xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c978f0f7ac33a5085053da7189201babd366c82d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/Stack.h"
48 #include "clang/Basic/TargetInfo.h"
49 #include "clang/Basic/Version.h"
50 #include "clang/CodeGen/BackendUtil.h"
51 #include "clang/CodeGen/ConstantInitBuilder.h"
52 #include "clang/Frontend/FrontendDiagnostic.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringSwitch.h"
56 #include "llvm/Analysis/TargetLibraryInfo.h"
57 #include "llvm/BinaryFormat/ELF.h"
58 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
59 #include "llvm/IR/AttributeMask.h"
60 #include "llvm/IR/CallingConv.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/ProfileSummary.h"
66 #include "llvm/ProfileData/InstrProfReader.h"
67 #include "llvm/ProfileData/SampleProf.h"
68 #include "llvm/Support/CRC.h"
69 #include "llvm/Support/CodeGen.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/ConvertUTF.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/TimeProfiler.h"
74 #include "llvm/Support/xxhash.h"
75 #include "llvm/TargetParser/RISCVISAInfo.h"
76 #include "llvm/TargetParser/Triple.h"
77 #include "llvm/TargetParser/X86TargetParser.h"
78 #include "llvm/Transforms/Utils/BuildLibCalls.h"
79 #include <optional>
80 
81 using namespace clang;
82 using namespace CodeGen;
83 
84 static llvm::cl::opt<bool> LimitedCoverage(
85     "limited-coverage-experimental", llvm::cl::Hidden,
86     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
87 
88 static const char AnnotationSection[] = "llvm.metadata";
89 
90 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
91   switch (CGM.getContext().getCXXABIKind()) {
92   case TargetCXXABI::AppleARM64:
93   case TargetCXXABI::Fuchsia:
94   case TargetCXXABI::GenericAArch64:
95   case TargetCXXABI::GenericARM:
96   case TargetCXXABI::iOS:
97   case TargetCXXABI::WatchOS:
98   case TargetCXXABI::GenericMIPS:
99   case TargetCXXABI::GenericItanium:
100   case TargetCXXABI::WebAssembly:
101   case TargetCXXABI::XL:
102     return CreateItaniumCXXABI(CGM);
103   case TargetCXXABI::Microsoft:
104     return CreateMicrosoftCXXABI(CGM);
105   }
106 
107   llvm_unreachable("invalid C++ ABI kind");
108 }
109 
110 static std::unique_ptr<TargetCodeGenInfo>
111 createTargetCodeGenInfo(CodeGenModule &CGM) {
112   const TargetInfo &Target = CGM.getTarget();
113   const llvm::Triple &Triple = Target.getTriple();
114   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
115 
116   switch (Triple.getArch()) {
117   default:
118     return createDefaultTargetCodeGenInfo(CGM);
119 
120   case llvm::Triple::m68k:
121     return createM68kTargetCodeGenInfo(CGM);
122   case llvm::Triple::mips:
123   case llvm::Triple::mipsel:
124     if (Triple.getOS() == llvm::Triple::NaCl)
125       return createPNaClTargetCodeGenInfo(CGM);
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
127 
128   case llvm::Triple::mips64:
129   case llvm::Triple::mips64el:
130     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
131 
132   case llvm::Triple::avr: {
133     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
134     // on avrtiny. For passing return value, R18~R25 are used on avr, and
135     // R22~R25 are used on avrtiny.
136     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
137     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
138     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
139   }
140 
141   case llvm::Triple::aarch64:
142   case llvm::Triple::aarch64_32:
143   case llvm::Triple::aarch64_be: {
144     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
145     if (Target.getABI() == "darwinpcs")
146       Kind = AArch64ABIKind::DarwinPCS;
147     else if (Triple.isOSWindows())
148       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
149     else if (Target.getABI() == "aapcs-soft")
150       Kind = AArch64ABIKind::AAPCSSoft;
151     else if (Target.getABI() == "pauthtest")
152       Kind = AArch64ABIKind::PAuthTest;
153 
154     return createAArch64TargetCodeGenInfo(CGM, Kind);
155   }
156 
157   case llvm::Triple::wasm32:
158   case llvm::Triple::wasm64: {
159     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
160     if (Target.getABI() == "experimental-mv")
161       Kind = WebAssemblyABIKind::ExperimentalMV;
162     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
163   }
164 
165   case llvm::Triple::arm:
166   case llvm::Triple::armeb:
167   case llvm::Triple::thumb:
168   case llvm::Triple::thumbeb: {
169     if (Triple.getOS() == llvm::Triple::Win32)
170       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
171 
172     ARMABIKind Kind = ARMABIKind::AAPCS;
173     StringRef ABIStr = Target.getABI();
174     if (ABIStr == "apcs-gnu")
175       Kind = ARMABIKind::APCS;
176     else if (ABIStr == "aapcs16")
177       Kind = ARMABIKind::AAPCS16_VFP;
178     else if (CodeGenOpts.FloatABI == "hard" ||
179              (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
180       Kind = ARMABIKind::AAPCS_VFP;
181 
182     return createARMTargetCodeGenInfo(CGM, Kind);
183   }
184 
185   case llvm::Triple::ppc: {
186     if (Triple.isOSAIX())
187       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
188 
189     bool IsSoftFloat =
190         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
191     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
192   }
193   case llvm::Triple::ppcle: {
194     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
195     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
196   }
197   case llvm::Triple::ppc64:
198     if (Triple.isOSAIX())
199       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
200 
201     if (Triple.isOSBinFormatELF()) {
202       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
203       if (Target.getABI() == "elfv2")
204         Kind = PPC64_SVR4_ABIKind::ELFv2;
205       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
206 
207       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
208     }
209     return createPPC64TargetCodeGenInfo(CGM);
210   case llvm::Triple::ppc64le: {
211     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
212     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
213     if (Target.getABI() == "elfv1")
214       Kind = PPC64_SVR4_ABIKind::ELFv1;
215     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
216 
217     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
218   }
219 
220   case llvm::Triple::nvptx:
221   case llvm::Triple::nvptx64:
222     return createNVPTXTargetCodeGenInfo(CGM);
223 
224   case llvm::Triple::msp430:
225     return createMSP430TargetCodeGenInfo(CGM);
226 
227   case llvm::Triple::riscv32:
228   case llvm::Triple::riscv64: {
229     StringRef ABIStr = Target.getABI();
230     unsigned XLen = Target.getPointerWidth(LangAS::Default);
231     unsigned ABIFLen = 0;
232     if (ABIStr.ends_with("f"))
233       ABIFLen = 32;
234     else if (ABIStr.ends_with("d"))
235       ABIFLen = 64;
236     bool EABI = ABIStr.ends_with("e");
237     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
238   }
239 
240   case llvm::Triple::systemz: {
241     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
242     bool HasVector = !SoftFloat && Target.getABI() == "vector";
243     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
244   }
245 
246   case llvm::Triple::tce:
247   case llvm::Triple::tcele:
248     return createTCETargetCodeGenInfo(CGM);
249 
250   case llvm::Triple::x86: {
251     bool IsDarwinVectorABI = Triple.isOSDarwin();
252     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
253 
254     if (Triple.getOS() == llvm::Triple::Win32) {
255       return createWinX86_32TargetCodeGenInfo(
256           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
257           CodeGenOpts.NumRegisterParameters);
258     }
259     return createX86_32TargetCodeGenInfo(
260         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
261         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
262   }
263 
264   case llvm::Triple::x86_64: {
265     StringRef ABI = Target.getABI();
266     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
267                                : ABI == "avx"  ? X86AVXABILevel::AVX
268                                                : X86AVXABILevel::None);
269 
270     switch (Triple.getOS()) {
271     case llvm::Triple::Win32:
272       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
273     default:
274       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
275     }
276   }
277   case llvm::Triple::hexagon:
278     return createHexagonTargetCodeGenInfo(CGM);
279   case llvm::Triple::lanai:
280     return createLanaiTargetCodeGenInfo(CGM);
281   case llvm::Triple::r600:
282     return createAMDGPUTargetCodeGenInfo(CGM);
283   case llvm::Triple::amdgcn:
284     return createAMDGPUTargetCodeGenInfo(CGM);
285   case llvm::Triple::sparc:
286     return createSparcV8TargetCodeGenInfo(CGM);
287   case llvm::Triple::sparcv9:
288     return createSparcV9TargetCodeGenInfo(CGM);
289   case llvm::Triple::xcore:
290     return createXCoreTargetCodeGenInfo(CGM);
291   case llvm::Triple::arc:
292     return createARCTargetCodeGenInfo(CGM);
293   case llvm::Triple::spir:
294   case llvm::Triple::spir64:
295     return createCommonSPIRTargetCodeGenInfo(CGM);
296   case llvm::Triple::spirv32:
297   case llvm::Triple::spirv64:
298     return createSPIRVTargetCodeGenInfo(CGM);
299   case llvm::Triple::dxil:
300     return createDirectXTargetCodeGenInfo(CGM);
301   case llvm::Triple::ve:
302     return createVETargetCodeGenInfo(CGM);
303   case llvm::Triple::csky: {
304     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
305     bool hasFP64 =
306         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
307     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
308                                             : hasFP64   ? 64
309                                                         : 32);
310   }
311   case llvm::Triple::bpfeb:
312   case llvm::Triple::bpfel:
313     return createBPFTargetCodeGenInfo(CGM);
314   case llvm::Triple::loongarch32:
315   case llvm::Triple::loongarch64: {
316     StringRef ABIStr = Target.getABI();
317     unsigned ABIFRLen = 0;
318     if (ABIStr.ends_with("f"))
319       ABIFRLen = 32;
320     else if (ABIStr.ends_with("d"))
321       ABIFRLen = 64;
322     return createLoongArchTargetCodeGenInfo(
323         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
324   }
325   }
326 }
327 
328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
329   if (!TheTargetCodeGenInfo)
330     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
331   return *TheTargetCodeGenInfo;
332 }
333 
334 CodeGenModule::CodeGenModule(ASTContext &C,
335                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
336                              const HeaderSearchOptions &HSO,
337                              const PreprocessorOptions &PPO,
338                              const CodeGenOptions &CGO, llvm::Module &M,
339                              DiagnosticsEngine &diags,
340                              CoverageSourceInfo *CoverageInfo)
341     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
342       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
343       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
344       VMContext(M.getContext()), VTables(*this),
345       SanitizerMD(new SanitizerMetadata(*this)) {
346 
347   // Initialize the type cache.
348   Types.reset(new CodeGenTypes(*this));
349   llvm::LLVMContext &LLVMContext = M.getContext();
350   VoidTy = llvm::Type::getVoidTy(LLVMContext);
351   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
352   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
353   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
354   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
355   HalfTy = llvm::Type::getHalfTy(LLVMContext);
356   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
357   FloatTy = llvm::Type::getFloatTy(LLVMContext);
358   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
359   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
360   PointerAlignInBytes =
361       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
362           .getQuantity();
363   SizeSizeInBytes =
364     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
365   IntAlignInBytes =
366     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
367   CharTy =
368     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
369   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
370   IntPtrTy = llvm::IntegerType::get(LLVMContext,
371     C.getTargetInfo().getMaxPointerWidth());
372   Int8PtrTy = llvm::PointerType::get(LLVMContext,
373                                      C.getTargetAddressSpace(LangAS::Default));
374   const llvm::DataLayout &DL = M.getDataLayout();
375   AllocaInt8PtrTy =
376       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
377   GlobalsInt8PtrTy =
378       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
379   ConstGlobalsPtrTy = llvm::PointerType::get(
380       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
381   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
382 
383   // Build C++20 Module initializers.
384   // TODO: Add Microsoft here once we know the mangling required for the
385   // initializers.
386   CXX20ModuleInits =
387       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
388                                        ItaniumMangleContext::MK_Itanium;
389 
390   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
391 
392   if (LangOpts.ObjC)
393     createObjCRuntime();
394   if (LangOpts.OpenCL)
395     createOpenCLRuntime();
396   if (LangOpts.OpenMP)
397     createOpenMPRuntime();
398   if (LangOpts.CUDA)
399     createCUDARuntime();
400   if (LangOpts.HLSL)
401     createHLSLRuntime();
402 
403   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
404   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
405       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
406     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
407                                getLangOpts()));
408 
409   // If debug info or coverage generation is enabled, create the CGDebugInfo
410   // object.
411   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
412       CodeGenOpts.CoverageNotesFile.size() ||
413       CodeGenOpts.CoverageDataFile.size())
414     DebugInfo.reset(new CGDebugInfo(*this));
415 
416   Block.GlobalUniqueCount = 0;
417 
418   if (C.getLangOpts().ObjC)
419     ObjCData.reset(new ObjCEntrypoints());
420 
421   if (CodeGenOpts.hasProfileClangUse()) {
422     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
423         CodeGenOpts.ProfileInstrumentUsePath, *FS,
424         CodeGenOpts.ProfileRemappingFile);
425     // We're checking for profile read errors in CompilerInvocation, so if
426     // there was an error it should've already been caught. If it hasn't been
427     // somehow, trip an assertion.
428     assert(ReaderOrErr);
429     PGOReader = std::move(ReaderOrErr.get());
430   }
431 
432   // If coverage mapping generation is enabled, create the
433   // CoverageMappingModuleGen object.
434   if (CodeGenOpts.CoverageMapping)
435     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
436 
437   // Generate the module name hash here if needed.
438   if (CodeGenOpts.UniqueInternalLinkageNames &&
439       !getModule().getSourceFileName().empty()) {
440     std::string Path = getModule().getSourceFileName();
441     // Check if a path substitution is needed from the MacroPrefixMap.
442     for (const auto &Entry : LangOpts.MacroPrefixMap)
443       if (Path.rfind(Entry.first, 0) != std::string::npos) {
444         Path = Entry.second + Path.substr(Entry.first.size());
445         break;
446       }
447     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
448   }
449 
450   // Record mregparm value now so it is visible through all of codegen.
451   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
452     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
453                               CodeGenOpts.NumRegisterParameters);
454 }
455 
456 CodeGenModule::~CodeGenModule() {}
457 
458 void CodeGenModule::createObjCRuntime() {
459   // This is just isGNUFamily(), but we want to force implementors of
460   // new ABIs to decide how best to do this.
461   switch (LangOpts.ObjCRuntime.getKind()) {
462   case ObjCRuntime::GNUstep:
463   case ObjCRuntime::GCC:
464   case ObjCRuntime::ObjFW:
465     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
466     return;
467 
468   case ObjCRuntime::FragileMacOSX:
469   case ObjCRuntime::MacOSX:
470   case ObjCRuntime::iOS:
471   case ObjCRuntime::WatchOS:
472     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
473     return;
474   }
475   llvm_unreachable("bad runtime kind");
476 }
477 
478 void CodeGenModule::createOpenCLRuntime() {
479   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
480 }
481 
482 void CodeGenModule::createOpenMPRuntime() {
483   // Select a specialized code generation class based on the target, if any.
484   // If it does not exist use the default implementation.
485   switch (getTriple().getArch()) {
486   case llvm::Triple::nvptx:
487   case llvm::Triple::nvptx64:
488   case llvm::Triple::amdgcn:
489     assert(getLangOpts().OpenMPIsTargetDevice &&
490            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
491     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
492     break;
493   default:
494     if (LangOpts.OpenMPSimd)
495       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
496     else
497       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
498     break;
499   }
500 }
501 
502 void CodeGenModule::createCUDARuntime() {
503   CUDARuntime.reset(CreateNVCUDARuntime(*this));
504 }
505 
506 void CodeGenModule::createHLSLRuntime() {
507   HLSLRuntime.reset(new CGHLSLRuntime(*this));
508 }
509 
510 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
511   Replacements[Name] = C;
512 }
513 
514 void CodeGenModule::applyReplacements() {
515   for (auto &I : Replacements) {
516     StringRef MangledName = I.first;
517     llvm::Constant *Replacement = I.second;
518     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
519     if (!Entry)
520       continue;
521     auto *OldF = cast<llvm::Function>(Entry);
522     auto *NewF = dyn_cast<llvm::Function>(Replacement);
523     if (!NewF) {
524       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
525         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
526       } else {
527         auto *CE = cast<llvm::ConstantExpr>(Replacement);
528         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
529                CE->getOpcode() == llvm::Instruction::GetElementPtr);
530         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
531       }
532     }
533 
534     // Replace old with new, but keep the old order.
535     OldF->replaceAllUsesWith(Replacement);
536     if (NewF) {
537       NewF->removeFromParent();
538       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
539                                                        NewF);
540     }
541     OldF->eraseFromParent();
542   }
543 }
544 
545 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
546   GlobalValReplacements.push_back(std::make_pair(GV, C));
547 }
548 
549 void CodeGenModule::applyGlobalValReplacements() {
550   for (auto &I : GlobalValReplacements) {
551     llvm::GlobalValue *GV = I.first;
552     llvm::Constant *C = I.second;
553 
554     GV->replaceAllUsesWith(C);
555     GV->eraseFromParent();
556   }
557 }
558 
559 // This is only used in aliases that we created and we know they have a
560 // linear structure.
561 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
562   const llvm::Constant *C;
563   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
564     C = GA->getAliasee();
565   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
566     C = GI->getResolver();
567   else
568     return GV;
569 
570   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
571   if (!AliaseeGV)
572     return nullptr;
573 
574   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
575   if (FinalGV == GV)
576     return nullptr;
577 
578   return FinalGV;
579 }
580 
581 static bool checkAliasedGlobal(
582     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
583     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
584     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
585     SourceRange AliasRange) {
586   GV = getAliasedGlobal(Alias);
587   if (!GV) {
588     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
589     return false;
590   }
591 
592   if (GV->hasCommonLinkage()) {
593     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
594     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
595       Diags.Report(Location, diag::err_alias_to_common);
596       return false;
597     }
598   }
599 
600   if (GV->isDeclaration()) {
601     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
602     Diags.Report(Location, diag::note_alias_requires_mangled_name)
603         << IsIFunc << IsIFunc;
604     // Provide a note if the given function is not found and exists as a
605     // mangled name.
606     for (const auto &[Decl, Name] : MangledDeclNames) {
607       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
608         if (ND->getName() == GV->getName()) {
609           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
610               << Name
611               << FixItHint::CreateReplacement(
612                      AliasRange,
613                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
614                          .str());
615         }
616       }
617     }
618     return false;
619   }
620 
621   if (IsIFunc) {
622     // Check resolver function type.
623     const auto *F = dyn_cast<llvm::Function>(GV);
624     if (!F) {
625       Diags.Report(Location, diag::err_alias_to_undefined)
626           << IsIFunc << IsIFunc;
627       return false;
628     }
629 
630     llvm::FunctionType *FTy = F->getFunctionType();
631     if (!FTy->getReturnType()->isPointerTy()) {
632       Diags.Report(Location, diag::err_ifunc_resolver_return);
633       return false;
634     }
635   }
636 
637   return true;
638 }
639 
640 // Emit a warning if toc-data attribute is requested for global variables that
641 // have aliases and remove the toc-data attribute.
642 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
643                                  const CodeGenOptions &CodeGenOpts,
644                                  DiagnosticsEngine &Diags,
645                                  SourceLocation Location) {
646   if (GVar->hasAttribute("toc-data")) {
647     auto GVId = GVar->getName();
648     // Is this a global variable specified by the user as local?
649     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
650       Diags.Report(Location, diag::warn_toc_unsupported_type)
651           << GVId << "the variable has an alias";
652     }
653     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
654     llvm::AttributeSet NewAttributes =
655         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
656     GVar->setAttributes(NewAttributes);
657   }
658 }
659 
660 void CodeGenModule::checkAliases() {
661   // Check if the constructed aliases are well formed. It is really unfortunate
662   // that we have to do this in CodeGen, but we only construct mangled names
663   // and aliases during codegen.
664   bool Error = false;
665   DiagnosticsEngine &Diags = getDiags();
666   for (const GlobalDecl &GD : Aliases) {
667     const auto *D = cast<ValueDecl>(GD.getDecl());
668     SourceLocation Location;
669     SourceRange Range;
670     bool IsIFunc = D->hasAttr<IFuncAttr>();
671     if (const Attr *A = D->getDefiningAttr()) {
672       Location = A->getLocation();
673       Range = A->getRange();
674     } else
675       llvm_unreachable("Not an alias or ifunc?");
676 
677     StringRef MangledName = getMangledName(GD);
678     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
679     const llvm::GlobalValue *GV = nullptr;
680     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
681                             MangledDeclNames, Range)) {
682       Error = true;
683       continue;
684     }
685 
686     if (getContext().getTargetInfo().getTriple().isOSAIX())
687       if (const llvm::GlobalVariable *GVar =
688               dyn_cast<const llvm::GlobalVariable>(GV))
689         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
690                              getCodeGenOpts(), Diags, Location);
691 
692     llvm::Constant *Aliasee =
693         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
694                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
695 
696     llvm::GlobalValue *AliaseeGV;
697     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
698       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
699     else
700       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
701 
702     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
703       StringRef AliasSection = SA->getName();
704       if (AliasSection != AliaseeGV->getSection())
705         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
706             << AliasSection << IsIFunc << IsIFunc;
707     }
708 
709     // We have to handle alias to weak aliases in here. LLVM itself disallows
710     // this since the object semantics would not match the IL one. For
711     // compatibility with gcc we implement it by just pointing the alias
712     // to its aliasee's aliasee. We also warn, since the user is probably
713     // expecting the link to be weak.
714     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
715       if (GA->isInterposable()) {
716         Diags.Report(Location, diag::warn_alias_to_weak_alias)
717             << GV->getName() << GA->getName() << IsIFunc;
718         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
719             GA->getAliasee(), Alias->getType());
720 
721         if (IsIFunc)
722           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
723         else
724           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
725       }
726     }
727     // ifunc resolvers are usually implemented to run before sanitizer
728     // initialization. Disable instrumentation to prevent the ordering issue.
729     if (IsIFunc)
730       cast<llvm::Function>(Aliasee)->addFnAttr(
731           llvm::Attribute::DisableSanitizerInstrumentation);
732   }
733   if (!Error)
734     return;
735 
736   for (const GlobalDecl &GD : Aliases) {
737     StringRef MangledName = getMangledName(GD);
738     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
739     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
740     Alias->eraseFromParent();
741   }
742 }
743 
744 void CodeGenModule::clear() {
745   DeferredDeclsToEmit.clear();
746   EmittedDeferredDecls.clear();
747   DeferredAnnotations.clear();
748   if (OpenMPRuntime)
749     OpenMPRuntime->clear();
750 }
751 
752 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
753                                        StringRef MainFile) {
754   if (!hasDiagnostics())
755     return;
756   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
757     if (MainFile.empty())
758       MainFile = "<stdin>";
759     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
760   } else {
761     if (Mismatched > 0)
762       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
763 
764     if (Missing > 0)
765       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
766   }
767 }
768 
769 static std::optional<llvm::GlobalValue::VisibilityTypes>
770 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
771   // Map to LLVM visibility.
772   switch (K) {
773   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
774     return std::nullopt;
775   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
776     return llvm::GlobalValue::DefaultVisibility;
777   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
778     return llvm::GlobalValue::HiddenVisibility;
779   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
780     return llvm::GlobalValue::ProtectedVisibility;
781   }
782   llvm_unreachable("unknown option value!");
783 }
784 
785 static void
786 setLLVMVisibility(llvm::GlobalValue &GV,
787                   std::optional<llvm::GlobalValue::VisibilityTypes> V) {
788   if (!V)
789     return;
790 
791   // Reset DSO locality before setting the visibility. This removes
792   // any effects that visibility options and annotations may have
793   // had on the DSO locality. Setting the visibility will implicitly set
794   // appropriate globals to DSO Local; however, this will be pessimistic
795   // w.r.t. to the normal compiler IRGen.
796   GV.setDSOLocal(false);
797   GV.setVisibility(*V);
798 }
799 
800 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
801                                              llvm::Module &M) {
802   if (!LO.VisibilityFromDLLStorageClass)
803     return;
804 
805   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
806       getLLVMVisibility(LO.getDLLExportVisibility());
807 
808   std::optional<llvm::GlobalValue::VisibilityTypes>
809       NoDLLStorageClassVisibility =
810           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
811 
812   std::optional<llvm::GlobalValue::VisibilityTypes>
813       ExternDeclDLLImportVisibility =
814           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
815 
816   std::optional<llvm::GlobalValue::VisibilityTypes>
817       ExternDeclNoDLLStorageClassVisibility =
818           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
819 
820   for (llvm::GlobalValue &GV : M.global_values()) {
821     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
822       continue;
823 
824     if (GV.isDeclarationForLinker())
825       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
826                                     llvm::GlobalValue::DLLImportStorageClass
827                                 ? ExternDeclDLLImportVisibility
828                                 : ExternDeclNoDLLStorageClassVisibility);
829     else
830       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
831                                     llvm::GlobalValue::DLLExportStorageClass
832                                 ? DLLExportVisibility
833                                 : NoDLLStorageClassVisibility);
834 
835     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
836   }
837 }
838 
839 static bool isStackProtectorOn(const LangOptions &LangOpts,
840                                const llvm::Triple &Triple,
841                                clang::LangOptions::StackProtectorMode Mode) {
842   if (Triple.isAMDGPU() || Triple.isNVPTX())
843     return false;
844   return LangOpts.getStackProtector() == Mode;
845 }
846 
847 void CodeGenModule::Release() {
848   Module *Primary = getContext().getCurrentNamedModule();
849   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
850     EmitModuleInitializers(Primary);
851   EmitDeferred();
852   DeferredDecls.insert(EmittedDeferredDecls.begin(),
853                        EmittedDeferredDecls.end());
854   EmittedDeferredDecls.clear();
855   EmitVTablesOpportunistically();
856   applyGlobalValReplacements();
857   applyReplacements();
858   emitMultiVersionFunctions();
859 
860   if (Context.getLangOpts().IncrementalExtensions &&
861       GlobalTopLevelStmtBlockInFlight.first) {
862     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
863     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
864     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
865   }
866 
867   // Module implementations are initialized the same way as a regular TU that
868   // imports one or more modules.
869   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
870     EmitCXXModuleInitFunc(Primary);
871   else
872     EmitCXXGlobalInitFunc();
873   EmitCXXGlobalCleanUpFunc();
874   registerGlobalDtorsWithAtExit();
875   EmitCXXThreadLocalInitFunc();
876   if (ObjCRuntime)
877     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
878       AddGlobalCtor(ObjCInitFunction);
879   if (Context.getLangOpts().CUDA && CUDARuntime) {
880     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
881       AddGlobalCtor(CudaCtorFunction);
882   }
883   if (OpenMPRuntime) {
884     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
885     OpenMPRuntime->clear();
886   }
887   if (PGOReader) {
888     getModule().setProfileSummary(
889         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
890         llvm::ProfileSummary::PSK_Instr);
891     if (PGOStats.hasDiagnostics())
892       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
893   }
894   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
895     return L.LexOrder < R.LexOrder;
896   });
897   EmitCtorList(GlobalCtors, "llvm.global_ctors");
898   EmitCtorList(GlobalDtors, "llvm.global_dtors");
899   EmitGlobalAnnotations();
900   EmitStaticExternCAliases();
901   checkAliases();
902   EmitDeferredUnusedCoverageMappings();
903   CodeGenPGO(*this).setValueProfilingFlag(getModule());
904   CodeGenPGO(*this).setProfileVersion(getModule());
905   if (CoverageMapping)
906     CoverageMapping->emit();
907   if (CodeGenOpts.SanitizeCfiCrossDso) {
908     CodeGenFunction(*this).EmitCfiCheckFail();
909     CodeGenFunction(*this).EmitCfiCheckStub();
910   }
911   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
912     finalizeKCFITypes();
913   emitAtAvailableLinkGuard();
914   if (Context.getTargetInfo().getTriple().isWasm())
915     EmitMainVoidAlias();
916 
917   if (getTriple().isAMDGPU() ||
918       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
919     // Emit amdhsa_code_object_version module flag, which is code object version
920     // times 100.
921     if (getTarget().getTargetOpts().CodeObjectVersion !=
922         llvm::CodeObjectVersionKind::COV_None) {
923       getModule().addModuleFlag(llvm::Module::Error,
924                                 "amdhsa_code_object_version",
925                                 getTarget().getTargetOpts().CodeObjectVersion);
926     }
927 
928     // Currently, "-mprintf-kind" option is only supported for HIP
929     if (LangOpts.HIP) {
930       auto *MDStr = llvm::MDString::get(
931           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
932                              TargetOptions::AMDGPUPrintfKind::Hostcall)
933                                 ? "hostcall"
934                                 : "buffered");
935       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
936                                 MDStr);
937     }
938   }
939 
940   // Emit a global array containing all external kernels or device variables
941   // used by host functions and mark it as used for CUDA/HIP. This is necessary
942   // to get kernels or device variables in archives linked in even if these
943   // kernels or device variables are only used in host functions.
944   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
945     SmallVector<llvm::Constant *, 8> UsedArray;
946     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
947       GlobalDecl GD;
948       if (auto *FD = dyn_cast<FunctionDecl>(D))
949         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
950       else
951         GD = GlobalDecl(D);
952       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
953           GetAddrOfGlobal(GD), Int8PtrTy));
954     }
955 
956     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
957 
958     auto *GV = new llvm::GlobalVariable(
959         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
960         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
961     addCompilerUsedGlobal(GV);
962   }
963   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
964     // Emit a unique ID so that host and device binaries from the same
965     // compilation unit can be associated.
966     auto *GV = new llvm::GlobalVariable(
967         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
968         llvm::Constant::getNullValue(Int8Ty),
969         "__hip_cuid_" + getContext().getCUIDHash());
970     addCompilerUsedGlobal(GV);
971   }
972   emitLLVMUsed();
973   if (SanStats)
974     SanStats->finish();
975 
976   if (CodeGenOpts.Autolink &&
977       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
978     EmitModuleLinkOptions();
979   }
980 
981   // On ELF we pass the dependent library specifiers directly to the linker
982   // without manipulating them. This is in contrast to other platforms where
983   // they are mapped to a specific linker option by the compiler. This
984   // difference is a result of the greater variety of ELF linkers and the fact
985   // that ELF linkers tend to handle libraries in a more complicated fashion
986   // than on other platforms. This forces us to defer handling the dependent
987   // libs to the linker.
988   //
989   // CUDA/HIP device and host libraries are different. Currently there is no
990   // way to differentiate dependent libraries for host or device. Existing
991   // usage of #pragma comment(lib, *) is intended for host libraries on
992   // Windows. Therefore emit llvm.dependent-libraries only for host.
993   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
994     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
995     for (auto *MD : ELFDependentLibraries)
996       NMD->addOperand(MD);
997   }
998 
999   if (CodeGenOpts.DwarfVersion) {
1000     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
1001                               CodeGenOpts.DwarfVersion);
1002   }
1003 
1004   if (CodeGenOpts.Dwarf64)
1005     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1006 
1007   if (Context.getLangOpts().SemanticInterposition)
1008     // Require various optimization to respect semantic interposition.
