xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c9220039218e2c0ea4a2774a43bbc9088cc1b983)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static const char AnnotationSection[] = "llvm.metadata";
64 
65 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
66   switch (CGM.getTarget().getCXXABI().getKind()) {
67   case TargetCXXABI::GenericAArch64:
68   case TargetCXXABI::GenericARM:
69   case TargetCXXABI::iOS:
70   case TargetCXXABI::iOS64:
71   case TargetCXXABI::WatchOS:
72   case TargetCXXABI::GenericMIPS:
73   case TargetCXXABI::GenericItanium:
74   case TargetCXXABI::WebAssembly:
75     return CreateItaniumCXXABI(CGM);
76   case TargetCXXABI::Microsoft:
77     return CreateMicrosoftCXXABI(CGM);
78   }
79 
80   llvm_unreachable("invalid C++ ABI kind");
81 }
82 
83 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
84                              const PreprocessorOptions &PPO,
85                              const CodeGenOptions &CGO, llvm::Module &M,
86                              DiagnosticsEngine &diags,
87                              CoverageSourceInfo *CoverageInfo)
88     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
89       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
90       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
91       VMContext(M.getContext()), Types(*this), VTables(*this),
92       SanitizerMD(new SanitizerMetadata(*this)) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   SizeSizeInBytes =
107     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
108   IntAlignInBytes =
109     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
110   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
111   IntPtrTy = llvm::IntegerType::get(LLVMContext,
112     C.getTargetInfo().getMaxPointerWidth());
113   Int8PtrTy = Int8Ty->getPointerTo(0);
114   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
115   AllocaInt8PtrTy = Int8Ty->getPointerTo(
116       M.getDataLayout().getAllocaAddrSpace());
117   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
118 
119   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
120   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
121 
122   if (LangOpts.ObjC1)
123     createObjCRuntime();
124   if (LangOpts.OpenCL)
125     createOpenCLRuntime();
126   if (LangOpts.OpenMP)
127     createOpenMPRuntime();
128   if (LangOpts.CUDA)
129     createCUDARuntime();
130 
131   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
132   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
133       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
134     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
135                                getCXXABI().getMangleContext()));
136 
137   // If debug info or coverage generation is enabled, create the CGDebugInfo
138   // object.
139   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
140       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
141     DebugInfo.reset(new CGDebugInfo(*this));
142 
143   Block.GlobalUniqueCount = 0;
144 
145   if (C.getLangOpts().ObjC1)
146     ObjCData.reset(new ObjCEntrypoints());
147 
148   if (CodeGenOpts.hasProfileClangUse()) {
149     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
150         CodeGenOpts.ProfileInstrumentUsePath);
151     if (auto E = ReaderOrErr.takeError()) {
152       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
153                                               "Could not read profile %0: %1");
154       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
155         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
156                                   << EI.message();
157       });
158     } else
159       PGOReader = std::move(ReaderOrErr.get());
160   }
161 
162   // If coverage mapping generation is enabled, create the
163   // CoverageMappingModuleGen object.
164   if (CodeGenOpts.CoverageMapping)
165     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
166 }
167 
168 CodeGenModule::~CodeGenModule() {}
169 
170 void CodeGenModule::createObjCRuntime() {
171   // This is just isGNUFamily(), but we want to force implementors of
172   // new ABIs to decide how best to do this.
173   switch (LangOpts.ObjCRuntime.getKind()) {
174   case ObjCRuntime::GNUstep:
175   case ObjCRuntime::GCC:
176   case ObjCRuntime::ObjFW:
177     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
178     return;
179 
180   case ObjCRuntime::FragileMacOSX:
181   case ObjCRuntime::MacOSX:
182   case ObjCRuntime::iOS:
183   case ObjCRuntime::WatchOS:
184     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
185     return;
186   }
187   llvm_unreachable("bad runtime kind");
188 }
189 
190 void CodeGenModule::createOpenCLRuntime() {
191   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
192 }
193 
194 void CodeGenModule::createOpenMPRuntime() {
195   // Select a specialized code generation class based on the target, if any.
196   // If it does not exist use the default implementation.
197   switch (getTriple().getArch()) {
198   case llvm::Triple::nvptx:
199   case llvm::Triple::nvptx64:
200     assert(getLangOpts().OpenMPIsDevice &&
201            "OpenMP NVPTX is only prepared to deal with device code.");
202     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
203     break;
204   default:
205     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
206     break;
207   }
208 }
209 
210 void CodeGenModule::createCUDARuntime() {
211   CUDARuntime.reset(CreateNVCUDARuntime(*this));
212 }
213 
214 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
215   Replacements[Name] = C;
216 }
217 
218 void CodeGenModule::applyReplacements() {
219   for (auto &I : Replacements) {
220     StringRef MangledName = I.first();
221     llvm::Constant *Replacement = I.second;
222     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
223     if (!Entry)
224       continue;
225     auto *OldF = cast<llvm::Function>(Entry);
226     auto *NewF = dyn_cast<llvm::Function>(Replacement);
227     if (!NewF) {
228       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
229         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
230       } else {
231         auto *CE = cast<llvm::ConstantExpr>(Replacement);
232         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
233                CE->getOpcode() == llvm::Instruction::GetElementPtr);
234         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
235       }
236     }
237 
238     // Replace old with new, but keep the old order.
239     OldF->replaceAllUsesWith(Replacement);
240     if (NewF) {
241       NewF->removeFromParent();
242       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
243                                                        NewF);
244     }
245     OldF->eraseFromParent();
246   }
247 }
248 
249 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
250   GlobalValReplacements.push_back(std::make_pair(GV, C));
251 }
252 
253 void CodeGenModule::applyGlobalValReplacements() {
254   for (auto &I : GlobalValReplacements) {
255     llvm::GlobalValue *GV = I.first;
256     llvm::Constant *C = I.second;
257 
258     GV->replaceAllUsesWith(C);
259     GV->eraseFromParent();
260   }
261 }
262 
263 // This is only used in aliases that we created and we know they have a
264 // linear structure.
265 static const llvm::GlobalObject *getAliasedGlobal(
266     const llvm::GlobalIndirectSymbol &GIS) {
267   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
268   const llvm::Constant *C = &GIS;
269   for (;;) {
270     C = C->stripPointerCasts();
271     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
272       return GO;
273     // stripPointerCasts will not walk over weak aliases.
274     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
275     if (!GIS2)
276       return nullptr;
277     if (!Visited.insert(GIS2).second)
278       return nullptr;
279     C = GIS2->getIndirectSymbol();
280   }
281 }
282 
283 void CodeGenModule::checkAliases() {
284   // Check if the constructed aliases are well formed. It is really unfortunate
285   // that we have to do this in CodeGen, but we only construct mangled names
286   // and aliases during codegen.
287   bool Error = false;
288   DiagnosticsEngine &Diags = getDiags();
289   for (const GlobalDecl &GD : Aliases) {
290     const auto *D = cast<ValueDecl>(GD.getDecl());
291     SourceLocation Location;
292     bool IsIFunc = D->hasAttr<IFuncAttr>();
293     if (const Attr *A = D->getDefiningAttr())
294       Location = A->getLocation();
295     else
296       llvm_unreachable("Not an alias or ifunc?");
297     StringRef MangledName = getMangledName(GD);
298     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
299     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
300     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
301     if (!GV) {
302       Error = true;
303       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
304     } else if (GV->isDeclaration()) {
305       Error = true;
306       Diags.Report(Location, diag::err_alias_to_undefined)
307           << IsIFunc << IsIFunc;
308     } else if (IsIFunc) {
309       // Check resolver function type.
310       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
311           GV->getType()->getPointerElementType());
312       assert(FTy);
313       if (!FTy->getReturnType()->isPointerTy())
314         Diags.Report(Location, diag::err_ifunc_resolver_return);
315       if (FTy->getNumParams())
316         Diags.Report(Location, diag::err_ifunc_resolver_params);
317     }
318 
319     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
320     llvm::GlobalValue *AliaseeGV;
321     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
322       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
323     else
324       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
325 
326     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
327       StringRef AliasSection = SA->getName();
328       if (AliasSection != AliaseeGV->getSection())
329         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
330             << AliasSection << IsIFunc << IsIFunc;
331     }
332 
333     // We have to handle alias to weak aliases in here. LLVM itself disallows
334     // this since the object semantics would not match the IL one. For
335     // compatibility with gcc we implement it by just pointing the alias
336     // to its aliasee's aliasee. We also warn, since the user is probably
337     // expecting the link to be weak.
338     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
339       if (GA->isInterposable()) {
340         Diags.Report(Location, diag::warn_alias_to_weak_alias)
341             << GV->getName() << GA->getName() << IsIFunc;
342         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
343             GA->getIndirectSymbol(), Alias->getType());
344         Alias->setIndirectSymbol(Aliasee);
345       }
346     }
347   }
348   if (!Error)
349     return;
350 
351   for (const GlobalDecl &GD : Aliases) {
352     StringRef MangledName = getMangledName(GD);
353     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
354     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
355     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
356     Alias->eraseFromParent();
357   }
358 }
359 
360 void CodeGenModule::clear() {
361   DeferredDeclsToEmit.clear();
362   if (OpenMPRuntime)
363     OpenMPRuntime->clear();
364 }
365 
366 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
367                                        StringRef MainFile) {
368   if (!hasDiagnostics())
369     return;
370   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
371     if (MainFile.empty())
372       MainFile = "<stdin>";
373     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
374   } else {
375     if (Mismatched > 0)
376       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
377 
378     if (Missing > 0)
379       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
380   }
381 }
382 
383 void CodeGenModule::Release() {
384   EmitDeferred();
385   EmitVTablesOpportunistically();
386   applyGlobalValReplacements();
387   applyReplacements();
388   checkAliases();
389   EmitCXXGlobalInitFunc();
390   EmitCXXGlobalDtorFunc();
391   EmitCXXThreadLocalInitFunc();
392   if (ObjCRuntime)
393     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
394       AddGlobalCtor(ObjCInitFunction);
395   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
396       CUDARuntime) {
397     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
398       AddGlobalCtor(CudaCtorFunction);
399     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
400       AddGlobalDtor(CudaDtorFunction);
401   }
402   if (OpenMPRuntime)
403     if (llvm::Function *OpenMPRegistrationFunction =
404             OpenMPRuntime->emitRegistrationFunction()) {
405       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
406         OpenMPRegistrationFunction : nullptr;
407       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
408     }
409   if (PGOReader) {
410     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
411     if (PGOStats.hasDiagnostics())
412       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
413   }
414   EmitCtorList(GlobalCtors, "llvm.global_ctors");
415   EmitCtorList(GlobalDtors, "llvm.global_dtors");
416   EmitGlobalAnnotations();
417   EmitStaticExternCAliases();
418   EmitDeferredUnusedCoverageMappings();
419   if (CoverageMapping)
420     CoverageMapping->emit();
421   if (CodeGenOpts.SanitizeCfiCrossDso) {
422     CodeGenFunction(*this).EmitCfiCheckFail();
423     CodeGenFunction(*this).EmitCfiCheckStub();
424   }
425   emitAtAvailableLinkGuard();
426   emitLLVMUsed();
427   if (SanStats)
428     SanStats->finish();
429 
430   if (CodeGenOpts.Autolink &&
431       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
432     EmitModuleLinkOptions();
433   }
434 
435   // Record mregparm value now so it is visible through rest of codegen.
436   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
437     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
438                               CodeGenOpts.NumRegisterParameters);
439 
440   if (CodeGenOpts.DwarfVersion) {
441     // We actually want the latest version when there are conflicts.
442     // We can change from Warning to Latest if such mode is supported.
443     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
444                               CodeGenOpts.DwarfVersion);
445   }
446   if (CodeGenOpts.EmitCodeView) {
447     // Indicate that we want CodeView in the metadata.
448     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
449   }
450   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
451     // We don't support LTO with 2 with different StrictVTablePointers
452     // FIXME: we could support it by stripping all the information introduced
453     // by StrictVTablePointers.
454 
455     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
456 
457     llvm::Metadata *Ops[2] = {
458               llvm::MDString::get(VMContext, "StrictVTablePointers"),
459               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
460                   llvm::Type::getInt32Ty(VMContext), 1))};
461 
462     getModule().addModuleFlag(llvm::Module::Require,
463                               "StrictVTablePointersRequirement",
464                               llvm::MDNode::get(VMContext, Ops));
465   }
466   if (DebugInfo)
467     // We support a single version in the linked module. The LLVM
468     // parser will drop debug info with a different version number
469     // (and warn about it, too).
470     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
471                               llvm::DEBUG_METADATA_VERSION);
472 
473   // Width of wchar_t in bytes
474   uint64_t WCharWidth =
475       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
476   assert((LangOpts.ShortWChar ||
477           llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) ==
478               Target.getWCharWidth() / 8) &&
479          "LLVM wchar_t size out of sync");
480 
481   // We need to record the widths of enums and wchar_t, so that we can generate
482   // the correct build attributes in the ARM backend. wchar_size is also used by
483   // TargetLibraryInfo.
484   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
485 
486   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
487   if (   Arch == llvm::Triple::arm
488       || Arch == llvm::Triple::armeb
489       || Arch == llvm::Triple::thumb
490       || Arch == llvm::Triple::thumbeb) {
491     // The minimum width of an enum in bytes
492     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
493     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
494   }
495 
496   if (CodeGenOpts.SanitizeCfiCrossDso) {
497     // Indicate that we want cross-DSO control flow integrity checks.
498     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
499   }
500 
501   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
502     // Indicate whether __nvvm_reflect should be configured to flush denormal
503     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
504     // property.)
505     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
506                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
507   }
508 
509   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
510   if (LangOpts.OpenCL) {
511     EmitOpenCLMetadata();
512     // Emit SPIR version.
513     if (getTriple().getArch() == llvm::Triple::spir ||
514         getTriple().getArch() == llvm::Triple::spir64) {
515       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
516       // opencl.spir.version named metadata.
517       llvm::Metadata *SPIRVerElts[] = {
518           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
519               Int32Ty, LangOpts.OpenCLVersion / 100)),
520           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
521               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
522       llvm::NamedMDNode *SPIRVerMD =
523           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
524       llvm::LLVMContext &Ctx = TheModule.getContext();
525       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
526     }
527   }
528 
529   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
530     assert(PLevel < 3 && "Invalid PIC Level");
531     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
532     if (Context.getLangOpts().PIE)
533       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
534   }
535 
536   SimplifyPersonality();
537 
538   if (getCodeGenOpts().EmitDeclMetadata)
539     EmitDeclMetadata();
540 
541   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
542     EmitCoverageFile();
543 
544   if (DebugInfo)
545     DebugInfo->finalize();
546 
547   EmitVersionIdentMetadata();
548 
549   EmitTargetMetadata();
550 }
551 
552 void CodeGenModule::EmitOpenCLMetadata() {
553   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
554   // opencl.ocl.version named metadata node.
555   llvm::Metadata *OCLVerElts[] = {
556       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
557           Int32Ty, LangOpts.OpenCLVersion / 100)),
558       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
559           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
560   llvm::NamedMDNode *OCLVerMD =
561       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
562   llvm::LLVMContext &Ctx = TheModule.getContext();
563   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
564 }
565 
566 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
567   // Make sure that this type is translated.
568   Types.UpdateCompletedType(TD);
569 }
570 
571 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
572   // Make sure that this type is translated.
573   Types.RefreshTypeCacheForClass(RD);
574 }
575 
576 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
577   if (!TBAA)
578     return nullptr;
579   return TBAA->getTBAAInfo(QTy);
580 }
581 
582 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
583   if (!TBAA)
584     return nullptr;
585   return TBAA->getTBAAInfoForVTablePtr();
586 }
587 
588 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
589   if (!TBAA)
590     return nullptr;
591   return TBAA->getTBAAStructInfo(QTy);
592 }
593 
594 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
595                                                   llvm::MDNode *AccessN,
596                                                   uint64_t O) {
597   if (!TBAA)
598     return nullptr;
599   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
600 }
601 
602 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
603 /// and struct-path aware TBAA, the tag has the same format:
604 /// base type, access type and offset.
605 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
606 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
607                                                 llvm::MDNode *TBAAInfo,
608                                                 bool ConvertTypeToTag) {
609   if (ConvertTypeToTag && TBAA)
610     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
611                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
612   else
613     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
614 }
615 
616 void CodeGenModule::DecorateInstructionWithInvariantGroup(
617     llvm::Instruction *I, const CXXRecordDecl *RD) {
618   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
619                  llvm::MDNode::get(getLLVMContext(), {}));
620 }
621 
622 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
623   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
624   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
625 }
626 
627 /// ErrorUnsupported - Print out an error that codegen doesn't support the
628 /// specified stmt yet.
629 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
630   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
631                                                "cannot compile this %0 yet");
632   std::string Msg = Type;
633   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
634     << Msg << S->getSourceRange();
635 }
636 
637 /// ErrorUnsupported - Print out an error that codegen doesn't support the
638 /// specified decl yet.
639 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
640   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
641                                                "cannot compile this %0 yet");
642   std::string Msg = Type;
643   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
644 }
645 
646 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
647   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
648 }
649 
650 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
651                                         const NamedDecl *D) const {
652   // Internal definitions always have default visibility.
653   if (GV->hasLocalLinkage()) {
654     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
655     return;
656   }
657 
658   // Set visibility for definitions.
