// non-null, then this function will use the specified type if it has to
1142 /// create it (this occurs when we see a definition of the function).
1143 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1144                                                  llvm::Type *Ty,
1145                                                  bool ForVTable) {
1146   // If there was no specific requested type, just convert it now.
1147   if (!Ty)
1148     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1149 
1150   StringRef MangledName = getMangledName(GD);
1151   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1152 }
1153 
1154 /// CreateRuntimeFunction - Create a new runtime function with the specified
1155 /// type and name.
1156 llvm::Constant *
1157 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1158                                      StringRef Name,
1159                                      llvm::Attributes ExtraAttrs) {
1160   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1161                                  ExtraAttrs);
1162 }
1163 
1164 /// isTypeConstant - Determine whether an object of this type can be emitted
1165 /// as a constant.
1166 ///
1167 /// If ExcludeCtor is true, the duration when the object's constructor runs
1168 /// will not be considered. The caller will need to verify that the object is
1169 /// not written to during its construction.
1170 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1171   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1172     return false;
1173 
1174   if (Context.getLangOpts().CPlusPlus) {
1175     if (const CXXRecordDecl *Record
1176           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1177       return ExcludeCtor && !Record->hasMutableFields() &&
1178              Record->hasTrivialDestructor();
1179   }
1180 
1181   return true;
1182 }
1183 
1184 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1185 /// create and return an llvm GlobalVariable with the specified type.  If there
1186 /// is something in the module with the specified name, return it potentially
1187 /// bitcasted to the right type.
1188 ///
1189 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1190 /// to set the attributes on the global when it is first created.
1191 llvm::Constant *
1192 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1193                                      llvm::PointerType *Ty,
1194                                      const VarDecl *D,
1195                                      bool UnnamedAddr) {
1196   // Lookup the entry, lazily creating it if necessary.
1197   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1198   if (Entry) {
1199     if (WeakRefReferences.count(Entry)) {
1200       if (D && !D->hasAttr<WeakAttr>())
1201         Entry->setLinkage(llvm::Function::ExternalLinkage);
1202 
1203       WeakRefReferences.erase(Entry);
1204     }
1205 
1206     if (UnnamedAddr)
1207       Entry->setUnnamedAddr(true);
1208 
1209     if (Entry->getType() == Ty)
1210       return Entry;
1211 
1212     // Make sure the result is of the correct type.
1213     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1214   }
1215 
1216   // This is the first use or definition of a mangled name.  If there is a
1217   // deferred decl with this name, remember that we need to emit it at the end
1218   // of the file.
1219   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1220   if (DDI != DeferredDecls.end()) {
1221     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1222     // list, and remove it from DeferredDecls (since we don't need it anymore).
1223     DeferredDeclsToEmit.push_back(DDI->second);
1224     DeferredDecls.erase(DDI);
1225   }
1226 
1227   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1228   llvm::GlobalVariable *GV =
1229     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1230                              llvm::GlobalValue::ExternalLinkage,
1231                              0, MangledName, 0,
1232                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1233 
1234   // Handle things which are present even on external declarations.
1235   if (D) {
1236     // FIXME: This code is overly simple and should be merged with other global
1237     // handling.
1238     GV->setConstant(isTypeConstant(D->getType(), false));
1239 
1240     // Set linkage and visibility in case we never see a definition.
1241     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1242     if (LV.linkage() != ExternalLinkage) {
1243       // Don't set internal linkage on declarations.
1244     } else {
1245       if (D->hasAttr<DLLImportAttr>())
1246         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1247       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1248         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1249 
1250       // Set visibility on a declaration only if it's explicit.
1251       if (LV.visibilityExplicit())
1252         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1253     }
1254 
1255     if (D->isThreadSpecified())
1256       setTLSMode(GV, *D);
1257   }
1258 
1259   if (AddrSpace != Ty->getAddressSpace())
1260     return llvm::ConstantExpr::getBitCast(GV, Ty);
1261   else
1262     return GV;
1263 }
1264 
1265 
1266 llvm::GlobalVariable *
1267 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1268                                       llvm::Type *Ty,
1269                                       llvm::GlobalValue::LinkageTypes Linkage) {
1270   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1271   llvm::GlobalVariable *OldGV = 0;
1272 
1273 
1274   if (GV) {
1275     // Check if the variable has the right type.
1276     if (GV->getType()->getElementType() == Ty)
1277       return GV;
1278 
1279     // Because C++ name mangling, the only way we can end up with an already
1280     // existing global with the same name is if it has been declared extern "C".
1281       assert(GV->isDeclaration() && "Declaration has wrong type!");
1282     OldGV = GV;
1283   }
1284 
1285   // Create a new variable.
1286   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1287                                 Linkage, 0, Name);
1288 
1289   if (OldGV) {
1290     // Replace occurrences of the old variable if needed.
1291     GV->takeName(OldGV);
1292 
1293     if (!OldGV->use_empty()) {
1294       llvm::Constant *NewPtrForOldDecl =
1295       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1296       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1297     }
1298 
1299     OldGV->eraseFromParent();
1300   }
1301 
1302   return GV;
1303 }
1304 
1305 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1306 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1307 /// then it will be created with the specified type instead of whatever the
1308 /// normal requested type would be.
1309 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1310                                                   llvm::Type *Ty) {
1311   assert(D->hasGlobalStorage() && "Not a global variable");
1312   QualType ASTTy = D->getType();
1313   if (Ty == 0)
1314     Ty = getTypes().ConvertTypeForMem(ASTTy);
1315 
1316   llvm::PointerType *PTy =
1317     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1318 
1319   StringRef MangledName = getMangledName(D);
1320   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1321 }
1322 
1323 /// CreateRuntimeVariable - Create a new runtime global variable with the
1324 /// specified type and name.
1325 llvm::Constant *
1326 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1327                                      StringRef Name) {
1328   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1329                                true);
1330 }
1331 
1332 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1333   assert(!D->getInit() && "Cannot emit definite definitions here!");
1334 
1335   if (MayDeferGeneration(D)) {
1336     // If we have not seen a reference to this variable yet, place it
1337     // into the deferred declarations table to be emitted if needed
1338     // later.
1339     StringRef MangledName = getMangledName(D);
1340     if (!GetGlobalValue(MangledName)) {
1341       DeferredDecls[MangledName] = D;
1342       return;
1343     }
1344   }
1345 
1346   // The tentative definition is the only definition.