1009     getModule().setSemanticInterposition(true);
1010 
1011   if (CodeGenOpts.EmitCodeView) {
1012     // Indicate that we want CodeView in the metadata.
1013     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1014   }
1015   if (CodeGenOpts.CodeViewGHash) {
1016     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1017   }
1018   if (CodeGenOpts.ControlFlowGuard) {
1019     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1020     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1021   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1022     // Function ID tables for Control Flow Guard (cfguard=1).
1023     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1024   }
1025   if (CodeGenOpts.EHContGuard) {
1026     // Function ID tables for EH Continuation Guard.
1027     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1028   }
1029   if (Context.getLangOpts().Kernel) {
1030     // Note if we are compiling with /kernel.
1031     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1032   }
1033   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1034     // We don't support LTO with 2 with different StrictVTablePointers
1035     // FIXME: we could support it by stripping all the information introduced
1036     // by StrictVTablePointers.
1037 
1038     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1039 
1040     llvm::Metadata *Ops[2] = {
1041               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1042               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1043                   llvm::Type::getInt32Ty(VMContext), 1))};
1044 
1045     getModule().addModuleFlag(llvm::Module::Require,
1046                               "StrictVTablePointersRequirement",
1047                               llvm::MDNode::get(VMContext, Ops));
1048   }
1049   if (getModuleDebugInfo())
1050     // We support a single version in the linked module. The LLVM
1051     // parser will drop debug info with a different version number
1052     // (and warn about it, too).
1053     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1054                               llvm::DEBUG_METADATA_VERSION);
1055 
1056   // We need to record the widths of enums and wchar_t, so that we can generate
1057   // the correct build attributes in the ARM backend. wchar_size is also used by
1058   // TargetLibraryInfo.
1059   uint64_t WCharWidth =
1060       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1061   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1062 
1063   if (getTriple().isOSzOS()) {
1064     getModule().addModuleFlag(llvm::Module::Warning,
1065                               "zos_product_major_version",
1066                               uint32_t(CLANG_VERSION_MAJOR));
1067     getModule().addModuleFlag(llvm::Module::Warning,
1068                               "zos_product_minor_version",
1069                               uint32_t(CLANG_VERSION_MINOR));
1070     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1071                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1072     std::string ProductId = getClangVendor() + "clang";
1073     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1074                               llvm::MDString::get(VMContext, ProductId));
1075 
1076     // Record the language because we need it for the PPA2.
1077     StringRef lang_str = languageToString(
1078         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1079     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1080                               llvm::MDString::get(VMContext, lang_str));
1081 
1082     time_t TT = PreprocessorOpts.SourceDateEpoch
1083                     ? *PreprocessorOpts.SourceDateEpoch
1084                     : std::time(nullptr);
1085     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1086                               static_cast<uint64_t>(TT));
1087 
1088     // Multiple modes will be supported here.
1089     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1090                               llvm::MDString::get(VMContext, "ascii"));
1091   }
1092 
1093   llvm::Triple T = Context.getTargetInfo().getTriple();
1094   if (T.isARM() || T.isThumb()) {
1095     // The minimum width of an enum in bytes
1096     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1097     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1098   }
1099 
1100   if (T.isRISCV()) {
1101     StringRef ABIStr = Target.getABI();
1102     llvm::LLVMContext &Ctx = TheModule.getContext();
1103     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1104                               llvm::MDString::get(Ctx, ABIStr));
1105 
1106     // Add the canonical ISA string as metadata so the backend can set the ELF
1107     // attributes correctly. We use AppendUnique so LTO will keep all of the
1108     // unique ISA strings that were linked together.
1109     const std::vector<std::string> &Features =
1110         getTarget().getTargetOpts().Features;
1111     auto ParseResult =
1112         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1113     if (!errorToBool(ParseResult.takeError()))
1114       getModule().addModuleFlag(
1115           llvm::Module::AppendUnique, "riscv-isa",
1116           llvm::MDNode::get(
1117               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1118   }
1119 
1120   if (CodeGenOpts.SanitizeCfiCrossDso) {
1121     // Indicate that we want cross-DSO control flow integrity checks.
1122     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1123   }
1124 
1125   if (CodeGenOpts.WholeProgramVTables) {
1126     // Indicate whether VFE was enabled for this module, so that the
1127     // vcall_visibility metadata added under whole program vtables is handled
1128     // appropriately in the optimizer.
1129     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1130                               CodeGenOpts.VirtualFunctionElimination);
1131   }
1132 
1133   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1134     getModule().addModuleFlag(llvm::Module::Override,
1135                               "CFI Canonical Jump Tables",
1136                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1137   }
1138 
1139   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1140     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1141                               1);
1142   }
1143 
1144   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1145     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1146     // KCFI assumes patchable-function-prefix is the same for all indirectly
1147     // called functions. Store the expected offset for code generation.
1148     if (CodeGenOpts.PatchableFunctionEntryOffset)
1149       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1150                                 CodeGenOpts.PatchableFunctionEntryOffset);
1151   }
1152 
1153   if (CodeGenOpts.CFProtectionReturn &&
1154       Target.checkCFProtectionReturnSupported(getDiags())) {
1155     // Indicate that we want to instrument return control flow protection.
1156     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1157                               1);
1158   }
1159 
1160   if (CodeGenOpts.CFProtectionBranch &&
1161       Target.checkCFProtectionBranchSupported(getDiags())) {
1162     // Indicate that we want to instrument branch control flow protection.
1163     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1164                               1);
1165 
1166     auto Scheme = CodeGenOpts.getCFBranchLabelScheme();
1167     if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) {
1168       if (Scheme == CFBranchLabelSchemeKind::Default)
1169         Scheme = Target.getDefaultCFBranchLabelScheme();
1170       getModule().addModuleFlag(
1171           llvm::Module::Error, "cf-branch-label-scheme",
1172           llvm::MDString::get(getLLVMContext(),
1173                               getCFBranchLabelSchemeFlagVal(Scheme)));
1174     }
1175   }
1176 
1177   if (CodeGenOpts.FunctionReturnThunks)
1178     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1179 
1180   if (CodeGenOpts.IndirectBranchCSPrefix)
1181     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1182 
1183   // Add module metadata for return address signing (ignoring
1184   // non-leaf/all) and stack tagging. These are actually turned on by function
1185   // attributes, but we use module metadata to emit build attributes. This is
1186   // needed for LTO, where the function attributes are inside bitcode
1187   // serialised into a global variable by the time build attributes are
1188   // emitted, so we can't access them. LTO objects could be compiled with
1189   // different flags therefore module flags are set to "Min" behavior to achieve
1190   // the same end result of the normal build where e.g BTI is off if any object
1191   // doesn't support it.
1192   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1193       LangOpts.getSignReturnAddressScope() !=
1194           LangOptions::SignReturnAddressScopeKind::None)
1195     getModule().addModuleFlag(llvm::Module::Override,
1196                               "sign-return-address-buildattr", 1);
1197   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1198     getModule().addModuleFlag(llvm::Module::Override,
1199                               "tag-stack-memory-buildattr", 1);
1200 
1201   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1202     if (LangOpts.BranchTargetEnforcement)
1203       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1204                                 1);
1205     if (LangOpts.BranchProtectionPAuthLR)
1206       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1207                                 1);
1208     if (LangOpts.GuardedControlStack)
1209       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1210     if (LangOpts.hasSignReturnAddress())
1211       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1212     if (LangOpts.isSignReturnAddressScopeAll())
1213       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1214                                 1);
1215     if (!LangOpts.isSignReturnAddressWithAKey())
1216       getModule().addModuleFlag(llvm::Module::Min,
1217                                 "sign-return-address-with-bkey", 1);
1218 
1219     if (getTriple().isOSLinux()) {
1220       assert(getTriple().isOSBinFormatELF());
1221       using namespace llvm::ELF;
1222       uint64_t PAuthABIVersion =
1223           (LangOpts.PointerAuthIntrinsics
1224            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1225           (LangOpts.PointerAuthCalls
1226            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1227           (LangOpts.PointerAuthReturns
1228            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1229           (LangOpts.PointerAuthAuthTraps
1230            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1231           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1232            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1233           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1234            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1235           (LangOpts.PointerAuthInitFini
1236            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1237           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1238            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1239           (LangOpts.PointerAuthELFGOT
1240            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1241           (LangOpts.PointerAuthIndirectGotos
1242            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1243           (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1244            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1245           (LangOpts.PointerAuthFunctionTypeDiscrimination
1246            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1247       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1248                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1249                     "Update when new enum items are defined");
1250       if (PAuthABIVersion != 0) {
1251         getModule().addModuleFlag(llvm::Module::Error,
1252                                   "aarch64-elf-pauthabi-platform",
1253                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1254         getModule().addModuleFlag(llvm::Module::Error,
1255                                   "aarch64-elf-pauthabi-version",
1256                                   PAuthABIVersion);
1257       }
1258     }
1259   }
1260 
1261   if (CodeGenOpts.StackClashProtector)
1262     getModule().addModuleFlag(
1263         llvm::Module::Override, "probe-stack",
1264         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1265 
1266   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1267     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1268                               CodeGenOpts.StackProbeSize);
1269 
1270   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1271     llvm::LLVMContext &Ctx = TheModule.getContext();
1272     getModule().addModuleFlag(
1273         llvm::Module::Error, "MemProfProfileFilename",
1274         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1275   }
1276 
1277   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1278     // Indicate whether __nvvm_reflect should be configured to flush denormal
1279     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1280     // property.)
1281     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1282                               CodeGenOpts.FP32DenormalMode.Output !=
1283                                   llvm::DenormalMode::IEEE);
1284   }
1285 
1286   if (LangOpts.EHAsynch)
1287     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1288 
1289   // Indicate whether this Module was compiled with -fopenmp
1290   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1291     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1292   if (getLangOpts().OpenMPIsTargetDevice)
1293     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1294                               LangOpts.OpenMP);
1295 
1296   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1297   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1298     EmitOpenCLMetadata();
1299     // Emit SPIR version.
1300     if (getTriple().isSPIR()) {
1301       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1302       // opencl.spir.version named metadata.
1303       // C++ for OpenCL has a distinct mapping for version compatibility with
1304       // OpenCL.
1305       auto Version = LangOpts.getOpenCLCompatibleVersion();
1306       llvm::Metadata *SPIRVerElts[] = {
1307           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1308               Int32Ty, Version / 100)),
1309           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1310               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1311       llvm::NamedMDNode *SPIRVerMD =
1312           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1313       llvm::LLVMContext &Ctx = TheModule.getContext();
1314       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1315     }
1316   }
1317 
1318   // HLSL related end of code gen work items.
1319   if (LangOpts.HLSL)
1320     getHLSLRuntime().finishCodeGen();
1321 
1322   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1323     assert(PLevel < 3 && "Invalid PIC Level");
1324     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1325     if (Context.getLangOpts().PIE)
1326       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1327   }
1328 
1329   if (getCodeGenOpts().CodeModel.size() > 0) {
1330     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1331                   .Case("tiny", llvm::CodeModel::Tiny)
1332                   .Case("small", llvm::CodeModel::Small)
1333                   .Case("kernel", llvm::CodeModel::Kernel)
1334                   .Case("medium", llvm::CodeModel::Medium)
1335                   .Case("large", llvm::CodeModel::Large)
1336                   .Default(~0u);
1337     if (CM != ~0u) {
1338       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1339       getModule().setCodeModel(codeModel);
1340 
1341       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1342           Context.getTargetInfo().getTriple().getArch() ==
1343               llvm::Triple::x86_64) {
1344         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1345       }
1346     }
1347   }
1348 
1349   if (CodeGenOpts.NoPLT)
1350     getModule().setRtLibUseGOT();
1351   if (getTriple().isOSBinFormatELF() &&
1352       CodeGenOpts.DirectAccessExternalData !=
1353           getModule().getDirectAccessExternalData()) {
1354     getModule().setDirectAccessExternalData(
1355         CodeGenOpts.DirectAccessExternalData);
1356   }
1357   if (CodeGenOpts.UnwindTables)
1358     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1359 
1360   switch (CodeGenOpts.getFramePointer()) {
1361   case CodeGenOptions::FramePointerKind::None:
1362     // 0 ("none") is the default.
1363     break;
1364   case CodeGenOptions::FramePointerKind::Reserved:
1365     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1366     break;
1367   case CodeGenOptions::FramePointerKind::NonLeaf:
1368     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1369     break;
1370   case CodeGenOptions::FramePointerKind::All:
1371     getModule().setFramePointer(llvm::FramePointerKind::All);
1372     break;
1373   }
1374 
1375   SimplifyPersonality();
1376 
1377   if (getCodeGenOpts().EmitDeclMetadata)
1378     EmitDeclMetadata();
1379 
1380   if (getCodeGenOpts().CoverageNotesFile.size() ||
1381       getCodeGenOpts().CoverageDataFile.size())
1382     EmitCoverageFile();
1383 
1384   if (CGDebugInfo *DI = getModuleDebugInfo())
1385     DI->finalize();
1386 
1387   if (getCodeGenOpts().EmitVersionIdentMetadata)
1388     EmitVersionIdentMetadata();
1389 
1390   if (!getCodeGenOpts().RecordCommandLine.empty())
1391     EmitCommandLineMetadata();
1392 
1393   if (!getCodeGenOpts().StackProtectorGuard.empty())
1394     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1395   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1396     getModule().setStackProtectorGuardReg(
1397         getCodeGenOpts().StackProtectorGuardReg);
1398   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1399     getModule().setStackProtectorGuardSymbol(
1400         getCodeGenOpts().StackProtectorGuardSymbol);
1401   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1402     getModule().setStackProtectorGuardOffset(
1403         getCodeGenOpts().StackProtectorGuardOffset);
1404   if (getCodeGenOpts().StackAlignment)
1405     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1406   if (getCodeGenOpts().SkipRaxSetup)
1407     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1408   if (getLangOpts().RegCall4)
1409     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1410 
1411   if (getContext().getTargetInfo().getMaxTLSAlign())
1412     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1413                               getContext().getTargetInfo().getMaxTLSAlign());
1414 
1415   getTargetCodeGenInfo().emitTargetGlobals(*this);
1416 
1417   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1418 
1419   EmitBackendOptionsMetadata(getCodeGenOpts());
1420 
1421   // If there is device offloading code embed it in the host now.
1422   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1423 
1424   // Set visibility from DLL storage class
1425   // We do this at the end of LLVM IR generation; after any operation
1426   // that might affect the DLL storage class or the visibility, and
1427   // before anything that might act on these.
1428   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1429 
1430   // Check the tail call symbols are truly undefined.
1431   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1432     for (auto &I : MustTailCallUndefinedGlobals) {
1433       if (!I.first->isDefined())
1434         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1435       else {
1436         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1437         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1438         if (!Entry || Entry->isWeakForLinker() ||
1439             Entry->isDeclarationForLinker())
1440           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1441       }
1442     }
1443   }
1444 }
1445 
1446 void CodeGenModule::EmitOpenCLMetadata() {
1447   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1448   // opencl.ocl.version named metadata node.
1449   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1450   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1451 
1452   auto EmitVersion = [this](StringRef MDName, int Version) {
1453     llvm::Metadata *OCLVerElts[] = {
1454         llvm::ConstantAsMetadata::get(
1455             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1456         llvm::ConstantAsMetadata::get(
1457             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1458     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1459     llvm::LLVMContext &Ctx = TheModule.getContext();
1460     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1461   };
1462 
1463   EmitVersion("opencl.ocl.version", CLVersion);
1464   if (LangOpts.OpenCLCPlusPlus) {
1465     // In addition to the OpenCL compatible version, emit the C++ version.
1466     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1467   }
1468 }
1469 
1470 void CodeGenModule::EmitBackendOptionsMetadata(
1471     const CodeGenOptions &CodeGenOpts) {
1472   if (getTriple().isRISCV()) {
1473     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1474                               CodeGenOpts.SmallDataLimit);
1475   }
1476 }
1477 
1478 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1479   // Make sure that this type is translated.
1480   getTypes().UpdateCompletedType(TD);
1481 }
1482 
1483 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1484   // Make sure that this type is translated.
1485   getTypes().RefreshTypeCacheForClass(RD);
1486 }
1487 
1488 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1489   if (!TBAA)
1490     return nullptr;
1491   return TBAA->getTypeInfo(QTy);
1492 }
1493 
1494 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1495   if (!TBAA)
1496     return TBAAAccessInfo();
1497   if (getLangOpts().CUDAIsDevice) {
1498     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1499     // access info.
1500     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1501       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1502           nullptr)
1503         return TBAAAccessInfo();
1504     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1505       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1506           nullptr)
1507         return TBAAAccessInfo();
1508     }
1509   }
1510   return TBAA->getAccessInfo(AccessType);
1511 }
1512 
1513 TBAAAccessInfo
1514 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1515   if (!TBAA)
1516     return TBAAAccessInfo();
1517   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1518 }
1519 
1520 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1521   if (!TBAA)
1522     return nullptr;
1523   return TBAA->getTBAAStructInfo(QTy);
1524 }
1525 
1526 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1527   if (!TBAA)
1528     return nullptr;
1529   return TBAA->getBaseTypeInfo(QTy);
1530 }
1531 
1532 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1533   if (!TBAA)
1534     return nullptr;
1535   return TBAA->getAccessTagInfo(Info);
1536 }
1537 
1538 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1539                                                    TBAAAccessInfo TargetInfo) {
1540   if (!TBAA)
1541     return TBAAAccessInfo();
1542   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1543 }
1544 
1545 TBAAAccessInfo
1546 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1547                                                    TBAAAccessInfo InfoB) {
1548   if (!TBAA)
1549     return TBAAAccessInfo();
1550   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1551 }
1552 
1553 TBAAAccessInfo
1554 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1555                                               TBAAAccessInfo SrcInfo) {
1556   if (!TBAA)
1557     return TBAAAccessInfo();
1558   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1559 }
1560 
1561 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1562                                                 TBAAAccessInfo TBAAInfo) {
1563   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1564     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1565 }
1566 
1567 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1568     llvm::Instruction *I, const CXXRecordDecl *RD) {
1569   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1570                  llvm::MDNode::get(getLLVMContext(), {}));
1571 }
1572 
1573 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1574   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1575   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1576 }
1577 
1578 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1579 /// specified stmt yet.
1580 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1581   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1582                                                "cannot compile this %0 yet");
1583   std::string Msg = Type;
1584   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1585       << Msg << S->getSourceRange();
1586 }
1587 
1588 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1589 /// specified decl yet.
1590 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1591   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1592                                                "cannot compile this %0 yet");
1593   std::string Msg = Type;
1594   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1595 }
1596 
1597 void CodeGenModule::warnStackExhausted(SourceLocation Loc) {
1598   // Only warn about this once.
1599   if (!WarnedStackExhausted) {
1600     getDiags().Report(Loc, diag::warn_stack_exhausted);
1601     WarnedStackExhausted = true;
1602   }
1603 }
1604 
1605 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc,
1606                                                 llvm::function_ref<void()> Fn) {
1607   clang::runWithSufficientStackSpace([&] { warnStackExhausted(Loc); }, Fn);
1608 }
1609 
1610 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1611   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1612 }
1613 
1614 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1615                                         const NamedDecl *D) const {
1616   // Internal definitions always have default visibility.
1617   if (GV->hasLocalLinkage()) {
1618     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1619     return;
1620   }
1621   if (!D)
1622     return;
1623 
1624   // Set visibility for definitions, and for declarations if requested globally
1625   // or set explicitly.
1626   LinkageInfo LV = D->getLinkageAndVisibility();
1627 
1628   // OpenMP declare target variables must be visible to the host so they can
1629   // be registered. We require protected visibility unless the variable has
1630   // the DT_nohost modifier and does not need to be registered.
1631   if (Context.getLangOpts().OpenMP &&
1632       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1633       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1634       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1635           OMPDeclareTargetDeclAttr::DT_NoHost &&
1636       LV.getVisibility() == HiddenVisibility) {
1637     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1638     return;
1639   }
1640 
1641   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1642     // Reject incompatible dlllstorage and visibility annotations.
1643     if (!LV.isVisibilityExplicit())
1644       return;
1645     if (GV->hasDLLExportStorageClass()) {
1646       if (LV.getVisibility() == HiddenVisibility)
1647         getDiags().Report(D->getLocation(),
1648                           diag::err_hidden_visibility_dllexport);
1649     } else if (LV.getVisibility() != DefaultVisibility) {
1650       getDiags().Report(D->getLocation(),
1651                         diag::err_non_default_visibility_dllimport);
1652     }
1653     return;
1654   }
1655 
1656   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1657       !GV->isDeclarationForLinker())
1658     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1659 }
1660 
1661 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1662                                  llvm::GlobalValue *GV) {
1663   if (GV->hasLocalLinkage())
1664     return true;
1665 
1666   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1667     return true;
1668 
1669   // DLLImport explicitly marks the GV as external.
1670   if (GV->hasDLLImportStorageClass())
1671     return false;
1672 
1673   const llvm::Triple &TT = CGM.getTriple();
1674   const auto &CGOpts = CGM.getCodeGenOpts();
1675   if (TT.isWindowsGNUEnvironment()) {
1676     // In MinGW, variables without DLLImport can still be automatically
1677     // imported from a DLL by the linker; don't mark variables that
1678     // potentially could come from another DLL as DSO local.
1679 
1680     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1681     // (and this actually happens in the public interface of libstdc++), so
1682     // such variables can't be marked as DSO local. (Native TLS variables
1683     // can't be dllimported at all, though.)
1684     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1685         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1686         CGOpts.AutoImport)
1687       return false;
1688   }
1689 
1690   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1691   // remain unresolved in the link, they can be resolved to zero, which is
1692   // outside the current DSO.
1693   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1694     return false;
1695 
1696   // Every other GV is local on COFF.
1697   // Make an exception for windows OS in the triple: Some firmware builds use
1698   // *-win32-macho triples. This (accidentally?) produced windows relocations
1699   // without GOT tables in older clang versions; Keep this behaviour.
1700   // FIXME: even thread local variables?
1701   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1702     return true;
1703 
1704   // Only handle COFF and ELF for now.
1705   if (!TT.isOSBinFormatELF())
1706     return false;
1707 
1708   // If this is not an executable, don't assume anything is local.
1709   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1710   const auto &LOpts = CGM.getLangOpts();
1711   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1712     // On ELF, if -fno-semantic-interposition is specified and the target
1713     // supports local aliases, there will be neither CC1
1714     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1715     // dso_local on the function if using a local alias is preferable (can avoid
1716     // PLT indirection).
1717     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1718       return false;
1719     return !(CGM.getLangOpts().SemanticInterposition ||
1720              CGM.getLangOpts().HalfNoSemanticInterposition);
1721   }
1722 
1723   // A definition cannot be preempted from an executable.
1724   if (!GV->isDeclarationForLinker())
1725     return true;
1726 
1727   // Most PIC code sequences that assume that a symbol is local cannot produce a
1728   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1729   // depended, it seems worth it to handle it here.
1730   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1731     return false;
1732 
1733   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1734   if (TT.isPPC64())
1735     return false;
1736 
1737   if (CGOpts.DirectAccessExternalData) {
1738     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1739     // for non-thread-local variables. If the symbol is not defined in the
1740     // executable, a copy relocation will be needed at link time. dso_local is
1741     // excluded for thread-local variables because they generally don't support
1742     // copy relocations.
1743     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1744       if (!Var->isThreadLocal())
1745         return true;
1746 
1747     // -fno-pic sets dso_local on a function declaration to allow direct
1748     // accesses when taking its address (similar to a data symbol). If the
1749     // function is not defined in the executable, a canonical PLT entry will be
1750     // needed at link time. -fno-direct-access-external-data can avoid the
1751     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1752     // it could just cause trouble without providing perceptible benefits.
1753     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1754       return true;
1755   }
1756 
1757   // If we can use copy relocations we can assume it is local.
1758 
1759   // Otherwise don't assume it is local.
1760   return false;
1761 }
1762 
1763 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1764   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1765 }
1766 
1767 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1768                                           GlobalDecl GD) const {
1769   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1770   // C++ destructors have a few C++ ABI specific special cases.
1771   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1772     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1773     return;
1774   }
1775   setDLLImportDLLExport(GV, D);
1776 }
1777 
1778 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1779                                           const NamedDecl *D) const {
1780   if (D && D->isExternallyVisible()) {
1781     if (D->hasAttr<DLLImportAttr>())
1782       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1783     else if ((D->hasAttr<DLLExportAttr>() ||
1784               shouldMapVisibilityToDLLExport(D)) &&
1785              !GV->isDeclarationForLinker())
1786       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1787   }
1788 }
1789 
1790 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1791                                     GlobalDecl GD) const {
1792   setDLLImportDLLExport(GV, GD);
1793   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1794 }
1795 
1796 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1797                                     const NamedDecl *D) const {
1798   setDLLImportDLLExport(GV, D);
1799   setGVPropertiesAux(GV, D);
1800 }
1801 
1802 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1803                                        const NamedDecl *D) const {
1804   setGlobalVisibility(GV, D);
1805   setDSOLocal(GV);
1806   GV->setPartition(CodeGenOpts.SymbolPartition);
1807 }
1808 
1809 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1810   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1811       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1812       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1813       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1814       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1815 }
1816 
1817 llvm::GlobalVariable::ThreadLocalMode
1818 CodeGenModule::GetDefaultLLVMTLSModel() const {
1819   switch (CodeGenOpts.getDefaultTLSModel()) {
1820   case CodeGenOptions::GeneralDynamicTLSModel:
1821     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1822   case CodeGenOptions::LocalDynamicTLSModel:
1823     return llvm::GlobalVariable::LocalDynamicTLSModel;
1824   case CodeGenOptions::InitialExecTLSModel:
1825     return llvm::GlobalVariable::InitialExecTLSModel;
1826   case CodeGenOptions::LocalExecTLSModel:
1827     return llvm::GlobalVariable::LocalExecTLSModel;
1828   }
1829   llvm_unreachable("Invalid TLS model!");
1830 }
1831 
1832 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1833   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1834 
1835   llvm::GlobalValue::ThreadLocalMode TLM;
1836   TLM = GetDefaultLLVMTLSModel();
1837 
1838   // Override the TLS model if it is explicitly specified.
1839   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1840     TLM = GetLLVMTLSModel(Attr->getModel());
1841   }
1842 
1843   GV->setThreadLocalMode(TLM);
1844 }
1845 
1846 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1847                                           StringRef Name) {
1848   const TargetInfo &Target = CGM.getTarget();
1849   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1850 }
1851 
1852 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1853                                                  const CPUSpecificAttr *Attr,
1854                                                  unsigned CPUIndex,
1855                                                  raw_ostream &Out) {
1856   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1857   // supported.
1858   if (Attr)
1859     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1860   else if (CGM.getTarget().supportsIFunc())
1861     Out << ".resolver";
1862 }
1863 
1864 // Returns true if GD is a function decl with internal linkage and
1865 // needs a unique suffix after the mangled name.
1866 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1867                                         CodeGenModule &CGM) {
1868   const Decl *D = GD.getDecl();
1869   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1870          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1871 }
1872 
1873 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1874                                       const NamedDecl *ND,
1875                                       bool OmitMultiVersionMangling = false) {
1876   SmallString<256> Buffer;
1877   llvm::raw_svector_ostream Out(Buffer);
1878   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1879   if (!CGM.getModuleNameHash().empty())
1880     MC.needsUniqueInternalLinkageNames();
1881   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1882   if (ShouldMangle)
1883     MC.mangleName(GD.getWithDecl(ND), Out);
1884   else {
1885     IdentifierInfo *II = ND->getIdentifier();
1886     assert(II && "Attempt to mangle unnamed decl.");
1887     const auto *FD = dyn_cast<FunctionDecl>(ND);
1888 
1889     if (FD &&
1890         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1891       if (CGM.getLangOpts().RegCall4)
1892         Out << "__regcall4__" << II->getName();
1893       else
1894         Out << "__regcall3__" << II->getName();
1895     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1896                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1897       Out << "__device_stub__" << II->getName();
1898     } else {
1899       Out << II->getName();
1900     }
1901   }
1902 
1903   // Check if the module name hash should be appended for internal linkage
1904   // symbols.   This should come before multi-version target suffixes are
1905   // appended. This is to keep the name and module hash suffix of the
1906   // internal linkage function together.  The unique suffix should only be
1907   // added when name mangling is done to make sure that the final name can
1908   // be properly demangled.  For example, for C functions without prototypes,
1909   // name mangling is not done and the unique suffix should not be appeneded
1910   // then.
1911   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1912     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1913            "Hash computed when not explicitly requested");
1914     Out << CGM.getModuleNameHash();
1915   }
1916 
1917   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1918     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1919       switch (FD->getMultiVersionKind()) {
1920       case MultiVersionKind::CPUDispatch:
1921       case MultiVersionKind::CPUSpecific:
1922         AppendCPUSpecificCPUDispatchMangling(CGM,
1923                                              FD->getAttr<CPUSpecificAttr>(),
1924                                              GD.getMultiVersionIndex(), Out);
1925         break;
1926       case MultiVersionKind::Target: {
1927         auto *Attr = FD->getAttr<TargetAttr>();
1928         assert(Attr && "Expected TargetAttr to be present "
1929                        "for attribute mangling");
1930         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1931         Info.appendAttributeMangling(Attr, Out);
1932         break;
1933       }
1934       case MultiVersionKind::TargetVersion: {
1935         auto *Attr = FD->getAttr<TargetVersionAttr>();
1936         assert(Attr && "Expected TargetVersionAttr to be present "
1937                        "for attribute mangling");
1938         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1939         Info.appendAttributeMangling(Attr, Out);
1940         break;
1941       }
1942       case MultiVersionKind::TargetClones: {
1943         auto *Attr = FD->getAttr<TargetClonesAttr>();
1944         assert(Attr && "Expected TargetClonesAttr to be present "
1945                        "for attribute mangling");
1946         unsigned Index = GD.getMultiVersionIndex();
1947         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1948         Info.appendAttributeMangling(Attr, Index, Out);
1949         break;
1950       }
1951       case MultiVersionKind::None:
1952         llvm_unreachable("None multiversion type isn't valid here");
1953       }
1954     }
1955 
1956   // Make unique name for device side static file-scope variable for HIP.
1957   if (CGM.getContext().shouldExternalize(ND) &&
1958       CGM.getLangOpts().GPURelocatableDeviceCode &&
1959       CGM.getLangOpts().CUDAIsDevice)
1960     CGM.printPostfixForExternalizedDecl(Out, ND);
1961 
1962   return std::string(Out.str());
1963 }
1964 
1965 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1966                                             const FunctionDecl *FD,
1967                                             StringRef &CurName) {
1968   if (!FD->isMultiVersion())
1969     return;
1970 
1971   // Get the name of what this would be without the 'target' attribute.  This
1972   // allows us to lookup the version that was emitted when this wasn't a
1973   // multiversion function.
