1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/Triple.h" 43 #include "llvm/Target/Mangler.h" 44 #include "llvm/Target/TargetData.h" 45 #include "llvm/Support/CallSite.h" 46 #include "llvm/Support/ErrorHandling.h" 47 using namespace clang; 48 using namespace CodeGen; 49 50 static const char AnnotationSection[] = "llvm.metadata"; 51 52 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 53 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 54 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 55 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 56 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 57 } 58 59 llvm_unreachable("invalid C++ ABI kind"); 60 return *CreateItaniumCXXABI(CGM); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0), 74 ConstantStringClassRef(0), NSConstantStringType(0), 75 VMContext(M.getContext()), 76 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 77 BlockObjectAssign(0), BlockObjectDispose(0), 78 BlockDescriptorType(0), GenericBlockLiteralType(0) { 79 if (Features.ObjC1) 80 createObjCRuntime(); 81 if (Features.OpenCL) 82 createOpenCLRuntime(); 83 if (Features.CUDA) 84 createCUDARuntime(); 85 86 // Enable TBAA unless it's suppressed. 87 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 88 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 89 ABI.getMangleContext()); 90 91 // If debug info or coverage generation is enabled, create the CGDebugInfo 92 // object. 93 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 94 CodeGenOpts.EmitGcovNotes) 95 DebugInfo = new CGDebugInfo(*this); 96 97 Block.GlobalUniqueCount = 0; 98 99 if (C.getLangOptions().ObjCAutoRefCount) 100 ARCData = new ARCEntrypoints(); 101 RRData = new RREntrypoints(); 102 103 // Initialize the type cache. 104 llvm::LLVMContext &LLVMContext = M.getContext(); 105 VoidTy = llvm::Type::getVoidTy(LLVMContext); 106 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 113 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 114 Int8PtrTy = Int8Ty->getPointerTo(0); 115 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 116 } 117 118 CodeGenModule::~CodeGenModule() { 119 delete ObjCRuntime; 120 delete OpenCLRuntime; 121 delete CUDARuntime; 122 delete TheTargetCodeGenInfo; 123 delete &ABI; 124 delete TBAA; 125 delete DebugInfo; 126 delete ARCData; 127 delete RRData; 128 } 129 130 void CodeGenModule::createObjCRuntime() { 131 if (!Features.NeXTRuntime) 132 ObjCRuntime = CreateGNUObjCRuntime(*this); 133 else 134 ObjCRuntime = CreateMacObjCRuntime(*this); 135 } 136 137 void CodeGenModule::createOpenCLRuntime() { 138 OpenCLRuntime = new CGOpenCLRuntime(*this); 139 } 140 141 void CodeGenModule::createCUDARuntime() { 142 CUDARuntime = CreateNVCUDARuntime(*this); 143 } 144 145 void CodeGenModule::Release() { 146 EmitDeferred(); 147 EmitCXXGlobalInitFunc(); 148 EmitCXXGlobalDtorFunc(); 149 if (ObjCRuntime) 150 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 151 AddGlobalCtor(ObjCInitFunction); 152 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 153 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 154 EmitGlobalAnnotations(); 155 EmitLLVMUsed(); 156 157 SimplifyPersonality(); 158 159 if (getCodeGenOpts().EmitDeclMetadata) 160 EmitDeclMetadata(); 161 162 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 163 EmitCoverageFile(); 164 165 if (DebugInfo) 166 DebugInfo->finalize(); 167 } 168 169 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 170 // Make sure that this type is translated. 171 Types.UpdateCompletedType(TD); 172 if (DebugInfo) 173 DebugInfo->UpdateCompletedType(TD); 174 } 175 176 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 177 if (!TBAA) 178 return 0; 179 return TBAA->getTBAAInfo(QTy); 180 } 181 182 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 183 llvm::MDNode *TBAAInfo) { 184 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 185 } 186 187 bool CodeGenModule::isTargetDarwin() const { 188 return getContext().getTargetInfo().getTriple().isOSDarwin(); 189 } 190 191 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 192 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 193 getDiags().Report(Context.getFullLoc(loc), diagID); 194 } 195 196 /// ErrorUnsupported - Print out an error that codegen doesn't support the 197 /// specified stmt yet. 198 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 199 bool OmitOnError) { 200 if (OmitOnError && getDiags().hasErrorOccurred()) 201 return; 202 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 203 "cannot compile this %0 yet"); 204 std::string Msg = Type; 205 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 206 << Msg << S->getSourceRange(); 207 } 208 209 /// ErrorUnsupported - Print out an error that codegen doesn't support the 210 /// specified decl yet. 211 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 212 bool OmitOnError) { 213 if (OmitOnError && getDiags().hasErrorOccurred()) 214 return; 215 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 216 "cannot compile this %0 yet"); 217 std::string Msg = Type; 218 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 219 } 220 221 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 222 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 223 } 224 225 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 226 const NamedDecl *D) const { 227 // Internal definitions always have default visibility. 228 if (GV->hasLocalLinkage()) { 229 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 230 return; 231 } 232 233 // Set visibility for definitions. 234 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 235 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 236 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 237 } 238 239 /// Set the symbol visibility of type information (vtable and RTTI) 240 /// associated with the given type. 241 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 242 const CXXRecordDecl *RD, 243 TypeVisibilityKind TVK) const { 244 setGlobalVisibility(GV, RD); 245 246 if (!CodeGenOpts.HiddenWeakVTables) 247 return; 248 249 // We never want to drop the visibility for RTTI names. 250 if (TVK == TVK_ForRTTIName) 251 return; 252 253 // We want to drop the visibility to hidden for weak type symbols. 254 // This isn't possible if there might be unresolved references 255 // elsewhere that rely on this symbol being visible. 256 257 // This should be kept roughly in sync with setThunkVisibility 258 // in CGVTables.cpp. 259 260 // Preconditions. 261 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 262 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 263 return; 264 265 // Don't override an explicit visibility attribute. 266 if (RD->getExplicitVisibility()) 267 return; 268 269 switch (RD->getTemplateSpecializationKind()) { 270 // We have to disable the optimization if this is an EI definition 271 // because there might be EI declarations in other shared objects. 272 case TSK_ExplicitInstantiationDefinition: 273 case TSK_ExplicitInstantiationDeclaration: 274 return; 275 276 // Every use of a non-template class's type information has to emit it. 277 case TSK_Undeclared: 278 break; 279 280 // In theory, implicit instantiations can ignore the possibility of 281 // an explicit instantiation declaration because there necessarily 282 // must be an EI definition somewhere with default visibility. In 283 // practice, it's possible to have an explicit instantiation for 284 // an arbitrary template class, and linkers aren't necessarily able 285 // to deal with mixed-visibility symbols. 286 case TSK_ExplicitSpecialization: 287 case TSK_ImplicitInstantiation: 288 if (!CodeGenOpts.HiddenWeakTemplateVTables) 289 return; 290 break; 291 } 292 293 // If there's a key function, there may be translation units 294 // that don't have the key function's definition. But ignore 295 // this if we're emitting RTTI under -fno-rtti. 296 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 297 if (Context.getKeyFunction(RD)) 298 return; 299 } 300 301 // Otherwise, drop the visibility to hidden. 302 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 303 GV->setUnnamedAddr(true); 304 } 305 306 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 307 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 308 309 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 310 if (!Str.empty()) 311 return Str; 312 313 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 314 IdentifierInfo *II = ND->getIdentifier(); 315 assert(II && "Attempt to mangle unnamed decl."); 316 317 Str = II->getName(); 318 return Str; 319 } 320 321 llvm::SmallString<256> Buffer; 322 llvm::raw_svector_ostream Out(Buffer); 323 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 324 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 325 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 326 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 327 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 328 getCXXABI().getMangleContext().mangleBlock(BD, Out); 329 else 330 getCXXABI().getMangleContext().mangleName(ND, Out); 331 332 // Allocate space for the mangled name. 333 Out.flush(); 334 size_t Length = Buffer.size(); 335 char *Name = MangledNamesAllocator.Allocate<char>(Length); 336 std::copy(Buffer.begin(), Buffer.end(), Name); 337 338 Str = StringRef(Name, Length); 339 340 return Str; 341 } 342 343 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 344 const BlockDecl *BD) { 345 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 346 const Decl *D = GD.getDecl(); 347 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 348 if (D == 0) 349 MangleCtx.mangleGlobalBlock(BD, Out); 350 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 351 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 352 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 353 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 354 else 355 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 356 } 357 358 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 359 return getModule().getNamedValue(Name); 360 } 361 362 /// AddGlobalCtor - Add a function to the list that will be called before 363 /// main() runs. 364 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 365 // FIXME: Type coercion of void()* types. 366 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 367 } 368 369 /// AddGlobalDtor - Add a function to the list that will be called 370 /// when the module is unloaded. 371 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 372 // FIXME: Type coercion of void()* types. 373 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 374 } 375 376 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 377 // Ctor function type is void()*. 378 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 379 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 380 381 // Get the type of a ctor entry, { i32, void ()* }. 