1347   EmitGlobalVarDefinition(D);
1348 }
1349 
1350 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1351   if (DefinitionRequired)
1352     getCXXABI().EmitVTables(Class);
1353 }
1354 
1355 llvm::GlobalVariable::LinkageTypes
1356 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1357   if (RD->getLinkage() != ExternalLinkage)
1358     return llvm::GlobalVariable::InternalLinkage;
1359 
1360   if (const CXXMethodDecl *KeyFunction
1361                                     = RD->getASTContext().getKeyFunction(RD)) {
1362     // If this class has a key function, use that to determine the linkage of
1363     // the vtable.
1364     const FunctionDecl *Def = 0;
1365     if (KeyFunction->hasBody(Def))
1366       KeyFunction = cast<CXXMethodDecl>(Def);
1367 
1368     switch (KeyFunction->getTemplateSpecializationKind()) {
1369       case TSK_Undeclared:
1370       case TSK_ExplicitSpecialization:
1371         // When compiling with optimizations turned on, we emit all vtables,
1372         // even if the key function is not defined in the current translation
1373         // unit. If this is the case, use available_externally linkage.
1374         if (!Def && CodeGenOpts.OptimizationLevel)
1375           return llvm::GlobalVariable::AvailableExternallyLinkage;
1376 
1377         if (KeyFunction->isInlined())
1378           return !Context.getLangOpts().AppleKext ?
1379                    llvm::GlobalVariable::LinkOnceODRLinkage :
1380                    llvm::Function::InternalLinkage;
1381 
1382         return llvm::GlobalVariable::ExternalLinkage;
1383 
1384       case TSK_ImplicitInstantiation:
1385         return !Context.getLangOpts().AppleKext ?
1386                  llvm::GlobalVariable::LinkOnceODRLinkage :
1387                  llvm::Function::InternalLinkage;
1388 
1389       case TSK_ExplicitInstantiationDefinition:
1390         return !Context.getLangOpts().AppleKext ?
1391                  llvm::GlobalVariable::WeakODRLinkage :
1392                  llvm::Function::InternalLinkage;
1393 
1394       case TSK_ExplicitInstantiationDeclaration:
1395         // FIXME: Use available_externally linkage. However, this currently
1396         // breaks LLVM's build due to undefined symbols.
1397         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1398         return !Context.getLangOpts().AppleKext ?
1399                  llvm::GlobalVariable::LinkOnceODRLinkage :
1400                  llvm::Function::InternalLinkage;
1401     }
1402   }
1403 
1404   if (Context.getLangOpts().AppleKext)
1405     return llvm::Function::InternalLinkage;
1406 
1407   switch (RD->getTemplateSpecializationKind()) {
1408   case TSK_Undeclared:
1409   case TSK_ExplicitSpecialization:
1410   case TSK_ImplicitInstantiation:
1411     // FIXME: Use available_externally linkage. However, this currently
1412     // breaks LLVM's build due to undefined symbols.
1413     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1414   case TSK_ExplicitInstantiationDeclaration:
1415     return llvm::GlobalVariable::LinkOnceODRLinkage;
1416 
1417   case TSK_ExplicitInstantiationDefinition:
1418       return llvm::GlobalVariable::WeakODRLinkage;
1419   }
1420 
1421   llvm_unreachable("Invalid TemplateSpecializationKind!");
1422 }
1423 
1424 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1425     return Context.toCharUnitsFromBits(
1426       TheTargetData.getTypeStoreSizeInBits(Ty));
1427 }
1428 
1429 llvm::Constant *
1430 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1431                                                        const Expr *rawInit) {
1432   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1433   if (const ExprWithCleanups *withCleanups =
1434           dyn_cast<ExprWithCleanups>(rawInit)) {
1435     cleanups = withCleanups->getObjects();
1436     rawInit = withCleanups->getSubExpr();
1437   }
1438 
1439   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1440   if (!init || !init->initializesStdInitializerList() ||
1441       init->getNumInits() == 0)
1442     return 0;
1443 
1444   ASTContext &ctx = getContext();
1445   unsigned numInits = init->getNumInits();
1446   // FIXME: This check is here because we would otherwise silently miscompile
1447   // nested global std::initializer_lists. Better would be to have a real
1448   // implementation.
1449   for (unsigned i = 0; i < numInits; ++i) {
1450     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1451     if (inner && inner->initializesStdInitializerList()) {
1452       ErrorUnsupported(inner, "nested global std::initializer_list");
1453       return 0;
1454     }
1455   }
1456 
1457   // Synthesize a fake VarDecl for the array and initialize that.
1458   QualType elementType = init->getInit(0)->getType();
1459   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1460   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1461                                                 ArrayType::Normal, 0);
1462 
1463   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1464   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1465                                               arrayType, D->getLocation());
1466   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1467                                                           D->getDeclContext()),
1468                                           D->getLocStart(), D->getLocation(),
1469                                           name, arrayType, sourceInfo,
1470                                           SC_Static, SC_Static);
1471 
1472   // Now clone the InitListExpr to initialize the array instead.
1473   // Incredible hack: we want to use the existing InitListExpr here, so we need
1474   // to tell it that it no longer initializes a std::initializer_list.
1475   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(),
1476                                     const_cast<InitListExpr*>(init)->getInits(),
1477                                                    init->getNumInits(),
1478                                                    init->getRBraceLoc());
1479   arrayInit->setType(arrayType);
1480 
1481   if (!cleanups.empty())
1482     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1483 
1484   backingArray->setInit(arrayInit);
1485 
1486   // Emit the definition of the array.
1487   EmitGlobalVarDefinition(backingArray);
1488 
1489   // Inspect the initializer list to validate it and determine its type.
1490   // FIXME: doing this every time is probably inefficient; caching would be nice
1491   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1492   RecordDecl::field_iterator field = record->field_begin();
1493   if (field == record->field_end()) {
1494     ErrorUnsupported(D, "weird std::initializer_list");
1495     return 0;
1496   }
1497   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1498   // Start pointer.
1499   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1500     ErrorUnsupported(D, "weird std::initializer_list");
1501     return 0;
1502   }
1503   ++field;
1504   if (field == record->field_end()) {
1505     ErrorUnsupported(D, "weird std::initializer_list");
1506     return 0;
1507   }
1508   bool isStartEnd = false;
1509   if (ctx.hasSameType(field->getType(), elementPtr)) {
1510     // End pointer.
1511     isStartEnd = true;
1512   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1513     ErrorUnsupported(D, "weird std::initializer_list");
1514     return 0;
1515   }
1516 
1517   // Now build an APValue representing the std::initializer_list.