1974   std::string NonTargetName =
1975       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1976   GlobalDecl OtherGD;
1977   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1978     assert(OtherGD.getCanonicalDecl()
1979                .getDecl()
1980                ->getAsFunction()
1981                ->isMultiVersion() &&
1982            "Other GD should now be a multiversioned function");
1983     // OtherFD is the version of this function that was mangled BEFORE
1984     // becoming a MultiVersion function.  It potentially needs to be updated.
1985     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1986                                       .getDecl()
1987                                       ->getAsFunction()
1988                                       ->getMostRecentDecl();
1989     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1990     // This is so that if the initial version was already the 'default'
1991     // version, we don't try to update it.
1992     if (OtherName != NonTargetName) {
1993       // Remove instead of erase, since others may have stored the StringRef
1994       // to this.
1995       const auto ExistingRecord = Manglings.find(NonTargetName);
1996       if (ExistingRecord != std::end(Manglings))
1997         Manglings.remove(&(*ExistingRecord));
1998       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1999       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
2000           Result.first->first();
2001       // If this is the current decl is being created, make sure we update the name.
2002       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
2003         CurName = OtherNameRef;
2004       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
2005         Entry->setName(OtherName);
2006     }
2007   }
2008 }
2009 
2010 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
2011   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
2012 
2013   // Some ABIs don't have constructor variants.  Make sure that base and
2014   // complete constructors get mangled the same.
2015   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
2016     if (!getTarget().getCXXABI().hasConstructorVariants()) {
2017       CXXCtorType OrigCtorType = GD.getCtorType();
2018       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
2019       if (OrigCtorType == Ctor_Base)
2020         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
2021     }
2022   }
2023 
2024   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2025   // static device variable depends on whether the variable is referenced by
2026   // a host or device host function. Therefore the mangled name cannot be
2027   // cached.
2028   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2029     auto FoundName = MangledDeclNames.find(CanonicalGD);
2030     if (FoundName != MangledDeclNames.end())
2031       return FoundName->second;
2032   }
2033 
2034   // Keep the first result in the case of a mangling collision.
2035   const auto *ND = cast<NamedDecl>(GD.getDecl());
2036   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2037 
2038   // Ensure either we have different ABIs between host and device compilations,
2039   // says host compilation following MSVC ABI but device compilation follows
2040   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2041   // mangling should be the same after name stubbing. The later checking is
2042   // very important as the device kernel name being mangled in host-compilation
2043   // is used to resolve the device binaries to be executed. Inconsistent naming
2044   // result in undefined behavior. Even though we cannot check that naming
2045   // directly between host- and device-compilations, the host- and
2046   // device-mangling in host compilation could help catching certain ones.
2047   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2048          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2049          (getContext().getAuxTargetInfo() &&
2050           (getContext().getAuxTargetInfo()->getCXXABI() !=
2051            getContext().getTargetInfo().getCXXABI())) ||
2052          getCUDARuntime().getDeviceSideName(ND) ==
2053              getMangledNameImpl(
2054                  *this,
2055                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2056                  ND));
2057 
2058   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2059   return MangledDeclNames[CanonicalGD] = Result.first->first();
2060 }
2061 
2062 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2063                                              const BlockDecl *BD) {
2064   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2065   const Decl *D = GD.getDecl();
2066 
2067   SmallString<256> Buffer;
2068   llvm::raw_svector_ostream Out(Buffer);
2069   if (!D)
2070     MangleCtx.mangleGlobalBlock(BD,
2071       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2072   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2073     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2074   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2075     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2076   else
2077     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2078 
2079   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2080   return Result.first->first();
2081 }
2082 
2083 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2084   auto it = MangledDeclNames.begin();
2085   while (it != MangledDeclNames.end()) {
2086     if (it->second == Name)
2087       return it->first;
2088     it++;
2089   }
2090   return GlobalDecl();
2091 }
2092 
2093 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2094   return getModule().getNamedValue(Name);
2095 }
2096 
2097 /// AddGlobalCtor - Add a function to the list that will be called before
2098 /// main() runs.
2099 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2100                                   unsigned LexOrder,
2101                                   llvm::Constant *AssociatedData) {
2102   // FIXME: Type coercion of void()* types.
2103   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2104 }
2105 
2106 /// AddGlobalDtor - Add a function to the list that will be called
2107 /// when the module is unloaded.
2108 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2109                                   bool IsDtorAttrFunc) {
2110   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2111       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2112     DtorsUsingAtExit[Priority].push_back(Dtor);
2113     return;
2114   }
2115 
2116   // FIXME: Type coercion of void()* types.
2117   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2118 }
2119 
2120 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2121   if (Fns.empty()) return;
2122 
2123   const PointerAuthSchema &InitFiniAuthSchema =
2124       getCodeGenOpts().PointerAuth.InitFiniPointers;
2125 
2126   // Ctor function type is ptr.
2127   llvm::PointerType *PtrTy = llvm::PointerType::get(
2128       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2129 
2130   // Get the type of a ctor entry, { i32, ptr, ptr }.
2131   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2132 
2133   // Construct the constructor and destructor arrays.
2134   ConstantInitBuilder Builder(*this);
2135   auto Ctors = Builder.beginArray(CtorStructTy);
2136   for (const auto &I : Fns) {
2137     auto Ctor = Ctors.beginStruct(CtorStructTy);
2138     Ctor.addInt(Int32Ty, I.Priority);
2139     if (InitFiniAuthSchema) {
2140       llvm::Constant *StorageAddress =
2141           (InitFiniAuthSchema.isAddressDiscriminated()
2142                ? llvm::ConstantExpr::getIntToPtr(
2143                      llvm::ConstantInt::get(
2144                          IntPtrTy,
2145                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2146                      PtrTy)
2147                : nullptr);
2148       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2149           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2150           llvm::ConstantInt::get(
2151               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2152       Ctor.add(SignedCtorPtr);
2153     } else {
2154       Ctor.add(I.Initializer);
2155     }
2156     if (I.AssociatedData)
2157       Ctor.add(I.AssociatedData);
2158     else
2159       Ctor.addNullPointer(PtrTy);
2160     Ctor.finishAndAddTo(Ctors);
2161   }
2162 
2163   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2164                                           /*constant*/ false,
2165                                           llvm::GlobalValue::AppendingLinkage);
2166 
2167   // The LTO linker doesn't seem to like it when we set an alignment
2168   // on appending variables.  Take it off as a workaround.
2169   List->setAlignment(std::nullopt);
2170 
2171   Fns.clear();
2172 }
2173 
2174 llvm::GlobalValue::LinkageTypes
2175 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2176   const auto *D = cast<FunctionDecl>(GD.getDecl());
2177 
2178   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2179 
2180   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2181     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2182 
2183   return getLLVMLinkageForDeclarator(D, Linkage);
2184 }
2185 
2186 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2187   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2188   if (!MDS) return nullptr;
2189 
2190   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2191 }
2192 
2193 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2194   if (auto *FnType = T->getAs<FunctionProtoType>())
2195     T = getContext().getFunctionType(
2196         FnType->getReturnType(), FnType->getParamTypes(),
2197         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2198 
2199   std::string OutName;
2200   llvm::raw_string_ostream Out(OutName);
2201   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2202       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2203 
2204   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2205     Out << ".normalized";
2206 
2207   return llvm::ConstantInt::get(Int32Ty,
2208                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2209 }
2210 
2211 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2212                                               const CGFunctionInfo &Info,
2213                                               llvm::Function *F, bool IsThunk) {
2214   unsigned CallingConv;
2215   llvm::AttributeList PAL;
2216   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2217                          /*AttrOnCallSite=*/false, IsThunk);
2218   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2219       getTarget().getTriple().isWindowsArm64EC()) {
2220     SourceLocation Loc;
2221     if (const Decl *D = GD.getDecl())
2222       Loc = D->getLocation();
2223 
2224     Error(Loc, "__vectorcall calling convention is not currently supported");
2225   }
2226   F->setAttributes(PAL);
2227   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2228 }
2229 
2230 static void removeImageAccessQualifier(std::string& TyName) {
2231   std::string ReadOnlyQual("__read_only");
2232   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2233   if (ReadOnlyPos != std::string::npos)
2234     // "+ 1" for the space after access qualifier.
2235     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2236   else {
2237     std::string WriteOnlyQual("__write_only");
2238     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2239     if (WriteOnlyPos != std::string::npos)
2240       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2241     else {
2242       std::string ReadWriteQual("__read_write");
2243       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2244       if (ReadWritePos != std::string::npos)
2245         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2246     }
2247   }
2248 }
2249 
2250 // Returns the address space id that should be produced to the
2251 // kernel_arg_addr_space metadata. This is always fixed to the ids
2252 // as specified in the SPIR 2.0 specification in order to differentiate
2253 // for example in clGetKernelArgInfo() implementation between the address
2254 // spaces with targets without unique mapping to the OpenCL address spaces
2255 // (basically all single AS CPUs).
2256 static unsigned ArgInfoAddressSpace(LangAS AS) {
2257   switch (AS) {
2258   case LangAS::opencl_global:
2259     return 1;
2260   case LangAS::opencl_constant:
2261     return 2;
2262   case LangAS::opencl_local:
2263     return 3;
2264   case LangAS::opencl_generic:
2265     return 4; // Not in SPIR 2.0 specs.
2266   case LangAS::opencl_global_device:
2267     return 5;
2268   case LangAS::opencl_global_host:
2269     return 6;
2270   default:
2271     return 0; // Assume private.
2272   }
2273 }
2274 
2275 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2276                                          const FunctionDecl *FD,
2277                                          CodeGenFunction *CGF) {
2278   assert(((FD && CGF) || (!FD && !CGF)) &&
2279          "Incorrect use - FD and CGF should either be both null or not!");
2280   // Create MDNodes that represent the kernel arg metadata.
2281   // Each MDNode is a list in the form of "key", N number of values which is
2282   // the same number of values as their are kernel arguments.
2283 
2284   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2285 
2286   // MDNode for the kernel argument address space qualifiers.
2287   SmallVector<llvm::Metadata *, 8> addressQuals;
2288 
2289   // MDNode for the kernel argument access qualifiers (images only).
2290   SmallVector<llvm::Metadata *, 8> accessQuals;
2291 
2292   // MDNode for the kernel argument type names.
2293   SmallVector<llvm::Metadata *, 8> argTypeNames;
2294 
2295   // MDNode for the kernel argument base type names.
2296   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2297 
2298   // MDNode for the kernel argument type qualifiers.
2299   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2300 
2301   // MDNode for the kernel argument names.
2302   SmallVector<llvm::Metadata *, 8> argNames;
2303 
2304   if (FD && CGF)
2305     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2306       const ParmVarDecl *parm = FD->getParamDecl(i);
2307       // Get argument name.
2308       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2309 
2310       if (!getLangOpts().OpenCL)
2311         continue;
2312       QualType ty = parm->getType();
2313       std::string typeQuals;
2314 
2315       // Get image and pipe access qualifier:
2316       if (ty->isImageType() || ty->isPipeType()) {
2317         const Decl *PDecl = parm;
2318         if (const auto *TD = ty->getAs<TypedefType>())
2319           PDecl = TD->getDecl();
2320         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2321         if (A && A->isWriteOnly())
2322           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2323         else if (A && A->isReadWrite())
2324           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2325         else
2326           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2327       } else
2328         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2329 
2330       auto getTypeSpelling = [&](QualType Ty) {
2331         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2332 
2333         if (Ty.isCanonical()) {
2334           StringRef typeNameRef = typeName;
2335           // Turn "unsigned type" to "utype"
2336           if (typeNameRef.consume_front("unsigned "))
2337             return std::string("u") + typeNameRef.str();
2338           if (typeNameRef.consume_front("signed "))
2339             return typeNameRef.str();
2340         }
2341 
2342         return typeName;
2343       };
2344 
2345       if (ty->isPointerType()) {
2346         QualType pointeeTy = ty->getPointeeType();
2347 
2348         // Get address qualifier.
2349         addressQuals.push_back(
2350             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2351                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2352 
2353         // Get argument type name.
2354         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2355         std::string baseTypeName =
2356             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2357         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2358         argBaseTypeNames.push_back(
2359             llvm::MDString::get(VMContext, baseTypeName));
2360 
2361         // Get argument type qualifiers:
2362         if (ty.isRestrictQualified())
2363           typeQuals = "restrict";
2364         if (pointeeTy.isConstQualified() ||
2365             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2366           typeQuals += typeQuals.empty() ? "const" : " const";
2367         if (pointeeTy.isVolatileQualified())
2368           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2369       } else {
2370         uint32_t AddrSpc = 0;
2371         bool isPipe = ty->isPipeType();
2372         if (ty->isImageType() || isPipe)
2373           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2374 
2375         addressQuals.push_back(
2376             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2377 
2378         // Get argument type name.
2379         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2380         std::string typeName = getTypeSpelling(ty);
2381         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2382 
2383         // Remove access qualifiers on images
2384         // (as they are inseparable from type in clang implementation,
2385         // but OpenCL spec provides a special query to get access qualifier
2386         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2387         if (ty->isImageType()) {
2388           removeImageAccessQualifier(typeName);
2389           removeImageAccessQualifier(baseTypeName);
2390         }
2391 
2392         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2393         argBaseTypeNames.push_back(
2394             llvm::MDString::get(VMContext, baseTypeName));
2395 
2396         if (isPipe)
2397           typeQuals = "pipe";
2398       }
2399       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2400     }
2401 
2402   if (getLangOpts().OpenCL) {
2403     Fn->setMetadata("kernel_arg_addr_space",
2404                     llvm::MDNode::get(VMContext, addressQuals));
2405     Fn->setMetadata("kernel_arg_access_qual",
2406                     llvm::MDNode::get(VMContext, accessQuals));
2407     Fn->setMetadata("kernel_arg_type",
2408                     llvm::MDNode::get(VMContext, argTypeNames));
2409     Fn->setMetadata("kernel_arg_base_type",
2410                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2411     Fn->setMetadata("kernel_arg_type_qual",
2412                     llvm::MDNode::get(VMContext, argTypeQuals));
2413   }
2414   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2415       getCodeGenOpts().HIPSaveKernelArgName)
2416     Fn->setMetadata("kernel_arg_name",
2417                     llvm::MDNode::get(VMContext, argNames));
2418 }
2419 
2420 /// Determines whether the language options require us to model
2421 /// unwind exceptions.  We treat -fexceptions as mandating this
2422 /// except under the fragile ObjC ABI with only ObjC exceptions
2423 /// enabled.  This means, for example, that C with -fexceptions
2424 /// enables this.
2425 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2426   // If exceptions are completely disabled, obviously this is false.
2427   if (!LangOpts.Exceptions) return false;
2428 
2429   // If C++ exceptions are enabled, this is true.
2430   if (LangOpts.CXXExceptions) return true;
2431 
2432   // If ObjC exceptions are enabled, this depends on the ABI.
2433   if (LangOpts.ObjCExceptions) {
2434     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2435   }
2436 
2437   return true;
2438 }
2439 
2440 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2441                                                       const CXXMethodDecl *MD) {
2442   // Check that the type metadata can ever actually be used by a call.
2443   if (!CGM.getCodeGenOpts().LTOUnit ||
2444       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2445     return false;
2446 
2447   // Only functions whose address can be taken with a member function pointer
2448   // need this sort of type metadata.
2449   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2450          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2451 }
2452 
2453 SmallVector<const CXXRecordDecl *, 0>
2454 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2455   llvm::SetVector<const CXXRecordDecl *> MostBases;
2456 
2457   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2458   CollectMostBases = [&](const CXXRecordDecl *RD) {
2459     if (RD->getNumBases() == 0)
2460       MostBases.insert(RD);
2461     for (const CXXBaseSpecifier &B : RD->bases())
2462       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2463   };
2464   CollectMostBases(RD);
2465   return MostBases.takeVector();
2466 }
2467 
2468 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2469                                                            llvm::Function *F) {
2470   llvm::AttrBuilder B(F->getContext());
2471 
2472   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2473     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2474 
2475   if (CodeGenOpts.StackClashProtector)
2476     B.addAttribute("probe-stack", "inline-asm");
2477 
2478   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2479     B.addAttribute("stack-probe-size",
2480                    std::to_string(CodeGenOpts.StackProbeSize));
2481 
2482   if (!hasUnwindExceptions(LangOpts))
2483     B.addAttribute(llvm::Attribute::NoUnwind);
2484 
2485   if (D && D->hasAttr<NoStackProtectorAttr>())
2486     ; // Do nothing.
2487   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2488            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2489     B.addAttribute(llvm::Attribute::StackProtectStrong);
2490   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2491     B.addAttribute(llvm::Attribute::StackProtect);
2492   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2493     B.addAttribute(llvm::Attribute::StackProtectStrong);
2494   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2495     B.addAttribute(llvm::Attribute::StackProtectReq);
2496 
2497   if (!D) {
2498     // Non-entry HLSL functions must always be inlined.
2499     if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline))
2500       B.addAttribute(llvm::Attribute::AlwaysInline);
2501     // If we don't have a declaration to control inlining, the function isn't
2502     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2503     // disabled, mark the function as noinline.
2504     else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2505              CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2506       B.addAttribute(llvm::Attribute::NoInline);
2507 
2508     F->addFnAttrs(B);
2509     return;
2510   }
2511 
2512   // Handle SME attributes that apply to function definitions,
2513   // rather than to function prototypes.
2514   if (D->hasAttr<ArmLocallyStreamingAttr>())
2515     B.addAttribute("aarch64_pstate_sm_body");
2516 
2517   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2518     if (Attr->isNewZA())
2519       B.addAttribute("aarch64_new_za");
2520     if (Attr->isNewZT0())
2521       B.addAttribute("aarch64_new_zt0");
2522   }
2523 
2524   // Track whether we need to add the optnone LLVM attribute,
2525   // starting with the default for this optimization level.
2526   bool ShouldAddOptNone =
2527       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2528   // We can't add optnone in the following cases, it won't pass the verifier.
2529   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2530   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2531 
2532   // Non-entry HLSL functions must always be inlined.
2533   if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) &&
2534       !D->hasAttr<NoInlineAttr>()) {
2535     B.addAttribute(llvm::Attribute::AlwaysInline);
2536   } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2537              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2538     // Add optnone, but do so only if the function isn't always_inline.
2539     B.addAttribute(llvm::Attribute::OptimizeNone);
2540 
2541     // OptimizeNone implies noinline; we should not be inlining such functions.
2542     B.addAttribute(llvm::Attribute::NoInline);
2543 
2544     // We still need to handle naked functions even though optnone subsumes
2545     // much of their semantics.
2546     if (D->hasAttr<NakedAttr>())
2547       B.addAttribute(llvm::Attribute::Naked);
2548 
2549     // OptimizeNone wins over OptimizeForSize and MinSize.
2550     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2551     F->removeFnAttr(llvm::Attribute::MinSize);
2552   } else if (D->hasAttr<NakedAttr>()) {
2553     // Naked implies noinline: we should not be inlining such functions.
2554     B.addAttribute(llvm::Attribute::Naked);
2555     B.addAttribute(llvm::Attribute::NoInline);
2556   } else if (D->hasAttr<NoDuplicateAttr>()) {
2557     B.addAttribute(llvm::Attribute::NoDuplicate);
2558   } else if (D->hasAttr<NoInlineAttr>() &&
2559              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2560     // Add noinline if the function isn't always_inline.
2561     B.addAttribute(llvm::Attribute::NoInline);
2562   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2563              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2564     // (noinline wins over always_inline, and we can't specify both in IR)
2565     B.addAttribute(llvm::Attribute::AlwaysInline);
2566   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2567     // If we're not inlining, then force everything that isn't always_inline to
2568     // carry an explicit noinline attribute.
2569     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2570       B.addAttribute(llvm::Attribute::NoInline);
2571   } else {
2572     // Otherwise, propagate the inline hint attribute and potentially use its
2573     // absence to mark things as noinline.
2574     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2575       // Search function and template pattern redeclarations for inline.
2576       auto CheckForInline = [](const FunctionDecl *FD) {
2577         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2578           return Redecl->isInlineSpecified();
2579         };
2580         if (any_of(FD->redecls(), CheckRedeclForInline))
2581           return true;
2582         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2583         if (!Pattern)
2584           return false;
2585         return any_of(Pattern->redecls(), CheckRedeclForInline);
2586       };
2587       if (CheckForInline(FD)) {
2588         B.addAttribute(llvm::Attribute::InlineHint);
2589       } else if (CodeGenOpts.getInlining() ==
2590                      CodeGenOptions::OnlyHintInlining &&
2591                  !FD->isInlined() &&
2592                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2593         B.addAttribute(llvm::Attribute::NoInline);
2594       }
2595     }
2596   }
2597 
2598   // Add other optimization related attributes if we are optimizing this
2599   // function.
2600   if (!D->hasAttr<OptimizeNoneAttr>()) {
2601     if (D->hasAttr<ColdAttr>()) {
2602       if (!ShouldAddOptNone)
2603         B.addAttribute(llvm::Attribute::OptimizeForSize);
2604       B.addAttribute(llvm::Attribute::Cold);
2605     }
2606     if (D->hasAttr<HotAttr>())
2607       B.addAttribute(llvm::Attribute::Hot);
2608     if (D->hasAttr<MinSizeAttr>())
2609       B.addAttribute(llvm::Attribute::MinSize);
2610   }
2611 
2612   F->addFnAttrs(B);
2613 
2614   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2615   if (alignment)
2616     F->setAlignment(llvm::Align(alignment));
2617 
2618   if (!D->hasAttr<AlignedAttr>())
2619     if (LangOpts.FunctionAlignment)
2620       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2621 
2622   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2623   // reserve a bit for differentiating between virtual and non-virtual member
2624   // functions. If the current target's C++ ABI requires this and this is a
2625   // member function, set its alignment accordingly.
2626   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2627     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2628       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2629   }
2630 
2631   // In the cross-dso CFI mode with canonical jump tables, we want !type
2632   // attributes on definitions only.
2633   if (CodeGenOpts.SanitizeCfiCrossDso &&
2634       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2635     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2636       // Skip available_externally functions. They won't be codegen'ed in the
2637       // current module anyway.
2638       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2639         CreateFunctionTypeMetadataForIcall(FD, F);
2640     }
2641   }
2642 
2643   // Emit type metadata on member functions for member function pointer checks.
2644   // These are only ever necessary on definitions; we're guaranteed that the
2645   // definition will be present in the LTO unit as a result of LTO visibility.
2646   auto *MD = dyn_cast<CXXMethodDecl>(D);
2647   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2648     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2649       llvm::Metadata *Id =
2650           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2651               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2652       F->addTypeMetadata(0, Id);
2653     }
2654   }
2655 }
2656 
2657 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2658   const Decl *D = GD.getDecl();
2659   if (isa_and_nonnull<NamedDecl>(D))
2660     setGVProperties(GV, GD);
2661   else
2662     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2663 
2664   if (D && D->hasAttr<UsedAttr>())
2665     addUsedOrCompilerUsedGlobal(GV);
2666 
2667   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2668       VD &&
2669       ((CodeGenOpts.KeepPersistentStorageVariables &&
2670         (VD->getStorageDuration() == SD_Static ||
2671          VD->getStorageDuration() == SD_Thread)) ||
2672        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2673         VD->getType().isConstQualified())))
2674     addUsedOrCompilerUsedGlobal(GV);
2675 }
2676 
2677 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2678                                                 llvm::AttrBuilder &Attrs,
2679                                                 bool SetTargetFeatures) {
2680   // Add target-cpu and target-features attributes to functions. If
2681   // we have a decl for the function and it has a target attribute then
2682   // parse that and add it to the feature set.
2683   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2684   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2685   std::vector<std::string> Features;
2686   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2687   FD = FD ? FD->getMostRecentDecl() : FD;
2688   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2689   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2690   assert((!TD || !TV) && "both target_version and target specified");
2691   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2692   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2693   bool AddedAttr = false;
2694   if (TD || TV || SD || TC) {
2695     llvm::StringMap<bool> FeatureMap;
2696     getContext().getFunctionFeatureMap(FeatureMap, GD);
2697 
2698     // Produce the canonical string for this set of features.
2699     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2700       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2701 
2702     // Now add the target-cpu and target-features to the function.
2703     // While we populated the feature map above, we still need to
2704     // get and parse the target attribute so we can get the cpu for
2705     // the function.
2706     if (TD) {
2707       ParsedTargetAttr ParsedAttr =
2708           Target.parseTargetAttr(TD->getFeaturesStr());
2709       if (!ParsedAttr.CPU.empty() &&
2710           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2711         TargetCPU = ParsedAttr.CPU;
2712         TuneCPU = ""; // Clear the tune CPU.
2713       }
2714       if (!ParsedAttr.Tune.empty() &&
2715           getTarget().isValidCPUName(ParsedAttr.Tune))
2716         TuneCPU = ParsedAttr.Tune;
2717     }
2718 
2719     if (SD) {
2720       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2721       // favor this processor.
2722       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2723     }
2724   } else {
2725     // Otherwise just add the existing target cpu and target features to the
2726     // function.
2727     Features = getTarget().getTargetOpts().Features;
2728   }
2729 
2730   if (!TargetCPU.empty()) {
2731     Attrs.addAttribute("target-cpu", TargetCPU);
2732     AddedAttr = true;
2733   }
2734   if (!TuneCPU.empty()) {
2735     Attrs.addAttribute("tune-cpu", TuneCPU);
2736     AddedAttr = true;
2737   }
2738   if (!Features.empty() && SetTargetFeatures) {
2739     llvm::erase_if(Features, [&](const std::string& F) {
2740        return getTarget().isReadOnlyFeature(F.substr(1));
2741     });
2742     llvm::sort(Features);
2743     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2744     AddedAttr = true;
2745   }
2746 
2747   return AddedAttr;
2748 }
2749 
2750 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2751                                           llvm::GlobalObject *GO) {
2752   const Decl *D = GD.getDecl();
2753   SetCommonAttributes(GD, GO);
2754 
2755   if (D) {
2756     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2757       if (D->hasAttr<RetainAttr>())
2758         addUsedGlobal(GV);
2759       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2760         GV->addAttribute("bss-section", SA->getName());
2761       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2762         GV->addAttribute("data-section", SA->getName());
2763       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2764         GV->addAttribute("rodata-section", SA->getName());
2765       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2766         GV->addAttribute("relro-section", SA->getName());
2767     }
2768 
2769     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2770       if (D->hasAttr<RetainAttr>())
2771         addUsedGlobal(F);
2772       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2773         if (!D->getAttr<SectionAttr>())
2774           F->setSection(SA->getName());
2775 
2776       llvm::AttrBuilder Attrs(F->getContext());
2777       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2778         // We know that GetCPUAndFeaturesAttributes will always have the
2779         // newest set, since it has the newest possible FunctionDecl, so the
2780         // new ones should replace the old.
2781         llvm::AttributeMask RemoveAttrs;
2782         RemoveAttrs.addAttribute("target-cpu");
2783         RemoveAttrs.addAttribute("target-features");
2784         RemoveAttrs.addAttribute("tune-cpu");
2785         F->removeFnAttrs(RemoveAttrs);
2786         F->addFnAttrs(Attrs);
2787       }
2788     }
2789 
2790     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2791       GO->setSection(CSA->getName());
2792     else if (const auto *SA = D->getAttr<SectionAttr>())
2793       GO->setSection(SA->getName());
2794   }
2795 
2796   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2797 }
2798 
2799 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2800                                                   llvm::Function *F,
2801                                                   const CGFunctionInfo &FI) {
2802   const Decl *D = GD.getDecl();
2803   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2804   SetLLVMFunctionAttributesForDefinition(D, F);
2805 
2806   F->setLinkage(llvm::Function::InternalLinkage);
2807 
2808   setNonAliasAttributes(GD, F);
2809 }
2810 
2811 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2812   // Set linkage and visibility in case we never see a definition.
2813   LinkageInfo LV = ND->getLinkageAndVisibility();
2814   // Don't set internal linkage on declarations.
2815   // "extern_weak" is overloaded in LLVM; we probably should have
2816   // separate linkage types for this.
2817   if (isExternallyVisible(LV.getLinkage()) &&
2818       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2819     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2820 }
2821 
2822 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2823                                                        llvm::Function *F) {
2824   // Only if we are checking indirect calls.
2825   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2826     return;
2827 
2828   // Non-static class methods are handled via vtable or member function pointer
2829   // checks elsewhere.
2830   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2831     return;
2832 
2833   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2834   F->addTypeMetadata(0, MD);
2835   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2836 
2837   // Emit a hash-based bit set entry for cross-DSO calls.
2838   if (CodeGenOpts.SanitizeCfiCrossDso)
2839     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2840       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2841 }
2842 
2843 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2844   llvm::LLVMContext &Ctx = F->getContext();
2845   llvm::MDBuilder MDB(Ctx);
2846   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2847                  llvm::MDNode::get(
2848                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2849 }
2850 
2851 static bool allowKCFIIdentifier(StringRef Name) {
2852   // KCFI type identifier constants are only necessary for external assembly
2853   // functions, which means it's safe to skip unusual names. Subset of
2854   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2855   return llvm::all_of(Name, [](const char &C) {
2856     return llvm::isAlnum(C) || C == '_' || C == '.';
2857   });
2858 }
2859 
2860 void CodeGenModule::finalizeKCFITypes() {
2861   llvm::Module &M = getModule();
2862   for (auto &F : M.functions()) {
2863     // Remove KCFI type metadata from non-address-taken local functions.
2864     bool AddressTaken = F.hasAddressTaken();
2865     if (!AddressTaken && F.hasLocalLinkage())
2866       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2867 
2868     // Generate a constant with the expected KCFI type identifier for all
2869     // address-taken function declarations to support annotating indirectly
2870     // called assembly functions.
2871     if (!AddressTaken || !F.isDeclaration())
2872       continue;
2873 
2874     const llvm::ConstantInt *Type;
2875     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2876       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2877     else
2878       continue;
2879 
2880     StringRef Name = F.getName();
2881     if (!allowKCFIIdentifier(Name))
2882       continue;
2883 
2884     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2885                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2886                           .str();
2887     M.appendModuleInlineAsm(Asm);
2888   }
2889 }
2890 
2891 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2892                                           bool IsIncompleteFunction,
2893                                           bool IsThunk) {
2894 
2895   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2896     // If this is an intrinsic function, set the function's attributes
2897     // to the intrinsic's attributes.
2898     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2899     return;
2900   }
2901 
2902   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2903 
2904   if (!IsIncompleteFunction)
2905     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2906                               IsThunk);
2907 
2908   // Add the Returned attribute for "this", except for iOS 5 and earlier
2909   // where substantial code, including the libstdc++ dylib, was compiled with
2910   // GCC and does not actually return "this".