382 llvm::StructType *CtorStructTy = 383 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 384 llvm::PointerType::getUnqual(CtorFTy), NULL); 385 386 // Construct the constructor and destructor arrays. 387 std::vector<llvm::Constant*> Ctors; 388 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 389 std::vector<llvm::Constant*> S; 390 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 391 I->second, false)); 392 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 393 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 394 } 395 396 if (!Ctors.empty()) { 397 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 398 new llvm::GlobalVariable(TheModule, AT, false, 399 llvm::GlobalValue::AppendingLinkage, 400 llvm::ConstantArray::get(AT, Ctors), 401 GlobalName); 402 } 403 } 404 405 llvm::GlobalValue::LinkageTypes 406 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 407 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 408 409 if (Linkage == GVA_Internal) 410 return llvm::Function::InternalLinkage; 411 412 if (D->hasAttr<DLLExportAttr>()) 413 return llvm::Function::DLLExportLinkage; 414 415 if (D->hasAttr<WeakAttr>()) 416 return llvm::Function::WeakAnyLinkage; 417 418 // In C99 mode, 'inline' functions are guaranteed to have a strong 419 // definition somewhere else, so we can use available_externally linkage. 420 if (Linkage == GVA_C99Inline) 421 return llvm::Function::AvailableExternallyLinkage; 422 423 // Note that Apple's kernel linker doesn't support symbol 424 // coalescing, so we need to avoid linkonce and weak linkages there. 425 // Normally, this means we just map to internal, but for explicit 426 // instantiations we'll map to external. 427 428 // In C++, the compiler has to emit a definition in every translation unit 429 // that references the function. We should use linkonce_odr because 430 // a) if all references in this translation unit are optimized away, we 431 // don't need to codegen it. b) if the function persists, it needs to be 432 // merged with other definitions. c) C++ has the ODR, so we know the 433 // definition is dependable. 434 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 435 return !Context.getLangOptions().AppleKext 436 ? llvm::Function::LinkOnceODRLinkage 437 : llvm::Function::InternalLinkage; 438 439 // An explicit instantiation of a template has weak linkage, since 440 // explicit instantiations can occur in multiple translation units 441 // and must all be equivalent. However, we are not allowed to 442 // throw away these explicit instantiations. 443 if (Linkage == GVA_ExplicitTemplateInstantiation) 444 return !Context.getLangOptions().AppleKext 445 ? llvm::Function::WeakODRLinkage 446 : llvm::Function::ExternalLinkage; 447 448 // Otherwise, we have strong external linkage. 449 assert(Linkage == GVA_StrongExternal); 450 return llvm::Function::ExternalLinkage; 451 } 452 453 454 /// SetFunctionDefinitionAttributes - Set attributes for a global. 455 /// 456 /// FIXME: This is currently only done for aliases and functions, but not for 457 /// variables (these details are set in EmitGlobalVarDefinition for variables). 458 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 459 llvm::GlobalValue *GV) { 460 SetCommonAttributes(D, GV); 461 } 462 463 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 464 const CGFunctionInfo &Info, 465 llvm::Function *F) { 466 unsigned CallingConv; 467 AttributeListType AttributeList; 468 ConstructAttributeList(Info, D, AttributeList, CallingConv); 469 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 470 AttributeList.size())); 471 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 472 } 473 474 /// Determines whether the language options require us to model 475 /// unwind exceptions. We treat -fexceptions as mandating this 476 /// except under the fragile ObjC ABI with only ObjC exceptions 477 /// enabled. This means, for example, that C with -fexceptions 478 /// enables this. 479 static bool hasUnwindExceptions(const LangOptions &Features) { 480 // If exceptions are completely disabled, obviously this is false. 481 if (!Features.Exceptions) return false; 482 483 // If C++ exceptions are enabled, this is true. 484 if (Features.CXXExceptions) return true; 485 486 // If ObjC exceptions are enabled, this depends on the ABI. 487 if (Features.ObjCExceptions) { 488 if (!Features.ObjCNonFragileABI) return false; 489 } 490 491 return true; 492 } 493 494 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 495 llvm::Function *F) { 496 if (CodeGenOpts.UnwindTables) 497 F->setHasUWTable(); 498 499 if (!hasUnwindExceptions(Features)) 500 F->addFnAttr(llvm::Attribute::NoUnwind); 501 502 if (D->hasAttr<NakedAttr>()) { 503 // Naked implies noinline: we should not be inlining such functions. 504 F->addFnAttr(llvm::Attribute::Naked); 505 F->addFnAttr(llvm::Attribute::NoInline); 506 } 507 508 if (D->hasAttr<NoInlineAttr>()) 509 F->addFnAttr(llvm::Attribute::NoInline); 510 511 // (noinline wins over always_inline, and we can't specify both in IR) 512 if (D->hasAttr<AlwaysInlineAttr>() && 513 !F->hasFnAttr(llvm::Attribute::NoInline)) 514 F->addFnAttr(llvm::Attribute::AlwaysInline); 515 516 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 517 F->setUnnamedAddr(true); 518 519 if (Features.getStackProtector() == LangOptions::SSPOn) 520 F->addFnAttr(llvm::Attribute::StackProtect); 521 else if (Features.getStackProtector() == LangOptions::SSPReq) 522 F->addFnAttr(llvm::Attribute::StackProtectReq); 523 524 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 525 if (alignment) 526 F->setAlignment(alignment); 527 528 // C++ ABI requires 2-byte alignment for member functions. 529 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 530 F->setAlignment(2); 531 } 532 533 void CodeGenModule::SetCommonAttributes(const Decl *D, 534 llvm::GlobalValue *GV) { 535 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 536 setGlobalVisibility(GV, ND); 537 else 538 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 539 540 if (D->hasAttr<UsedAttr>()) 541 AddUsedGlobal(GV); 542 543 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 544 GV->setSection(SA->getName()); 545 546 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 547 } 548 549 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 550 llvm::Function *F, 551 const CGFunctionInfo &FI) { 552 SetLLVMFunctionAttributes(D, FI, F); 553 SetLLVMFunctionAttributesForDefinition(D, F); 554 555 F->setLinkage(llvm::Function::InternalLinkage); 556 557 SetCommonAttributes(D, F); 558 } 559 560 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 561 llvm::Function *F, 562 bool IsIncompleteFunction) { 563 if (unsigned IID = F->getIntrinsicID()) { 564 // If this is an intrinsic function, set the function's attributes 565 // to the intrinsic's attributes. 566 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 567 return; 568 } 569 570 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 571 572 if (!IsIncompleteFunction) 573 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 574 575 // Only a few attributes are set on declarations; these may later be 576 // overridden by a definition. 577 578 if (FD->hasAttr<DLLImportAttr>()) { 579 F->setLinkage(llvm::Function::DLLImportLinkage); 580 } else if (FD->hasAttr<WeakAttr>() || 581 FD->isWeakImported()) { 582 // "extern_weak" is overloaded in LLVM; we probably should have 583 // separate linkage types for this. 584 F->setLinkage(llvm::Function::ExternalWeakLinkage); 585 } else { 586 F->setLinkage(llvm::Function::ExternalLinkage); 587 588 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 589 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 590 F->setVisibility(GetLLVMVisibility(LV.visibility())); 591 } 592 } 593 594 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 595 F->setSection(SA->getName()); 596 } 597 598 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 599 assert(!GV->isDeclaration() && 600 "Only globals with definition can force usage."); 601 LLVMUsed.push_back(GV); 602 } 603 604 void CodeGenModule::EmitLLVMUsed() { 605 // Don't create llvm.used if there is no need. 606 if (LLVMUsed.empty()) 607 return; 608 609 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 610 611 // Convert LLVMUsed to what ConstantArray needs. 612 std::vector<llvm::Constant*> UsedArray; 613 UsedArray.resize(LLVMUsed.size()); 614 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 615 UsedArray[i] = 616 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 617 i8PTy); 618 } 619 620 if (UsedArray.empty()) 621 return; 622 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 623 624 llvm::GlobalVariable *GV = 625 new llvm::GlobalVariable(getModule(), ATy, false, 626 llvm::GlobalValue::AppendingLinkage, 627 llvm::ConstantArray::get(ATy, UsedArray), 628 "llvm.used"); 629 630 GV->setSection("llvm.metadata"); 631 } 632 633 void CodeGenModule::EmitDeferred() { 634 // Emit code for any potentially referenced deferred decls. Since a 635 // previously unused static decl may become used during the generation of code 636 // for a static function, iterate until no changes are made. 637 638 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 639 if (!DeferredVTables.empty()) { 640 const CXXRecordDecl *RD = DeferredVTables.back(); 641 DeferredVTables.pop_back(); 642 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 643 continue; 644 } 645 646 GlobalDecl D = DeferredDeclsToEmit.back(); 647 DeferredDeclsToEmit.pop_back(); 648 649 // Check to see if we've already emitted this. This is necessary 650 // for a couple of reasons: first, decls can end up in the 651 // deferred-decls queue multiple times, and second, decls can end 652 // up with definitions in unusual ways (e.g. by an extern inline 653 // function acquiring a strong function redefinition). Just 654 // ignore these cases. 655 // 656 // TODO: That said, looking this up multiple times is very wasteful. 657 StringRef Name = getMangledName(D); 658 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 659 assert(CGRef && "Deferred decl wasn't referenced?"); 660 661 if (!CGRef->isDeclaration()) 662 continue; 663 664 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 665 // purposes an alias counts as a definition. 666 if (isa<llvm::GlobalAlias>(CGRef)) 667 continue; 668 669 // Otherwise, emit the definition and move on to the next one. 670 EmitGlobalDefinition(D); 671 } 672 } 673 674 void CodeGenModule::EmitGlobalAnnotations() { 675 if (Annotations.empty()) 676 return; 677 678 // Create a new global variable for the ConstantStruct in the Module. 679 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 680 Annotations[0]->getType(), Annotations.size()), Annotations); 681 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 682 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 683 "llvm.global.annotations"); 684 gv->setSection(AnnotationSection); 685 } 686 687 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 688 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 689 if (i != AnnotationStrings.end()) 690 return i->second; 691 692 // Not found yet, create a new global. 