1518   APValue initListValue(APValue::UninitStruct(), 0, 2);
1519   APValue &startField = initListValue.getStructField(0);
1520   APValue::LValuePathEntry startOffsetPathEntry;
1521   startOffsetPathEntry.ArrayIndex = 0;
1522   startField = APValue(APValue::LValueBase(backingArray),
1523                        CharUnits::fromQuantity(0),
1524                        llvm::makeArrayRef(startOffsetPathEntry),
1525                        /*IsOnePastTheEnd=*/false, 0);
1526 
1527   if (isStartEnd) {
1528     APValue &endField = initListValue.getStructField(1);
1529     APValue::LValuePathEntry endOffsetPathEntry;
1530     endOffsetPathEntry.ArrayIndex = numInits;
1531     endField = APValue(APValue::LValueBase(backingArray),
1532                        ctx.getTypeSizeInChars(elementType) * numInits,
1533                        llvm::makeArrayRef(endOffsetPathEntry),
1534                        /*IsOnePastTheEnd=*/true, 0);
1535   } else {
1536     APValue &sizeField = initListValue.getStructField(1);
1537     sizeField = APValue(llvm::APSInt(numElements));
1538   }
1539 
1540   // Emit the constant for the initializer_list.
1541   llvm::Constant *llvmInit =
1542       EmitConstantValueForMemory(initListValue, D->getType());
1543   assert(llvmInit && "failed to initialize as constant");
1544   return llvmInit;
1545 }
1546 
1547 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1548                                                  unsigned AddrSpace) {
1549   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1550     if (D->hasAttr<CUDAConstantAttr>())
1551       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1552     else if (D->hasAttr<CUDASharedAttr>())
1553       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1554     else
1555       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1556   }
1557 
1558   return AddrSpace;
1559 }
1560 
1561 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1562   llvm::Constant *Init = 0;
1563   QualType ASTTy = D->getType();
1564   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1565   bool NeedsGlobalCtor = false;
1566   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1567 
1568   const VarDecl *InitDecl;
1569   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1570 
1571   if (!InitExpr) {
1572     // This is a tentative definition; tentative definitions are
1573     // implicitly initialized with { 0 }.
1574     //
1575     // Note that tentative definitions are only emitted at the end of
1576     // a translation unit, so they should never have incomplete
1577     // type. In addition, EmitTentativeDefinition makes sure that we
1578     // never attempt to emit a tentative definition if a real one
1579     // exists. A use may still exists, however, so we still may need
1580     // to do a RAUW.
1581     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1582     Init = EmitNullConstant(D->getType());
1583   } else {
1584     // If this is a std::initializer_list, emit the special initializer.
1585     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1586     // An empty init list will perform zero-initialization, which happens
1587     // to be exactly what we want.
1588     // FIXME: It does so in a global constructor, which is *not* what we
1589     // want.
1590 
1591     if (!Init) {
1592       initializedGlobalDecl = GlobalDecl(D);
1593       Init = EmitConstantInit(*InitDecl);
1594     }
1595     if (!Init) {
1596       QualType T = InitExpr->getType();
1597       if (D->getType()->isReferenceType())
1598         T = D->getType();
1599 
1600       if (getLangOpts().CPlusPlus) {
1601         Init = EmitNullConstant(T);
1602         NeedsGlobalCtor = true;
1603       } else {
1604         ErrorUnsupported(D, "static initializer");
1605         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1606       }
1607     } else {
1608       // We don't need an initializer, so remove the entry for the delayed
1609       // initializer position (just in case this entry was delayed) if we
1610       // also don't need to register a destructor.
1611       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1612         DelayedCXXInitPosition.erase(D);
1613     }
1614   }
1615 
1616   llvm::Type* InitType = Init->getType();
1617   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1618 
1619   // Strip off a bitcast if we got one back.
1620   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1621     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1622            // all zero index gep.
1623            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1624     Entry = CE->getOperand(0);
1625   }
1626 
1627   // Entry is now either a Function or GlobalVariable.
1628   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1629 
1630   // We have a definition after a declaration with the wrong type.
1631   // We must make a new GlobalVariable* and update everything that used OldGV
1632   // (a declaration or tentative definition) with the new GlobalVariable*
1633   // (which will be a definition).
1634   //
1635   // This happens if there is a prototype for a global (e.g.
1636   // "extern int x[];") and then a definition of a different type (e.g.
1637   // "int x[10];"). This also happens when an initializer has a different type
1638   // from the type of the global (this happens with unions).
1639   if (GV == 0 ||
1640       GV->getType()->getElementType() != InitType ||
1641       GV->getType()->getAddressSpace() !=
1642        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1643 
1644     // Move the old entry aside so that we'll create a new one.
1645     Entry->setName(StringRef());
1646 
1647     // Make a new global with the correct type, this is now guaranteed to work.
1648     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1649 
1650     // Replace all uses of the old global with the new global
1651     llvm::Constant *NewPtrForOldDecl =
1652         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1653     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1654 
1655     // Erase the old global, since it is no longer used.
1656     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1657   }
1658 
1659   if (D->hasAttr<AnnotateAttr>())
1660     AddGlobalAnnotations(D, GV);
1661 
1662   GV->setInitializer(Init);
1663 
1664   // If it is safe to mark the global 'constant', do so now.
1665   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1666                   isTypeConstant(D->getType(), true));
1667 
1668   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1669 
1670   // Set the llvm linkage type as appropriate.
1671   llvm::GlobalValue::LinkageTypes Linkage =
1672     GetLLVMLinkageVarDefinition(D, GV);
1673   GV->setLinkage(Linkage);
1674   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1675     // common vars aren't constant even if declared const.
1676     GV->setConstant(false);
1677 
1678   SetCommonAttributes(D, GV);
1679 
1680   // Emit the initializer function if necessary.
1681   if (NeedsGlobalCtor || NeedsGlobalDtor)
1682     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1683 
1684   // Emit global variable debug information.
1685   if (CGDebugInfo *DI = getModuleDebugInfo())
1686     if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1687       DI->EmitGlobalVariable(GV, D);
1688 }
1689 
1690 llvm::GlobalValue::LinkageTypes
1691 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1692                                            llvm::GlobalVariable *GV) {
1693   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1694   if (Linkage == GVA_Internal)
1695     return llvm::Function::InternalLinkage;
1696   else if (D->hasAttr<DLLImportAttr>())
1697     return llvm::Function::DLLImportLinkage;
1698   else if (D->hasAttr<DLLExportAttr>())
1699     return llvm::Function::DLLExportLinkage;
1700   else if (D->hasAttr<WeakAttr>()) {
1701     if (GV->isConstant())
1702       return llvm::GlobalVariable::WeakODRLinkage;
1703     else
1704       return llvm::GlobalVariable::WeakAnyLinkage;
1705   } else if (Linkage == GVA_TemplateInstantiation ||
1706              Linkage == GVA_ExplicitTemplateInstantiation)
1707     return llvm::GlobalVariable::WeakODRLinkage;
1708   else if (!getLangOpts().CPlusPlus &&
1709            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1710              D->getAttr<CommonAttr>()) &&
1711            !D->hasExternalStorage() && !D->getInit() &&
1712            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1713            !D->getAttr<WeakImportAttr>()) {
1714     // Thread local vars aren't considered common linkage.