2911   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2912       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2913     assert(!F->arg_empty() &&
2914            F->arg_begin()->getType()
2915              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2916            "unexpected this return");
2917     F->addParamAttr(0, llvm::Attribute::Returned);
2918   }
2919 
2920   // Only a few attributes are set on declarations; these may later be
2921   // overridden by a definition.
2922 
2923   setLinkageForGV(F, FD);
2924   setGVProperties(F, FD);
2925 
2926   // Setup target-specific attributes.
2927   if (!IsIncompleteFunction && F->isDeclaration())
2928     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2929 
2930   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2931     F->setSection(CSA->getName());
2932   else if (const auto *SA = FD->getAttr<SectionAttr>())
2933      F->setSection(SA->getName());
2934 
2935   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2936     if (EA->isError())
2937       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2938     else if (EA->isWarning())
2939       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2940   }
2941 
2942   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2943   if (FD->isInlineBuiltinDeclaration()) {
2944     const FunctionDecl *FDBody;
2945     bool HasBody = FD->hasBody(FDBody);
2946     (void)HasBody;
2947     assert(HasBody && "Inline builtin declarations should always have an "
2948                       "available body!");
2949     if (shouldEmitFunction(FDBody))
2950       F->addFnAttr(llvm::Attribute::NoBuiltin);
2951   }
2952 
2953   if (FD->isReplaceableGlobalAllocationFunction()) {
2954     // A replaceable global allocation function does not act like a builtin by
2955     // default, only if it is invoked by a new-expression or delete-expression.
2956     F->addFnAttr(llvm::Attribute::NoBuiltin);
2957   }
2958 
2959   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2960     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2961   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2962     if (MD->isVirtual())
2963       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2964 
2965   // Don't emit entries for function declarations in the cross-DSO mode. This
2966   // is handled with better precision by the receiving DSO. But if jump tables
2967   // are non-canonical then we need type metadata in order to produce the local
2968   // jump table.
2969   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2970       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2971     CreateFunctionTypeMetadataForIcall(FD, F);
2972 
2973   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2974     setKCFIType(FD, F);
2975 
2976   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2977     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2978 
2979   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2980     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2981 
2982   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2983     // Annotate the callback behavior as metadata:
2984     //  - The callback callee (as argument number).
2985     //  - The callback payloads (as argument numbers).
2986     llvm::LLVMContext &Ctx = F->getContext();
2987     llvm::MDBuilder MDB(Ctx);
2988 
2989     // The payload indices are all but the first one in the encoding. The first
2990     // identifies the callback callee.
2991     int CalleeIdx = *CB->encoding_begin();
2992     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2993     F->addMetadata(llvm::LLVMContext::MD_callback,
2994                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2995                                                CalleeIdx, PayloadIndices,
2996                                                /* VarArgsArePassed */ false)}));
2997   }
2998 }
2999 
3000 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
3001   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3002          "Only globals with definition can force usage.");
3003   LLVMUsed.emplace_back(GV);
3004 }
3005 
3006 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
3007   assert(!GV->isDeclaration() &&
3008          "Only globals with definition can force usage.");
3009   LLVMCompilerUsed.emplace_back(GV);
3010 }
3011 
3012 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
3013   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3014          "Only globals with definition can force usage.");
3015   if (getTriple().isOSBinFormatELF())
3016     LLVMCompilerUsed.emplace_back(GV);
3017   else
3018     LLVMUsed.emplace_back(GV);
3019 }
3020 
3021 static void emitUsed(CodeGenModule &CGM, StringRef Name,
3022                      std::vector<llvm::WeakTrackingVH> &List) {
3023   // Don't create llvm.used if there is no need.
3024   if (List.empty())
3025     return;
3026 
3027   // Convert List to what ConstantArray needs.
3028   SmallVector<llvm::Constant*, 8> UsedArray;
3029   UsedArray.resize(List.size());
3030   for (unsigned i = 0, e = List.size(); i != e; ++i) {
3031     UsedArray[i] =
3032         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3033             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3034   }
3035 
3036   if (UsedArray.empty())
3037     return;
3038   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3039 
3040   auto *GV = new llvm::GlobalVariable(
3041       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3042       llvm::ConstantArray::get(ATy, UsedArray), Name);
3043 
3044   GV->setSection("llvm.metadata");
3045 }
3046 
3047 void CodeGenModule::emitLLVMUsed() {
3048   emitUsed(*this, "llvm.used", LLVMUsed);
3049   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3050 }
3051 
3052 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3053   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3054   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3055 }
3056 
3057 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3058   llvm::SmallString<32> Opt;
3059   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3060   if (Opt.empty())
3061     return;
3062   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3063   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3064 }
3065 
3066 void CodeGenModule::AddDependentLib(StringRef Lib) {
3067   auto &C = getLLVMContext();
3068   if (getTarget().getTriple().isOSBinFormatELF()) {
3069       ELFDependentLibraries.push_back(
3070         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3071     return;
3072   }
3073 
3074   llvm::SmallString<24> Opt;
3075   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3076   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3077   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3078 }
3079 
3080 /// Add link options implied by the given module, including modules
3081 /// it depends on, using a postorder walk.
3082 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3083                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3084                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3085   // Import this module's parent.
3086   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3087     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3088   }
3089 
3090   // Import this module's dependencies.
3091   for (Module *Import : llvm::reverse(Mod->Imports)) {
3092     if (Visited.insert(Import).second)
3093       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3094   }
3095 
3096   // Add linker options to link against the libraries/frameworks
3097   // described by this module.
3098   llvm::LLVMContext &Context = CGM.getLLVMContext();
3099   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3100 
3101   // For modules that use export_as for linking, use that module
3102   // name instead.
3103   if (Mod->UseExportAsModuleLinkName)
3104     return;
3105 
3106   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3107     // Link against a framework.  Frameworks are currently Darwin only, so we
3108     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3109     if (LL.IsFramework) {
3110       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3111                                  llvm::MDString::get(Context, LL.Library)};
3112 
3113       Metadata.push_back(llvm::MDNode::get(Context, Args));
3114       continue;
3115     }
3116 
3117     // Link against a library.
3118     if (IsELF) {
3119       llvm::Metadata *Args[2] = {
3120           llvm::MDString::get(Context, "lib"),
3121           llvm::MDString::get(Context, LL.Library),
3122       };
3123       Metadata.push_back(llvm::MDNode::get(Context, Args));
3124     } else {
3125       llvm::SmallString<24> Opt;
3126       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3127       auto *OptString = llvm::MDString::get(Context, Opt);
3128       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3129     }
3130   }
3131 }
3132 
3133 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3134   assert(Primary->isNamedModuleUnit() &&
3135          "We should only emit module initializers for named modules.");
3136 
3137   // Emit the initializers in the order that sub-modules appear in the
3138   // source, first Global Module Fragments, if present.
3139   if (auto GMF = Primary->getGlobalModuleFragment()) {
3140     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3141       if (isa<ImportDecl>(D))
3142         continue;
3143       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3144       EmitTopLevelDecl(D);
3145     }
3146   }
3147   // Second any associated with the module, itself.
3148   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3149     // Skip import decls, the inits for those are called explicitly.
3150     if (isa<ImportDecl>(D))
3151       continue;
3152     EmitTopLevelDecl(D);
3153   }
3154   // Third any associated with the Privat eMOdule Fragment, if present.
3155   if (auto PMF = Primary->getPrivateModuleFragment()) {
3156     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3157       // Skip import decls, the inits for those are called explicitly.
3158       if (isa<ImportDecl>(D))
3159         continue;
3160       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3161       EmitTopLevelDecl(D);
3162     }
3163   }
3164 }
3165 
3166 void CodeGenModule::EmitModuleLinkOptions() {
3167   // Collect the set of all of the modules we want to visit to emit link
3168   // options, which is essentially the imported modules and all of their
3169   // non-explicit child modules.
3170   llvm::SetVector<clang::Module *> LinkModules;
3171   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3172   SmallVector<clang::Module *, 16> Stack;
3173 
3174   // Seed the stack with imported modules.
3175   for (Module *M : ImportedModules) {
3176     // Do not add any link flags when an implementation TU of a module imports
3177     // a header of that same module.
3178     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3179         !getLangOpts().isCompilingModule())
3180       continue;
3181     if (Visited.insert(M).second)
3182       Stack.push_back(M);
3183   }
3184 
3185   // Find all of the modules to import, making a little effort to prune
3186   // non-leaf modules.
3187   while (!Stack.empty()) {
3188     clang::Module *Mod = Stack.pop_back_val();
3189 
3190     bool AnyChildren = false;
3191 
3192     // Visit the submodules of this module.
3193     for (const auto &SM : Mod->submodules()) {
3194       // Skip explicit children; they need to be explicitly imported to be
3195       // linked against.
3196       if (SM->IsExplicit)
3197         continue;
3198 
3199       if (Visited.insert(SM).second) {
3200         Stack.push_back(SM);
3201         AnyChildren = true;
3202       }
3203     }
3204 
3205     // We didn't find any children, so add this module to the list of
3206     // modules to link against.
3207     if (!AnyChildren) {
3208       LinkModules.insert(Mod);
3209     }
3210   }
3211 
3212   // Add link options for all of the imported modules in reverse topological
3213   // order.  We don't do anything to try to order import link flags with respect
3214   // to linker options inserted by things like #pragma comment().
3215   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3216   Visited.clear();
3217   for (Module *M : LinkModules)
3218     if (Visited.insert(M).second)
3219       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3220   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3221   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3222 
3223   // Add the linker options metadata flag.
3224   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3225   for (auto *MD : LinkerOptionsMetadata)
3226     NMD->addOperand(MD);
3227 }
3228 
3229 void CodeGenModule::EmitDeferred() {
3230   // Emit deferred declare target declarations.
3231   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3232     getOpenMPRuntime().emitDeferredTargetDecls();
3233 
3234   // Emit code for any potentially referenced deferred decls.  Since a
3235   // previously unused static decl may become used during the generation of code
3236   // for a static function, iterate until no changes are made.
3237 
3238   if (!DeferredVTables.empty()) {
3239     EmitDeferredVTables();
3240 
3241     // Emitting a vtable doesn't directly cause more vtables to
3242     // become deferred, although it can cause functions to be
3243     // emitted that then need those vtables.
3244     assert(DeferredVTables.empty());
3245   }
3246 
3247   // Emit CUDA/HIP static device variables referenced by host code only.
3248   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3249   // needed for further handling.
3250   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3251     llvm::append_range(DeferredDeclsToEmit,
3252                        getContext().CUDADeviceVarODRUsedByHost);
3253 
3254   // Stop if we're out of both deferred vtables and deferred declarations.
3255   if (DeferredDeclsToEmit.empty())
3256     return;
3257 
3258   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3259   // work, it will not interfere with this.
3260   std::vector<GlobalDecl> CurDeclsToEmit;
3261   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3262 
3263   for (GlobalDecl &D : CurDeclsToEmit) {
3264     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3265     // to get GlobalValue with exactly the type we need, not something that
3266     // might had been created for another decl with the same mangled name but
3267     // different type.
3268     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3269         GetAddrOfGlobal(D, ForDefinition));
3270 
3271     // In case of different address spaces, we may still get a cast, even with
3272     // IsForDefinition equal to true. Query mangled names table to get
3273     // GlobalValue.
3274     if (!GV)
3275       GV = GetGlobalValue(getMangledName(D));
3276 
3277     // Make sure GetGlobalValue returned non-null.
3278     assert(GV);
3279 
3280     // Check to see if we've already emitted this.  This is necessary
3281     // for a couple of reasons: first, decls can end up in the
3282     // deferred-decls queue multiple times, and second, decls can end
3283     // up with definitions in unusual ways (e.g. by an extern inline
3284     // function acquiring a strong function redefinition).  Just
3285     // ignore these cases.
3286     if (!GV->isDeclaration())
3287       continue;
3288 
3289     // If this is OpenMP, check if it is legal to emit this global normally.
3290     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3291       continue;
3292 
3293     // Otherwise, emit the definition and move on to the next one.
3294     EmitGlobalDefinition(D, GV);
3295 
3296     // If we found out that we need to emit more decls, do that recursively.
3297     // This has the advantage that the decls are emitted in a DFS and related
3298     // ones are close together, which is convenient for testing.
3299     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3300       EmitDeferred();
3301       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3302     }
3303   }
3304 }
3305 
3306 void CodeGenModule::EmitVTablesOpportunistically() {
3307   // Try to emit external vtables as available_externally if they have emitted
3308   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3309   // is not allowed to create new references to things that need to be emitted
3310   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3311 
3312   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3313          && "Only emit opportunistic vtables with optimizations");
3314 
3315   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3316     assert(getVTables().isVTableExternal(RD) &&
3317            "This queue should only contain external vtables");
3318     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3319       VTables.GenerateClassData(RD);
3320   }
3321   OpportunisticVTables.clear();
3322 }
3323 
3324 void CodeGenModule::EmitGlobalAnnotations() {
3325   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3326     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3327     if (GV)
3328       AddGlobalAnnotations(VD, GV);
3329   }
3330   DeferredAnnotations.clear();
3331 
3332   if (Annotations.empty())
3333     return;
3334 
3335   // Create a new global variable for the ConstantStruct in the Module.
3336   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3337     Annotations[0]->getType(), Annotations.size()), Annotations);
3338   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3339                                       llvm::GlobalValue::AppendingLinkage,
3340                                       Array, "llvm.global.annotations");
3341   gv->setSection(AnnotationSection);
3342 }
3343 
3344 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3345   llvm::Constant *&AStr = AnnotationStrings[Str];
3346   if (AStr)
3347     return AStr;
3348 
3349   // Not found yet, create a new global.
3350   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3351   auto *gv = new llvm::GlobalVariable(
3352       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3353       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3354       ConstGlobalsPtrTy->getAddressSpace());
3355   gv->setSection(AnnotationSection);
3356   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3357   AStr = gv;
3358   return gv;
3359 }
3360 
3361 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3362   SourceManager &SM = getContext().getSourceManager();
3363   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3364   if (PLoc.isValid())
3365     return EmitAnnotationString(PLoc.getFilename());
3366   return EmitAnnotationString(SM.getBufferName(Loc));
3367 }
3368 
3369 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3370   SourceManager &SM = getContext().getSourceManager();
3371   PresumedLoc PLoc = SM.getPresumedLoc(L);
3372   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3373     SM.getExpansionLineNumber(L);
3374   return llvm::ConstantInt::get(Int32Ty, LineNo);
3375 }
3376 
3377 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3378   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3379   if (Exprs.empty())
3380     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3381 
3382   llvm::FoldingSetNodeID ID;
3383   for (Expr *E : Exprs) {
3384     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3385   }
3386   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3387   if (Lookup)
3388     return Lookup;
3389 
3390   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3391   LLVMArgs.reserve(Exprs.size());
3392   ConstantEmitter ConstEmiter(*this);
3393   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3394     const auto *CE = cast<clang::ConstantExpr>(E);
3395     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3396                                     CE->getType());
3397   });
3398   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3399   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3400                                       llvm::GlobalValue::PrivateLinkage, Struct,
3401                                       ".args");
3402   GV->setSection(AnnotationSection);
3403   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3404 
3405   Lookup = GV;
3406   return GV;
3407 }
3408 
3409 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3410                                                 const AnnotateAttr *AA,
3411                                                 SourceLocation L) {
3412   // Get the globals for file name, annotation, and the line number.
3413   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3414                  *UnitGV = EmitAnnotationUnit(L),
3415                  *LineNoCst = EmitAnnotationLineNo(L),
3416                  *Args = EmitAnnotationArgs(AA);
3417 
3418   llvm::Constant *GVInGlobalsAS = GV;
3419   if (GV->getAddressSpace() !=
3420       getDataLayout().getDefaultGlobalsAddressSpace()) {
3421     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3422         GV,
3423         llvm::PointerType::get(
3424             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3425   }
3426 
3427   // Create the ConstantStruct for the global annotation.
3428   llvm::Constant *Fields[] = {
3429       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3430   };
3431   return llvm::ConstantStruct::getAnon(Fields);
3432 }
3433 
3434 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3435                                          llvm::GlobalValue *GV) {
3436   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3437   // Get the struct elements for these annotations.
3438   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3439     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3440 }
3441 
3442 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3443                                        SourceLocation Loc) const {
3444   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3445   // NoSanitize by function name.
3446   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3447     return true;
3448   // NoSanitize by location. Check "mainfile" prefix.
3449   auto &SM = Context.getSourceManager();
3450   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3451   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3452     return true;
3453 
3454   // Check "src" prefix.
3455   if (Loc.isValid())
3456     return NoSanitizeL.containsLocation(Kind, Loc);
3457   // If location is unknown, this may be a compiler-generated function. Assume
3458   // it's located in the main file.
3459   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3460 }
3461 
3462 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3463                                        llvm::GlobalVariable *GV,
3464                                        SourceLocation Loc, QualType Ty,
3465                                        StringRef Category) const {
3466   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3467   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3468     return true;
3469   auto &SM = Context.getSourceManager();
3470   if (NoSanitizeL.containsMainFile(
3471           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3472           Category))
3473     return true;
3474   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3475     return true;
3476 
3477   // Check global type.
3478   if (!Ty.isNull()) {
3479     // Drill down the array types: if global variable of a fixed type is
3480     // not sanitized, we also don't instrument arrays of them.
3481     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3482       Ty = AT->getElementType();
3483     Ty = Ty.getCanonicalType().getUnqualifiedType();
3484     // Only record types (classes, structs etc.) are ignored.
3485     if (Ty->isRecordType()) {
3486       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3487       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3488         return true;
3489     }
3490   }
3491   return false;
3492 }
3493 
3494 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3495                                    StringRef Category) const {
3496   const auto &XRayFilter = getContext().getXRayFilter();
3497   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3498   auto Attr = ImbueAttr::NONE;
3499   if (Loc.isValid())
3500     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3501   if (Attr == ImbueAttr::NONE)
3502     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3503   switch (Attr) {
3504   case ImbueAttr::NONE:
3505     return false;
3506   case ImbueAttr::ALWAYS:
3507     Fn->addFnAttr("function-instrument", "xray-always");
3508     break;
3509   case ImbueAttr::ALWAYS_ARG1:
3510     Fn->addFnAttr("function-instrument", "xray-always");
3511     Fn->addFnAttr("xray-log-args", "1");
3512     break;
3513   case ImbueAttr::NEVER:
3514     Fn->addFnAttr("function-instrument", "xray-never");
3515     break;
3516   }
3517   return true;
3518 }
3519 
3520 ProfileList::ExclusionType
3521 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3522                                               SourceLocation Loc) const {
3523   const auto &ProfileList = getContext().getProfileList();
3524   // If the profile list is empty, then instrument everything.
3525   if (ProfileList.isEmpty())
3526     return ProfileList::Allow;
3527   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3528   // First, check the function name.
3529   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3530     return *V;
3531   // Next, check the source location.
3532   if (Loc.isValid())
3533     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3534       return *V;
3535   // If location is unknown, this may be a compiler-generated function. Assume
3536   // it's located in the main file.
3537   auto &SM = Context.getSourceManager();
3538   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3539     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3540       return *V;
3541   return ProfileList.getDefault(Kind);
3542 }
3543 
3544 ProfileList::ExclusionType
3545 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3546                                                  SourceLocation Loc) const {
3547   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3548   if (V != ProfileList::Allow)
3549     return V;
3550 
3551   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3552   if (NumGroups > 1) {
3553     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3554     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3555       return ProfileList::Skip;
3556   }
3557   return ProfileList::Allow;
3558 }
3559 
3560 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3561   // Never defer when EmitAllDecls is specified.
3562   if (LangOpts.EmitAllDecls)
3563     return true;
3564 
3565   const auto *VD = dyn_cast<VarDecl>(Global);
3566   if (VD &&
3567       ((CodeGenOpts.KeepPersistentStorageVariables &&
3568         (VD->getStorageDuration() == SD_Static ||
3569          VD->getStorageDuration() == SD_Thread)) ||
3570        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3571         VD->getType().isConstQualified())))
3572     return true;
3573 
3574   return getContext().DeclMustBeEmitted(Global);
3575 }
3576 
3577 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3578   // In OpenMP 5.0 variables and function may be marked as
3579   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3580   // that they must be emitted on the host/device. To be sure we need to have
3581   // seen a declare target with an explicit mentioning of the function, we know
3582   // we have if the level of the declare target attribute is -1. Note that we
3583   // check somewhere else if we should emit this at all.
3584   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3585     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3586         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3587     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3588       return false;
3589   }
3590 
3591   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3592     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3593       // Implicit template instantiations may change linkage if they are later
3594       // explicitly instantiated, so they should not be emitted eagerly.
3595       return false;
3596     // Defer until all versions have been semantically checked.
3597     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3598       return false;
3599   }
3600   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3601     if (Context.getInlineVariableDefinitionKind(VD) ==
3602         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3603       // A definition of an inline constexpr static data member may change
3604       // linkage later if it's redeclared outside the class.
3605       return false;
3606     if (CXX20ModuleInits && VD->getOwningModule() &&
3607         !VD->getOwningModule()->isModuleMapModule()) {
3608       // For CXX20, module-owned initializers need to be deferred, since it is
3609       // not known at this point if they will be run for the current module or
3610       // as part of the initializer for an imported one.
3611       return false;
3612     }
3613   }
3614   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3615   // codegen for global variables, because they may be marked as threadprivate.
3616   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3617       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3618       !Global->getType().isConstantStorage(getContext(), false, false) &&
3619       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3620     return false;
3621 
3622   return true;
3623 }
3624 
3625 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3626   StringRef Name = getMangledName(GD);
3627 
3628   // The UUID descriptor should be pointer aligned.
3629   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3630 
3631   // Look for an existing global.
3632   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3633     return ConstantAddress(GV, GV->getValueType(), Alignment);
3634 
3635   ConstantEmitter Emitter(*this);
3636   llvm::Constant *Init;
3637 
3638   APValue &V = GD->getAsAPValue();
3639   if (!V.isAbsent()) {
3640     // If possible, emit the APValue version of the initializer. In particular,
3641     // this gets the type of the constant right.
3642     Init = Emitter.emitForInitializer(
3643         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3644   } else {
3645     // As a fallback, directly construct the constant.
3646     // FIXME: This may get padding wrong under esoteric struct layout rules.
3647     // MSVC appears to create a complete type 'struct __s_GUID' that it
3648     // presumably uses to represent these constants.
3649     MSGuidDecl::Parts Parts = GD->getParts();
3650     llvm::Constant *Fields[4] = {
3651         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3652         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3653         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3654         llvm::ConstantDataArray::getRaw(
3655             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3656             Int8Ty)};
3657     Init = llvm::ConstantStruct::getAnon(Fields);
3658   }
3659 
3660   auto *GV = new llvm::GlobalVariable(
3661       getModule(), Init->getType(),
3662       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3663   if (supportsCOMDAT())
3664     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3665   setDSOLocal(GV);
3666 
3667   if (!V.isAbsent()) {
3668     Emitter.finalize(GV);
3669     return ConstantAddress(GV, GV->getValueType(), Alignment);
3670   }
3671 
3672   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3673   return ConstantAddress(GV, Ty, Alignment);
3674 }
3675 
3676 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3677     const UnnamedGlobalConstantDecl *GCD) {
3678   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3679 
3680   llvm::GlobalVariable **Entry = nullptr;
3681   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3682   if (*Entry)
3683     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3684 
3685   ConstantEmitter Emitter(*this);
3686   llvm::Constant *Init;
3687 
3688   const APValue &V = GCD->getValue();
3689 
3690   assert(!V.isAbsent());
3691   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3692                                     GCD->getType());
3693 
3694   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3695                                       /*isConstant=*/true,
3696                                       llvm::GlobalValue::PrivateLinkage, Init,
3697                                       ".constant");
3698   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3699   GV->setAlignment(Alignment.getAsAlign());
3700 
3701   Emitter.finalize(GV);
3702 
3703   *Entry = GV;
3704   return ConstantAddress(GV, GV->getValueType(), Alignment);
3705 }
3706 
3707 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3708     const TemplateParamObjectDecl *TPO) {
3709   StringRef Name = getMangledName(TPO);
3710   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3711 
3712   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3713     return ConstantAddress(GV, GV->getValueType(), Alignment);
3714 
3715   ConstantEmitter Emitter(*this);
3716   llvm::Constant *Init = Emitter.emitForInitializer(
3717         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3718 
3719   if (!Init) {
3720     ErrorUnsupported(TPO, "template parameter object");
3721     return ConstantAddress::invalid();
3722   }
3723 
3724   llvm::GlobalValue::LinkageTypes Linkage =
3725       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3726           ? llvm::GlobalValue::LinkOnceODRLinkage
3727           : llvm::GlobalValue::InternalLinkage;
3728   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3729                                       /*isConstant=*/true, Linkage, Init, Name);
3730   setGVProperties(GV, TPO);
3731   if (supportsCOMDAT())
3732     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3733   Emitter.finalize(GV);
3734 
3735     return ConstantAddress(GV, GV->getValueType(), Alignment);
3736 }
3737 
3738 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3739   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3740   assert(AA && "No alias?");
3741 
3742   CharUnits Alignment = getContext().getDeclAlign(VD);
3743   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3744 
3745   // See if there is already something with the target's name in the module.
3746   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3747   if (Entry)
3748     return ConstantAddress(Entry, DeclTy, Alignment);
3749 
3750   llvm::Constant *Aliasee;
3751   if (isa<llvm::FunctionType>(DeclTy))
3752     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3753                                       GlobalDecl(cast<FunctionDecl>(VD)),
3754                                       /*ForVTable=*/false);
3755   else
3756     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3757                                     nullptr);
3758 
3759   auto *F = cast<llvm::GlobalValue>(Aliasee);
3760   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3761   WeakRefReferences.insert(F);
3762 
3763   return ConstantAddress(Aliasee, DeclTy, Alignment);
3764 }
3765 
3766 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3767   if (!D)
3768     return false;
3769   if (auto *A = D->getAttr<AttrT>())
3770     return A->isImplicit();
3771   return D->isImplicit();
3772 }
3773 
3774 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3775   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3776   // We need to emit host-side 'shadows' for all global
3777   // device-side variables because the CUDA runtime needs their
3778   // size and host-side address in order to provide access to
3779   // their device-side incarnations.
3780   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3781          Global->hasAttr<CUDAConstantAttr>() ||
3782          Global->hasAttr<CUDASharedAttr>() ||
3783          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3784          Global->getType()->isCUDADeviceBuiltinTextureType();
3785 }
3786 
3787 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3788   const auto *Global = cast<ValueDecl>(GD.getDecl());
3789 
3790   // Weak references don't produce any output by themselves.
3791   if (Global->hasAttr<WeakRefAttr>())
3792     return;
3793 
3794   // If this is an alias definition (which otherwise looks like a declaration)
3795   // emit it now.
3796   if (Global->hasAttr<AliasAttr>())
3797     return EmitAliasDefinition(GD);
3798 
3799   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3800   if (Global->hasAttr<IFuncAttr>())
3801     return emitIFuncDefinition(GD);
3802 
3803   // If this is a cpu_dispatch multiversion function, emit the resolver.
3804   if (Global->hasAttr<CPUDispatchAttr>())
3805     return emitCPUDispatchDefinition(GD);
3806 
3807   // If this is CUDA, be selective about which declarations we emit.
3808   // Non-constexpr non-lambda implicit host device functions are not emitted
3809   // unless they are used on device side.
3810   if (LangOpts.CUDA) {
3811     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3812            "Expected Variable or Function");
3813     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3814       if (!shouldEmitCUDAGlobalVar(VD))
3815         return;
3816     } else if (LangOpts.CUDAIsDevice) {
3817       const auto *FD = dyn_cast<FunctionDecl>(Global);
3818       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3819            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3820             hasImplicitAttr<CUDAHostAttr>(FD) &&
3821             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3822             !isLambdaCallOperator(FD) &&
3823             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3824           !Global->hasAttr<CUDAGlobalAttr>() &&
3825           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3826             !Global->hasAttr<CUDAHostAttr>()))
3827         return;
3828       // Device-only functions are the only things we skip.
3829     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3830                Global->hasAttr<CUDADeviceAttr>())
3831       return;
3832   }
3833 
3834   if (LangOpts.OpenMP) {
3835     // If this is OpenMP, check if it is legal to emit this global normally.
3836     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3837       return;
3838     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3839       if (MustBeEmitted(Global))
3840         EmitOMPDeclareReduction(DRD);
3841       return;
3842     }
3843     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3844       if (MustBeEmitted(Global))
3845         EmitOMPDeclareMapper(DMD);
3846       return;
3847     }
3848   }
3849 
3850   // Ignore declarations, they will be emitted on their first use.
3851   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3852     // Update deferred annotations with the latest declaration if the function
3853     // function was already used or defined.
3854     if (FD->hasAttr<AnnotateAttr>()) {
3855       StringRef MangledName = getMangledName(GD);
3856       if (GetGlobalValue(MangledName))
3857         DeferredAnnotations[MangledName] = FD;
3858     }
3859 
3860     // Forward declarations are emitted lazily on first use.
3861     if (!FD->doesThisDeclarationHaveABody()) {
3862       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3863           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3864         return;
3865 
3866       StringRef MangledName = getMangledName(GD);
3867 
3868       // Compute the function info and LLVM type.
3869       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3870       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3871 
3872       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3873                               /*DontDefer=*/false);
3874       return;
3875     }
3876   } else {
3877     const auto *VD = cast<VarDecl>(Global);
3878     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3879     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3880         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3881       if (LangOpts.OpenMP) {
3882         // Emit declaration of the must-be-emitted declare target variable.
3883         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3884                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3885 
3886           // If this variable has external storage and doesn't require special
3887           // link handling we defer to its canonical definition.
3888           if (VD->hasExternalStorage() &&
3889               Res != OMPDeclareTargetDeclAttr::MT_Link)
3890             return;
3891 
3892           bool UnifiedMemoryEnabled =
3893               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3894           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3895                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3896               !UnifiedMemoryEnabled) {
3897             (void)GetAddrOfGlobalVar(VD);
3898           } else {
3899             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3900                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3901                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3902                      UnifiedMemoryEnabled)) &&
3903                    "Link clause or to clause with unified memory expected.");
3904             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3905           }
3906 
3907           return;
3908         }
3909       }
3910       // If this declaration may have caused an inline variable definition to
3911       // change linkage, make sure that it's emitted.
3912       if (Context.getInlineVariableDefinitionKind(VD) ==
3913           ASTContext::InlineVariableDefinitionKind::Strong)
3914         GetAddrOfGlobalVar(VD);
3915       return;
3916     }
3917   }
3918 
3919   // Defer code generation to first use when possible, e.g. if this is an inline
3920   // function. If the global must always be emitted, do it eagerly if possible
3921   // to benefit from cache locality.
3922   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3923     // Emit the definition if it can't be deferred.
3924     EmitGlobalDefinition(GD);
3925     addEmittedDeferredDecl(GD);
3926     return;
3927   }
3928 
3929   // If we're deferring emission of a C++ variable with an
3930   // initializer, remember the order in which it appeared in the file.