693 llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true); 694 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 695 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 696 gv->setSection(AnnotationSection); 697 gv->setUnnamedAddr(true); 698 AnnotationStrings[Str] = gv; 699 return gv; 700 } 701 702 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 703 SourceManager &SM = getContext().getSourceManager(); 704 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 705 if (PLoc.isValid()) 706 return EmitAnnotationString(PLoc.getFilename()); 707 return EmitAnnotationString(SM.getBufferName(Loc)); 708 } 709 710 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 711 SourceManager &SM = getContext().getSourceManager(); 712 PresumedLoc PLoc = SM.getPresumedLoc(L); 713 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 714 SM.getExpansionLineNumber(L); 715 return llvm::ConstantInt::get(Int32Ty, LineNo); 716 } 717 718 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 719 const AnnotateAttr *AA, 720 SourceLocation L) { 721 // Get the globals for file name, annotation, and the line number. 722 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 723 *UnitGV = EmitAnnotationUnit(L), 724 *LineNoCst = EmitAnnotationLineNo(L); 725 726 // Create the ConstantStruct for the global annotation. 727 llvm::Constant *Fields[4] = { 728 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 729 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 730 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 731 LineNoCst 732 }; 733 return llvm::ConstantStruct::getAnon(Fields); 734 } 735 736 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 737 llvm::GlobalValue *GV) { 738 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 739 // Get the struct elements for these annotations. 740 for (specific_attr_iterator<AnnotateAttr> 741 ai = D->specific_attr_begin<AnnotateAttr>(), 742 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 743 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 744 } 745 746 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 747 // Never defer when EmitAllDecls is specified. 748 if (Features.EmitAllDecls) 749 return false; 750 751 return !getContext().DeclMustBeEmitted(Global); 752 } 753 754 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 755 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 756 assert(AA && "No alias?"); 757 758 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 759 760 // See if there is already something with the target's name in the module. 761 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 762 763 llvm::Constant *Aliasee; 764 if (isa<llvm::FunctionType>(DeclTy)) 765 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 766 /*ForVTable=*/false); 767 else 768 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 769 llvm::PointerType::getUnqual(DeclTy), 0); 770 if (!Entry) { 771 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 772 F->setLinkage(llvm::Function::ExternalWeakLinkage); 773 WeakRefReferences.insert(F); 774 } 775 776 return Aliasee; 777 } 778 779 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 780 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 781 782 // Weak references don't produce any output by themselves. 783 if (Global->hasAttr<WeakRefAttr>()) 784 return; 785 786 // If this is an alias definition (which otherwise looks like a declaration) 787 // emit it now. 788 if (Global->hasAttr<AliasAttr>()) 789 return EmitAliasDefinition(GD); 790 791 // If this is CUDA, be selective about which declarations we emit. 792 if (Features.CUDA) { 793 if (CodeGenOpts.CUDAIsDevice) { 794 if (!Global->hasAttr<CUDADeviceAttr>() && 795 !Global->hasAttr<CUDAGlobalAttr>() && 796 !Global->hasAttr<CUDAConstantAttr>() && 797 !Global->hasAttr<CUDASharedAttr>()) 798 return; 799 } else { 800 if (!Global->hasAttr<CUDAHostAttr>() && ( 801 Global->hasAttr<CUDADeviceAttr>() || 802 Global->hasAttr<CUDAConstantAttr>() || 803 Global->hasAttr<CUDASharedAttr>())) 804 return; 805 } 806 } 807 808 // Ignore declarations, they will be emitted on their first use. 809 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 810 // Forward declarations are emitted lazily on first use. 811 if (!FD->doesThisDeclarationHaveABody()) { 812 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 813 return; 814 815 const FunctionDecl *InlineDefinition = 0; 816 FD->getBody(InlineDefinition); 817 818 StringRef MangledName = getMangledName(GD); 819 llvm::StringMap<GlobalDecl>::iterator DDI = 820 DeferredDecls.find(MangledName); 821 if (DDI != DeferredDecls.end()) 822 DeferredDecls.erase(DDI); 823 EmitGlobalDefinition(InlineDefinition); 824 return; 825 } 826 } else { 827 const VarDecl *VD = cast<VarDecl>(Global); 828 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 829 830 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 831 return; 832 } 833 834 // Defer code generation when possible if this is a static definition, inline 835 // function etc. These we only want to emit if they are used. 836 if (!MayDeferGeneration(Global)) { 837 // Emit the definition if it can't be deferred. 838 EmitGlobalDefinition(GD); 839 return; 840 } 841 842 // If we're deferring emission of a C++ variable with an 843 // initializer, remember the order in which it appeared in the file. 844 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 845 cast<VarDecl>(Global)->hasInit()) { 846 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 847 CXXGlobalInits.push_back(0); 848 } 849 850 // If the value has already been used, add it directly to the 851 // DeferredDeclsToEmit list. 852 StringRef MangledName = getMangledName(GD); 853 if (GetGlobalValue(MangledName)) 854 DeferredDeclsToEmit.push_back(GD); 855 else { 856 // Otherwise, remember that we saw a deferred decl with this name. The 857 // first use of the mangled name will cause it to move into 858 // DeferredDeclsToEmit. 859 DeferredDecls[MangledName] = GD; 860 } 861 } 862 863 namespace { 864 struct FunctionIsDirectlyRecursive : 865 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 866 const StringRef Name; 867 const Builtin::Context &BI; 868 bool Result; 869 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 870 Name(N), BI(C), Result(false) { 871 } 872 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 873 874 bool TraverseCallExpr(CallExpr *E) { 875 const FunctionDecl *FD = E->getDirectCallee(); 876 if (!FD) 877 return true; 878 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 879 if (Attr && Name == Attr->getLabel()) { 880 Result = true; 881 return false; 882 } 883 unsigned BuiltinID = FD->getBuiltinID(); 884 if (!BuiltinID) 885 return true; 886 StringRef BuiltinName = BI.GetName(BuiltinID); 887 if (BuiltinName.startswith("__builtin_") && 888 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 889 Result = true; 890 return false; 891 } 892 return true; 893 } 894 }; 895 } 896 897 // isTriviallyRecursive - Check if this function calls another 898 // decl that, because of the asm attribute or the other decl being a builtin, 899 // ends up pointing to itself. 900 bool 901 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 902 StringRef Name; 903 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 904 // asm labels are a special kind of mangling we have to support. 905 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 906 if (!Attr) 907 return false; 908 Name = Attr->getLabel(); 909 } else { 910 Name = FD->getName(); 911 } 912 913 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 914 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 915 return Walker.Result; 916 } 917 918 bool 919 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 920 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 921 return true; 922 if (CodeGenOpts.OptimizationLevel == 0 && 923 !F->hasAttr<AlwaysInlineAttr>()) 924 return false; 925 // PR9614. Avoid cases where the source code is lying to us. An available 926 // externally function should have an equivalent function somewhere else, 927 // but a function that calls itself is clearly not equivalent to the real 928 // implementation. 929 // This happens in glibc's btowc and in some configure checks. 930 return !isTriviallyRecursive(F); 931 } 932 933 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 934 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 935 936 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 937 Context.getSourceManager(), 938 "Generating code for declaration"); 939 940 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 941 // At -O0, don't generate IR for functions with available_externally 942 // linkage. 943 if (!shouldEmitFunction(Function)) 944 return; 945 946 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 947 // Make sure to emit the definition(s) before we emit the thunks. 948 // This is necessary for the generation of certain thunks. 949 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 950 EmitCXXConstructor(CD, GD.getCtorType()); 951 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 952 EmitCXXDestructor(DD, GD.getDtorType()); 953 else 954 EmitGlobalFunctionDefinition(GD); 955 956 if (Method->isVirtual()) 957 getVTables().EmitThunks(GD); 958 959 return; 960 } 961 962 return EmitGlobalFunctionDefinition(GD); 963 } 964 965 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 966 return EmitGlobalVarDefinition(VD); 967 968 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 969 } 970 971 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 972 /// module, create and return an llvm Function with the specified type. If there 973 /// is something in the module with the specified name, return it potentially 974 /// bitcasted to the right type. 975 /// 976 /// If D is non-null, it specifies a decl that correspond to this. This is used 977 /// to set the attributes on the function when it is first created. 978 llvm::Constant * 979 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 980 llvm::Type *Ty, 981 GlobalDecl D, bool ForVTable, 982 llvm::Attributes ExtraAttrs) { 983 // Lookup the entry, lazily creating it if necessary. 984 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 985 if (Entry) { 986 if (WeakRefReferences.count(Entry)) { 987 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 988 if (FD && !FD->hasAttr<WeakAttr>()) 989 Entry->setLinkage(llvm::Function::ExternalLinkage); 990 991 WeakRefReferences.erase(Entry); 992 } 993 994 if (Entry->getType()->getElementType() == Ty) 995 return Entry; 996 997 // Make sure the result is of the correct type. 998 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 999 } 1000 1001 // This function doesn't have a complete type (for example, the return 1002 // type is an incomplete struct). Use a fake type instead, and make 1003 // sure not to try to set attributes. 