1715     return llvm::GlobalVariable::CommonLinkage;
1716   }
1717   return llvm::GlobalVariable::ExternalLinkage;
1718 }
1719 
1720 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1721 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1722 /// existing call uses of the old function in the module, this adjusts them to
1723 /// call the new function directly.
1724 ///
1725 /// This is not just a cleanup: the always_inline pass requires direct calls to
1726 /// functions to be able to inline them.  If there is a bitcast in the way, it
1727 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1728 /// run at -O0.
1729 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1730                                                       llvm::Function *NewFn) {
1731   // If we're redefining a global as a function, don't transform it.
1732   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1733   if (OldFn == 0) return;
1734 
1735   llvm::Type *NewRetTy = NewFn->getReturnType();
1736   SmallVector<llvm::Value*, 4> ArgList;
1737 
1738   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1739        UI != E; ) {
1740     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1741     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1742     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1743     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1744     llvm::CallSite CS(CI);
1745     if (!CI || !CS.isCallee(I)) continue;
1746 
1747     // If the return types don't match exactly, and if the call isn't dead, then
1748     // we can't transform this call.
1749     if (CI->getType() != NewRetTy && !CI->use_empty())
1750       continue;
1751 
1752     // Get the attribute list.
1753     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1754     llvm::AttrListPtr AttrList = CI->getAttributes();
1755 
1756     // Get any return attributes.
1757     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1758 
1759     // Add the return attributes.
1760     if (RAttrs)
1761       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1762 
1763     // If the function was passed too few arguments, don't transform.  If extra
1764     // arguments were passed, we silently drop them.  If any of the types
1765     // mismatch, we don't transform.
1766     unsigned ArgNo = 0;
1767     bool DontTransform = false;
1768     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1769          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1770       if (CS.arg_size() == ArgNo ||
1771           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1772         DontTransform = true;
1773         break;
1774       }
1775 
1776       // Add any parameter attributes.
1777       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1778         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1779     }
1780     if (DontTransform)
1781       continue;
1782 
1783     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1784       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1785 
1786     // Okay, we can transform this.  Create the new call instruction and copy
1787     // over the required information.
1788     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1789     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1790     ArgList.clear();
1791     if (!NewCall->getType()->isVoidTy())
1792       NewCall->takeName(CI);
1793     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1794     NewCall->setCallingConv(CI->getCallingConv());
1795 
1796     // Finally, remove the old call, replacing any uses with the new one.
1797     if (!CI->use_empty())
1798       CI->replaceAllUsesWith(NewCall);
1799 
1800     // Copy debug location attached to CI.
1801     if (!CI->getDebugLoc().isUnknown())
1802       NewCall->setDebugLoc(CI->getDebugLoc());
1803     CI->eraseFromParent();
1804   }
1805 }
1806 
1807 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1808   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1809   // If we have a definition, this might be a deferred decl. If the
1810   // instantiation is explicit, make sure we emit it at the end.
1811   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1812     GetAddrOfGlobalVar(VD);
1813 }
1814 
1815 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1816   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1817 
1818   // Compute the function info and LLVM type.
1819   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1820   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1821 
1822   // Get or create the prototype for the function.
1823   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1824 
1825   // Strip off a bitcast if we got one back.
1826   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1827     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1828     Entry = CE->getOperand(0);
1829   }
1830 
1831 
1832   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1833     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1834 
1835     // If the types mismatch then we have to rewrite the definition.
1836     assert(OldFn->isDeclaration() &&
1837            "Shouldn't replace non-declaration");
1838 
1839     // F is the Function* for the one with the wrong type, we must make a new
1840     // Function* and update everything that used F (a declaration) with the new
1841     // Function* (which will be a definition).
1842     //
1843     // This happens if there is a prototype for a function
1844     // (e.g. "int f()") and then a definition of a different type
1845     // (e.g. "int f(int x)").  Move the old function aside so that it
1846     // doesn't interfere with GetAddrOfFunction.
1847     OldFn->setName(StringRef());
1848     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1849 
1850     // If this is an implementation of a function without a prototype, try to
1851     // replace any existing uses of the function (which may be calls) with uses
1852     // of the new function
1853     if (D->getType()->isFunctionNoProtoType()) {
1854       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1855       OldFn->removeDeadConstantUsers();
1856     }
1857 
1858     // Replace uses of F with the Function we will endow with a body.
1859     if (!Entry->use_empty()) {
1860       llvm::Constant *NewPtrForOldDecl =
1861         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1862       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1863     }
1864 
1865     // Ok, delete the old function now, which is dead.
1866     OldFn->eraseFromParent();
1867 
1868     Entry = NewFn;
1869   }
1870 
1871   // We need to set linkage and visibility on the function before
1872   // generating code for it because various parts of IR generation
1873   // want to propagate this information down (e.g. to local static
1874   // declarations).
1875   llvm::Function *Fn = cast<llvm::Function>(Entry);
1876   setFunctionLinkage(D, Fn);
1877 
1878   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1879   setGlobalVisibility(Fn, D);
1880 
1881   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1882 
1883   SetFunctionDefinitionAttributes(D, Fn);
1884   SetLLVMFunctionAttributesForDefinition(D, Fn);
1885 
1886   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1887     AddGlobalCtor(Fn, CA->getPriority());
1888   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1889     AddGlobalDtor(Fn, DA->getPriority());
1890   if (D->hasAttr<AnnotateAttr>())
1891     AddGlobalAnnotations(D, Fn);
1892 }
1893 
1894 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1895   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1896   const AliasAttr *AA = D->getAttr<AliasAttr>();
1897   assert(AA && "Not an alias?");
1898 
1899   StringRef MangledName = getMangledName(GD);
1900 
1901   // If there is a definition in the module, then it wins over the alias.
1902   // This is dubious, but allow it to be safe.  Just ignore the alias.
1903   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1904   if (Entry && !Entry->isDeclaration())
1905     return;
1906 
1907   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1908 
1909   // Create a reference to the named value.  This ensures that it is emitted
1910   // if a deferred decl.