3931   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3932       cast<VarDecl>(Global)->hasInit()) {
3933     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3934     CXXGlobalInits.push_back(nullptr);
3935   }
3936 
3937   StringRef MangledName = getMangledName(GD);
3938   if (GetGlobalValue(MangledName) != nullptr) {
3939     // The value has already been used and should therefore be emitted.
3940     addDeferredDeclToEmit(GD);
3941   } else if (MustBeEmitted(Global)) {
3942     // The value must be emitted, but cannot be emitted eagerly.
3943     assert(!MayBeEmittedEagerly(Global));
3944     addDeferredDeclToEmit(GD);
3945   } else {
3946     // Otherwise, remember that we saw a deferred decl with this name.  The
3947     // first use of the mangled name will cause it to move into
3948     // DeferredDeclsToEmit.
3949     DeferredDecls[MangledName] = GD;
3950   }
3951 }
3952 
3953 // Check if T is a class type with a destructor that's not dllimport.
3954 static bool HasNonDllImportDtor(QualType T) {
3955   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3956     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3957       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3958         return true;
3959 
3960   return false;
3961 }
3962 
3963 namespace {
3964   struct FunctionIsDirectlyRecursive
3965       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3966     const StringRef Name;
3967     const Builtin::Context &BI;
3968     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3969         : Name(N), BI(C) {}
3970 
3971     bool VisitCallExpr(const CallExpr *E) {
3972       const FunctionDecl *FD = E->getDirectCallee();
3973       if (!FD)
3974         return false;
3975       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3976       if (Attr && Name == Attr->getLabel())
3977         return true;
3978       unsigned BuiltinID = FD->getBuiltinID();
3979       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3980         return false;
3981       StringRef BuiltinName = BI.getName(BuiltinID);
3982       if (BuiltinName.starts_with("__builtin_") &&
3983           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3984         return true;
3985       }
3986       return false;
3987     }
3988 
3989     bool VisitStmt(const Stmt *S) {
3990       for (const Stmt *Child : S->children())
3991         if (Child && this->Visit(Child))
3992           return true;
3993       return false;
3994     }
3995   };
3996 
3997   // Make sure we're not referencing non-imported vars or functions.
3998   struct DLLImportFunctionVisitor
3999       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
4000     bool SafeToInline = true;
4001 
4002     bool shouldVisitImplicitCode() const { return true; }
4003 
4004     bool VisitVarDecl(VarDecl *VD) {
4005       if (VD->getTLSKind()) {
4006         // A thread-local variable cannot be imported.
4007         SafeToInline = false;
4008         return SafeToInline;
4009       }
4010 
4011       // A variable definition might imply a destructor call.
4012       if (VD->isThisDeclarationADefinition())
4013         SafeToInline = !HasNonDllImportDtor(VD->getType());
4014 
4015       return SafeToInline;
4016     }
4017 
4018     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
4019       if (const auto *D = E->getTemporary()->getDestructor())
4020         SafeToInline = D->hasAttr<DLLImportAttr>();
4021       return SafeToInline;
4022     }
4023 
4024     bool VisitDeclRefExpr(DeclRefExpr *E) {
4025       ValueDecl *VD = E->getDecl();
4026       if (isa<FunctionDecl>(VD))
4027         SafeToInline = VD->hasAttr<DLLImportAttr>();
4028       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
4029         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4030       return SafeToInline;
4031     }
4032 
4033     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4034       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4035       return SafeToInline;
4036     }
4037 
4038     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4039       CXXMethodDecl *M = E->getMethodDecl();
4040       if (!M) {
4041         // Call through a pointer to member function. This is safe to inline.
4042         SafeToInline = true;
4043       } else {
4044         SafeToInline = M->hasAttr<DLLImportAttr>();
4045       }
4046       return SafeToInline;
4047     }
4048 
4049     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4050       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4051       return SafeToInline;
4052     }
4053 
4054     bool VisitCXXNewExpr(CXXNewExpr *E) {
4055       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4056       return SafeToInline;
4057     }
4058   };
4059 }
4060 
4061 // isTriviallyRecursive - Check if this function calls another
4062 // decl that, because of the asm attribute or the other decl being a builtin,
4063 // ends up pointing to itself.
4064 bool
4065 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4066   StringRef Name;
4067   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4068     // asm labels are a special kind of mangling we have to support.
4069     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4070     if (!Attr)
4071       return false;
4072     Name = Attr->getLabel();
4073   } else {
4074     Name = FD->getName();
4075   }
4076 
4077   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4078   const Stmt *Body = FD->getBody();
4079   return Body ? Walker.Visit(Body) : false;
4080 }
4081 
4082 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4083   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4084     return true;
4085 
4086   const auto *F = cast<FunctionDecl>(GD.getDecl());
4087   // Inline builtins declaration must be emitted. They often are fortified
4088   // functions.
4089   if (F->isInlineBuiltinDeclaration())
4090     return true;
4091 
4092   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4093     return false;
4094 
4095   // We don't import function bodies from other named module units since that
4096   // behavior may break ABI compatibility of the current unit.
4097   if (const Module *M = F->getOwningModule();
4098       M && M->getTopLevelModule()->isNamedModule() &&
4099       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4100     // There are practices to mark template member function as always-inline
4101     // and mark the template as extern explicit instantiation but not give
4102     // the definition for member function. So we have to emit the function
4103     // from explicitly instantiation with always-inline.
4104     //
4105     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4106     //
4107     // TODO: Maybe it is better to give it a warning if we call a non-inline
4108     // function from other module units which is marked as always-inline.
4109     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4110       return false;
4111     }
4112   }
4113 
4114   if (F->hasAttr<NoInlineAttr>())
4115     return false;
4116 
4117   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4118     // Check whether it would be safe to inline this dllimport function.
4119     DLLImportFunctionVisitor Visitor;
4120     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4121     if (!Visitor.SafeToInline)
4122       return false;
4123 
4124     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4125       // Implicit destructor invocations aren't captured in the AST, so the
4126       // check above can't see them. Check for them manually here.
4127       for (const Decl *Member : Dtor->getParent()->decls())
4128         if (isa<FieldDecl>(Member))
4129           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4130             return false;
4131       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4132         if (HasNonDllImportDtor(B.getType()))
4133           return false;
4134     }
4135   }
4136 
4137   // PR9614. Avoid cases where the source code is lying to us. An available
4138   // externally function should have an equivalent function somewhere else,
4139   // but a function that calls itself through asm label/`__builtin_` trickery is
4140   // clearly not equivalent to the real implementation.
4141   // This happens in glibc's btowc and in some configure checks.
4142   return !isTriviallyRecursive(F);
4143 }
4144 
4145 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4146   return CodeGenOpts.OptimizationLevel > 0;
4147 }
4148 
4149 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4150                                                        llvm::GlobalValue *GV) {
4151   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4152 
4153   if (FD->isCPUSpecificMultiVersion()) {
4154     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4155     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4156       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4157   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4158     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4159       // AArch64 favors the default target version over the clone if any.
4160       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4161           TC->isFirstOfVersion(I))
4162         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4163     // Ensure that the resolver function is also emitted.
4164     GetOrCreateMultiVersionResolver(GD);
4165   } else
4166     EmitGlobalFunctionDefinition(GD, GV);
4167 
4168   // Defer the resolver emission until we can reason whether the TU
4169   // contains a default target version implementation.
4170   if (FD->isTargetVersionMultiVersion())
4171     AddDeferredMultiVersionResolverToEmit(GD);
4172 }
4173 
4174 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4175   const auto *D = cast<ValueDecl>(GD.getDecl());
4176 
4177   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4178                                  Context.getSourceManager(),
4179                                  "Generating code for declaration");
4180 
4181   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4182     // At -O0, don't generate IR for functions with available_externally
4183     // linkage.
4184     if (!shouldEmitFunction(GD))
4185       return;
4186 
4187     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4188       std::string Name;
4189       llvm::raw_string_ostream OS(Name);
4190       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4191                                /*Qualified=*/true);
4192       return Name;
4193     });
4194 
4195     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4196       // Make sure to emit the definition(s) before we emit the thunks.
4197       // This is necessary for the generation of certain thunks.
4198       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4199         ABI->emitCXXStructor(GD);
4200       else if (FD->isMultiVersion())
4201         EmitMultiVersionFunctionDefinition(GD, GV);
4202       else
4203         EmitGlobalFunctionDefinition(GD, GV);
4204 
4205       if (Method->isVirtual())
4206         getVTables().EmitThunks(GD);
4207 
4208       return;
4209     }
4210 
4211     if (FD->isMultiVersion())
4212       return EmitMultiVersionFunctionDefinition(GD, GV);
4213     return EmitGlobalFunctionDefinition(GD, GV);
4214   }
4215 
4216   if (const auto *VD = dyn_cast<VarDecl>(D))
4217     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4218 
4219   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4220 }
4221 
4222 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4223                                                       llvm::Function *NewFn);
4224 
4225 static unsigned
4226 TargetMVPriority(const TargetInfo &TI,
4227                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4228   unsigned Priority = 0;
4229   unsigned NumFeatures = 0;
4230   for (StringRef Feat : RO.Conditions.Features) {
4231     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4232     NumFeatures++;
4233   }
4234 
4235   if (!RO.Conditions.Architecture.empty())
4236     Priority = std::max(
4237         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4238 
4239   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4240 
4241   return Priority;
4242 }
4243 
4244 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4245 // TU can forward declare the function without causing problems.  Particularly
4246 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4247 // work with internal linkage functions, so that the same function name can be
4248 // used with internal linkage in multiple TUs.
4249 static llvm::GlobalValue::LinkageTypes
4250 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) {
4251   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4252   if (FD->getFormalLinkage() == Linkage::Internal)
4253     return llvm::GlobalValue::InternalLinkage;
4254   return llvm::GlobalValue::WeakODRLinkage;
4255 }
4256 
4257 void CodeGenModule::emitMultiVersionFunctions() {
4258   std::vector<GlobalDecl> MVFuncsToEmit;
4259   MultiVersionFuncs.swap(MVFuncsToEmit);
4260   for (GlobalDecl GD : MVFuncsToEmit) {
4261     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4262     assert(FD && "Expected a FunctionDecl");
4263 
4264     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4265       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4266       StringRef MangledName = getMangledName(CurGD);
4267       llvm::Constant *Func = GetGlobalValue(MangledName);
4268       if (!Func) {
4269         if (Decl->isDefined()) {
4270           EmitGlobalFunctionDefinition(CurGD, nullptr);
4271           Func = GetGlobalValue(MangledName);
4272         } else {
4273           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4274           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4275           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4276                                    /*DontDefer=*/false, ForDefinition);
4277         }
4278         assert(Func && "This should have just been created");
4279       }
4280       return cast<llvm::Function>(Func);
4281     };
4282 
4283     // For AArch64, a resolver is only emitted if a function marked with
4284     // target_version("default")) or target_clones() is present and defined
4285     // in this TU. For other architectures it is always emitted.
4286     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4287     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4288 
4289     getContext().forEachMultiversionedFunctionVersion(
4290         FD, [&](const FunctionDecl *CurFD) {
4291           llvm::SmallVector<StringRef, 8> Feats;
4292           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4293 
4294           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4295             TA->getAddedFeatures(Feats);
4296             llvm::Function *Func = createFunction(CurFD);
4297             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4298           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4299             if (TVA->isDefaultVersion() && IsDefined)
4300               ShouldEmitResolver = true;
4301             llvm::Function *Func = createFunction(CurFD);
4302             if (getTarget().getTriple().isRISCV()) {
4303               Feats.push_back(TVA->getName());
4304             } else {
4305               assert(getTarget().getTriple().isAArch64());
4306               TVA->getFeatures(Feats);
4307             }
4308             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4309           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4310             if (IsDefined)
4311               ShouldEmitResolver = true;
4312             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4313               if (!TC->isFirstOfVersion(I))
4314                 continue;
4315 
4316               llvm::Function *Func = createFunction(CurFD, I);
4317               StringRef Architecture;
4318               Feats.clear();
4319               if (getTarget().getTriple().isAArch64())
4320                 TC->getFeatures(Feats, I);
4321               else if (getTarget().getTriple().isRISCV()) {
4322                 StringRef Version = TC->getFeatureStr(I);
4323                 Feats.push_back(Version);
4324               } else {
4325                 StringRef Version = TC->getFeatureStr(I);
4326                 if (Version.starts_with("arch="))
4327                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4328                 else if (Version != "default")
4329                   Feats.push_back(Version);
4330               }
4331               Options.emplace_back(Func, Architecture, Feats);
4332             }
4333           } else
4334             llvm_unreachable("unexpected MultiVersionKind");
4335         });
4336 
4337     if (!ShouldEmitResolver)
4338       continue;
4339 
4340     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4341     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4342       ResolverConstant = IFunc->getResolver();
4343       if (FD->isTargetClonesMultiVersion() &&
4344           !getTarget().getTriple().isAArch64()) {
4345         std::string MangledName = getMangledNameImpl(
4346             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4347         if (!GetGlobalValue(MangledName + ".ifunc")) {
4348           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4349           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4350           // In prior versions of Clang, the mangling for ifuncs incorrectly
4351           // included an .ifunc suffix. This alias is generated for backward
4352           // compatibility. It is deprecated, and may be removed in the future.
4353           auto *Alias = llvm::GlobalAlias::create(
4354               DeclTy, 0, getMultiversionLinkage(*this, GD),
4355               MangledName + ".ifunc", IFunc, &getModule());
4356           SetCommonAttributes(FD, Alias);
4357         }
4358       }
4359     }
4360     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4361 
4362     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4363 
4364     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4365       ResolverFunc->setComdat(
4366           getModule().getOrInsertComdat(ResolverFunc->getName()));
4367 
4368     const TargetInfo &TI = getTarget();
4369     llvm::stable_sort(
4370         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4371                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4372           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4373         });
4374     CodeGenFunction CGF(*this);
4375     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4376   }
4377 
4378   // Ensure that any additions to the deferred decls list caused by emitting a
4379   // variant are emitted.  This can happen when the variant itself is inline and
4380   // calls a function without linkage.
4381   if (!MVFuncsToEmit.empty())
4382     EmitDeferred();
4383 
4384   // Ensure that any additions to the multiversion funcs list from either the
4385   // deferred decls or the multiversion functions themselves are emitted.
4386   if (!MultiVersionFuncs.empty())
4387     emitMultiVersionFunctions();
4388 }
4389 
4390 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4391                                    llvm::Constant *New) {
4392   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4393   New->takeName(Old);
4394   Old->replaceAllUsesWith(New);
4395   Old->eraseFromParent();
4396 }
4397 
4398 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4399   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4400   assert(FD && "Not a FunctionDecl?");
4401   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4402   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4403   assert(DD && "Not a cpu_dispatch Function?");
4404 
4405   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4406   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4407 
4408   StringRef ResolverName = getMangledName(GD);
4409   UpdateMultiVersionNames(GD, FD, ResolverName);
4410 
4411   llvm::Type *ResolverType;
4412   GlobalDecl ResolverGD;
4413   if (getTarget().supportsIFunc()) {
4414     ResolverType = llvm::FunctionType::get(
4415         llvm::PointerType::get(DeclTy,
4416                                getTypes().getTargetAddressSpace(FD->getType())),
4417         false);
4418   }
4419   else {
4420     ResolverType = DeclTy;
4421     ResolverGD = GD;
4422   }
4423 
4424   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4425       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4426   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4427   if (supportsCOMDAT())
4428     ResolverFunc->setComdat(
4429         getModule().getOrInsertComdat(ResolverFunc->getName()));
4430 
4431   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4432   const TargetInfo &Target = getTarget();
4433   unsigned Index = 0;
4434   for (const IdentifierInfo *II : DD->cpus()) {
4435     // Get the name of the target function so we can look it up/create it.
4436     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4437                               getCPUSpecificMangling(*this, II->getName());
4438 
4439     llvm::Constant *Func = GetGlobalValue(MangledName);
4440 
4441     if (!Func) {
4442       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4443       if (ExistingDecl.getDecl() &&
4444           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4445         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4446         Func = GetGlobalValue(MangledName);
4447       } else {
4448         if (!ExistingDecl.getDecl())
4449           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4450 
4451       Func = GetOrCreateLLVMFunction(
4452           MangledName, DeclTy, ExistingDecl,
4453           /*ForVTable=*/false, /*DontDefer=*/true,
4454           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4455       }
4456     }
4457 
4458     llvm::SmallVector<StringRef, 32> Features;
4459     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4460     llvm::transform(Features, Features.begin(),
4461                     [](StringRef Str) { return Str.substr(1); });
4462     llvm::erase_if(Features, [&Target](StringRef Feat) {
4463       return !Target.validateCpuSupports(Feat);
4464     });
4465     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4466     ++Index;
4467   }
4468 
4469   llvm::stable_sort(
4470       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4471                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4472         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4473                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4474       });
4475 
4476   // If the list contains multiple 'default' versions, such as when it contains
4477   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4478   // always run on at least a 'pentium'). We do this by deleting the 'least
4479   // advanced' (read, lowest mangling letter).
4480   while (Options.size() > 1 &&
4481          llvm::all_of(llvm::X86::getCpuSupportsMask(
4482                           (Options.end() - 2)->Conditions.Features),
4483                       [](auto X) { return X == 0; })) {
4484     StringRef LHSName = (Options.end() - 2)->Function->getName();
4485     StringRef RHSName = (Options.end() - 1)->Function->getName();
4486     if (LHSName.compare(RHSName) < 0)
4487       Options.erase(Options.end() - 2);
4488     else
4489       Options.erase(Options.end() - 1);
4490   }
4491 
4492   CodeGenFunction CGF(*this);
4493   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4494 
4495   if (getTarget().supportsIFunc()) {
4496     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4497     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4498     unsigned AS = IFunc->getType()->getPointerAddressSpace();
4499 
4500     // Fix up function declarations that were created for cpu_specific before
4501     // cpu_dispatch was known
4502     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4503       auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4504                                            ResolverFunc, &getModule());
4505       replaceDeclarationWith(IFunc, GI);
4506       IFunc = GI;
4507     }
4508 
4509     std::string AliasName = getMangledNameImpl(
4510         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4511     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4512     if (!AliasFunc) {
4513       auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4514                                            IFunc, &getModule());
4515       SetCommonAttributes(GD, GA);
4516     }
4517   }
4518 }
4519 
4520 /// Adds a declaration to the list of multi version functions if not present.
4521 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4522   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4523   assert(FD && "Not a FunctionDecl?");
4524 
4525   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4526     std::string MangledName =
4527         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4528     if (!DeferredResolversToEmit.insert(MangledName).second)
4529       return;
4530   }
4531   MultiVersionFuncs.push_back(GD);
4532 }
4533 
4534 /// If a dispatcher for the specified mangled name is not in the module, create
4535 /// and return it. The dispatcher is either an llvm Function with the specified
4536 /// type, or a global ifunc.
4537 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4538   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4539   assert(FD && "Not a FunctionDecl?");
4540 
4541   std::string MangledName =
4542       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4543 
4544   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4545   // a separate resolver).
4546   std::string ResolverName = MangledName;
4547   if (getTarget().supportsIFunc()) {
4548     switch (FD->getMultiVersionKind()) {
4549     case MultiVersionKind::None:
4550       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4551     case MultiVersionKind::Target:
4552     case MultiVersionKind::CPUSpecific:
4553     case MultiVersionKind::CPUDispatch:
4554       ResolverName += ".ifunc";
4555       break;
4556     case MultiVersionKind::TargetClones:
4557     case MultiVersionKind::TargetVersion:
4558       break;
4559     }
4560   } else if (FD->isTargetMultiVersion()) {
4561     ResolverName += ".resolver";
4562   }
4563 
4564   // If the resolver has already been created, just return it. This lookup may
4565   // yield a function declaration instead of a resolver on AArch64. That is
4566   // because we didn't know whether a resolver will be generated when we first
4567   // encountered a use of the symbol named after this resolver. Therefore,
4568   // targets which support ifuncs should not return here unless we actually
4569   // found an ifunc.
4570   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4571   if (ResolverGV &&
4572       (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4573     return ResolverGV;
4574 
4575   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4576   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4577 
4578   // The resolver needs to be created. For target and target_clones, defer
4579   // creation until the end of the TU.
4580   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4581     AddDeferredMultiVersionResolverToEmit(GD);
4582 
4583   // For cpu_specific, don't create an ifunc yet because we don't know if the
4584   // cpu_dispatch will be emitted in this translation unit.
4585   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4586     unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4587     llvm::Type *ResolverType =
4588         llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4589     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4590         MangledName + ".resolver", ResolverType, GlobalDecl{},
4591         /*ForVTable=*/false);
4592     llvm::GlobalIFunc *GIF =
4593         llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4594                                   "", Resolver, &getModule());
4595     GIF->setName(ResolverName);
4596     SetCommonAttributes(FD, GIF);
4597     if (ResolverGV)
4598       replaceDeclarationWith(ResolverGV, GIF);
4599     return GIF;
4600   }
4601 
4602   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4603       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4604   assert(isa<llvm::GlobalValue>(Resolver) &&
4605          "Resolver should be created for the first time");
4606   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4607   if (ResolverGV)
4608     replaceDeclarationWith(ResolverGV, Resolver);
4609   return Resolver;
4610 }
4611 
4612 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4613                                            const llvm::GlobalValue *GV) const {
4614   auto SC = GV->getDLLStorageClass();
4615   if (SC == llvm::GlobalValue::DefaultStorageClass)
4616     return false;
4617   const Decl *MRD = D->getMostRecentDecl();
4618   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4619             !MRD->hasAttr<DLLImportAttr>()) ||
4620            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4621             !MRD->hasAttr<DLLExportAttr>())) &&
4622           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4623 }
4624 
4625 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4626 /// module, create and return an llvm Function with the specified type. If there
4627 /// is something in the module with the specified name, return it potentially
4628 /// bitcasted to the right type.
4629 ///
4630 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4631 /// to set the attributes on the function when it is first created.
4632 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4633     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4634     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4635     ForDefinition_t IsForDefinition) {
4636   const Decl *D = GD.getDecl();
4637 
4638   std::string NameWithoutMultiVersionMangling;
4639   // Any attempts to use a MultiVersion function should result in retrieving
4640   // the iFunc instead. Name Mangling will handle the rest of the changes.
4641   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4642     // For the device mark the function as one that should be emitted.
4643     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4644         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4645         !DontDefer && !IsForDefinition) {
4646       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4647         GlobalDecl GDDef;
4648         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4649           GDDef = GlobalDecl(CD, GD.getCtorType());
4650         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4651           GDDef = GlobalDecl(DD, GD.getDtorType());
4652         else
4653           GDDef = GlobalDecl(FDDef);
4654         EmitGlobal(GDDef);
4655       }
4656     }
4657 
4658     if (FD->isMultiVersion()) {
4659       UpdateMultiVersionNames(GD, FD, MangledName);
4660       if (!IsForDefinition) {
4661         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4662         // function is used. Instead we defer the emission until we see a
4663         // default definition. In the meantime we just reference the symbol
4664         // without FMV mangling (it may or may not be replaced later).
4665         if (getTarget().getTriple().isAArch64()) {
4666           AddDeferredMultiVersionResolverToEmit(GD);
4667           NameWithoutMultiVersionMangling = getMangledNameImpl(
4668               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4669         } else
4670           return GetOrCreateMultiVersionResolver(GD);
4671       }
4672     }
4673   }
4674 
4675   if (!NameWithoutMultiVersionMangling.empty())
4676     MangledName = NameWithoutMultiVersionMangling;
4677 
4678   // Lookup the entry, lazily creating it if necessary.
4679   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4680   if (Entry) {
4681     if (WeakRefReferences.erase(Entry)) {
4682       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4683       if (FD && !FD->hasAttr<WeakAttr>())
4684         Entry->setLinkage(llvm::Function::ExternalLinkage);
4685     }
4686 
4687     // Handle dropped DLL attributes.
4688     if (D && shouldDropDLLAttribute(D, Entry)) {
4689       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4690       setDSOLocal(Entry);
4691     }
4692 
4693     // If there are two attempts to define the same mangled name, issue an
4694     // error.
4695     if (IsForDefinition && !Entry->isDeclaration()) {
4696       GlobalDecl OtherGD;
4697       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4698       // to make sure that we issue an error only once.
4699       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4700           (GD.getCanonicalDecl().getDecl() !=
4701            OtherGD.getCanonicalDecl().getDecl()) &&
4702           DiagnosedConflictingDefinitions.insert(GD).second) {
4703         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4704             << MangledName;
4705         getDiags().Report(OtherGD.getDecl()->getLocation(),
4706                           diag::note_previous_definition);
4707       }
4708     }
4709 
4710     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4711         (Entry->getValueType() == Ty)) {
4712       return Entry;
4713     }
4714 
4715     // Make sure the result is of the correct type.
4716     // (If function is requested for a definition, we always need to create a new
4717     // function, not just return a bitcast.)
4718     if (!IsForDefinition)
4719       return Entry;
4720   }
4721 
4722   // This function doesn't have a complete type (for example, the return
4723   // type is an incomplete struct). Use a fake type instead, and make
4724   // sure not to try to set attributes.
4725   bool IsIncompleteFunction = false;
4726 
4727   llvm::FunctionType *FTy;
4728   if (isa<llvm::FunctionType>(Ty)) {
4729     FTy = cast<llvm::FunctionType>(Ty);
4730   } else {
4731     FTy = llvm::FunctionType::get(VoidTy, false);
4732     IsIncompleteFunction = true;
4733   }
4734 
4735   llvm::Function *F =
4736       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4737                              Entry ? StringRef() : MangledName, &getModule());
4738 
4739   // Store the declaration associated with this function so it is potentially
4740   // updated by further declarations or definitions and emitted at the end.
4741   if (D && D->hasAttr<AnnotateAttr>())
4742     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4743 
4744   // If we already created a function with the same mangled name (but different
4745   // type) before, take its name and add it to the list of functions to be
4746   // replaced with F at the end of CodeGen.
4747   //
4748   // This happens if there is a prototype for a function (e.g. "int f()") and
4749   // then a definition of a different type (e.g. "int f(int x)").
4750   if (Entry) {
4751     F->takeName(Entry);
4752 
4753     // This might be an implementation of a function without a prototype, in
4754     // which case, try to do special replacement of calls which match the new
4755     // prototype.  The really key thing here is that we also potentially drop
4756     // arguments from the call site so as to make a direct call, which makes the
4757     // inliner happier and suppresses a number of optimizer warnings (!) about
4758     // dropping arguments.
4759     if (!Entry->use_empty()) {
4760       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4761       Entry->removeDeadConstantUsers();
4762     }
4763 
4764     addGlobalValReplacement(Entry, F);
4765   }
4766 
4767   assert(F->getName() == MangledName && "name was uniqued!");
4768   if (D)
4769     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4770   if (ExtraAttrs.hasFnAttrs()) {
4771     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4772     F->addFnAttrs(B);
4773   }
4774 
4775   if (!DontDefer) {
4776     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4777     // each other bottoming out with the base dtor.  Therefore we emit non-base
4778     // dtors on usage, even if there is no dtor definition in the TU.
4779     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4780         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4781                                            GD.getDtorType()))
4782       addDeferredDeclToEmit(GD);
4783 
4784     // This is the first use or definition of a mangled name.  If there is a
4785     // deferred decl with this name, remember that we need to emit it at the end
4786     // of the file.
4787     auto DDI = DeferredDecls.find(MangledName);
4788     if (DDI != DeferredDecls.end()) {
4789       // Move the potentially referenced deferred decl to the
4790       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4791       // don't need it anymore).
4792       addDeferredDeclToEmit(DDI->second);
4793       DeferredDecls.erase(DDI);
4794 
4795       // Otherwise, there are cases we have to worry about where we're
4796       // using a declaration for which we must emit a definition but where
4797       // we might not find a top-level definition:
4798       //   - member functions defined inline in their classes
4799       //   - friend functions defined inline in some class
4800       //   - special member functions with implicit definitions
4801       // If we ever change our AST traversal to walk into class methods,
4802       // this will be unnecessary.
4803       //
4804       // We also don't emit a definition for a function if it's going to be an
4805       // entry in a vtable, unless it's already marked as used.
4806     } else if (getLangOpts().CPlusPlus && D) {
4807       // Look for a declaration that's lexically in a record.
4808       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4809            FD = FD->getPreviousDecl()) {
4810         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4811           if (FD->doesThisDeclarationHaveABody()) {
4812             addDeferredDeclToEmit(GD.getWithDecl(FD));
4813             break;
4814           }
4815         }
4816       }
4817     }
4818   }
4819 
4820   // Make sure the result is of the requested type.
4821   if (!IsIncompleteFunction) {
4822     assert(F->getFunctionType() == Ty);
4823     return F;
4824   }
4825 
4826   return F;
4827 }
4828 
4829 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4830 /// non-null, then this function will use the specified type if it has to
4831 /// create it (this occurs when we see a definition of the function).
4832 llvm::Constant *
4833 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4834                                  bool DontDefer,
4835                                  ForDefinition_t IsForDefinition) {
4836   // If there was no specific requested type, just convert it now.
4837   if (!Ty) {
4838     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4839     Ty = getTypes().ConvertType(FD->getType());
4840   }
4841 
4842   // Devirtualized destructor calls may come through here instead of via
4843   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4844   // of the complete destructor when necessary.
4845   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4846     if (getTarget().getCXXABI().isMicrosoft() &&
4847         GD.getDtorType() == Dtor_Complete &&
4848         DD->getParent()->getNumVBases() == 0)
4849       GD = GlobalDecl(DD, Dtor_Base);
4850   }
4851 
4852   StringRef MangledName = getMangledName(GD);
4853   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4854                                     /*IsThunk=*/false, llvm::AttributeList(),
4855                                     IsForDefinition);
4856   // Returns kernel handle for HIP kernel stub function.
4857   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4858       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4859     auto *Handle = getCUDARuntime().getKernelHandle(
4860         cast<llvm::Function>(F->stripPointerCasts()), GD);
4861     if (IsForDefinition)
4862       return F;
4863     return Handle;
4864   }
4865   return F;
4866 }
4867 
4868 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4869   llvm::GlobalValue *F =
4870       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4871 
4872   return llvm::NoCFIValue::get(F);
4873 }
4874 
4875 static const FunctionDecl *
4876 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4877   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4878   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4879 
4880   IdentifierInfo &CII = C.Idents.get(Name);
4881   for (const auto *Result : DC->lookup(&CII))
4882     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4883       return FD;
4884 
4885   if (!C.getLangOpts().CPlusPlus)
4886     return nullptr;
4887 
4888   // Demangle the premangled name from getTerminateFn()
4889   IdentifierInfo &CXXII =
4890       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4891           ? C.Idents.get("terminate")
4892           : C.Idents.get(Name);
4893 
4894   for (const auto &N : {"__cxxabiv1", "std"}) {
4895     IdentifierInfo &NS = C.Idents.get(N);
4896     for (const auto *Result : DC->lookup(&NS)) {
4897       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4898       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4899         for (const auto *Result : LSD->lookup(&NS))
4900           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4901             break;
4902 
4903       if (ND)
4904         for (const auto *Result : ND->lookup(&CXXII))
4905           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4906             return FD;
4907     }
4908   }
4909 
4910   return nullptr;
4911 }
4912 
4913 /// CreateRuntimeFunction - Create a new runtime function with the specified
4914 /// type and name.