1004 bool IsIncompleteFunction = false; 1005 1006 llvm::FunctionType *FTy; 1007 if (isa<llvm::FunctionType>(Ty)) { 1008 FTy = cast<llvm::FunctionType>(Ty); 1009 } else { 1010 FTy = llvm::FunctionType::get(VoidTy, false); 1011 IsIncompleteFunction = true; 1012 } 1013 1014 llvm::Function *F = llvm::Function::Create(FTy, 1015 llvm::Function::ExternalLinkage, 1016 MangledName, &getModule()); 1017 assert(F->getName() == MangledName && "name was uniqued!"); 1018 if (D.getDecl()) 1019 SetFunctionAttributes(D, F, IsIncompleteFunction); 1020 if (ExtraAttrs != llvm::Attribute::None) 1021 F->addFnAttr(ExtraAttrs); 1022 1023 // This is the first use or definition of a mangled name. If there is a 1024 // deferred decl with this name, remember that we need to emit it at the end 1025 // of the file. 1026 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1027 if (DDI != DeferredDecls.end()) { 1028 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1029 // list, and remove it from DeferredDecls (since we don't need it anymore). 1030 DeferredDeclsToEmit.push_back(DDI->second); 1031 DeferredDecls.erase(DDI); 1032 1033 // Otherwise, there are cases we have to worry about where we're 1034 // using a declaration for which we must emit a definition but where 1035 // we might not find a top-level definition: 1036 // - member functions defined inline in their classes 1037 // - friend functions defined inline in some class 1038 // - special member functions with implicit definitions 1039 // If we ever change our AST traversal to walk into class methods, 1040 // this will be unnecessary. 1041 // 1042 // We also don't emit a definition for a function if it's going to be an entry 1043 // in a vtable, unless it's already marked as used. 1044 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 1045 // Look for a declaration that's lexically in a record. 1046 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1047 do { 1048 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1049 if (FD->isImplicit() && !ForVTable) { 1050 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1051 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1052 break; 1053 } else if (FD->doesThisDeclarationHaveABody()) { 1054 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1055 break; 1056 } 1057 } 1058 FD = FD->getPreviousDecl(); 1059 } while (FD); 1060 } 1061 1062 // Make sure the result is of the requested type. 1063 if (!IsIncompleteFunction) { 1064 assert(F->getType()->getElementType() == Ty); 1065 return F; 1066 } 1067 1068 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1069 return llvm::ConstantExpr::getBitCast(F, PTy); 1070 } 1071 1072 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1073 /// non-null, then this function will use the specified type if it has to 1074 /// create it (this occurs when we see a definition of the function). 1075 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1076 llvm::Type *Ty, 1077 bool ForVTable) { 1078 // If there was no specific requested type, just convert it now. 1079 if (!Ty) 1080 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1081 1082 StringRef MangledName = getMangledName(GD); 1083 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1084 } 1085 1086 /// CreateRuntimeFunction - Create a new runtime function with the specified 1087 /// type and name. 1088 llvm::Constant * 1089 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1090 StringRef Name, 1091 llvm::Attributes ExtraAttrs) { 1092 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1093 ExtraAttrs); 1094 } 1095 1096 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 1097 bool ConstantInit) { 1098 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 1099 return false; 1100 1101 if (Context.getLangOptions().CPlusPlus) { 1102 if (const RecordType *Record 1103 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 1104 return ConstantInit && 1105 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 1106 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 1107 } 1108 1109 return true; 1110 } 1111 1112 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1113 /// create and return an llvm GlobalVariable with the specified type. If there 1114 /// is something in the module with the specified name, return it potentially 1115 /// bitcasted to the right type. 1116 /// 1117 /// If D is non-null, it specifies a decl that correspond to this. This is used 1118 /// to set the attributes on the global when it is first created. 1119 llvm::Constant * 1120 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1121 llvm::PointerType *Ty, 1122 const VarDecl *D, 1123 bool UnnamedAddr) { 1124 // Lookup the entry, lazily creating it if necessary. 1125 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1126 if (Entry) { 1127 if (WeakRefReferences.count(Entry)) { 1128 if (D && !D->hasAttr<WeakAttr>()) 1129 Entry->setLinkage(llvm::Function::ExternalLinkage); 1130 1131 WeakRefReferences.erase(Entry); 1132 } 1133 1134 if (UnnamedAddr) 1135 Entry->setUnnamedAddr(true); 1136 1137 if (Entry->getType() == Ty) 1138 return Entry; 1139 1140 // Make sure the result is of the correct type. 1141 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1142 } 1143 1144 // This is the first use or definition of a mangled name. If there is a 1145 // deferred decl with this name, remember that we need to emit it at the end 1146 // of the file. 1147 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1148 if (DDI != DeferredDecls.end()) { 1149 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1150 // list, and remove it from DeferredDecls (since we don't need it anymore). 1151 DeferredDeclsToEmit.push_back(DDI->second); 1152 DeferredDecls.erase(DDI); 1153 } 1154 1155 llvm::GlobalVariable *GV = 1156 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1157 llvm::GlobalValue::ExternalLinkage, 1158 0, MangledName, 0, 1159 false, Ty->getAddressSpace()); 1160 1161 // Handle things which are present even on external declarations. 1162 if (D) { 1163 // FIXME: This code is overly simple and should be merged with other global 1164 // handling. 1165 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1166 1167 // Set linkage and visibility in case we never see a definition. 1168 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1169 if (LV.linkage() != ExternalLinkage) { 1170 // Don't set internal linkage on declarations. 1171 } else { 1172 if (D->hasAttr<DLLImportAttr>()) 1173 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1174 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1175 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1176 1177 // Set visibility on a declaration only if it's explicit. 1178 if (LV.visibilityExplicit()) 1179 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1180 } 1181 1182 GV->setThreadLocal(D->isThreadSpecified()); 1183 } 1184 1185 return GV; 1186 } 1187 1188 1189 llvm::GlobalVariable * 1190 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1191 llvm::Type *Ty, 1192 llvm::GlobalValue::LinkageTypes Linkage) { 1193 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1194 llvm::GlobalVariable *OldGV = 0; 1195 1196 1197 if (GV) { 1198 // Check if the variable has the right type. 1199 if (GV->getType()->getElementType() == Ty) 1200 return GV; 1201 1202 // Because C++ name mangling, the only way we can end up with an already 1203 // existing global with the same name is if it has been declared extern "C". 1204 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1205 OldGV = GV; 1206 } 1207 1208 // Create a new variable. 1209 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1210 Linkage, 0, Name); 1211 1212 if (OldGV) { 1213 // Replace occurrences of the old variable if needed. 1214 GV->takeName(OldGV); 1215 1216 if (!OldGV->use_empty()) { 1217 llvm::Constant *NewPtrForOldDecl = 1218 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1219 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1220 } 1221 1222 OldGV->eraseFromParent(); 1223 } 1224 1225 return GV; 1226 } 1227 1228 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1229 /// given global variable. If Ty is non-null and if the global doesn't exist, 1230 /// then it will be greated with the specified type instead of whatever the 1231 /// normal requested type would be. 1232 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1233 llvm::Type *Ty) { 1234 assert(D->hasGlobalStorage() && "Not a global variable"); 1235 QualType ASTTy = D->getType(); 1236 if (Ty == 0) 1237 Ty = getTypes().ConvertTypeForMem(ASTTy); 1238 1239 llvm::PointerType *PTy = 1240 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1241 1242 StringRef MangledName = getMangledName(D); 1243 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1244 } 1245 1246 /// CreateRuntimeVariable - Create a new runtime global variable with the 1247 /// specified type and name. 1248 llvm::Constant * 1249 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1250 StringRef Name) { 1251 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1252 true); 1253 } 1254 1255 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1256 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1257 1258 if (MayDeferGeneration(D)) { 1259 // If we have not seen a reference to this variable yet, place it 1260 // into the deferred declarations table to be emitted if needed 1261 // later. 1262 StringRef MangledName = getMangledName(D); 1263 if (!GetGlobalValue(MangledName)) { 1264 DeferredDecls[MangledName] = D; 1265 return; 1266 } 1267 } 1268 1269 // The tentative definition is the only definition. 1270 EmitGlobalVarDefinition(D); 1271 } 1272 1273 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1274 if (DefinitionRequired) 1275 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1276 } 1277 1278 llvm::GlobalVariable::LinkageTypes 1279 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1280 if (RD->getLinkage() != ExternalLinkage) 1281 return llvm::GlobalVariable::InternalLinkage; 1282 1283 if (const CXXMethodDecl *KeyFunction 1284 = RD->getASTContext().getKeyFunction(RD)) { 1285 // If this class has a key function, use that to determine the linkage of 1286 // the vtable. 1287 const FunctionDecl *Def = 0; 1288 if (KeyFunction->hasBody(Def)) 1289 KeyFunction = cast<CXXMethodDecl>(Def); 1290 1291 switch (KeyFunction->getTemplateSpecializationKind()) { 1292 case TSK_Undeclared: 1293 case TSK_ExplicitSpecialization: 1294 // When compiling with optimizations turned on, we emit all vtables, 1295 // even if the key function is not defined in the current translation 1296 // unit. If this is the case, use available_externally linkage. 1297 if (!Def && CodeGenOpts.OptimizationLevel) 1298 return llvm::GlobalVariable::AvailableExternallyLinkage; 1299 1300 if (KeyFunction->isInlined()) 1301 return !Context.getLangOptions().AppleKext ? 