1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 55 #include "llvm/IR/AttributeMask.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/xxhash.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include "llvm/TargetParser/X86TargetParser.h" 73 #include <optional> 74 75 using namespace clang; 76 using namespace CodeGen; 77 78 static llvm::cl::opt<bool> LimitedCoverage( 79 "limited-coverage-experimental", llvm::cl::Hidden, 80 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 81 82 static const char AnnotationSection[] = "llvm.metadata"; 83 84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 85 switch (CGM.getContext().getCXXABIKind()) { 86 case TargetCXXABI::AppleARM64: 87 case TargetCXXABI::Fuchsia: 88 case TargetCXXABI::GenericAArch64: 89 case TargetCXXABI::GenericARM: 90 case TargetCXXABI::iOS: 91 case TargetCXXABI::WatchOS: 92 case TargetCXXABI::GenericMIPS: 93 case TargetCXXABI::GenericItanium: 94 case TargetCXXABI::WebAssembly: 95 case TargetCXXABI::XL: 96 return CreateItaniumCXXABI(CGM); 97 case TargetCXXABI::Microsoft: 98 return CreateMicrosoftCXXABI(CGM); 99 } 100 101 llvm_unreachable("invalid C++ ABI kind"); 102 } 103 104 static std::unique_ptr<TargetCodeGenInfo> 105 createTargetCodeGenInfo(CodeGenModule &CGM) { 106 const TargetInfo &Target = CGM.getTarget(); 107 const llvm::Triple &Triple = Target.getTriple(); 108 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 109 110 switch (Triple.getArch()) { 111 default: 112 return createDefaultTargetCodeGenInfo(CGM); 113 114 case llvm::Triple::le32: 115 return createPNaClTargetCodeGenInfo(CGM); 116 case llvm::Triple::m68k: 117 return createM68kTargetCodeGenInfo(CGM); 118 case llvm::Triple::mips: 119 case llvm::Triple::mipsel: 120 if (Triple.getOS() == llvm::Triple::NaCl) 121 return createPNaClTargetCodeGenInfo(CGM); 122 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 123 124 case llvm::Triple::mips64: 125 case llvm::Triple::mips64el: 126 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 127 128 case llvm::Triple::avr: { 129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 130 // on avrtiny. For passing return value, R18~R25 are used on avr, and 131 // R22~R25 are used on avrtiny. 132 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 133 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 134 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 135 } 136 137 case llvm::Triple::aarch64: 138 case llvm::Triple::aarch64_32: 139 case llvm::Triple::aarch64_be: { 140 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 141 if (Target.getABI() == "darwinpcs") 142 Kind = AArch64ABIKind::DarwinPCS; 143 else if (Triple.isOSWindows()) 144 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 145 146 return createAArch64TargetCodeGenInfo(CGM, Kind); 147 } 148 149 case llvm::Triple::wasm32: 150 case llvm::Triple::wasm64: { 151 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 152 if (Target.getABI() == "experimental-mv") 153 Kind = WebAssemblyABIKind::ExperimentalMV; 154 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 155 } 156 157 case llvm::Triple::arm: 158 case llvm::Triple::armeb: 159 case llvm::Triple::thumb: 160 case llvm::Triple::thumbeb: { 161 if (Triple.getOS() == llvm::Triple::Win32) 162 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 163 164 ARMABIKind Kind = ARMABIKind::AAPCS; 165 StringRef ABIStr = Target.getABI(); 166 if (ABIStr == "apcs-gnu") 167 Kind = ARMABIKind::APCS; 168 else if (ABIStr == "aapcs16") 169 Kind = ARMABIKind::AAPCS16_VFP; 170 else if (CodeGenOpts.FloatABI == "hard" || 171 (CodeGenOpts.FloatABI != "soft" && 172 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 173 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 174 Triple.getEnvironment() == llvm::Triple::EABIHF))) 175 Kind = ARMABIKind::AAPCS_VFP; 176 177 return createARMTargetCodeGenInfo(CGM, Kind); 178 } 179 180 case llvm::Triple::ppc: { 181 if (Triple.isOSAIX()) 182 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 183 184 bool IsSoftFloat = 185 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 186 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 187 } 188 case llvm::Triple::ppcle: { 189 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 190 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 191 } 192 case llvm::Triple::ppc64: 193 if (Triple.isOSAIX()) 194 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 195 196 if (Triple.isOSBinFormatELF()) { 197 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 198 if (Target.getABI() == "elfv2") 199 Kind = PPC64_SVR4_ABIKind::ELFv2; 200 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 201 202 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 203 } 204 return createPPC64TargetCodeGenInfo(CGM); 205 case llvm::Triple::ppc64le: { 206 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 207 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 208 if (Target.getABI() == "elfv1") 209 Kind = PPC64_SVR4_ABIKind::ELFv1; 210 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 211 212 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 213 } 214 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 return createNVPTXTargetCodeGenInfo(CGM); 218 219 case llvm::Triple::msp430: 220 return createMSP430TargetCodeGenInfo(CGM); 221 222 case llvm::Triple::riscv32: 223 case llvm::Triple::riscv64: { 224 StringRef ABIStr = Target.getABI(); 225 unsigned XLen = Target.getPointerWidth(LangAS::Default); 226 unsigned ABIFLen = 0; 227 if (ABIStr.endswith("f")) 228 ABIFLen = 32; 229 else if (ABIStr.endswith("d")) 230 ABIFLen = 64; 231 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen); 232 } 233 234 case llvm::Triple::systemz: { 235 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 236 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 237 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 238 } 239 240 case llvm::Triple::tce: 241 case llvm::Triple::tcele: 242 return createTCETargetCodeGenInfo(CGM); 243 244 case llvm::Triple::x86: { 245 bool IsDarwinVectorABI = Triple.isOSDarwin(); 246 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 247 248 if (Triple.getOS() == llvm::Triple::Win32) { 249 return createWinX86_32TargetCodeGenInfo( 250 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 251 CodeGenOpts.NumRegisterParameters); 252 } 253 return createX86_32TargetCodeGenInfo( 254 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 255 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 256 } 257 258 case llvm::Triple::x86_64: { 259 StringRef ABI = Target.getABI(); 260 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 261 : ABI == "avx" ? X86AVXABILevel::AVX 262 : X86AVXABILevel::None); 263 264 switch (Triple.getOS()) { 265 case llvm::Triple::Win32: 266 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 267 default: 268 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 } 270 } 271 case llvm::Triple::hexagon: 272 return createHexagonTargetCodeGenInfo(CGM); 273 case llvm::Triple::lanai: 274 return createLanaiTargetCodeGenInfo(CGM); 275 case llvm::Triple::r600: 276 return createAMDGPUTargetCodeGenInfo(CGM); 277 case llvm::Triple::amdgcn: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::sparc: 280 return createSparcV8TargetCodeGenInfo(CGM); 281 case llvm::Triple::sparcv9: 282 return createSparcV9TargetCodeGenInfo(CGM); 283 case llvm::Triple::xcore: 284 return createXCoreTargetCodeGenInfo(CGM); 285 case llvm::Triple::arc: 286 return createARCTargetCodeGenInfo(CGM); 287 case llvm::Triple::spir: 288 case llvm::Triple::spir64: 289 return createCommonSPIRTargetCodeGenInfo(CGM); 290 case llvm::Triple::spirv32: 291 case llvm::Triple::spirv64: 292 return createSPIRVTargetCodeGenInfo(CGM); 293 case llvm::Triple::ve: 294 return createVETargetCodeGenInfo(CGM); 295 case llvm::Triple::csky: { 296 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 297 bool hasFP64 = 298 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 299 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 300 : hasFP64 ? 64 301 : 32); 302 } 303 case llvm::Triple::bpfeb: 304 case llvm::Triple::bpfel: 305 return createBPFTargetCodeGenInfo(CGM); 306 case llvm::Triple::loongarch32: 307 case llvm::Triple::loongarch64: { 308 StringRef ABIStr = Target.getABI(); 309 unsigned ABIFRLen = 0; 310 if (ABIStr.endswith("f")) 311 ABIFRLen = 32; 312 else if (ABIStr.endswith("d")) 313 ABIFRLen = 64; 314 return createLoongArchTargetCodeGenInfo( 315 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 316 } 317 } 318 } 319 320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 321 if (!TheTargetCodeGenInfo) 322 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 323 return *TheTargetCodeGenInfo; 324 } 325 326 CodeGenModule::CodeGenModule(ASTContext &C, 327 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 328 const HeaderSearchOptions &HSO, 329 const PreprocessorOptions &PPO, 330 const CodeGenOptions &CGO, llvm::Module &M, 331 DiagnosticsEngine &diags, 332 CoverageSourceInfo *CoverageInfo) 333 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 334 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 335 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 336 VMContext(M.getContext()), Types(*this), VTables(*this), 337 SanitizerMD(new SanitizerMetadata(*this)) { 338 339 // Initialize the type cache. 340 llvm::LLVMContext &LLVMContext = M.getContext(); 341 VoidTy = llvm::Type::getVoidTy(LLVMContext); 342 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 343 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 344 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 345 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 346 HalfTy = llvm::Type::getHalfTy(LLVMContext); 347 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 348 FloatTy = llvm::Type::getFloatTy(LLVMContext); 349 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 350 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 351 PointerAlignInBytes = 352 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 353 .getQuantity(); 354 SizeSizeInBytes = 355 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 356 IntAlignInBytes = 357 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 358 CharTy = 359 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 360 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 361 IntPtrTy = llvm::IntegerType::get(LLVMContext, 362 C.getTargetInfo().getMaxPointerWidth()); 363 Int8PtrTy = Int8Ty->getPointerTo(0); 364 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 365 const llvm::DataLayout &DL = M.getDataLayout(); 366 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 367 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 368 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 369 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 370 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 371 372 // Build C++20 Module initializers. 373 // TODO: Add Microsoft here once we know the mangling required for the 374 // initializers. 375 CXX20ModuleInits = 376 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 377 ItaniumMangleContext::MK_Itanium; 378 379 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 380 381 if (LangOpts.ObjC) 382 createObjCRuntime(); 383 if (LangOpts.OpenCL) 384 createOpenCLRuntime(); 385 if (LangOpts.OpenMP) 386 createOpenMPRuntime(); 387 if (LangOpts.CUDA) 388 createCUDARuntime(); 389 if (LangOpts.HLSL) 390 createHLSLRuntime(); 391 392 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 393 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 394 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 395 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 396 getCXXABI().getMangleContext())); 397 398 // If debug info or coverage generation is enabled, create the CGDebugInfo 399 // object. 400 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 401 CodeGenOpts.CoverageNotesFile.size() || 402 CodeGenOpts.CoverageDataFile.size()) 403 DebugInfo.reset(new CGDebugInfo(*this)); 404 405 Block.GlobalUniqueCount = 0; 406 407 if (C.getLangOpts().ObjC) 408 ObjCData.reset(new ObjCEntrypoints()); 409 410 if (CodeGenOpts.hasProfileClangUse()) { 411 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 412 CodeGenOpts.ProfileInstrumentUsePath, *FS, 413 CodeGenOpts.ProfileRemappingFile); 414 // We're checking for profile read errors in CompilerInvocation, so if 415 // there was an error it should've already been caught. If it hasn't been 416 // somehow, trip an assertion. 417 assert(ReaderOrErr); 418 PGOReader = std::move(ReaderOrErr.get()); 419 } 420 421 // If coverage mapping generation is enabled, create the 422 // CoverageMappingModuleGen object. 423 if (CodeGenOpts.CoverageMapping) 424 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 425 426 // Generate the module name hash here if needed. 427 if (CodeGenOpts.UniqueInternalLinkageNames && 428 !getModule().getSourceFileName().empty()) { 429 std::string Path = getModule().getSourceFileName(); 430 // Check if a path substitution is needed from the MacroPrefixMap. 431 for (const auto &Entry : LangOpts.MacroPrefixMap) 432 if (Path.rfind(Entry.first, 0) != std::string::npos) { 433 Path = Entry.second + Path.substr(Entry.first.size()); 434 break; 435 } 436 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 437 } 438 } 439 440 CodeGenModule::~CodeGenModule() {} 441 442 void CodeGenModule::createObjCRuntime() { 443 // This is just isGNUFamily(), but we want to force implementors of 444 // new ABIs to decide how best to do this. 445 switch (LangOpts.ObjCRuntime.getKind()) { 446 case ObjCRuntime::GNUstep: 447 case ObjCRuntime::GCC: 448 case ObjCRuntime::ObjFW: 449 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 450 return; 451 452 case ObjCRuntime::FragileMacOSX: 453 case ObjCRuntime::MacOSX: 454 case ObjCRuntime::iOS: 455 case ObjCRuntime::WatchOS: 456 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 457 return; 458 } 459 llvm_unreachable("bad runtime kind"); 460 } 461 462 void CodeGenModule::createOpenCLRuntime() { 463 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 464 } 465 466 void CodeGenModule::createOpenMPRuntime() { 467 // Select a specialized code generation class based on the target, if any. 468 // If it does not exist use the default implementation. 469 switch (getTriple().getArch()) { 470 case llvm::Triple::nvptx: 471 case llvm::Triple::nvptx64: 472 case llvm::Triple::amdgcn: 473 assert(getLangOpts().OpenMPIsTargetDevice && 474 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 475 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 476 break; 477 default: 478 if (LangOpts.OpenMPSimd) 479 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 480 else 481 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 482 break; 483 } 484 } 485 486 void CodeGenModule::createCUDARuntime() { 487 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 488 } 489 490 void CodeGenModule::createHLSLRuntime() { 491 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 492 } 493 494 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 495 Replacements[Name] = C; 496 } 497 498 void CodeGenModule::applyReplacements() { 499 for (auto &I : Replacements) { 500 StringRef MangledName = I.first; 501 llvm::Constant *Replacement = I.second; 502 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 503 if (!Entry) 504 continue; 505 auto *OldF = cast<llvm::Function>(Entry); 506 auto *NewF = dyn_cast<llvm::Function>(Replacement); 507 if (!NewF) { 508 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 509 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 510 } else { 511 auto *CE = cast<llvm::ConstantExpr>(Replacement); 512 assert(CE->getOpcode() == llvm::Instruction::BitCast || 513 CE->getOpcode() == llvm::Instruction::GetElementPtr); 514 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 515 } 516 } 517 518 // Replace old with new, but keep the old order. 519 OldF->replaceAllUsesWith(Replacement); 520 if (NewF) { 521 NewF->removeFromParent(); 522 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 523 NewF); 524 } 525 OldF->eraseFromParent(); 526 } 527 } 528 529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 530 GlobalValReplacements.push_back(std::make_pair(GV, C)); 531 } 532 533 void CodeGenModule::applyGlobalValReplacements() { 534 for (auto &I : GlobalValReplacements) { 535 llvm::GlobalValue *GV = I.first; 536 llvm::Constant *C = I.second; 537 538 GV->replaceAllUsesWith(C); 539 GV->eraseFromParent(); 540 } 541 } 542 543 // This is only used in aliases that we created and we know they have a 544 // linear structure. 545 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 546 const llvm::Constant *C; 547 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 548 C = GA->getAliasee(); 549 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 550 C = GI->getResolver(); 551 else 552 return GV; 553 554 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 555 if (!AliaseeGV) 556 return nullptr; 557 558 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 559 if (FinalGV == GV) 560 return nullptr; 561 562 return FinalGV; 563 } 564 565 static bool checkAliasedGlobal( 566 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 567 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 568 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 569 SourceRange AliasRange) { 570 GV = getAliasedGlobal(Alias); 571 if (!GV) { 572 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 573 return false; 574 } 575 576 if (GV->hasCommonLinkage()) { 577 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 578 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 579 Diags.Report(Location, diag::err_alias_to_common); 580 return false; 581 } 582 } 583 584 if (GV->isDeclaration()) { 585 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 586 Diags.Report(Location, diag::note_alias_requires_mangled_name) 587 << IsIFunc << IsIFunc; 588 // Provide a note if the given function is not found and exists as a 589 // mangled name. 590 for (const auto &[Decl, Name] : MangledDeclNames) { 591 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 592 if (ND->getName() == GV->getName()) { 593 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 594 << Name 595 << FixItHint::CreateReplacement( 596 AliasRange, 597 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 598 .str()); 599 } 600 } 601 } 602 return false; 603 } 604 605 if (IsIFunc) { 606 // Check resolver function type. 607 const auto *F = dyn_cast<llvm::Function>(GV); 608 if (!F) { 609 Diags.Report(Location, diag::err_alias_to_undefined) 610 << IsIFunc << IsIFunc; 611 return false; 612 } 613 614 llvm::FunctionType *FTy = F->getFunctionType(); 615 if (!FTy->getReturnType()->isPointerTy()) { 616 Diags.Report(Location, diag::err_ifunc_resolver_return); 617 return false; 618 } 619 } 620 621 return true; 622 } 623 624 void CodeGenModule::checkAliases() { 625 // Check if the constructed aliases are well formed. It is really unfortunate 626 // that we have to do this in CodeGen, but we only construct mangled names 627 // and aliases during codegen. 