4915 llvm::FunctionCallee
4916 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4917                                      llvm::AttributeList ExtraAttrs, bool Local,
4918                                      bool AssumeConvergent) {
4919   if (AssumeConvergent) {
4920     ExtraAttrs =
4921         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4922   }
4923 
4924   llvm::Constant *C =
4925       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4926                               /*DontDefer=*/false, /*IsThunk=*/false,
4927                               ExtraAttrs);
4928 
4929   if (auto *F = dyn_cast<llvm::Function>(C)) {
4930     if (F->empty()) {
4931       F->setCallingConv(getRuntimeCC());
4932 
4933       // In Windows Itanium environments, try to mark runtime functions
4934       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4935       // will link their standard library statically or dynamically. Marking
4936       // functions imported when they are not imported can cause linker errors
4937       // and warnings.
4938       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4939           !getCodeGenOpts().LTOVisibilityPublicStd) {
4940         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4941         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4942           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4943           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4944         }
4945       }
4946       setDSOLocal(F);
4947       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4948       // of trying to approximate the attributes using the LLVM function
4949       // signature. This requires revising the API of CreateRuntimeFunction().
4950       markRegisterParameterAttributes(F);
4951     }
4952   }
4953 
4954   return {FTy, C};
4955 }
4956 
4957 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4958 /// create and return an llvm GlobalVariable with the specified type and address
4959 /// space. If there is something in the module with the specified name, return
4960 /// it potentially bitcasted to the right type.
4961 ///
4962 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4963 /// to set the attributes on the global when it is first created.
4964 ///
4965 /// If IsForDefinition is true, it is guaranteed that an actual global with
4966 /// type Ty will be returned, not conversion of a variable with the same
4967 /// mangled name but some other type.
4968 llvm::Constant *
4969 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4970                                      LangAS AddrSpace, const VarDecl *D,
4971                                      ForDefinition_t IsForDefinition) {
4972   // Lookup the entry, lazily creating it if necessary.
4973   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4974   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4975   if (Entry) {
4976     if (WeakRefReferences.erase(Entry)) {
4977       if (D && !D->hasAttr<WeakAttr>())
4978         Entry->setLinkage(llvm::Function::ExternalLinkage);
4979     }
4980 
4981     // Handle dropped DLL attributes.
4982     if (D && shouldDropDLLAttribute(D, Entry))
4983       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4984 
4985     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4986       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4987 
4988     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4989       return Entry;
4990 
4991     // If there are two attempts to define the same mangled name, issue an
4992     // error.
4993     if (IsForDefinition && !Entry->isDeclaration()) {
4994       GlobalDecl OtherGD;
4995       const VarDecl *OtherD;
4996 
4997       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4998       // to make sure that we issue an error only once.
4999       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
5000           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
5001           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
5002           OtherD->hasInit() &&
5003           DiagnosedConflictingDefinitions.insert(D).second) {
5004         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
5005             << MangledName;
5006         getDiags().Report(OtherGD.getDecl()->getLocation(),
5007                           diag::note_previous_definition);
5008       }
5009     }
5010 
5011     // Make sure the result is of the correct type.
5012     if (Entry->getType()->getAddressSpace() != TargetAS)
5013       return llvm::ConstantExpr::getAddrSpaceCast(
5014           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
5015 
5016     // (If global is requested for a definition, we always need to create a new
5017     // global, not just return a bitcast.)
5018     if (!IsForDefinition)
5019       return Entry;
5020   }
5021 
5022   auto DAddrSpace = GetGlobalVarAddressSpace(D);
5023 
5024   auto *GV = new llvm::GlobalVariable(
5025       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
5026       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
5027       getContext().getTargetAddressSpace(DAddrSpace));
5028 
5029   // If we already created a global with the same mangled name (but different
5030   // type) before, take its name and remove it from its parent.
5031   if (Entry) {
5032     GV->takeName(Entry);
5033 
5034     if (!Entry->use_empty()) {
5035       Entry->replaceAllUsesWith(GV);
5036     }
5037 
5038     Entry->eraseFromParent();
5039   }
5040 
5041   // This is the first use or definition of a mangled name.  If there is a
5042   // deferred decl with this name, remember that we need to emit it at the end
5043   // of the file.
5044   auto DDI = DeferredDecls.find(MangledName);
5045   if (DDI != DeferredDecls.end()) {
5046     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5047     // list, and remove it from DeferredDecls (since we don't need it anymore).
5048     addDeferredDeclToEmit(DDI->second);
5049     DeferredDecls.erase(DDI);
5050   }
5051 
5052   // Handle things which are present even on external declarations.
5053   if (D) {
5054     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5055       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5056 
5057     // FIXME: This code is overly simple and should be merged with other global
5058     // handling.
5059     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5060 
5061     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5062 
5063     setLinkageForGV(GV, D);
5064 
5065     if (D->getTLSKind()) {
5066       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5067         CXXThreadLocals.push_back(D);
5068       setTLSMode(GV, *D);
5069     }
5070 
5071     setGVProperties(GV, D);
5072 
5073     // If required by the ABI, treat declarations of static data members with
5074     // inline initializers as definitions.
5075     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5076       EmitGlobalVarDefinition(D);
5077     }
5078 
5079     // Emit section information for extern variables.
5080     if (D->hasExternalStorage()) {
5081       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5082         GV->setSection(SA->getName());
5083     }
5084 
5085     // Handle XCore specific ABI requirements.
5086     if (getTriple().getArch() == llvm::Triple::xcore &&
5087         D->getLanguageLinkage() == CLanguageLinkage &&
5088         D->getType().isConstant(Context) &&
5089         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5090       GV->setSection(".cp.rodata");
5091 
5092     // Handle code model attribute
5093     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5094       GV->setCodeModel(CMA->getModel());
5095 
5096     // Check if we a have a const declaration with an initializer, we may be
5097     // able to emit it as available_externally to expose it's value to the
5098     // optimizer.
5099     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5100         D->getType().isConstQualified() && !GV->hasInitializer() &&
5101         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5102       const auto *Record =
5103           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5104       bool HasMutableFields = Record && Record->hasMutableFields();
5105       if (!HasMutableFields) {
5106         const VarDecl *InitDecl;
5107         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5108         if (InitExpr) {
5109           ConstantEmitter emitter(*this);
5110           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5111           if (Init) {
5112             auto *InitType = Init->getType();
5113             if (GV->getValueType() != InitType) {
5114               // The type of the initializer does not match the definition.
5115               // This happens when an initializer has a different type from
5116               // the type of the global (because of padding at the end of a
5117               // structure for instance).
5118               GV->setName(StringRef());
5119               // Make a new global with the correct type, this is now guaranteed
5120               // to work.
5121               auto *NewGV = cast<llvm::GlobalVariable>(
5122                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5123                       ->stripPointerCasts());
5124 
5125               // Erase the old global, since it is no longer used.
5126               GV->eraseFromParent();
5127               GV = NewGV;
5128             } else {
5129               GV->setInitializer(Init);
5130               GV->setConstant(true);
5131               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5132             }
5133             emitter.finalize(GV);
5134           }
5135         }
5136       }
5137     }
5138   }
5139 
5140   if (D &&
5141       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5142     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5143     // External HIP managed variables needed to be recorded for transformation
5144     // in both device and host compilations.
5145     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5146         D->hasExternalStorage())
5147       getCUDARuntime().handleVarRegistration(D, *GV);
5148   }
5149 
5150   if (D)
5151     SanitizerMD->reportGlobal(GV, *D);
5152 
5153   LangAS ExpectedAS =
5154       D ? D->getType().getAddressSpace()
5155         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5156   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5157   if (DAddrSpace != ExpectedAS) {
5158     return getTargetCodeGenInfo().performAddrSpaceCast(
5159         *this, GV, DAddrSpace, ExpectedAS,
5160         llvm::PointerType::get(getLLVMContext(), TargetAS));
5161   }
5162 
5163   return GV;
5164 }
5165 
5166 llvm::Constant *
5167 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5168   const Decl *D = GD.getDecl();
5169 
5170   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5171     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5172                                 /*DontDefer=*/false, IsForDefinition);
5173 
5174   if (isa<CXXMethodDecl>(D)) {
5175     auto FInfo =
5176         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5177     auto Ty = getTypes().GetFunctionType(*FInfo);
5178     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5179                              IsForDefinition);
5180   }
5181 
5182   if (isa<FunctionDecl>(D)) {
5183     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5184     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5185     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5186                              IsForDefinition);
5187   }
5188 
5189   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5190 }
5191 
5192 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5193     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5194     llvm::Align Alignment) {
5195   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5196   llvm::GlobalVariable *OldGV = nullptr;
5197 
5198   if (GV) {
5199     // Check if the variable has the right type.
5200     if (GV->getValueType() == Ty)
5201       return GV;
5202 
5203     // Because C++ name mangling, the only way we can end up with an already
5204     // existing global with the same name is if it has been declared extern "C".
5205     assert(GV->isDeclaration() && "Declaration has wrong type!");
5206     OldGV = GV;
5207   }
5208 
5209   // Create a new variable.
5210   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5211                                 Linkage, nullptr, Name);
5212 
5213   if (OldGV) {
5214     // Replace occurrences of the old variable if needed.
5215     GV->takeName(OldGV);
5216 
5217     if (!OldGV->use_empty()) {
5218       OldGV->replaceAllUsesWith(GV);
5219     }
5220 
5221     OldGV->eraseFromParent();
5222   }
5223 
5224   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5225       !GV->hasAvailableExternallyLinkage())
5226     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5227 
5228   GV->setAlignment(Alignment);
5229 
5230   return GV;
5231 }
5232 
5233 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5234 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5235 /// then it will be created with the specified type instead of whatever the
5236 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5237 /// that an actual global with type Ty will be returned, not conversion of a
5238 /// variable with the same mangled name but some other type.
5239 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5240                                                   llvm::Type *Ty,
5241                                            ForDefinition_t IsForDefinition) {
5242   assert(D->hasGlobalStorage() && "Not a global variable");
5243   QualType ASTTy = D->getType();
5244   if (!Ty)
5245     Ty = getTypes().ConvertTypeForMem(ASTTy);
5246 
5247   StringRef MangledName = getMangledName(D);
5248   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5249                                IsForDefinition);
5250 }
5251 
5252 /// CreateRuntimeVariable - Create a new runtime global variable with the
5253 /// specified type and name.
5254 llvm::Constant *
5255 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5256                                      StringRef Name) {
5257   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5258                                                        : LangAS::Default;
5259   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5260   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5261   return Ret;
5262 }
5263 
5264 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5265   assert(!D->getInit() && "Cannot emit definite definitions here!");
5266 
5267   StringRef MangledName = getMangledName(D);
5268   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5269 
5270   // We already have a definition, not declaration, with the same mangled name.
5271   // Emitting of declaration is not required (and actually overwrites emitted
5272   // definition).
5273   if (GV && !GV->isDeclaration())
5274     return;
5275 
5276   // If we have not seen a reference to this variable yet, place it into the
5277   // deferred declarations table to be emitted if needed later.
5278   if (!MustBeEmitted(D) && !GV) {
5279       DeferredDecls[MangledName] = D;
5280       return;
5281   }
5282 
5283   // The tentative definition is the only definition.
5284   EmitGlobalVarDefinition(D);
5285 }
5286 
5287 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5288   if (auto const *V = dyn_cast<const VarDecl>(D))
5289     EmitExternalVarDeclaration(V);
5290   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5291     EmitExternalFunctionDeclaration(FD);
5292 }
5293 
5294 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5295   return Context.toCharUnitsFromBits(
5296       getDataLayout().getTypeStoreSizeInBits(Ty));
5297 }
5298 
5299 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5300   if (LangOpts.OpenCL) {
5301     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5302     assert(AS == LangAS::opencl_global ||
5303            AS == LangAS::opencl_global_device ||
5304            AS == LangAS::opencl_global_host ||
5305            AS == LangAS::opencl_constant ||
5306            AS == LangAS::opencl_local ||
5307            AS >= LangAS::FirstTargetAddressSpace);
5308     return AS;
5309   }
5310 
5311   if (LangOpts.SYCLIsDevice &&
5312       (!D || D->getType().getAddressSpace() == LangAS::Default))
5313     return LangAS::sycl_global;
5314 
5315   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5316     if (D) {
5317       if (D->hasAttr<CUDAConstantAttr>())
5318         return LangAS::cuda_constant;
5319       if (D->hasAttr<CUDASharedAttr>())
5320         return LangAS::cuda_shared;
5321       if (D->hasAttr<CUDADeviceAttr>())
5322         return LangAS::cuda_device;
5323       if (D->getType().isConstQualified())
5324         return LangAS::cuda_constant;
5325     }
5326     return LangAS::cuda_device;
5327   }
5328 
5329   if (LangOpts.OpenMP) {
5330     LangAS AS;
5331     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5332       return AS;
5333   }
5334   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5335 }
5336 
5337 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5338   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5339   if (LangOpts.OpenCL)
5340     return LangAS::opencl_constant;
5341   if (LangOpts.SYCLIsDevice)
5342     return LangAS::sycl_global;
5343   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5344     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5345     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5346     // with OpVariable instructions with Generic storage class which is not
5347     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5348     // UniformConstant storage class is not viable as pointers to it may not be
5349     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5350     return LangAS::cuda_device;
5351   if (auto AS = getTarget().getConstantAddressSpace())
5352     return *AS;
5353   return LangAS::Default;
5354 }
5355 
5356 // In address space agnostic languages, string literals are in default address
5357 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5358 // emitted in constant address space in LLVM IR. To be consistent with other
5359 // parts of AST, string literal global variables in constant address space
5360 // need to be casted to default address space before being put into address
5361 // map and referenced by other part of CodeGen.
5362 // In OpenCL, string literals are in constant address space in AST, therefore
5363 // they should not be casted to default address space.
5364 static llvm::Constant *
5365 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5366                                        llvm::GlobalVariable *GV) {
5367   llvm::Constant *Cast = GV;
5368   if (!CGM.getLangOpts().OpenCL) {
5369     auto AS = CGM.GetGlobalConstantAddressSpace();
5370     if (AS != LangAS::Default)
5371       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5372           CGM, GV, AS, LangAS::Default,
5373           llvm::PointerType::get(
5374               CGM.getLLVMContext(),
5375               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5376   }
5377   return Cast;
5378 }
5379 
5380 template<typename SomeDecl>
5381 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5382                                                llvm::GlobalValue *GV) {
5383   if (!getLangOpts().CPlusPlus)
5384     return;
5385 
5386   // Must have 'used' attribute, or else inline assembly can't rely on
5387   // the name existing.
5388   if (!D->template hasAttr<UsedAttr>())
5389     return;
5390 
5391   // Must have internal linkage and an ordinary name.
5392   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5393     return;
5394 
5395   // Must be in an extern "C" context. Entities declared directly within
5396   // a record are not extern "C" even if the record is in such a context.
5397   const SomeDecl *First = D->getFirstDecl();
5398   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5399     return;
5400 
5401   // OK, this is an internal linkage entity inside an extern "C" linkage
5402   // specification. Make a note of that so we can give it the "expected"
5403   // mangled name if nothing else is using that name.
5404   std::pair<StaticExternCMap::iterator, bool> R =
5405       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5406 
5407   // If we have multiple internal linkage entities with the same name
5408   // in extern "C" regions, none of them gets that name.
5409   if (!R.second)
5410     R.first->second = nullptr;
5411 }
5412 
5413 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5414   if (!CGM.supportsCOMDAT())
5415     return false;
5416 
5417   if (D.hasAttr<SelectAnyAttr>())
5418     return true;
5419 
5420   GVALinkage Linkage;
5421   if (auto *VD = dyn_cast<VarDecl>(&D))
5422     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5423   else
5424     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5425 
5426   switch (Linkage) {
5427   case GVA_Internal:
5428   case GVA_AvailableExternally:
5429   case GVA_StrongExternal:
5430     return false;
5431   case GVA_DiscardableODR:
5432   case GVA_StrongODR:
5433     return true;
5434   }
5435   llvm_unreachable("No such linkage");
5436 }
5437 
5438 bool CodeGenModule::supportsCOMDAT() const {
5439   return getTriple().supportsCOMDAT();
5440 }
5441 
5442 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5443                                           llvm::GlobalObject &GO) {
5444   if (!shouldBeInCOMDAT(*this, D))
5445     return;
5446   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5447 }
5448 
5449 const ABIInfo &CodeGenModule::getABIInfo() {
5450   return getTargetCodeGenInfo().getABIInfo();
5451 }
5452 
5453 /// Pass IsTentative as true if you want to create a tentative definition.
5454 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5455                                             bool IsTentative) {
5456   // OpenCL global variables of sampler type are translated to function calls,
5457   // therefore no need to be translated.
5458   QualType ASTTy = D->getType();
5459   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5460     return;
5461 
5462   // If this is OpenMP device, check if it is legal to emit this global
5463   // normally.
5464   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5465       OpenMPRuntime->emitTargetGlobalVariable(D))
5466     return;
5467 
5468   llvm::TrackingVH<llvm::Constant> Init;
5469   bool NeedsGlobalCtor = false;
5470   // Whether the definition of the variable is available externally.
5471   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5472   // since this is the job for its original source.
5473   bool IsDefinitionAvailableExternally =
5474       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5475   bool NeedsGlobalDtor =
5476       !IsDefinitionAvailableExternally &&
5477       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5478 
5479   // It is helpless to emit the definition for an available_externally variable
5480   // which can't be marked as const.
5481   // We don't need to check if it needs global ctor or dtor. See the above
5482   // comment for ideas.
5483   if (IsDefinitionAvailableExternally &&
5484       (!D->hasConstantInitialization() ||
5485        // TODO: Update this when we have interface to check constexpr
5486        // destructor.
5487        D->needsDestruction(getContext()) ||
5488        !D->getType().isConstantStorage(getContext(), true, true)))
5489     return;
5490 
5491   const VarDecl *InitDecl;
5492   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5493 
5494   std::optional<ConstantEmitter> emitter;
5495 
5496   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5497   // as part of their declaration."  Sema has already checked for
5498   // error cases, so we just need to set Init to UndefValue.
5499   bool IsCUDASharedVar =
5500       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5501   // Shadows of initialized device-side global variables are also left
5502   // undefined.
5503   // Managed Variables should be initialized on both host side and device side.
5504   bool IsCUDAShadowVar =
5505       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5506       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5507        D->hasAttr<CUDASharedAttr>());
5508   bool IsCUDADeviceShadowVar =
5509       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5510       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5511        D->getType()->isCUDADeviceBuiltinTextureType());
5512   if (getLangOpts().CUDA &&
5513       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5514     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5515   else if (D->hasAttr<LoaderUninitializedAttr>())
5516     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5517   else if (!InitExpr) {
5518     // This is a tentative definition; tentative definitions are
5519     // implicitly initialized with { 0 }.
5520     //
5521     // Note that tentative definitions are only emitted at the end of
5522     // a translation unit, so they should never have incomplete
5523     // type. In addition, EmitTentativeDefinition makes sure that we
5524     // never attempt to emit a tentative definition if a real one
5525     // exists. A use may still exists, however, so we still may need
5526     // to do a RAUW.
5527     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5528     Init = EmitNullConstant(D->getType());
5529   } else {
5530     initializedGlobalDecl = GlobalDecl(D);
5531     emitter.emplace(*this);
5532     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5533     if (!Initializer) {
5534       QualType T = InitExpr->getType();
5535       if (D->getType()->isReferenceType())
5536         T = D->getType();
5537 
5538       if (getLangOpts().CPlusPlus) {
5539         if (InitDecl->hasFlexibleArrayInit(getContext()))
5540           ErrorUnsupported(D, "flexible array initializer");
5541         Init = EmitNullConstant(T);
5542 
5543         if (!IsDefinitionAvailableExternally)
5544           NeedsGlobalCtor = true;
5545       } else {
5546         ErrorUnsupported(D, "static initializer");
5547         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5548       }
5549     } else {
5550       Init = Initializer;
5551       // We don't need an initializer, so remove the entry for the delayed
5552       // initializer position (just in case this entry was delayed) if we
5553       // also don't need to register a destructor.
5554       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5555         DelayedCXXInitPosition.erase(D);
5556 
5557 #ifndef NDEBUG
5558       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5559                           InitDecl->getFlexibleArrayInitChars(getContext());
5560       CharUnits CstSize = CharUnits::fromQuantity(
5561           getDataLayout().getTypeAllocSize(Init->getType()));
5562       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5563 #endif
5564     }
5565   }
5566 
5567   llvm::Type* InitType = Init->getType();
5568   llvm::Constant *Entry =
5569       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5570 
5571   // Strip off pointer casts if we got them.
5572   Entry = Entry->stripPointerCasts();
5573 
5574   // Entry is now either a Function or GlobalVariable.
5575   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5576 
5577   // We have a definition after a declaration with the wrong type.
5578   // We must make a new GlobalVariable* and update everything that used OldGV
5579   // (a declaration or tentative definition) with the new GlobalVariable*
5580   // (which will be a definition).
5581   //
5582   // This happens if there is a prototype for a global (e.g.
5583   // "extern int x[];") and then a definition of a different type (e.g.
5584   // "int x[10];"). This also happens when an initializer has a different type
5585   // from the type of the global (this happens with unions).
5586   if (!GV || GV->getValueType() != InitType ||
5587       GV->getType()->getAddressSpace() !=
5588           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5589 
5590     // Move the old entry aside so that we'll create a new one.
5591     Entry->setName(StringRef());
5592 
5593     // Make a new global with the correct type, this is now guaranteed to work.
5594     GV = cast<llvm::GlobalVariable>(
5595         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5596             ->stripPointerCasts());
5597 
5598     // Replace all uses of the old global with the new global
5599     llvm::Constant *NewPtrForOldDecl =
5600         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5601                                                              Entry->getType());
5602     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5603 
5604     // Erase the old global, since it is no longer used.
5605     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5606   }
5607 
5608   MaybeHandleStaticInExternC(D, GV);
5609 
5610   if (D->hasAttr<AnnotateAttr>())
5611     AddGlobalAnnotations(D, GV);
5612 
5613   // Set the llvm linkage type as appropriate.
5614   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5615 
5616   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5617   // the device. [...]"
5618   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5619   // __device__, declares a variable that: [...]
5620   // Is accessible from all the threads within the grid and from the host
5621   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5622   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5623   if (LangOpts.CUDA) {
5624     if (LangOpts.CUDAIsDevice) {
5625       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5626           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5627            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5628            D->getType()->isCUDADeviceBuiltinTextureType()))
5629         GV->setExternallyInitialized(true);
5630     } else {
5631       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5632     }
5633     getCUDARuntime().handleVarRegistration(D, *GV);
5634   }
5635 
5636   GV->setInitializer(Init);
5637   if (emitter)
5638     emitter->finalize(GV);
5639 
5640   // If it is safe to mark the global 'constant', do so now.
5641   GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) ||
5642                   (!NeedsGlobalCtor && !NeedsGlobalDtor &&
5643                    D->getType().isConstantStorage(getContext(), true, true)));
5644 
5645   // If it is in a read-only section, mark it 'constant'.
5646   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5647     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5648     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5649       GV->setConstant(true);
5650   }
5651 
5652   CharUnits AlignVal = getContext().getDeclAlign(D);
5653   // Check for alignment specifed in an 'omp allocate' directive.
5654   if (std::optional<CharUnits> AlignValFromAllocate =
5655           getOMPAllocateAlignment(D))
5656     AlignVal = *AlignValFromAllocate;
5657   GV->setAlignment(AlignVal.getAsAlign());
5658 
5659   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5660   // function is only defined alongside the variable, not also alongside
5661   // callers. Normally, all accesses to a thread_local go through the
5662   // thread-wrapper in order to ensure initialization has occurred, underlying
5663   // variable will never be used other than the thread-wrapper, so it can be
5664   // converted to internal linkage.
5665   //
5666   // However, if the variable has the 'constinit' attribute, it _can_ be
5667   // referenced directly, without calling the thread-wrapper, so the linkage
5668   // must not be changed.
5669   //
5670   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5671   // weak or linkonce, the de-duplication semantics are important to preserve,
5672   // so we don't change the linkage.
5673   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5674       Linkage == llvm::GlobalValue::ExternalLinkage &&
5675       Context.getTargetInfo().getTriple().isOSDarwin() &&
5676       !D->hasAttr<ConstInitAttr>())
5677     Linkage = llvm::GlobalValue::InternalLinkage;
5678 
5679   GV->setLinkage(Linkage);
5680   if (D->hasAttr<DLLImportAttr>())
5681     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5682   else if (D->hasAttr<DLLExportAttr>())
5683     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5684   else
5685     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5686 
5687   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5688     // common vars aren't constant even if declared const.
5689     GV->setConstant(false);
5690     // Tentative definition of global variables may be initialized with
5691     // non-zero null pointers. In this case they should have weak linkage
5692     // since common linkage must have zero initializer and must not have
5693     // explicit section therefore cannot have non-zero initial value.
5694     if (!GV->getInitializer()->isNullValue())
5695       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5696   }
5697 
5698   setNonAliasAttributes(D, GV);
5699 
5700   if (D->getTLSKind() && !GV->isThreadLocal()) {
5701     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5702       CXXThreadLocals.push_back(D);
5703     setTLSMode(GV, *D);
5704   }
5705 
5706   maybeSetTrivialComdat(*D, *GV);
5707 
5708   // Emit the initializer function if necessary.
5709   if (NeedsGlobalCtor || NeedsGlobalDtor)
5710     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5711 
5712   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5713 
5714   // Emit global variable debug information.
5715   if (CGDebugInfo *DI = getModuleDebugInfo())
5716     if (getCodeGenOpts().hasReducedDebugInfo())
5717       DI->EmitGlobalVariable(GV, D);
5718 }
5719 
5720 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5721   if (CGDebugInfo *DI = getModuleDebugInfo())
5722     if (getCodeGenOpts().hasReducedDebugInfo()) {
5723       QualType ASTTy = D->getType();
5724       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5725       llvm::Constant *GV =
5726           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5727       DI->EmitExternalVariable(
5728           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5729     }
5730 }
5731 
5732 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5733   if (CGDebugInfo *DI = getModuleDebugInfo())
5734     if (getCodeGenOpts().hasReducedDebugInfo()) {
5735       auto *Ty = getTypes().ConvertType(FD->getType());
5736       StringRef MangledName = getMangledName(FD);
5737       auto *Fn = cast<llvm::Function>(
5738           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5739       if (!Fn->getSubprogram())
5740         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5741     }
5742 }
5743 
5744 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5745                                       CodeGenModule &CGM, const VarDecl *D,
5746                                       bool NoCommon) {
5747   // Don't give variables common linkage if -fno-common was specified unless it
5748   // was overridden by a NoCommon attribute.
5749   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5750     return true;
5751 
5752   // C11 6.9.2/2:
5753   //   A declaration of an identifier for an object that has file scope without
5754   //   an initializer, and without a storage-class specifier or with the
5755   //   storage-class specifier static, constitutes a tentative definition.
5756   if (D->getInit() || D->hasExternalStorage())
5757     return true;
5758 
5759   // A variable cannot be both common and exist in a section.
5760   if (D->hasAttr<SectionAttr>())
5761     return true;
5762 
5763   // A variable cannot be both common and exist in a section.
5764   // We don't try to determine which is the right section in the front-end.
5765   // If no specialized section name is applicable, it will resort to default.
5766   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5767       D->hasAttr<PragmaClangDataSectionAttr>() ||
5768       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5769       D->hasAttr<PragmaClangRodataSectionAttr>())
5770     return true;
5771 
5772   // Thread local vars aren't considered common linkage.
5773   if (D->getTLSKind())
5774     return true;
5775 
5776   // Tentative definitions marked with WeakImportAttr are true definitions.
5777   if (D->hasAttr<WeakImportAttr>())
5778     return true;
5779 
5780   // A variable cannot be both common and exist in a comdat.
5781   if (shouldBeInCOMDAT(CGM, *D))
5782     return true;
5783 
5784   // Declarations with a required alignment do not have common linkage in MSVC
5785   // mode.
5786   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5787     if (D->hasAttr<AlignedAttr>())
5788       return true;
5789     QualType VarType = D->getType();
5790     if (Context.isAlignmentRequired(VarType))
5791       return true;
5792 
5793     if (const auto *RT = VarType->getAs<RecordType>()) {
5794       const RecordDecl *RD = RT->getDecl();
5795       for (const FieldDecl *FD : RD->fields()) {
5796         if (FD->isBitField())
5797           continue;
5798         if (FD->hasAttr<AlignedAttr>())
5799           return true;
5800         if (Context.isAlignmentRequired(FD->getType()))
5801           return true;
5802       }
5803     }
5804   }
5805 
5806   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5807   // common symbols, so symbols with greater alignment requirements cannot be
5808   // common.
5809   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5810   // alignments for common symbols via the aligncomm directive, so this
5811   // restriction only applies to MSVC environments.
5812   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5813       Context.getTypeAlignIfKnown(D->getType()) >
5814           Context.toBits(CharUnits::fromQuantity(32)))
5815     return true;
5816 
5817   return false;
5818 }
5819 
5820 llvm::GlobalValue::LinkageTypes
5821 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5822                                            GVALinkage Linkage) {
5823   if (Linkage == GVA_Internal)
5824     return llvm::Function::InternalLinkage;
5825 
5826   if (D->hasAttr<WeakAttr>())
5827     return llvm::GlobalVariable::WeakAnyLinkage;
5828 
5829   if (const auto *FD = D->getAsFunction())
5830     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5831       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5832 
5833   // We are guaranteed to have a strong definition somewhere else,
5834   // so we can use available_externally linkage.
5835   if (Linkage == GVA_AvailableExternally)
5836     return llvm::GlobalValue::AvailableExternallyLinkage;
5837 
5838   // Note that Apple's kernel linker doesn't support symbol
5839   // coalescing, so we need to avoid linkonce and weak linkages there.
5840   // Normally, this means we just map to internal, but for explicit
5841   // instantiations we'll map to external.
5842 
5843   // In C++, the compiler has to emit a definition in every translation unit
5844   // that references the function.  We should use linkonce_odr because
5845   // a) if all references in this translation unit are optimized away, we
5846   // don't need to codegen it.  b) if the function persists, it needs to be
5847   // merged with other definitions. c) C++ has the ODR, so we know the
5848   // definition is dependable.