1911   llvm::Constant *Aliasee;
1912   if (isa<llvm::FunctionType>(DeclTy))
1913     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1914                                       /*ForVTable=*/false);
1915   else
1916     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1917                                     llvm::PointerType::getUnqual(DeclTy), 0);
1918 
1919   // Create the new alias itself, but don't set a name yet.
1920   llvm::GlobalValue *GA =
1921     new llvm::GlobalAlias(Aliasee->getType(),
1922                           llvm::Function::ExternalLinkage,
1923                           "", Aliasee, &getModule());
1924 
1925   if (Entry) {
1926     assert(Entry->isDeclaration());
1927 
1928     // If there is a declaration in the module, then we had an extern followed
1929     // by the alias, as in:
1930     //   extern int test6();
1931     //   ...
1932     //   int test6() __attribute__((alias("test7")));
1933     //
1934     // Remove it and replace uses of it with the alias.
1935     GA->takeName(Entry);
1936 
1937     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1938                                                           Entry->getType()));
1939     Entry->eraseFromParent();
1940   } else {
1941     GA->setName(MangledName);
1942   }
1943 
1944   // Set attributes which are particular to an alias; this is a
1945   // specialization of the attributes which may be set on a global
1946   // variable/function.
1947   if (D->hasAttr<DLLExportAttr>()) {
1948     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1949       // The dllexport attribute is ignored for undefined symbols.
1950       if (FD->hasBody())
1951         GA->setLinkage(llvm::Function::DLLExportLinkage);
1952     } else {
1953       GA->setLinkage(llvm::Function::DLLExportLinkage);
1954     }
1955   } else if (D->hasAttr<WeakAttr>() ||
1956              D->hasAttr<WeakRefAttr>() ||
1957              D->isWeakImported()) {
1958     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1959   }
1960 
1961   SetCommonAttributes(D, GA);
1962 }
1963 
1964 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1965                                             ArrayRef<llvm::Type*> Tys) {
1966   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1967                                          Tys);
1968 }
1969 
1970 static llvm::StringMapEntry<llvm::Constant*> &
1971 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1972                          const StringLiteral *Literal,
1973                          bool TargetIsLSB,
1974                          bool &IsUTF16,
1975                          unsigned &StringLength) {
1976   StringRef String = Literal->getString();
1977   unsigned NumBytes = String.size();
1978 
1979   // Check for simple case.
1980   if (!Literal->containsNonAsciiOrNull()) {
1981     StringLength = NumBytes;
1982     return Map.GetOrCreateValue(String);
1983   }
1984 
1985   // Otherwise, convert the UTF8 literals into a string of shorts.
1986   IsUTF16 = true;
1987 
1988   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
1989   const UTF8 *FromPtr = (UTF8 *)String.data();
1990   UTF16 *ToPtr = &ToBuf[0];
1991 
1992   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1993                            &ToPtr, ToPtr + NumBytes,
1994                            strictConversion);
1995 
1996   // ConvertUTF8toUTF16 returns the length in ToPtr.
1997   StringLength = ToPtr - &ToBuf[0];
1998 
1999   // Add an explicit null.
2000   *ToPtr = 0;
2001   return Map.
2002     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2003                                (StringLength + 1) * 2));
2004 }
2005 
2006 static llvm::StringMapEntry<llvm::Constant*> &
2007 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2008                        const StringLiteral *Literal,
2009                        unsigned &StringLength) {
2010   StringRef String = Literal->getString();
2011   StringLength = String.size();
2012   return Map.GetOrCreateValue(String);
2013 }
2014 
2015 llvm::Constant *
2016 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2017   unsigned StringLength = 0;
2018   bool isUTF16 = false;
2019   llvm::StringMapEntry<llvm::Constant*> &Entry =
2020     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2021                              getTargetData().isLittleEndian(),
2022                              isUTF16, StringLength);
2023 
2024   if (llvm::Constant *C = Entry.getValue())
2025     return C;
2026 
2027   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2028   llvm::Constant *Zeros[] = { Zero, Zero };
2029 
2030   // If we don't already have it, get __CFConstantStringClassReference.
2031   if (!CFConstantStringClassRef) {
2032     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2033     Ty = llvm::ArrayType::get(Ty, 0);
2034     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2035                                            "__CFConstantStringClassReference");
2036     // Decay array -> ptr
2037     CFConstantStringClassRef =
2038       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2039   }
2040 
2041   QualType CFTy = getContext().getCFConstantStringType();
2042 
2043   llvm::StructType *STy =
2044     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2045 
2046   llvm::Constant *Fields[4];
2047 
2048   // Class pointer.
2049   Fields[0] = CFConstantStringClassRef;
2050 
2051   // Flags.
2052   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2053   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2054     llvm::ConstantInt::get(Ty, 0x07C8);
2055 
2056   // String pointer.
2057   llvm::Constant *C = 0;
2058   if (isUTF16) {
2059     ArrayRef<uint16_t> Arr =
2060       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2061                                    Entry.getKey().size() / 2);
2062     C = llvm::ConstantDataArray::get(VMContext, Arr);
2063   } else {
2064     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2065   }
2066 
2067   llvm::GlobalValue::LinkageTypes Linkage;
2068   if (isUTF16)
2069     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2070     Linkage = llvm::GlobalValue::InternalLinkage;
2071   else
2072     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2073     // when using private linkage. It is not clear if this is a bug in ld
2074     // or a reasonable new restriction.
2075     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2076 
2077   // Note: -fwritable-strings doesn't make the backing store strings of
2078   // CFStrings writable. (See <rdar://problem/10657500>)
2079   llvm::GlobalVariable *GV =
2080     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2081                              Linkage, C, ".str");
2082   GV->setUnnamedAddr(true);
2083   if (isUTF16) {
2084     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2085     GV->setAlignment(Align.getQuantity());
2086   } else {
2087     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2088     GV->setAlignment(Align.getQuantity());
2089   }
2090 
2091   // String.
2092   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2093 
2094   if (isUTF16)
2095     // Cast the UTF16 string to the correct type.
2096     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2097 
2098   // String length.
2099   Ty = getTypes().ConvertType(getContext().LongTy);
2100   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2101 
2102   // The struct.