659   LinkageInfo LV = D->getLinkageAndVisibility();
660   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
661     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
662 }
663 
664 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
665   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
666       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
667       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
668       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
669       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
670 }
671 
672 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
673     CodeGenOptions::TLSModel M) {
674   switch (M) {
675   case CodeGenOptions::GeneralDynamicTLSModel:
676     return llvm::GlobalVariable::GeneralDynamicTLSModel;
677   case CodeGenOptions::LocalDynamicTLSModel:
678     return llvm::GlobalVariable::LocalDynamicTLSModel;
679   case CodeGenOptions::InitialExecTLSModel:
680     return llvm::GlobalVariable::InitialExecTLSModel;
681   case CodeGenOptions::LocalExecTLSModel:
682     return llvm::GlobalVariable::LocalExecTLSModel;
683   }
684   llvm_unreachable("Invalid TLS model!");
685 }
686 
687 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
688   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
689 
690   llvm::GlobalValue::ThreadLocalMode TLM;
691   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
692 
693   // Override the TLS model if it is explicitly specified.
694   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
695     TLM = GetLLVMTLSModel(Attr->getModel());
696   }
697 
698   GV->setThreadLocalMode(TLM);
699 }
700 
701 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
702   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
703 
704   // Some ABIs don't have constructor variants.  Make sure that base and
705   // complete constructors get mangled the same.
706   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
707     if (!getTarget().getCXXABI().hasConstructorVariants()) {
708       CXXCtorType OrigCtorType = GD.getCtorType();
709       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
710       if (OrigCtorType == Ctor_Base)
711         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
712     }
713   }
714 
715   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
716   if (!FoundStr.empty())
717     return FoundStr;
718 
719   const auto *ND = cast<NamedDecl>(GD.getDecl());
720   SmallString<256> Buffer;
721   StringRef Str;
722   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
723     llvm::raw_svector_ostream Out(Buffer);
724     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
725       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
726     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
727       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
728     else
729       getCXXABI().getMangleContext().mangleName(ND, Out);
730     Str = Out.str();
731   } else {
732     IdentifierInfo *II = ND->getIdentifier();
733     assert(II && "Attempt to mangle unnamed decl.");
734     const auto *FD = dyn_cast<FunctionDecl>(ND);
735 
736     if (FD &&
737         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
738       llvm::raw_svector_ostream Out(Buffer);
739       Out << "__regcall3__" << II->getName();
740       Str = Out.str();
741     } else {
742       Str = II->getName();
743     }
744   }
745 
746   // Keep the first result in the case of a mangling collision.
747   auto Result = Manglings.insert(std::make_pair(Str, GD));
748   assert(&FoundStr == &MangledDeclNames[CanonicalGD] && "FoundStr is invalidated!");
749   assert(FoundStr.empty() && "FoundStr is not empty!");
750   return FoundStr = Result.first->first();
751 }
752 
753 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
754                                              const BlockDecl *BD) {
755   MangleContext &MangleCtx = getCXXABI().getMangleContext();
756   const Decl *D = GD.getDecl();
757 
758   SmallString<256> Buffer;
759   llvm::raw_svector_ostream Out(Buffer);
760   if (!D)
761     MangleCtx.mangleGlobalBlock(BD,
762       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
763   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
764     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
765   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
766     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
767   else
768     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
769 
770   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
771   return Result.first->first();
772 }
773 
774 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
775   return getModule().getNamedValue(Name);
776 }
777 
778 /// AddGlobalCtor - Add a function to the list that will be called before
779 /// main() runs.
780 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
781                                   llvm::Constant *AssociatedData) {
782   // FIXME: Type coercion of void()* types.
783   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
784 }
785 
786 /// AddGlobalDtor - Add a function to the list that will be called
787 /// when the module is unloaded.
788 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
789   // FIXME: Type coercion of void()* types.
790   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
791 }
792 
793 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
794   if (Fns.empty()) return;
795 
796   // Ctor function type is void()*.
797   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
798   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
799 
800   // Get the type of a ctor entry, { i32, void ()*, i8* }.
801   llvm::StructType *CtorStructTy = llvm::StructType::get(
802       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
803 
804   // Construct the constructor and destructor arrays.
805   ConstantInitBuilder builder(*this);
806   auto ctors = builder.beginArray(CtorStructTy);
807   for (const auto &I : Fns) {
808     auto ctor = ctors.beginStruct(CtorStructTy);
809     ctor.addInt(Int32Ty, I.Priority);
810     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
811     if (I.AssociatedData)
812       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
813     else
814       ctor.addNullPointer(VoidPtrTy);
815     ctor.finishAndAddTo(ctors);
816   }
817 
818   auto list =
819     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
820                                 /*constant*/ false,
821                                 llvm::GlobalValue::AppendingLinkage);
822 
823   // The LTO linker doesn't seem to like it when we set an alignment
824   // on appending variables.  Take it off as a workaround.
825   list->setAlignment(0);
826 
827   Fns.clear();
828 }
829 
830 llvm::GlobalValue::LinkageTypes
831 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
832   const auto *D = cast<FunctionDecl>(GD.getDecl());
833 
834   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
835 
836   if (isa<CXXDestructorDecl>(D) &&
837       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
838                                          GD.getDtorType())) {
839     // Destructor variants in the Microsoft C++ ABI are always internal or
840     // linkonce_odr thunks emitted on an as-needed basis.
841     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
842                                    : llvm::GlobalValue::LinkOnceODRLinkage;
843   }
844 
845   if (isa<CXXConstructorDecl>(D) &&
846       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
847       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
848     // Our approach to inheriting constructors is fundamentally different from
849     // that used by the MS ABI, so keep our inheriting constructor thunks
850     // internal rather than trying to pick an unambiguous mangling for them.
851     return llvm::GlobalValue::InternalLinkage;
852   }
853 
854   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
855 }
856 
857 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
858   const auto *FD = cast<FunctionDecl>(GD.getDecl());
859 
860   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
861     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
862       // Don't dllexport/import destructor thunks.
863       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
864       return;
865     }
866   }
867 
868   if (FD->hasAttr<DLLImportAttr>())
869     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
870   else if (FD->hasAttr<DLLExportAttr>())
871     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
872   else
873     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
874 }
875 
876 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
877   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
878   if (!MDS) return nullptr;
879 
880   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
881 }
882 
883 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
884                                                     llvm::Function *F) {
885   setNonAliasAttributes(D, F);
886 }
887 
888 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
889                                               const CGFunctionInfo &Info,
890                                               llvm::Function *F) {
891   unsigned CallingConv;
892   llvm::AttributeList PAL;
893   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
894   F->setAttributes(PAL);
895   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
896 }
897 
898 /// Determines whether the language options require us to model
899 /// unwind exceptions.  We treat -fexceptions as mandating this
900 /// except under the fragile ObjC ABI with only ObjC exceptions
901 /// enabled.  This means, for example, that C with -fexceptions
902 /// enables this.
903 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
904   // If exceptions are completely disabled, obviously this is false.
905   if (!LangOpts.Exceptions) return false;
906 
907   // If C++ exceptions are enabled, this is true.
908   if (LangOpts.CXXExceptions) return true;
909 
910   // If ObjC exceptions are enabled, this depends on the ABI.
911   if (LangOpts.ObjCExceptions) {
912     return LangOpts.ObjCRuntime.hasUnwindExceptions();
913   }
914 
915   return true;
916 }
917 
918 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
919                                                            llvm::Function *F) {
920   llvm::AttrBuilder B;
921 
922   if (CodeGenOpts.UnwindTables)
923     B.addAttribute(llvm::Attribute::UWTable);
924 
925   if (!hasUnwindExceptions(LangOpts))
926     B.addAttribute(llvm::Attribute::NoUnwind);
927 
928   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
929     B.addAttribute(llvm::Attribute::StackProtect);
930   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
931     B.addAttribute(llvm::Attribute::StackProtectStrong);
932   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
933     B.addAttribute(llvm::Attribute::StackProtectReq);
934 
935   if (!D) {
936     // If we don't have a declaration to control inlining, the function isn't
937     // explicitly marked as alwaysinline for semantic reasons, and inlining is
938     // disabled, mark the function as noinline.
939     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
940         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
941       B.addAttribute(llvm::Attribute::NoInline);
942 
943     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
944     return;
945   }
946 
947   // Track whether we need to add the optnone LLVM attribute,
948   // starting with the default for this optimization level.
949   bool ShouldAddOptNone =
950       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
951   // We can't add optnone in the following cases, it won't pass the verifier.
952   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
953   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
954   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
955 
956   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
957     B.addAttribute(llvm::Attribute::OptimizeNone);
958 
959     // OptimizeNone implies noinline; we should not be inlining such functions.
960     B.addAttribute(llvm::Attribute::NoInline);
961     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
962            "OptimizeNone and AlwaysInline on same function!");
963 
964     // We still need to handle naked functions even though optnone subsumes
965     // much of their semantics.
966     if (D->hasAttr<NakedAttr>())
967       B.addAttribute(llvm::Attribute::Naked);
968 
969     // OptimizeNone wins over OptimizeForSize and MinSize.
970     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
971     F->removeFnAttr(llvm::Attribute::MinSize);
972   } else if (D->hasAttr<NakedAttr>()) {
973     // Naked implies noinline: we should not be inlining such functions.
974     B.addAttribute(llvm::Attribute::Naked);
975     B.addAttribute(llvm::Attribute::NoInline);
976   } else if (D->hasAttr<NoDuplicateAttr>()) {
977     B.addAttribute(llvm::Attribute::NoDuplicate);
978   } else if (D->hasAttr<NoInlineAttr>()) {
979     B.addAttribute(llvm::Attribute::NoInline);
980   } else if (D->hasAttr<AlwaysInlineAttr>() &&
981              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
982     // (noinline wins over always_inline, and we can't specify both in IR)
983     B.addAttribute(llvm::Attribute::AlwaysInline);
984   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
985     // If we're not inlining, then force everything that isn't always_inline to
986     // carry an explicit noinline attribute.
987     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
988       B.addAttribute(llvm::Attribute::NoInline);
989   } else {
990     // Otherwise, propagate the inline hint attribute and potentially use its
991     // absence to mark things as noinline.
992     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
993       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
994             return Redecl->isInlineSpecified();
995           })) {
996         B.addAttribute(llvm::Attribute::InlineHint);
997       } else if (CodeGenOpts.getInlining() ==
998                      CodeGenOptions::OnlyHintInlining &&
999                  !FD->isInlined() &&
1000                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1001         B.addAttribute(llvm::Attribute::NoInline);
1002       }
1003     }
1004   }
1005 
1006   // Add other optimization related attributes if we are optimizing this
1007   // function.
1008   if (!D->hasAttr<OptimizeNoneAttr>()) {
1009     if (D->hasAttr<ColdAttr>()) {
1010       if (!ShouldAddOptNone)
1011         B.addAttribute(llvm::Attribute::OptimizeForSize);
1012       B.addAttribute(llvm::Attribute::Cold);
1013     }
1014 
1015     if (D->hasAttr<MinSizeAttr>())
1016       B.addAttribute(llvm::Attribute::MinSize);
1017   }
1018 
1019   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1020 
1021   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1022   if (alignment)
1023     F->setAlignment(alignment);
1024 
1025   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1026   // reserve a bit for differentiating between virtual and non-virtual member
1027   // functions. If the current target's C++ ABI requires this and this is a
1028   // member function, set its alignment accordingly.
1029   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1030     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1031       F->setAlignment(2);
1032   }
1033 
1034   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1035   if (CodeGenOpts.SanitizeCfiCrossDso)
1036     if (auto *FD = dyn_cast<FunctionDecl>(D))
1037       CreateFunctionTypeMetadata(FD, F);
1038 }
1039 
1040 void CodeGenModule::SetCommonAttributes(const Decl *D,
1041                                         llvm::GlobalValue *GV) {
1042   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1043     setGlobalVisibility(GV, ND);
1044   else
1045     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1046 
1047   if (D && D->hasAttr<UsedAttr>())
1048     addUsedGlobal(GV);
1049 }
1050 
1051 void CodeGenModule::setAliasAttributes(const Decl *D,
1052                                        llvm::GlobalValue *GV) {
1053   SetCommonAttributes(D, GV);
1054 
1055   // Process the dllexport attribute based on whether the original definition
1056   // (not necessarily the aliasee) was exported.
1057   if (D->hasAttr<DLLExportAttr>())
1058     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1059 }
1060 
1061 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1062                                           llvm::GlobalObject *GO) {
1063   SetCommonAttributes(D, GO);
1064 
1065   if (D) {
1066     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1067       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1068         GV->addAttribute("bss-section", SA->getName());
1069       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1070         GV->addAttribute("data-section", SA->getName());
1071       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1072         GV->addAttribute("rodata-section", SA->getName());
1073     }
1074 
1075     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1076       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1077        if (!D->getAttr<SectionAttr>())
1078          F->addFnAttr("implicit-section-name", SA->getName());
1079     }
1080 
1081     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1082       GO->setSection(SA->getName());
1083   }
1084 
1085   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1086 }
1087 
1088 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1089                                                   llvm::Function *F,
1090                                                   const CGFunctionInfo &FI) {
1091   SetLLVMFunctionAttributes(D, FI, F);
1092   SetLLVMFunctionAttributesForDefinition(D, F);
1093 
1094   F->setLinkage(llvm::Function::InternalLinkage);
1095 
1096   setNonAliasAttributes(D, F);
1097 }
1098 
1099 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1100                                          const NamedDecl *ND) {
1101   // Set linkage and visibility in case we never see a definition.
1102   LinkageInfo LV = ND->getLinkageAndVisibility();
1103   if (!isExternallyVisible(LV.getLinkage())) {
1104     // Don't set internal linkage on declarations.
1105   } else {
1106     if (ND->hasAttr<DLLImportAttr>()) {
1107       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1108       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1109     } else if (ND->hasAttr<DLLExportAttr>()) {
1110       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1111     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1112       // "extern_weak" is overloaded in LLVM; we probably should have
1113       // separate linkage types for this.
1114       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1115     }
1116 
1117     // Set visibility on a declaration only if it's explicit.
1118     if (LV.isVisibilityExplicit())
1119       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1120   }
1121 }
1122 
1123 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1124                                                llvm::Function *F) {
1125   // Only if we are checking indirect calls.
1126   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1127     return;
1128 
1129   // Non-static class methods are handled via vtable pointer checks elsewhere.
1130   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1131     return;
1132 
1133   // Additionally, if building with cross-DSO support...
1134   if (CodeGenOpts.SanitizeCfiCrossDso) {
1135     // Skip available_externally functions. They won't be codegen'ed in the
1136     // current module anyway.
1137     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1138       return;
1139   }
1140 
1141   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1142   F->addTypeMetadata(0, MD);
1143 
1144   // Emit a hash-based bit set entry for cross-DSO calls.
1145   if (CodeGenOpts.SanitizeCfiCrossDso)
1146     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1147       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1148 }
1149 
1150 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1151                                           bool IsIncompleteFunction,
1152                                           bool IsThunk,
1153                                           ForDefinition_t IsForDefinition) {
1154 
1155   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1156     // If this is an intrinsic function, set the function's attributes
1157     // to the intrinsic's attributes.
1158     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1159     return;
1160   }
1161 
1162   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1163 
1164   if (!IsIncompleteFunction) {
1165     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1166     // Setup target-specific attributes.
1167     if (!IsForDefinition)
1168       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1169                                                  NotForDefinition);
1170   }
1171 
1172   // Add the Returned attribute for "this", except for iOS 5 and earlier
1173   // where substantial code, including the libstdc++ dylib, was compiled with
1174   // GCC and does not actually return "this".
1175   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1176       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1177     assert(!F->arg_empty() &&
1178            F->arg_begin()->getType()
1179              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1180            "unexpected this return");
1181     F->addAttribute(1, llvm::Attribute::Returned);
1182   }
1183 
1184   // Only a few attributes are set on declarations; these may later be
1185   // overridden by a definition.
1186 
1187   setLinkageAndVisibilityForGV(F, FD);
1188 
1189   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1190     F->addFnAttr("implicit-section-name");
1191   }
1192 
1193   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1194     F->setSection(SA->getName());
1195 
1196   if (FD->isReplaceableGlobalAllocationFunction()) {
1197     // A replaceable global allocation function does not act like a builtin by
1198     // default, only if it is invoked by a new-expression or delete-expression.
1199     F->addAttribute(llvm::AttributeList::FunctionIndex,
1200                     llvm::Attribute::NoBuiltin);
1201 
1202     // A sane operator new returns a non-aliasing pointer.
1203     // FIXME: Also add NonNull attribute to the return value
1204     // for the non-nothrow forms?
1205     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1206     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1207         (Kind == OO_New || Kind == OO_Array_New))
1208       F->addAttribute(llvm::AttributeList::ReturnIndex,
1209                       llvm::Attribute::NoAlias);
1210   }
1211 
1212   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1213     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1214   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1215     if (MD->isVirtual())
1216       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1217 
1218   // Don't emit entries for function declarations in the cross-DSO mode. This
1219   // is handled with better precision by the receiving DSO.
1220   if (!CodeGenOpts.SanitizeCfiCrossDso)
1221     CreateFunctionTypeMetadata(FD, F);
1222 }
1223 
1224 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1225   assert(!GV->isDeclaration() &&
1226          "Only globals with definition can force usage.");
1227   LLVMUsed.emplace_back(GV);
1228 }
1229 
1230 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1231   assert(!GV->isDeclaration() &&
1232          "Only globals with definition can force usage.");
1233   LLVMCompilerUsed.emplace_back(GV);
1234 }
1235 
1236 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1237                      std::vector<llvm::WeakTrackingVH> &List) {
1238   // Don't create llvm.used if there is no need.