628 bool Error = false; 629 DiagnosticsEngine &Diags = getDiags(); 630 for (const GlobalDecl &GD : Aliases) { 631 const auto *D = cast<ValueDecl>(GD.getDecl()); 632 SourceLocation Location; 633 SourceRange Range; 634 bool IsIFunc = D->hasAttr<IFuncAttr>(); 635 if (const Attr *A = D->getDefiningAttr()) { 636 Location = A->getLocation(); 637 Range = A->getRange(); 638 } else 639 llvm_unreachable("Not an alias or ifunc?"); 640 641 StringRef MangledName = getMangledName(GD); 642 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 643 const llvm::GlobalValue *GV = nullptr; 644 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 645 MangledDeclNames, Range)) { 646 Error = true; 647 continue; 648 } 649 650 llvm::Constant *Aliasee = 651 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 652 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 653 654 llvm::GlobalValue *AliaseeGV; 655 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 656 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 657 else 658 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 659 660 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 661 StringRef AliasSection = SA->getName(); 662 if (AliasSection != AliaseeGV->getSection()) 663 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 664 << AliasSection << IsIFunc << IsIFunc; 665 } 666 667 // We have to handle alias to weak aliases in here. LLVM itself disallows 668 // this since the object semantics would not match the IL one. For 669 // compatibility with gcc we implement it by just pointing the alias 670 // to its aliasee's aliasee. We also warn, since the user is probably 671 // expecting the link to be weak. 672 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 673 if (GA->isInterposable()) { 674 Diags.Report(Location, diag::warn_alias_to_weak_alias) 675 << GV->getName() << GA->getName() << IsIFunc; 676 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 677 GA->getAliasee(), Alias->getType()); 678 679 if (IsIFunc) 680 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 681 else 682 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 683 } 684 } 685 } 686 if (!Error) 687 return; 688 689 for (const GlobalDecl &GD : Aliases) { 690 StringRef MangledName = getMangledName(GD); 691 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 692 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 693 Alias->eraseFromParent(); 694 } 695 } 696 697 void CodeGenModule::clear() { 698 DeferredDeclsToEmit.clear(); 699 EmittedDeferredDecls.clear(); 700 DeferredAnnotations.clear(); 701 if (OpenMPRuntime) 702 OpenMPRuntime->clear(); 703 } 704 705 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 706 StringRef MainFile) { 707 if (!hasDiagnostics()) 708 return; 709 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 710 if (MainFile.empty()) 711 MainFile = "<stdin>"; 712 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 713 } else { 714 if (Mismatched > 0) 715 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 716 717 if (Missing > 0) 718 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 719 } 720 } 721 722 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 723 llvm::Module &M) { 724 if (!LO.VisibilityFromDLLStorageClass) 725 return; 726 727 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 728 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 729 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 730 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 731 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 732 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 733 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 734 CodeGenModule::GetLLVMVisibility( 735 LO.getExternDeclNoDLLStorageClassVisibility()); 736 737 for (llvm::GlobalValue &GV : M.global_values()) { 738 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 739 continue; 740 741 // Reset DSO locality before setting the visibility. This removes 742 // any effects that visibility options and annotations may have 743 // had on the DSO locality. Setting the visibility will implicitly set 744 // appropriate globals to DSO Local; however, this will be pessimistic 745 // w.r.t. to the normal compiler IRGen. 746 GV.setDSOLocal(false); 747 748 if (GV.isDeclarationForLinker()) { 749 GV.setVisibility(GV.getDLLStorageClass() == 750 llvm::GlobalValue::DLLImportStorageClass 751 ? ExternDeclDLLImportVisibility 752 : ExternDeclNoDLLStorageClassVisibility); 753 } else { 754 GV.setVisibility(GV.getDLLStorageClass() == 755 llvm::GlobalValue::DLLExportStorageClass 756 ? DLLExportVisibility 757 : NoDLLStorageClassVisibility); 758 } 759 760 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 761 } 762 } 763 764 void CodeGenModule::Release() { 765 Module *Primary = getContext().getCurrentNamedModule(); 766 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 767 EmitModuleInitializers(Primary); 768 EmitDeferred(); 769 DeferredDecls.insert(EmittedDeferredDecls.begin(), 770 EmittedDeferredDecls.end()); 771 EmittedDeferredDecls.clear(); 772 EmitVTablesOpportunistically(); 773 applyGlobalValReplacements(); 774 applyReplacements(); 775 emitMultiVersionFunctions(); 776 777 if (Context.getLangOpts().IncrementalExtensions && 778 GlobalTopLevelStmtBlockInFlight.first) { 779 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 780 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 781 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 782 } 783 784 // Module implementations are initialized the same way as a regular TU that 785 // imports one or more modules. 786 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 787 EmitCXXModuleInitFunc(Primary); 788 else 789 EmitCXXGlobalInitFunc(); 790 EmitCXXGlobalCleanUpFunc(); 791 registerGlobalDtorsWithAtExit(); 792 EmitCXXThreadLocalInitFunc(); 793 if (ObjCRuntime) 794 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 795 AddGlobalCtor(ObjCInitFunction); 796 if (Context.getLangOpts().CUDA && CUDARuntime) { 797 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 798 AddGlobalCtor(CudaCtorFunction); 799 } 800 if (OpenMPRuntime) { 801 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 802 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 803 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 804 } 805 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 806 OpenMPRuntime->clear(); 807 } 808 if (PGOReader) { 809 getModule().setProfileSummary( 810 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 811 llvm::ProfileSummary::PSK_Instr); 812 if (PGOStats.hasDiagnostics()) 813 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 814 } 815 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 816 return L.LexOrder < R.LexOrder; 817 }); 818 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 819 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 820 EmitGlobalAnnotations(); 821 EmitStaticExternCAliases(); 822 checkAliases(); 823 EmitDeferredUnusedCoverageMappings(); 824 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 825 if (CoverageMapping) 826 CoverageMapping->emit(); 827 if (CodeGenOpts.SanitizeCfiCrossDso) { 828 CodeGenFunction(*this).EmitCfiCheckFail(); 829 CodeGenFunction(*this).EmitCfiCheckStub(); 830 } 831 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 832 finalizeKCFITypes(); 833 emitAtAvailableLinkGuard(); 834 if (Context.getTargetInfo().getTriple().isWasm()) 835 EmitMainVoidAlias(); 836 837 if (getTriple().isAMDGPU()) { 838 // Emit amdgpu_code_object_version module flag, which is code object version 839 // times 100. 840 if (getTarget().getTargetOpts().CodeObjectVersion != 841 TargetOptions::COV_None) { 842 getModule().addModuleFlag(llvm::Module::Error, 843 "amdgpu_code_object_version", 844 getTarget().getTargetOpts().CodeObjectVersion); 845 } 846 847 // Currently, "-mprintf-kind" option is only supported for HIP 848 if (LangOpts.HIP) { 849 auto *MDStr = llvm::MDString::get( 850 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 851 TargetOptions::AMDGPUPrintfKind::Hostcall) 852 ? "hostcall" 853 : "buffered"); 854 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 855 MDStr); 856 } 857 } 858 859 // Emit a global array containing all external kernels or device variables 860 // used by host functions and mark it as used for CUDA/HIP. This is necessary 861 // to get kernels or device variables in archives linked in even if these 862 // kernels or device variables are only used in host functions. 863 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 864 SmallVector<llvm::Constant *, 8> UsedArray; 865 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 866 GlobalDecl GD; 867 if (auto *FD = dyn_cast<FunctionDecl>(D)) 868 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 869 else 870 GD = GlobalDecl(D); 871 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 872 GetAddrOfGlobal(GD), Int8PtrTy)); 873 } 874 875 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 876 877 auto *GV = new llvm::GlobalVariable( 878 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 879 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 880 addCompilerUsedGlobal(GV); 881 } 882 883 emitLLVMUsed(); 884 if (SanStats) 885 SanStats->finish(); 886 887 if (CodeGenOpts.Autolink && 888 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 889 EmitModuleLinkOptions(); 890 } 891 892 // On ELF we pass the dependent library specifiers directly to the linker 893 // without manipulating them. This is in contrast to other platforms where 894 // they are mapped to a specific linker option by the compiler. This 895 // difference is a result of the greater variety of ELF linkers and the fact 896 // that ELF linkers tend to handle libraries in a more complicated fashion 897 // than on other platforms. This forces us to defer handling the dependent 898 // libs to the linker. 899 // 900 // CUDA/HIP device and host libraries are different. Currently there is no 901 // way to differentiate dependent libraries for host or device. Existing 902 // usage of #pragma comment(lib, *) is intended for host libraries on 903 // Windows. Therefore emit llvm.dependent-libraries only for host. 904 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 905 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 906 for (auto *MD : ELFDependentLibraries) 907 NMD->addOperand(MD); 908 } 909 910 // Record mregparm value now so it is visible through rest of codegen. 911 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 912 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 913 CodeGenOpts.NumRegisterParameters); 914 915 if (CodeGenOpts.DwarfVersion) { 916 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 917 CodeGenOpts.DwarfVersion); 918 } 919 920 if (CodeGenOpts.Dwarf64) 921 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 922 923 if (Context.getLangOpts().SemanticInterposition) 924 // Require various optimization to respect semantic interposition. 925 getModule().setSemanticInterposition(true); 926 927 if (CodeGenOpts.EmitCodeView) { 928 // Indicate that we want CodeView in the metadata. 929 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 930 } 931 if (CodeGenOpts.CodeViewGHash) { 932 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 933 } 934 if (CodeGenOpts.ControlFlowGuard) { 935 // Function ID tables and checks for Control Flow Guard (cfguard=2). 936 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 937 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 938 // Function ID tables for Control Flow Guard (cfguard=1). 939 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 940 } 941 if (CodeGenOpts.EHContGuard) { 942 // Function ID tables for EH Continuation Guard. 943 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 944 } 945 if (Context.getLangOpts().Kernel) { 946 // Note if we are compiling with /kernel. 947 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 948 } 949 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 950 // We don't support LTO with 2 with different StrictVTablePointers 951 // FIXME: we could support it by stripping all the information introduced 952 // by StrictVTablePointers. 953 954 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 955 956 llvm::Metadata *Ops[2] = { 957 llvm::MDString::get(VMContext, "StrictVTablePointers"), 958 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 959 llvm::Type::getInt32Ty(VMContext), 1))}; 960 961 getModule().addModuleFlag(llvm::Module::Require, 962 "StrictVTablePointersRequirement", 963 llvm::MDNode::get(VMContext, Ops)); 964 } 965 if (getModuleDebugInfo()) 966 // We support a single version in the linked module. The LLVM 967 // parser will drop debug info with a different version number 968 // (and warn about it, too). 969 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 970 llvm::DEBUG_METADATA_VERSION); 971 972 // We need to record the widths of enums and wchar_t, so that we can generate 973 // the correct build attributes in the ARM backend. wchar_size is also used by 974 // TargetLibraryInfo. 975 uint64_t WCharWidth = 976 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 977 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 978 979 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 980 if ( Arch == llvm::Triple::arm 981 || Arch == llvm::Triple::armeb 982 || Arch == llvm::Triple::thumb 983 || Arch == llvm::Triple::thumbeb) { 984 // The minimum width of an enum in bytes 985 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 986 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 987 } 988 989 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 990 StringRef ABIStr = Target.getABI(); 991 llvm::LLVMContext &Ctx = TheModule.getContext(); 992 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 993 llvm::MDString::get(Ctx, ABIStr)); 994 } 995 996 if (CodeGenOpts.SanitizeCfiCrossDso) { 997 // Indicate that we want cross-DSO control flow integrity checks. 998 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 999 } 1000 1001 if (CodeGenOpts.WholeProgramVTables) { 1002 // Indicate whether VFE was enabled for this module, so that the 1003 // vcall_visibility metadata added under whole program vtables is handled 1004 // appropriately in the optimizer. 1005 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1006 CodeGenOpts.VirtualFunctionElimination); 1007 } 1008 1009 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1010 getModule().addModuleFlag(llvm::Module::Override, 1011 "CFI Canonical Jump Tables", 1012 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1013 } 1014 1015 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1016 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1017 // KCFI assumes patchable-function-prefix is the same for all indirectly 1018 // called functions. Store the expected offset for code generation. 1019 if (CodeGenOpts.PatchableFunctionEntryOffset) 1020 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1021 CodeGenOpts.PatchableFunctionEntryOffset); 1022 } 1023 1024 if (CodeGenOpts.CFProtectionReturn && 1025 Target.checkCFProtectionReturnSupported(getDiags())) { 1026 // Indicate that we want to instrument return control flow protection. 1027 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1028 1); 1029 } 1030 1031 if (CodeGenOpts.CFProtectionBranch && 1032 Target.checkCFProtectionBranchSupported(getDiags())) { 1033 // Indicate that we want to instrument branch control flow protection. 1034 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1035 1); 1036 } 1037 1038 if (CodeGenOpts.FunctionReturnThunks) 1039 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1040 1041 if (CodeGenOpts.IndirectBranchCSPrefix) 1042 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1043 1044 // Add module metadata for return address signing (ignoring 1045 // non-leaf/all) and stack tagging. These are actually turned on by function 1046 // attributes, but we use module metadata to emit build attributes. This is 1047 // needed for LTO, where the function attributes are inside bitcode 1048 // serialised into a global variable by the time build attributes are 1049 // emitted, so we can't access them. LTO objects could be compiled with 1050 // different flags therefore module flags are set to "Min" behavior to achieve 1051 // the same end result of the normal build where e.g BTI is off if any object 1052 // doesn't support it. 1053 if (Context.getTargetInfo().hasFeature("ptrauth") && 1054 LangOpts.getSignReturnAddressScope() != 1055 LangOptions::SignReturnAddressScopeKind::None) 1056 getModule().addModuleFlag(llvm::Module::Override, 1057 "sign-return-address-buildattr", 1); 1058 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1059 getModule().addModuleFlag(llvm::Module::Override, 1060 "tag-stack-memory-buildattr", 1); 1061 1062 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1063 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1064 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1065 Arch == llvm::Triple::aarch64_be) { 1066 if (LangOpts.BranchTargetEnforcement) 1067 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1068 1); 1069 if (LangOpts.hasSignReturnAddress()) 1070 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1071 if (LangOpts.isSignReturnAddressScopeAll()) 1072 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1073 1); 1074 if (!LangOpts.isSignReturnAddressWithAKey()) 1075 getModule().addModuleFlag(llvm::Module::Min, 1076 "sign-return-address-with-bkey", 1); 1077 } 1078 1079 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1080 llvm::LLVMContext &Ctx = TheModule.getContext(); 1081 getModule().addModuleFlag( 1082 llvm::Module::Error, "MemProfProfileFilename", 1083 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1084 } 1085 1086 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1087 // Indicate whether __nvvm_reflect should be configured to flush denormal 1088 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1089 // property.) 1090 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1091 CodeGenOpts.FP32DenormalMode.Output != 1092 llvm::DenormalMode::IEEE); 1093 } 1094 1095 if (LangOpts.EHAsynch) 1096 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1097 1098 // Indicate whether this Module was compiled with -fopenmp 1099 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1100 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1101 if (getLangOpts().OpenMPIsTargetDevice) 1102 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1103 LangOpts.OpenMP); 1104 1105 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1106 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1107 EmitOpenCLMetadata(); 1108 // Emit SPIR version. 1109 if (getTriple().isSPIR()) { 1110 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1111 // opencl.spir.version named metadata. 1112 // C++ for OpenCL has a distinct mapping for version compatibility with 1113 // OpenCL. 1114 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1115 llvm::Metadata *SPIRVerElts[] = { 1116 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1117 Int32Ty, Version / 100)), 1118 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1119 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1120 llvm::NamedMDNode *SPIRVerMD = 1121 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1122 llvm::LLVMContext &Ctx = TheModule.getContext(); 1123 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1124 } 1125 } 1126 1127 // HLSL related end of code gen work items. 1128 if (LangOpts.HLSL) 1129 getHLSLRuntime().finishCodeGen(); 1130 1131 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1132 assert(PLevel < 3 && "Invalid PIC Level"); 1133 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1134 if (Context.getLangOpts().PIE) 1135 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1136 } 1137 1138 if (getCodeGenOpts().CodeModel.size() > 0) { 1139 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1140 .Case("tiny", llvm::CodeModel::Tiny) 1141 .Case("small", llvm::CodeModel::Small) 1142 .Case("kernel", llvm::CodeModel::Kernel) 1143 .Case("medium", llvm::CodeModel::Medium) 1144 .Case("large", llvm::CodeModel::Large) 1145 .Default(~0u); 1146 if (CM != ~0u) { 1147 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1148 getModule().setCodeModel(codeModel); 1149 } 1150 } 1151 1152 if (CodeGenOpts.NoPLT) 1153 getModule().setRtLibUseGOT(); 1154 if (getTriple().isOSBinFormatELF() && 1155 CodeGenOpts.DirectAccessExternalData != 1156 getModule().getDirectAccessExternalData()) { 1157 getModule().setDirectAccessExternalData( 1158 CodeGenOpts.DirectAccessExternalData); 1159 } 1160 if (CodeGenOpts.UnwindTables) 1161 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1162 1163 switch (CodeGenOpts.getFramePointer()) { 1164 case CodeGenOptions::FramePointerKind::None: 1165 // 0 ("none") is the default. 