2103   C = llvm::ConstantStruct::get(STy, Fields);
2104   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2105                                 llvm::GlobalVariable::PrivateLinkage, C,
2106                                 "_unnamed_cfstring_");
2107   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2108     GV->setSection(Sect);
2109   Entry.setValue(GV);
2110 
2111   return GV;
2112 }
2113 
2114 static RecordDecl *
2115 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2116                  DeclContext *DC, IdentifierInfo *Id) {
2117   SourceLocation Loc;
2118   if (Ctx.getLangOpts().CPlusPlus)
2119     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2120   else
2121     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2122 }
2123 
2124 llvm::Constant *
2125 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2126   unsigned StringLength = 0;
2127   llvm::StringMapEntry<llvm::Constant*> &Entry =
2128     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2129 
2130   if (llvm::Constant *C = Entry.getValue())
2131     return C;
2132 
2133   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2134   llvm::Constant *Zeros[] = { Zero, Zero };
2135 
2136   // If we don't already have it, get _NSConstantStringClassReference.
2137   if (!ConstantStringClassRef) {
2138     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2139     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2140     llvm::Constant *GV;
2141     if (LangOpts.ObjCRuntime.isNonFragile()) {
2142       std::string str =
2143         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2144                             : "OBJC_CLASS_$_" + StringClass;
2145       GV = getObjCRuntime().GetClassGlobal(str);
2146       // Make sure the result is of the correct type.
2147       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2148       ConstantStringClassRef =
2149         llvm::ConstantExpr::getBitCast(GV, PTy);
2150     } else {
2151       std::string str =
2152         StringClass.empty() ? "_NSConstantStringClassReference"
2153                             : "_" + StringClass + "ClassReference";
2154       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2155       GV = CreateRuntimeVariable(PTy, str);
2156       // Decay array -> ptr
2157       ConstantStringClassRef =
2158         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2159     }
2160   }
2161 
2162   if (!NSConstantStringType) {
2163     // Construct the type for a constant NSString.
2164     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2165                                      Context.getTranslationUnitDecl(),
2166                                    &Context.Idents.get("__builtin_NSString"));
2167     D->startDefinition();
2168 
2169     QualType FieldTypes[3];
2170 
2171     // const int *isa;
2172     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2173     // const char *str;
2174     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2175     // unsigned int length;
2176     FieldTypes[2] = Context.UnsignedIntTy;
2177 
2178     // Create fields
2179     for (unsigned i = 0; i < 3; ++i) {
2180       FieldDecl *Field = FieldDecl::Create(Context, D,
2181                                            SourceLocation(),
2182                                            SourceLocation(), 0,
2183                                            FieldTypes[i], /*TInfo=*/0,
2184                                            /*BitWidth=*/0,
2185                                            /*Mutable=*/false,
2186                                            ICIS_NoInit);
2187       Field->setAccess(AS_public);
2188       D->addDecl(Field);
2189     }
2190 
2191     D->completeDefinition();
2192     QualType NSTy = Context.getTagDeclType(D);
2193     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2194   }
2195 
2196   llvm::Constant *Fields[3];
2197 
2198   // Class pointer.
2199   Fields[0] = ConstantStringClassRef;
2200 
2201   // String pointer.
2202   llvm::Constant *C =
2203     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2204 
2205   llvm::GlobalValue::LinkageTypes Linkage;
2206   bool isConstant;
2207   Linkage = llvm::GlobalValue::PrivateLinkage;
2208   isConstant = !LangOpts.WritableStrings;
2209 
2210   llvm::GlobalVariable *GV =
2211   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2212                            ".str");
2213   GV->setUnnamedAddr(true);
2214   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2215   GV->setAlignment(Align.getQuantity());
2216   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2217 
2218   // String length.
2219   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2220   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2221 
2222   // The struct.
2223   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2224   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2225                                 llvm::GlobalVariable::PrivateLinkage, C,
2226                                 "_unnamed_nsstring_");
2227   // FIXME. Fix section.
2228   if (const char *Sect =
2229         LangOpts.ObjCRuntime.isNonFragile()
2230           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2231           : getContext().getTargetInfo().getNSStringSection())
2232     GV->setSection(Sect);
2233   Entry.setValue(GV);
2234 
2235   return GV;
2236 }
2237 
2238 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2239   if (ObjCFastEnumerationStateType.isNull()) {
2240     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2241                                      Context.getTranslationUnitDecl(),
2242                       &Context.Idents.get("__objcFastEnumerationState"));
2243     D->startDefinition();
2244 
2245     QualType FieldTypes[] = {
2246       Context.UnsignedLongTy,
2247       Context.getPointerType(Context.getObjCIdType()),
2248       Context.getPointerType(Context.UnsignedLongTy),
2249       Context.getConstantArrayType(Context.UnsignedLongTy,
2250                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2251     };
2252 
2253     for (size_t i = 0; i < 4; ++i) {
2254       FieldDecl *Field = FieldDecl::Create(Context,
2255                                            D,
2256                                            SourceLocation(),
2257                                            SourceLocation(), 0,
2258                                            FieldTypes[i], /*TInfo=*/0,
2259                                            /*BitWidth=*/0,
2260                                            /*Mutable=*/false,
2261                                            ICIS_NoInit);
2262       Field->setAccess(AS_public);
2263       D->addDecl(Field);
2264     }
2265 
2266     D->completeDefinition();
2267     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2268   }
2269 
2270   return ObjCFastEnumerationStateType;
2271 }
2272 
2273 llvm::Constant *
2274 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2275   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2276 
2277   // Don't emit it as the address of the string, emit the string data itself
2278   // as an inline array.
2279   if (E->getCharByteWidth() == 1) {
2280     SmallString<64> Str(E->getString());
2281 
2282     // Resize the string to the right size, which is indicated by its type.
2283     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2284     Str.resize(CAT->getSize().getZExtValue());
2285     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2286   }
2287 
2288   llvm::ArrayType *AType =
2289     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2290   llvm::Type *ElemTy = AType->getElementType();
2291   unsigned NumElements = AType->getNumElements();
2292 
2293   // Wide strings have either 2-byte or 4-byte elements.
2294   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2295     SmallVector<uint16_t, 32> Elements;
2296     Elements.reserve(NumElements);
2297 
2298     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2299       Elements.push_back(E->getCodeUnit(i));
2300     Elements.resize(NumElements);
2301     return llvm::ConstantDataArray::get(VMContext, Elements);
2302   }
2303 
2304   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2305   SmallVector<uint32_t, 32> Elements;
2306   Elements.reserve(NumElements);
2307 
2308   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2309     Elements.push_back(E->getCodeUnit(i));
2310   Elements.resize(NumElements);
2311   return llvm::ConstantDataArray::get(VMContext, Elements);
2312 }
2313 
2314 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2315 /// constant array for the given string literal.