1239   if (List.empty())
1240     return;
1241 
1242   // Convert List to what ConstantArray needs.
1243   SmallVector<llvm::Constant*, 8> UsedArray;
1244   UsedArray.resize(List.size());
1245   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1246     UsedArray[i] =
1247         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1248             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1249   }
1250 
1251   if (UsedArray.empty())
1252     return;
1253   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1254 
1255   auto *GV = new llvm::GlobalVariable(
1256       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1257       llvm::ConstantArray::get(ATy, UsedArray), Name);
1258 
1259   GV->setSection("llvm.metadata");
1260 }
1261 
1262 void CodeGenModule::emitLLVMUsed() {
1263   emitUsed(*this, "llvm.used", LLVMUsed);
1264   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1265 }
1266 
1267 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1268   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1269   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1270 }
1271 
1272 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1273   llvm::SmallString<32> Opt;
1274   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1275   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1276   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1277 }
1278 
1279 void CodeGenModule::AddDependentLib(StringRef Lib) {
1280   llvm::SmallString<24> Opt;
1281   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1282   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1283   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1284 }
1285 
1286 /// \brief Add link options implied by the given module, including modules
1287 /// it depends on, using a postorder walk.
1288 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1289                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1290                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1291   // Import this module's parent.
1292   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1293     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1294   }
1295 
1296   // Import this module's dependencies.
1297   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1298     if (Visited.insert(Mod->Imports[I - 1]).second)
1299       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1300   }
1301 
1302   // Add linker options to link against the libraries/frameworks
1303   // described by this module.
1304   llvm::LLVMContext &Context = CGM.getLLVMContext();
1305   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1306     // Link against a framework.  Frameworks are currently Darwin only, so we
1307     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1308     if (Mod->LinkLibraries[I-1].IsFramework) {
1309       llvm::Metadata *Args[2] = {
1310           llvm::MDString::get(Context, "-framework"),
1311           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1312 
1313       Metadata.push_back(llvm::MDNode::get(Context, Args));
1314       continue;
1315     }
1316 
1317     // Link against a library.
1318     llvm::SmallString<24> Opt;
1319     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1320       Mod->LinkLibraries[I-1].Library, Opt);
1321     auto *OptString = llvm::MDString::get(Context, Opt);
1322     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1323   }
1324 }
1325 
1326 void CodeGenModule::EmitModuleLinkOptions() {
1327   // Collect the set of all of the modules we want to visit to emit link
1328   // options, which is essentially the imported modules and all of their
1329   // non-explicit child modules.
1330   llvm::SetVector<clang::Module *> LinkModules;
1331   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1332   SmallVector<clang::Module *, 16> Stack;
1333 
1334   // Seed the stack with imported modules.
1335   for (Module *M : ImportedModules) {
1336     // Do not add any link flags when an implementation TU of a module imports
1337     // a header of that same module.
1338     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1339         !getLangOpts().isCompilingModule())
1340       continue;
1341     if (Visited.insert(M).second)
1342       Stack.push_back(M);
1343   }
1344 
1345   // Find all of the modules to import, making a little effort to prune
1346   // non-leaf modules.
1347   while (!Stack.empty()) {
1348     clang::Module *Mod = Stack.pop_back_val();
1349 
1350     bool AnyChildren = false;
1351 
1352     // Visit the submodules of this module.
1353     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1354                                         SubEnd = Mod->submodule_end();
1355          Sub != SubEnd; ++Sub) {
1356       // Skip explicit children; they need to be explicitly imported to be
1357       // linked against.
1358       if ((*Sub)->IsExplicit)
1359         continue;
1360 
1361       if (Visited.insert(*Sub).second) {
1362         Stack.push_back(*Sub);
1363         AnyChildren = true;
1364       }
1365     }
1366 
1367     // We didn't find any children, so add this module to the list of
1368     // modules to link against.
1369     if (!AnyChildren) {
1370       LinkModules.insert(Mod);
1371     }
1372   }
1373 
1374   // Add link options for all of the imported modules in reverse topological
1375   // order.  We don't do anything to try to order import link flags with respect
1376   // to linker options inserted by things like #pragma comment().
1377   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1378   Visited.clear();
1379   for (Module *M : LinkModules)
1380     if (Visited.insert(M).second)
1381       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1382   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1383   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1384 
1385   // Add the linker options metadata flag.
1386   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1387   for (auto *MD : LinkerOptionsMetadata)
1388     NMD->addOperand(MD);
1389 }
1390 
1391 void CodeGenModule::EmitDeferred() {
1392   // Emit code for any potentially referenced deferred decls.  Since a
1393   // previously unused static decl may become used during the generation of code
1394   // for a static function, iterate until no changes are made.
1395 
1396   if (!DeferredVTables.empty()) {
1397     EmitDeferredVTables();
1398 
1399     // Emitting a vtable doesn't directly cause more vtables to
1400     // become deferred, although it can cause functions to be
1401     // emitted that then need those vtables.
1402     assert(DeferredVTables.empty());
1403   }
1404 
1405   // Stop if we're out of both deferred vtables and deferred declarations.
1406   if (DeferredDeclsToEmit.empty())
1407     return;
1408 
1409   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1410   // work, it will not interfere with this.
1411   std::vector<GlobalDecl> CurDeclsToEmit;
1412   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1413 
1414   for (GlobalDecl &D : CurDeclsToEmit) {
1415     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1416     // to get GlobalValue with exactly the type we need, not something that
1417     // might had been created for another decl with the same mangled name but
1418     // different type.
1419     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1420         GetAddrOfGlobal(D, ForDefinition));
1421 
1422     // In case of different address spaces, we may still get a cast, even with
1423     // IsForDefinition equal to true. Query mangled names table to get
1424     // GlobalValue.
1425     if (!GV)
1426       GV = GetGlobalValue(getMangledName(D));
1427 
1428     // Make sure GetGlobalValue returned non-null.
1429     assert(GV);
1430 
1431     // Check to see if we've already emitted this.  This is necessary
1432     // for a couple of reasons: first, decls can end up in the
1433     // deferred-decls queue multiple times, and second, decls can end
1434     // up with definitions in unusual ways (e.g. by an extern inline
1435     // function acquiring a strong function redefinition).  Just
1436     // ignore these cases.
1437     if (!GV->isDeclaration())
1438       continue;
1439 
1440     // Otherwise, emit the definition and move on to the next one.
1441     EmitGlobalDefinition(D, GV);
1442 
1443     // If we found out that we need to emit more decls, do that recursively.
1444     // This has the advantage that the decls are emitted in a DFS and related
1445     // ones are close together, which is convenient for testing.
1446     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1447       EmitDeferred();
1448       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1449     }
1450   }
1451 }
1452 
1453 void CodeGenModule::EmitVTablesOpportunistically() {
1454   // Try to emit external vtables as available_externally if they have emitted
1455   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1456   // is not allowed to create new references to things that need to be emitted
1457   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1458 
1459   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1460          && "Only emit opportunistic vtables with optimizations");
1461 
1462   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1463     assert(getVTables().isVTableExternal(RD) &&
1464            "This queue should only contain external vtables");
1465     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1466       VTables.GenerateClassData(RD);
1467   }
1468   OpportunisticVTables.clear();
1469 }
1470 
1471 void CodeGenModule::EmitGlobalAnnotations() {
1472   if (Annotations.empty())
1473     return;
1474 
1475   // Create a new global variable for the ConstantStruct in the Module.
1476   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1477     Annotations[0]->getType(), Annotations.size()), Annotations);
1478   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1479                                       llvm::GlobalValue::AppendingLinkage,
1480                                       Array, "llvm.global.annotations");
1481   gv->setSection(AnnotationSection);
1482 }
1483 
1484 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1485   llvm::Constant *&AStr = AnnotationStrings[Str];
1486   if (AStr)
1487     return AStr;
1488 
1489   // Not found yet, create a new global.
1490   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1491   auto *gv =
1492       new llvm::GlobalVariable(getModule(), s->getType(), true,
1493                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1494   gv->setSection(AnnotationSection);
1495   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1496   AStr = gv;
1497   return gv;
1498 }
1499 
1500 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1501   SourceManager &SM = getContext().getSourceManager();
1502   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1503   if (PLoc.isValid())
1504     return EmitAnnotationString(PLoc.getFilename());
1505   return EmitAnnotationString(SM.getBufferName(Loc));
1506 }
1507 
1508 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1509   SourceManager &SM = getContext().getSourceManager();
1510   PresumedLoc PLoc = SM.getPresumedLoc(L);
1511   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1512     SM.getExpansionLineNumber(L);
1513   return llvm::ConstantInt::get(Int32Ty, LineNo);
1514 }
1515 
1516 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1517                                                 const AnnotateAttr *AA,
1518                                                 SourceLocation L) {
1519   // Get the globals for file name, annotation, and the line number.
1520   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1521                  *UnitGV = EmitAnnotationUnit(L),
1522                  *LineNoCst = EmitAnnotationLineNo(L);
1523 
1524   // Create the ConstantStruct for the global annotation.
1525   llvm::Constant *Fields[4] = {
1526     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1527     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1528     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1529     LineNoCst
1530   };
1531   return llvm::ConstantStruct::getAnon(Fields);
1532 }
1533 
1534 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1535                                          llvm::GlobalValue *GV) {
1536   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1537   // Get the struct elements for these annotations.
1538   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1539     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1540 }
1541 
1542 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1543                                            SourceLocation Loc) const {
1544   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1545   // Blacklist by function name.
1546   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1547     return true;
1548   // Blacklist by location.
1549   if (Loc.isValid())
1550     return SanitizerBL.isBlacklistedLocation(Loc);
1551   // If location is unknown, this may be a compiler-generated function. Assume
1552   // it's located in the main file.
1553   auto &SM = Context.getSourceManager();
1554   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1555     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1556   }
1557   return false;
1558 }
1559 
1560 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1561                                            SourceLocation Loc, QualType Ty,
1562                                            StringRef Category) const {
1563   // For now globals can be blacklisted only in ASan and KASan.
1564   if (!LangOpts.Sanitize.hasOneOf(
1565           SanitizerKind::Address | SanitizerKind::KernelAddress))
1566     return false;
1567   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1568   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1569     return true;
1570   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1571     return true;
1572   // Check global type.
1573   if (!Ty.isNull()) {
1574     // Drill down the array types: if global variable of a fixed type is
1575     // blacklisted, we also don't instrument arrays of them.
1576     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1577       Ty = AT->getElementType();
1578     Ty = Ty.getCanonicalType().getUnqualifiedType();
1579     // We allow to blacklist only record types (classes, structs etc.)
1580     if (Ty->isRecordType()) {
1581       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1582       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1583         return true;
1584     }
1585   }
1586   return false;
1587 }
1588 
1589 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1590                                    StringRef Category) const {
1591   if (!LangOpts.XRayInstrument)
1592     return false;
1593   const auto &XRayFilter = getContext().getXRayFilter();
1594   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1595   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1596   if (Loc.isValid())
1597     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1598   if (Attr == ImbueAttr::NONE)
1599     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1600   switch (Attr) {
1601   case ImbueAttr::NONE:
1602     return false;
1603   case ImbueAttr::ALWAYS:
1604     Fn->addFnAttr("function-instrument", "xray-always");
1605     break;
1606   case ImbueAttr::ALWAYS_ARG1:
1607     Fn->addFnAttr("function-instrument", "xray-always");
1608     Fn->addFnAttr("xray-log-args", "1");
1609     break;
1610   case ImbueAttr::NEVER:
1611     Fn->addFnAttr("function-instrument", "xray-never");
1612     break;
1613   }
1614   return true;
1615 }
1616 
1617 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1618   // Never defer when EmitAllDecls is specified.
1619   if (LangOpts.EmitAllDecls)
1620     return true;
1621 
1622   return getContext().DeclMustBeEmitted(Global);
1623 }
1624 
1625 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1626   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1627     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1628       // Implicit template instantiations may change linkage if they are later
1629       // explicitly instantiated, so they should not be emitted eagerly.
1630       return false;
1631   if (const auto *VD = dyn_cast<VarDecl>(Global))
1632     if (Context.getInlineVariableDefinitionKind(VD) ==
1633         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1634       // A definition of an inline constexpr static data member may change
1635       // linkage later if it's redeclared outside the class.
1636       return false;
1637   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1638   // codegen for global variables, because they may be marked as threadprivate.
1639   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1640       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1641     return false;
1642 
1643   return true;
1644 }
1645 
1646 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1647     const CXXUuidofExpr* E) {
1648   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1649   // well-formed.
1650   StringRef Uuid = E->getUuidStr();
1651   std::string Name = "_GUID_" + Uuid.lower();
1652   std::replace(Name.begin(), Name.end(), '-', '_');
1653 
1654   // The UUID descriptor should be pointer aligned.
1655   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1656 
1657   // Look for an existing global.
1658   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1659     return ConstantAddress(GV, Alignment);
1660 
1661   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1662   assert(Init && "failed to initialize as constant");
1663 
1664   auto *GV = new llvm::GlobalVariable(
1665       getModule(), Init->getType(),
1666       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1667   if (supportsCOMDAT())
1668     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1669   return ConstantAddress(GV, Alignment);
1670 }
1671 
1672 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1673   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1674   assert(AA && "No alias?");
1675 
1676   CharUnits Alignment = getContext().getDeclAlign(VD);
1677   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1678 
1679   // See if there is already something with the target's name in the module.
1680   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1681   if (Entry) {
1682     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1683     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1684     return ConstantAddress(Ptr, Alignment);
1685   }
1686 
1687   llvm::Constant *Aliasee;
1688   if (isa<llvm::FunctionType>(DeclTy))
1689     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1690                                       GlobalDecl(cast<FunctionDecl>(VD)),
1691                                       /*ForVTable=*/false);
1692   else
1693     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1694                                     llvm::PointerType::getUnqual(DeclTy),
1695                                     nullptr);
1696 
1697   auto *F = cast<llvm::GlobalValue>(Aliasee);
1698   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1699   WeakRefReferences.insert(F);
1700 
1701   return ConstantAddress(Aliasee, Alignment);
1702 }
1703 
1704 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1705   const auto *Global = cast<ValueDecl>(GD.getDecl());
1706 
1707   // Weak references don't produce any output by themselves.
1708   if (Global->hasAttr<WeakRefAttr>())
1709     return;
1710 
1711   // If this is an alias definition (which otherwise looks like a declaration)
1712   // emit it now.
1713   if (Global->hasAttr<AliasAttr>())
1714     return EmitAliasDefinition(GD);
1715 
1716   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1717   if (Global->hasAttr<IFuncAttr>())
1718     return emitIFuncDefinition(GD);
1719 
1720   // If this is CUDA, be selective about which declarations we emit.
1721   if (LangOpts.CUDA) {
1722     if (LangOpts.CUDAIsDevice) {
1723       if (!Global->hasAttr<CUDADeviceAttr>() &&
1724           !Global->hasAttr<CUDAGlobalAttr>() &&
1725           !Global->hasAttr<CUDAConstantAttr>() &&
1726           !Global->hasAttr<CUDASharedAttr>())
1727         return;
1728     } else {
1729       // We need to emit host-side 'shadows' for all global
1730       // device-side variables because the CUDA runtime needs their
1731       // size and host-side address in order to provide access to
1732       // their device-side incarnations.
1733 
1734       // So device-only functions are the only things we skip.
1735       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1736           Global->hasAttr<CUDADeviceAttr>())
1737         return;
1738 
1739       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1740              "Expected Variable or Function");
1741     }
1742   }
1743 
1744   if (LangOpts.OpenMP) {
1745     // If this is OpenMP device, check if it is legal to emit this global
1746     // normally.
1747     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1748       return;
1749     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1750       if (MustBeEmitted(Global))
1751         EmitOMPDeclareReduction(DRD);
1752       return;
1753     }
1754   }
1755 
1756   // Ignore declarations, they will be emitted on their first use.
1757   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1758     // Forward declarations are emitted lazily on first use.
1759     if (!FD->doesThisDeclarationHaveABody()) {
1760       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1761         return;
1762 
1763       StringRef MangledName = getMangledName(GD);
1764 
1765       // Compute the function info and LLVM type.
1766       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1767       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1768 
1769       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1770                               /*DontDefer=*/false);
1771       return;
1772     }
1773   } else {
1774     const auto *VD = cast<VarDecl>(Global);
1775     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1776     // We need to emit device-side global CUDA variables even if a
1777     // variable does not have a definition -- we still need to define
1778     // host-side shadow for it.
1779     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1780                            !VD->hasDefinition() &&
1781                            (VD->hasAttr<CUDAConstantAttr>() ||
1782                             VD->hasAttr<CUDADeviceAttr>());
1783     if (!MustEmitForCuda &&
1784         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1785         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1786       // If this declaration may have caused an inline variable definition to
1787       // change linkage, make sure that it's emitted.
1788       if (Context.getInlineVariableDefinitionKind(VD) ==
1789           ASTContext::InlineVariableDefinitionKind::Strong)
1790         GetAddrOfGlobalVar(VD);
1791       return;
1792     }
1793   }
1794 
1795   // Defer code generation to first use when possible, e.g. if this is an inline
1796   // function. If the global must always be emitted, do it eagerly if possible
1797   // to benefit from cache locality.
1798   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1799     // Emit the definition if it can't be deferred.