1302 llvm::GlobalVariable::LinkOnceODRLinkage : 1303 llvm::Function::InternalLinkage; 1304 1305 return llvm::GlobalVariable::ExternalLinkage; 1306 1307 case TSK_ImplicitInstantiation: 1308 return !Context.getLangOptions().AppleKext ? 1309 llvm::GlobalVariable::LinkOnceODRLinkage : 1310 llvm::Function::InternalLinkage; 1311 1312 case TSK_ExplicitInstantiationDefinition: 1313 return !Context.getLangOptions().AppleKext ? 1314 llvm::GlobalVariable::WeakODRLinkage : 1315 llvm::Function::InternalLinkage; 1316 1317 case TSK_ExplicitInstantiationDeclaration: 1318 // FIXME: Use available_externally linkage. However, this currently 1319 // breaks LLVM's build due to undefined symbols. 1320 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1321 return !Context.getLangOptions().AppleKext ? 1322 llvm::GlobalVariable::LinkOnceODRLinkage : 1323 llvm::Function::InternalLinkage; 1324 } 1325 } 1326 1327 if (Context.getLangOptions().AppleKext) 1328 return llvm::Function::InternalLinkage; 1329 1330 switch (RD->getTemplateSpecializationKind()) { 1331 case TSK_Undeclared: 1332 case TSK_ExplicitSpecialization: 1333 case TSK_ImplicitInstantiation: 1334 // FIXME: Use available_externally linkage. However, this currently 1335 // breaks LLVM's build due to undefined symbols. 1336 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1337 case TSK_ExplicitInstantiationDeclaration: 1338 return llvm::GlobalVariable::LinkOnceODRLinkage; 1339 1340 case TSK_ExplicitInstantiationDefinition: 1341 return llvm::GlobalVariable::WeakODRLinkage; 1342 } 1343 1344 // Silence GCC warning. 1345 return llvm::GlobalVariable::LinkOnceODRLinkage; 1346 } 1347 1348 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1349 return Context.toCharUnitsFromBits( 1350 TheTargetData.getTypeStoreSizeInBits(Ty)); 1351 } 1352 1353 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1354 llvm::Constant *Init = 0; 1355 QualType ASTTy = D->getType(); 1356 bool NonConstInit = false; 1357 1358 const VarDecl *InitDecl; 1359 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1360 1361 if (!InitExpr) { 1362 // This is a tentative definition; tentative definitions are 1363 // implicitly initialized with { 0 }. 1364 // 1365 // Note that tentative definitions are only emitted at the end of 1366 // a translation unit, so they should never have incomplete 1367 // type. In addition, EmitTentativeDefinition makes sure that we 1368 // never attempt to emit a tentative definition if a real one 1369 // exists. A use may still exists, however, so we still may need 1370 // to do a RAUW. 1371 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1372 Init = EmitNullConstant(D->getType()); 1373 } else { 1374 Init = EmitConstantInit(*InitDecl); 1375 if (!Init) { 1376 QualType T = InitExpr->getType(); 1377 if (D->getType()->isReferenceType()) 1378 T = D->getType(); 1379 1380 if (getLangOptions().CPlusPlus) { 1381 Init = EmitNullConstant(T); 1382 NonConstInit = true; 1383 } else { 1384 ErrorUnsupported(D, "static initializer"); 1385 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1386 } 1387 } else { 1388 // We don't need an initializer, so remove the entry for the delayed 1389 // initializer position (just in case this entry was delayed). 1390 if (getLangOptions().CPlusPlus) 1391 DelayedCXXInitPosition.erase(D); 1392 } 1393 } 1394 1395 llvm::Type* InitType = Init->getType(); 1396 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1397 1398 // Strip off a bitcast if we got one back. 1399 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1400 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1401 // all zero index gep. 1402 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1403 Entry = CE->getOperand(0); 1404 } 1405 1406 // Entry is now either a Function or GlobalVariable. 1407 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1408 1409 // We have a definition after a declaration with the wrong type. 1410 // We must make a new GlobalVariable* and update everything that used OldGV 1411 // (a declaration or tentative definition) with the new GlobalVariable* 1412 // (which will be a definition). 1413 // 1414 // This happens if there is a prototype for a global (e.g. 1415 // "extern int x[];") and then a definition of a different type (e.g. 1416 // "int x[10];"). This also happens when an initializer has a different type 1417 // from the type of the global (this happens with unions). 1418 if (GV == 0 || 1419 GV->getType()->getElementType() != InitType || 1420 GV->getType()->getAddressSpace() != 1421 getContext().getTargetAddressSpace(ASTTy)) { 1422 1423 // Move the old entry aside so that we'll create a new one. 1424 Entry->setName(StringRef()); 1425 1426 // Make a new global with the correct type, this is now guaranteed to work. 1427 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1428 1429 // Replace all uses of the old global with the new global 1430 llvm::Constant *NewPtrForOldDecl = 1431 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1432 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1433 1434 // Erase the old global, since it is no longer used. 1435 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1436 } 1437 1438 if (D->hasAttr<AnnotateAttr>()) 1439 AddGlobalAnnotations(D, GV); 1440 1441 GV->setInitializer(Init); 1442 1443 // If it is safe to mark the global 'constant', do so now. 1444 GV->setConstant(false); 1445 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1446 GV->setConstant(true); 1447 1448 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1449 1450 // Set the llvm linkage type as appropriate. 1451 llvm::GlobalValue::LinkageTypes Linkage = 1452 GetLLVMLinkageVarDefinition(D, GV); 1453 GV->setLinkage(Linkage); 1454 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1455 // common vars aren't constant even if declared const. 1456 GV->setConstant(false); 1457 1458 SetCommonAttributes(D, GV); 1459 1460 // Emit the initializer function if necessary. 1461 if (NonConstInit) 1462 EmitCXXGlobalVarDeclInitFunc(D, GV); 1463 1464 // Emit global variable debug information. 1465 if (CGDebugInfo *DI = getModuleDebugInfo()) 1466 DI->EmitGlobalVariable(GV, D); 1467 } 1468 1469 llvm::GlobalValue::LinkageTypes 1470 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1471 llvm::GlobalVariable *GV) { 1472 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1473 if (Linkage == GVA_Internal) 1474 return llvm::Function::InternalLinkage; 1475 else if (D->hasAttr<DLLImportAttr>()) 1476 return llvm::Function::DLLImportLinkage; 1477 else if (D->hasAttr<DLLExportAttr>()) 1478 return llvm::Function::DLLExportLinkage; 1479 else if (D->hasAttr<WeakAttr>()) { 1480 if (GV->isConstant()) 1481 return llvm::GlobalVariable::WeakODRLinkage; 1482 else 1483 return llvm::GlobalVariable::WeakAnyLinkage; 1484 } else if (Linkage == GVA_TemplateInstantiation || 1485 Linkage == GVA_ExplicitTemplateInstantiation) 1486 return llvm::GlobalVariable::WeakODRLinkage; 1487 else if (!getLangOptions().CPlusPlus && 1488 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1489 D->getAttr<CommonAttr>()) && 1490 !D->hasExternalStorage() && !D->getInit() && 1491 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1492 !D->getAttr<WeakImportAttr>()) { 1493 // Thread local vars aren't considered common linkage. 1494 return llvm::GlobalVariable::CommonLinkage; 1495 } 1496 return llvm::GlobalVariable::ExternalLinkage; 1497 } 1498 1499 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1500 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1501 /// existing call uses of the old function in the module, this adjusts them to 1502 /// call the new function directly. 1503 /// 1504 /// This is not just a cleanup: the always_inline pass requires direct calls to 1505 /// functions to be able to inline them. If there is a bitcast in the way, it 1506 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1507 /// run at -O0. 1508 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1509 llvm::Function *NewFn) { 1510 // If we're redefining a global as a function, don't transform it. 1511 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1512 if (OldFn == 0) return; 1513 1514 llvm::Type *NewRetTy = NewFn->getReturnType(); 1515 SmallVector<llvm::Value*, 4> ArgList; 1516 1517 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1518 UI != E; ) { 1519 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1520 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1521 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1522 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1523 llvm::CallSite CS(CI); 1524 if (!CI || !CS.isCallee(I)) continue; 1525 1526 // If the return types don't match exactly, and if the call isn't dead, then 1527 // we can't transform this call. 1528 if (CI->getType() != NewRetTy && !CI->use_empty()) 1529 continue; 1530 1531 // Get the attribute list. 1532 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1533 llvm::AttrListPtr AttrList = CI->getAttributes(); 1534 1535 // Get any return attributes. 1536 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1537 1538 // Add the return attributes. 1539 if (RAttrs) 1540 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1541 1542 // If the function was passed too few arguments, don't transform. If extra 1543 // arguments were passed, we silently drop them. If any of the types 1544 // mismatch, we don't transform. 1545 unsigned ArgNo = 0; 1546 bool DontTransform = false; 1547 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1548 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1549 if (CS.arg_size() == ArgNo || 1550 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1551 DontTransform = true; 1552 break; 1553 } 1554 1555 // Add any parameter attributes. 1556 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1557 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1558 } 1559 if (DontTransform) 1560 continue; 1561 1562 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1563 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1564 1565 // Okay, we can transform this. Create the new call instruction and copy 1566 // over the required information. 1567 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1568 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1569 ArgList.clear(); 1570 if (!NewCall->getType()->isVoidTy()) 1571 NewCall->takeName(CI); 1572 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1573 AttrVec.end())); 1574 NewCall->setCallingConv(CI->getCallingConv()); 1575 1576 // Finally, remove the old call, replacing any uses with the new one. 1577 if (!CI->use_empty()) 1578 CI->replaceAllUsesWith(NewCall); 1579 1580 // Copy debug location attached to CI. 1581 if (!CI->getDebugLoc().isUnknown()) 1582 NewCall->setDebugLoc(CI->getDebugLoc()); 1583 CI->eraseFromParent(); 1584 } 1585 } 1586 1587 1588 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1589 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1590 1591 // Compute the function info and LLVM type. 1592 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1593 bool variadic = false; 1594 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1595 variadic = fpt->isVariadic(); 1596 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1597 1598 // Get or create the prototype for the function. 