2316 llvm::Constant *
2317 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2318   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2319   if (S->isAscii() || S->isUTF8()) {
2320     SmallString<64> Str(S->getString());
2321 
2322     // Resize the string to the right size, which is indicated by its type.
2323     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2324     Str.resize(CAT->getSize().getZExtValue());
2325     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2326   }
2327 
2328   // FIXME: the following does not memoize wide strings.
2329   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2330   llvm::GlobalVariable *GV =
2331     new llvm::GlobalVariable(getModule(),C->getType(),
2332                              !LangOpts.WritableStrings,
2333                              llvm::GlobalValue::PrivateLinkage,
2334                              C,".str");
2335 
2336   GV->setAlignment(Align.getQuantity());
2337   GV->setUnnamedAddr(true);
2338   return GV;
2339 }
2340 
2341 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2342 /// array for the given ObjCEncodeExpr node.
2343 llvm::Constant *
2344 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2345   std::string Str;
2346   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2347 
2348   return GetAddrOfConstantCString(Str);
2349 }
2350 
2351 
2352 /// GenerateWritableString -- Creates storage for a string literal.
2353 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2354                                              bool constant,
2355                                              CodeGenModule &CGM,
2356                                              const char *GlobalName,
2357                                              unsigned Alignment) {
2358   // Create Constant for this string literal. Don't add a '\0'.
2359   llvm::Constant *C =
2360       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2361 
2362   // Create a global variable for this string
2363   llvm::GlobalVariable *GV =
2364     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2365                              llvm::GlobalValue::PrivateLinkage,
2366                              C, GlobalName);
2367   GV->setAlignment(Alignment);
2368   GV->setUnnamedAddr(true);
2369   return GV;
2370 }
2371 
2372 /// GetAddrOfConstantString - Returns a pointer to a character array
2373 /// containing the literal. This contents are exactly that of the
2374 /// given string, i.e. it will not be null terminated automatically;
2375 /// see GetAddrOfConstantCString. Note that whether the result is
2376 /// actually a pointer to an LLVM constant depends on
2377 /// Feature.WriteableStrings.
2378 ///
2379 /// The result has pointer to array type.
2380 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2381                                                        const char *GlobalName,
2382                                                        unsigned Alignment) {
2383   // Get the default prefix if a name wasn't specified.
2384   if (!GlobalName)
2385     GlobalName = ".str";
2386 
2387   // Don't share any string literals if strings aren't constant.
2388   if (LangOpts.WritableStrings)
2389     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2390 
2391   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2392     ConstantStringMap.GetOrCreateValue(Str);
2393 
2394   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2395     if (Alignment > GV->getAlignment()) {
2396       GV->setAlignment(Alignment);
2397     }
2398     return GV;
2399   }
2400 
2401   // Create a global variable for this.
2402   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2403                                                    Alignment);
2404   Entry.setValue(GV);
2405   return GV;
2406 }
2407 
2408 /// GetAddrOfConstantCString - Returns a pointer to a character
2409 /// array containing the literal and a terminating '\0'
2410 /// character. The result has pointer to array type.
2411 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2412                                                         const char *GlobalName,
2413                                                         unsigned Alignment) {
2414   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2415   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2416 }
2417 
2418 /// EmitObjCPropertyImplementations - Emit information for synthesized
2419 /// properties for an implementation.
2420 void CodeGenModule::EmitObjCPropertyImplementations(const
2421                                                     ObjCImplementationDecl *D) {
2422   for (ObjCImplementationDecl::propimpl_iterator
2423          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2424     ObjCPropertyImplDecl *PID = *i;
2425 
2426     // Dynamic is just for type-checking.
2427     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2428       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2429 
2430       // Determine which methods need to be implemented, some may have
2431       // been overridden. Note that ::isSynthesized is not the method
2432       // we want, that just indicates if the decl came from a
2433       // property. What we want to know is if the method is defined in
2434       // this implementation.
2435       if (!D->getInstanceMethod(PD->getGetterName()))
2436         CodeGenFunction(*this).GenerateObjCGetter(
2437                                  const_cast<ObjCImplementationDecl *>(D), PID);
2438       if (!PD->isReadOnly() &&
2439           !D->getInstanceMethod(PD->getSetterName()))
2440         CodeGenFunction(*this).GenerateObjCSetter(
2441                                  const_cast<ObjCImplementationDecl *>(D), PID);
2442     }
2443   }
2444 }
2445 
2446 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2447   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2448   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2449        ivar; ivar = ivar->getNextIvar())
2450     if (ivar->getType().isDestructedType())
2451       return true;
2452 
2453   return false;
2454 }
2455 
2456 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2457 /// for an implementation.
2458 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2459   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2460   if (needsDestructMethod(D)) {
2461     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2462     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2463     ObjCMethodDecl *DTORMethod =
2464       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2465                              cxxSelector, getContext().VoidTy, 0, D,
2466                              /*isInstance=*/true, /*isVariadic=*/false,
2467                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2468                              /*isDefined=*/false, ObjCMethodDecl::Required);
2469     D->addInstanceMethod(DTORMethod);
2470     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2471     D->setHasCXXStructors(true);
2472   }
2473 
2474   // If the implementation doesn't have any ivar initializers, we don't need
2475   // a .cxx_construct.
2476   if (D->getNumIvarInitializers() == 0)
2477     return;
2478 
2479   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2480   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2481   // The constructor returns 'self'.
2482   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2483                                                 D->getLocation(),
2484                                                 D->getLocation(),
2485                                                 cxxSelector,
2486                                                 getContext().getObjCIdType(), 0,
2487                                                 D, /*isInstance=*/true,
2488                                                 /*isVariadic=*/false,
2489                                                 /*isSynthesized=*/true,
2490                                                 /*isImplicitlyDeclared=*/true,
2491                                                 /*isDefined=*/false,
2492                                                 ObjCMethodDecl::Required);
2493   D->addInstanceMethod(CTORMethod);
2494   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2495   D->setHasCXXStructors(true);
2496 }
2497 
2498 /// EmitNamespace - Emit all declarations in a namespace.
2499 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2500   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2501        I != E; ++I)
2502     EmitTopLevelDecl(*I);
2503 }
2504 
2505 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2506 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2507   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2508       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2509     ErrorUnsupported(LSD, "linkage spec");
2510     return;
2511   }
2512 
2513   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2514        I != E; ++I)
2515     EmitTopLevelDecl(*I);
2516 }
2517 
2518 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2519 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2520   // If an error has occurred, stop code generation, but continue
2521   // parsing and semantic analysis (to ensure all warnings and errors
2522   // are emitted).