5849   if (Linkage == GVA_DiscardableODR)
5850     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5851                                             : llvm::Function::InternalLinkage;
5852 
5853   // An explicit instantiation of a template has weak linkage, since
5854   // explicit instantiations can occur in multiple translation units
5855   // and must all be equivalent. However, we are not allowed to
5856   // throw away these explicit instantiations.
5857   //
5858   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5859   // so say that CUDA templates are either external (for kernels) or internal.
5860   // This lets llvm perform aggressive inter-procedural optimizations. For
5861   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5862   // therefore we need to follow the normal linkage paradigm.
5863   if (Linkage == GVA_StrongODR) {
5864     if (getLangOpts().AppleKext)
5865       return llvm::Function::ExternalLinkage;
5866     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5867         !getLangOpts().GPURelocatableDeviceCode)
5868       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5869                                           : llvm::Function::InternalLinkage;
5870     return llvm::Function::WeakODRLinkage;
5871   }
5872 
5873   // C++ doesn't have tentative definitions and thus cannot have common
5874   // linkage.
5875   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5876       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5877                                  CodeGenOpts.NoCommon))
5878     return llvm::GlobalVariable::CommonLinkage;
5879 
5880   // selectany symbols are externally visible, so use weak instead of
5881   // linkonce.  MSVC optimizes away references to const selectany globals, so
5882   // all definitions should be the same and ODR linkage should be used.
5883   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5884   if (D->hasAttr<SelectAnyAttr>())
5885     return llvm::GlobalVariable::WeakODRLinkage;
5886 
5887   // Otherwise, we have strong external linkage.
5888   assert(Linkage == GVA_StrongExternal);
5889   return llvm::GlobalVariable::ExternalLinkage;
5890 }
5891 
5892 llvm::GlobalValue::LinkageTypes
5893 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5894   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5895   return getLLVMLinkageForDeclarator(VD, Linkage);
5896 }
5897 
5898 /// Replace the uses of a function that was declared with a non-proto type.
5899 /// We want to silently drop extra arguments from call sites
5900 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5901                                           llvm::Function *newFn) {
5902   // Fast path.
5903   if (old->use_empty())
5904     return;
5905 
5906   llvm::Type *newRetTy = newFn->getReturnType();
5907   SmallVector<llvm::Value *, 4> newArgs;
5908 
5909   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5910 
5911   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5912        ui != ue; ui++) {
5913     llvm::User *user = ui->getUser();
5914 
5915     // Recognize and replace uses of bitcasts.  Most calls to
5916     // unprototyped functions will use bitcasts.
5917     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5918       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5919         replaceUsesOfNonProtoConstant(bitcast, newFn);
5920       continue;
5921     }
5922 
5923     // Recognize calls to the function.
5924     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5925     if (!callSite)
5926       continue;
5927     if (!callSite->isCallee(&*ui))
5928       continue;
5929 
5930     // If the return types don't match exactly, then we can't
5931     // transform this call unless it's dead.
5932     if (callSite->getType() != newRetTy && !callSite->use_empty())
5933       continue;
5934 
5935     // Get the call site's attribute list.
5936     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5937     llvm::AttributeList oldAttrs = callSite->getAttributes();
5938 
5939     // If the function was passed too few arguments, don't transform.
5940     unsigned newNumArgs = newFn->arg_size();
5941     if (callSite->arg_size() < newNumArgs)
5942       continue;
5943 
5944     // If extra arguments were passed, we silently drop them.
5945     // If any of the types mismatch, we don't transform.
5946     unsigned argNo = 0;
5947     bool dontTransform = false;
5948     for (llvm::Argument &A : newFn->args()) {
5949       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5950         dontTransform = true;
5951         break;
5952       }
5953 
5954       // Add any parameter attributes.
5955       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5956       argNo++;
5957     }
5958     if (dontTransform)
5959       continue;
5960 
5961     // Okay, we can transform this.  Create the new call instruction and copy
5962     // over the required information.
5963     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5964 
5965     // Copy over any operand bundles.
5966     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5967     callSite->getOperandBundlesAsDefs(newBundles);
5968 
5969     llvm::CallBase *newCall;
5970     if (isa<llvm::CallInst>(callSite)) {
5971       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
5972                                        callSite->getIterator());
5973     } else {
5974       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5975       newCall = llvm::InvokeInst::Create(
5976           newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
5977           newArgs, newBundles, "", callSite->getIterator());
5978     }
5979     newArgs.clear(); // for the next iteration
5980 
5981     if (!newCall->getType()->isVoidTy())
5982       newCall->takeName(callSite);
5983     newCall->setAttributes(
5984         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5985                                  oldAttrs.getRetAttrs(), newArgAttrs));
5986     newCall->setCallingConv(callSite->getCallingConv());
5987 
5988     // Finally, remove the old call, replacing any uses with the new one.
5989     if (!callSite->use_empty())
5990       callSite->replaceAllUsesWith(newCall);
5991 
5992     // Copy debug location attached to CI.
5993     if (callSite->getDebugLoc())
5994       newCall->setDebugLoc(callSite->getDebugLoc());
5995 
5996     callSitesToBeRemovedFromParent.push_back(callSite);
5997   }
5998 
5999   for (auto *callSite : callSitesToBeRemovedFromParent) {
6000     callSite->eraseFromParent();
6001   }
6002 }
6003 
6004 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
6005 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
6006 /// existing call uses of the old function in the module, this adjusts them to
6007 /// call the new function directly.
6008 ///
6009 /// This is not just a cleanup: the always_inline pass requires direct calls to
6010 /// functions to be able to inline them.  If there is a bitcast in the way, it
6011 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
6012 /// run at -O0.
6013 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
6014                                                       llvm::Function *NewFn) {
6015   // If we're redefining a global as a function, don't transform it.
6016   if (!isa<llvm::Function>(Old)) return;
6017 
6018   replaceUsesOfNonProtoConstant(Old, NewFn);
6019 }
6020 
6021 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
6022   auto DK = VD->isThisDeclarationADefinition();
6023   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
6024       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
6025     return;
6026 
6027   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
6028   // If we have a definition, this might be a deferred decl. If the
6029   // instantiation is explicit, make sure we emit it at the end.
6030   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
6031     GetAddrOfGlobalVar(VD);
6032 
6033   EmitTopLevelDecl(VD);
6034 }
6035 
6036 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6037                                                  llvm::GlobalValue *GV) {
6038   const auto *D = cast<FunctionDecl>(GD.getDecl());
6039 
6040   // Compute the function info and LLVM type.
6041   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6042   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6043 
6044   // Get or create the prototype for the function.
6045   if (!GV || (GV->getValueType() != Ty))
6046     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6047                                                    /*DontDefer=*/true,
6048                                                    ForDefinition));
6049 
6050   // Already emitted.
6051   if (!GV->isDeclaration())
6052     return;
6053 
6054   // We need to set linkage and visibility on the function before
6055   // generating code for it because various parts of IR generation
6056   // want to propagate this information down (e.g. to local static
6057   // declarations).
6058   auto *Fn = cast<llvm::Function>(GV);
6059   setFunctionLinkage(GD, Fn);
6060 
6061   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6062   setGVProperties(Fn, GD);
6063 
6064   MaybeHandleStaticInExternC(D, Fn);
6065 
6066   maybeSetTrivialComdat(*D, *Fn);
6067 
6068   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6069 
6070   setNonAliasAttributes(GD, Fn);
6071   SetLLVMFunctionAttributesForDefinition(D, Fn);
6072 
6073   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6074     AddGlobalCtor(Fn, CA->getPriority());
6075   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6076     AddGlobalDtor(Fn, DA->getPriority(), true);
6077   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6078     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6079 }
6080 
6081 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6082   const auto *D = cast<ValueDecl>(GD.getDecl());
6083   const AliasAttr *AA = D->getAttr<AliasAttr>();
6084   assert(AA && "Not an alias?");
6085 
6086   StringRef MangledName = getMangledName(GD);
6087 
6088   if (AA->getAliasee() == MangledName) {
6089     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6090     return;
6091   }
6092 
6093   // If there is a definition in the module, then it wins over the alias.
6094   // This is dubious, but allow it to be safe.  Just ignore the alias.
6095   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6096   if (Entry && !Entry->isDeclaration())
6097     return;
6098 
6099   Aliases.push_back(GD);
6100 
6101   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6102 
6103   // Create a reference to the named value.  This ensures that it is emitted
6104   // if a deferred decl.
6105   llvm::Constant *Aliasee;
6106   llvm::GlobalValue::LinkageTypes LT;
6107   if (isa<llvm::FunctionType>(DeclTy)) {
6108     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6109                                       /*ForVTable=*/false);
6110     LT = getFunctionLinkage(GD);
6111   } else {
6112     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6113                                     /*D=*/nullptr);
6114     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6115       LT = getLLVMLinkageVarDefinition(VD);
6116     else
6117       LT = getFunctionLinkage(GD);
6118   }
6119 
6120   // Create the new alias itself, but don't set a name yet.
6121   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6122   auto *GA =
6123       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6124 
6125   if (Entry) {
6126     if (GA->getAliasee() == Entry) {
6127       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6128       return;
6129     }
6130 
6131     assert(Entry->isDeclaration());
6132 
6133     // If there is a declaration in the module, then we had an extern followed
6134     // by the alias, as in:
6135     //   extern int test6();
6136     //   ...
6137     //   int test6() __attribute__((alias("test7")));
6138     //
6139     // Remove it and replace uses of it with the alias.
6140     GA->takeName(Entry);
6141 
6142     Entry->replaceAllUsesWith(GA);
6143     Entry->eraseFromParent();
6144   } else {
6145     GA->setName(MangledName);
6146   }
6147 
6148   // Set attributes which are particular to an alias; this is a
6149   // specialization of the attributes which may be set on a global
6150   // variable/function.
6151   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6152       D->isWeakImported()) {
6153     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6154   }
6155 
6156   if (const auto *VD = dyn_cast<VarDecl>(D))
6157     if (VD->getTLSKind())
6158       setTLSMode(GA, *VD);
6159 
6160   SetCommonAttributes(GD, GA);
6161 
6162   // Emit global alias debug information.
6163   if (isa<VarDecl>(D))
6164     if (CGDebugInfo *DI = getModuleDebugInfo())
6165       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6166 }
6167 
6168 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6169   const auto *D = cast<ValueDecl>(GD.getDecl());
6170   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6171   assert(IFA && "Not an ifunc?");
6172 
6173   StringRef MangledName = getMangledName(GD);
6174 
6175   if (IFA->getResolver() == MangledName) {
6176     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6177     return;
6178   }
6179 
6180   // Report an error if some definition overrides ifunc.
6181   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6182   if (Entry && !Entry->isDeclaration()) {
6183     GlobalDecl OtherGD;
6184     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6185         DiagnosedConflictingDefinitions.insert(GD).second) {
6186       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6187           << MangledName;
6188       Diags.Report(OtherGD.getDecl()->getLocation(),
6189                    diag::note_previous_definition);
6190     }
6191     return;
6192   }
6193 
6194   Aliases.push_back(GD);
6195 
6196   // The resolver might not be visited yet. Specify a dummy non-function type to
6197   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6198   // was emitted) or the whole function will be replaced (if the resolver has
6199   // not been emitted).
6200   llvm::Constant *Resolver =
6201       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6202                               /*ForVTable=*/false);
6203   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6204   unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6205   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6206       DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6207   if (Entry) {
6208     if (GIF->getResolver() == Entry) {
6209       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6210       return;
6211     }
6212     assert(Entry->isDeclaration());
6213 
6214     // If there is a declaration in the module, then we had an extern followed
6215     // by the ifunc, as in:
6216     //   extern int test();
6217     //   ...
6218     //   int test() __attribute__((ifunc("resolver")));
6219     //
6220     // Remove it and replace uses of it with the ifunc.
6221     GIF->takeName(Entry);
6222 
6223     Entry->replaceAllUsesWith(GIF);
6224     Entry->eraseFromParent();
6225   } else
6226     GIF->setName(MangledName);
6227   SetCommonAttributes(GD, GIF);
6228 }
6229 
6230 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6231                                             ArrayRef<llvm::Type*> Tys) {
6232   return llvm::Intrinsic::getOrInsertDeclaration(&getModule(),
6233                                                  (llvm::Intrinsic::ID)IID, Tys);
6234 }
6235 
6236 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6237 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6238                          const StringLiteral *Literal, bool TargetIsLSB,
6239                          bool &IsUTF16, unsigned &StringLength) {
6240   StringRef String = Literal->getString();
6241   unsigned NumBytes = String.size();
6242 
6243   // Check for simple case.
6244   if (!Literal->containsNonAsciiOrNull()) {
6245     StringLength = NumBytes;
6246     return *Map.insert(std::make_pair(String, nullptr)).first;
6247   }
6248 
6249   // Otherwise, convert the UTF8 literals into a string of shorts.
6250   IsUTF16 = true;
6251 
6252   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6253   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6254   llvm::UTF16 *ToPtr = &ToBuf[0];
6255 
6256   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6257                                  ToPtr + NumBytes, llvm::strictConversion);
6258 
6259   // ConvertUTF8toUTF16 returns the length in ToPtr.
6260   StringLength = ToPtr - &ToBuf[0];
6261 
6262   // Add an explicit null.
6263   *ToPtr = 0;
6264   return *Map.insert(std::make_pair(
6265                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6266                                    (StringLength + 1) * 2),
6267                          nullptr)).first;
6268 }
6269 
6270 ConstantAddress
6271 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6272   unsigned StringLength = 0;
6273   bool isUTF16 = false;
6274   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6275       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6276                                getDataLayout().isLittleEndian(), isUTF16,
6277                                StringLength);
6278 
6279   if (auto *C = Entry.second)
6280     return ConstantAddress(
6281         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6282 
6283   const ASTContext &Context = getContext();
6284   const llvm::Triple &Triple = getTriple();
6285 
6286   const auto CFRuntime = getLangOpts().CFRuntime;
6287   const bool IsSwiftABI =
6288       static_cast<unsigned>(CFRuntime) >=
6289       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6290   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6291 
6292   // If we don't already have it, get __CFConstantStringClassReference.
6293   if (!CFConstantStringClassRef) {
6294     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6295     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6296     Ty = llvm::ArrayType::get(Ty, 0);
6297 
6298     switch (CFRuntime) {
6299     default: break;
6300     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6301     case LangOptions::CoreFoundationABI::Swift5_0:
6302       CFConstantStringClassName =
6303           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6304                               : "$s10Foundation19_NSCFConstantStringCN";
6305       Ty = IntPtrTy;
6306       break;
6307     case LangOptions::CoreFoundationABI::Swift4_2:
6308       CFConstantStringClassName =
6309           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6310                               : "$S10Foundation19_NSCFConstantStringCN";
6311       Ty = IntPtrTy;
6312       break;
6313     case LangOptions::CoreFoundationABI::Swift4_1:
6314       CFConstantStringClassName =
6315           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6316                               : "__T010Foundation19_NSCFConstantStringCN";
6317       Ty = IntPtrTy;
6318       break;
6319     }
6320 
6321     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6322 
6323     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6324       llvm::GlobalValue *GV = nullptr;
6325 
6326       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6327         IdentifierInfo &II = Context.Idents.get(GV->getName());
6328         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6329         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6330 
6331         const VarDecl *VD = nullptr;
6332         for (const auto *Result : DC->lookup(&II))
6333           if ((VD = dyn_cast<VarDecl>(Result)))
6334             break;
6335 
6336         if (Triple.isOSBinFormatELF()) {
6337           if (!VD)
6338             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6339         } else {
6340           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6341           if (!VD || !VD->hasAttr<DLLExportAttr>())
6342             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6343           else
6344             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6345         }
6346 
6347         setDSOLocal(GV);
6348       }
6349     }
6350 
6351     // Decay array -> ptr
6352     CFConstantStringClassRef =
6353         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6354   }
6355 
6356   QualType CFTy = Context.getCFConstantStringType();
6357 
6358   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6359 
6360   ConstantInitBuilder Builder(*this);
6361   auto Fields = Builder.beginStruct(STy);
6362 
6363   // Class pointer.
6364   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6365 
6366   // Flags.
6367   if (IsSwiftABI) {
6368     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6369     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6370   } else {
6371     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6372   }
6373 
6374   // String pointer.
6375   llvm::Constant *C = nullptr;
6376   if (isUTF16) {
6377     auto Arr = llvm::ArrayRef(
6378         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6379         Entry.first().size() / 2);
6380     C = llvm::ConstantDataArray::get(VMContext, Arr);
6381   } else {
6382     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6383   }
6384 
6385   // Note: -fwritable-strings doesn't make the backing store strings of
6386   // CFStrings writable.
6387   auto *GV =
6388       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6389                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6390   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6391   // Don't enforce the target's minimum global alignment, since the only use
6392   // of the string is via this class initializer.
6393   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6394                             : Context.getTypeAlignInChars(Context.CharTy);
6395   GV->setAlignment(Align.getAsAlign());
6396 
6397   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6398   // Without it LLVM can merge the string with a non unnamed_addr one during
6399   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6400   if (Triple.isOSBinFormatMachO())
6401     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6402                            : "__TEXT,__cstring,cstring_literals");
6403   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6404   // the static linker to adjust permissions to read-only later on.
6405   else if (Triple.isOSBinFormatELF())
6406     GV->setSection(".rodata");
6407 
6408   // String.
6409   Fields.add(GV);
6410 
6411   // String length.
6412   llvm::IntegerType *LengthTy =
6413       llvm::IntegerType::get(getModule().getContext(),
6414                              Context.getTargetInfo().getLongWidth());
6415   if (IsSwiftABI) {
6416     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6417         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6418       LengthTy = Int32Ty;
6419     else
6420       LengthTy = IntPtrTy;
6421   }
6422   Fields.addInt(LengthTy, StringLength);
6423 
6424   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6425   // properly aligned on 32-bit platforms.
6426   CharUnits Alignment =
6427       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6428 
6429   // The struct.
6430   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6431                                     /*isConstant=*/false,
6432                                     llvm::GlobalVariable::PrivateLinkage);
6433   GV->addAttribute("objc_arc_inert");
6434   switch (Triple.getObjectFormat()) {
6435   case llvm::Triple::UnknownObjectFormat:
6436     llvm_unreachable("unknown file format");
6437   case llvm::Triple::DXContainer:
6438   case llvm::Triple::GOFF:
6439   case llvm::Triple::SPIRV:
6440   case llvm::Triple::XCOFF:
6441     llvm_unreachable("unimplemented");
6442   case llvm::Triple::COFF:
6443   case llvm::Triple::ELF:
6444   case llvm::Triple::Wasm:
6445     GV->setSection("cfstring");
6446     break;
6447   case llvm::Triple::MachO:
6448     GV->setSection("__DATA,__cfstring");
6449     break;
6450   }
6451   Entry.second = GV;
6452 
6453   return ConstantAddress(GV, GV->getValueType(), Alignment);
6454 }
6455 
6456 bool CodeGenModule::getExpressionLocationsEnabled() const {
6457   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6458 }
6459 
6460 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6461   if (ObjCFastEnumerationStateType.isNull()) {
6462     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6463     D->startDefinition();
6464 
6465     QualType FieldTypes[] = {
6466         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6467         Context.getPointerType(Context.UnsignedLongTy),
6468         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6469                                      nullptr, ArraySizeModifier::Normal, 0)};
6470 
6471     for (size_t i = 0; i < 4; ++i) {
6472       FieldDecl *Field = FieldDecl::Create(Context,
6473                                            D,
6474                                            SourceLocation(),
6475                                            SourceLocation(), nullptr,
6476                                            FieldTypes[i], /*TInfo=*/nullptr,
6477                                            /*BitWidth=*/nullptr,
6478                                            /*Mutable=*/false,
6479                                            ICIS_NoInit);
6480       Field->setAccess(AS_public);
6481       D->addDecl(Field);
6482     }
6483 
6484     D->completeDefinition();
6485     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6486   }
6487 
6488   return ObjCFastEnumerationStateType;
6489 }
6490 
6491 llvm::Constant *
6492 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6493   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6494 
6495   // Don't emit it as the address of the string, emit the string data itself
6496   // as an inline array.
6497   if (E->getCharByteWidth() == 1) {
6498     SmallString<64> Str(E->getString());
6499 
6500     // Resize the string to the right size, which is indicated by its type.
6501     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6502     assert(CAT && "String literal not of constant array type!");
6503     Str.resize(CAT->getZExtSize());
6504     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6505   }
6506 
6507   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6508   llvm::Type *ElemTy = AType->getElementType();
6509   unsigned NumElements = AType->getNumElements();
6510 
6511   // Wide strings have either 2-byte or 4-byte elements.
6512   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6513     SmallVector<uint16_t, 32> Elements;
6514     Elements.reserve(NumElements);
6515 
6516     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6517       Elements.push_back(E->getCodeUnit(i));
6518     Elements.resize(NumElements);
6519     return llvm::ConstantDataArray::get(VMContext, Elements);
6520   }
6521 
6522   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6523   SmallVector<uint32_t, 32> Elements;
6524   Elements.reserve(NumElements);
6525 
6526   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6527     Elements.push_back(E->getCodeUnit(i));
6528   Elements.resize(NumElements);
6529   return llvm::ConstantDataArray::get(VMContext, Elements);
6530 }
6531 
6532 static llvm::GlobalVariable *
6533 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6534                       CodeGenModule &CGM, StringRef GlobalName,
6535                       CharUnits Alignment) {
6536   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6537       CGM.GetGlobalConstantAddressSpace());
6538 
6539   llvm::Module &M = CGM.getModule();
6540   // Create a global variable for this string
6541   auto *GV = new llvm::GlobalVariable(
6542       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6543       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6544   GV->setAlignment(Alignment.getAsAlign());
6545   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6546   if (GV->isWeakForLinker()) {
6547     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6548     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6549   }
6550   CGM.setDSOLocal(GV);
6551 
6552   return GV;
6553 }
6554 
6555 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6556 /// constant array for the given string literal.
6557 ConstantAddress
6558 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6559                                                   StringRef Name) {
6560   CharUnits Alignment =
6561       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6562 
6563   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6564   llvm::GlobalVariable **Entry = nullptr;
6565   if (!LangOpts.WritableStrings) {
6566     Entry = &ConstantStringMap[C];
6567     if (auto GV = *Entry) {
6568       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6569         GV->setAlignment(Alignment.getAsAlign());
6570       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6571                              GV->getValueType(), Alignment);
6572     }
6573   }
6574 
6575   SmallString<256> MangledNameBuffer;
6576   StringRef GlobalVariableName;
6577   llvm::GlobalValue::LinkageTypes LT;
6578 
6579   // Mangle the string literal if that's how the ABI merges duplicate strings.
6580   // Don't do it if they are writable, since we don't want writes in one TU to
6581   // affect strings in another.
6582   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6583       !LangOpts.WritableStrings) {
6584     llvm::raw_svector_ostream Out(MangledNameBuffer);
6585     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6586     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6587     GlobalVariableName = MangledNameBuffer;
6588   } else {
6589     LT = llvm::GlobalValue::PrivateLinkage;
6590     GlobalVariableName = Name;
6591   }
6592 
6593   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6594 
6595   CGDebugInfo *DI = getModuleDebugInfo();
6596   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6597     DI->AddStringLiteralDebugInfo(GV, S);
6598 
6599   if (Entry)
6600     *Entry = GV;
6601 
6602   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6603 
6604   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6605                          GV->getValueType(), Alignment);
6606 }
6607 
6608 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6609 /// array for the given ObjCEncodeExpr node.
6610 ConstantAddress
6611 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6612   std::string Str;
6613   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6614 
6615   return GetAddrOfConstantCString(Str);
6616 }
6617 
6618 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6619 /// the literal and a terminating '\0' character.
6620 /// The result has pointer to array type.
6621 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6622     const std::string &Str, const char *GlobalName) {
6623   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6624   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6625       getContext().CharTy, /*VD=*/nullptr);
6626 
6627   llvm::Constant *C =
6628       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6629 
6630   // Don't share any string literals if strings aren't constant.
6631   llvm::GlobalVariable **Entry = nullptr;
6632   if (!LangOpts.WritableStrings) {
6633     Entry = &ConstantStringMap[C];
6634     if (auto GV = *Entry) {
6635       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6636         GV->setAlignment(Alignment.getAsAlign());
6637       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6638                              GV->getValueType(), Alignment);
6639     }
6640   }
6641 
6642   // Get the default prefix if a name wasn't specified.
6643   if (!GlobalName)
6644     GlobalName = ".str";
6645   // Create a global variable for this.
6646   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6647                                   GlobalName, Alignment);
6648   if (Entry)
6649     *Entry = GV;
6650 
6651   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6652                          GV->getValueType(), Alignment);
6653 }
6654 
6655 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6656     const MaterializeTemporaryExpr *E, const Expr *Init) {
6657   assert((E->getStorageDuration() == SD_Static ||
6658           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6659   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6660 
6661   // If we're not materializing a subobject of the temporary, keep the
6662   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6663   QualType MaterializedType = Init->getType();
6664   if (Init == E->getSubExpr())
6665     MaterializedType = E->getType();
6666 
6667   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6668 
6669   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6670   if (!InsertResult.second) {
6671     // We've seen this before: either we already created it or we're in the
6672     // process of doing so.
6673     if (!InsertResult.first->second) {
6674       // We recursively re-entered this function, probably during emission of
6675       // the initializer. Create a placeholder. We'll clean this up in the
6676       // outer call, at the end of this function.
6677       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6678       InsertResult.first->second = new llvm::GlobalVariable(
6679           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6680           nullptr);
6681     }
6682     return ConstantAddress(InsertResult.first->second,
6683                            llvm::cast<llvm::GlobalVariable>(
6684                                InsertResult.first->second->stripPointerCasts())
6685                                ->getValueType(),
6686                            Align);
6687   }
6688 
6689   // FIXME: If an externally-visible declaration extends multiple temporaries,
6690   // we need to give each temporary the same name in every translation unit (and
6691   // we also need to make the temporaries externally-visible).
6692   SmallString<256> Name;
6693   llvm::raw_svector_ostream Out(Name);
6694   getCXXABI().getMangleContext().mangleReferenceTemporary(
6695       VD, E->getManglingNumber(), Out);
6696 
6697   APValue *Value = nullptr;
6698   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6699     // If the initializer of the extending declaration is a constant
6700     // initializer, we should have a cached constant initializer for this
6701     // temporary. Note that this might have a different value from the value
6702     // computed by evaluating the initializer if the surrounding constant
6703     // expression modifies the temporary.
6704     Value = E->getOrCreateValue(false);
6705   }
6706 
6707   // Try evaluating it now, it might have a constant initializer.
6708   Expr::EvalResult EvalResult;
6709   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6710       !EvalResult.hasSideEffects())
6711     Value = &EvalResult.Val;
6712 
6713   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6714 
6715   std::optional<ConstantEmitter> emitter;
6716   llvm::Constant *InitialValue = nullptr;
6717   bool Constant = false;
6718   llvm::Type *Type;
6719   if (Value) {
6720     // The temporary has a constant initializer, use it.
6721     emitter.emplace(*this);
6722     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6723                                                MaterializedType);
6724     Constant =
6725         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6726                                            /*ExcludeDtor*/ false);
6727     Type = InitialValue->getType();
6728   } else {
6729     // No initializer, the initialization will be provided when we
6730     // initialize the declaration which performed lifetime extension.
6731     Type = getTypes().ConvertTypeForMem(MaterializedType);
6732   }
6733 
6734   // Create a global variable for this lifetime-extended temporary.
6735   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6736   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6737     const VarDecl *InitVD;
6738     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6739         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6740       // Temporaries defined inside a class get linkonce_odr linkage because the
6741       // class can be defined in multiple translation units.
6742       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6743     } else {
6744       // There is no need for this temporary to have external linkage if the
6745       // VarDecl has external linkage.
6746       Linkage = llvm::GlobalVariable::InternalLinkage;
6747     }
6748   }
6749   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6750   auto *GV = new llvm::GlobalVariable(
6751       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6752       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6753   if (emitter) emitter->finalize(GV);
6754   // Don't assign dllimport or dllexport to local linkage globals.
6755   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6756     setGVProperties(GV, VD);
6757     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6758       // The reference temporary should never be dllexport.
6759       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6760   }
6761   GV->setAlignment(Align.getAsAlign());
6762   if (supportsCOMDAT() && GV->isWeakForLinker())
6763     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6764   if (VD->getTLSKind())
6765     setTLSMode(GV, *VD);
6766   llvm::Constant *CV = GV;
6767   if (AddrSpace != LangAS::Default)
6768     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6769         *this, GV, AddrSpace, LangAS::Default,
6770         llvm::PointerType::get(
6771             getLLVMContext(),
6772             getContext().getTargetAddressSpace(LangAS::Default)));
6773 
6774   // Update the map with the new temporary. If we created a placeholder above,
6775   // replace it with the new global now.
6776   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6777   if (Entry) {
6778     Entry->replaceAllUsesWith(CV);
6779     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6780   }
6781   Entry = CV;
6782 
6783   return ConstantAddress(CV, Type, Align);
6784 }
6785 
6786 /// EmitObjCPropertyImplementations - Emit information for synthesized
6787 /// properties for an implementation.
6788 void CodeGenModule::EmitObjCPropertyImplementations(const
6789                                                     ObjCImplementationDecl *D) {
6790   for (const auto *PID : D->property_impls()) {
6791     // Dynamic is just for type-checking.
6792     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6793       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6794 
6795       // Determine which methods need to be implemented, some may have
6796       // been overridden. Note that ::isPropertyAccessor is not the method
6797       // we want, that just indicates if the decl came from a
6798       // property. What we want to know is if the method is defined in
6799       // this implementation.
6800       auto *Getter = PID->getGetterMethodDecl();
6801       if (!Getter || Getter->isSynthesizedAccessorStub())
6802         CodeGenFunction(*this).GenerateObjCGetter(
6803             const_cast<ObjCImplementationDecl *>(D), PID);
6804       auto *Setter = PID->getSetterMethodDecl();
6805       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6806         CodeGenFunction(*this).GenerateObjCSetter(
6807                                  const_cast<ObjCImplementationDecl *>(D), PID);
6808     }
6809   }
6810 }
6811 
6812 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6813   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6814   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6815        ivar; ivar = ivar->getNextIvar())
6816     if (ivar->getType().isDestructedType())
6817       return true;
6818 
6819   return false;
6820 }
6821 
6822 static bool AllTrivialInitializers(CodeGenModule &CGM,
6823                                    ObjCImplementationDecl *D) {
6824   CodeGenFunction CGF(CGM);
6825   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6826        E = D->init_end(); B != E; ++B) {
6827     CXXCtorInitializer *CtorInitExp = *B;
6828     Expr *Init = CtorInitExp->getInit();
6829     if (!CGF.isTrivialInitializer(Init))
6830       return false;
6831   }
6832   return true;
6833 }
6834 
6835 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6836 /// for an implementation.
