1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/Diagnostic.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/ConvertUTF.h" 32 #include "llvm/CallingConv.h" 33 #include "llvm/Module.h" 34 #include "llvm/Intrinsics.h" 35 #include "llvm/LLVMContext.h" 36 #include "llvm/ADT/Triple.h" 37 #include "llvm/Target/TargetData.h" 38 #include "llvm/Support/CallSite.h" 39 #include "llvm/Support/ErrorHandling.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 44 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 45 llvm::Module &M, const llvm::TargetData &TD, 46 Diagnostic &diags) 47 : BlockModule(C, M, TD, Types, *this), Context(C), 48 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 49 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 50 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 51 VTables(*this), Runtime(0), ABI(0), 52 CFConstantStringClassRef(0), 53 NSConstantStringClassRef(0), 54 VMContext(M.getContext()) { 55 56 if (!Features.ObjC1) 57 Runtime = 0; 58 else if (!Features.NeXTRuntime) 59 Runtime = CreateGNUObjCRuntime(*this); 60 else if (Features.ObjCNonFragileABI) 61 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 62 else 63 Runtime = CreateMacObjCRuntime(*this); 64 65 if (!Features.CPlusPlus) 66 ABI = 0; 67 else createCXXABI(); 68 69 // If debug info generation is enabled, create the CGDebugInfo object. 70 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 71 } 72 73 CodeGenModule::~CodeGenModule() { 74 delete Runtime; 75 delete ABI; 76 delete DebugInfo; 77 } 78 79 void CodeGenModule::createObjCRuntime() { 80 if (!Features.NeXTRuntime) 81 Runtime = CreateGNUObjCRuntime(*this); 82 else if (Features.ObjCNonFragileABI) 83 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 84 else 85 Runtime = CreateMacObjCRuntime(*this); 86 } 87 88 void CodeGenModule::createCXXABI() { 89 if (Context.Target.getCXXABI() == "microsoft") 90 ABI = CreateMicrosoftCXXABI(*this); 91 else 92 ABI = CreateItaniumCXXABI(*this); 93 } 94 95 void CodeGenModule::Release() { 96 EmitDeferred(); 97 EmitCXXGlobalInitFunc(); 98 EmitCXXGlobalDtorFunc(); 99 if (Runtime) 100 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 101 AddGlobalCtor(ObjCInitFunction); 102 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 103 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 104 EmitAnnotations(); 105 EmitLLVMUsed(); 106 } 107 108 bool CodeGenModule::isTargetDarwin() const { 109 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 110 } 111 112 /// ErrorUnsupported - Print out an error that codegen doesn't support the 113 /// specified stmt yet. 114 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 115 bool OmitOnError) { 116 if (OmitOnError && getDiags().hasErrorOccurred()) 117 return; 118 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 119 "cannot compile this %0 yet"); 120 std::string Msg = Type; 121 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 122 << Msg << S->getSourceRange(); 123 } 124 125 /// ErrorUnsupported - Print out an error that codegen doesn't support the 126 /// specified decl yet. 127 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 128 bool OmitOnError) { 129 if (OmitOnError && getDiags().hasErrorOccurred()) 130 return; 131 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 132 "cannot compile this %0 yet"); 133 std::string Msg = Type; 134 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 135 } 136 137 LangOptions::VisibilityMode 138 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 139 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 140 if (VD->getStorageClass() == VarDecl::PrivateExtern) 141 return LangOptions::Hidden; 142 143 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 144 switch (attr->getVisibility()) { 145 default: assert(0 && "Unknown visibility!"); 146 case VisibilityAttr::DefaultVisibility: 147 return LangOptions::Default; 148 case VisibilityAttr::HiddenVisibility: 149 return LangOptions::Hidden; 150 case VisibilityAttr::ProtectedVisibility: 151 return LangOptions::Protected; 152 } 153 } 154 155 // If -fvisibility-inlines-hidden was provided, then inline C++ member 156 // functions get "hidden" visibility by default. 157 if (getLangOptions().InlineVisibilityHidden) 158 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 159 if (Method->isInlined()) 160 return LangOptions::Hidden; 161 162 // This decl should have the same visibility as its parent. 163 if (const DeclContext *DC = D->getDeclContext()) 164 return getDeclVisibilityMode(cast<Decl>(DC)); 165 166 return getLangOptions().getVisibilityMode(); 167 } 168 169 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 170 const Decl *D) const { 171 // Internal definitions always have default visibility. 172 if (GV->hasLocalLinkage()) { 173 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 174 return; 175 } 176 177 switch (getDeclVisibilityMode(D)) { 178 default: assert(0 && "Unknown visibility!"); 179 case LangOptions::Default: 180 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 181 case LangOptions::Hidden: 182 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 183 case LangOptions::Protected: 184 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 185 } 186 } 187 188 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) { 189 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 190 191 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 192 return getMangleContext().mangleCXXCtor(D, GD.getCtorType(), 193 Buffer.getBuffer()); 194 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 195 return getMangleContext().mangleCXXDtor(D, GD.getDtorType(), 196 Buffer.getBuffer()); 197 198 if (!getMangleContext().shouldMangleDeclName(ND)) { 199 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 200 Buffer.setString(ND->getNameAsCString()); 201 return; 202 } 203 204 getMangleContext().mangleName(ND, Buffer.getBuffer()); 205 } 206 207 void CodeGenModule::getMangledName(MangleBuffer &Buffer, const BlockDecl *BD) { 208 getMangleContext().mangleBlock(BD, Buffer.getBuffer()); 209 } 210 211 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 212 return getModule().getNamedValue(Name); 213 } 214 215 /// AddGlobalCtor - Add a function to the list that will be called before 216 /// main() runs. 217 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 218 // FIXME: Type coercion of void()* types. 219 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 220 } 221 222 /// AddGlobalDtor - Add a function to the list that will be called 223 /// when the module is unloaded. 224 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 225 // FIXME: Type coercion of void()* types. 226 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 227 } 228 229 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 230 // Ctor function type is void()*. 231 llvm::FunctionType* CtorFTy = 232 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 233 std::vector<const llvm::Type*>(), 234 false); 235 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 236 237 // Get the type of a ctor entry, { i32, void ()* }. 238 llvm::StructType* CtorStructTy = 239 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 240 llvm::PointerType::getUnqual(CtorFTy), NULL); 241 242 // Construct the constructor and destructor arrays. 243 std::vector<llvm::Constant*> Ctors; 244 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 245 std::vector<llvm::Constant*> S; 246 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 247 I->second, false)); 248 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 249 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 250 } 251 252 if (!Ctors.empty()) { 253 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 254 new llvm::GlobalVariable(TheModule, AT, false, 255 llvm::GlobalValue::AppendingLinkage, 256 llvm::ConstantArray::get(AT, Ctors), 257 GlobalName); 258 } 259 } 260 261 void CodeGenModule::EmitAnnotations() { 262 if (Annotations.empty()) 263 return; 264 265 // Create a new global variable for the ConstantStruct in the Module. 