1166 break; 1167 case CodeGenOptions::FramePointerKind::NonLeaf: 1168 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1169 break; 1170 case CodeGenOptions::FramePointerKind::All: 1171 getModule().setFramePointer(llvm::FramePointerKind::All); 1172 break; 1173 } 1174 1175 SimplifyPersonality(); 1176 1177 if (getCodeGenOpts().EmitDeclMetadata) 1178 EmitDeclMetadata(); 1179 1180 if (getCodeGenOpts().CoverageNotesFile.size() || 1181 getCodeGenOpts().CoverageDataFile.size()) 1182 EmitCoverageFile(); 1183 1184 if (CGDebugInfo *DI = getModuleDebugInfo()) 1185 DI->finalize(); 1186 1187 if (getCodeGenOpts().EmitVersionIdentMetadata) 1188 EmitVersionIdentMetadata(); 1189 1190 if (!getCodeGenOpts().RecordCommandLine.empty()) 1191 EmitCommandLineMetadata(); 1192 1193 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1194 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1195 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1196 getModule().setStackProtectorGuardReg( 1197 getCodeGenOpts().StackProtectorGuardReg); 1198 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1199 getModule().setStackProtectorGuardSymbol( 1200 getCodeGenOpts().StackProtectorGuardSymbol); 1201 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1202 getModule().setStackProtectorGuardOffset( 1203 getCodeGenOpts().StackProtectorGuardOffset); 1204 if (getCodeGenOpts().StackAlignment) 1205 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1206 if (getCodeGenOpts().SkipRaxSetup) 1207 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1208 if (getLangOpts().RegCall4) 1209 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1210 1211 if (getContext().getTargetInfo().getMaxTLSAlign()) 1212 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1213 getContext().getTargetInfo().getMaxTLSAlign()); 1214 1215 getTargetCodeGenInfo().emitTargetGlobals(*this); 1216 1217 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1218 1219 EmitBackendOptionsMetadata(getCodeGenOpts()); 1220 1221 // If there is device offloading code embed it in the host now. 1222 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1223 1224 // Set visibility from DLL storage class 1225 // We do this at the end of LLVM IR generation; after any operation 1226 // that might affect the DLL storage class or the visibility, and 1227 // before anything that might act on these. 1228 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1229 } 1230 1231 void CodeGenModule::EmitOpenCLMetadata() { 1232 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1233 // opencl.ocl.version named metadata node. 1234 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1235 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1236 llvm::Metadata *OCLVerElts[] = { 1237 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1238 Int32Ty, Version / 100)), 1239 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1240 Int32Ty, (Version % 100) / 10))}; 1241 llvm::NamedMDNode *OCLVerMD = 1242 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1243 llvm::LLVMContext &Ctx = TheModule.getContext(); 1244 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1245 } 1246 1247 void CodeGenModule::EmitBackendOptionsMetadata( 1248 const CodeGenOptions &CodeGenOpts) { 1249 if (getTriple().isRISCV()) { 1250 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1251 CodeGenOpts.SmallDataLimit); 1252 } 1253 } 1254 1255 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1256 // Make sure that this type is translated. 1257 Types.UpdateCompletedType(TD); 1258 } 1259 1260 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1261 // Make sure that this type is translated. 1262 Types.RefreshTypeCacheForClass(RD); 1263 } 1264 1265 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1266 if (!TBAA) 1267 return nullptr; 1268 return TBAA->getTypeInfo(QTy); 1269 } 1270 1271 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1272 if (!TBAA) 1273 return TBAAAccessInfo(); 1274 if (getLangOpts().CUDAIsDevice) { 1275 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1276 // access info. 1277 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1278 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1279 nullptr) 1280 return TBAAAccessInfo(); 1281 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1282 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1283 nullptr) 1284 return TBAAAccessInfo(); 1285 } 1286 } 1287 return TBAA->getAccessInfo(AccessType); 1288 } 1289 1290 TBAAAccessInfo 1291 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1292 if (!TBAA) 1293 return TBAAAccessInfo(); 1294 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1295 } 1296 1297 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1298 if (!TBAA) 1299 return nullptr; 1300 return TBAA->getTBAAStructInfo(QTy); 1301 } 1302 1303 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1304 if (!TBAA) 1305 return nullptr; 1306 return TBAA->getBaseTypeInfo(QTy); 1307 } 1308 1309 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1310 if (!TBAA) 1311 return nullptr; 1312 return TBAA->getAccessTagInfo(Info); 1313 } 1314 1315 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1316 TBAAAccessInfo TargetInfo) { 1317 if (!TBAA) 1318 return TBAAAccessInfo(); 1319 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1320 } 1321 1322 TBAAAccessInfo 1323 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1324 TBAAAccessInfo InfoB) { 1325 if (!TBAA) 1326 return TBAAAccessInfo(); 1327 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1328 } 1329 1330 TBAAAccessInfo 1331 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1332 TBAAAccessInfo SrcInfo) { 1333 if (!TBAA) 1334 return TBAAAccessInfo(); 1335 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1336 } 1337 1338 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1339 TBAAAccessInfo TBAAInfo) { 1340 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1341 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1342 } 1343 1344 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1345 llvm::Instruction *I, const CXXRecordDecl *RD) { 1346 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1347 llvm::MDNode::get(getLLVMContext(), {})); 1348 } 1349 1350 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1351 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1352 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1353 } 1354 1355 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1356 /// specified stmt yet. 1357 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1358 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1359 "cannot compile this %0 yet"); 1360 std::string Msg = Type; 1361 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1362 << Msg << S->getSourceRange(); 1363 } 1364 1365 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1366 /// specified decl yet. 1367 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1368 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1369 "cannot compile this %0 yet"); 1370 std::string Msg = Type; 1371 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1372 } 1373 1374 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1375 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1376 } 1377 1378 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1379 const NamedDecl *D) const { 1380 // Internal definitions always have default visibility. 1381 if (GV->hasLocalLinkage()) { 1382 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1383 return; 1384 } 1385 if (!D) 1386 return; 1387 // Set visibility for definitions, and for declarations if requested globally 1388 // or set explicitly. 1389 LinkageInfo LV = D->getLinkageAndVisibility(); 1390 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1391 // Reject incompatible dlllstorage and visibility annotations. 1392 if (!LV.isVisibilityExplicit()) 1393 return; 1394 if (GV->hasDLLExportStorageClass()) { 1395 if (LV.getVisibility() == HiddenVisibility) 1396 getDiags().Report(D->getLocation(), 1397 diag::err_hidden_visibility_dllexport); 1398 } else if (LV.getVisibility() != DefaultVisibility) { 1399 getDiags().Report(D->getLocation(), 1400 diag::err_non_default_visibility_dllimport); 1401 } 1402 return; 1403 } 1404 1405 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1406 !GV->isDeclarationForLinker()) 1407 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1408 } 1409 1410 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1411 llvm::GlobalValue *GV) { 1412 if (GV->hasLocalLinkage()) 1413 return true; 1414 1415 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1416 return true; 1417 1418 // DLLImport explicitly marks the GV as external. 1419 if (GV->hasDLLImportStorageClass()) 1420 return false; 1421 1422 const llvm::Triple &TT = CGM.getTriple(); 1423 const auto &CGOpts = CGM.getCodeGenOpts(); 1424 if (TT.isWindowsGNUEnvironment()) { 1425 // In MinGW, variables without DLLImport can still be automatically 1426 // imported from a DLL by the linker; don't mark variables that 1427 // potentially could come from another DLL as DSO local. 1428 1429 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1430 // (and this actually happens in the public interface of libstdc++), so 1431 // such variables can't be marked as DSO local. (Native TLS variables 1432 // can't be dllimported at all, though.) 1433 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1434 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1435 CGOpts.AutoImport) 1436 return false; 1437 } 1438 1439 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1440 // remain unresolved in the link, they can be resolved to zero, which is 1441 // outside the current DSO. 1442 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1443 return false; 1444 1445 // Every other GV is local on COFF. 1446 // Make an exception for windows OS in the triple: Some firmware builds use 1447 // *-win32-macho triples. This (accidentally?) produced windows relocations 1448 // without GOT tables in older clang versions; Keep this behaviour. 1449 // FIXME: even thread local variables? 1450 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1451 return true; 1452 1453 // Only handle COFF and ELF for now. 1454 if (!TT.isOSBinFormatELF()) 1455 return false; 1456 1457 // If this is not an executable, don't assume anything is local. 1458 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1459 const auto &LOpts = CGM.getLangOpts(); 1460 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1461 // On ELF, if -fno-semantic-interposition is specified and the target 1462 // supports local aliases, there will be neither CC1 1463 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1464 // dso_local on the function if using a local alias is preferable (can avoid 1465 // PLT indirection). 1466 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1467 return false; 1468 return !(CGM.getLangOpts().SemanticInterposition || 1469 CGM.getLangOpts().HalfNoSemanticInterposition); 1470 } 1471 1472 // A definition cannot be preempted from an executable. 1473 if (!GV->isDeclarationForLinker()) 1474 return true; 1475 1476 // Most PIC code sequences that assume that a symbol is local cannot produce a 1477 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1478 // depended, it seems worth it to handle it here. 1479 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1480 return false; 1481 1482 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1483 if (TT.isPPC64()) 1484 return false; 1485 1486 if (CGOpts.DirectAccessExternalData) { 1487 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1488 // for non-thread-local variables. If the symbol is not defined in the 1489 // executable, a copy relocation will be needed at link time. dso_local is 1490 // excluded for thread-local variables because they generally don't support 1491 // copy relocations. 1492 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1493 if (!Var->isThreadLocal()) 1494 return true; 1495 1496 // -fno-pic sets dso_local on a function declaration to allow direct 1497 // accesses when taking its address (similar to a data symbol). If the 1498 // function is not defined in the executable, a canonical PLT entry will be 1499 // needed at link time. -fno-direct-access-external-data can avoid the 1500 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1501 // it could just cause trouble without providing perceptible benefits. 1502 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1503 return true; 1504 } 1505 1506 // If we can use copy relocations we can assume it is local. 1507 1508 // Otherwise don't assume it is local. 1509 return false; 1510 } 1511 1512 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1513 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1514 } 1515 1516 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1517 GlobalDecl GD) const { 1518 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1519 // C++ destructors have a few C++ ABI specific special cases. 1520 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1521 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1522 return; 1523 } 1524 setDLLImportDLLExport(GV, D); 1525 } 1526 1527 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1528 const NamedDecl *D) const { 1529 if (D && D->isExternallyVisible()) { 1530 if (D->hasAttr<DLLImportAttr>()) 1531 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1532 else if ((D->hasAttr<DLLExportAttr>() || 1533 shouldMapVisibilityToDLLExport(D)) && 1534 !GV->isDeclarationForLinker()) 1535 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1536 } 1537 } 1538 1539 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1540 GlobalDecl GD) const { 1541 setDLLImportDLLExport(GV, GD); 1542 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1543 } 1544 1545 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1546 const NamedDecl *D) const { 1547 setDLLImportDLLExport(GV, D); 1548 setGVPropertiesAux(GV, D); 1549 } 1550 1551 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1552 const NamedDecl *D) const { 1553 setGlobalVisibility(GV, D); 1554 setDSOLocal(GV); 1555 GV->setPartition(CodeGenOpts.SymbolPartition); 1556 } 1557 1558 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1559 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1560 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1561 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1562 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1563 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1564 } 1565 1566 llvm::GlobalVariable::ThreadLocalMode 1567 CodeGenModule::GetDefaultLLVMTLSModel() const { 1568 switch (CodeGenOpts.getDefaultTLSModel()) { 1569 case CodeGenOptions::GeneralDynamicTLSModel: 1570 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1571 case CodeGenOptions::LocalDynamicTLSModel: 1572 return llvm::GlobalVariable::LocalDynamicTLSModel; 1573 case CodeGenOptions::InitialExecTLSModel: 1574 return llvm::GlobalVariable::InitialExecTLSModel; 1575 case CodeGenOptions::LocalExecTLSModel: 1576 return llvm::GlobalVariable::LocalExecTLSModel; 1577 } 1578 llvm_unreachable("Invalid TLS model!"); 1579 } 1580 1581 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1582 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1583 1584 llvm::GlobalValue::ThreadLocalMode TLM; 1585 TLM = GetDefaultLLVMTLSModel(); 1586 1587 // Override the TLS model if it is explicitly specified. 1588 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1589 TLM = GetLLVMTLSModel(Attr->getModel()); 1590 } 1591 1592 GV->setThreadLocalMode(TLM); 1593 } 1594 1595 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1596 StringRef Name) { 1597 const TargetInfo &Target = CGM.getTarget(); 1598 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1599 } 1600 1601 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1602 const CPUSpecificAttr *Attr, 1603 unsigned CPUIndex, 1604 raw_ostream &Out) { 1605 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1606 // supported. 1607 if (Attr) 1608 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1609 else if (CGM.getTarget().supportsIFunc()) 1610 Out << ".resolver"; 1611 } 1612 1613 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1614 const TargetVersionAttr *Attr, 1615 raw_ostream &Out) { 1616 if (Attr->isDefaultVersion()) 1617 return; 1618 Out << "._"; 1619 const TargetInfo &TI = CGM.getTarget(); 1620 llvm::SmallVector<StringRef, 8> Feats; 1621 Attr->getFeatures(Feats); 1622 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1623 return TI.multiVersionSortPriority(FeatL) < 1624 TI.multiVersionSortPriority(FeatR); 1625 }); 1626 for (const auto &Feat : Feats) { 1627 Out << 'M'; 1628 Out << Feat; 1629 } 1630 } 1631 1632 static void AppendTargetMangling(const CodeGenModule &CGM, 1633 const TargetAttr *Attr, raw_ostream &Out) { 1634 if (Attr->isDefaultVersion()) 1635 return; 1636 1637 Out << '.'; 1638 const TargetInfo &Target = CGM.getTarget(); 1639 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1640 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1641 // Multiversioning doesn't allow "no-${feature}", so we can 1642 // only have "+" prefixes here. 1643 assert(LHS.startswith("+") && RHS.startswith("+") && 1644 "Features should always have a prefix."); 1645 return Target.multiVersionSortPriority(LHS.substr(1)) > 1646 Target.multiVersionSortPriority(RHS.substr(1)); 1647 }); 1648 1649 bool IsFirst = true; 1650 1651 if (!Info.CPU.empty()) { 1652 IsFirst = false; 1653 Out << "arch_" << Info.CPU; 1654 } 1655 1656 for (StringRef Feat : Info.Features) { 1657 if (!IsFirst) 1658 Out << '_'; 1659 IsFirst = false; 1660 Out << Feat.substr(1); 1661 } 1662 } 1663 1664 // Returns true if GD is a function decl with internal linkage and 1665 // needs a unique suffix after the mangled name. 1666 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1667 CodeGenModule &CGM) { 1668 const Decl *D = GD.getDecl(); 1669 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1670 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1671 } 1672 1673 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1674 const TargetClonesAttr *Attr, 1675 unsigned VersionIndex, 1676 raw_ostream &Out) { 1677 const TargetInfo &TI = CGM.getTarget(); 1678 if (TI.getTriple().isAArch64()) { 1679 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1680 if (FeatureStr == "default") 1681 return; 1682 Out << "._"; 1683 SmallVector<StringRef, 8> Features; 1684 FeatureStr.split(Features, "+"); 1685 llvm::stable_sort(Features, 1686 [&TI](const StringRef FeatL, const StringRef FeatR) { 1687 return TI.multiVersionSortPriority(FeatL) < 1688 TI.multiVersionSortPriority(FeatR); 1689 }); 1690 for (auto &Feat : Features) { 1691 Out << 'M'; 1692 Out << Feat; 1693 } 1694 } else { 1695 Out << '.'; 1696 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1697 if (FeatureStr.startswith("arch=")) 1698 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1699 else 1700 Out << FeatureStr; 1701 1702 Out << '.' << Attr->getMangledIndex(VersionIndex); 1703 } 1704 } 1705 1706 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1707 const NamedDecl *ND, 1708 bool OmitMultiVersionMangling = false) { 1709 SmallString<256> Buffer; 1710 llvm::raw_svector_ostream Out(Buffer); 1711 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1712 if (!CGM.getModuleNameHash().empty()) 1713 MC.needsUniqueInternalLinkageNames(); 1714 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1715 if (ShouldMangle) 1716 MC.mangleName(GD.getWithDecl(ND), Out); 1717 else { 1718 IdentifierInfo *II = ND->getIdentifier(); 1719 assert(II && "Attempt to mangle unnamed decl."); 1720 const auto *FD = dyn_cast<FunctionDecl>(ND); 1721 1722 if (FD && 1723 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1724 if (CGM.getLangOpts().RegCall4) 1725 Out << "__regcall4__" << II->getName(); 1726 else 1727 Out << "__regcall3__" << II->getName(); 1728 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1729 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1730 Out << "__device_stub__" << II->getName(); 1731 } else { 1732 Out << II->getName(); 1733 } 1734 } 1735 1736 // Check if the module name hash should be appended for internal linkage 1737 // symbols. This should come before multi-version target suffixes are 1738 // appended. This is to keep the name and module hash suffix of the 1739 // internal linkage function together. The unique suffix should only be 1740 // added when name mangling is done to make sure that the final name can 1741 // be properly demangled. For example, for C functions without prototypes, 1742 // name mangling is not done and the unique suffix should not be appeneded 1743 // then. 1744 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1745 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1746 "Hash computed when not explicitly requested"); 1747 Out << CGM.getModuleNameHash(); 1748 } 1749 1750 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1751 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1752 switch (FD->getMultiVersionKind()) { 1753 case MultiVersionKind::CPUDispatch: 1754 case MultiVersionKind::CPUSpecific: 1755 AppendCPUSpecificCPUDispatchMangling(CGM, 1756 FD->getAttr<CPUSpecificAttr>(), 1757 GD.getMultiVersionIndex(), Out); 1758 break; 1759 case MultiVersionKind::Target: 1760 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1761 break; 1762 case MultiVersionKind::TargetVersion: 1763 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1764 break; 1765 case MultiVersionKind::TargetClones: 1766 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1767 GD.getMultiVersionIndex(), Out); 1768 break; 1769 case MultiVersionKind::None: 1770 llvm_unreachable("None multiversion type isn't valid here"); 1771 } 1772 } 1773 1774 // Make unique name for device side static file-scope variable for HIP. 1775 if (CGM.getContext().shouldExternalize(ND) && 1776 CGM.getLangOpts().GPURelocatableDeviceCode && 1777 CGM.getLangOpts().CUDAIsDevice) 1778 CGM.printPostfixForExternalizedDecl(Out, ND); 1779 1780 return std::string(Out.str()); 1781 } 1782 1783 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1784 const FunctionDecl *FD, 1785 StringRef &CurName) { 1786 if (!FD->isMultiVersion()) 1787 return; 1788 1789 // Get the name of what this would be without the 'target' attribute. This 1790 // allows us to lookup the version that was emitted when this wasn't a 1791 // multiversion function. 