1599 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1600 1601 // Strip off a bitcast if we got one back. 1602 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1603 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1604 Entry = CE->getOperand(0); 1605 } 1606 1607 1608 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1609 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1610 1611 // If the types mismatch then we have to rewrite the definition. 1612 assert(OldFn->isDeclaration() && 1613 "Shouldn't replace non-declaration"); 1614 1615 // F is the Function* for the one with the wrong type, we must make a new 1616 // Function* and update everything that used F (a declaration) with the new 1617 // Function* (which will be a definition). 1618 // 1619 // This happens if there is a prototype for a function 1620 // (e.g. "int f()") and then a definition of a different type 1621 // (e.g. "int f(int x)"). Move the old function aside so that it 1622 // doesn't interfere with GetAddrOfFunction. 1623 OldFn->setName(StringRef()); 1624 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1625 1626 // If this is an implementation of a function without a prototype, try to 1627 // replace any existing uses of the function (which may be calls) with uses 1628 // of the new function 1629 if (D->getType()->isFunctionNoProtoType()) { 1630 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1631 OldFn->removeDeadConstantUsers(); 1632 } 1633 1634 // Replace uses of F with the Function we will endow with a body. 1635 if (!Entry->use_empty()) { 1636 llvm::Constant *NewPtrForOldDecl = 1637 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1638 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1639 } 1640 1641 // Ok, delete the old function now, which is dead. 1642 OldFn->eraseFromParent(); 1643 1644 Entry = NewFn; 1645 } 1646 1647 // We need to set linkage and visibility on the function before 1648 // generating code for it because various parts of IR generation 1649 // want to propagate this information down (e.g. to local static 1650 // declarations). 1651 llvm::Function *Fn = cast<llvm::Function>(Entry); 1652 setFunctionLinkage(D, Fn); 1653 1654 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1655 setGlobalVisibility(Fn, D); 1656 1657 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1658 1659 SetFunctionDefinitionAttributes(D, Fn); 1660 SetLLVMFunctionAttributesForDefinition(D, Fn); 1661 1662 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1663 AddGlobalCtor(Fn, CA->getPriority()); 1664 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1665 AddGlobalDtor(Fn, DA->getPriority()); 1666 if (D->hasAttr<AnnotateAttr>()) 1667 AddGlobalAnnotations(D, Fn); 1668 } 1669 1670 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1671 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1672 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1673 assert(AA && "Not an alias?"); 1674 1675 StringRef MangledName = getMangledName(GD); 1676 1677 // If there is a definition in the module, then it wins over the alias. 1678 // This is dubious, but allow it to be safe. Just ignore the alias. 1679 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1680 if (Entry && !Entry->isDeclaration()) 1681 return; 1682 1683 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1684 1685 // Create a reference to the named value. This ensures that it is emitted 1686 // if a deferred decl. 1687 llvm::Constant *Aliasee; 1688 if (isa<llvm::FunctionType>(DeclTy)) 1689 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1690 /*ForVTable=*/false); 1691 else 1692 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1693 llvm::PointerType::getUnqual(DeclTy), 0); 1694 1695 // Create the new alias itself, but don't set a name yet. 1696 llvm::GlobalValue *GA = 1697 new llvm::GlobalAlias(Aliasee->getType(), 1698 llvm::Function::ExternalLinkage, 1699 "", Aliasee, &getModule()); 1700 1701 if (Entry) { 1702 assert(Entry->isDeclaration()); 1703 1704 // If there is a declaration in the module, then we had an extern followed 1705 // by the alias, as in: 1706 // extern int test6(); 1707 // ... 1708 // int test6() __attribute__((alias("test7"))); 1709 // 1710 // Remove it and replace uses of it with the alias. 1711 GA->takeName(Entry); 1712 1713 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1714 Entry->getType())); 1715 Entry->eraseFromParent(); 1716 } else { 1717 GA->setName(MangledName); 1718 } 1719 1720 // Set attributes which are particular to an alias; this is a 1721 // specialization of the attributes which may be set on a global 1722 // variable/function. 1723 if (D->hasAttr<DLLExportAttr>()) { 1724 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1725 // The dllexport attribute is ignored for undefined symbols. 1726 if (FD->hasBody()) 1727 GA->setLinkage(llvm::Function::DLLExportLinkage); 1728 } else { 1729 GA->setLinkage(llvm::Function::DLLExportLinkage); 1730 } 1731 } else if (D->hasAttr<WeakAttr>() || 1732 D->hasAttr<WeakRefAttr>() || 1733 D->isWeakImported()) { 1734 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1735 } 1736 1737 SetCommonAttributes(D, GA); 1738 } 1739 1740 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1741 ArrayRef<llvm::Type*> Tys) { 1742 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1743 Tys); 1744 } 1745 1746 static llvm::StringMapEntry<llvm::Constant*> & 1747 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1748 const StringLiteral *Literal, 1749 bool TargetIsLSB, 1750 bool &IsUTF16, 1751 unsigned &StringLength) { 1752 StringRef String = Literal->getString(); 1753 unsigned NumBytes = String.size(); 1754 1755 // Check for simple case. 1756 if (!Literal->containsNonAsciiOrNull()) { 1757 StringLength = NumBytes; 1758 return Map.GetOrCreateValue(String); 1759 } 1760 1761 // Otherwise, convert the UTF8 literals into a byte string. 1762 SmallVector<UTF16, 128> ToBuf(NumBytes); 1763 const UTF8 *FromPtr = (UTF8 *)String.data(); 1764 UTF16 *ToPtr = &ToBuf[0]; 1765 1766 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1767 &ToPtr, ToPtr + NumBytes, 1768 strictConversion); 1769 1770 // ConvertUTF8toUTF16 returns the length in ToPtr. 1771 StringLength = ToPtr - &ToBuf[0]; 1772 1773 // Render the UTF-16 string into a byte array and convert to the target byte 1774 // order. 1775 // 1776 // FIXME: This isn't something we should need to do here. 1777 llvm::SmallString<128> AsBytes; 1778 AsBytes.reserve(StringLength * 2); 1779 for (unsigned i = 0; i != StringLength; ++i) { 1780 unsigned short Val = ToBuf[i]; 1781 if (TargetIsLSB) { 1782 AsBytes.push_back(Val & 0xFF); 1783 AsBytes.push_back(Val >> 8); 1784 } else { 1785 AsBytes.push_back(Val >> 8); 1786 AsBytes.push_back(Val & 0xFF); 1787 } 1788 } 1789 // Append one extra null character, the second is automatically added by our 1790 // caller. 1791 AsBytes.push_back(0); 1792 1793 IsUTF16 = true; 1794 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1795 } 1796 1797 static llvm::StringMapEntry<llvm::Constant*> & 1798 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1799 const StringLiteral *Literal, 1800 unsigned &StringLength) 1801 { 1802 StringRef String = Literal->getString(); 1803 StringLength = String.size(); 1804 return Map.GetOrCreateValue(String); 1805 } 1806 1807 llvm::Constant * 1808 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1809 unsigned StringLength = 0; 1810 bool isUTF16 = false; 1811 llvm::StringMapEntry<llvm::Constant*> &Entry = 1812 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1813 getTargetData().isLittleEndian(), 1814 isUTF16, StringLength); 1815 1816 if (llvm::Constant *C = Entry.getValue()) 1817 return C; 1818 1819 llvm::Constant *Zero = 1820 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1821 llvm::Constant *Zeros[] = { Zero, Zero }; 1822 1823 // If we don't already have it, get __CFConstantStringClassReference. 1824 if (!CFConstantStringClassRef) { 1825 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1826 Ty = llvm::ArrayType::get(Ty, 0); 1827 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1828 "__CFConstantStringClassReference"); 1829 // Decay array -> ptr 1830 CFConstantStringClassRef = 1831 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1832 } 1833 1834 QualType CFTy = getContext().getCFConstantStringType(); 1835 1836 llvm::StructType *STy = 1837 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1838 1839 llvm::Constant *Fields[4]; 1840 1841 // Class pointer. 1842 Fields[0] = CFConstantStringClassRef; 1843 1844 // Flags. 1845 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1846 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1847 llvm::ConstantInt::get(Ty, 0x07C8); 1848 1849 // String pointer. 1850 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1851 1852 llvm::GlobalValue::LinkageTypes Linkage; 1853 if (isUTF16) 1854 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1855 Linkage = llvm::GlobalValue::InternalLinkage; 1856 else 1857 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1858 // when using private linkage. It is not clear if this is a bug in ld 1859 // or a reasonable new restriction. 1860 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1861 1862 // Note: -fwritable-strings doesn't make the backing store strings of 1863 // CFStrings writable. (See <rdar://problem/10657500>) 1864 llvm::GlobalVariable *GV = 1865 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 1866 Linkage, C, ".str"); 1867 GV->setUnnamedAddr(true); 1868 if (isUTF16) { 1869 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1870 GV->setAlignment(Align.getQuantity()); 1871 } else { 1872 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1873 GV->setAlignment(Align.getQuantity()); 1874 } 1875 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1876 1877 // String length. 1878 Ty = getTypes().ConvertType(getContext().LongTy); 1879 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1880 1881 // The struct. 