266 llvm::Constant *Array = 267 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 268 Annotations.size()), 269 Annotations); 270 llvm::GlobalValue *gv = 271 new llvm::GlobalVariable(TheModule, Array->getType(), false, 272 llvm::GlobalValue::AppendingLinkage, Array, 273 "llvm.global.annotations"); 274 gv->setSection("llvm.metadata"); 275 } 276 277 static CodeGenModule::GVALinkage 278 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 279 const LangOptions &Features) { 280 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 281 282 Linkage L = FD->getLinkage(); 283 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 284 FD->getType()->getLinkage() == UniqueExternalLinkage) 285 L = UniqueExternalLinkage; 286 287 switch (L) { 288 case NoLinkage: 289 case InternalLinkage: 290 case UniqueExternalLinkage: 291 return CodeGenModule::GVA_Internal; 292 293 case ExternalLinkage: 294 switch (FD->getTemplateSpecializationKind()) { 295 case TSK_Undeclared: 296 case TSK_ExplicitSpecialization: 297 External = CodeGenModule::GVA_StrongExternal; 298 break; 299 300 case TSK_ExplicitInstantiationDefinition: 301 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 302 303 case TSK_ExplicitInstantiationDeclaration: 304 case TSK_ImplicitInstantiation: 305 External = CodeGenModule::GVA_TemplateInstantiation; 306 break; 307 } 308 } 309 310 if (!FD->isInlined()) 311 return External; 312 313 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 314 // GNU or C99 inline semantics. Determine whether this symbol should be 315 // externally visible. 316 if (FD->isInlineDefinitionExternallyVisible()) 317 return External; 318 319 // C99 inline semantics, where the symbol is not externally visible. 320 return CodeGenModule::GVA_C99Inline; 321 } 322 323 // C++0x [temp.explicit]p9: 324 // [ Note: The intent is that an inline function that is the subject of 325 // an explicit instantiation declaration will still be implicitly 326 // instantiated when used so that the body can be considered for 327 // inlining, but that no out-of-line copy of the inline function would be 328 // generated in the translation unit. -- end note ] 329 if (FD->getTemplateSpecializationKind() 330 == TSK_ExplicitInstantiationDeclaration) 331 return CodeGenModule::GVA_C99Inline; 332 333 return CodeGenModule::GVA_CXXInline; 334 } 335 336 llvm::GlobalValue::LinkageTypes 337 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 338 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 339 340 if (Linkage == GVA_Internal) { 341 return llvm::Function::InternalLinkage; 342 } else if (D->hasAttr<DLLExportAttr>()) { 343 return llvm::Function::DLLExportLinkage; 344 } else if (D->hasAttr<WeakAttr>()) { 345 return llvm::Function::WeakAnyLinkage; 346 } else if (Linkage == GVA_C99Inline) { 347 // In C99 mode, 'inline' functions are guaranteed to have a strong 348 // definition somewhere else, so we can use available_externally linkage. 349 return llvm::Function::AvailableExternallyLinkage; 350 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 351 // In C++, the compiler has to emit a definition in every translation unit 352 // that references the function. We should use linkonce_odr because 353 // a) if all references in this translation unit are optimized away, we 354 // don't need to codegen it. b) if the function persists, it needs to be 355 // merged with other definitions. c) C++ has the ODR, so we know the 356 // definition is dependable. 357 return llvm::Function::LinkOnceODRLinkage; 358 } else if (Linkage == GVA_ExplicitTemplateInstantiation) { 359 // An explicit instantiation of a template has weak linkage, since 360 // explicit instantiations can occur in multiple translation units 361 // and must all be equivalent. However, we are not allowed to 362 // throw away these explicit instantiations. 363 return llvm::Function::WeakODRLinkage; 364 } else { 365 assert(Linkage == GVA_StrongExternal); 366 // Otherwise, we have strong external linkage. 367 return llvm::Function::ExternalLinkage; 368 } 369 } 370 371 372 /// SetFunctionDefinitionAttributes - Set attributes for a global. 373 /// 374 /// FIXME: This is currently only done for aliases and functions, but not for 375 /// variables (these details are set in EmitGlobalVarDefinition for variables). 376 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 377 llvm::GlobalValue *GV) { 378 SetCommonAttributes(D, GV); 379 } 380 381 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 382 const CGFunctionInfo &Info, 383 llvm::Function *F) { 384 unsigned CallingConv; 385 AttributeListType AttributeList; 386 ConstructAttributeList(Info, D, AttributeList, CallingConv); 387 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 388 AttributeList.size())); 389 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 390 } 391 392 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 393 llvm::Function *F) { 394 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 395 F->addFnAttr(llvm::Attribute::NoUnwind); 396 397 if (D->hasAttr<AlwaysInlineAttr>()) 398 F->addFnAttr(llvm::Attribute::AlwaysInline); 399 400 if (D->hasAttr<NoInlineAttr>()) 401 F->addFnAttr(llvm::Attribute::NoInline); 402 403 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 404 F->addFnAttr(llvm::Attribute::StackProtect); 405 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 406 F->addFnAttr(llvm::Attribute::StackProtectReq); 407 408 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 409 unsigned width = Context.Target.getCharWidth(); 410 F->setAlignment(AA->getAlignment() / width); 411 while ((AA = AA->getNext<AlignedAttr>())) 412 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 413 } 414 // C++ ABI requires 2-byte alignment for member functions. 415 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 416 F->setAlignment(2); 417 } 418 419 void CodeGenModule::SetCommonAttributes(const Decl *D, 420 llvm::GlobalValue *GV) { 421 setGlobalVisibility(GV, D); 422 423 if (D->hasAttr<UsedAttr>()) 424 AddUsedGlobal(GV); 425 426 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 427 GV->setSection(SA->getName()); 428 429 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 430 } 431 432 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 433 llvm::Function *F, 434 const CGFunctionInfo &FI) { 435 SetLLVMFunctionAttributes(D, FI, F); 436 SetLLVMFunctionAttributesForDefinition(D, F); 437 438 F->setLinkage(llvm::Function::InternalLinkage); 439 440 SetCommonAttributes(D, F); 441 } 442 443 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 444 llvm::Function *F, 445 bool IsIncompleteFunction) { 446 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 447 448 if (!IsIncompleteFunction) 449 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 450 451 // Only a few attributes are set on declarations; these may later be 452 // overridden by a definition. 453 454 if (FD->hasAttr<DLLImportAttr>()) { 455 F->setLinkage(llvm::Function::DLLImportLinkage); 456 } else if (FD->hasAttr<WeakAttr>() || 457 FD->hasAttr<WeakImportAttr>()) { 458 // "extern_weak" is overloaded in LLVM; we probably should have 459 // separate linkage types for this. 460 F->setLinkage(llvm::Function::ExternalWeakLinkage); 461 } else { 462 F->setLinkage(llvm::Function::ExternalLinkage); 463 } 464 465 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 466 F->setSection(SA->getName()); 467 } 468 469 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 470 assert(!GV->isDeclaration() && 471 "Only globals with definition can force usage."); 472 LLVMUsed.push_back(GV); 473 } 474 475 void CodeGenModule::EmitLLVMUsed() { 476 // Don't create llvm.used if there is no need. 477 if (LLVMUsed.empty()) 478 return; 479 480 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 481 482 // Convert LLVMUsed to what ConstantArray needs. 483 std::vector<llvm::Constant*> UsedArray; 484 UsedArray.resize(LLVMUsed.size()); 485 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 486 UsedArray[i] = 487 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 488 i8PTy); 489 } 490 491 if (UsedArray.empty()) 492 return; 493 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 494 495 llvm::GlobalVariable *GV = 496 new llvm::GlobalVariable(getModule(), ATy, false, 497 llvm::GlobalValue::AppendingLinkage, 498 llvm::ConstantArray::get(ATy, UsedArray), 499 "llvm.used"); 500 501 GV->setSection("llvm.metadata"); 502 } 503 504 void CodeGenModule::EmitDeferred() { 505 // Emit code for any potentially referenced deferred decls. Since a 506 // previously unused static decl may become used during the generation of code 507 // for a static function, iterate until no changes are made. 508 509 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 510 if (!DeferredVTables.empty()) { 511 const CXXRecordDecl *RD = DeferredVTables.back(); 512 DeferredVTables.pop_back(); 513 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 514 continue; 515 } 516 517 GlobalDecl D = DeferredDeclsToEmit.back(); 518 DeferredDeclsToEmit.pop_back(); 519 520 // Check to see if we've already emitted this. This is necessary 521 // for a couple of reasons: first, decls can end up in the 522 // deferred-decls queue multiple times, and second, decls can end 523 // up with definitions in unusual ways (e.g. by an extern inline 524 // function acquiring a strong function redefinition). Just 525 // ignore these cases. 526 // 527 // TODO: That said, looking this up multiple times is very wasteful. 