2523   if (Diags.hasErrorOccurred())
2524     return;
2525 
2526   // Ignore dependent declarations.
2527   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2528     return;
2529 
2530   switch (D->getKind()) {
2531   case Decl::CXXConversion:
2532   case Decl::CXXMethod:
2533   case Decl::Function:
2534     // Skip function templates
2535     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2536         cast<FunctionDecl>(D)->isLateTemplateParsed())
2537       return;
2538 
2539     EmitGlobal(cast<FunctionDecl>(D));
2540     break;
2541 
2542   case Decl::Var:
2543     EmitGlobal(cast<VarDecl>(D));
2544     break;
2545 
2546   // Indirect fields from global anonymous structs and unions can be
2547   // ignored; only the actual variable requires IR gen support.
2548   case Decl::IndirectField:
2549     break;
2550 
2551   // C++ Decls
2552   case Decl::Namespace:
2553     EmitNamespace(cast<NamespaceDecl>(D));
2554     break;
2555     // No code generation needed.
2556   case Decl::UsingShadow:
2557   case Decl::Using:
2558   case Decl::UsingDirective:
2559   case Decl::ClassTemplate:
2560   case Decl::FunctionTemplate:
2561   case Decl::TypeAliasTemplate:
2562   case Decl::NamespaceAlias:
2563   case Decl::Block:
2564   case Decl::Import:
2565     break;
2566   case Decl::CXXConstructor:
2567     // Skip function templates
2568     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2569         cast<FunctionDecl>(D)->isLateTemplateParsed())
2570       return;
2571 
2572     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2573     break;
2574   case Decl::CXXDestructor:
2575     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2576       return;
2577     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2578     break;
2579 
2580   case Decl::StaticAssert:
2581     // Nothing to do.
2582     break;
2583 
2584   // Objective-C Decls
2585 
2586   // Forward declarations, no (immediate) code generation.
2587   case Decl::ObjCInterface:
2588     break;
2589 
2590   case Decl::ObjCCategory: {
2591     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2592     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2593       Context.ResetObjCLayout(CD->getClassInterface());
2594     break;
2595   }
2596 
2597   case Decl::ObjCProtocol: {
2598     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2599     if (Proto->isThisDeclarationADefinition())
2600       ObjCRuntime->GenerateProtocol(Proto);
2601     break;
2602   }
2603 
2604   case Decl::ObjCCategoryImpl:
2605     // Categories have properties but don't support synthesize so we
2606     // can ignore them here.
2607     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2608     break;
2609 
2610   case Decl::ObjCImplementation: {
2611     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2612     if (LangOpts.ObjCRuntime.isNonFragile() && OMD->hasSynthBitfield())
2613       Context.ResetObjCLayout(OMD->getClassInterface());
2614     EmitObjCPropertyImplementations(OMD);
2615     EmitObjCIvarInitializations(OMD);
2616     ObjCRuntime->GenerateClass(OMD);
2617     // Emit global variable debug information.
2618     if (CGDebugInfo *DI = getModuleDebugInfo())
2619       DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2620 				   OMD->getLocation());
2621 
2622     break;
2623   }
2624   case Decl::ObjCMethod: {
2625     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2626     // If this is not a prototype, emit the body.
2627     if (OMD->getBody())
2628       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2629     break;
2630   }
2631   case Decl::ObjCCompatibleAlias:
2632     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2633     break;
2634 
2635   case Decl::LinkageSpec:
2636     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2637     break;
2638 
2639   case Decl::FileScopeAsm: {
2640     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2641     StringRef AsmString = AD->getAsmString()->getString();
2642 
2643     const std::string &S = getModule().getModuleInlineAsm();
2644     if (S.empty())
2645       getModule().setModuleInlineAsm(AsmString);
2646     else if (*--S.end() == '\n')
2647       getModule().setModuleInlineAsm(S + AsmString.str());
2648     else
2649       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2650     break;
2651   }
2652 
2653   default:
2654     // Make sure we handled everything we should, every other kind is a
2655     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2656     // function. Need to recode Decl::Kind to do that easily.
2657     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2658   }
2659 }
2660 
2661 /// Turns the given pointer into a constant.
2662 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2663                                           const void *Ptr) {
2664   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2665   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2666   return llvm::ConstantInt::get(i64, PtrInt);
2667 }
2668 
2669 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2670                                    llvm::NamedMDNode *&GlobalMetadata,
2671                                    GlobalDecl D,
2672                                    llvm::GlobalValue *Addr) {
2673   if (!GlobalMetadata)
2674     GlobalMetadata =
2675       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2676 
2677   // TODO: should we report variant information for ctors/dtors?
2678   llvm::Value *Ops[] = {
2679     Addr,
2680     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2681   };
2682   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2683 }
2684 
2685 /// Emits metadata nodes associating all the global values in the
2686 /// current module with the Decls they came from.  This is useful for
2687 /// projects using IR gen as a subroutine.
2688 ///
2689 /// Since there's currently no way to associate an MDNode directly
2690 /// with an llvm::GlobalValue, we create a global named metadata
2691 /// with the name 'clang.global.decl.ptrs'.
2692 void CodeGenModule::EmitDeclMetadata() {
2693   llvm::NamedMDNode *GlobalMetadata = 0;
2694 
2695   // StaticLocalDeclMap
2696   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2697          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2698        I != E; ++I) {
2699     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2700     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2701   }
2702 }
2703 
2704 /// Emits metadata nodes for all the local variables in the current
2705 /// function.
2706 void CodeGenFunction::EmitDeclMetadata() {
2707   if (LocalDeclMap.empty()) return;
2708 
2709   llvm::LLVMContext &Context = getLLVMContext();
2710 
2711   // Find the unique metadata ID for this name.
2712   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2713 
2714   llvm::NamedMDNode *GlobalMetadata = 0;
2715 
2716   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2717          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2718     const Decl *D = I->first;
2719     llvm::Value *Addr = I->second;
2720 
2721     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2722       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2723       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2724     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2725       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2726       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2727     }
2728   }
2729 }
2730 
2731 void CodeGenModule::EmitCoverageFile() {
2732   if (!getCodeGenOpts().CoverageFile.empty()) {
2733     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2734       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2735       llvm::LLVMContext &Ctx = TheModule.getContext();
2736       llvm::MDString *CoverageFile =
2737           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2738       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2739         llvm::MDNode *CU = CUNode->getOperand(i);
2740         llvm::Value *node[] = { CoverageFile, CU };
2741         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2742         GCov->addOperand(N);
2743       }
2744     }
2745   }
2746 }
2747