1882 C = llvm::ConstantStruct::get(STy, Fields); 1883 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1884 llvm::GlobalVariable::PrivateLinkage, C, 1885 "_unnamed_cfstring_"); 1886 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 1887 GV->setSection(Sect); 1888 Entry.setValue(GV); 1889 1890 return GV; 1891 } 1892 1893 static RecordDecl * 1894 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1895 DeclContext *DC, IdentifierInfo *Id) { 1896 SourceLocation Loc; 1897 if (Ctx.getLangOptions().CPlusPlus) 1898 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1899 else 1900 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1901 } 1902 1903 llvm::Constant * 1904 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1905 unsigned StringLength = 0; 1906 llvm::StringMapEntry<llvm::Constant*> &Entry = 1907 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1908 1909 if (llvm::Constant *C = Entry.getValue()) 1910 return C; 1911 1912 llvm::Constant *Zero = 1913 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1914 llvm::Constant *Zeros[] = { Zero, Zero }; 1915 1916 // If we don't already have it, get _NSConstantStringClassReference. 1917 if (!ConstantStringClassRef) { 1918 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1919 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1920 llvm::Constant *GV; 1921 if (Features.ObjCNonFragileABI) { 1922 std::string str = 1923 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1924 : "OBJC_CLASS_$_" + StringClass; 1925 GV = getObjCRuntime().GetClassGlobal(str); 1926 // Make sure the result is of the correct type. 1927 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1928 ConstantStringClassRef = 1929 llvm::ConstantExpr::getBitCast(GV, PTy); 1930 } else { 1931 std::string str = 1932 StringClass.empty() ? "_NSConstantStringClassReference" 1933 : "_" + StringClass + "ClassReference"; 1934 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1935 GV = CreateRuntimeVariable(PTy, str); 1936 // Decay array -> ptr 1937 ConstantStringClassRef = 1938 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1939 } 1940 } 1941 1942 if (!NSConstantStringType) { 1943 // Construct the type for a constant NSString. 1944 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1945 Context.getTranslationUnitDecl(), 1946 &Context.Idents.get("__builtin_NSString")); 1947 D->startDefinition(); 1948 1949 QualType FieldTypes[3]; 1950 1951 // const int *isa; 1952 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1953 // const char *str; 1954 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1955 // unsigned int length; 1956 FieldTypes[2] = Context.UnsignedIntTy; 1957 1958 // Create fields 1959 for (unsigned i = 0; i < 3; ++i) { 1960 FieldDecl *Field = FieldDecl::Create(Context, D, 1961 SourceLocation(), 1962 SourceLocation(), 0, 1963 FieldTypes[i], /*TInfo=*/0, 1964 /*BitWidth=*/0, 1965 /*Mutable=*/false, 1966 /*HasInit=*/false); 1967 Field->setAccess(AS_public); 1968 D->addDecl(Field); 1969 } 1970 1971 D->completeDefinition(); 1972 QualType NSTy = Context.getTagDeclType(D); 1973 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1974 } 1975 1976 llvm::Constant *Fields[3]; 1977 1978 // Class pointer. 1979 Fields[0] = ConstantStringClassRef; 1980 1981 // String pointer. 1982 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1983 1984 llvm::GlobalValue::LinkageTypes Linkage; 1985 bool isConstant; 1986 Linkage = llvm::GlobalValue::PrivateLinkage; 1987 isConstant = !Features.WritableStrings; 1988 1989 llvm::GlobalVariable *GV = 1990 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1991 ".str"); 1992 GV->setUnnamedAddr(true); 1993 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1994 GV->setAlignment(Align.getQuantity()); 1995 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1996 1997 // String length. 1998 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1999 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2000 2001 // The struct. 2002 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2003 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2004 llvm::GlobalVariable::PrivateLinkage, C, 2005 "_unnamed_nsstring_"); 2006 // FIXME. Fix section. 2007 if (const char *Sect = 2008 Features.ObjCNonFragileABI 2009 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2010 : getContext().getTargetInfo().getNSStringSection()) 2011 GV->setSection(Sect); 2012 Entry.setValue(GV); 2013 2014 return GV; 2015 } 2016 2017 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2018 if (ObjCFastEnumerationStateType.isNull()) { 2019 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2020 Context.getTranslationUnitDecl(), 2021 &Context.Idents.get("__objcFastEnumerationState")); 2022 D->startDefinition(); 2023 2024 QualType FieldTypes[] = { 2025 Context.UnsignedLongTy, 2026 Context.getPointerType(Context.getObjCIdType()), 2027 Context.getPointerType(Context.UnsignedLongTy), 2028 Context.getConstantArrayType(Context.UnsignedLongTy, 2029 llvm::APInt(32, 5), ArrayType::Normal, 0) 2030 }; 2031 2032 for (size_t i = 0; i < 4; ++i) { 2033 FieldDecl *Field = FieldDecl::Create(Context, 2034 D, 2035 SourceLocation(), 2036 SourceLocation(), 0, 2037 FieldTypes[i], /*TInfo=*/0, 2038 /*BitWidth=*/0, 2039 /*Mutable=*/false, 2040 /*HasInit=*/false); 2041 Field->setAccess(AS_public); 2042 D->addDecl(Field); 2043 } 2044 2045 D->completeDefinition(); 2046 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2047 } 2048 2049 return ObjCFastEnumerationStateType; 2050 } 2051 2052 /// GetStringForStringLiteral - Return the appropriate bytes for a 2053 /// string literal, properly padded to match the literal type. 2054 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 2055 assert((E->isAscii() || E->isUTF8()) 2056 && "Use GetConstantArrayFromStringLiteral for wide strings"); 2057 const ASTContext &Context = getContext(); 2058 const ConstantArrayType *CAT = 2059 Context.getAsConstantArrayType(E->getType()); 2060 assert(CAT && "String isn't pointer or array!"); 2061 2062 // Resize the string to the right size. 2063 uint64_t RealLen = CAT->getSize().getZExtValue(); 2064 2065 std::string Str = E->getString().str(); 2066 Str.resize(RealLen, '\0'); 2067 2068 return Str; 2069 } 2070 2071 llvm::Constant * 2072 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2073 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2074 2075 // Don't emit it as the address of the string, emit the string data itself 2076 // as an inline array. 2077 if (E->getCharByteWidth()==1) { 2078 return llvm::ConstantArray::get(VMContext, 2079 GetStringForStringLiteral(E), false); 2080 } else { 2081 llvm::ArrayType *AType = 2082 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2083 llvm::Type *ElemTy = AType->getElementType(); 2084 unsigned NumElements = AType->getNumElements(); 2085 std::vector<llvm::Constant*> Elts; 2086 Elts.reserve(NumElements); 2087 2088 for(unsigned i=0;i<E->getLength();++i) { 2089 unsigned value = E->getCodeUnit(i); 2090 llvm::Constant *C = llvm::ConstantInt::get(ElemTy,value,false); 2091 Elts.push_back(C); 2092 } 2093 for(unsigned i=E->getLength();i<NumElements;++i) { 2094 llvm::Constant *C = llvm::ConstantInt::get(ElemTy,0,false); 2095 Elts.push_back(C); 2096 } 2097 2098 return llvm::ConstantArray::get(AType, Elts); 2099 } 2100 2101 } 2102 2103 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2104 /// constant array for the given string literal. 2105 llvm::Constant * 2106 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2107 // FIXME: This can be more efficient. 2108 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 2109 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2110 if (S->isAscii() || S->isUTF8()) { 2111 return GetAddrOfConstantString(GetStringForStringLiteral(S), 2112 /* GlobalName */ 0, 2113 Align.getQuantity()); 2114 } 2115 2116 // FIXME: the following does not memoize wide strings 2117 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2118 llvm::GlobalVariable *GV = 2119 new llvm::GlobalVariable(getModule(),C->getType(), 2120 !Features.WritableStrings, 2121 llvm::GlobalValue::PrivateLinkage, 2122 C,".str"); 2123 2124 GV->setAlignment(Align.getQuantity()); 2125 GV->setUnnamedAddr(true); 2126 2127 return GV; 2128 } 2129 2130 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2131 /// array for the given ObjCEncodeExpr node. 2132 llvm::Constant * 2133 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2134 std::string Str; 2135 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2136 2137 return GetAddrOfConstantCString(Str); 2138 } 2139 2140 2141 /// GenerateWritableString -- Creates storage for a string literal. 2142 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2143 bool constant, 2144 CodeGenModule &CGM, 2145 const char *GlobalName, 2146 unsigned Alignment) { 2147 // Create Constant for this string literal. Don't add a '\0'. 2148 llvm::Constant *C = 2149 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 2150 2151 // Create a global variable for this string 2152 llvm::GlobalVariable *GV = 2153 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2154 llvm::GlobalValue::PrivateLinkage, 2155 C, GlobalName); 2156 GV->setAlignment(Alignment); 2157 GV->setUnnamedAddr(true); 2158 return GV; 2159 } 2160 2161 /// GetAddrOfConstantString - Returns a pointer to a character array 2162 /// containing the literal. This contents are exactly that of the 2163 /// given string, i.e. it will not be null terminated automatically; 2164 /// see GetAddrOfConstantCString. Note that whether the result is 2165 /// actually a pointer to an LLVM constant depends on 2166 /// Feature.WriteableStrings. 2167 /// 2168 /// The result has pointer to array type. 2169 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2170 const char *GlobalName, 2171 unsigned Alignment) { 2172 bool IsConstant = !Features.WritableStrings; 2173 2174 // Get the default prefix if a name wasn't specified. 2175 if (!GlobalName) 2176 GlobalName = ".str"; 2177 2178 // Don't share any string literals if strings aren't constant. 2179 if (!IsConstant) 2180 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2181 2182 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2183 ConstantStringMap.GetOrCreateValue(Str); 2184 2185 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2186 if (Alignment > GV->getAlignment()) { 2187 GV->setAlignment(Alignment); 2188 } 2189 return GV; 2190 } 2191 2192 // Create a global variable for this. 2193 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); 2194 Entry.setValue(GV); 2195 return GV; 2196 } 2197 2198 /// GetAddrOfConstantCString - Returns a pointer to a character 2199 /// array containing the literal and a terminating '\0' 2200 /// character. The result has pointer to array type. 2201 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2202 const char *GlobalName, 2203 unsigned Alignment) { 2204 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2205 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2206 } 2207 2208 /// EmitObjCPropertyImplementations - Emit information for synthesized 2209 /// properties for an implementation. 2210 void CodeGenModule::EmitObjCPropertyImplementations(const 2211 ObjCImplementationDecl *D) { 2212 for (ObjCImplementationDecl::propimpl_iterator 2213 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2214 ObjCPropertyImplDecl *PID = *i; 2215 2216 // Dynamic is just for type-checking. 