528 MangleBuffer Name; 529 getMangledName(Name, D); 530 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 531 assert(CGRef && "Deferred decl wasn't referenced?"); 532 533 if (!CGRef->isDeclaration()) 534 continue; 535 536 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 537 // purposes an alias counts as a definition. 538 if (isa<llvm::GlobalAlias>(CGRef)) 539 continue; 540 541 // Otherwise, emit the definition and move on to the next one. 542 EmitGlobalDefinition(D); 543 } 544 } 545 546 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 547 /// annotation information for a given GlobalValue. The annotation struct is 548 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 549 /// GlobalValue being annotated. The second field is the constant string 550 /// created from the AnnotateAttr's annotation. The third field is a constant 551 /// string containing the name of the translation unit. The fourth field is 552 /// the line number in the file of the annotated value declaration. 553 /// 554 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 555 /// appears to. 556 /// 557 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 558 const AnnotateAttr *AA, 559 unsigned LineNo) { 560 llvm::Module *M = &getModule(); 561 562 // get [N x i8] constants for the annotation string, and the filename string 563 // which are the 2nd and 3rd elements of the global annotation structure. 564 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 565 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 566 AA->getAnnotation(), true); 567 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 568 M->getModuleIdentifier(), 569 true); 570 571 // Get the two global values corresponding to the ConstantArrays we just 572 // created to hold the bytes of the strings. 573 llvm::GlobalValue *annoGV = 574 new llvm::GlobalVariable(*M, anno->getType(), false, 575 llvm::GlobalValue::PrivateLinkage, anno, 576 GV->getName()); 577 // translation unit name string, emitted into the llvm.metadata section. 578 llvm::GlobalValue *unitGV = 579 new llvm::GlobalVariable(*M, unit->getType(), false, 580 llvm::GlobalValue::PrivateLinkage, unit, 581 ".str"); 582 583 // Create the ConstantStruct for the global annotation. 584 llvm::Constant *Fields[4] = { 585 llvm::ConstantExpr::getBitCast(GV, SBP), 586 llvm::ConstantExpr::getBitCast(annoGV, SBP), 587 llvm::ConstantExpr::getBitCast(unitGV, SBP), 588 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 589 }; 590 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 591 } 592 593 static CodeGenModule::GVALinkage 594 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 595 // If this is a static data member, compute the kind of template 596 // specialization. Otherwise, this variable is not part of a 597 // template. 598 TemplateSpecializationKind TSK = TSK_Undeclared; 599 if (VD->isStaticDataMember()) 600 TSK = VD->getTemplateSpecializationKind(); 601 602 Linkage L = VD->getLinkage(); 603 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 604 VD->getType()->getLinkage() == UniqueExternalLinkage) 605 L = UniqueExternalLinkage; 606 607 switch (L) { 608 case NoLinkage: 609 case InternalLinkage: 610 case UniqueExternalLinkage: 611 return CodeGenModule::GVA_Internal; 612 613 case ExternalLinkage: 614 switch (TSK) { 615 case TSK_Undeclared: 616 case TSK_ExplicitSpecialization: 617 return CodeGenModule::GVA_StrongExternal; 618 619 case TSK_ExplicitInstantiationDeclaration: 620 llvm_unreachable("Variable should not be instantiated"); 621 // Fall through to treat this like any other instantiation. 622 623 case TSK_ExplicitInstantiationDefinition: 624 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 625 626 case TSK_ImplicitInstantiation: 627 return CodeGenModule::GVA_TemplateInstantiation; 628 } 629 } 630 631 return CodeGenModule::GVA_StrongExternal; 632 } 633 634 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 635 // Never defer when EmitAllDecls is specified or the decl has 636 // attribute used. 637 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 638 return false; 639 640 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 641 // Constructors and destructors should never be deferred. 642 if (FD->hasAttr<ConstructorAttr>() || 643 FD->hasAttr<DestructorAttr>()) 644 return false; 645 646 // The key function for a class must never be deferred. 647 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 648 const CXXRecordDecl *RD = MD->getParent(); 649 if (MD->isOutOfLine() && RD->isDynamicClass()) { 650 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 651 if (KeyFunction && 652 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 653 return false; 654 } 655 } 656 657 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 658 659 // static, static inline, always_inline, and extern inline functions can 660 // always be deferred. Normal inline functions can be deferred in C99/C++. 661 // Implicit template instantiations can also be deferred in C++. 662 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 663 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 664 return true; 665 return false; 666 } 667 668 const VarDecl *VD = cast<VarDecl>(Global); 669 assert(VD->isFileVarDecl() && "Invalid decl"); 670 671 // We never want to defer structs that have non-trivial constructors or 672 // destructors. 673 674 // FIXME: Handle references. 675 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 676 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 677 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 678 return false; 679 } 680 } 681 682 GVALinkage L = GetLinkageForVariable(getContext(), VD); 683 if (L == GVA_Internal || L == GVA_TemplateInstantiation) { 684 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context))) 685 return true; 686 } 687 688 return false; 689 } 690 691 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 692 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 693 assert(AA && "No alias?"); 694 695 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 696 697 // See if there is already something with the target's name in the module. 698 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 699 700 llvm::Constant *Aliasee; 701 if (isa<llvm::FunctionType>(DeclTy)) 702 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 703 else 704 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 705 llvm::PointerType::getUnqual(DeclTy), 0); 706 if (!Entry) { 707 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 708 F->setLinkage(llvm::Function::ExternalWeakLinkage); 709 WeakRefReferences.insert(F); 710 } 711 712 return Aliasee; 713 } 714 715 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 716 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 717 718 // Weak references don't produce any output by themselves. 719 if (Global->hasAttr<WeakRefAttr>()) 720 return; 721 722 // If this is an alias definition (which otherwise looks like a declaration) 723 // emit it now. 724 if (Global->hasAttr<AliasAttr>()) 725 return EmitAliasDefinition(GD); 726 727 // Ignore declarations, they will be emitted on their first use. 728 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 729 // Forward declarations are emitted lazily on first use. 730 if (!FD->isThisDeclarationADefinition()) 731 return; 732 } else { 733 const VarDecl *VD = cast<VarDecl>(Global); 734 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 735 736 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 737 return; 738 } 739 740 // Defer code generation when possible if this is a static definition, inline 741 // function etc. These we only want to emit if they are used. 742 if (!MayDeferGeneration(Global)) { 743 // Emit the definition if it can't be deferred. 744 EmitGlobalDefinition(GD); 745 return; 746 } 747 748 // If the value has already been used, add it directly to the 749 // DeferredDeclsToEmit list. 750 MangleBuffer MangledName; 751 getMangledName(MangledName, GD); 752 if (GetGlobalValue(MangledName)) 753 DeferredDeclsToEmit.push_back(GD); 754 else { 755 // Otherwise, remember that we saw a deferred decl with this name. The 756 // first use of the mangled name will cause it to move into 757 // DeferredDeclsToEmit. 