6837 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6838   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6839   if (needsDestructMethod(D)) {
6840     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6841     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6842     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6843         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6844         getContext().VoidTy, nullptr, D,
6845         /*isInstance=*/true, /*isVariadic=*/false,
6846         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6847         /*isImplicitlyDeclared=*/true,
6848         /*isDefined=*/false, ObjCImplementationControl::Required);
6849     D->addInstanceMethod(DTORMethod);
6850     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6851     D->setHasDestructors(true);
6852   }
6853 
6854   // If the implementation doesn't have any ivar initializers, we don't need
6855   // a .cxx_construct.
6856   if (D->getNumIvarInitializers() == 0 ||
6857       AllTrivialInitializers(*this, D))
6858     return;
6859 
6860   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6861   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6862   // The constructor returns 'self'.
6863   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6864       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6865       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6866       /*isVariadic=*/false,
6867       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6868       /*isImplicitlyDeclared=*/true,
6869       /*isDefined=*/false, ObjCImplementationControl::Required);
6870   D->addInstanceMethod(CTORMethod);
6871   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6872   D->setHasNonZeroConstructors(true);
6873 }
6874 
6875 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6876 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6877   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6878       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6879     ErrorUnsupported(LSD, "linkage spec");
6880     return;
6881   }
6882 
6883   EmitDeclContext(LSD);
6884 }
6885 
6886 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6887   // Device code should not be at top level.
6888   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6889     return;
6890 
6891   std::unique_ptr<CodeGenFunction> &CurCGF =
6892       GlobalTopLevelStmtBlockInFlight.first;
6893 
6894   // We emitted a top-level stmt but after it there is initialization.
6895   // Stop squashing the top-level stmts into a single function.
6896   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6897     CurCGF->FinishFunction(D->getEndLoc());
6898     CurCGF = nullptr;
6899   }
6900 
6901   if (!CurCGF) {
6902     // void __stmts__N(void)
6903     // FIXME: Ask the ABI name mangler to pick a name.
6904     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6905     FunctionArgList Args;
6906     QualType RetTy = getContext().VoidTy;
6907     const CGFunctionInfo &FnInfo =
6908         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6909     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6910     llvm::Function *Fn = llvm::Function::Create(
6911         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6912 
6913     CurCGF.reset(new CodeGenFunction(*this));
6914     GlobalTopLevelStmtBlockInFlight.second = D;
6915     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6916                           D->getBeginLoc(), D->getBeginLoc());
6917     CXXGlobalInits.push_back(Fn);
6918   }
6919 
6920   CurCGF->EmitStmt(D->getStmt());
6921 }
6922 
6923 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6924   for (auto *I : DC->decls()) {
6925     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6926     // are themselves considered "top-level", so EmitTopLevelDecl on an
6927     // ObjCImplDecl does not recursively visit them. We need to do that in
6928     // case they're nested inside another construct (LinkageSpecDecl /
6929     // ExportDecl) that does stop them from being considered "top-level".
6930     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6931       for (auto *M : OID->methods())
6932         EmitTopLevelDecl(M);
6933     }
6934 
6935     EmitTopLevelDecl(I);
6936   }
6937 }
6938 
6939 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6940 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6941   // Ignore dependent declarations.
6942   if (D->isTemplated())
6943     return;
6944 
6945   // Consteval function shouldn't be emitted.
6946   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6947     return;
6948 
6949   switch (D->getKind()) {
6950   case Decl::CXXConversion:
6951   case Decl::CXXMethod:
6952   case Decl::Function:
6953     EmitGlobal(cast<FunctionDecl>(D));
6954     // Always provide some coverage mapping
6955     // even for the functions that aren't emitted.
6956     AddDeferredUnusedCoverageMapping(D);
6957     break;
6958 
6959   case Decl::CXXDeductionGuide:
6960     // Function-like, but does not result in code emission.
6961     break;
6962 
6963   case Decl::Var:
6964   case Decl::Decomposition:
6965   case Decl::VarTemplateSpecialization:
6966     EmitGlobal(cast<VarDecl>(D));
6967     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6968       for (auto *B : DD->bindings())
6969         if (auto *HD = B->getHoldingVar())
6970           EmitGlobal(HD);
6971     break;
6972 
6973   // Indirect fields from global anonymous structs and unions can be
6974   // ignored; only the actual variable requires IR gen support.
6975   case Decl::IndirectField:
6976     break;
6977 
6978   // C++ Decls
6979   case Decl::Namespace:
6980     EmitDeclContext(cast<NamespaceDecl>(D));
6981     break;
6982   case Decl::ClassTemplateSpecialization: {
6983     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6984     if (CGDebugInfo *DI = getModuleDebugInfo())
6985       if (Spec->getSpecializationKind() ==
6986               TSK_ExplicitInstantiationDefinition &&
6987           Spec->hasDefinition())
6988         DI->completeTemplateDefinition(*Spec);
6989   } [[fallthrough]];
6990   case Decl::CXXRecord: {
6991     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6992     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6993       if (CRD->hasDefinition())
6994         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6995       if (auto *ES = D->getASTContext().getExternalSource())
6996         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6997           DI->completeUnusedClass(*CRD);
6998     }
6999     // Emit any static data members, they may be definitions.
7000     for (auto *I : CRD->decls())
7001       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
7002         EmitTopLevelDecl(I);
7003     break;
7004   }
7005     // No code generation needed.
7006   case Decl::UsingShadow:
7007   case Decl::ClassTemplate:
7008   case Decl::VarTemplate:
7009   case Decl::Concept:
7010   case Decl::VarTemplatePartialSpecialization:
7011   case Decl::FunctionTemplate:
7012   case Decl::TypeAliasTemplate:
7013   case Decl::Block:
7014   case Decl::Empty:
7015   case Decl::Binding:
7016     break;
7017   case Decl::Using:          // using X; [C++]
7018     if (CGDebugInfo *DI = getModuleDebugInfo())
7019         DI->EmitUsingDecl(cast<UsingDecl>(*D));
7020     break;
7021   case Decl::UsingEnum: // using enum X; [C++]
7022     if (CGDebugInfo *DI = getModuleDebugInfo())
7023       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
7024     break;
7025   case Decl::NamespaceAlias:
7026     if (CGDebugInfo *DI = getModuleDebugInfo())
7027         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
7028     break;
7029   case Decl::UsingDirective: // using namespace X; [C++]
7030     if (CGDebugInfo *DI = getModuleDebugInfo())
7031       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
7032     break;
7033   case Decl::CXXConstructor:
7034     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
7035     break;
7036   case Decl::CXXDestructor:
7037     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7038     break;
7039 
7040   case Decl::StaticAssert:
7041     // Nothing to do.
7042     break;
7043 
7044   // Objective-C Decls
7045 
7046   // Forward declarations, no (immediate) code generation.
7047   case Decl::ObjCInterface:
7048   case Decl::ObjCCategory:
7049     break;
7050 
7051   case Decl::ObjCProtocol: {
7052     auto *Proto = cast<ObjCProtocolDecl>(D);
7053     if (Proto->isThisDeclarationADefinition())
7054       ObjCRuntime->GenerateProtocol(Proto);
7055     break;
7056   }
7057 
7058   case Decl::ObjCCategoryImpl:
7059     // Categories have properties but don't support synthesize so we
7060     // can ignore them here.
7061     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7062     break;
7063 
7064   case Decl::ObjCImplementation: {
7065     auto *OMD = cast<ObjCImplementationDecl>(D);
7066     EmitObjCPropertyImplementations(OMD);
7067     EmitObjCIvarInitializations(OMD);
7068     ObjCRuntime->GenerateClass(OMD);
7069     // Emit global variable debug information.
7070     if (CGDebugInfo *DI = getModuleDebugInfo())
7071       if (getCodeGenOpts().hasReducedDebugInfo())
7072         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7073             OMD->getClassInterface()), OMD->getLocation());
7074     break;
7075   }
7076   case Decl::ObjCMethod: {
7077     auto *OMD = cast<ObjCMethodDecl>(D);
7078     // If this is not a prototype, emit the body.
7079     if (OMD->getBody())
7080       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7081     break;
7082   }
7083   case Decl::ObjCCompatibleAlias:
7084     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7085     break;
7086 
7087   case Decl::PragmaComment: {
7088     const auto *PCD = cast<PragmaCommentDecl>(D);
7089     switch (PCD->getCommentKind()) {
7090     case PCK_Unknown:
7091       llvm_unreachable("unexpected pragma comment kind");
7092     case PCK_Linker:
7093       AppendLinkerOptions(PCD->getArg());
7094       break;
7095     case PCK_Lib:
7096         AddDependentLib(PCD->getArg());
7097       break;
7098     case PCK_Compiler:
7099     case PCK_ExeStr:
7100     case PCK_User:
7101       break; // We ignore all of these.
7102     }
7103     break;
7104   }
7105 
7106   case Decl::PragmaDetectMismatch: {
7107     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7108     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7109     break;
7110   }
7111 
7112   case Decl::LinkageSpec:
7113     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7114     break;
7115 
7116   case Decl::FileScopeAsm: {
7117     // File-scope asm is ignored during device-side CUDA compilation.
7118     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7119       break;
7120     // File-scope asm is ignored during device-side OpenMP compilation.
7121     if (LangOpts.OpenMPIsTargetDevice)
7122       break;
7123     // File-scope asm is ignored during device-side SYCL compilation.
7124     if (LangOpts.SYCLIsDevice)
7125       break;
7126     auto *AD = cast<FileScopeAsmDecl>(D);
7127     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7128     break;
7129   }
7130 
7131   case Decl::TopLevelStmt:
7132     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7133     break;
7134 
7135   case Decl::Import: {
7136     auto *Import = cast<ImportDecl>(D);
7137 
7138     // If we've already imported this module, we're done.
7139     if (!ImportedModules.insert(Import->getImportedModule()))
7140       break;
7141 
7142     // Emit debug information for direct imports.
7143     if (!Import->getImportedOwningModule()) {
7144       if (CGDebugInfo *DI = getModuleDebugInfo())
7145         DI->EmitImportDecl(*Import);
7146     }
7147 
7148     // For C++ standard modules we are done - we will call the module
7149     // initializer for imported modules, and that will likewise call those for
7150     // any imports it has.
7151     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7152         !Import->getImportedOwningModule()->isModuleMapModule())
7153       break;
7154 
7155     // For clang C++ module map modules the initializers for sub-modules are
7156     // emitted here.
7157 
7158     // Find all of the submodules and emit the module initializers.
7159     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7160     SmallVector<clang::Module *, 16> Stack;
7161     Visited.insert(Import->getImportedModule());
7162     Stack.push_back(Import->getImportedModule());
7163 
7164     while (!Stack.empty()) {
7165       clang::Module *Mod = Stack.pop_back_val();
7166       if (!EmittedModuleInitializers.insert(Mod).second)
7167         continue;
7168 
7169       for (auto *D : Context.getModuleInitializers(Mod))
7170         EmitTopLevelDecl(D);
7171 
7172       // Visit the submodules of this module.
7173       for (auto *Submodule : Mod->submodules()) {
7174         // Skip explicit children; they need to be explicitly imported to emit
7175         // the initializers.
7176         if (Submodule->IsExplicit)
7177           continue;
7178 
7179         if (Visited.insert(Submodule).second)
7180           Stack.push_back(Submodule);
7181       }
7182     }
7183     break;
7184   }
7185 
7186   case Decl::Export:
7187     EmitDeclContext(cast<ExportDecl>(D));
7188     break;
7189 
7190   case Decl::OMPThreadPrivate:
7191     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7192     break;
7193 
7194   case Decl::OMPAllocate:
7195     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7196     break;
7197 
7198   case Decl::OMPDeclareReduction:
7199     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7200     break;
7201 
7202   case Decl::OMPDeclareMapper:
7203     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7204     break;
7205 
7206   case Decl::OMPRequires:
7207     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7208     break;
7209 
7210   case Decl::Typedef:
7211   case Decl::TypeAlias: // using foo = bar; [C++11]
7212     if (CGDebugInfo *DI = getModuleDebugInfo())
7213       DI->EmitAndRetainType(
7214           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7215     break;
7216 
7217   case Decl::Record:
7218     if (CGDebugInfo *DI = getModuleDebugInfo())
7219       if (cast<RecordDecl>(D)->getDefinition())
7220         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7221     break;
7222 
7223   case Decl::Enum:
7224     if (CGDebugInfo *DI = getModuleDebugInfo())
7225       if (cast<EnumDecl>(D)->getDefinition())
7226         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7227     break;
7228 
7229   case Decl::HLSLBuffer:
7230     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7231     break;
7232 
7233   default:
7234     // Make sure we handled everything we should, every other kind is a
7235     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7236     // function. Need to recode Decl::Kind to do that easily.
7237     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7238     break;
7239   }
7240 }
7241 
7242 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7243   // Do we need to generate coverage mapping?
7244   if (!CodeGenOpts.CoverageMapping)
7245     return;
7246   switch (D->getKind()) {
7247   case Decl::CXXConversion:
7248   case Decl::CXXMethod:
7249   case Decl::Function:
7250   case Decl::ObjCMethod:
7251   case Decl::CXXConstructor:
7252   case Decl::CXXDestructor: {
7253     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7254       break;
7255     SourceManager &SM = getContext().getSourceManager();
7256     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7257       break;
7258     if (!llvm::coverage::SystemHeadersCoverage &&
7259         SM.isInSystemHeader(D->getBeginLoc()))
7260       break;
7261     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7262     break;
7263   }
7264   default:
7265     break;
7266   };
7267 }
7268 
7269 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7270   // Do we need to generate coverage mapping?
7271   if (!CodeGenOpts.CoverageMapping)
7272     return;
7273   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7274     if (Fn->isTemplateInstantiation())
7275       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7276   }
7277   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7278 }
7279 
7280 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7281   // We call takeVector() here to avoid use-after-free.
7282   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7283   // we deserialize function bodies to emit coverage info for them, and that
7284   // deserializes more declarations. How should we handle that case?
7285   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7286     if (!Entry.second)
7287       continue;
7288     const Decl *D = Entry.first;
7289     switch (D->getKind()) {
7290     case Decl::CXXConversion:
7291     case Decl::CXXMethod:
7292     case Decl::Function:
7293     case Decl::ObjCMethod: {
7294       CodeGenPGO PGO(*this);
7295       GlobalDecl GD(cast<FunctionDecl>(D));
7296       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7297                                   getFunctionLinkage(GD));
7298       break;
7299     }
7300     case Decl::CXXConstructor: {
7301       CodeGenPGO PGO(*this);
7302       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7303       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7304                                   getFunctionLinkage(GD));
7305       break;
7306     }
7307     case Decl::CXXDestructor: {
7308       CodeGenPGO PGO(*this);
7309       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7310       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7311                                   getFunctionLinkage(GD));
7312       break;
7313     }
7314     default:
7315       break;
7316     };
7317   }
7318 }
7319 
7320 void CodeGenModule::EmitMainVoidAlias() {
7321   // In order to transition away from "__original_main" gracefully, emit an
7322   // alias for "main" in the no-argument case so that libc can detect when
7323   // new-style no-argument main is in used.
7324   if (llvm::Function *F = getModule().getFunction("main")) {
7325     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7326         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7327       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7328       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7329     }
7330   }
7331 }
7332 
7333 /// Turns the given pointer into a constant.
7334 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7335                                           const void *Ptr) {
7336   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7337   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7338   return llvm::ConstantInt::get(i64, PtrInt);
7339 }
7340 
7341 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7342                                    llvm::NamedMDNode *&GlobalMetadata,
7343                                    GlobalDecl D,
7344                                    llvm::GlobalValue *Addr) {
7345   if (!GlobalMetadata)
7346     GlobalMetadata =
7347       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7348 
7349   // TODO: should we report variant information for ctors/dtors?
7350   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7351                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7352                                CGM.getLLVMContext(), D.getDecl()))};
7353   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7354 }
7355 
7356 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7357                                                  llvm::GlobalValue *CppFunc) {
7358   // Store the list of ifuncs we need to replace uses in.
7359   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7360   // List of ConstantExprs that we should be able to delete when we're done
7361   // here.
7362   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7363 
7364   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7365   if (Elem == CppFunc)
7366     return false;
7367 
7368   // First make sure that all users of this are ifuncs (or ifuncs via a
7369   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7370   // later.
7371   for (llvm::User *User : Elem->users()) {
7372     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7373     // ifunc directly. In any other case, just give up, as we don't know what we
7374     // could break by changing those.
7375     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7376       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7377         return false;
7378 
7379       for (llvm::User *CEUser : ConstExpr->users()) {
7380         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7381           IFuncs.push_back(IFunc);
7382         } else {
7383           return false;
7384         }
7385       }
7386       CEs.push_back(ConstExpr);
7387     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7388       IFuncs.push_back(IFunc);
7389     } else {
7390       // This user is one we don't know how to handle, so fail redirection. This
7391       // will result in an ifunc retaining a resolver name that will ultimately
7392       // fail to be resolved to a defined function.
7393       return false;
7394     }
7395   }
7396 
7397   // Now we know this is a valid case where we can do this alias replacement, we
7398   // need to remove all of the references to Elem (and the bitcasts!) so we can
7399   // delete it.
7400   for (llvm::GlobalIFunc *IFunc : IFuncs)
7401     IFunc->setResolver(nullptr);
7402   for (llvm::ConstantExpr *ConstExpr : CEs)
7403     ConstExpr->destroyConstant();
7404 
7405   // We should now be out of uses for the 'old' version of this function, so we
7406   // can erase it as well.
7407   Elem->eraseFromParent();
7408 
7409   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7410     // The type of the resolver is always just a function-type that returns the
7411     // type of the IFunc, so create that here. If the type of the actual
7412     // resolver doesn't match, it just gets bitcast to the right thing.
7413     auto *ResolverTy =
7414         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7415     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7416         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7417     IFunc->setResolver(Resolver);
7418   }
7419   return true;
7420 }
7421 
7422 /// For each function which is declared within an extern "C" region and marked
7423 /// as 'used', but has internal linkage, create an alias from the unmangled
7424 /// name to the mangled name if possible. People expect to be able to refer
7425 /// to such functions with an unmangled name from inline assembly within the
7426 /// same translation unit.
7427 void CodeGenModule::EmitStaticExternCAliases() {
7428   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7429     return;
7430   for (auto &I : StaticExternCValues) {
7431     const IdentifierInfo *Name = I.first;
7432     llvm::GlobalValue *Val = I.second;
7433 
7434     // If Val is null, that implies there were multiple declarations that each
7435     // had a claim to the unmangled name. In this case, generation of the alias
7436     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7437     if (!Val)
7438       break;
7439 
7440     llvm::GlobalValue *ExistingElem =
7441         getModule().getNamedValue(Name->getName());
7442 
7443     // If there is either not something already by this name, or we were able to
7444     // replace all uses from IFuncs, create the alias.
7445     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7446       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7447   }
7448 }
7449 
7450 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7451                                              GlobalDecl &Result) const {
7452   auto Res = Manglings.find(MangledName);
7453   if (Res == Manglings.end())
7454     return false;
7455   Result = Res->getValue();
7456   return true;
7457 }
7458 
7459 /// Emits metadata nodes associating all the global values in the
7460 /// current module with the Decls they came from.  This is useful for
7461 /// projects using IR gen as a subroutine.
7462 ///
7463 /// Since there's currently no way to associate an MDNode directly
7464 /// with an llvm::GlobalValue, we create a global named metadata
7465 /// with the name 'clang.global.decl.ptrs'.
7466 void CodeGenModule::EmitDeclMetadata() {
7467   llvm::NamedMDNode *GlobalMetadata = nullptr;
7468 
7469   for (auto &I : MangledDeclNames) {
7470     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7471     // Some mangled names don't necessarily have an associated GlobalValue
7472     // in this module, e.g. if we mangled it for DebugInfo.
7473     if (Addr)
7474       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7475   }
7476 }
7477 
7478 /// Emits metadata nodes for all the local variables in the current
7479 /// function.
7480 void CodeGenFunction::EmitDeclMetadata() {
7481   if (LocalDeclMap.empty()) return;
7482 
7483   llvm::LLVMContext &Context = getLLVMContext();
7484 
7485   // Find the unique metadata ID for this name.
7486   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7487 
7488   llvm::NamedMDNode *GlobalMetadata = nullptr;
7489 
7490   for (auto &I : LocalDeclMap) {
7491     const Decl *D = I.first;
7492     llvm::Value *Addr = I.second.emitRawPointer(*this);
7493     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7494       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7495       Alloca->setMetadata(
7496           DeclPtrKind, llvm::MDNode::get(
7497                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7498     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7499       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7500       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7501     }
7502   }
7503 }
7504 
7505 void CodeGenModule::EmitVersionIdentMetadata() {
7506   llvm::NamedMDNode *IdentMetadata =
7507     TheModule.getOrInsertNamedMetadata("llvm.ident");
7508   std::string Version = getClangFullVersion();
7509   llvm::LLVMContext &Ctx = TheModule.getContext();
7510 
7511   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7512   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7513 }
7514 
7515 void CodeGenModule::EmitCommandLineMetadata() {
7516   llvm::NamedMDNode *CommandLineMetadata =
7517     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7518   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7519   llvm::LLVMContext &Ctx = TheModule.getContext();
7520 
7521   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7522   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7523 }
7524 
7525 void CodeGenModule::EmitCoverageFile() {
7526   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7527   if (!CUNode)
7528     return;
7529 
7530   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7531   llvm::LLVMContext &Ctx = TheModule.getContext();
7532   auto *CoverageDataFile =
7533       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7534   auto *CoverageNotesFile =
7535       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7536   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7537     llvm::MDNode *CU = CUNode->getOperand(i);
7538     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7539     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7540   }
7541 }
7542 
7543 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7544                                                        bool ForEH) {
7545   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7546   // FIXME: should we even be calling this method if RTTI is disabled
7547   // and it's not for EH?
7548   if (!shouldEmitRTTI(ForEH))
7549     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7550 
7551   if (ForEH && Ty->isObjCObjectPointerType() &&
7552       LangOpts.ObjCRuntime.isGNUFamily())
7553     return ObjCRuntime->GetEHType(Ty);
7554 
7555   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7556 }
7557 
7558 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7559   // Do not emit threadprivates in simd-only mode.
7560   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7561     return;
7562   for (auto RefExpr : D->varlist()) {
7563     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7564     bool PerformInit =
7565         VD->getAnyInitializer() &&
7566         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7567                                                         /*ForRef=*/false);
7568 
7569     Address Addr(GetAddrOfGlobalVar(VD),
7570                  getTypes().ConvertTypeForMem(VD->getType()),
7571                  getContext().getDeclAlign(VD));
7572     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7573             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7574       CXXGlobalInits.push_back(InitFunction);
7575   }
7576 }
7577 
7578 llvm::Metadata *
7579 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7580                                             StringRef Suffix) {
7581   if (auto *FnType = T->getAs<FunctionProtoType>())
7582     T = getContext().getFunctionType(
7583         FnType->getReturnType(), FnType->getParamTypes(),
7584         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7585 
7586   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7587   if (InternalId)
7588     return InternalId;
7589 
7590   if (isExternallyVisible(T->getLinkage())) {
7591     std::string OutName;
7592     llvm::raw_string_ostream Out(OutName);
7593     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7594         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7595 
7596     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7597       Out << ".normalized";
7598 
7599     Out << Suffix;
7600 
7601     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7602   } else {
7603     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7604                                            llvm::ArrayRef<llvm::Metadata *>());
7605   }
7606 
7607   return InternalId;
7608 }
7609 
7610 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7611   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7612 }
7613 
7614 llvm::Metadata *
7615 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7616   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7617 }
7618 
7619 // Generalize pointer types to a void pointer with the qualifiers of the
7620 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7621 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7622 // 'void *'.
7623 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7624   if (!Ty->isPointerType())
7625     return Ty;
7626 
7627   return Ctx.getPointerType(
7628       QualType(Ctx.VoidTy).withCVRQualifiers(
7629           Ty->getPointeeType().getCVRQualifiers()));
7630 }
7631 
7632 // Apply type generalization to a FunctionType's return and argument types
7633 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7634   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7635     SmallVector<QualType, 8> GeneralizedParams;
7636     for (auto &Param : FnType->param_types())
7637       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7638 
7639     return Ctx.getFunctionType(
7640         GeneralizeType(Ctx, FnType->getReturnType()),
7641         GeneralizedParams, FnType->getExtProtoInfo());
7642   }
7643 
7644   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7645     return Ctx.getFunctionNoProtoType(
7646         GeneralizeType(Ctx, FnType->getReturnType()));
7647 
7648   llvm_unreachable("Encountered unknown FunctionType");
7649 }
7650 
7651 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7652   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7653                                       GeneralizedMetadataIdMap, ".generalized");
7654 }
7655 
7656 /// Returns whether this module needs the "all-vtables" type identifier.
7657 bool CodeGenModule::NeedAllVtablesTypeId() const {
7658   // Returns true if at least one of vtable-based CFI checkers is enabled and
7659   // is not in the trapping mode.
7660   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7661            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7662           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7663            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7664           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7665            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7666           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7667            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7668 }
7669 
7670 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7671                                           CharUnits Offset,
7672                                           const CXXRecordDecl *RD) {
7673   llvm::Metadata *MD =
7674       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7675   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7676 
7677   if (CodeGenOpts.SanitizeCfiCrossDso)
7678     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7679       VTable->addTypeMetadata(Offset.getQuantity(),
7680                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7681 
7682   if (NeedAllVtablesTypeId()) {
7683     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7684     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7685   }
7686 }
7687 
7688 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7689   if (!SanStats)
7690     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7691 
7692   return *SanStats;
7693 }
7694 
7695 llvm::Value *
7696 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7697                                                   CodeGenFunction &CGF) {
7698   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7699   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7700   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7701   auto *Call = CGF.EmitRuntimeCall(
7702       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7703   return Call;
7704 }
7705 
7706 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7707     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7708   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7709                                  /* forPointeeType= */ true);
7710 }
7711 
7712 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7713                                                  LValueBaseInfo *BaseInfo,
7714                                                  TBAAAccessInfo *TBAAInfo,
7715                                                  bool forPointeeType) {
7716   if (TBAAInfo)
7717     *TBAAInfo = getTBAAAccessInfo(T);
7718 
7719   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7720   // that doesn't return the information we need to compute BaseInfo.
7721 
7722   // Honor alignment typedef attributes even on incomplete types.
7723   // We also honor them straight for C++ class types, even as pointees;
7724   // there's an expressivity gap here.
7725   if (auto TT = T->getAs<TypedefType>()) {
7726     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7727       if (BaseInfo)
7728         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7729       return getContext().toCharUnitsFromBits(Align);
7730     }
7731   }
7732 
7733   bool AlignForArray = T->isArrayType();
7734 
7735   // Analyze the base element type, so we don't get confused by incomplete
7736   // array types.
7737   T = getContext().getBaseElementType(T);
7738 
7739   if (T->isIncompleteType()) {
7740     // We could try to replicate the logic from
7741     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7742     // type is incomplete, so it's impossible to test. We could try to reuse
7743     // getTypeAlignIfKnown, but that doesn't return the information we need
7744     // to set BaseInfo.  So just ignore the possibility that the alignment is
7745     // greater than one.
7746     if (BaseInfo)
7747       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7748     return CharUnits::One();
7749   }
7750 
7751   if (BaseInfo)
7752     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7753 
7754   CharUnits Alignment;
7755   const CXXRecordDecl *RD;
7756   if (T.getQualifiers().hasUnaligned()) {
7757     Alignment = CharUnits::One();
7758   } else if (forPointeeType && !AlignForArray &&
7759              (RD = T->getAsCXXRecordDecl())) {
7760     // For C++ class pointees, we don't know whether we're pointing at a
7761     // base or a complete object, so we generally need to use the
7762     // non-virtual alignment.
7763     Alignment = getClassPointerAlignment(RD);
7764   } else {
7765     Alignment = getContext().getTypeAlignInChars(T);
7766   }
7767 
7768   // Cap to the global maximum type alignment unless the alignment
7769   // was somehow explicit on the type.
7770   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7771     if (Alignment.getQuantity() > MaxAlign &&
7772         !getContext().isAlignmentRequired(T))
7773       Alignment = CharUnits::fromQuantity(MaxAlign);
7774   }
7775   return Alignment;
7776 }
7777 
7778 bool CodeGenModule::stopAutoInit() {
7779   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7780   if (StopAfter) {
7781     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7782     // used
7783     if (NumAutoVarInit >= StopAfter) {
7784       return true;
7785     }
7786     if (!NumAutoVarInit) {
7787       unsigned DiagID = getDiags().getCustomDiagID(
7788           DiagnosticsEngine::Warning,
7789           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7790           "number of times ftrivial-auto-var-init=%1 gets applied.");
7791       getDiags().Report(DiagID)
7792           << StopAfter
7793           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7794                       LangOptions::TrivialAutoVarInitKind::Zero
7795                   ? "zero"
7796                   : "pattern");
7797     }
7798     ++NumAutoVarInit;
7799   }
7800   return false;
7801 }
7802 
7803 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7804                                                     const Decl *D) const {
7805   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7806   // postfix beginning with '.' since the symbol name can be demangled.
7807   if (LangOpts.HIP)
7808     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7809   else
7810     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7811 
7812   // If the CUID is not specified we try to generate a unique postfix.
7813   if (getLangOpts().CUID.empty()) {
7814     SourceManager &SM = getContext().getSourceManager();
7815     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7816     assert(PLoc.isValid() && "Source location is expected to be valid.");
7817 
7818     // Get the hash of the user defined macros.
7819     llvm::MD5 Hash;
7820     llvm::MD5::MD5Result Result;
7821     for (const auto &Arg : PreprocessorOpts.Macros)
7822       Hash.update(Arg.first);
7823     Hash.final(Result);
7824 
7825     // Get the UniqueID for the file containing the decl.
7826     llvm::sys::fs::UniqueID ID;
7827     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7828       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7829       assert(PLoc.isValid() && "Source location is expected to be valid.");
7830       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7831         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7832             << PLoc.getFilename() << EC.message();
7833     }
7834     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7835        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7836   } else {
7837     OS << getContext().getCUIDHash();
7838   }
7839 }
7840 
7841 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7842   assert(DeferredDeclsToEmit.empty() &&
7843          "Should have emitted all decls deferred to emit.");
7844   assert(NewBuilder->DeferredDecls.empty() &&
7845          "Newly created module should not have deferred decls");
7846   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7847   assert(EmittedDeferredDecls.empty() &&
7848          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7849 
7850   assert(NewBuilder->DeferredVTables.empty() &&
7851          "Newly created module should not have deferred vtables");
7852   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7853 
7854   assert(NewBuilder->MangledDeclNames.empty() &&
7855          "Newly created module should not have mangled decl names");
7856   assert(NewBuilder->Manglings.empty() &&
7857          "Newly created module should not have manglings");
7858   NewBuilder->Manglings = std::move(Manglings);
7859 
7860   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7861 
7862   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7863 }
7864