1800     EmitGlobalDefinition(GD);
1801     return;
1802   }
1803 
1804   // If we're deferring emission of a C++ variable with an
1805   // initializer, remember the order in which it appeared in the file.
1806   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1807       cast<VarDecl>(Global)->hasInit()) {
1808     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1809     CXXGlobalInits.push_back(nullptr);
1810   }
1811 
1812   StringRef MangledName = getMangledName(GD);
1813   if (GetGlobalValue(MangledName) != nullptr) {
1814     // The value has already been used and should therefore be emitted.
1815     addDeferredDeclToEmit(GD);
1816   } else if (MustBeEmitted(Global)) {
1817     // The value must be emitted, but cannot be emitted eagerly.
1818     assert(!MayBeEmittedEagerly(Global));
1819     addDeferredDeclToEmit(GD);
1820   } else {
1821     // Otherwise, remember that we saw a deferred decl with this name.  The
1822     // first use of the mangled name will cause it to move into
1823     // DeferredDeclsToEmit.
1824     DeferredDecls[MangledName] = GD;
1825   }
1826 }
1827 
1828 // Check if T is a class type with a destructor that's not dllimport.
1829 static bool HasNonDllImportDtor(QualType T) {
1830   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1831     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1832       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1833         return true;
1834 
1835   return false;
1836 }
1837 
1838 namespace {
1839   struct FunctionIsDirectlyRecursive :
1840     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1841     const StringRef Name;
1842     const Builtin::Context &BI;
1843     bool Result;
1844     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1845       Name(N), BI(C), Result(false) {
1846     }
1847     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1848 
1849     bool TraverseCallExpr(CallExpr *E) {
1850       const FunctionDecl *FD = E->getDirectCallee();
1851       if (!FD)
1852         return true;
1853       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1854       if (Attr && Name == Attr->getLabel()) {
1855         Result = true;
1856         return false;
1857       }
1858       unsigned BuiltinID = FD->getBuiltinID();
1859       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1860         return true;
1861       StringRef BuiltinName = BI.getName(BuiltinID);
1862       if (BuiltinName.startswith("__builtin_") &&
1863           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1864         Result = true;
1865         return false;
1866       }
1867       return true;
1868     }
1869   };
1870 
1871   // Make sure we're not referencing non-imported vars or functions.
1872   struct DLLImportFunctionVisitor
1873       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1874     bool SafeToInline = true;
1875 
1876     bool shouldVisitImplicitCode() const { return true; }
1877 
1878     bool VisitVarDecl(VarDecl *VD) {
1879       if (VD->getTLSKind()) {
1880         // A thread-local variable cannot be imported.
1881         SafeToInline = false;
1882         return SafeToInline;
1883       }
1884 
1885       // A variable definition might imply a destructor call.
1886       if (VD->isThisDeclarationADefinition())
1887         SafeToInline = !HasNonDllImportDtor(VD->getType());
1888 
1889       return SafeToInline;
1890     }
1891 
1892     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1893       if (const auto *D = E->getTemporary()->getDestructor())
1894         SafeToInline = D->hasAttr<DLLImportAttr>();
1895       return SafeToInline;
1896     }
1897 
1898     bool VisitDeclRefExpr(DeclRefExpr *E) {
1899       ValueDecl *VD = E->getDecl();
1900       if (isa<FunctionDecl>(VD))
1901         SafeToInline = VD->hasAttr<DLLImportAttr>();
1902       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1903         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1904       return SafeToInline;
1905     }
1906 
1907     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1908       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1909       return SafeToInline;
1910     }
1911 
1912     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1913       CXXMethodDecl *M = E->getMethodDecl();
1914       if (!M) {
1915         // Call through a pointer to member function. This is safe to inline.
1916         SafeToInline = true;
1917       } else {
1918         SafeToInline = M->hasAttr<DLLImportAttr>();
1919       }
1920       return SafeToInline;
1921     }
1922 
1923     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1924       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1925       return SafeToInline;
1926     }
1927 
1928     bool VisitCXXNewExpr(CXXNewExpr *E) {
1929       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1930       return SafeToInline;
1931     }
1932   };
1933 }
1934 
1935 // isTriviallyRecursive - Check if this function calls another
1936 // decl that, because of the asm attribute or the other decl being a builtin,
1937 // ends up pointing to itself.
1938 bool
1939 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1940   StringRef Name;
1941   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1942     // asm labels are a special kind of mangling we have to support.
1943     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1944     if (!Attr)
1945       return false;
1946     Name = Attr->getLabel();
1947   } else {
1948     Name = FD->getName();
1949   }
1950 
1951   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1952   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1953   return Walker.Result;
1954 }
1955 
1956 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1957   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1958     return true;
1959   const auto *F = cast<FunctionDecl>(GD.getDecl());
1960   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1961     return false;
1962 
1963   if (F->hasAttr<DLLImportAttr>()) {
1964     // Check whether it would be safe to inline this dllimport function.
1965     DLLImportFunctionVisitor Visitor;
1966     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1967     if (!Visitor.SafeToInline)
1968       return false;
1969 
1970     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1971       // Implicit destructor invocations aren't captured in the AST, so the
1972       // check above can't see them. Check for them manually here.
1973       for (const Decl *Member : Dtor->getParent()->decls())
1974         if (isa<FieldDecl>(Member))
1975           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1976             return false;
1977       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1978         if (HasNonDllImportDtor(B.getType()))
1979           return false;
1980     }
1981   }
1982 
1983   // PR9614. Avoid cases where the source code is lying to us. An available
1984   // externally function should have an equivalent function somewhere else,
1985   // but a function that calls itself is clearly not equivalent to the real
1986   // implementation.
1987   // This happens in glibc's btowc and in some configure checks.
1988   return !isTriviallyRecursive(F);
1989 }
1990 
1991 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
1992   return CodeGenOpts.OptimizationLevel > 0;
1993 }
1994 
1995 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1996   const auto *D = cast<ValueDecl>(GD.getDecl());
1997 
1998   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1999                                  Context.getSourceManager(),
2000                                  "Generating code for declaration");
2001 
2002   if (isa<FunctionDecl>(D)) {
2003     // At -O0, don't generate IR for functions with available_externally
2004     // linkage.
2005     if (!shouldEmitFunction(GD))
2006       return;
2007 
2008     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2009       // Make sure to emit the definition(s) before we emit the thunks.
2010       // This is necessary for the generation of certain thunks.
2011       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2012         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2013       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2014         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2015       else
2016         EmitGlobalFunctionDefinition(GD, GV);
2017 
2018       if (Method->isVirtual())
2019         getVTables().EmitThunks(GD);
2020 
2021       return;
2022     }
2023 
2024     return EmitGlobalFunctionDefinition(GD, GV);
2025   }
2026 
2027   if (const auto *VD = dyn_cast<VarDecl>(D))
2028     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2029 
2030   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2031 }
2032 
2033 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2034                                                       llvm::Function *NewFn);
2035 
2036 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2037 /// module, create and return an llvm Function with the specified type. If there
2038 /// is something in the module with the specified name, return it potentially
2039 /// bitcasted to the right type.
2040 ///
2041 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2042 /// to set the attributes on the function when it is first created.
2043 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2044     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2045     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2046     ForDefinition_t IsForDefinition) {
2047   const Decl *D = GD.getDecl();
2048 
2049   // Lookup the entry, lazily creating it if necessary.
2050   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2051   if (Entry) {
2052     if (WeakRefReferences.erase(Entry)) {
2053       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2054       if (FD && !FD->hasAttr<WeakAttr>())
2055         Entry->setLinkage(llvm::Function::ExternalLinkage);
2056     }
2057 
2058     // Handle dropped DLL attributes.
2059     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2060       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2061 
2062     // If there are two attempts to define the same mangled name, issue an
2063     // error.
2064     if (IsForDefinition && !Entry->isDeclaration()) {
2065       GlobalDecl OtherGD;
2066       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2067       // to make sure that we issue an error only once.
2068       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2069           (GD.getCanonicalDecl().getDecl() !=
2070            OtherGD.getCanonicalDecl().getDecl()) &&
2071           DiagnosedConflictingDefinitions.insert(GD).second) {
2072         getDiags().Report(D->getLocation(),
2073                           diag::err_duplicate_mangled_name);
2074         getDiags().Report(OtherGD.getDecl()->getLocation(),
2075                           diag::note_previous_definition);
2076       }
2077     }
2078 
2079     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2080         (Entry->getType()->getElementType() == Ty)) {
2081       return Entry;
2082     }
2083 
2084     // Make sure the result is of the correct type.
2085     // (If function is requested for a definition, we always need to create a new
2086     // function, not just return a bitcast.)
2087     if (!IsForDefinition)
2088       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2089   }
2090 
2091   // This function doesn't have a complete type (for example, the return
2092   // type is an incomplete struct). Use a fake type instead, and make
2093   // sure not to try to set attributes.
2094   bool IsIncompleteFunction = false;
2095 
2096   llvm::FunctionType *FTy;
2097   if (isa<llvm::FunctionType>(Ty)) {
2098     FTy = cast<llvm::FunctionType>(Ty);
2099   } else {
2100     FTy = llvm::FunctionType::get(VoidTy, false);
2101     IsIncompleteFunction = true;
2102   }
2103 
2104   llvm::Function *F =
2105       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2106                              Entry ? StringRef() : MangledName, &getModule());
2107 
2108   // If we already created a function with the same mangled name (but different
2109   // type) before, take its name and add it to the list of functions to be
2110   // replaced with F at the end of CodeGen.
2111   //
2112   // This happens if there is a prototype for a function (e.g. "int f()") and
2113   // then a definition of a different type (e.g. "int f(int x)").
2114   if (Entry) {
2115     F->takeName(Entry);
2116 
2117     // This might be an implementation of a function without a prototype, in
2118     // which case, try to do special replacement of calls which match the new
2119     // prototype.  The really key thing here is that we also potentially drop
2120     // arguments from the call site so as to make a direct call, which makes the
2121     // inliner happier and suppresses a number of optimizer warnings (!) about
2122     // dropping arguments.
2123     if (!Entry->use_empty()) {
2124       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2125       Entry->removeDeadConstantUsers();
2126     }
2127 
2128     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2129         F, Entry->getType()->getElementType()->getPointerTo());
2130     addGlobalValReplacement(Entry, BC);
2131   }
2132 
2133   assert(F->getName() == MangledName && "name was uniqued!");
2134   if (D)
2135     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2136                           IsForDefinition);
2137   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2138     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2139     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2140   }
2141 
2142   if (!DontDefer) {
2143     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2144     // each other bottoming out with the base dtor.  Therefore we emit non-base
2145     // dtors on usage, even if there is no dtor definition in the TU.
2146     if (D && isa<CXXDestructorDecl>(D) &&
2147         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2148                                            GD.getDtorType()))
2149       addDeferredDeclToEmit(GD);
2150 
2151     // This is the first use or definition of a mangled name.  If there is a
2152     // deferred decl with this name, remember that we need to emit it at the end
2153     // of the file.
2154     auto DDI = DeferredDecls.find(MangledName);
2155     if (DDI != DeferredDecls.end()) {
2156       // Move the potentially referenced deferred decl to the
2157       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2158       // don't need it anymore).
2159       addDeferredDeclToEmit(DDI->second);
2160       DeferredDecls.erase(DDI);
2161 
2162       // Otherwise, there are cases we have to worry about where we're
2163       // using a declaration for which we must emit a definition but where
2164       // we might not find a top-level definition:
2165       //   - member functions defined inline in their classes
2166       //   - friend functions defined inline in some class
2167       //   - special member functions with implicit definitions
2168       // If we ever change our AST traversal to walk into class methods,
2169       // this will be unnecessary.
2170       //
2171       // We also don't emit a definition for a function if it's going to be an
2172       // entry in a vtable, unless it's already marked as used.
2173     } else if (getLangOpts().CPlusPlus && D) {
2174       // Look for a declaration that's lexically in a record.
2175       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2176            FD = FD->getPreviousDecl()) {
2177         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2178           if (FD->doesThisDeclarationHaveABody()) {
2179             addDeferredDeclToEmit(GD.getWithDecl(FD));
2180             break;
2181           }
2182         }
2183       }
2184     }
2185   }
2186 
2187   // Make sure the result is of the requested type.
2188   if (!IsIncompleteFunction) {
2189     assert(F->getType()->getElementType() == Ty);
2190     return F;
2191   }
2192 
2193   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2194   return llvm::ConstantExpr::getBitCast(F, PTy);
2195 }
2196 
2197 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2198 /// non-null, then this function will use the specified type if it has to
2199 /// create it (this occurs when we see a definition of the function).
2200 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2201                                                  llvm::Type *Ty,
2202                                                  bool ForVTable,
2203                                                  bool DontDefer,
2204                                               ForDefinition_t IsForDefinition) {
2205   // If there was no specific requested type, just convert it now.
2206   if (!Ty) {
2207     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2208     auto CanonTy = Context.getCanonicalType(FD->getType());
2209     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2210   }
2211 
2212   StringRef MangledName = getMangledName(GD);
2213   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2214                                  /*IsThunk=*/false, llvm::AttributeList(),
2215                                  IsForDefinition);
2216 }
2217 
2218 static const FunctionDecl *
2219 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2220   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2221   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2222 
2223   IdentifierInfo &CII = C.Idents.get(Name);
2224   for (const auto &Result : DC->lookup(&CII))
2225     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2226       return FD;
2227 
2228   if (!C.getLangOpts().CPlusPlus)
2229     return nullptr;
2230 
2231   // Demangle the premangled name from getTerminateFn()
2232   IdentifierInfo &CXXII =
2233       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2234           ? C.Idents.get("terminate")
2235           : C.Idents.get(Name);
2236 
2237   for (const auto &N : {"__cxxabiv1", "std"}) {
2238     IdentifierInfo &NS = C.Idents.get(N);
2239     for (const auto &Result : DC->lookup(&NS)) {
2240       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2241       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2242         for (const auto &Result : LSD->lookup(&NS))
2243           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2244             break;
2245 
2246       if (ND)
2247         for (const auto &Result : ND->lookup(&CXXII))
2248           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2249             return FD;
2250     }
2251   }
2252 
2253   return nullptr;
2254 }
2255 
2256 /// CreateRuntimeFunction - Create a new runtime function with the specified
2257 /// type and name.
2258 llvm::Constant *
2259 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2260                                      llvm::AttributeList ExtraAttrs,
2261                                      bool Local) {
2262   llvm::Constant *C =
2263       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2264                               /*DontDefer=*/false, /*IsThunk=*/false,
2265                               ExtraAttrs);
2266 
2267   if (auto *F = dyn_cast<llvm::Function>(C)) {
2268     if (F->empty()) {
2269       F->setCallingConv(getRuntimeCC());
2270 
2271       if (!Local && getTriple().isOSBinFormatCOFF() &&
2272           !getCodeGenOpts().LTOVisibilityPublicStd) {
2273         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2274         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2275           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2276           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2277         }
2278       }
2279     }
2280   }
2281 
2282   return C;
2283 }
2284 
2285 /// CreateBuiltinFunction - Create a new builtin function with the specified
2286 /// type and name.
2287 llvm::Constant *
2288 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2289                                      llvm::AttributeList ExtraAttrs) {
2290   llvm::Constant *C =
2291       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2292                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2293   if (auto *F = dyn_cast<llvm::Function>(C))
2294     if (F->empty())
2295       F->setCallingConv(getBuiltinCC());
2296   return C;
2297 }
2298 
2299 /// isTypeConstant - Determine whether an object of this type can be emitted
2300 /// as a constant.
2301 ///
2302 /// If ExcludeCtor is true, the duration when the object's constructor runs
2303 /// will not be considered. The caller will need to verify that the object is
2304 /// not written to during its construction.
2305 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2306   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2307     return false;
2308 
2309   if (Context.getLangOpts().CPlusPlus) {
2310     if (const CXXRecordDecl *Record
2311           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2312       return ExcludeCtor && !Record->hasMutableFields() &&
2313              Record->hasTrivialDestructor();
2314   }
2315 
2316   return true;
2317 }
2318 
2319 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2320 /// create and return an llvm GlobalVariable with the specified type.  If there
2321 /// is something in the module with the specified name, return it potentially
2322 /// bitcasted to the right type.
2323 ///
2324 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2325 /// to set the attributes on the global when it is first created.
2326 ///
2327 /// If IsForDefinition is true, it is guranteed that an actual global with
2328 /// type Ty will be returned, not conversion of a variable with the same
2329 /// mangled name but some other type.
2330 llvm::Constant *
2331 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2332                                      llvm::PointerType *Ty,
2333                                      const VarDecl *D,
2334                                      ForDefinition_t IsForDefinition) {
2335   // Lookup the entry, lazily creating it if necessary.
2336   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2337   if (Entry) {
2338     if (WeakRefReferences.erase(Entry)) {
2339       if (D && !D->hasAttr<WeakAttr>())
2340         Entry->setLinkage(llvm::Function::ExternalLinkage);
2341     }
2342 
2343     // Handle dropped DLL attributes.
2344     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2345       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2346 
2347     if (Entry->getType() == Ty)
2348       return Entry;
2349 
2350     // If there are two attempts to define the same mangled name, issue an
2351     // error.
2352     if (IsForDefinition && !Entry->isDeclaration()) {
2353       GlobalDecl OtherGD;
2354       const VarDecl *OtherD;
2355 
2356       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2357       // to make sure that we issue an error only once.