1792 std::string NonTargetName = 1793 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1794 GlobalDecl OtherGD; 1795 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1796 assert(OtherGD.getCanonicalDecl() 1797 .getDecl() 1798 ->getAsFunction() 1799 ->isMultiVersion() && 1800 "Other GD should now be a multiversioned function"); 1801 // OtherFD is the version of this function that was mangled BEFORE 1802 // becoming a MultiVersion function. It potentially needs to be updated. 1803 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1804 .getDecl() 1805 ->getAsFunction() 1806 ->getMostRecentDecl(); 1807 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1808 // This is so that if the initial version was already the 'default' 1809 // version, we don't try to update it. 1810 if (OtherName != NonTargetName) { 1811 // Remove instead of erase, since others may have stored the StringRef 1812 // to this. 1813 const auto ExistingRecord = Manglings.find(NonTargetName); 1814 if (ExistingRecord != std::end(Manglings)) 1815 Manglings.remove(&(*ExistingRecord)); 1816 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1817 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1818 Result.first->first(); 1819 // If this is the current decl is being created, make sure we update the name. 1820 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1821 CurName = OtherNameRef; 1822 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1823 Entry->setName(OtherName); 1824 } 1825 } 1826 } 1827 1828 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1829 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1830 1831 // Some ABIs don't have constructor variants. Make sure that base and 1832 // complete constructors get mangled the same. 1833 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1834 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1835 CXXCtorType OrigCtorType = GD.getCtorType(); 1836 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1837 if (OrigCtorType == Ctor_Base) 1838 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1839 } 1840 } 1841 1842 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1843 // static device variable depends on whether the variable is referenced by 1844 // a host or device host function. Therefore the mangled name cannot be 1845 // cached. 1846 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1847 auto FoundName = MangledDeclNames.find(CanonicalGD); 1848 if (FoundName != MangledDeclNames.end()) 1849 return FoundName->second; 1850 } 1851 1852 // Keep the first result in the case of a mangling collision. 1853 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1854 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1855 1856 // Ensure either we have different ABIs between host and device compilations, 1857 // says host compilation following MSVC ABI but device compilation follows 1858 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1859 // mangling should be the same after name stubbing. The later checking is 1860 // very important as the device kernel name being mangled in host-compilation 1861 // is used to resolve the device binaries to be executed. Inconsistent naming 1862 // result in undefined behavior. Even though we cannot check that naming 1863 // directly between host- and device-compilations, the host- and 1864 // device-mangling in host compilation could help catching certain ones. 1865 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1866 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1867 (getContext().getAuxTargetInfo() && 1868 (getContext().getAuxTargetInfo()->getCXXABI() != 1869 getContext().getTargetInfo().getCXXABI())) || 1870 getCUDARuntime().getDeviceSideName(ND) == 1871 getMangledNameImpl( 1872 *this, 1873 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1874 ND)); 1875 1876 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1877 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1878 } 1879 1880 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1881 const BlockDecl *BD) { 1882 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1883 const Decl *D = GD.getDecl(); 1884 1885 SmallString<256> Buffer; 1886 llvm::raw_svector_ostream Out(Buffer); 1887 if (!D) 1888 MangleCtx.mangleGlobalBlock(BD, 1889 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1890 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1891 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1892 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1893 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1894 else 1895 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1896 1897 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1898 return Result.first->first(); 1899 } 1900 1901 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1902 auto it = MangledDeclNames.begin(); 1903 while (it != MangledDeclNames.end()) { 1904 if (it->second == Name) 1905 return it->first; 1906 it++; 1907 } 1908 return GlobalDecl(); 1909 } 1910 1911 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1912 return getModule().getNamedValue(Name); 1913 } 1914 1915 /// AddGlobalCtor - Add a function to the list that will be called before 1916 /// main() runs. 1917 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1918 unsigned LexOrder, 1919 llvm::Constant *AssociatedData) { 1920 // FIXME: Type coercion of void()* types. 1921 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1922 } 1923 1924 /// AddGlobalDtor - Add a function to the list that will be called 1925 /// when the module is unloaded. 1926 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1927 bool IsDtorAttrFunc) { 1928 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1929 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1930 DtorsUsingAtExit[Priority].push_back(Dtor); 1931 return; 1932 } 1933 1934 // FIXME: Type coercion of void()* types. 1935 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1936 } 1937 1938 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1939 if (Fns.empty()) return; 1940 1941 // Ctor function type is void()*. 1942 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1943 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1944 TheModule.getDataLayout().getProgramAddressSpace()); 1945 1946 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1947 llvm::StructType *CtorStructTy = llvm::StructType::get( 1948 Int32Ty, CtorPFTy, VoidPtrTy); 1949 1950 // Construct the constructor and destructor arrays. 1951 ConstantInitBuilder builder(*this); 1952 auto ctors = builder.beginArray(CtorStructTy); 1953 for (const auto &I : Fns) { 1954 auto ctor = ctors.beginStruct(CtorStructTy); 1955 ctor.addInt(Int32Ty, I.Priority); 1956 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1957 if (I.AssociatedData) 1958 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1959 else 1960 ctor.addNullPointer(VoidPtrTy); 1961 ctor.finishAndAddTo(ctors); 1962 } 1963 1964 auto list = 1965 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1966 /*constant*/ false, 1967 llvm::GlobalValue::AppendingLinkage); 1968 1969 // The LTO linker doesn't seem to like it when we set an alignment 1970 // on appending variables. Take it off as a workaround. 1971 list->setAlignment(std::nullopt); 1972 1973 Fns.clear(); 1974 } 1975 1976 llvm::GlobalValue::LinkageTypes 1977 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1978 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1979 1980 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1981 1982 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1983 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1984 1985 return getLLVMLinkageForDeclarator(D, Linkage); 1986 } 1987 1988 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1989 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1990 if (!MDS) return nullptr; 1991 1992 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1993 } 1994 1995 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1996 if (auto *FnType = T->getAs<FunctionProtoType>()) 1997 T = getContext().getFunctionType( 1998 FnType->getReturnType(), FnType->getParamTypes(), 1999 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2000 2001 std::string OutName; 2002 llvm::raw_string_ostream Out(OutName); 2003 getCXXABI().getMangleContext().mangleTypeName( 2004 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2005 2006 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2007 Out << ".normalized"; 2008 2009 return llvm::ConstantInt::get(Int32Ty, 2010 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2011 } 2012 2013 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2014 const CGFunctionInfo &Info, 2015 llvm::Function *F, bool IsThunk) { 2016 unsigned CallingConv; 2017 llvm::AttributeList PAL; 2018 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2019 /*AttrOnCallSite=*/false, IsThunk); 2020 F->setAttributes(PAL); 2021 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2022 } 2023 2024 static void removeImageAccessQualifier(std::string& TyName) { 2025 std::string ReadOnlyQual("__read_only"); 2026 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2027 if (ReadOnlyPos != std::string::npos) 2028 // "+ 1" for the space after access qualifier. 2029 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2030 else { 2031 std::string WriteOnlyQual("__write_only"); 2032 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2033 if (WriteOnlyPos != std::string::npos) 2034 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2035 else { 2036 std::string ReadWriteQual("__read_write"); 2037 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2038 if (ReadWritePos != std::string::npos) 2039 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2040 } 2041 } 2042 } 2043 2044 // Returns the address space id that should be produced to the 2045 // kernel_arg_addr_space metadata. This is always fixed to the ids 2046 // as specified in the SPIR 2.0 specification in order to differentiate 2047 // for example in clGetKernelArgInfo() implementation between the address 2048 // spaces with targets without unique mapping to the OpenCL address spaces 2049 // (basically all single AS CPUs). 2050 static unsigned ArgInfoAddressSpace(LangAS AS) { 2051 switch (AS) { 2052 case LangAS::opencl_global: 2053 return 1; 2054 case LangAS::opencl_constant: 2055 return 2; 2056 case LangAS::opencl_local: 2057 return 3; 2058 case LangAS::opencl_generic: 2059 return 4; // Not in SPIR 2.0 specs. 2060 case LangAS::opencl_global_device: 2061 return 5; 2062 case LangAS::opencl_global_host: 2063 return 6; 2064 default: 2065 return 0; // Assume private. 2066 } 2067 } 2068 2069 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2070 const FunctionDecl *FD, 2071 CodeGenFunction *CGF) { 2072 assert(((FD && CGF) || (!FD && !CGF)) && 2073 "Incorrect use - FD and CGF should either be both null or not!"); 2074 // Create MDNodes that represent the kernel arg metadata. 2075 // Each MDNode is a list in the form of "key", N number of values which is 2076 // the same number of values as their are kernel arguments. 2077 2078 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2079 2080 // MDNode for the kernel argument address space qualifiers. 2081 SmallVector<llvm::Metadata *, 8> addressQuals; 2082 2083 // MDNode for the kernel argument access qualifiers (images only). 2084 SmallVector<llvm::Metadata *, 8> accessQuals; 2085 2086 // MDNode for the kernel argument type names. 2087 SmallVector<llvm::Metadata *, 8> argTypeNames; 2088 2089 // MDNode for the kernel argument base type names. 2090 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2091 2092 // MDNode for the kernel argument type qualifiers. 2093 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2094 2095 // MDNode for the kernel argument names. 2096 SmallVector<llvm::Metadata *, 8> argNames; 2097 2098 if (FD && CGF) 2099 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2100 const ParmVarDecl *parm = FD->getParamDecl(i); 2101 // Get argument name. 2102 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2103 2104 if (!getLangOpts().OpenCL) 2105 continue; 2106 QualType ty = parm->getType(); 2107 std::string typeQuals; 2108 2109 // Get image and pipe access qualifier: 2110 if (ty->isImageType() || ty->isPipeType()) { 2111 const Decl *PDecl = parm; 2112 if (const auto *TD = ty->getAs<TypedefType>()) 2113 PDecl = TD->getDecl(); 2114 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2115 if (A && A->isWriteOnly()) 2116 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2117 else if (A && A->isReadWrite()) 2118 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2119 else 2120 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2121 } else 2122 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2123 2124 auto getTypeSpelling = [&](QualType Ty) { 2125 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2126 2127 if (Ty.isCanonical()) { 2128 StringRef typeNameRef = typeName; 2129 // Turn "unsigned type" to "utype" 2130 if (typeNameRef.consume_front("unsigned ")) 2131 return std::string("u") + typeNameRef.str(); 2132 if (typeNameRef.consume_front("signed ")) 2133 return typeNameRef.str(); 2134 } 2135 2136 return typeName; 2137 }; 2138 2139 if (ty->isPointerType()) { 2140 QualType pointeeTy = ty->getPointeeType(); 2141 2142 // Get address qualifier. 2143 addressQuals.push_back( 2144 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2145 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2146 2147 // Get argument type name. 2148 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2149 std::string baseTypeName = 2150 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2151 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2152 argBaseTypeNames.push_back( 2153 llvm::MDString::get(VMContext, baseTypeName)); 2154 2155 // Get argument type qualifiers: 2156 if (ty.isRestrictQualified()) 2157 typeQuals = "restrict"; 2158 if (pointeeTy.isConstQualified() || 2159 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2160 typeQuals += typeQuals.empty() ? "const" : " const"; 2161 if (pointeeTy.isVolatileQualified()) 2162 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2163 } else { 2164 uint32_t AddrSpc = 0; 2165 bool isPipe = ty->isPipeType(); 2166 if (ty->isImageType() || isPipe) 2167 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2168 2169 addressQuals.push_back( 2170 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2171 2172 // Get argument type name. 2173 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2174 std::string typeName = getTypeSpelling(ty); 2175 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2176 2177 // Remove access qualifiers on images 2178 // (as they are inseparable from type in clang implementation, 2179 // but OpenCL spec provides a special query to get access qualifier 2180 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2181 if (ty->isImageType()) { 2182 removeImageAccessQualifier(typeName); 2183 removeImageAccessQualifier(baseTypeName); 2184 } 2185 2186 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2187 argBaseTypeNames.push_back( 2188 llvm::MDString::get(VMContext, baseTypeName)); 2189 2190 if (isPipe) 2191 typeQuals = "pipe"; 2192 } 2193 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2194 } 2195 2196 if (getLangOpts().OpenCL) { 2197 Fn->setMetadata("kernel_arg_addr_space", 2198 llvm::MDNode::get(VMContext, addressQuals)); 2199 Fn->setMetadata("kernel_arg_access_qual", 2200 llvm::MDNode::get(VMContext, accessQuals)); 2201 Fn->setMetadata("kernel_arg_type", 2202 llvm::MDNode::get(VMContext, argTypeNames)); 2203 Fn->setMetadata("kernel_arg_base_type", 2204 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2205 Fn->setMetadata("kernel_arg_type_qual", 2206 llvm::MDNode::get(VMContext, argTypeQuals)); 2207 } 2208 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2209 getCodeGenOpts().HIPSaveKernelArgName) 2210 Fn->setMetadata("kernel_arg_name", 2211 llvm::MDNode::get(VMContext, argNames)); 2212 } 2213 2214 /// Determines whether the language options require us to model 2215 /// unwind exceptions. We treat -fexceptions as mandating this 2216 /// except under the fragile ObjC ABI with only ObjC exceptions 2217 /// enabled. This means, for example, that C with -fexceptions 2218 /// enables this. 2219 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2220 // If exceptions are completely disabled, obviously this is false. 2221 if (!LangOpts.Exceptions) return false; 2222 2223 // If C++ exceptions are enabled, this is true. 2224 if (LangOpts.CXXExceptions) return true; 2225 2226 // If ObjC exceptions are enabled, this depends on the ABI. 2227 if (LangOpts.ObjCExceptions) { 2228 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2229 } 2230 2231 return true; 2232 } 2233 2234 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2235 const CXXMethodDecl *MD) { 2236 // Check that the type metadata can ever actually be used by a call. 2237 if (!CGM.getCodeGenOpts().LTOUnit || 2238 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2239 return false; 2240 2241 // Only functions whose address can be taken with a member function pointer 2242 // need this sort of type metadata. 