758 DeferredDecls[MangledName] = GD; 759 } 760 } 761 762 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 763 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 764 765 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 766 Context.getSourceManager(), 767 "Generating code for declaration"); 768 769 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 770 if (Method->isVirtual()) 771 getVTables().EmitThunks(GD); 772 773 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 774 return EmitCXXConstructor(CD, GD.getCtorType()); 775 776 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 777 return EmitCXXDestructor(DD, GD.getDtorType()); 778 779 if (isa<FunctionDecl>(D)) 780 return EmitGlobalFunctionDefinition(GD); 781 782 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 783 return EmitGlobalVarDefinition(VD); 784 785 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 786 } 787 788 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 789 /// module, create and return an llvm Function with the specified type. If there 790 /// is something in the module with the specified name, return it potentially 791 /// bitcasted to the right type. 792 /// 793 /// If D is non-null, it specifies a decl that correspond to this. This is used 794 /// to set the attributes on the function when it is first created. 795 llvm::Constant * 796 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 797 const llvm::Type *Ty, 798 GlobalDecl D) { 799 // Lookup the entry, lazily creating it if necessary. 800 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 801 if (Entry) { 802 if (WeakRefReferences.count(Entry)) { 803 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 804 if (FD && !FD->hasAttr<WeakAttr>()) 805 Entry->setLinkage(llvm::Function::ExternalLinkage); 806 807 WeakRefReferences.erase(Entry); 808 } 809 810 if (Entry->getType()->getElementType() == Ty) 811 return Entry; 812 813 // Make sure the result is of the correct type. 814 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 815 return llvm::ConstantExpr::getBitCast(Entry, PTy); 816 } 817 818 // This function doesn't have a complete type (for example, the return 819 // type is an incomplete struct). Use a fake type instead, and make 820 // sure not to try to set attributes. 821 bool IsIncompleteFunction = false; 822 823 const llvm::FunctionType *FTy; 824 if (isa<llvm::FunctionType>(Ty)) { 825 FTy = cast<llvm::FunctionType>(Ty); 826 } else { 827 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 828 std::vector<const llvm::Type*>(), false); 829 IsIncompleteFunction = true; 830 } 831 llvm::Function *F = llvm::Function::Create(FTy, 832 llvm::Function::ExternalLinkage, 833 MangledName, &getModule()); 834 assert(F->getName() == MangledName && "name was uniqued!"); 835 if (D.getDecl()) 836 SetFunctionAttributes(D, F, IsIncompleteFunction); 837 838 // This is the first use or definition of a mangled name. If there is a 839 // deferred decl with this name, remember that we need to emit it at the end 840 // of the file. 841 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 842 if (DDI != DeferredDecls.end()) { 843 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 844 // list, and remove it from DeferredDecls (since we don't need it anymore). 845 DeferredDeclsToEmit.push_back(DDI->second); 846 DeferredDecls.erase(DDI); 847 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 848 // If this the first reference to a C++ inline function in a class, queue up 849 // the deferred function body for emission. These are not seen as 850 // top-level declarations. 851 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 852 DeferredDeclsToEmit.push_back(D); 853 // A called constructor which has no definition or declaration need be 854 // synthesized. 855 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 856 if (CD->isImplicit()) { 857 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 858 DeferredDeclsToEmit.push_back(D); 859 } 860 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 861 if (DD->isImplicit()) { 862 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 863 DeferredDeclsToEmit.push_back(D); 864 } 865 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 866 if (MD->isCopyAssignment() && MD->isImplicit()) { 867 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 868 DeferredDeclsToEmit.push_back(D); 869 } 870 } 871 } 872 873 // Make sure the result is of the requested type. 874 if (!IsIncompleteFunction) { 875 assert(F->getType()->getElementType() == Ty); 876 return F; 877 } 878 879 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 880 return llvm::ConstantExpr::getBitCast(F, PTy); 881 } 882 883 /// GetAddrOfFunction - Return the address of the given function. If Ty is 884 /// non-null, then this function will use the specified type if it has to 885 /// create it (this occurs when we see a definition of the function). 886 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 887 const llvm::Type *Ty) { 888 // If there was no specific requested type, just convert it now. 889 if (!Ty) 890 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 891 MangleBuffer MangledName; 892 getMangledName(MangledName, GD); 893 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 894 } 895 896 /// CreateRuntimeFunction - Create a new runtime function with the specified 897 /// type and name. 898 llvm::Constant * 899 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 900 llvm::StringRef Name) { 901 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 902 } 903 904 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 905 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 906 return false; 907 if (Context.getLangOptions().CPlusPlus && 908 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 909 // FIXME: We should do something fancier here! 910 return false; 911 } 912 return true; 913 } 914 915 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 916 /// create and return an llvm GlobalVariable with the specified type. If there 917 /// is something in the module with the specified name, return it potentially 918 /// bitcasted to the right type. 919 /// 920 /// If D is non-null, it specifies a decl that correspond to this. This is used 921 /// to set the attributes on the global when it is first created. 922 llvm::Constant * 923 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 924 const llvm::PointerType *Ty, 925 const VarDecl *D) { 926 // Lookup the entry, lazily creating it if necessary. 927 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 928 if (Entry) { 929 if (WeakRefReferences.count(Entry)) { 930 if (D && !D->hasAttr<WeakAttr>()) 931 Entry->setLinkage(llvm::Function::ExternalLinkage); 932 933 WeakRefReferences.erase(Entry); 934 } 935 936 if (Entry->getType() == Ty) 937 return Entry; 938 939 // Make sure the result is of the correct type. 940 return llvm::ConstantExpr::getBitCast(Entry, Ty); 941 } 942 943 // This is the first use or definition of a mangled name. If there is a 944 // deferred decl with this name, remember that we need to emit it at the end 945 // of the file. 946 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 947 if (DDI != DeferredDecls.end()) { 948 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 949 // list, and remove it from DeferredDecls (since we don't need it anymore). 950 DeferredDeclsToEmit.push_back(DDI->second); 951 DeferredDecls.erase(DDI); 952 } 953 954 llvm::GlobalVariable *GV = 955 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 956 llvm::GlobalValue::ExternalLinkage, 957 0, MangledName, 0, 958 false, Ty->getAddressSpace()); 959 960 // Handle things which are present even on external declarations. 961 if (D) { 962 // FIXME: This code is overly simple and should be merged with other global 963 // handling. 964 GV->setConstant(DeclIsConstantGlobal(Context, D)); 965 966 // FIXME: Merge with other attribute handling code. 967 if (D->getStorageClass() == VarDecl::PrivateExtern) 968 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 969 970 if (D->hasAttr<WeakAttr>() || 971 D->hasAttr<WeakImportAttr>()) 972 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 973 974 GV->setThreadLocal(D->isThreadSpecified()); 975 } 976 977 return GV; 978 } 979 980 981 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 982 /// given global variable. If Ty is non-null and if the global doesn't exist, 983 /// then it will be greated with the specified type instead of whatever the 984 /// normal requested type would be. 985 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 986 const llvm::Type *Ty) { 987 assert(D->hasGlobalStorage() && "Not a global variable"); 988 QualType ASTTy = D->getType(); 989 if (Ty == 0) 990 Ty = getTypes().ConvertTypeForMem(ASTTy); 991 992 const llvm::PointerType *PTy = 993 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 994 995 MangleBuffer MangledName; 996 getMangledName(MangledName, D); 997 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 998 } 999 1000 /// CreateRuntimeVariable - Create a new runtime global variable with the 1001 /// specified type and name. 1002 llvm::Constant * 1003 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1004 llvm::StringRef Name) { 1005 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1006 } 1007 1008 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1009 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1010 1011 if (MayDeferGeneration(D)) { 1012 // If we have not seen a reference to this variable yet, place it 1013 // into the deferred declarations table to be emitted if needed 1014 // later. 