2358       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2359           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2360           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2361           OtherD->hasInit() &&
2362           DiagnosedConflictingDefinitions.insert(D).second) {
2363         getDiags().Report(D->getLocation(),
2364                           diag::err_duplicate_mangled_name);
2365         getDiags().Report(OtherGD.getDecl()->getLocation(),
2366                           diag::note_previous_definition);
2367       }
2368     }
2369 
2370     // Make sure the result is of the correct type.
2371     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2372       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2373 
2374     // (If global is requested for a definition, we always need to create a new
2375     // global, not just return a bitcast.)
2376     if (!IsForDefinition)
2377       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2378   }
2379 
2380   auto AddrSpace = GetGlobalVarAddressSpace(D);
2381   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2382 
2383   auto *GV = new llvm::GlobalVariable(
2384       getModule(), Ty->getElementType(), false,
2385       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2386       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2387 
2388   // If we already created a global with the same mangled name (but different
2389   // type) before, take its name and remove it from its parent.
2390   if (Entry) {
2391     GV->takeName(Entry);
2392 
2393     if (!Entry->use_empty()) {
2394       llvm::Constant *NewPtrForOldDecl =
2395           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2396       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2397     }
2398 
2399     Entry->eraseFromParent();
2400   }
2401 
2402   // This is the first use or definition of a mangled name.  If there is a
2403   // deferred decl with this name, remember that we need to emit it at the end
2404   // of the file.
2405   auto DDI = DeferredDecls.find(MangledName);
2406   if (DDI != DeferredDecls.end()) {
2407     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2408     // list, and remove it from DeferredDecls (since we don't need it anymore).
2409     addDeferredDeclToEmit(DDI->second);
2410     DeferredDecls.erase(DDI);
2411   }
2412 
2413   // Handle things which are present even on external declarations.
2414   if (D) {
2415     // FIXME: This code is overly simple and should be merged with other global
2416     // handling.
2417     GV->setConstant(isTypeConstant(D->getType(), false));
2418 
2419     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2420 
2421     setLinkageAndVisibilityForGV(GV, D);
2422 
2423     if (D->getTLSKind()) {
2424       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2425         CXXThreadLocals.push_back(D);
2426       setTLSMode(GV, *D);
2427     }
2428 
2429     // If required by the ABI, treat declarations of static data members with
2430     // inline initializers as definitions.
2431     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2432       EmitGlobalVarDefinition(D);
2433     }
2434 
2435     // Handle XCore specific ABI requirements.
2436     if (getTriple().getArch() == llvm::Triple::xcore &&
2437         D->getLanguageLinkage() == CLanguageLinkage &&
2438         D->getType().isConstant(Context) &&
2439         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2440       GV->setSection(".cp.rodata");
2441   }
2442 
2443   auto ExpectedAS =
2444       D ? D->getType().getAddressSpace()
2445         : static_cast<unsigned>(LangOpts.OpenCL ? LangAS::opencl_global
2446                                                 : LangAS::Default);
2447   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2448          Ty->getPointerAddressSpace());
2449   if (AddrSpace != ExpectedAS)
2450     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2451                                                        ExpectedAS, Ty);
2452 
2453   return GV;
2454 }
2455 
2456 llvm::Constant *
2457 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2458                                ForDefinition_t IsForDefinition) {
2459   const Decl *D = GD.getDecl();
2460   if (isa<CXXConstructorDecl>(D))
2461     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2462                                 getFromCtorType(GD.getCtorType()),
2463                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2464                                 /*DontDefer=*/false, IsForDefinition);
2465   else if (isa<CXXDestructorDecl>(D))
2466     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2467                                 getFromDtorType(GD.getDtorType()),
2468                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2469                                 /*DontDefer=*/false, IsForDefinition);
2470   else if (isa<CXXMethodDecl>(D)) {
2471     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2472         cast<CXXMethodDecl>(D));
2473     auto Ty = getTypes().GetFunctionType(*FInfo);
2474     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2475                              IsForDefinition);
2476   } else if (isa<FunctionDecl>(D)) {
2477     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2478     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2479     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2480                              IsForDefinition);
2481   } else
2482     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2483                               IsForDefinition);
2484 }
2485 
2486 llvm::GlobalVariable *
2487 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2488                                       llvm::Type *Ty,
2489                                       llvm::GlobalValue::LinkageTypes Linkage) {
2490   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2491   llvm::GlobalVariable *OldGV = nullptr;
2492 
2493   if (GV) {
2494     // Check if the variable has the right type.
2495     if (GV->getType()->getElementType() == Ty)
2496       return GV;
2497 
2498     // Because C++ name mangling, the only way we can end up with an already
2499     // existing global with the same name is if it has been declared extern "C".
2500     assert(GV->isDeclaration() && "Declaration has wrong type!");
2501     OldGV = GV;
2502   }
2503 
2504   // Create a new variable.
2505   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2506                                 Linkage, nullptr, Name);
2507 
2508   if (OldGV) {
2509     // Replace occurrences of the old variable if needed.
2510     GV->takeName(OldGV);
2511 
2512     if (!OldGV->use_empty()) {
2513       llvm::Constant *NewPtrForOldDecl =
2514       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2515       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2516     }
2517 
2518     OldGV->eraseFromParent();
2519   }
2520 
2521   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2522       !GV->hasAvailableExternallyLinkage())
2523     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2524 
2525   return GV;
2526 }
2527 
2528 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2529 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2530 /// then it will be created with the specified type instead of whatever the
2531 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2532 /// that an actual global with type Ty will be returned, not conversion of a
2533 /// variable with the same mangled name but some other type.
2534 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2535                                                   llvm::Type *Ty,
2536                                            ForDefinition_t IsForDefinition) {
2537   assert(D->hasGlobalStorage() && "Not a global variable");
2538   QualType ASTTy = D->getType();
2539   if (!Ty)
2540     Ty = getTypes().ConvertTypeForMem(ASTTy);
2541 
2542   llvm::PointerType *PTy =
2543     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2544 
2545   StringRef MangledName = getMangledName(D);
2546   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2547 }
2548 
2549 /// CreateRuntimeVariable - Create a new runtime global variable with the
2550 /// specified type and name.
2551 llvm::Constant *
2552 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2553                                      StringRef Name) {
2554   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2555 }
2556 
2557 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2558   assert(!D->getInit() && "Cannot emit definite definitions here!");
2559 
2560   StringRef MangledName = getMangledName(D);
2561   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2562 
2563   // We already have a definition, not declaration, with the same mangled name.
2564   // Emitting of declaration is not required (and actually overwrites emitted
2565   // definition).
2566   if (GV && !GV->isDeclaration())
2567     return;
2568 
2569   // If we have not seen a reference to this variable yet, place it into the
2570   // deferred declarations table to be emitted if needed later.
2571   if (!MustBeEmitted(D) && !GV) {
2572       DeferredDecls[MangledName] = D;
2573       return;
2574   }
2575 
2576   // The tentative definition is the only definition.
2577   EmitGlobalVarDefinition(D);
2578 }
2579 
2580 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2581   return Context.toCharUnitsFromBits(
2582       getDataLayout().getTypeStoreSizeInBits(Ty));
2583 }
2584 
2585 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2586   unsigned AddrSpace;
2587   if (LangOpts.OpenCL) {
2588     AddrSpace = D ? D->getType().getAddressSpace()
2589                   : static_cast<unsigned>(LangAS::opencl_global);
2590     assert(AddrSpace == LangAS::opencl_global ||
2591            AddrSpace == LangAS::opencl_constant ||
2592            AddrSpace == LangAS::opencl_local ||
2593            AddrSpace >= LangAS::FirstTargetAddressSpace);
2594     return AddrSpace;
2595   }
2596 
2597   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2598     if (D && D->hasAttr<CUDAConstantAttr>())
2599       return LangAS::cuda_constant;
2600     else if (D && D->hasAttr<CUDASharedAttr>())
2601       return LangAS::cuda_shared;
2602     else
2603       return LangAS::cuda_device;
2604   }
2605 
2606   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2607 }
2608 
2609 template<typename SomeDecl>
2610 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2611                                                llvm::GlobalValue *GV) {
2612   if (!getLangOpts().CPlusPlus)
2613     return;
2614 
2615   // Must have 'used' attribute, or else inline assembly can't rely on
2616   // the name existing.
2617   if (!D->template hasAttr<UsedAttr>())
2618     return;
2619 
2620   // Must have internal linkage and an ordinary name.
2621   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2622     return;
2623 
2624   // Must be in an extern "C" context. Entities declared directly within
2625   // a record are not extern "C" even if the record is in such a context.
2626   const SomeDecl *First = D->getFirstDecl();
2627   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2628     return;
2629 
2630   // OK, this is an internal linkage entity inside an extern "C" linkage
2631   // specification. Make a note of that so we can give it the "expected"
2632   // mangled name if nothing else is using that name.
2633   std::pair<StaticExternCMap::iterator, bool> R =
2634       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2635 
2636   // If we have multiple internal linkage entities with the same name
2637   // in extern "C" regions, none of them gets that name.
2638   if (!R.second)
2639     R.first->second = nullptr;
2640 }
2641 
2642 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2643   if (!CGM.supportsCOMDAT())
2644     return false;
2645 
2646   if (D.hasAttr<SelectAnyAttr>())
2647     return true;
2648 
2649   GVALinkage Linkage;
2650   if (auto *VD = dyn_cast<VarDecl>(&D))
2651     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2652   else
2653     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2654 
2655   switch (Linkage) {
2656   case GVA_Internal:
2657   case GVA_AvailableExternally:
2658   case GVA_StrongExternal:
2659     return false;
2660   case GVA_DiscardableODR:
2661   case GVA_StrongODR:
2662     return true;
2663   }
2664   llvm_unreachable("No such linkage");
2665 }
2666 
2667 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2668                                           llvm::GlobalObject &GO) {
2669   if (!shouldBeInCOMDAT(*this, D))
2670     return;
2671   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2672 }
2673 
2674 /// Pass IsTentative as true if you want to create a tentative definition.
2675 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2676                                             bool IsTentative) {
2677   // OpenCL global variables of sampler type are translated to function calls,
2678   // therefore no need to be translated.
2679   QualType ASTTy = D->getType();
2680   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2681     return;
2682 
2683   llvm::Constant *Init = nullptr;
2684   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2685   bool NeedsGlobalCtor = false;
2686   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2687 
2688   const VarDecl *InitDecl;
2689   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2690 
2691   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2692   // as part of their declaration."  Sema has already checked for
2693   // error cases, so we just need to set Init to UndefValue.
2694   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2695       D->hasAttr<CUDASharedAttr>())
2696     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2697   else if (!InitExpr) {
2698     // This is a tentative definition; tentative definitions are
2699     // implicitly initialized with { 0 }.
2700     //
2701     // Note that tentative definitions are only emitted at the end of
2702     // a translation unit, so they should never have incomplete
2703     // type. In addition, EmitTentativeDefinition makes sure that we
2704     // never attempt to emit a tentative definition if a real one
2705     // exists. A use may still exists, however, so we still may need
2706     // to do a RAUW.
2707     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2708     Init = EmitNullConstant(D->getType());
2709   } else {
2710     initializedGlobalDecl = GlobalDecl(D);
2711     Init = EmitConstantInit(*InitDecl);
2712 
2713     if (!Init) {
2714       QualType T = InitExpr->getType();
2715       if (D->getType()->isReferenceType())
2716         T = D->getType();
2717 
2718       if (getLangOpts().CPlusPlus) {
2719         Init = EmitNullConstant(T);
2720         NeedsGlobalCtor = true;
2721       } else {
2722         ErrorUnsupported(D, "static initializer");
2723         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2724       }
2725     } else {
2726       // We don't need an initializer, so remove the entry for the delayed
2727       // initializer position (just in case this entry was delayed) if we
2728       // also don't need to register a destructor.
2729       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2730         DelayedCXXInitPosition.erase(D);
2731     }
2732   }
2733 
2734   llvm::Type* InitType = Init->getType();
2735   llvm::Constant *Entry =
2736       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2737 
2738   // Strip off a bitcast if we got one back.
2739   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2740     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2741            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2742            // All zero index gep.
2743            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2744     Entry = CE->getOperand(0);
2745   }
2746 
2747   // Entry is now either a Function or GlobalVariable.
2748   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2749 
2750   // We have a definition after a declaration with the wrong type.
2751   // We must make a new GlobalVariable* and update everything that used OldGV
2752   // (a declaration or tentative definition) with the new GlobalVariable*
2753   // (which will be a definition).
2754   //
2755   // This happens if there is a prototype for a global (e.g.
2756   // "extern int x[];") and then a definition of a different type (e.g.
2757   // "int x[10];"). This also happens when an initializer has a different type
2758   // from the type of the global (this happens with unions).
2759   if (!GV || GV->getType()->getElementType() != InitType ||
2760       GV->getType()->getAddressSpace() !=
2761           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
2762 
2763     // Move the old entry aside so that we'll create a new one.
2764     Entry->setName(StringRef());
2765 
2766     // Make a new global with the correct type, this is now guaranteed to work.
2767     GV = cast<llvm::GlobalVariable>(
2768         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2769 
2770     // Replace all uses of the old global with the new global
2771     llvm::Constant *NewPtrForOldDecl =
2772         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2773     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2774 
2775     // Erase the old global, since it is no longer used.
2776     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2777   }
2778 
2779   MaybeHandleStaticInExternC(D, GV);
2780 
2781   if (D->hasAttr<AnnotateAttr>())
2782     AddGlobalAnnotations(D, GV);
2783 
2784   // Set the llvm linkage type as appropriate.
2785   llvm::GlobalValue::LinkageTypes Linkage =
2786       getLLVMLinkageVarDefinition(D, GV->isConstant());
2787 
2788   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2789   // the device. [...]"
2790   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2791   // __device__, declares a variable that: [...]
2792   // Is accessible from all the threads within the grid and from the host
2793   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2794   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2795   if (GV && LangOpts.CUDA) {
2796     if (LangOpts.CUDAIsDevice) {
2797       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2798         GV->setExternallyInitialized(true);
2799     } else {
2800       // Host-side shadows of external declarations of device-side
2801       // global variables become internal definitions. These have to
2802       // be internal in order to prevent name conflicts with global
2803       // host variables with the same name in a different TUs.
2804       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2805         Linkage = llvm::GlobalValue::InternalLinkage;
2806 
2807         // Shadow variables and their properties must be registered
2808         // with CUDA runtime.
2809         unsigned Flags = 0;
2810         if (!D->hasDefinition())
2811           Flags |= CGCUDARuntime::ExternDeviceVar;
2812         if (D->hasAttr<CUDAConstantAttr>())
2813           Flags |= CGCUDARuntime::ConstantDeviceVar;
2814         getCUDARuntime().registerDeviceVar(*GV, Flags);
2815       } else if (D->hasAttr<CUDASharedAttr>())
2816         // __shared__ variables are odd. Shadows do get created, but
2817         // they are not registered with the CUDA runtime, so they
2818         // can't really be used to access their device-side
2819         // counterparts. It's not clear yet whether it's nvcc's bug or
2820         // a feature, but we've got to do the same for compatibility.
2821         Linkage = llvm::GlobalValue::InternalLinkage;
2822     }
2823   }
2824   GV->setInitializer(Init);
2825 
2826   // If it is safe to mark the global 'constant', do so now.
2827   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2828                   isTypeConstant(D->getType(), true));
2829 
2830   // If it is in a read-only section, mark it 'constant'.
2831   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2832     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2833     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2834       GV->setConstant(true);
2835   }
2836 
2837   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2838 
2839 
2840   // On Darwin, if the normal linkage of a C++ thread_local variable is
2841   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2842   // copies within a linkage unit; otherwise, the backing variable has
2843   // internal linkage and all accesses should just be calls to the
2844   // Itanium-specified entry point, which has the normal linkage of the
2845   // variable. This is to preserve the ability to change the implementation
2846   // behind the scenes.
2847   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2848       Context.getTargetInfo().getTriple().isOSDarwin() &&
2849       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2850       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2851     Linkage = llvm::GlobalValue::InternalLinkage;
2852 
2853   GV->setLinkage(Linkage);
2854   if (D->hasAttr<DLLImportAttr>())
2855     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2856   else if (D->hasAttr<DLLExportAttr>())
2857     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2858   else
2859     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2860 
2861   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2862     // common vars aren't constant even if declared const.
2863     GV->setConstant(false);
2864     // Tentative definition of global variables may be initialized with
2865     // non-zero null pointers. In this case they should have weak linkage
2866     // since common linkage must have zero initializer and must not have
2867     // explicit section therefore cannot have non-zero initial value.
2868     if (!GV->getInitializer()->isNullValue())
2869       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2870   }
2871 
2872   setNonAliasAttributes(D, GV);
2873 
2874   if (D->getTLSKind() && !GV->isThreadLocal()) {
2875     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2876       CXXThreadLocals.push_back(D);
2877     setTLSMode(GV, *D);
2878   }
2879 
2880   maybeSetTrivialComdat(*D, *GV);
2881 
2882   // Emit the initializer function if necessary.
2883   if (NeedsGlobalCtor || NeedsGlobalDtor)
2884     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2885 
2886   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2887 
2888   // Emit global variable debug information.
2889   if (CGDebugInfo *DI = getModuleDebugInfo())
2890     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2891       DI->EmitGlobalVariable(GV, D);
2892 }
2893 
2894 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2895                                       CodeGenModule &CGM, const VarDecl *D,
2896                                       bool NoCommon) {
2897   // Don't give variables common linkage if -fno-common was specified unless it
2898   // was overridden by a NoCommon attribute.