2243 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 2244 !isa<CXXDestructorDecl>(MD); 2245 } 2246 2247 SmallVector<const CXXRecordDecl *, 0> 2248 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2249 llvm::SetVector<const CXXRecordDecl *> MostBases; 2250 2251 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2252 CollectMostBases = [&](const CXXRecordDecl *RD) { 2253 if (RD->getNumBases() == 0) 2254 MostBases.insert(RD); 2255 for (const CXXBaseSpecifier &B : RD->bases()) 2256 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2257 }; 2258 CollectMostBases(RD); 2259 return MostBases.takeVector(); 2260 } 2261 2262 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2263 llvm::Function *F) { 2264 llvm::AttrBuilder B(F->getContext()); 2265 2266 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2267 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2268 2269 if (CodeGenOpts.StackClashProtector) 2270 B.addAttribute("probe-stack", "inline-asm"); 2271 2272 if (!hasUnwindExceptions(LangOpts)) 2273 B.addAttribute(llvm::Attribute::NoUnwind); 2274 2275 if (D && D->hasAttr<NoStackProtectorAttr>()) 2276 ; // Do nothing. 2277 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2278 LangOpts.getStackProtector() == LangOptions::SSPOn) 2279 B.addAttribute(llvm::Attribute::StackProtectStrong); 2280 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2281 B.addAttribute(llvm::Attribute::StackProtect); 2282 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2283 B.addAttribute(llvm::Attribute::StackProtectStrong); 2284 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2285 B.addAttribute(llvm::Attribute::StackProtectReq); 2286 2287 if (!D) { 2288 // If we don't have a declaration to control inlining, the function isn't 2289 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2290 // disabled, mark the function as noinline. 2291 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2292 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2293 B.addAttribute(llvm::Attribute::NoInline); 2294 2295 F->addFnAttrs(B); 2296 return; 2297 } 2298 2299 // Handle SME attributes that apply to function definitions, 2300 // rather than to function prototypes. 2301 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2302 B.addAttribute("aarch64_pstate_sm_body"); 2303 2304 if (D->hasAttr<ArmNewZAAttr>()) 2305 B.addAttribute("aarch64_pstate_za_new"); 2306 2307 // Track whether we need to add the optnone LLVM attribute, 2308 // starting with the default for this optimization level. 2309 bool ShouldAddOptNone = 2310 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2311 // We can't add optnone in the following cases, it won't pass the verifier. 2312 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2313 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2314 2315 // Add optnone, but do so only if the function isn't always_inline. 2316 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2317 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2318 B.addAttribute(llvm::Attribute::OptimizeNone); 2319 2320 // OptimizeNone implies noinline; we should not be inlining such functions. 2321 B.addAttribute(llvm::Attribute::NoInline); 2322 2323 // We still need to handle naked functions even though optnone subsumes 2324 // much of their semantics. 2325 if (D->hasAttr<NakedAttr>()) 2326 B.addAttribute(llvm::Attribute::Naked); 2327 2328 // OptimizeNone wins over OptimizeForSize and MinSize. 2329 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2330 F->removeFnAttr(llvm::Attribute::MinSize); 2331 } else if (D->hasAttr<NakedAttr>()) { 2332 // Naked implies noinline: we should not be inlining such functions. 2333 B.addAttribute(llvm::Attribute::Naked); 2334 B.addAttribute(llvm::Attribute::NoInline); 2335 } else if (D->hasAttr<NoDuplicateAttr>()) { 2336 B.addAttribute(llvm::Attribute::NoDuplicate); 2337 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2338 // Add noinline if the function isn't always_inline. 2339 B.addAttribute(llvm::Attribute::NoInline); 2340 } else if (D->hasAttr<AlwaysInlineAttr>() && 2341 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2342 // (noinline wins over always_inline, and we can't specify both in IR) 2343 B.addAttribute(llvm::Attribute::AlwaysInline); 2344 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2345 // If we're not inlining, then force everything that isn't always_inline to 2346 // carry an explicit noinline attribute. 2347 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2348 B.addAttribute(llvm::Attribute::NoInline); 2349 } else { 2350 // Otherwise, propagate the inline hint attribute and potentially use its 2351 // absence to mark things as noinline. 2352 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2353 // Search function and template pattern redeclarations for inline. 2354 auto CheckForInline = [](const FunctionDecl *FD) { 2355 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2356 return Redecl->isInlineSpecified(); 2357 }; 2358 if (any_of(FD->redecls(), CheckRedeclForInline)) 2359 return true; 2360 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2361 if (!Pattern) 2362 return false; 2363 return any_of(Pattern->redecls(), CheckRedeclForInline); 2364 }; 2365 if (CheckForInline(FD)) { 2366 B.addAttribute(llvm::Attribute::InlineHint); 2367 } else if (CodeGenOpts.getInlining() == 2368 CodeGenOptions::OnlyHintInlining && 2369 !FD->isInlined() && 2370 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2371 B.addAttribute(llvm::Attribute::NoInline); 2372 } 2373 } 2374 } 2375 2376 // Add other optimization related attributes if we are optimizing this 2377 // function. 2378 if (!D->hasAttr<OptimizeNoneAttr>()) { 2379 if (D->hasAttr<ColdAttr>()) { 2380 if (!ShouldAddOptNone) 2381 B.addAttribute(llvm::Attribute::OptimizeForSize); 2382 B.addAttribute(llvm::Attribute::Cold); 2383 } 2384 if (D->hasAttr<HotAttr>()) 2385 B.addAttribute(llvm::Attribute::Hot); 2386 if (D->hasAttr<MinSizeAttr>()) 2387 B.addAttribute(llvm::Attribute::MinSize); 2388 } 2389 2390 F->addFnAttrs(B); 2391 2392 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2393 if (alignment) 2394 F->setAlignment(llvm::Align(alignment)); 2395 2396 if (!D->hasAttr<AlignedAttr>()) 2397 if (LangOpts.FunctionAlignment) 2398 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2399 2400 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2401 // reserve a bit for differentiating between virtual and non-virtual member 2402 // functions. If the current target's C++ ABI requires this and this is a 2403 // member function, set its alignment accordingly. 2404 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2405 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2406 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2407 } 2408 2409 // In the cross-dso CFI mode with canonical jump tables, we want !type 2410 // attributes on definitions only. 2411 if (CodeGenOpts.SanitizeCfiCrossDso && 2412 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2413 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2414 // Skip available_externally functions. They won't be codegen'ed in the 2415 // current module anyway. 2416 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2417 CreateFunctionTypeMetadataForIcall(FD, F); 2418 } 2419 } 2420 2421 // Emit type metadata on member functions for member function pointer checks. 2422 // These are only ever necessary on definitions; we're guaranteed that the 2423 // definition will be present in the LTO unit as a result of LTO visibility. 2424 auto *MD = dyn_cast<CXXMethodDecl>(D); 2425 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2426 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2427 llvm::Metadata *Id = 2428 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2429 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2430 F->addTypeMetadata(0, Id); 2431 } 2432 } 2433 } 2434 2435 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2436 const Decl *D = GD.getDecl(); 2437 if (isa_and_nonnull<NamedDecl>(D)) 2438 setGVProperties(GV, GD); 2439 else 2440 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2441 2442 if (D && D->hasAttr<UsedAttr>()) 2443 addUsedOrCompilerUsedGlobal(GV); 2444 2445 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2446 VD && 2447 ((CodeGenOpts.KeepPersistentStorageVariables && 2448 (VD->getStorageDuration() == SD_Static || 2449 VD->getStorageDuration() == SD_Thread)) || 2450 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2451 VD->getType().isConstQualified()))) 2452 addUsedOrCompilerUsedGlobal(GV); 2453 } 2454 2455 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2456 llvm::AttrBuilder &Attrs, 2457 bool SetTargetFeatures) { 2458 // Add target-cpu and target-features attributes to functions. If 2459 // we have a decl for the function and it has a target attribute then 2460 // parse that and add it to the feature set. 2461 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2462 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2463 std::vector<std::string> Features; 2464 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2465 FD = FD ? FD->getMostRecentDecl() : FD; 2466 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2467 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2468 assert((!TD || !TV) && "both target_version and target specified"); 2469 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2470 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2471 bool AddedAttr = false; 2472 if (TD || TV || SD || TC) { 2473 llvm::StringMap<bool> FeatureMap; 2474 getContext().getFunctionFeatureMap(FeatureMap, GD); 2475 2476 // Produce the canonical string for this set of features. 2477 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2478 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2479 2480 // Now add the target-cpu and target-features to the function. 2481 // While we populated the feature map above, we still need to 2482 // get and parse the target attribute so we can get the cpu for 2483 // the function. 2484 if (TD) { 2485 ParsedTargetAttr ParsedAttr = 2486 Target.parseTargetAttr(TD->getFeaturesStr()); 2487 if (!ParsedAttr.CPU.empty() && 2488 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2489 TargetCPU = ParsedAttr.CPU; 2490 TuneCPU = ""; // Clear the tune CPU. 2491 } 2492 if (!ParsedAttr.Tune.empty() && 2493 getTarget().isValidCPUName(ParsedAttr.Tune)) 2494 TuneCPU = ParsedAttr.Tune; 2495 } 2496 2497 if (SD) { 2498 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2499 // favor this processor. 2500 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2501 } 2502 } else { 2503 // Otherwise just add the existing target cpu and target features to the 2504 // function. 2505 Features = getTarget().getTargetOpts().Features; 2506 } 2507 2508 if (!TargetCPU.empty()) { 2509 Attrs.addAttribute("target-cpu", TargetCPU); 2510 AddedAttr = true; 2511 } 2512 if (!TuneCPU.empty()) { 2513 Attrs.addAttribute("tune-cpu", TuneCPU); 2514 AddedAttr = true; 2515 } 2516 if (!Features.empty() && SetTargetFeatures) { 2517 llvm::erase_if(Features, [&](const std::string& F) { 2518 return getTarget().isReadOnlyFeature(F.substr(1)); 2519 }); 2520 llvm::sort(Features); 2521 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2522 AddedAttr = true; 2523 } 2524 2525 return AddedAttr; 2526 } 2527 2528 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2529 llvm::GlobalObject *GO) { 2530 const Decl *D = GD.getDecl(); 2531 SetCommonAttributes(GD, GO); 2532 2533 if (D) { 2534 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2535 if (D->hasAttr<RetainAttr>()) 2536 addUsedGlobal(GV); 2537 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2538 GV->addAttribute("bss-section", SA->getName()); 2539 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2540 GV->addAttribute("data-section", SA->getName()); 2541 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2542 GV->addAttribute("rodata-section", SA->getName()); 2543 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2544 GV->addAttribute("relro-section", SA->getName()); 2545 } 2546 2547 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2548 if (D->hasAttr<RetainAttr>()) 2549 addUsedGlobal(F); 2550 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2551 if (!D->getAttr<SectionAttr>()) 2552 F->addFnAttr("implicit-section-name", SA->getName()); 2553 2554 llvm::AttrBuilder Attrs(F->getContext()); 2555 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2556 // We know that GetCPUAndFeaturesAttributes will always have the 2557 // newest set, since it has the newest possible FunctionDecl, so the 2558 // new ones should replace the old. 2559 llvm::AttributeMask RemoveAttrs; 2560 RemoveAttrs.addAttribute("target-cpu"); 2561 RemoveAttrs.addAttribute("target-features"); 2562 RemoveAttrs.addAttribute("tune-cpu"); 2563 F->removeFnAttrs(RemoveAttrs); 2564 F->addFnAttrs(Attrs); 2565 } 2566 } 2567 2568 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2569 GO->setSection(CSA->getName()); 2570 else if (const auto *SA = D->getAttr<SectionAttr>()) 2571 GO->setSection(SA->getName()); 2572 } 2573 2574 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2575 } 2576 2577 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2578 llvm::Function *F, 2579 const CGFunctionInfo &FI) { 2580 const Decl *D = GD.getDecl(); 2581 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2582 SetLLVMFunctionAttributesForDefinition(D, F); 2583 2584 F->setLinkage(llvm::Function::InternalLinkage); 2585 2586 setNonAliasAttributes(GD, F); 2587 } 2588 2589 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2590 // Set linkage and visibility in case we never see a definition. 2591 LinkageInfo LV = ND->getLinkageAndVisibility(); 2592 // Don't set internal linkage on declarations. 2593 // "extern_weak" is overloaded in LLVM; we probably should have 2594 // separate linkage types for this. 2595 if (isExternallyVisible(LV.getLinkage()) && 2596 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2597 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2598 } 2599 2600 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2601 llvm::Function *F) { 2602 // Only if we are checking indirect calls. 2603 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2604 return; 2605 2606 // Non-static class methods are handled via vtable or member function pointer 2607 // checks elsewhere. 2608 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2609 return; 2610 2611 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2612 F->addTypeMetadata(0, MD); 2613 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2614 2615 // Emit a hash-based bit set entry for cross-DSO calls. 2616 if (CodeGenOpts.SanitizeCfiCrossDso) 2617 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2618 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2619 } 2620 2621 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2622 llvm::LLVMContext &Ctx = F->getContext(); 2623 llvm::MDBuilder MDB(Ctx); 2624 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2625 llvm::MDNode::get( 2626 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2627 } 2628 2629 static bool allowKCFIIdentifier(StringRef Name) { 2630 // KCFI type identifier constants are only necessary for external assembly 2631 // functions, which means it's safe to skip unusual names. Subset of 2632 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2633 return llvm::all_of(Name, [](const char &C) { 2634 return llvm::isAlnum(C) || C == '_' || C == '.'; 2635 }); 2636 } 2637 2638 void CodeGenModule::finalizeKCFITypes() { 2639 llvm::Module &M = getModule(); 2640 for (auto &F : M.functions()) { 2641 // Remove KCFI type metadata from non-address-taken local functions. 2642 bool AddressTaken = F.hasAddressTaken(); 2643 if (!AddressTaken && F.hasLocalLinkage()) 2644 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2645 2646 // Generate a constant with the expected KCFI type identifier for all 2647 // address-taken function declarations to support annotating indirectly 2648 // called assembly functions. 2649 if (!AddressTaken || !F.isDeclaration()) 2650 continue; 2651 2652 const llvm::ConstantInt *Type; 2653 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2654 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2655 else 2656 continue; 2657 2658 StringRef Name = F.getName(); 2659 if (!allowKCFIIdentifier(Name)) 2660 continue; 2661 2662 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2663 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2664 .str(); 2665 M.appendModuleInlineAsm(Asm); 2666 } 2667 } 2668 2669 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2670 bool IsIncompleteFunction, 2671 bool IsThunk) { 2672 2673 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2674 // If this is an intrinsic function, set the function's attributes 2675 // to the intrinsic's attributes. 2676 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2677 return; 2678 } 2679 2680 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2681 2682 if (!IsIncompleteFunction) 2683 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2684 IsThunk); 2685 2686 // Add the Returned attribute for "this", except for iOS 5 and earlier 2687 // where substantial code, including the libstdc++ dylib, was compiled with 2688 // GCC and does not actually return "this". 2689 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2690 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2691 assert(!F->arg_empty() && 2692 F->arg_begin()->getType() 2693 ->canLosslesslyBitCastTo(F->getReturnType()) && 2694 "unexpected this return"); 2695 F->addParamAttr(0, llvm::Attribute::Returned); 2696 } 2697 2698 // Only a few attributes are set on declarations; these may later be 2699 // overridden by a definition. 2700 2701 setLinkageForGV(F, FD); 2702 setGVProperties(F, FD); 2703 2704 // Setup target-specific attributes. 2705 if (!IsIncompleteFunction && F->isDeclaration()) 2706 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2707 2708 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2709 F->setSection(CSA->getName()); 2710 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2711 F->setSection(SA->getName()); 2712 2713 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2714 if (EA->isError()) 2715 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2716 else if (EA->isWarning()) 2717 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2718 } 2719 2720 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2721 if (FD->isInlineBuiltinDeclaration()) { 2722 const FunctionDecl *FDBody; 2723 bool HasBody = FD->hasBody(FDBody); 2724 (void)HasBody; 2725 assert(HasBody && "Inline builtin declarations should always have an " 2726 "available body!"); 2727 if (shouldEmitFunction(FDBody)) 2728 F->addFnAttr(llvm::Attribute::NoBuiltin); 2729 } 2730 2731 if (FD->isReplaceableGlobalAllocationFunction()) { 2732 // A replaceable global allocation function does not act like a builtin by 2733 // default, only if it is invoked by a new-expression or delete-expression. 2734 F->addFnAttr(llvm::Attribute::NoBuiltin); 2735 } 2736 2737 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2738 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2739 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2740 if (MD->isVirtual()) 2741 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2742 2743 // Don't emit entries for function declarations in the cross-DSO mode. This 2744 // is handled with better precision by the receiving DSO. But if jump tables 2745 // are non-canonical then we need type metadata in order to produce the local 2746 // jump table. 2747 if (!CodeGenOpts.SanitizeCfiCrossDso || 2748 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2749 CreateFunctionTypeMetadataForIcall(FD, F); 2750 2751 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2752 setKCFIType(FD, F); 2753 2754 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2755 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2756 2757 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2758 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2759 2760 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2761 // Annotate the callback behavior as metadata: 2762 // - The callback callee (as argument number). 