2217 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2218 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2219 2220 // Determine which methods need to be implemented, some may have 2221 // been overridden. Note that ::isSynthesized is not the method 2222 // we want, that just indicates if the decl came from a 2223 // property. What we want to know is if the method is defined in 2224 // this implementation. 2225 if (!D->getInstanceMethod(PD->getGetterName())) 2226 CodeGenFunction(*this).GenerateObjCGetter( 2227 const_cast<ObjCImplementationDecl *>(D), PID); 2228 if (!PD->isReadOnly() && 2229 !D->getInstanceMethod(PD->getSetterName())) 2230 CodeGenFunction(*this).GenerateObjCSetter( 2231 const_cast<ObjCImplementationDecl *>(D), PID); 2232 } 2233 } 2234 } 2235 2236 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2237 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2238 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2239 ivar; ivar = ivar->getNextIvar()) 2240 if (ivar->getType().isDestructedType()) 2241 return true; 2242 2243 return false; 2244 } 2245 2246 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2247 /// for an implementation. 2248 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2249 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2250 if (needsDestructMethod(D)) { 2251 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2252 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2253 ObjCMethodDecl *DTORMethod = 2254 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2255 cxxSelector, getContext().VoidTy, 0, D, 2256 /*isInstance=*/true, /*isVariadic=*/false, 2257 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2258 /*isDefined=*/false, ObjCMethodDecl::Required); 2259 D->addInstanceMethod(DTORMethod); 2260 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2261 D->setHasCXXStructors(true); 2262 } 2263 2264 // If the implementation doesn't have any ivar initializers, we don't need 2265 // a .cxx_construct. 2266 if (D->getNumIvarInitializers() == 0) 2267 return; 2268 2269 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2270 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2271 // The constructor returns 'self'. 2272 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2273 D->getLocation(), 2274 D->getLocation(), 2275 cxxSelector, 2276 getContext().getObjCIdType(), 0, 2277 D, /*isInstance=*/true, 2278 /*isVariadic=*/false, 2279 /*isSynthesized=*/true, 2280 /*isImplicitlyDeclared=*/true, 2281 /*isDefined=*/false, 2282 ObjCMethodDecl::Required); 2283 D->addInstanceMethod(CTORMethod); 2284 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2285 D->setHasCXXStructors(true); 2286 } 2287 2288 /// EmitNamespace - Emit all declarations in a namespace. 2289 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2290 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2291 I != E; ++I) 2292 EmitTopLevelDecl(*I); 2293 } 2294 2295 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2296 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2297 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2298 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2299 ErrorUnsupported(LSD, "linkage spec"); 2300 return; 2301 } 2302 2303 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2304 I != E; ++I) 2305 EmitTopLevelDecl(*I); 2306 } 2307 2308 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2309 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2310 // If an error has occurred, stop code generation, but continue 2311 // parsing and semantic analysis (to ensure all warnings and errors 2312 // are emitted). 2313 if (Diags.hasErrorOccurred()) 2314 return; 2315 2316 // Ignore dependent declarations. 2317 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2318 return; 2319 2320 switch (D->getKind()) { 2321 case Decl::CXXConversion: 2322 case Decl::CXXMethod: 2323 case Decl::Function: 2324 // Skip function templates 2325 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2326 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2327 return; 2328 2329 EmitGlobal(cast<FunctionDecl>(D)); 2330 break; 2331 2332 case Decl::Var: 2333 EmitGlobal(cast<VarDecl>(D)); 2334 break; 2335 2336 // Indirect fields from global anonymous structs and unions can be 2337 // ignored; only the actual variable requires IR gen support. 2338 case Decl::IndirectField: 2339 break; 2340 2341 // C++ Decls 2342 case Decl::Namespace: 2343 EmitNamespace(cast<NamespaceDecl>(D)); 2344 break; 2345 // No code generation needed. 2346 case Decl::UsingShadow: 2347 case Decl::Using: 2348 case Decl::UsingDirective: 2349 case Decl::ClassTemplate: 2350 case Decl::FunctionTemplate: 2351 case Decl::TypeAliasTemplate: 2352 case Decl::NamespaceAlias: 2353 case Decl::Block: 2354 case Decl::Import: 2355 break; 2356 case Decl::CXXConstructor: 2357 // Skip function templates 2358 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2359 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2360 return; 2361 2362 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2363 break; 2364 case Decl::CXXDestructor: 2365 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2366 return; 2367 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2368 break; 2369 2370 case Decl::StaticAssert: 2371 // Nothing to do. 2372 break; 2373 2374 // Objective-C Decls 2375 2376 // Forward declarations, no (immediate) code generation. 2377 case Decl::ObjCInterface: 2378 break; 2379 2380 case Decl::ObjCCategory: { 2381 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2382 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2383 Context.ResetObjCLayout(CD->getClassInterface()); 2384 break; 2385 } 2386 2387 case Decl::ObjCProtocol: { 2388 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2389 if (Proto->isThisDeclarationADefinition()) 2390 ObjCRuntime->GenerateProtocol(Proto); 2391 break; 2392 } 2393 2394 case Decl::ObjCCategoryImpl: 2395 // Categories have properties but don't support synthesize so we 2396 // can ignore them here. 2397 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2398 break; 2399 2400 case Decl::ObjCImplementation: { 2401 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2402 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2403 Context.ResetObjCLayout(OMD->getClassInterface()); 2404 EmitObjCPropertyImplementations(OMD); 2405 EmitObjCIvarInitializations(OMD); 2406 ObjCRuntime->GenerateClass(OMD); 2407 break; 2408 } 2409 case Decl::ObjCMethod: { 2410 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2411 // If this is not a prototype, emit the body. 2412 if (OMD->getBody()) 2413 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2414 break; 2415 } 2416 case Decl::ObjCCompatibleAlias: 2417 // compatibility-alias is a directive and has no code gen. 2418 break; 2419 2420 case Decl::LinkageSpec: 2421 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2422 break; 2423 2424 case Decl::FileScopeAsm: { 2425 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2426 StringRef AsmString = AD->getAsmString()->getString(); 2427 2428 const std::string &S = getModule().getModuleInlineAsm(); 2429 if (S.empty()) 2430 getModule().setModuleInlineAsm(AsmString); 2431 else if (*--S.end() == '\n') 2432 getModule().setModuleInlineAsm(S + AsmString.str()); 2433 else 2434 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2435 break; 2436 } 2437 2438 default: 2439 // Make sure we handled everything we should, every other kind is a 2440 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2441 // function. Need to recode Decl::Kind to do that easily. 2442 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2443 } 2444 } 2445 2446 /// Turns the given pointer into a constant. 2447 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2448 const void *Ptr) { 2449 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2450 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2451 return llvm::ConstantInt::get(i64, PtrInt); 2452 } 2453 2454 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2455 llvm::NamedMDNode *&GlobalMetadata, 2456 GlobalDecl D, 2457 llvm::GlobalValue *Addr) { 2458 if (!GlobalMetadata) 2459 GlobalMetadata = 2460 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2461 2462 // TODO: should we report variant information for ctors/dtors? 2463 llvm::Value *Ops[] = { 2464 Addr, 2465 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2466 }; 2467 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2468 } 2469 2470 /// Emits metadata nodes associating all the global values in the 2471 /// current module with the Decls they came from. This is useful for 2472 /// projects using IR gen as a subroutine. 2473 /// 2474 /// Since there's currently no way to associate an MDNode directly 2475 /// with an llvm::GlobalValue, we create a global named metadata 2476 /// with the name 'clang.global.decl.ptrs'. 2477 void CodeGenModule::EmitDeclMetadata() { 2478 llvm::NamedMDNode *GlobalMetadata = 0; 2479 2480 // StaticLocalDeclMap 2481 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2482 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2483 I != E; ++I) { 2484 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2485 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2486 } 2487 } 2488 2489 /// Emits metadata nodes for all the local variables in the current 2490 /// function. 2491 void CodeGenFunction::EmitDeclMetadata() { 2492 if (LocalDeclMap.empty()) return; 2493 2494 llvm::LLVMContext &Context = getLLVMContext(); 2495 2496 // Find the unique metadata ID for this name. 2497 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2498 2499 llvm::NamedMDNode *GlobalMetadata = 0; 2500 2501 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2502 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2503 const Decl *D = I->first; 2504 llvm::Value *Addr = I->second; 2505 2506 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2507 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2508 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2509 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2510 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2511 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2512 } 2513 } 2514 } 2515 2516 void CodeGenModule::EmitCoverageFile() { 2517 if (!getCodeGenOpts().CoverageFile.empty()) { 2518 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2519 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2520 llvm::LLVMContext &Ctx = TheModule.getContext(); 2521 llvm::MDString *CoverageFile = 2522 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2523 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2524 llvm::MDNode *CU = CUNode->getOperand(i); 2525 llvm::Value *node[] = { CoverageFile, CU }; 2526 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2527 GCov->addOperand(N); 2528 } 2529 } 2530 } 2531 } 2532