2899   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2900     return true;
2901 
2902   // C11 6.9.2/2:
2903   //   A declaration of an identifier for an object that has file scope without
2904   //   an initializer, and without a storage-class specifier or with the
2905   //   storage-class specifier static, constitutes a tentative definition.
2906   if (D->getInit() || D->hasExternalStorage())
2907     return true;
2908 
2909   // A variable cannot be both common and exist in a section.
2910   if (D->hasAttr<SectionAttr>())
2911     return true;
2912 
2913   // A variable cannot be both common and exist in a section.
2914   // We dont try to determine which is the right section in the front-end.
2915   // If no specialized section name is applicable, it will resort to default.
2916   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
2917       D->hasAttr<PragmaClangDataSectionAttr>() ||
2918       D->hasAttr<PragmaClangRodataSectionAttr>())
2919     return true;
2920 
2921   // Thread local vars aren't considered common linkage.
2922   if (D->getTLSKind())
2923     return true;
2924 
2925   // Tentative definitions marked with WeakImportAttr are true definitions.
2926   if (D->hasAttr<WeakImportAttr>())
2927     return true;
2928 
2929   // A variable cannot be both common and exist in a comdat.
2930   if (shouldBeInCOMDAT(CGM, *D))
2931     return true;
2932 
2933   // Declarations with a required alignment do not have common linkage in MSVC
2934   // mode.
2935   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2936     if (D->hasAttr<AlignedAttr>())
2937       return true;
2938     QualType VarType = D->getType();
2939     if (Context.isAlignmentRequired(VarType))
2940       return true;
2941 
2942     if (const auto *RT = VarType->getAs<RecordType>()) {
2943       const RecordDecl *RD = RT->getDecl();
2944       for (const FieldDecl *FD : RD->fields()) {
2945         if (FD->isBitField())
2946           continue;
2947         if (FD->hasAttr<AlignedAttr>())
2948           return true;
2949         if (Context.isAlignmentRequired(FD->getType()))
2950           return true;
2951       }
2952     }
2953   }
2954 
2955   return false;
2956 }
2957 
2958 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2959     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2960   if (Linkage == GVA_Internal)
2961     return llvm::Function::InternalLinkage;
2962 
2963   if (D->hasAttr<WeakAttr>()) {
2964     if (IsConstantVariable)
2965       return llvm::GlobalVariable::WeakODRLinkage;
2966     else
2967       return llvm::GlobalVariable::WeakAnyLinkage;
2968   }
2969 
2970   // We are guaranteed to have a strong definition somewhere else,
2971   // so we can use available_externally linkage.
2972   if (Linkage == GVA_AvailableExternally)
2973     return llvm::GlobalValue::AvailableExternallyLinkage;
2974 
2975   // Note that Apple's kernel linker doesn't support symbol
2976   // coalescing, so we need to avoid linkonce and weak linkages there.
2977   // Normally, this means we just map to internal, but for explicit
2978   // instantiations we'll map to external.
2979 
2980   // In C++, the compiler has to emit a definition in every translation unit
2981   // that references the function.  We should use linkonce_odr because
2982   // a) if all references in this translation unit are optimized away, we
2983   // don't need to codegen it.  b) if the function persists, it needs to be
2984   // merged with other definitions. c) C++ has the ODR, so we know the
2985   // definition is dependable.
2986   if (Linkage == GVA_DiscardableODR)
2987     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2988                                             : llvm::Function::InternalLinkage;
2989 
2990   // An explicit instantiation of a template has weak linkage, since
2991   // explicit instantiations can occur in multiple translation units
2992   // and must all be equivalent. However, we are not allowed to
2993   // throw away these explicit instantiations.
2994   //
2995   // We don't currently support CUDA device code spread out across multiple TUs,
2996   // so say that CUDA templates are either external (for kernels) or internal.
2997   // This lets llvm perform aggressive inter-procedural optimizations.
2998   if (Linkage == GVA_StrongODR) {
2999     if (Context.getLangOpts().AppleKext)
3000       return llvm::Function::ExternalLinkage;
3001     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3002       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3003                                           : llvm::Function::InternalLinkage;
3004     return llvm::Function::WeakODRLinkage;
3005   }
3006 
3007   // C++ doesn't have tentative definitions and thus cannot have common
3008   // linkage.
3009   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3010       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3011                                  CodeGenOpts.NoCommon))
3012     return llvm::GlobalVariable::CommonLinkage;
3013 
3014   // selectany symbols are externally visible, so use weak instead of
3015   // linkonce.  MSVC optimizes away references to const selectany globals, so
3016   // all definitions should be the same and ODR linkage should be used.
3017   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3018   if (D->hasAttr<SelectAnyAttr>())
3019     return llvm::GlobalVariable::WeakODRLinkage;
3020 
3021   // Otherwise, we have strong external linkage.
3022   assert(Linkage == GVA_StrongExternal);
3023   return llvm::GlobalVariable::ExternalLinkage;
3024 }
3025 
3026 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3027     const VarDecl *VD, bool IsConstant) {
3028   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3029   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3030 }
3031 
3032 /// Replace the uses of a function that was declared with a non-proto type.
3033 /// We want to silently drop extra arguments from call sites
3034 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3035                                           llvm::Function *newFn) {
3036   // Fast path.
3037   if (old->use_empty()) return;
3038 
3039   llvm::Type *newRetTy = newFn->getReturnType();
3040   SmallVector<llvm::Value*, 4> newArgs;
3041   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3042 
3043   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3044          ui != ue; ) {
3045     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3046     llvm::User *user = use->getUser();
3047 
3048     // Recognize and replace uses of bitcasts.  Most calls to
3049     // unprototyped functions will use bitcasts.
3050     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3051       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3052         replaceUsesOfNonProtoConstant(bitcast, newFn);
3053       continue;
3054     }
3055 
3056     // Recognize calls to the function.
3057     llvm::CallSite callSite(user);
3058     if (!callSite) continue;
3059     if (!callSite.isCallee(&*use)) continue;
3060 
3061     // If the return types don't match exactly, then we can't
3062     // transform this call unless it's dead.
3063     if (callSite->getType() != newRetTy && !callSite->use_empty())
3064       continue;
3065 
3066     // Get the call site's attribute list.
3067     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3068     llvm::AttributeList oldAttrs = callSite.getAttributes();
3069 
3070     // If the function was passed too few arguments, don't transform.
3071     unsigned newNumArgs = newFn->arg_size();
3072     if (callSite.arg_size() < newNumArgs) continue;
3073 
3074     // If extra arguments were passed, we silently drop them.
3075     // If any of the types mismatch, we don't transform.
3076     unsigned argNo = 0;
3077     bool dontTransform = false;
3078     for (llvm::Argument &A : newFn->args()) {
3079       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3080         dontTransform = true;
3081         break;
3082       }
3083 
3084       // Add any parameter attributes.
3085       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3086       argNo++;
3087     }
3088     if (dontTransform)
3089       continue;
3090 
3091     // Okay, we can transform this.  Create the new call instruction and copy
3092     // over the required information.
3093     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3094 
3095     // Copy over any operand bundles.
3096     callSite.getOperandBundlesAsDefs(newBundles);
3097 
3098     llvm::CallSite newCall;
3099     if (callSite.isCall()) {
3100       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3101                                        callSite.getInstruction());
3102     } else {
3103       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3104       newCall = llvm::InvokeInst::Create(newFn,
3105                                          oldInvoke->getNormalDest(),
3106                                          oldInvoke->getUnwindDest(),
3107                                          newArgs, newBundles, "",
3108                                          callSite.getInstruction());
3109     }
3110     newArgs.clear(); // for the next iteration
3111 
3112     if (!newCall->getType()->isVoidTy())
3113       newCall->takeName(callSite.getInstruction());
3114     newCall.setAttributes(llvm::AttributeList::get(
3115         newFn->getContext(), oldAttrs.getFnAttributes(),
3116         oldAttrs.getRetAttributes(), newArgAttrs));
3117     newCall.setCallingConv(callSite.getCallingConv());
3118 
3119     // Finally, remove the old call, replacing any uses with the new one.
3120     if (!callSite->use_empty())
3121       callSite->replaceAllUsesWith(newCall.getInstruction());
3122 
3123     // Copy debug location attached to CI.
3124     if (callSite->getDebugLoc())
3125       newCall->setDebugLoc(callSite->getDebugLoc());
3126 
3127     callSite->eraseFromParent();
3128   }
3129 }
3130 
3131 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3132 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3133 /// existing call uses of the old function in the module, this adjusts them to
3134 /// call the new function directly.
3135 ///
3136 /// This is not just a cleanup: the always_inline pass requires direct calls to
3137 /// functions to be able to inline them.  If there is a bitcast in the way, it
3138 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3139 /// run at -O0.
3140 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3141                                                       llvm::Function *NewFn) {
3142   // If we're redefining a global as a function, don't transform it.
3143   if (!isa<llvm::Function>(Old)) return;
3144 
3145   replaceUsesOfNonProtoConstant(Old, NewFn);
3146 }
3147 
3148 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3149   auto DK = VD->isThisDeclarationADefinition();
3150   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3151     return;
3152 
3153   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3154   // If we have a definition, this might be a deferred decl. If the
3155   // instantiation is explicit, make sure we emit it at the end.
3156   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3157     GetAddrOfGlobalVar(VD);
3158 
3159   EmitTopLevelDecl(VD);
3160 }
3161 
3162 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3163                                                  llvm::GlobalValue *GV) {
3164   const auto *D = cast<FunctionDecl>(GD.getDecl());
3165 
3166   // Compute the function info and LLVM type.
3167   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3168   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3169 
3170   // Get or create the prototype for the function.
3171   if (!GV || (GV->getType()->getElementType() != Ty))
3172     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3173                                                    /*DontDefer=*/true,
3174                                                    ForDefinition));
3175 
3176   // Already emitted.
3177   if (!GV->isDeclaration())
3178     return;
3179 
3180   // We need to set linkage and visibility on the function before
3181   // generating code for it because various parts of IR generation
3182   // want to propagate this information down (e.g. to local static
3183   // declarations).
3184   auto *Fn = cast<llvm::Function>(GV);
3185   setFunctionLinkage(GD, Fn);
3186   setFunctionDLLStorageClass(GD, Fn);
3187 
3188   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3189   setGlobalVisibility(Fn, D);
3190 
3191   MaybeHandleStaticInExternC(D, Fn);
3192 
3193   maybeSetTrivialComdat(*D, *Fn);
3194 
3195   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3196 
3197   setFunctionDefinitionAttributes(D, Fn);
3198   SetLLVMFunctionAttributesForDefinition(D, Fn);
3199 
3200   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3201     AddGlobalCtor(Fn, CA->getPriority());
3202   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3203     AddGlobalDtor(Fn, DA->getPriority());
3204   if (D->hasAttr<AnnotateAttr>())
3205     AddGlobalAnnotations(D, Fn);
3206 }
3207 
3208 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3209   const auto *D = cast<ValueDecl>(GD.getDecl());
3210   const AliasAttr *AA = D->getAttr<AliasAttr>();
3211   assert(AA && "Not an alias?");
3212 
3213   StringRef MangledName = getMangledName(GD);
3214 
3215   if (AA->getAliasee() == MangledName) {
3216     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3217     return;
3218   }
3219 
3220   // If there is a definition in the module, then it wins over the alias.
3221   // This is dubious, but allow it to be safe.  Just ignore the alias.
3222   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3223   if (Entry && !Entry->isDeclaration())
3224     return;
3225 
3226   Aliases.push_back(GD);
3227 
3228   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3229 
3230   // Create a reference to the named value.  This ensures that it is emitted
3231   // if a deferred decl.
3232   llvm::Constant *Aliasee;
3233   if (isa<llvm::FunctionType>(DeclTy))
3234     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3235                                       /*ForVTable=*/false);
3236   else
3237     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3238                                     llvm::PointerType::getUnqual(DeclTy),
3239                                     /*D=*/nullptr);
3240 
3241   // Create the new alias itself, but don't set a name yet.
3242   auto *GA = llvm::GlobalAlias::create(
3243       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3244 
3245   if (Entry) {
3246     if (GA->getAliasee() == Entry) {
3247       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3248       return;
3249     }
3250 
3251     assert(Entry->isDeclaration());
3252 
3253     // If there is a declaration in the module, then we had an extern followed
3254     // by the alias, as in:
3255     //   extern int test6();
3256     //   ...
3257     //   int test6() __attribute__((alias("test7")));
3258     //
3259     // Remove it and replace uses of it with the alias.
3260     GA->takeName(Entry);
3261 
3262     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3263                                                           Entry->getType()));
3264     Entry->eraseFromParent();
3265   } else {
3266     GA->setName(MangledName);
3267   }
3268 
3269   // Set attributes which are particular to an alias; this is a
3270   // specialization of the attributes which may be set on a global
3271   // variable/function.
3272   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3273       D->isWeakImported()) {
3274     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3275   }
3276 
3277   if (const auto *VD = dyn_cast<VarDecl>(D))
3278     if (VD->getTLSKind())
3279       setTLSMode(GA, *VD);
3280 
3281   setAliasAttributes(D, GA);
3282 }
3283 
3284 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3285   const auto *D = cast<ValueDecl>(GD.getDecl());
3286   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3287   assert(IFA && "Not an ifunc?");
3288 
3289   StringRef MangledName = getMangledName(GD);
3290 
3291   if (IFA->getResolver() == MangledName) {
3292     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3293     return;
3294   }
3295 
3296   // Report an error if some definition overrides ifunc.
3297   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3298   if (Entry && !Entry->isDeclaration()) {
3299     GlobalDecl OtherGD;
3300     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3301         DiagnosedConflictingDefinitions.insert(GD).second) {
3302       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3303       Diags.Report(OtherGD.getDecl()->getLocation(),
3304                    diag::note_previous_definition);
3305     }
3306     return;
3307   }
3308 
3309   Aliases.push_back(GD);
3310 
3311   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3312   llvm::Constant *Resolver =
3313       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3314                               /*ForVTable=*/false);
3315   llvm::GlobalIFunc *GIF =
3316       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3317                                 "", Resolver, &getModule());
3318   if (Entry) {
3319     if (GIF->getResolver() == Entry) {
3320       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3321       return;
3322     }
3323     assert(Entry->isDeclaration());
3324 
3325     // If there is a declaration in the module, then we had an extern followed
3326     // by the ifunc, as in:
3327     //   extern int test();
3328     //   ...
3329     //   int test() __attribute__((ifunc("resolver")));
3330     //
3331     // Remove it and replace uses of it with the ifunc.
3332     GIF->takeName(Entry);
3333 
3334     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3335                                                           Entry->getType()));
3336     Entry->eraseFromParent();
3337   } else
3338     GIF->setName(MangledName);
3339 
3340   SetCommonAttributes(D, GIF);
3341 }
3342 
3343 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3344                                             ArrayRef<llvm::Type*> Tys) {
3345   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3346                                          Tys);
3347 }
3348 
3349 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3350 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3351                          const StringLiteral *Literal, bool TargetIsLSB,
3352                          bool &IsUTF16, unsigned &StringLength) {
3353   StringRef String = Literal->getString();
3354   unsigned NumBytes = String.size();
3355 
3356   // Check for simple case.
3357   if (!Literal->containsNonAsciiOrNull()) {
3358     StringLength = NumBytes;
3359     return *Map.insert(std::make_pair(String, nullptr)).first;
3360   }
3361 
3362   // Otherwise, convert the UTF8 literals into a string of shorts.
3363   IsUTF16 = true;
3364 
3365   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3366   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3367   llvm::UTF16 *ToPtr = &ToBuf[0];
3368 
3369   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3370                                  ToPtr + NumBytes, llvm::strictConversion);
3371 
3372   // ConvertUTF8toUTF16 returns the length in ToPtr.
3373   StringLength = ToPtr - &ToBuf[0];
3374 
3375   // Add an explicit null.
3376   *ToPtr = 0;
3377   return *Map.insert(std::make_pair(
3378                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3379                                    (StringLength + 1) * 2),
3380                          nullptr)).first;
3381 }
3382 
3383 ConstantAddress
3384 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3385   unsigned StringLength = 0;
3386   bool isUTF16 = false;
3387   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3388       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3389                                getDataLayout().isLittleEndian(), isUTF16,
3390                                StringLength);
3391 
3392   if (auto *C = Entry.second)
3393     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3394 
3395   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3396   llvm::Constant *Zeros[] = { Zero, Zero };
3397 
3398   // If we don't already have it, get __CFConstantStringClassReference.
3399   if (!CFConstantStringClassRef) {
3400     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3401     Ty = llvm::ArrayType::get(Ty, 0);
3402     llvm::Constant *GV =
3403         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3404 
3405     if (getTriple().isOSBinFormatCOFF()) {
3406       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3407       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3408       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3409       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3410 
3411       const VarDecl *VD = nullptr;
3412       for (const auto &Result : DC->lookup(&II))
3413         if ((VD = dyn_cast<VarDecl>(Result)))
3414           break;
3415 
3416       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3417         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3418         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3419       } else {
3420         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3421         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3422       }
3423     }
3424 
3425     // Decay array -> ptr
3426     CFConstantStringClassRef =
3427         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3428   }
3429 
3430   QualType CFTy = getContext().getCFConstantStringType();
3431 
3432   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3433 
3434   ConstantInitBuilder Builder(*this);
3435   auto Fields = Builder.beginStruct(STy);
3436 
3437   // Class pointer.