2763 // - The callback payloads (as argument numbers). 2764 llvm::LLVMContext &Ctx = F->getContext(); 2765 llvm::MDBuilder MDB(Ctx); 2766 2767 // The payload indices are all but the first one in the encoding. The first 2768 // identifies the callback callee. 2769 int CalleeIdx = *CB->encoding_begin(); 2770 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2771 F->addMetadata(llvm::LLVMContext::MD_callback, 2772 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2773 CalleeIdx, PayloadIndices, 2774 /* VarArgsArePassed */ false)})); 2775 } 2776 } 2777 2778 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2779 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2780 "Only globals with definition can force usage."); 2781 LLVMUsed.emplace_back(GV); 2782 } 2783 2784 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2785 assert(!GV->isDeclaration() && 2786 "Only globals with definition can force usage."); 2787 LLVMCompilerUsed.emplace_back(GV); 2788 } 2789 2790 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2791 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2792 "Only globals with definition can force usage."); 2793 if (getTriple().isOSBinFormatELF()) 2794 LLVMCompilerUsed.emplace_back(GV); 2795 else 2796 LLVMUsed.emplace_back(GV); 2797 } 2798 2799 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2800 std::vector<llvm::WeakTrackingVH> &List) { 2801 // Don't create llvm.used if there is no need. 2802 if (List.empty()) 2803 return; 2804 2805 // Convert List to what ConstantArray needs. 2806 SmallVector<llvm::Constant*, 8> UsedArray; 2807 UsedArray.resize(List.size()); 2808 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2809 UsedArray[i] = 2810 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2811 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2812 } 2813 2814 if (UsedArray.empty()) 2815 return; 2816 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2817 2818 auto *GV = new llvm::GlobalVariable( 2819 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2820 llvm::ConstantArray::get(ATy, UsedArray), Name); 2821 2822 GV->setSection("llvm.metadata"); 2823 } 2824 2825 void CodeGenModule::emitLLVMUsed() { 2826 emitUsed(*this, "llvm.used", LLVMUsed); 2827 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2828 } 2829 2830 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2831 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2832 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2833 } 2834 2835 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2836 llvm::SmallString<32> Opt; 2837 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2838 if (Opt.empty()) 2839 return; 2840 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2841 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2842 } 2843 2844 void CodeGenModule::AddDependentLib(StringRef Lib) { 2845 auto &C = getLLVMContext(); 2846 if (getTarget().getTriple().isOSBinFormatELF()) { 2847 ELFDependentLibraries.push_back( 2848 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2849 return; 2850 } 2851 2852 llvm::SmallString<24> Opt; 2853 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2854 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2855 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2856 } 2857 2858 /// Add link options implied by the given module, including modules 2859 /// it depends on, using a postorder walk. 2860 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2861 SmallVectorImpl<llvm::MDNode *> &Metadata, 2862 llvm::SmallPtrSet<Module *, 16> &Visited) { 2863 // Import this module's parent. 2864 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2865 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2866 } 2867 2868 // Import this module's dependencies. 2869 for (Module *Import : llvm::reverse(Mod->Imports)) { 2870 if (Visited.insert(Import).second) 2871 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2872 } 2873 2874 // Add linker options to link against the libraries/frameworks 2875 // described by this module. 2876 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2877 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2878 2879 // For modules that use export_as for linking, use that module 2880 // name instead. 2881 if (Mod->UseExportAsModuleLinkName) 2882 return; 2883 2884 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2885 // Link against a framework. Frameworks are currently Darwin only, so we 2886 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2887 if (LL.IsFramework) { 2888 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2889 llvm::MDString::get(Context, LL.Library)}; 2890 2891 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2892 continue; 2893 } 2894 2895 // Link against a library. 2896 if (IsELF) { 2897 llvm::Metadata *Args[2] = { 2898 llvm::MDString::get(Context, "lib"), 2899 llvm::MDString::get(Context, LL.Library), 2900 }; 2901 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2902 } else { 2903 llvm::SmallString<24> Opt; 2904 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2905 auto *OptString = llvm::MDString::get(Context, Opt); 2906 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2907 } 2908 } 2909 } 2910 2911 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2912 // Emit the initializers in the order that sub-modules appear in the 2913 // source, first Global Module Fragments, if present. 2914 if (auto GMF = Primary->getGlobalModuleFragment()) { 2915 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2916 if (isa<ImportDecl>(D)) 2917 continue; 2918 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2919 EmitTopLevelDecl(D); 2920 } 2921 } 2922 // Second any associated with the module, itself. 2923 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2924 // Skip import decls, the inits for those are called explicitly. 2925 if (isa<ImportDecl>(D)) 2926 continue; 2927 EmitTopLevelDecl(D); 2928 } 2929 // Third any associated with the Privat eMOdule Fragment, if present. 2930 if (auto PMF = Primary->getPrivateModuleFragment()) { 2931 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2932 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2933 EmitTopLevelDecl(D); 2934 } 2935 } 2936 } 2937 2938 void CodeGenModule::EmitModuleLinkOptions() { 2939 // Collect the set of all of the modules we want to visit to emit link 2940 // options, which is essentially the imported modules and all of their 2941 // non-explicit child modules. 2942 llvm::SetVector<clang::Module *> LinkModules; 2943 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2944 SmallVector<clang::Module *, 16> Stack; 2945 2946 // Seed the stack with imported modules. 2947 for (Module *M : ImportedModules) { 2948 // Do not add any link flags when an implementation TU of a module imports 2949 // a header of that same module. 2950 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2951 !getLangOpts().isCompilingModule()) 2952 continue; 2953 if (Visited.insert(M).second) 2954 Stack.push_back(M); 2955 } 2956 2957 // Find all of the modules to import, making a little effort to prune 2958 // non-leaf modules. 2959 while (!Stack.empty()) { 2960 clang::Module *Mod = Stack.pop_back_val(); 2961 2962 bool AnyChildren = false; 2963 2964 // Visit the submodules of this module. 2965 for (const auto &SM : Mod->submodules()) { 2966 // Skip explicit children; they need to be explicitly imported to be 2967 // linked against. 2968 if (SM->IsExplicit) 2969 continue; 2970 2971 if (Visited.insert(SM).second) { 2972 Stack.push_back(SM); 2973 AnyChildren = true; 2974 } 2975 } 2976 2977 // We didn't find any children, so add this module to the list of 2978 // modules to link against. 2979 if (!AnyChildren) { 2980 LinkModules.insert(Mod); 2981 } 2982 } 2983 2984 // Add link options for all of the imported modules in reverse topological 2985 // order. We don't do anything to try to order import link flags with respect 2986 // to linker options inserted by things like #pragma comment(). 2987 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2988 Visited.clear(); 2989 for (Module *M : LinkModules) 2990 if (Visited.insert(M).second) 2991 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2992 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2993 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2994 2995 // Add the linker options metadata flag. 2996 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2997 for (auto *MD : LinkerOptionsMetadata) 2998 NMD->addOperand(MD); 2999 } 3000 3001 void CodeGenModule::EmitDeferred() { 3002 // Emit deferred declare target declarations. 3003 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3004 getOpenMPRuntime().emitDeferredTargetDecls(); 3005 3006 // Emit code for any potentially referenced deferred decls. Since a 3007 // previously unused static decl may become used during the generation of code 3008 // for a static function, iterate until no changes are made. 3009 3010 if (!DeferredVTables.empty()) { 3011 EmitDeferredVTables(); 3012 3013 // Emitting a vtable doesn't directly cause more vtables to 3014 // become deferred, although it can cause functions to be 3015 // emitted that then need those vtables. 3016 assert(DeferredVTables.empty()); 3017 } 3018 3019 // Emit CUDA/HIP static device variables referenced by host code only. 3020 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3021 // needed for further handling. 3022 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3023 llvm::append_range(DeferredDeclsToEmit, 3024 getContext().CUDADeviceVarODRUsedByHost); 3025 3026 // Stop if we're out of both deferred vtables and deferred declarations. 3027 if (DeferredDeclsToEmit.empty()) 3028 return; 3029 3030 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3031 // work, it will not interfere with this. 3032 std::vector<GlobalDecl> CurDeclsToEmit; 3033 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3034 3035 for (GlobalDecl &D : CurDeclsToEmit) { 3036 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3037 // to get GlobalValue with exactly the type we need, not something that 3038 // might had been created for another decl with the same mangled name but 3039 // different type. 3040 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3041 GetAddrOfGlobal(D, ForDefinition)); 3042 3043 // In case of different address spaces, we may still get a cast, even with 3044 // IsForDefinition equal to true. Query mangled names table to get 3045 // GlobalValue. 3046 if (!GV) 3047 GV = GetGlobalValue(getMangledName(D)); 3048 3049 // Make sure GetGlobalValue returned non-null. 3050 assert(GV); 3051 3052 // Check to see if we've already emitted this. This is necessary 3053 // for a couple of reasons: first, decls can end up in the 3054 // deferred-decls queue multiple times, and second, decls can end 3055 // up with definitions in unusual ways (e.g. by an extern inline 3056 // function acquiring a strong function redefinition). Just 3057 // ignore these cases. 3058 if (!GV->isDeclaration()) 3059 continue; 3060 3061 // If this is OpenMP, check if it is legal to emit this global normally. 3062 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3063 continue; 3064 3065 // Otherwise, emit the definition and move on to the next one. 3066 EmitGlobalDefinition(D, GV); 3067 3068 // If we found out that we need to emit more decls, do that recursively. 3069 // This has the advantage that the decls are emitted in a DFS and related 3070 // ones are close together, which is convenient for testing. 3071 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3072 EmitDeferred(); 3073 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3074 } 3075 } 3076 } 3077 3078 void CodeGenModule::EmitVTablesOpportunistically() { 3079 // Try to emit external vtables as available_externally if they have emitted 3080 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3081 // is not allowed to create new references to things that need to be emitted 3082 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3083 3084 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3085 && "Only emit opportunistic vtables with optimizations"); 3086 3087 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3088 assert(getVTables().isVTableExternal(RD) && 3089 "This queue should only contain external vtables"); 3090 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3091 VTables.GenerateClassData(RD); 3092 } 3093 OpportunisticVTables.clear(); 3094 } 3095 3096 void CodeGenModule::EmitGlobalAnnotations() { 3097 for (const auto& [MangledName, VD] : DeferredAnnotations) 3098 AddGlobalAnnotations(VD, GetGlobalValue(MangledName)); 3099 DeferredAnnotations.clear(); 3100 3101 if (Annotations.empty()) 3102 return; 3103 3104 // Create a new global variable for the ConstantStruct in the Module. 3105 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3106 Annotations[0]->getType(), Annotations.size()), Annotations); 3107 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3108 llvm::GlobalValue::AppendingLinkage, 3109 Array, "llvm.global.annotations"); 3110 gv->setSection(AnnotationSection); 3111 } 3112 3113 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3114 llvm::Constant *&AStr = AnnotationStrings[Str]; 3115 if (AStr) 3116 return AStr; 3117 3118 // Not found yet, create a new global. 3119 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3120 auto *gv = new llvm::GlobalVariable( 3121 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3122 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3123 ConstGlobalsPtrTy->getAddressSpace()); 3124 gv->setSection(AnnotationSection); 3125 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3126 AStr = gv; 3127 return gv; 3128 } 3129 3130 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3131 SourceManager &SM = getContext().getSourceManager(); 3132 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3133 if (PLoc.isValid()) 3134 return EmitAnnotationString(PLoc.getFilename()); 3135 return EmitAnnotationString(SM.getBufferName(Loc)); 3136 } 3137 3138 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3139 SourceManager &SM = getContext().getSourceManager(); 3140 PresumedLoc PLoc = SM.getPresumedLoc(L); 3141 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3142 SM.getExpansionLineNumber(L); 3143 return llvm::ConstantInt::get(Int32Ty, LineNo); 3144 } 3145 3146 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3147 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3148 if (Exprs.empty()) 3149 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3150 3151 llvm::FoldingSetNodeID ID; 3152 for (Expr *E : Exprs) { 3153 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3154 } 3155 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3156 if (Lookup) 3157 return Lookup; 3158 3159 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3160 LLVMArgs.reserve(Exprs.size()); 3161 ConstantEmitter ConstEmiter(*this); 3162 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3163 const auto *CE = cast<clang::ConstantExpr>(E); 3164 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3165 CE->getType()); 3166 }); 3167 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3168 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3169 llvm::GlobalValue::PrivateLinkage, Struct, 3170 ".args"); 3171 GV->setSection(AnnotationSection); 3172 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3173 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 3174 3175 Lookup = Bitcasted; 3176 return Bitcasted; 3177 } 3178 3179 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3180 const AnnotateAttr *AA, 3181 SourceLocation L) { 3182 // Get the globals for file name, annotation, and the line number. 3183 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3184 *UnitGV = EmitAnnotationUnit(L), 3185 *LineNoCst = EmitAnnotationLineNo(L), 3186 *Args = EmitAnnotationArgs(AA); 3187 3188 llvm::Constant *GVInGlobalsAS = GV; 3189 if (GV->getAddressSpace() != 3190 getDataLayout().getDefaultGlobalsAddressSpace()) { 3191 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3192 GV, GV->getValueType()->getPointerTo( 3193 getDataLayout().getDefaultGlobalsAddressSpace())); 3194 } 3195 3196 // Create the ConstantStruct for the global annotation. 3197 llvm::Constant *Fields[] = { 3198 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 3199 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 3200 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 3201 LineNoCst, 3202 Args, 3203 }; 3204 return llvm::ConstantStruct::getAnon(Fields); 3205 } 3206 3207 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3208 llvm::GlobalValue *GV) { 3209 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3210 // Get the struct elements for these annotations. 3211 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3212 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3213 } 3214 3215 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3216 SourceLocation Loc) const { 3217 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3218 // NoSanitize by function name. 3219 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3220 return true; 3221 // NoSanitize by location. Check "mainfile" prefix. 3222 auto &SM = Context.getSourceManager(); 3223 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3224 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3225 return true; 3226 3227 // Check "src" prefix. 3228 if (Loc.isValid()) 3229 return NoSanitizeL.containsLocation(Kind, Loc); 3230 // If location is unknown, this may be a compiler-generated function. Assume 3231 // it's located in the main file. 3232 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3233 } 3234 3235 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3236 llvm::GlobalVariable *GV, 3237 SourceLocation Loc, QualType Ty, 3238 StringRef Category) const { 3239 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3240 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3241 return true; 3242 auto &SM = Context.getSourceManager(); 3243 if (NoSanitizeL.containsMainFile( 3244 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3245 Category)) 3246 return true; 3247 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3248 return true; 3249 3250 // Check global type. 3251 if (!Ty.isNull()) { 3252 // Drill down the array types: if global variable of a fixed type is 3253 // not sanitized, we also don't instrument arrays of them. 3254 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3255 Ty = AT->getElementType(); 3256 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3257 // Only record types (classes, structs etc.) are ignored. 3258 if (Ty->isRecordType()) { 3259 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3260 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3261 return true; 3262 } 3263 } 3264 return false; 3265 } 3266 3267 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3268 StringRef Category) const { 3269 const auto &XRayFilter = getContext().getXRayFilter(); 3270 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3271 auto Attr = ImbueAttr::NONE; 3272 if (Loc.isValid()) 3273 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3274 if (Attr == ImbueAttr::NONE) 3275 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3276 switch (Attr) { 3277 case ImbueAttr::NONE: 3278 return false; 3279 case ImbueAttr::ALWAYS: 3280 Fn->addFnAttr("function-instrument", "xray-always"); 3281 break; 3282 case ImbueAttr::ALWAYS_ARG1: 3283 Fn->addFnAttr("function-instrument", "xray-always"); 3284 Fn->addFnAttr("xray-log-args", "1"); 3285 break; 3286 case ImbueAttr::NEVER: 3287 Fn->addFnAttr("function-instrument", "xray-never"); 3288 break; 3289 } 3290 return true; 3291 } 3292 3293 ProfileList::ExclusionType 3294 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3295 SourceLocation Loc) const { 3296 const auto &ProfileList = getContext().getProfileList(); 3297 // If the profile list is empty, then instrument everything. 