1015 MangleBuffer MangledName; 1016 getMangledName(MangledName, D); 1017 if (!GetGlobalValue(MangledName)) { 1018 DeferredDecls[MangledName] = D; 1019 return; 1020 } 1021 } 1022 1023 // The tentative definition is the only definition. 1024 EmitGlobalVarDefinition(D); 1025 } 1026 1027 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1028 if (DefinitionRequired) 1029 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1030 } 1031 1032 llvm::GlobalVariable::LinkageTypes 1033 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1034 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1035 return llvm::GlobalVariable::InternalLinkage; 1036 1037 if (const CXXMethodDecl *KeyFunction 1038 = RD->getASTContext().getKeyFunction(RD)) { 1039 // If this class has a key function, use that to determine the linkage of 1040 // the vtable. 1041 const FunctionDecl *Def = 0; 1042 if (KeyFunction->getBody(Def)) 1043 KeyFunction = cast<CXXMethodDecl>(Def); 1044 1045 switch (KeyFunction->getTemplateSpecializationKind()) { 1046 case TSK_Undeclared: 1047 case TSK_ExplicitSpecialization: 1048 if (KeyFunction->isInlined()) 1049 return llvm::GlobalVariable::WeakODRLinkage; 1050 1051 return llvm::GlobalVariable::ExternalLinkage; 1052 1053 case TSK_ImplicitInstantiation: 1054 case TSK_ExplicitInstantiationDefinition: 1055 return llvm::GlobalVariable::WeakODRLinkage; 1056 1057 case TSK_ExplicitInstantiationDeclaration: 1058 // FIXME: Use available_externally linkage. However, this currently 1059 // breaks LLVM's build due to undefined symbols. 1060 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1061 return llvm::GlobalVariable::WeakODRLinkage; 1062 } 1063 } 1064 1065 switch (RD->getTemplateSpecializationKind()) { 1066 case TSK_Undeclared: 1067 case TSK_ExplicitSpecialization: 1068 case TSK_ImplicitInstantiation: 1069 case TSK_ExplicitInstantiationDefinition: 1070 return llvm::GlobalVariable::WeakODRLinkage; 1071 1072 case TSK_ExplicitInstantiationDeclaration: 1073 // FIXME: Use available_externally linkage. However, this currently 1074 // breaks LLVM's build due to undefined symbols. 1075 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1076 return llvm::GlobalVariable::WeakODRLinkage; 1077 } 1078 1079 // Silence GCC warning. 1080 return llvm::GlobalVariable::WeakODRLinkage; 1081 } 1082 1083 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1084 return CharUnits::fromQuantity( 1085 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1086 } 1087 1088 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1089 llvm::Constant *Init = 0; 1090 QualType ASTTy = D->getType(); 1091 bool NonConstInit = false; 1092 1093 const Expr *InitExpr = D->getAnyInitializer(); 1094 1095 if (!InitExpr) { 1096 // This is a tentative definition; tentative definitions are 1097 // implicitly initialized with { 0 }. 1098 // 1099 // Note that tentative definitions are only emitted at the end of 1100 // a translation unit, so they should never have incomplete 1101 // type. In addition, EmitTentativeDefinition makes sure that we 1102 // never attempt to emit a tentative definition if a real one 1103 // exists. A use may still exists, however, so we still may need 1104 // to do a RAUW. 1105 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1106 Init = EmitNullConstant(D->getType()); 1107 } else { 1108 Init = EmitConstantExpr(InitExpr, D->getType()); 1109 if (!Init) { 1110 QualType T = InitExpr->getType(); 1111 if (D->getType()->isReferenceType()) 1112 T = D->getType(); 1113 1114 if (getLangOptions().CPlusPlus) { 1115 EmitCXXGlobalVarDeclInitFunc(D); 1116 Init = EmitNullConstant(T); 1117 NonConstInit = true; 1118 } else { 1119 ErrorUnsupported(D, "static initializer"); 1120 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1121 } 1122 } 1123 } 1124 1125 const llvm::Type* InitType = Init->getType(); 1126 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1127 1128 // Strip off a bitcast if we got one back. 1129 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1130 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1131 // all zero index gep. 1132 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1133 Entry = CE->getOperand(0); 1134 } 1135 1136 // Entry is now either a Function or GlobalVariable. 1137 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1138 1139 // We have a definition after a declaration with the wrong type. 1140 // We must make a new GlobalVariable* and update everything that used OldGV 1141 // (a declaration or tentative definition) with the new GlobalVariable* 1142 // (which will be a definition). 1143 // 1144 // This happens if there is a prototype for a global (e.g. 1145 // "extern int x[];") and then a definition of a different type (e.g. 1146 // "int x[10];"). This also happens when an initializer has a different type 1147 // from the type of the global (this happens with unions). 1148 if (GV == 0 || 1149 GV->getType()->getElementType() != InitType || 1150 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1151 1152 // Move the old entry aside so that we'll create a new one. 1153 Entry->setName(llvm::StringRef()); 1154 1155 // Make a new global with the correct type, this is now guaranteed to work. 1156 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1157 1158 // Replace all uses of the old global with the new global 1159 llvm::Constant *NewPtrForOldDecl = 1160 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1161 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1162 1163 // Erase the old global, since it is no longer used. 1164 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1165 } 1166 1167 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1168 SourceManager &SM = Context.getSourceManager(); 1169 AddAnnotation(EmitAnnotateAttr(GV, AA, 1170 SM.getInstantiationLineNumber(D->getLocation()))); 1171 } 1172 1173 GV->setInitializer(Init); 1174 1175 // If it is safe to mark the global 'constant', do so now. 1176 GV->setConstant(false); 1177 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1178 GV->setConstant(true); 1179 1180 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1181 1182 // Set the llvm linkage type as appropriate. 1183 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1184 if (Linkage == GVA_Internal) 1185 GV->setLinkage(llvm::Function::InternalLinkage); 1186 else if (D->hasAttr<DLLImportAttr>()) 1187 GV->setLinkage(llvm::Function::DLLImportLinkage); 1188 else if (D->hasAttr<DLLExportAttr>()) 1189 GV->setLinkage(llvm::Function::DLLExportLinkage); 1190 else if (D->hasAttr<WeakAttr>()) { 1191 if (GV->isConstant()) 1192 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1193 else 1194 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1195 } else if (Linkage == GVA_TemplateInstantiation || 1196 Linkage == GVA_ExplicitTemplateInstantiation) 1197 // FIXME: It seems like we can provide more specific linkage here 1198 // (LinkOnceODR, WeakODR). 1199 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1200 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1201 !D->hasExternalStorage() && !D->getInit() && 1202 !D->getAttr<SectionAttr>()) { 1203 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1204 // common vars aren't constant even if declared const. 1205 GV->setConstant(false); 1206 } else 1207 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1208 1209 SetCommonAttributes(D, GV); 1210 1211 // Emit global variable debug information. 1212 if (CGDebugInfo *DI = getDebugInfo()) { 1213 DI->setLocation(D->getLocation()); 1214 DI->EmitGlobalVariable(GV, D); 1215 } 1216 } 1217 1218 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1219 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1220 /// existing call uses of the old function in the module, this adjusts them to 1221 /// call the new function directly. 1222 /// 1223 /// This is not just a cleanup: the always_inline pass requires direct calls to 1224 /// functions to be able to inline them. If there is a bitcast in the way, it 1225 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1226 /// run at -O0. 