3438   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3439 
3440   // Flags.
3441   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3442 
3443   // String pointer.
3444   llvm::Constant *C = nullptr;
3445   if (isUTF16) {
3446     auto Arr = llvm::makeArrayRef(
3447         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3448         Entry.first().size() / 2);
3449     C = llvm::ConstantDataArray::get(VMContext, Arr);
3450   } else {
3451     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3452   }
3453 
3454   // Note: -fwritable-strings doesn't make the backing store strings of
3455   // CFStrings writable. (See <rdar://problem/10657500>)
3456   auto *GV =
3457       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3458                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3459   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3460   // Don't enforce the target's minimum global alignment, since the only use
3461   // of the string is via this class initializer.
3462   CharUnits Align = isUTF16
3463                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3464                         : getContext().getTypeAlignInChars(getContext().CharTy);
3465   GV->setAlignment(Align.getQuantity());
3466 
3467   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3468   // Without it LLVM can merge the string with a non unnamed_addr one during
3469   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3470   if (getTriple().isOSBinFormatMachO())
3471     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3472                            : "__TEXT,__cstring,cstring_literals");
3473 
3474   // String.
3475   llvm::Constant *Str =
3476       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3477 
3478   if (isUTF16)
3479     // Cast the UTF16 string to the correct type.
3480     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3481   Fields.add(Str);
3482 
3483   // String length.
3484   auto Ty = getTypes().ConvertType(getContext().LongTy);
3485   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3486 
3487   CharUnits Alignment = getPointerAlign();
3488 
3489   // The struct.
3490   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3491                                     /*isConstant=*/false,
3492                                     llvm::GlobalVariable::PrivateLinkage);
3493   switch (getTriple().getObjectFormat()) {
3494   case llvm::Triple::UnknownObjectFormat:
3495     llvm_unreachable("unknown file format");
3496   case llvm::Triple::COFF:
3497   case llvm::Triple::ELF:
3498   case llvm::Triple::Wasm:
3499     GV->setSection("cfstring");
3500     break;
3501   case llvm::Triple::MachO:
3502     GV->setSection("__DATA,__cfstring");
3503     break;
3504   }
3505   Entry.second = GV;
3506 
3507   return ConstantAddress(GV, Alignment);
3508 }
3509 
3510 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3511   if (ObjCFastEnumerationStateType.isNull()) {
3512     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3513     D->startDefinition();
3514 
3515     QualType FieldTypes[] = {
3516       Context.UnsignedLongTy,
3517       Context.getPointerType(Context.getObjCIdType()),
3518       Context.getPointerType(Context.UnsignedLongTy),
3519       Context.getConstantArrayType(Context.UnsignedLongTy,
3520                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3521     };
3522 
3523     for (size_t i = 0; i < 4; ++i) {
3524       FieldDecl *Field = FieldDecl::Create(Context,
3525                                            D,
3526                                            SourceLocation(),
3527                                            SourceLocation(), nullptr,
3528                                            FieldTypes[i], /*TInfo=*/nullptr,
3529                                            /*BitWidth=*/nullptr,
3530                                            /*Mutable=*/false,
3531                                            ICIS_NoInit);
3532       Field->setAccess(AS_public);
3533       D->addDecl(Field);
3534     }
3535 
3536     D->completeDefinition();
3537     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3538   }
3539 
3540   return ObjCFastEnumerationStateType;
3541 }
3542 
3543 llvm::Constant *
3544 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3545   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3546 
3547   // Don't emit it as the address of the string, emit the string data itself
3548   // as an inline array.
3549   if (E->getCharByteWidth() == 1) {
3550     SmallString<64> Str(E->getString());
3551 
3552     // Resize the string to the right size, which is indicated by its type.
3553     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3554     Str.resize(CAT->getSize().getZExtValue());
3555     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3556   }
3557 
3558   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3559   llvm::Type *ElemTy = AType->getElementType();
3560   unsigned NumElements = AType->getNumElements();
3561 
3562   // Wide strings have either 2-byte or 4-byte elements.
3563   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3564     SmallVector<uint16_t, 32> Elements;
3565     Elements.reserve(NumElements);
3566 
3567     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3568       Elements.push_back(E->getCodeUnit(i));
3569     Elements.resize(NumElements);
3570     return llvm::ConstantDataArray::get(VMContext, Elements);
3571   }
3572 
3573   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3574   SmallVector<uint32_t, 32> Elements;
3575   Elements.reserve(NumElements);
3576 
3577   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3578     Elements.push_back(E->getCodeUnit(i));
3579   Elements.resize(NumElements);
3580   return llvm::ConstantDataArray::get(VMContext, Elements);
3581 }
3582 
3583 static llvm::GlobalVariable *
3584 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3585                       CodeGenModule &CGM, StringRef GlobalName,
3586                       CharUnits Alignment) {
3587   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3588   unsigned AddrSpace = 0;
3589   if (CGM.getLangOpts().OpenCL)
3590     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3591 
3592   llvm::Module &M = CGM.getModule();
3593   // Create a global variable for this string
3594   auto *GV = new llvm::GlobalVariable(
3595       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3596       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3597   GV->setAlignment(Alignment.getQuantity());
3598   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3599   if (GV->isWeakForLinker()) {
3600     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3601     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3602   }
3603 
3604   return GV;
3605 }
3606 
3607 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3608 /// constant array for the given string literal.
3609 ConstantAddress
3610 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3611                                                   StringRef Name) {
3612   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3613 
3614   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3615   llvm::GlobalVariable **Entry = nullptr;
3616   if (!LangOpts.WritableStrings) {
3617     Entry = &ConstantStringMap[C];
3618     if (auto GV = *Entry) {
3619       if (Alignment.getQuantity() > GV->getAlignment())
3620         GV->setAlignment(Alignment.getQuantity());
3621       return ConstantAddress(GV, Alignment);
3622     }
3623   }
3624 
3625   SmallString<256> MangledNameBuffer;
3626   StringRef GlobalVariableName;
3627   llvm::GlobalValue::LinkageTypes LT;
3628 
3629   // Mangle the string literal if the ABI allows for it.  However, we cannot
3630   // do this if  we are compiling with ASan or -fwritable-strings because they
3631   // rely on strings having normal linkage.
3632   if (!LangOpts.WritableStrings &&
3633       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3634       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3635     llvm::raw_svector_ostream Out(MangledNameBuffer);
3636     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3637 
3638     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3639     GlobalVariableName = MangledNameBuffer;
3640   } else {
3641     LT = llvm::GlobalValue::PrivateLinkage;
3642     GlobalVariableName = Name;
3643   }
3644 
3645   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3646   if (Entry)
3647     *Entry = GV;
3648 
3649   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3650                                   QualType());
3651   return ConstantAddress(GV, Alignment);
3652 }
3653 
3654 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3655 /// array for the given ObjCEncodeExpr node.
3656 ConstantAddress
3657 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3658   std::string Str;
3659   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3660 
3661   return GetAddrOfConstantCString(Str);
3662 }
3663 
3664 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3665 /// the literal and a terminating '\0' character.
3666 /// The result has pointer to array type.
3667 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3668     const std::string &Str, const char *GlobalName) {
3669   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3670   CharUnits Alignment =
3671     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3672 
3673   llvm::Constant *C =
3674       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3675 
3676   // Don't share any string literals if strings aren't constant.
3677   llvm::GlobalVariable **Entry = nullptr;
3678   if (!LangOpts.WritableStrings) {
3679     Entry = &ConstantStringMap[C];
3680     if (auto GV = *Entry) {
3681       if (Alignment.getQuantity() > GV->getAlignment())
3682         GV->setAlignment(Alignment.getQuantity());
3683       return ConstantAddress(GV, Alignment);
3684     }
3685   }
3686 
3687   // Get the default prefix if a name wasn't specified.
3688   if (!GlobalName)
3689     GlobalName = ".str";
3690   // Create a global variable for this.
3691   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3692                                   GlobalName, Alignment);
3693   if (Entry)
3694     *Entry = GV;
3695   return ConstantAddress(GV, Alignment);
3696 }
3697 
3698 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3699     const MaterializeTemporaryExpr *E, const Expr *Init) {
3700   assert((E->getStorageDuration() == SD_Static ||
3701           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3702   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3703 
3704   // If we're not materializing a subobject of the temporary, keep the
3705   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3706   QualType MaterializedType = Init->getType();
3707   if (Init == E->GetTemporaryExpr())
3708     MaterializedType = E->getType();
3709 
3710   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3711 
3712   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3713     return ConstantAddress(Slot, Align);
3714 
3715   // FIXME: If an externally-visible declaration extends multiple temporaries,
3716   // we need to give each temporary the same name in every translation unit (and
3717   // we also need to make the temporaries externally-visible).
3718   SmallString<256> Name;
3719   llvm::raw_svector_ostream Out(Name);
3720   getCXXABI().getMangleContext().mangleReferenceTemporary(
3721       VD, E->getManglingNumber(), Out);
3722 
3723   APValue *Value = nullptr;
3724   if (E->getStorageDuration() == SD_Static) {
3725     // We might have a cached constant initializer for this temporary. Note
3726     // that this might have a different value from the value computed by
3727     // evaluating the initializer if the surrounding constant expression
3728     // modifies the temporary.
3729     Value = getContext().getMaterializedTemporaryValue(E, false);
3730     if (Value && Value->isUninit())
3731       Value = nullptr;
3732   }
3733 
3734   // Try evaluating it now, it might have a constant initializer.
3735   Expr::EvalResult EvalResult;
3736   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3737       !EvalResult.hasSideEffects())
3738     Value = &EvalResult.Val;
3739 
3740   llvm::Constant *InitialValue = nullptr;
3741   bool Constant = false;
3742   llvm::Type *Type;
3743   if (Value) {
3744     // The temporary has a constant initializer, use it.
3745     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3746     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3747     Type = InitialValue->getType();
3748   } else {
3749     // No initializer, the initialization will be provided when we
3750     // initialize the declaration which performed lifetime extension.
3751     Type = getTypes().ConvertTypeForMem(MaterializedType);
3752   }
3753 
3754   // Create a global variable for this lifetime-extended temporary.
3755   llvm::GlobalValue::LinkageTypes Linkage =
3756       getLLVMLinkageVarDefinition(VD, Constant);
3757   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3758     const VarDecl *InitVD;
3759     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3760         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3761       // Temporaries defined inside a class get linkonce_odr linkage because the
3762       // class can be defined in multipe translation units.
3763       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3764     } else {
3765       // There is no need for this temporary to have external linkage if the
3766       // VarDecl has external linkage.
3767       Linkage = llvm::GlobalVariable::InternalLinkage;
3768     }
3769   }
3770   unsigned AddrSpace =
3771       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
3772   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3773   auto *GV = new llvm::GlobalVariable(
3774       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3775       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
3776   setGlobalVisibility(GV, VD);
3777   GV->setAlignment(Align.getQuantity());
3778   if (supportsCOMDAT() && GV->isWeakForLinker())
3779     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3780   if (VD->getTLSKind())
3781     setTLSMode(GV, *VD);
3782   llvm::Constant *CV = GV;
3783   if (AddrSpace != LangAS::Default)
3784     CV = getTargetCodeGenInfo().performAddrSpaceCast(
3785         *this, GV, AddrSpace, LangAS::Default,
3786         Type->getPointerTo(
3787             getContext().getTargetAddressSpace(LangAS::Default)));
3788   MaterializedGlobalTemporaryMap[E] = CV;
3789   return ConstantAddress(CV, Align);
3790 }
3791 
3792 /// EmitObjCPropertyImplementations - Emit information for synthesized
3793 /// properties for an implementation.
3794 void CodeGenModule::EmitObjCPropertyImplementations(const
3795                                                     ObjCImplementationDecl *D) {
3796   for (const auto *PID : D->property_impls()) {
3797     // Dynamic is just for type-checking.
3798     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3799       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3800 
3801       // Determine which methods need to be implemented, some may have
3802       // been overridden. Note that ::isPropertyAccessor is not the method
3803       // we want, that just indicates if the decl came from a
3804       // property. What we want to know is if the method is defined in
3805       // this implementation.
3806       if (!D->getInstanceMethod(PD->getGetterName()))
3807         CodeGenFunction(*this).GenerateObjCGetter(
3808                                  const_cast<ObjCImplementationDecl *>(D), PID);
3809       if (!PD->isReadOnly() &&
3810           !D->getInstanceMethod(PD->getSetterName()))
3811         CodeGenFunction(*this).GenerateObjCSetter(
3812                                  const_cast<ObjCImplementationDecl *>(D), PID);
3813     }
3814   }
3815 }
3816 
3817 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3818   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3819   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3820        ivar; ivar = ivar->getNextIvar())
3821     if (ivar->getType().isDestructedType())
3822       return true;
3823 
3824   return false;
3825 }
3826 
3827 static bool AllTrivialInitializers(CodeGenModule &CGM,
3828                                    ObjCImplementationDecl *D) {
3829   CodeGenFunction CGF(CGM);
3830   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3831        E = D->init_end(); B != E; ++B) {
3832     CXXCtorInitializer *CtorInitExp = *B;
3833     Expr *Init = CtorInitExp->getInit();
3834     if (!CGF.isTrivialInitializer(Init))
3835       return false;
3836   }
3837   return true;
3838 }
3839 
3840 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3841 /// for an implementation.
3842 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3843   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3844   if (needsDestructMethod(D)) {
3845     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3846     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3847     ObjCMethodDecl *DTORMethod =
3848       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3849                              cxxSelector, getContext().VoidTy, nullptr, D,
3850                              /*isInstance=*/true, /*isVariadic=*/false,
3851                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3852                              /*isDefined=*/false, ObjCMethodDecl::Required);
3853     D->addInstanceMethod(DTORMethod);
3854     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3855     D->setHasDestructors(true);
3856   }
3857 
3858   // If the implementation doesn't have any ivar initializers, we don't need
3859   // a .cxx_construct.
3860   if (D->getNumIvarInitializers() == 0 ||
3861       AllTrivialInitializers(*this, D))
3862     return;
3863 
3864   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3865   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3866   // The constructor returns 'self'.
3867   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3868                                                 D->getLocation(),
3869                                                 D->getLocation(),
3870                                                 cxxSelector,
3871                                                 getContext().getObjCIdType(),
3872                                                 nullptr, D, /*isInstance=*/true,
3873                                                 /*isVariadic=*/false,
3874                                                 /*isPropertyAccessor=*/true,
3875                                                 /*isImplicitlyDeclared=*/true,
3876                                                 /*isDefined=*/false,
3877                                                 ObjCMethodDecl::Required);
3878   D->addInstanceMethod(CTORMethod);
3879   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3880   D->setHasNonZeroConstructors(true);
3881 }
3882 
3883 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3884 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3885   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3886       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3887     ErrorUnsupported(LSD, "linkage spec");
3888     return;
3889   }
3890 
3891   EmitDeclContext(LSD);
3892 }
3893 
3894 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3895   for (auto *I : DC->decls()) {
3896     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3897     // are themselves considered "top-level", so EmitTopLevelDecl on an
3898     // ObjCImplDecl does not recursively visit them. We need to do that in
3899     // case they're nested inside another construct (LinkageSpecDecl /
3900     // ExportDecl) that does stop them from being considered "top-level".
3901     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3902       for (auto *M : OID->methods())
3903         EmitTopLevelDecl(M);
3904     }
3905 
3906     EmitTopLevelDecl(I);
3907   }
3908 }
3909 
3910 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3911 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3912   // Ignore dependent declarations.
3913   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3914     return;
3915 
3916   switch (D->getKind()) {
3917   case Decl::CXXConversion:
3918   case Decl::CXXMethod:
3919   case Decl::Function:
3920     // Skip function templates
3921     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3922         cast<FunctionDecl>(D)->isLateTemplateParsed())
3923       return;
3924 
3925     EmitGlobal(cast<FunctionDecl>(D));
3926     // Always provide some coverage mapping
3927     // even for the functions that aren't emitted.
3928     AddDeferredUnusedCoverageMapping(D);
3929     break;
3930 
3931   case Decl::CXXDeductionGuide:
3932     // Function-like, but does not result in code emission.
3933     break;
3934 
3935   case Decl::Var:
3936   case Decl::Decomposition:
3937     // Skip variable templates
3938     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3939       return;
3940     LLVM_FALLTHROUGH;
3941   case Decl::VarTemplateSpecialization:
3942     EmitGlobal(cast<VarDecl>(D));
3943     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3944       for (auto *B : DD->bindings())
3945         if (auto *HD = B->getHoldingVar())
3946           EmitGlobal(HD);
3947     break;
3948 
3949   // Indirect fields from global anonymous structs and unions can be
3950   // ignored; only the actual variable requires IR gen support.
3951   case Decl::IndirectField:
3952     break;
3953 
3954   // C++ Decls
3955   case Decl::Namespace:
3956     EmitDeclContext(cast<NamespaceDecl>(D));
3957     break;
3958   case Decl::CXXRecord:
3959     if (DebugInfo) {
3960       if (auto *ES = D->getASTContext().getExternalSource())
3961         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
3962           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
3963     }
3964     // Emit any static data members, they may be definitions.
3965     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3966       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3967         EmitTopLevelDecl(I);
3968     break;
3969     // No code generation needed.