3298 if (ProfileList.isEmpty()) 3299 return ProfileList::Allow; 3300 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3301 // First, check the function name. 3302 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3303 return *V; 3304 // Next, check the source location. 3305 if (Loc.isValid()) 3306 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3307 return *V; 3308 // If location is unknown, this may be a compiler-generated function. Assume 3309 // it's located in the main file. 3310 auto &SM = Context.getSourceManager(); 3311 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3312 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3313 return *V; 3314 return ProfileList.getDefault(Kind); 3315 } 3316 3317 ProfileList::ExclusionType 3318 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3319 SourceLocation Loc) const { 3320 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3321 if (V != ProfileList::Allow) 3322 return V; 3323 3324 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3325 if (NumGroups > 1) { 3326 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3327 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3328 return ProfileList::Skip; 3329 } 3330 return ProfileList::Allow; 3331 } 3332 3333 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3334 // Never defer when EmitAllDecls is specified. 3335 if (LangOpts.EmitAllDecls) 3336 return true; 3337 3338 const auto *VD = dyn_cast<VarDecl>(Global); 3339 if (VD && 3340 ((CodeGenOpts.KeepPersistentStorageVariables && 3341 (VD->getStorageDuration() == SD_Static || 3342 VD->getStorageDuration() == SD_Thread)) || 3343 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3344 VD->getType().isConstQualified()))) 3345 return true; 3346 3347 return getContext().DeclMustBeEmitted(Global); 3348 } 3349 3350 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3351 // In OpenMP 5.0 variables and function may be marked as 3352 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3353 // that they must be emitted on the host/device. To be sure we need to have 3354 // seen a declare target with an explicit mentioning of the function, we know 3355 // we have if the level of the declare target attribute is -1. Note that we 3356 // check somewhere else if we should emit this at all. 3357 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3358 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3359 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3360 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3361 return false; 3362 } 3363 3364 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3365 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3366 // Implicit template instantiations may change linkage if they are later 3367 // explicitly instantiated, so they should not be emitted eagerly. 3368 return false; 3369 } 3370 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3371 if (Context.getInlineVariableDefinitionKind(VD) == 3372 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3373 // A definition of an inline constexpr static data member may change 3374 // linkage later if it's redeclared outside the class. 3375 return false; 3376 if (CXX20ModuleInits && VD->getOwningModule() && 3377 !VD->getOwningModule()->isModuleMapModule()) { 3378 // For CXX20, module-owned initializers need to be deferred, since it is 3379 // not known at this point if they will be run for the current module or 3380 // as part of the initializer for an imported one. 3381 return false; 3382 } 3383 } 3384 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3385 // codegen for global variables, because they may be marked as threadprivate. 3386 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3387 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3388 !Global->getType().isConstantStorage(getContext(), false, false) && 3389 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3390 return false; 3391 3392 return true; 3393 } 3394 3395 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3396 StringRef Name = getMangledName(GD); 3397 3398 // The UUID descriptor should be pointer aligned. 3399 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3400 3401 // Look for an existing global. 3402 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3403 return ConstantAddress(GV, GV->getValueType(), Alignment); 3404 3405 ConstantEmitter Emitter(*this); 3406 llvm::Constant *Init; 3407 3408 APValue &V = GD->getAsAPValue(); 3409 if (!V.isAbsent()) { 3410 // If possible, emit the APValue version of the initializer. In particular, 3411 // this gets the type of the constant right. 3412 Init = Emitter.emitForInitializer( 3413 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3414 } else { 3415 // As a fallback, directly construct the constant. 3416 // FIXME: This may get padding wrong under esoteric struct layout rules. 3417 // MSVC appears to create a complete type 'struct __s_GUID' that it 3418 // presumably uses to represent these constants. 3419 MSGuidDecl::Parts Parts = GD->getParts(); 3420 llvm::Constant *Fields[4] = { 3421 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3422 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3423 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3424 llvm::ConstantDataArray::getRaw( 3425 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3426 Int8Ty)}; 3427 Init = llvm::ConstantStruct::getAnon(Fields); 3428 } 3429 3430 auto *GV = new llvm::GlobalVariable( 3431 getModule(), Init->getType(), 3432 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3433 if (supportsCOMDAT()) 3434 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3435 setDSOLocal(GV); 3436 3437 if (!V.isAbsent()) { 3438 Emitter.finalize(GV); 3439 return ConstantAddress(GV, GV->getValueType(), Alignment); 3440 } 3441 3442 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3443 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3444 GV, Ty->getPointerTo(GV->getAddressSpace())); 3445 return ConstantAddress(Addr, Ty, Alignment); 3446 } 3447 3448 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3449 const UnnamedGlobalConstantDecl *GCD) { 3450 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3451 3452 llvm::GlobalVariable **Entry = nullptr; 3453 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3454 if (*Entry) 3455 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3456 3457 ConstantEmitter Emitter(*this); 3458 llvm::Constant *Init; 3459 3460 const APValue &V = GCD->getValue(); 3461 3462 assert(!V.isAbsent()); 3463 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3464 GCD->getType()); 3465 3466 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3467 /*isConstant=*/true, 3468 llvm::GlobalValue::PrivateLinkage, Init, 3469 ".constant"); 3470 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3471 GV->setAlignment(Alignment.getAsAlign()); 3472 3473 Emitter.finalize(GV); 3474 3475 *Entry = GV; 3476 return ConstantAddress(GV, GV->getValueType(), Alignment); 3477 } 3478 3479 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3480 const TemplateParamObjectDecl *TPO) { 3481 StringRef Name = getMangledName(TPO); 3482 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3483 3484 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3485 return ConstantAddress(GV, GV->getValueType(), Alignment); 3486 3487 ConstantEmitter Emitter(*this); 3488 llvm::Constant *Init = Emitter.emitForInitializer( 3489 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3490 3491 if (!Init) { 3492 ErrorUnsupported(TPO, "template parameter object"); 3493 return ConstantAddress::invalid(); 3494 } 3495 3496 llvm::GlobalValue::LinkageTypes Linkage = 3497 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3498 ? llvm::GlobalValue::LinkOnceODRLinkage 3499 : llvm::GlobalValue::InternalLinkage; 3500 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3501 /*isConstant=*/true, Linkage, Init, Name); 3502 setGVProperties(GV, TPO); 3503 if (supportsCOMDAT()) 3504 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3505 Emitter.finalize(GV); 3506 3507 return ConstantAddress(GV, GV->getValueType(), Alignment); 3508 } 3509 3510 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3511 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3512 assert(AA && "No alias?"); 3513 3514 CharUnits Alignment = getContext().getDeclAlign(VD); 3515 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3516 3517 // See if there is already something with the target's name in the module. 3518 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3519 if (Entry) { 3520 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3521 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3522 return ConstantAddress(Ptr, DeclTy, Alignment); 3523 } 3524 3525 llvm::Constant *Aliasee; 3526 if (isa<llvm::FunctionType>(DeclTy)) 3527 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3528 GlobalDecl(cast<FunctionDecl>(VD)), 3529 /*ForVTable=*/false); 3530 else 3531 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3532 nullptr); 3533 3534 auto *F = cast<llvm::GlobalValue>(Aliasee); 3535 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3536 WeakRefReferences.insert(F); 3537 3538 return ConstantAddress(Aliasee, DeclTy, Alignment); 3539 } 3540 3541 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3542 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3543 3544 // Weak references don't produce any output by themselves. 3545 if (Global->hasAttr<WeakRefAttr>()) 3546 return; 3547 3548 // If this is an alias definition (which otherwise looks like a declaration) 3549 // emit it now. 3550 if (Global->hasAttr<AliasAttr>()) 3551 return EmitAliasDefinition(GD); 3552 3553 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3554 if (Global->hasAttr<IFuncAttr>()) 3555 return emitIFuncDefinition(GD); 3556 3557 // If this is a cpu_dispatch multiversion function, emit the resolver. 3558 if (Global->hasAttr<CPUDispatchAttr>()) 3559 return emitCPUDispatchDefinition(GD); 3560 3561 // If this is CUDA, be selective about which declarations we emit. 3562 if (LangOpts.CUDA) { 3563 if (LangOpts.CUDAIsDevice) { 3564 if (!Global->hasAttr<CUDADeviceAttr>() && 3565 !Global->hasAttr<CUDAGlobalAttr>() && 3566 !Global->hasAttr<CUDAConstantAttr>() && 3567 !Global->hasAttr<CUDASharedAttr>() && 3568 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3569 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3570 return; 3571 } else { 3572 // We need to emit host-side 'shadows' for all global 3573 // device-side variables because the CUDA runtime needs their 3574 // size and host-side address in order to provide access to 3575 // their device-side incarnations. 3576 3577 // So device-only functions are the only things we skip. 3578 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3579 Global->hasAttr<CUDADeviceAttr>()) 3580 return; 3581 3582 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3583 "Expected Variable or Function"); 3584 } 3585 } 3586 3587 if (LangOpts.OpenMP) { 3588 // If this is OpenMP, check if it is legal to emit this global normally. 3589 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3590 return; 3591 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3592 if (MustBeEmitted(Global)) 3593 EmitOMPDeclareReduction(DRD); 3594 return; 3595 } 3596 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3597 if (MustBeEmitted(Global)) 3598 EmitOMPDeclareMapper(DMD); 3599 return; 3600 } 3601 } 3602 3603 // Ignore declarations, they will be emitted on their first use. 3604 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3605 // Update deferred annotations with the latest declaration if the function 3606 // function was already used or defined. 3607 if (FD->hasAttr<AnnotateAttr>()) { 3608 StringRef MangledName = getMangledName(GD); 3609 if (GetGlobalValue(MangledName)) 3610 DeferredAnnotations[MangledName] = FD; 3611 } 3612 3613 // Forward declarations are emitted lazily on first use. 3614 if (!FD->doesThisDeclarationHaveABody()) { 3615 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3616 return; 3617 3618 StringRef MangledName = getMangledName(GD); 3619 3620 // Compute the function info and LLVM type. 3621 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3622 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3623 3624 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3625 /*DontDefer=*/false); 3626 return; 3627 } 3628 } else { 3629 const auto *VD = cast<VarDecl>(Global); 3630 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3631 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3632 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3633 if (LangOpts.OpenMP) { 3634 // Emit declaration of the must-be-emitted declare target variable. 3635 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3636 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3637 3638 // If this variable has external storage and doesn't require special 3639 // link handling we defer to its canonical definition. 3640 if (VD->hasExternalStorage() && 3641 Res != OMPDeclareTargetDeclAttr::MT_Link) 3642 return; 3643 3644 bool UnifiedMemoryEnabled = 3645 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3646 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3647 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3648 !UnifiedMemoryEnabled) { 3649 (void)GetAddrOfGlobalVar(VD); 3650 } else { 3651 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3652 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3653 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3654 UnifiedMemoryEnabled)) && 3655 "Link clause or to clause with unified memory expected."); 3656 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3657 } 3658 3659 return; 3660 } 3661 } 3662 // If this declaration may have caused an inline variable definition to 3663 // change linkage, make sure that it's emitted. 3664 if (Context.getInlineVariableDefinitionKind(VD) == 3665 ASTContext::InlineVariableDefinitionKind::Strong) 3666 GetAddrOfGlobalVar(VD); 3667 return; 3668 } 3669 } 3670 3671 // Defer code generation to first use when possible, e.g. if this is an inline 3672 // function. If the global must always be emitted, do it eagerly if possible 3673 // to benefit from cache locality. 3674 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3675 // Emit the definition if it can't be deferred. 3676 EmitGlobalDefinition(GD); 3677 addEmittedDeferredDecl(GD); 3678 return; 3679 } 3680 3681 // If we're deferring emission of a C++ variable with an 3682 // initializer, remember the order in which it appeared in the file. 3683 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3684 cast<VarDecl>(Global)->hasInit()) { 3685 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3686 CXXGlobalInits.push_back(nullptr); 3687 } 3688 3689 StringRef MangledName = getMangledName(GD); 3690 if (GetGlobalValue(MangledName) != nullptr) { 3691 // The value has already been used and should therefore be emitted. 3692 addDeferredDeclToEmit(GD); 3693 } else if (MustBeEmitted(Global)) { 3694 // The value must be emitted, but cannot be emitted eagerly. 3695 assert(!MayBeEmittedEagerly(Global)); 3696 addDeferredDeclToEmit(GD); 3697 } else { 3698 // Otherwise, remember that we saw a deferred decl with this name. The 3699 // first use of the mangled name will cause it to move into 3700 // DeferredDeclsToEmit. 3701 DeferredDecls[MangledName] = GD; 3702 } 3703 } 3704 3705 // Check if T is a class type with a destructor that's not dllimport. 3706 static bool HasNonDllImportDtor(QualType T) { 3707 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3708 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3709 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3710 return true; 3711 3712 return false; 3713 } 3714 3715 namespace { 3716 struct FunctionIsDirectlyRecursive 3717 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3718 const StringRef Name; 3719 const Builtin::Context &BI; 3720 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3721 : Name(N), BI(C) {} 3722 3723 bool VisitCallExpr(const CallExpr *E) { 3724 const FunctionDecl *FD = E->getDirectCallee(); 3725 if (!FD) 3726 return false; 3727 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3728 if (Attr && Name == Attr->getLabel()) 3729 return true; 3730 unsigned BuiltinID = FD->getBuiltinID(); 3731 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3732 return false; 3733 StringRef BuiltinName = BI.getName(BuiltinID); 3734 if (BuiltinName.startswith("__builtin_") && 3735 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3736 return true; 3737 } 3738 return false; 3739 } 3740 3741 bool VisitStmt(const Stmt *S) { 3742 for (const Stmt *Child : S->children()) 3743 if (Child && this->Visit(Child)) 3744 return true; 3745 return false; 3746 } 3747 }; 3748 3749 // Make sure we're not referencing non-imported vars or functions. 3750 struct DLLImportFunctionVisitor 3751 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3752 bool SafeToInline = true; 3753 3754 bool shouldVisitImplicitCode() const { return true; } 3755 3756 bool VisitVarDecl(VarDecl *VD) { 3757 if (VD->getTLSKind()) { 3758 // A thread-local variable cannot be imported. 3759 SafeToInline = false; 3760 return SafeToInline; 3761 } 3762 3763 // A variable definition might imply a destructor call. 3764 if (VD->isThisDeclarationADefinition()) 3765 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3766 3767 return SafeToInline; 3768 } 3769 3770 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3771 if (const auto *D = E->getTemporary()->getDestructor()) 3772 SafeToInline = D->hasAttr<DLLImportAttr>(); 3773 return SafeToInline; 3774 } 3775 3776 bool VisitDeclRefExpr(DeclRefExpr *E) { 3777 ValueDecl *VD = E->getDecl(); 3778 if (isa<FunctionDecl>(VD)) 3779 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3780 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3781 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3782 return SafeToInline; 3783 } 3784 3785 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3786 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3787 return SafeToInline; 3788 } 3789 3790 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3791 CXXMethodDecl *M = E->getMethodDecl(); 3792 if (!M) { 3793 // Call through a pointer to member function. This is safe to inline. 3794 SafeToInline = true; 3795 } else { 3796 SafeToInline = M->hasAttr<DLLImportAttr>(); 3797 } 3798 return SafeToInline; 3799 } 3800 3801 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3802 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3803 return SafeToInline; 3804 } 3805 3806 bool VisitCXXNewExpr(CXXNewExpr *E) { 3807 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3808 return SafeToInline; 3809 } 3810 }; 3811 } 3812 3813 // isTriviallyRecursive - Check if this function calls another 3814 // decl that, because of the asm attribute or the other decl being a builtin, 3815 // ends up pointing to itself. 3816 bool 3817 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3818 StringRef Name; 3819 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3820 // asm labels are a special kind of mangling we have to support. 3821 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3822 if (!Attr) 3823 return false; 3824 Name = Attr->getLabel(); 3825 } else { 3826 Name = FD->getName(); 3827 } 3828 3829 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3830 const Stmt *Body = FD->getBody(); 3831 return Body ? Walker.Visit(Body) : false; 3832 } 3833 3834 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3835 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3836 return true; 3837 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3838 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3839 return false; 3840 3841 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3842 // Check whether it would be safe to inline this dllimport function. 