1227 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1228 llvm::Function *NewFn) { 1229 // If we're redefining a global as a function, don't transform it. 1230 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1231 if (OldFn == 0) return; 1232 1233 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1234 llvm::SmallVector<llvm::Value*, 4> ArgList; 1235 1236 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1237 UI != E; ) { 1238 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1239 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1240 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1241 llvm::CallSite CS(CI); 1242 if (!CI || !CS.isCallee(I)) continue; 1243 1244 // If the return types don't match exactly, and if the call isn't dead, then 1245 // we can't transform this call. 1246 if (CI->getType() != NewRetTy && !CI->use_empty()) 1247 continue; 1248 1249 // If the function was passed too few arguments, don't transform. If extra 1250 // arguments were passed, we silently drop them. If any of the types 1251 // mismatch, we don't transform. 1252 unsigned ArgNo = 0; 1253 bool DontTransform = false; 1254 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1255 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1256 if (CS.arg_size() == ArgNo || 1257 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1258 DontTransform = true; 1259 break; 1260 } 1261 } 1262 if (DontTransform) 1263 continue; 1264 1265 // Okay, we can transform this. Create the new call instruction and copy 1266 // over the required information. 1267 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1268 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1269 ArgList.end(), "", CI); 1270 ArgList.clear(); 1271 if (!NewCall->getType()->isVoidTy()) 1272 NewCall->takeName(CI); 1273 NewCall->setAttributes(CI->getAttributes()); 1274 NewCall->setCallingConv(CI->getCallingConv()); 1275 1276 // Finally, remove the old call, replacing any uses with the new one. 1277 if (!CI->use_empty()) 1278 CI->replaceAllUsesWith(NewCall); 1279 1280 // Copy debug location attached to CI. 1281 if (!CI->getDebugLoc().isUnknown()) 1282 NewCall->setDebugLoc(CI->getDebugLoc()); 1283 CI->eraseFromParent(); 1284 } 1285 } 1286 1287 1288 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1289 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1290 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1291 getMangleContext().mangleInitDiscriminator(); 1292 // Get or create the prototype for the function. 1293 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1294 1295 // Strip off a bitcast if we got one back. 1296 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1297 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1298 Entry = CE->getOperand(0); 1299 } 1300 1301 1302 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1303 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1304 1305 // If the types mismatch then we have to rewrite the definition. 1306 assert(OldFn->isDeclaration() && 1307 "Shouldn't replace non-declaration"); 1308 1309 // F is the Function* for the one with the wrong type, we must make a new 1310 // Function* and update everything that used F (a declaration) with the new 1311 // Function* (which will be a definition). 1312 // 1313 // This happens if there is a prototype for a function 1314 // (e.g. "int f()") and then a definition of a different type 1315 // (e.g. "int f(int x)"). Move the old function aside so that it 1316 // doesn't interfere with GetAddrOfFunction. 1317 OldFn->setName(llvm::StringRef()); 1318 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1319 1320 // If this is an implementation of a function without a prototype, try to 1321 // replace any existing uses of the function (which may be calls) with uses 1322 // of the new function 1323 if (D->getType()->isFunctionNoProtoType()) { 1324 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1325 OldFn->removeDeadConstantUsers(); 1326 } 1327 1328 // Replace uses of F with the Function we will endow with a body. 1329 if (!Entry->use_empty()) { 1330 llvm::Constant *NewPtrForOldDecl = 1331 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1332 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1333 } 1334 1335 // Ok, delete the old function now, which is dead. 1336 OldFn->eraseFromParent(); 1337 1338 Entry = NewFn; 1339 } 1340 1341 llvm::Function *Fn = cast<llvm::Function>(Entry); 1342 setFunctionLinkage(D, Fn); 1343 1344 CodeGenFunction(*this).GenerateCode(D, Fn); 1345 1346 SetFunctionDefinitionAttributes(D, Fn); 1347 SetLLVMFunctionAttributesForDefinition(D, Fn); 1348 1349 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1350 AddGlobalCtor(Fn, CA->getPriority()); 1351 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1352 AddGlobalDtor(Fn, DA->getPriority()); 1353 } 1354 1355 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1356 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1357 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1358 assert(AA && "Not an alias?"); 1359 1360 MangleBuffer MangledName; 1361 getMangledName(MangledName, GD); 1362 1363 // If there is a definition in the module, then it wins over the alias. 1364 // This is dubious, but allow it to be safe. Just ignore the alias. 1365 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1366 if (Entry && !Entry->isDeclaration()) 1367 return; 1368 1369 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1370 1371 // Create a reference to the named value. This ensures that it is emitted 1372 // if a deferred decl. 1373 llvm::Constant *Aliasee; 1374 if (isa<llvm::FunctionType>(DeclTy)) 1375 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1376 else 1377 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1378 llvm::PointerType::getUnqual(DeclTy), 0); 1379 1380 // Create the new alias itself, but don't set a name yet. 1381 llvm::GlobalValue *GA = 1382 new llvm::GlobalAlias(Aliasee->getType(), 1383 llvm::Function::ExternalLinkage, 1384 "", Aliasee, &getModule()); 1385 1386 if (Entry) { 1387 assert(Entry->isDeclaration()); 1388 1389 // If there is a declaration in the module, then we had an extern followed 1390 // by the alias, as in: 1391 // extern int test6(); 1392 // ... 1393 // int test6() __attribute__((alias("test7"))); 1394 // 1395 // Remove it and replace uses of it with the alias. 1396 GA->takeName(Entry); 1397 1398 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1399 Entry->getType())); 1400 Entry->eraseFromParent(); 1401 } else { 1402 GA->setName(MangledName.getString()); 1403 } 1404 1405 // Set attributes which are particular to an alias; this is a 1406 // specialization of the attributes which may be set on a global 1407 // variable/function. 1408 if (D->hasAttr<DLLExportAttr>()) { 1409 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1410 // The dllexport attribute is ignored for undefined symbols. 1411 if (FD->getBody()) 1412 GA->setLinkage(llvm::Function::DLLExportLinkage); 1413 } else { 1414 GA->setLinkage(llvm::Function::DLLExportLinkage); 1415 } 1416 } else if (D->hasAttr<WeakAttr>() || 1417 D->hasAttr<WeakRefAttr>() || 1418 D->hasAttr<WeakImportAttr>()) { 1419 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1420 } 1421 1422 SetCommonAttributes(D, GA); 1423 } 1424 1425 /// getBuiltinLibFunction - Given a builtin id for a function like 1426 /// "__builtin_fabsf", return a Function* for "fabsf". 1427 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1428 unsigned BuiltinID) { 1429 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1430 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1431 "isn't a lib fn"); 1432 1433 // Get the name, skip over the __builtin_ prefix (if necessary). 1434 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1435 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1436 Name += 10; 1437 1438 const llvm::FunctionType *Ty = 1439 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1440 1441 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1442 } 1443 1444 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1445 unsigned NumTys) { 1446 return llvm::Intrinsic::getDeclaration(&getModule(), 1447 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1448 } 1449 1450 1451 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1452 const llvm::Type *SrcType, 1453 const llvm::Type *SizeType) { 1454 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1455 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1456 } 1457 1458 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1459 const llvm::Type *SrcType, 1460 const llvm::Type *SizeType) { 1461 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1462 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1463 } 1464 1465 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1466 const llvm::Type *SizeType) { 1467 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1468 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1469 } 1470 1471 static llvm::StringMapEntry<llvm::Constant*> & 1472 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1473 const StringLiteral *Literal, 1474 bool TargetIsLSB, 1475 bool &IsUTF16, 1476 unsigned &StringLength) { 1477 unsigned NumBytes = Literal->getByteLength(); 1478 1479 // Check for simple case. 1480 if (!Literal->containsNonAsciiOrNull()) { 1481 StringLength = NumBytes; 1482 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1483 StringLength)); 1484 } 1485 1486 // Otherwise, convert the UTF8 literals into a byte string. 