3970   case Decl::UsingShadow:
3971   case Decl::ClassTemplate:
3972   case Decl::VarTemplate:
3973   case Decl::VarTemplatePartialSpecialization:
3974   case Decl::FunctionTemplate:
3975   case Decl::TypeAliasTemplate:
3976   case Decl::Block:
3977   case Decl::Empty:
3978     break;
3979   case Decl::Using:          // using X; [C++]
3980     if (CGDebugInfo *DI = getModuleDebugInfo())
3981         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3982     return;
3983   case Decl::NamespaceAlias:
3984     if (CGDebugInfo *DI = getModuleDebugInfo())
3985         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3986     return;
3987   case Decl::UsingDirective: // using namespace X; [C++]
3988     if (CGDebugInfo *DI = getModuleDebugInfo())
3989       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3990     return;
3991   case Decl::CXXConstructor:
3992     // Skip function templates
3993     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3994         cast<FunctionDecl>(D)->isLateTemplateParsed())
3995       return;
3996 
3997     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3998     break;
3999   case Decl::CXXDestructor:
4000     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
4001       return;
4002     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4003     break;
4004 
4005   case Decl::StaticAssert:
4006     // Nothing to do.
4007     break;
4008 
4009   // Objective-C Decls
4010 
4011   // Forward declarations, no (immediate) code generation.
4012   case Decl::ObjCInterface:
4013   case Decl::ObjCCategory:
4014     break;
4015 
4016   case Decl::ObjCProtocol: {
4017     auto *Proto = cast<ObjCProtocolDecl>(D);
4018     if (Proto->isThisDeclarationADefinition())
4019       ObjCRuntime->GenerateProtocol(Proto);
4020     break;
4021   }
4022 
4023   case Decl::ObjCCategoryImpl:
4024     // Categories have properties but don't support synthesize so we
4025     // can ignore them here.
4026     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4027     break;
4028 
4029   case Decl::ObjCImplementation: {
4030     auto *OMD = cast<ObjCImplementationDecl>(D);
4031     EmitObjCPropertyImplementations(OMD);
4032     EmitObjCIvarInitializations(OMD);
4033     ObjCRuntime->GenerateClass(OMD);
4034     // Emit global variable debug information.
4035     if (CGDebugInfo *DI = getModuleDebugInfo())
4036       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4037         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4038             OMD->getClassInterface()), OMD->getLocation());
4039     break;
4040   }
4041   case Decl::ObjCMethod: {
4042     auto *OMD = cast<ObjCMethodDecl>(D);
4043     // If this is not a prototype, emit the body.
4044     if (OMD->getBody())
4045       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4046     break;
4047   }
4048   case Decl::ObjCCompatibleAlias:
4049     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4050     break;
4051 
4052   case Decl::PragmaComment: {
4053     const auto *PCD = cast<PragmaCommentDecl>(D);
4054     switch (PCD->getCommentKind()) {
4055     case PCK_Unknown:
4056       llvm_unreachable("unexpected pragma comment kind");
4057     case PCK_Linker:
4058       AppendLinkerOptions(PCD->getArg());
4059       break;
4060     case PCK_Lib:
4061       AddDependentLib(PCD->getArg());
4062       break;
4063     case PCK_Compiler:
4064     case PCK_ExeStr:
4065     case PCK_User:
4066       break; // We ignore all of these.
4067     }
4068     break;
4069   }
4070 
4071   case Decl::PragmaDetectMismatch: {
4072     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4073     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4074     break;
4075   }
4076 
4077   case Decl::LinkageSpec:
4078     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4079     break;
4080 
4081   case Decl::FileScopeAsm: {
4082     // File-scope asm is ignored during device-side CUDA compilation.
4083     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4084       break;
4085     // File-scope asm is ignored during device-side OpenMP compilation.
4086     if (LangOpts.OpenMPIsDevice)
4087       break;
4088     auto *AD = cast<FileScopeAsmDecl>(D);
4089     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4090     break;
4091   }
4092 
4093   case Decl::Import: {
4094     auto *Import = cast<ImportDecl>(D);
4095 
4096     // If we've already imported this module, we're done.
4097     if (!ImportedModules.insert(Import->getImportedModule()))
4098       break;
4099 
4100     // Emit debug information for direct imports.
4101     if (!Import->getImportedOwningModule()) {
4102       if (CGDebugInfo *DI = getModuleDebugInfo())
4103         DI->EmitImportDecl(*Import);
4104     }
4105 
4106     // Find all of the submodules and emit the module initializers.
4107     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4108     SmallVector<clang::Module *, 16> Stack;
4109     Visited.insert(Import->getImportedModule());
4110     Stack.push_back(Import->getImportedModule());
4111 
4112     while (!Stack.empty()) {
4113       clang::Module *Mod = Stack.pop_back_val();
4114       if (!EmittedModuleInitializers.insert(Mod).second)
4115         continue;
4116 
4117       for (auto *D : Context.getModuleInitializers(Mod))
4118         EmitTopLevelDecl(D);
4119 
4120       // Visit the submodules of this module.
4121       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4122                                              SubEnd = Mod->submodule_end();
4123            Sub != SubEnd; ++Sub) {
4124         // Skip explicit children; they need to be explicitly imported to emit
4125         // the initializers.
4126         if ((*Sub)->IsExplicit)
4127           continue;
4128 
4129         if (Visited.insert(*Sub).second)
4130           Stack.push_back(*Sub);
4131       }
4132     }
4133     break;
4134   }
4135 
4136   case Decl::Export:
4137     EmitDeclContext(cast<ExportDecl>(D));
4138     break;
4139 
4140   case Decl::OMPThreadPrivate:
4141     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4142     break;
4143 
4144   case Decl::ClassTemplateSpecialization: {
4145     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4146     if (DebugInfo &&
4147         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4148         Spec->hasDefinition())
4149       DebugInfo->completeTemplateDefinition(*Spec);
4150     break;
4151   }
4152 
4153   case Decl::OMPDeclareReduction:
4154     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4155     break;
4156 
4157   default:
4158     // Make sure we handled everything we should, every other kind is a
4159     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4160     // function. Need to recode Decl::Kind to do that easily.
4161     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4162     break;
4163   }
4164 }
4165 
4166 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4167   // Do we need to generate coverage mapping?
4168   if (!CodeGenOpts.CoverageMapping)
4169     return;
4170   switch (D->getKind()) {
4171   case Decl::CXXConversion:
4172   case Decl::CXXMethod:
4173   case Decl::Function:
4174   case Decl::ObjCMethod:
4175   case Decl::CXXConstructor:
4176   case Decl::CXXDestructor: {
4177     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4178       return;
4179     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4180     if (I == DeferredEmptyCoverageMappingDecls.end())
4181       DeferredEmptyCoverageMappingDecls[D] = true;
4182     break;
4183   }
4184   default:
4185     break;
4186   };
4187 }
4188 
4189 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4190   // Do we need to generate coverage mapping?
4191   if (!CodeGenOpts.CoverageMapping)
4192     return;
4193   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4194     if (Fn->isTemplateInstantiation())
4195       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4196   }
4197   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4198   if (I == DeferredEmptyCoverageMappingDecls.end())
4199     DeferredEmptyCoverageMappingDecls[D] = false;
4200   else
4201     I->second = false;
4202 }
4203 
4204 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4205   std::vector<const Decl *> DeferredDecls;
4206   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4207     if (!I.second)
4208       continue;
4209     DeferredDecls.push_back(I.first);
4210   }
4211   // Sort the declarations by their location to make sure that the tests get a
4212   // predictable order for the coverage mapping for the unused declarations.
4213   if (CodeGenOpts.DumpCoverageMapping)
4214     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4215               [] (const Decl *LHS, const Decl *RHS) {
4216       return LHS->getLocStart() < RHS->getLocStart();
4217     });
4218   for (const auto *D : DeferredDecls) {
4219     switch (D->getKind()) {
4220     case Decl::CXXConversion:
4221     case Decl::CXXMethod:
4222     case Decl::Function:
4223     case Decl::ObjCMethod: {
4224       CodeGenPGO PGO(*this);
4225       GlobalDecl GD(cast<FunctionDecl>(D));
4226       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4227                                   getFunctionLinkage(GD));
4228       break;
4229     }
4230     case Decl::CXXConstructor: {
4231       CodeGenPGO PGO(*this);
4232       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4233       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4234                                   getFunctionLinkage(GD));
4235       break;
4236     }
4237     case Decl::CXXDestructor: {
4238       CodeGenPGO PGO(*this);
4239       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4240       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4241                                   getFunctionLinkage(GD));
4242       break;
4243     }
4244     default:
4245       break;
4246     };
4247   }
4248 }
4249 
4250 /// Turns the given pointer into a constant.
4251 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4252                                           const void *Ptr) {
4253   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4254   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4255   return llvm::ConstantInt::get(i64, PtrInt);
4256 }
4257 
4258 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4259                                    llvm::NamedMDNode *&GlobalMetadata,
4260                                    GlobalDecl D,
4261                                    llvm::GlobalValue *Addr) {
4262   if (!GlobalMetadata)
4263     GlobalMetadata =
4264       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4265 
4266   // TODO: should we report variant information for ctors/dtors?
4267   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4268                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4269                                CGM.getLLVMContext(), D.getDecl()))};
4270   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4271 }
4272 
4273 /// For each function which is declared within an extern "C" region and marked
4274 /// as 'used', but has internal linkage, create an alias from the unmangled
4275 /// name to the mangled name if possible. People expect to be able to refer
4276 /// to such functions with an unmangled name from inline assembly within the
4277 /// same translation unit.
4278 void CodeGenModule::EmitStaticExternCAliases() {
4279   // Don't do anything if we're generating CUDA device code -- the NVPTX
4280   // assembly target doesn't support aliases.
4281   if (Context.getTargetInfo().getTriple().isNVPTX())
4282     return;
4283   for (auto &I : StaticExternCValues) {
4284     IdentifierInfo *Name = I.first;
4285     llvm::GlobalValue *Val = I.second;
4286     if (Val && !getModule().getNamedValue(Name->getName()))
4287       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4288   }
4289 }
4290 
4291 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4292                                              GlobalDecl &Result) const {
4293   auto Res = Manglings.find(MangledName);
4294   if (Res == Manglings.end())
4295     return false;
4296   Result = Res->getValue();
4297   return true;
4298 }
4299 
4300 /// Emits metadata nodes associating all the global values in the
4301 /// current module with the Decls they came from.  This is useful for
4302 /// projects using IR gen as a subroutine.
4303 ///
4304 /// Since there's currently no way to associate an MDNode directly
4305 /// with an llvm::GlobalValue, we create a global named metadata
4306 /// with the name 'clang.global.decl.ptrs'.
4307 void CodeGenModule::EmitDeclMetadata() {
4308   llvm::NamedMDNode *GlobalMetadata = nullptr;
4309 
4310   for (auto &I : MangledDeclNames) {
4311     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4312     // Some mangled names don't necessarily have an associated GlobalValue
4313     // in this module, e.g. if we mangled it for DebugInfo.
4314     if (Addr)
4315       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4316   }
4317 }
4318 
4319 /// Emits metadata nodes for all the local variables in the current
4320 /// function.
4321 void CodeGenFunction::EmitDeclMetadata() {
4322   if (LocalDeclMap.empty()) return;
4323 
4324   llvm::LLVMContext &Context = getLLVMContext();
4325 
4326   // Find the unique metadata ID for this name.
4327   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4328 
4329   llvm::NamedMDNode *GlobalMetadata = nullptr;
4330 
4331   for (auto &I : LocalDeclMap) {
4332     const Decl *D = I.first;
4333     llvm::Value *Addr = I.second.getPointer();
4334     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4335       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4336       Alloca->setMetadata(
4337           DeclPtrKind, llvm::MDNode::get(
4338                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4339     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4340       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4341       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4342     }
4343   }
4344 }
4345 
4346 void CodeGenModule::EmitVersionIdentMetadata() {
4347   llvm::NamedMDNode *IdentMetadata =
4348     TheModule.getOrInsertNamedMetadata("llvm.ident");
4349   std::string Version = getClangFullVersion();
4350   llvm::LLVMContext &Ctx = TheModule.getContext();
4351 
4352   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4353   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4354 }
4355 
4356 void CodeGenModule::EmitTargetMetadata() {
4357   // Warning, new MangledDeclNames may be appended within this loop.
4358   // We rely on MapVector insertions adding new elements to the end
4359   // of the container.
4360   // FIXME: Move this loop into the one target that needs it, and only
4361   // loop over those declarations for which we couldn't emit the target
4362   // metadata when we emitted the declaration.
4363   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4364     auto Val = *(MangledDeclNames.begin() + I);
4365     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4366     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4367     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4368   }
4369 }
4370 
4371 void CodeGenModule::EmitCoverageFile() {
4372   if (getCodeGenOpts().CoverageDataFile.empty() &&
4373       getCodeGenOpts().CoverageNotesFile.empty())
4374     return;
4375 
4376   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4377   if (!CUNode)
4378     return;
4379 
4380   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4381   llvm::LLVMContext &Ctx = TheModule.getContext();
4382   auto *CoverageDataFile =
4383       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4384   auto *CoverageNotesFile =
4385       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4386   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4387     llvm::MDNode *CU = CUNode->getOperand(i);
4388     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4389     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4390   }
4391 }
4392 
4393 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4394   // Sema has checked that all uuid strings are of the form
4395   // "12345678-1234-1234-1234-1234567890ab".
4396   assert(Uuid.size() == 36);
4397   for (unsigned i = 0; i < 36; ++i) {
4398     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4399     else                                         assert(isHexDigit(Uuid[i]));
4400   }
4401 
4402   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4403   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4404 
4405   llvm::Constant *Field3[8];
4406   for (unsigned Idx = 0; Idx < 8; ++Idx)
4407     Field3[Idx] = llvm::ConstantInt::get(
4408         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4409 
4410   llvm::Constant *Fields[4] = {
4411     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4412     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4413     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4414     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4415   };
4416 
4417   return llvm::ConstantStruct::getAnon(Fields);
4418 }
4419 
4420 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4421                                                        bool ForEH) {
4422   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4423   // FIXME: should we even be calling this method if RTTI is disabled
4424   // and it's not for EH?
4425   if (!ForEH && !getLangOpts().RTTI)
4426     return llvm::Constant::getNullValue(Int8PtrTy);
4427 
4428   if (ForEH && Ty->isObjCObjectPointerType() &&
4429       LangOpts.ObjCRuntime.isGNUFamily())
4430     return ObjCRuntime->GetEHType(Ty);
4431 
4432   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4433 }
4434 
4435 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4436   for (auto RefExpr : D->varlists()) {
4437     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4438     bool PerformInit =
4439         VD->getAnyInitializer() &&
4440         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4441                                                         /*ForRef=*/false);
4442 
4443     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4444     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4445             VD, Addr, RefExpr->getLocStart(), PerformInit))
4446       CXXGlobalInits.push_back(InitFunction);
4447   }
4448 }
4449 
4450 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4451   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4452   if (InternalId)
4453     return InternalId;
4454 
4455   if (isExternallyVisible(T->getLinkage())) {
4456     std::string OutName;
4457     llvm::raw_string_ostream Out(OutName);
4458     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4459 
4460     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4461   } else {
4462     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4463                                            llvm::ArrayRef<llvm::Metadata *>());
4464   }
4465 
4466   return InternalId;
4467 }
4468 
4469 /// Returns whether this module needs the "all-vtables" type identifier.
4470 bool CodeGenModule::NeedAllVtablesTypeId() const {
4471   // Returns true if at least one of vtable-based CFI checkers is enabled and
4472   // is not in the trapping mode.
4473   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4474            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4475           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4476            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4477           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4478            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4479           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4480            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4481 }
4482 
4483 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4484                                           CharUnits Offset,
4485                                           const CXXRecordDecl *RD) {
4486   llvm::Metadata *MD =
4487       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4488   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4489 
4490   if (CodeGenOpts.SanitizeCfiCrossDso)
4491     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4492       VTable->addTypeMetadata(Offset.getQuantity(),
4493                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4494 
4495   if (NeedAllVtablesTypeId()) {
4496     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4497     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4498   }
4499 }
4500 
4501 // Fills in the supplied string map with the set of target features for the
4502 // passed in function.
4503 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4504                                           const FunctionDecl *FD) {
4505   StringRef TargetCPU = Target.getTargetOpts().CPU;
4506   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4507     // If we have a TargetAttr build up the feature map based on that.
4508     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4509 
4510     // Make a copy of the features as passed on the command line into the
4511     // beginning of the additional features from the function to override.
4512     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4513                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4514                             Target.getTargetOpts().FeaturesAsWritten.end());
4515 
4516     if (ParsedAttr.Architecture != "")
4517       TargetCPU = ParsedAttr.Architecture ;
4518 
4519     // Now populate the feature map, first with the TargetCPU which is either
4520     // the default or a new one from the target attribute string. Then we'll use
4521     // the passed in features (FeaturesAsWritten) along with the new ones from
4522     // the attribute.
4523     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4524                           ParsedAttr.Features);
4525   } else {
4526     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4527                           Target.getTargetOpts().Features);
4528   }
4529 }
4530 
4531 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4532   if (!SanStats)
4533     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4534 
4535   return *SanStats;
4536 }
4537 llvm::Value *
4538 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4539                                                   CodeGenFunction &CGF) {
4540   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4541   auto SamplerT = getOpenCLRuntime().getSamplerType();
4542   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4543   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4544                                 "__translate_sampler_initializer"),
4545                                 {C});
4546 }
4547