1487 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1488 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1489 UTF16 *ToPtr = &ToBuf[0]; 1490 1491 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1492 &ToPtr, ToPtr + NumBytes, 1493 strictConversion); 1494 1495 // Check for conversion failure. 1496 if (Result != conversionOK) { 1497 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1498 // this duplicate code. 1499 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1500 StringLength = NumBytes; 1501 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1502 StringLength)); 1503 } 1504 1505 // ConvertUTF8toUTF16 returns the length in ToPtr. 1506 StringLength = ToPtr - &ToBuf[0]; 1507 1508 // Render the UTF-16 string into a byte array and convert to the target byte 1509 // order. 1510 // 1511 // FIXME: This isn't something we should need to do here. 1512 llvm::SmallString<128> AsBytes; 1513 AsBytes.reserve(StringLength * 2); 1514 for (unsigned i = 0; i != StringLength; ++i) { 1515 unsigned short Val = ToBuf[i]; 1516 if (TargetIsLSB) { 1517 AsBytes.push_back(Val & 0xFF); 1518 AsBytes.push_back(Val >> 8); 1519 } else { 1520 AsBytes.push_back(Val >> 8); 1521 AsBytes.push_back(Val & 0xFF); 1522 } 1523 } 1524 // Append one extra null character, the second is automatically added by our 1525 // caller. 1526 AsBytes.push_back(0); 1527 1528 IsUTF16 = true; 1529 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1530 } 1531 1532 llvm::Constant * 1533 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1534 unsigned StringLength = 0; 1535 bool isUTF16 = false; 1536 llvm::StringMapEntry<llvm::Constant*> &Entry = 1537 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1538 getTargetData().isLittleEndian(), 1539 isUTF16, StringLength); 1540 1541 if (llvm::Constant *C = Entry.getValue()) 1542 return C; 1543 1544 llvm::Constant *Zero = 1545 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1546 llvm::Constant *Zeros[] = { Zero, Zero }; 1547 1548 // If we don't already have it, get __CFConstantStringClassReference. 1549 if (!CFConstantStringClassRef) { 1550 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1551 Ty = llvm::ArrayType::get(Ty, 0); 1552 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1553 "__CFConstantStringClassReference"); 1554 // Decay array -> ptr 1555 CFConstantStringClassRef = 1556 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1557 } 1558 1559 QualType CFTy = getContext().getCFConstantStringType(); 1560 1561 const llvm::StructType *STy = 1562 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1563 1564 std::vector<llvm::Constant*> Fields(4); 1565 1566 // Class pointer. 1567 Fields[0] = CFConstantStringClassRef; 1568 1569 // Flags. 1570 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1571 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1572 llvm::ConstantInt::get(Ty, 0x07C8); 1573 1574 // String pointer. 1575 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1576 1577 llvm::GlobalValue::LinkageTypes Linkage; 1578 bool isConstant; 1579 if (isUTF16) { 1580 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1581 Linkage = llvm::GlobalValue::InternalLinkage; 1582 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1583 // does make plain ascii ones writable. 1584 isConstant = true; 1585 } else { 1586 Linkage = llvm::GlobalValue::PrivateLinkage; 1587 isConstant = !Features.WritableStrings; 1588 } 1589 1590 llvm::GlobalVariable *GV = 1591 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1592 ".str"); 1593 if (isUTF16) { 1594 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1595 GV->setAlignment(Align.getQuantity()); 1596 } 1597 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1598 1599 // String length. 1600 Ty = getTypes().ConvertType(getContext().LongTy); 1601 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1602 1603 // The struct. 1604 C = llvm::ConstantStruct::get(STy, Fields); 1605 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1606 llvm::GlobalVariable::PrivateLinkage, C, 1607 "_unnamed_cfstring_"); 1608 if (const char *Sect = getContext().Target.getCFStringSection()) 1609 GV->setSection(Sect); 1610 Entry.setValue(GV); 1611 1612 return GV; 1613 } 1614 1615 llvm::Constant * 1616 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1617 unsigned StringLength = 0; 1618 bool isUTF16 = false; 1619 llvm::StringMapEntry<llvm::Constant*> &Entry = 1620 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1621 getTargetData().isLittleEndian(), 1622 isUTF16, StringLength); 1623 1624 if (llvm::Constant *C = Entry.getValue()) 1625 return C; 1626 1627 llvm::Constant *Zero = 1628 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1629 llvm::Constant *Zeros[] = { Zero, Zero }; 1630 1631 // If we don't already have it, get _NSConstantStringClassReference. 1632 if (!NSConstantStringClassRef) { 1633 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1634 Ty = llvm::ArrayType::get(Ty, 0); 1635 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1636 Features.ObjCNonFragileABI ? 1637 "OBJC_CLASS_$_NSConstantString" : 1638 "_NSConstantStringClassReference"); 1639 // Decay array -> ptr 1640 NSConstantStringClassRef = 1641 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1642 } 1643 1644 QualType NSTy = getContext().getNSConstantStringType(); 1645 1646 const llvm::StructType *STy = 1647 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1648 1649 std::vector<llvm::Constant*> Fields(3); 1650 1651 // Class pointer. 1652 Fields[0] = NSConstantStringClassRef; 1653 1654 // String pointer. 1655 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1656 1657 llvm::GlobalValue::LinkageTypes Linkage; 1658 bool isConstant; 1659 if (isUTF16) { 1660 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1661 Linkage = llvm::GlobalValue::InternalLinkage; 1662 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1663 // does make plain ascii ones writable. 1664 isConstant = true; 1665 } else { 1666 Linkage = llvm::GlobalValue::PrivateLinkage; 1667 isConstant = !Features.WritableStrings; 1668 } 1669 1670 llvm::GlobalVariable *GV = 1671 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1672 ".str"); 1673 if (isUTF16) { 1674 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1675 GV->setAlignment(Align.getQuantity()); 1676 } 1677 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1678 1679 // String length. 1680 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1681 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1682 1683 // The struct. 1684 C = llvm::ConstantStruct::get(STy, Fields); 1685 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1686 llvm::GlobalVariable::PrivateLinkage, C, 1687 "_unnamed_nsstring_"); 1688 // FIXME. Fix section. 1689 if (const char *Sect = 1690 Features.ObjCNonFragileABI 1691 ? getContext().Target.getNSStringNonFragileABISection() 1692 : getContext().Target.getNSStringSection()) 1693 GV->setSection(Sect); 1694 Entry.setValue(GV); 1695 1696 return GV; 1697 } 1698 1699 /// GetStringForStringLiteral - Return the appropriate bytes for a 1700 /// string literal, properly padded to match the literal type. 1701 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1702 const char *StrData = E->getStrData(); 1703 unsigned Len = E->getByteLength(); 1704 1705 const ConstantArrayType *CAT = 1706 getContext().getAsConstantArrayType(E->getType()); 1707 assert(CAT && "String isn't pointer or array!"); 1708 1709 // Resize the string to the right size. 1710 std::string Str(StrData, StrData+Len); 1711 uint64_t RealLen = CAT->getSize().getZExtValue(); 1712 1713 if (E->isWide()) 1714 RealLen *= getContext().Target.getWCharWidth()/8; 1715 1716 Str.resize(RealLen, '\0'); 1717 1718 return Str; 1719 } 1720 1721 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1722 /// constant array for the given string literal. 1723 llvm::Constant * 1724 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1725 // FIXME: This can be more efficient. 1726 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1727 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1728 if (S->isWide()) { 1729 llvm::Type *DestTy = 1730 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1731 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1732 } 1733 return C; 1734 } 1735 1736 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1737 /// array for the given ObjCEncodeExpr node. 1738 llvm::Constant * 1739 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1740 std::string Str; 1741 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1742 1743 return GetAddrOfConstantCString(Str); 1744 } 1745 1746 1747 /// GenerateWritableString -- Creates storage for a string literal. 1748 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1749 bool constant, 1750 CodeGenModule &CGM, 1751 const char *GlobalName) { 1752 // Create Constant for this string literal. Don't add a '\0'. 1753 llvm::Constant *C = 1754 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1755 1756 // Create a global variable for this string 1757 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1758 llvm::GlobalValue::PrivateLinkage, 1759 C, GlobalName); 1760 } 1761 1762 /// GetAddrOfConstantString - Returns a pointer to a character array 1763 /// containing the literal. This contents are exactly that of the 1764 /// given string, i.e. it will not be null terminated automatically; 1765 /// see GetAddrOfConstantCString. Note that whether the result is 1766 /// actually a pointer to an LLVM constant depends on 1767 /// Feature.WriteableStrings. 1768 /// 1769 /// The result has pointer to array type. 1770 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1771 const char *GlobalName) { 1772 bool IsConstant = !Features.WritableStrings; 1773 1774 // Get the default prefix if a name wasn't specified. 1775 if (!GlobalName) 1776 GlobalName = ".str"; 1777 1778 // Don't share any string literals if strings aren't constant. 1779 if (!IsConstant) 1780 return GenerateStringLiteral(str, false, *this, GlobalName); 1781 1782 llvm::StringMapEntry<llvm::Constant *> &Entry = 1783 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1784 1785 if (Entry.getValue()) 1786 return Entry.getValue(); 1787 1788 // Create a global variable for this. 1789 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1790 Entry.setValue(C); 1791 return C; 1792 } 1793 1794 /// GetAddrOfConstantCString - Returns a pointer to a character 1795 /// array containing the literal and a terminating '\-' 1796 /// character. The result has pointer to array type. 1797 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1798 const char *GlobalName){ 1799 return GetAddrOfConstantString(str + '\0', GlobalName); 1800 } 1801 1802 /// EmitObjCPropertyImplementations - Emit information for synthesized 1803 /// properties for an implementation. 1804 void CodeGenModule::EmitObjCPropertyImplementations(const 1805 ObjCImplementationDecl *D) { 1806 for (ObjCImplementationDecl::propimpl_iterator 1807 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1808 ObjCPropertyImplDecl *PID = *i; 1809 1810 // Dynamic is just for type-checking. 1811 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1812 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1813 1814 // Determine which methods need to be implemented, some may have 1815 // been overridden. Note that ::isSynthesized is not the method 1816 // we want, that just indicates if the decl came from a 1817 // property. What we want to know is if the method is defined in 1818 // this implementation. 1819 if (!D->getInstanceMethod(PD->getGetterName())) 1820 CodeGenFunction(*this).GenerateObjCGetter( 1821 const_cast<ObjCImplementationDecl *>(D), PID); 1822 if (!PD->isReadOnly() && 1823 !D->getInstanceMethod(PD->getSetterName())) 1824 CodeGenFunction(*this).GenerateObjCSetter( 1825 const_cast<ObjCImplementationDecl *>(D), PID); 1826 } 1827 } 1828 } 1829 1830 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1831 /// for an implementation. 1832 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1833 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1834 return; 1835 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1836 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1837 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1838 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1839 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1840 D->getLocation(), 1841 D->getLocation(), cxxSelector, 1842 getContext().VoidTy, 0, 1843 DC, true, false, true, 1844 ObjCMethodDecl::Required); 1845 D->addInstanceMethod(DTORMethod); 1846 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1847 1848 II = &getContext().Idents.get(".cxx_construct"); 1849 cxxSelector = getContext().Selectors.getSelector(0, &II); 1850 // The constructor returns 'self'. 1851 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1852 D->getLocation(), 1853 D->getLocation(), cxxSelector, 1854 getContext().getObjCIdType(), 0, 1855 DC, true, false, true, 1856 ObjCMethodDecl::Required); 1857 D->addInstanceMethod(CTORMethod); 1858 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1859 1860 1861 } 1862 1863 /// EmitNamespace - Emit all declarations in a namespace. 1864 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1865 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1866 I != E; ++I) 1867 EmitTopLevelDecl(*I); 1868 } 1869 1870 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1871 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1872 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1873 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1874 ErrorUnsupported(LSD, "linkage spec"); 1875 return; 1876 } 1877 1878 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1879 I != E; ++I) 1880 EmitTopLevelDecl(*I); 1881 } 1882 1883 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1884 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1885 // If an error has occurred, stop code generation, but continue 1886 // parsing and semantic analysis (to ensure all warnings and errors 1887 // are emitted). 1888 if (Diags.hasErrorOccurred()) 1889 return; 1890 1891 // Ignore dependent declarations. 1892 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1893 return; 1894 1895 switch (D->getKind()) { 1896 case Decl::CXXConversion: 1897 case Decl::CXXMethod: 1898 case Decl::Function: 1899 // Skip function templates 1900 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1901 return; 1902 1903 EmitGlobal(cast<FunctionDecl>(D)); 1904 break; 1905 1906 case Decl::Var: 1907 EmitGlobal(cast<VarDecl>(D)); 1908 break; 1909 1910 // C++ Decls 1911 case Decl::Namespace: 1912 EmitNamespace(cast<NamespaceDecl>(D)); 1913 break; 1914 // No code generation needed. 1915 case Decl::UsingShadow: 1916 case Decl::Using: 1917 case Decl::UsingDirective: 1918 case Decl::ClassTemplate: 1919 case Decl::FunctionTemplate: 1920 case Decl::NamespaceAlias: 1921 break; 1922 case Decl::CXXConstructor: 1923 // Skip function templates 1924 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1925 return; 1926 1927 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1928 break; 1929 case Decl::CXXDestructor: 1930 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1931 break; 1932 1933 case Decl::StaticAssert: 1934 // Nothing to do. 1935 break; 1936 1937 // Objective-C Decls 1938 1939 // Forward declarations, no (immediate) code generation. 1940 case Decl::ObjCClass: 1941 case Decl::ObjCForwardProtocol: 1942 case Decl::ObjCCategory: 1943 case Decl::ObjCInterface: 1944 break; 1945 1946 case Decl::ObjCProtocol: 1947 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1948 break; 1949 1950 case Decl::ObjCCategoryImpl: 1951 // Categories have properties but don't support synthesize so we 1952 // can ignore them here. 1953 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1954 break; 1955 1956 case Decl::ObjCImplementation: { 1957 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1958 EmitObjCPropertyImplementations(OMD); 1959 EmitObjCIvarInitializations(OMD); 1960 Runtime->GenerateClass(OMD); 1961 break; 1962 } 1963 case Decl::ObjCMethod: { 1964 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1965 // If this is not a prototype, emit the body. 1966 if (OMD->getBody()) 1967 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1968 break; 1969 } 1970 case Decl::ObjCCompatibleAlias: 1971 // compatibility-alias is a directive and has no code gen. 1972 break; 1973 1974 case Decl::LinkageSpec: 1975 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1976 break; 1977 1978 case Decl::FileScopeAsm: { 1979 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1980 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1981 1982 const std::string &S = getModule().getModuleInlineAsm(); 1983 if (S.empty()) 1984 getModule().setModuleInlineAsm(AsmString); 1985 else 1986 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1987 break; 1988 } 1989 1990 default: 1991 // Make sure we handled everything we should, every other kind is a 1992 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1993 // function. Need to recode Decl::Kind to do that easily. 1994 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1995 } 1996 } 1997