3843 DLLImportFunctionVisitor Visitor; 3844 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3845 if (!Visitor.SafeToInline) 3846 return false; 3847 3848 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3849 // Implicit destructor invocations aren't captured in the AST, so the 3850 // check above can't see them. Check for them manually here. 3851 for (const Decl *Member : Dtor->getParent()->decls()) 3852 if (isa<FieldDecl>(Member)) 3853 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3854 return false; 3855 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3856 if (HasNonDllImportDtor(B.getType())) 3857 return false; 3858 } 3859 } 3860 3861 // Inline builtins declaration must be emitted. They often are fortified 3862 // functions. 3863 if (F->isInlineBuiltinDeclaration()) 3864 return true; 3865 3866 // PR9614. Avoid cases where the source code is lying to us. An available 3867 // externally function should have an equivalent function somewhere else, 3868 // but a function that calls itself through asm label/`__builtin_` trickery is 3869 // clearly not equivalent to the real implementation. 3870 // This happens in glibc's btowc and in some configure checks. 3871 return !isTriviallyRecursive(F); 3872 } 3873 3874 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3875 return CodeGenOpts.OptimizationLevel > 0; 3876 } 3877 3878 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3879 llvm::GlobalValue *GV) { 3880 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3881 3882 if (FD->isCPUSpecificMultiVersion()) { 3883 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3884 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3885 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3886 } else if (FD->isTargetClonesMultiVersion()) { 3887 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3888 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3889 if (Clone->isFirstOfVersion(I)) 3890 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3891 // Ensure that the resolver function is also emitted. 3892 GetOrCreateMultiVersionResolver(GD); 3893 } else 3894 EmitGlobalFunctionDefinition(GD, GV); 3895 } 3896 3897 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3898 const auto *D = cast<ValueDecl>(GD.getDecl()); 3899 3900 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3901 Context.getSourceManager(), 3902 "Generating code for declaration"); 3903 3904 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3905 // At -O0, don't generate IR for functions with available_externally 3906 // linkage. 3907 if (!shouldEmitFunction(GD)) 3908 return; 3909 3910 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3911 std::string Name; 3912 llvm::raw_string_ostream OS(Name); 3913 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3914 /*Qualified=*/true); 3915 return Name; 3916 }); 3917 3918 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3919 // Make sure to emit the definition(s) before we emit the thunks. 3920 // This is necessary for the generation of certain thunks. 3921 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3922 ABI->emitCXXStructor(GD); 3923 else if (FD->isMultiVersion()) 3924 EmitMultiVersionFunctionDefinition(GD, GV); 3925 else 3926 EmitGlobalFunctionDefinition(GD, GV); 3927 3928 if (Method->isVirtual()) 3929 getVTables().EmitThunks(GD); 3930 3931 return; 3932 } 3933 3934 if (FD->isMultiVersion()) 3935 return EmitMultiVersionFunctionDefinition(GD, GV); 3936 return EmitGlobalFunctionDefinition(GD, GV); 3937 } 3938 3939 if (const auto *VD = dyn_cast<VarDecl>(D)) 3940 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3941 3942 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3943 } 3944 3945 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3946 llvm::Function *NewFn); 3947 3948 static unsigned 3949 TargetMVPriority(const TargetInfo &TI, 3950 const CodeGenFunction::MultiVersionResolverOption &RO) { 3951 unsigned Priority = 0; 3952 unsigned NumFeatures = 0; 3953 for (StringRef Feat : RO.Conditions.Features) { 3954 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3955 NumFeatures++; 3956 } 3957 3958 if (!RO.Conditions.Architecture.empty()) 3959 Priority = std::max( 3960 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3961 3962 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3963 3964 return Priority; 3965 } 3966 3967 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3968 // TU can forward declare the function without causing problems. Particularly 3969 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3970 // work with internal linkage functions, so that the same function name can be 3971 // used with internal linkage in multiple TUs. 3972 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3973 GlobalDecl GD) { 3974 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3975 if (FD->getFormalLinkage() == InternalLinkage) 3976 return llvm::GlobalValue::InternalLinkage; 3977 return llvm::GlobalValue::WeakODRLinkage; 3978 } 3979 3980 void CodeGenModule::emitMultiVersionFunctions() { 3981 std::vector<GlobalDecl> MVFuncsToEmit; 3982 MultiVersionFuncs.swap(MVFuncsToEmit); 3983 for (GlobalDecl GD : MVFuncsToEmit) { 3984 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3985 assert(FD && "Expected a FunctionDecl"); 3986 3987 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3988 if (FD->isTargetMultiVersion()) { 3989 getContext().forEachMultiversionedFunctionVersion( 3990 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3991 GlobalDecl CurGD{ 3992 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3993 StringRef MangledName = getMangledName(CurGD); 3994 llvm::Constant *Func = GetGlobalValue(MangledName); 3995 if (!Func) { 3996 if (CurFD->isDefined()) { 3997 EmitGlobalFunctionDefinition(CurGD, nullptr); 3998 Func = GetGlobalValue(MangledName); 3999 } else { 4000 const CGFunctionInfo &FI = 4001 getTypes().arrangeGlobalDeclaration(GD); 4002 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4003 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4004 /*DontDefer=*/false, ForDefinition); 4005 } 4006 assert(Func && "This should have just been created"); 4007 } 4008 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4009 const auto *TA = CurFD->getAttr<TargetAttr>(); 4010 llvm::SmallVector<StringRef, 8> Feats; 4011 TA->getAddedFeatures(Feats); 4012 Options.emplace_back(cast<llvm::Function>(Func), 4013 TA->getArchitecture(), Feats); 4014 } else { 4015 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4016 llvm::SmallVector<StringRef, 8> Feats; 4017 TVA->getFeatures(Feats); 4018 Options.emplace_back(cast<llvm::Function>(Func), 4019 /*Architecture*/ "", Feats); 4020 } 4021 }); 4022 } else if (FD->isTargetClonesMultiVersion()) { 4023 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4024 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4025 ++VersionIndex) { 4026 if (!TC->isFirstOfVersion(VersionIndex)) 4027 continue; 4028 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4029 VersionIndex}; 4030 StringRef Version = TC->getFeatureStr(VersionIndex); 4031 StringRef MangledName = getMangledName(CurGD); 4032 llvm::Constant *Func = GetGlobalValue(MangledName); 4033 if (!Func) { 4034 if (FD->isDefined()) { 4035 EmitGlobalFunctionDefinition(CurGD, nullptr); 4036 Func = GetGlobalValue(MangledName); 4037 } else { 4038 const CGFunctionInfo &FI = 4039 getTypes().arrangeGlobalDeclaration(CurGD); 4040 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4041 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4042 /*DontDefer=*/false, ForDefinition); 4043 } 4044 assert(Func && "This should have just been created"); 4045 } 4046 4047 StringRef Architecture; 4048 llvm::SmallVector<StringRef, 1> Feature; 4049 4050 if (getTarget().getTriple().isAArch64()) { 4051 if (Version != "default") { 4052 llvm::SmallVector<StringRef, 8> VerFeats; 4053 Version.split(VerFeats, "+"); 4054 for (auto &CurFeat : VerFeats) 4055 Feature.push_back(CurFeat.trim()); 4056 } 4057 } else { 4058 if (Version.startswith("arch=")) 4059 Architecture = Version.drop_front(sizeof("arch=") - 1); 4060 else if (Version != "default") 4061 Feature.push_back(Version); 4062 } 4063 4064 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4065 } 4066 } else { 4067 assert(0 && "Expected a target or target_clones multiversion function"); 4068 continue; 4069 } 4070 4071 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4072 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 4073 ResolverConstant = IFunc->getResolver(); 4074 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4075 4076 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4077 4078 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4079 ResolverFunc->setComdat( 4080 getModule().getOrInsertComdat(ResolverFunc->getName())); 4081 4082 const TargetInfo &TI = getTarget(); 4083 llvm::stable_sort( 4084 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4085 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4086 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4087 }); 4088 CodeGenFunction CGF(*this); 4089 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4090 } 4091 4092 // Ensure that any additions to the deferred decls list caused by emitting a 4093 // variant are emitted. This can happen when the variant itself is inline and 4094 // calls a function without linkage. 4095 if (!MVFuncsToEmit.empty()) 4096 EmitDeferred(); 4097 4098 // Ensure that any additions to the multiversion funcs list from either the 4099 // deferred decls or the multiversion functions themselves are emitted. 4100 if (!MultiVersionFuncs.empty()) 4101 emitMultiVersionFunctions(); 4102 } 4103 4104 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4105 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4106 assert(FD && "Not a FunctionDecl?"); 4107 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4108 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4109 assert(DD && "Not a cpu_dispatch Function?"); 4110 4111 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4112 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4113 4114 StringRef ResolverName = getMangledName(GD); 4115 UpdateMultiVersionNames(GD, FD, ResolverName); 4116 4117 llvm::Type *ResolverType; 4118 GlobalDecl ResolverGD; 4119 if (getTarget().supportsIFunc()) { 4120 ResolverType = llvm::FunctionType::get( 4121 llvm::PointerType::get(DeclTy, 4122 getTypes().getTargetAddressSpace(FD->getType())), 4123 false); 4124 } 4125 else { 4126 ResolverType = DeclTy; 4127 ResolverGD = GD; 4128 } 4129 4130 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4131 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4132 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4133 if (supportsCOMDAT()) 4134 ResolverFunc->setComdat( 4135 getModule().getOrInsertComdat(ResolverFunc->getName())); 4136 4137 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4138 const TargetInfo &Target = getTarget(); 4139 unsigned Index = 0; 4140 for (const IdentifierInfo *II : DD->cpus()) { 4141 // Get the name of the target function so we can look it up/create it. 4142 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4143 getCPUSpecificMangling(*this, II->getName()); 4144 4145 llvm::Constant *Func = GetGlobalValue(MangledName); 4146 4147 if (!Func) { 4148 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4149 if (ExistingDecl.getDecl() && 4150 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4151 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4152 Func = GetGlobalValue(MangledName); 4153 } else { 4154 if (!ExistingDecl.getDecl()) 4155 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4156 4157 Func = GetOrCreateLLVMFunction( 4158 MangledName, DeclTy, ExistingDecl, 4159 /*ForVTable=*/false, /*DontDefer=*/true, 4160 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4161 } 4162 } 4163 4164 llvm::SmallVector<StringRef, 32> Features; 4165 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4166 llvm::transform(Features, Features.begin(), 4167 [](StringRef Str) { return Str.substr(1); }); 4168 llvm::erase_if(Features, [&Target](StringRef Feat) { 4169 return !Target.validateCpuSupports(Feat); 4170 }); 4171 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4172 ++Index; 4173 } 4174 4175 llvm::stable_sort( 4176 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4177 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4178 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4179 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4180 }); 4181 4182 // If the list contains multiple 'default' versions, such as when it contains 4183 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4184 // always run on at least a 'pentium'). We do this by deleting the 'least 4185 // advanced' (read, lowest mangling letter). 4186 while (Options.size() > 1 && 4187 llvm::all_of(llvm::X86::getCpuSupportsMask( 4188 (Options.end() - 2)->Conditions.Features), 4189 [](auto X) { return X == 0; })) { 4190 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4191 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4192 if (LHSName.compare(RHSName) < 0) 4193 Options.erase(Options.end() - 2); 4194 else 4195 Options.erase(Options.end() - 1); 4196 } 4197 4198 CodeGenFunction CGF(*this); 4199 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4200 4201 if (getTarget().supportsIFunc()) { 4202 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4203 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4204 4205 // Fix up function declarations that were created for cpu_specific before 4206 // cpu_dispatch was known 4207 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4208 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4209 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4210 &getModule()); 4211 GI->takeName(IFunc); 4212 IFunc->replaceAllUsesWith(GI); 4213 IFunc->eraseFromParent(); 4214 IFunc = GI; 4215 } 4216 4217 std::string AliasName = getMangledNameImpl( 4218 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4219 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4220 if (!AliasFunc) { 4221 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4222 &getModule()); 4223 SetCommonAttributes(GD, GA); 4224 } 4225 } 4226 } 4227 4228 /// If a dispatcher for the specified mangled name is not in the module, create 4229 /// and return an llvm Function with the specified type. 4230 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4231 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4232 assert(FD && "Not a FunctionDecl?"); 4233 4234 std::string MangledName = 4235 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4236 4237 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4238 // a separate resolver). 4239 std::string ResolverName = MangledName; 4240 if (getTarget().supportsIFunc()) 4241 ResolverName += ".ifunc"; 4242 else if (FD->isTargetMultiVersion()) 4243 ResolverName += ".resolver"; 4244 4245 // If the resolver has already been created, just return it. 4246 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4247 return ResolverGV; 4248 4249 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4250 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4251 4252 // The resolver needs to be created. For target and target_clones, defer 4253 // creation until the end of the TU. 4254 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4255 MultiVersionFuncs.push_back(GD); 4256 4257 // For cpu_specific, don't create an ifunc yet because we don't know if the 4258 // cpu_dispatch will be emitted in this translation unit. 4259 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4260 llvm::Type *ResolverType = llvm::FunctionType::get( 4261 llvm::PointerType::get(DeclTy, 4262 getTypes().getTargetAddressSpace(FD->getType())), 4263 false); 4264 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4265 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4266 /*ForVTable=*/false); 4267 llvm::GlobalIFunc *GIF = 4268 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4269 "", Resolver, &getModule()); 4270 GIF->setName(ResolverName); 4271 SetCommonAttributes(FD, GIF); 4272 4273 return GIF; 4274 } 4275 4276 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4277 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4278 assert(isa<llvm::GlobalValue>(Resolver) && 4279 "Resolver should be created for the first time"); 4280 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4281 return Resolver; 4282 } 4283 4284 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4285 /// module, create and return an llvm Function with the specified type. If there 4286 /// is something in the module with the specified name, return it potentially 4287 /// bitcasted to the right type. 4288 /// 4289 /// If D is non-null, it specifies a decl that correspond to this. This is used 4290 /// to set the attributes on the function when it is first created. 4291 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4292 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4293 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4294 ForDefinition_t IsForDefinition) { 4295 const Decl *D = GD.getDecl(); 4296 4297 // Any attempts to use a MultiVersion function should result in retrieving 4298 // the iFunc instead. Name Mangling will handle the rest of the changes. 4299 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4300 // For the device mark the function as one that should be emitted. 4301 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4302 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4303 !DontDefer && !IsForDefinition) { 4304 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4305 GlobalDecl GDDef; 4306 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4307 GDDef = GlobalDecl(CD, GD.getCtorType()); 4308 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4309 GDDef = GlobalDecl(DD, GD.getDtorType()); 4310 else 4311 GDDef = GlobalDecl(FDDef); 4312 EmitGlobal(GDDef); 4313 } 4314 } 4315 4316 if (FD->isMultiVersion()) { 4317 UpdateMultiVersionNames(GD, FD, MangledName); 4318 if (!IsForDefinition) 4319 return GetOrCreateMultiVersionResolver(GD); 4320 } 4321 } 4322 4323 // Lookup the entry, lazily creating it if necessary. 4324 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4325 if (Entry) { 4326 if (WeakRefReferences.erase(Entry)) { 4327 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4328 if (FD && !FD->hasAttr<WeakAttr>()) 4329 Entry->setLinkage(llvm::Function::ExternalLinkage); 4330 } 4331 4332 // Handle dropped DLL attributes. 4333 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4334 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4335 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4336 setDSOLocal(Entry); 4337 } 4338 4339 // If there are two attempts to define the same mangled name, issue an 4340 // error. 4341 if (IsForDefinition && !Entry->isDeclaration()) { 4342 GlobalDecl OtherGD; 4343 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4344 // to make sure that we issue an error only once. 4345 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4346 (GD.getCanonicalDecl().getDecl() != 4347 OtherGD.getCanonicalDecl().getDecl()) && 4348 DiagnosedConflictingDefinitions.insert(GD).second) { 4349 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4350 << MangledName; 4351 getDiags().Report(OtherGD.getDecl()->getLocation(), 4352 diag::note_previous_definition); 4353 } 4354 } 4355 4356 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4357 (Entry->getValueType() == Ty)) { 4358 return Entry; 4359 } 4360 4361 // Make sure the result is of the correct type. 4362 // (If function is requested for a definition, we always need to create a new 4363 // function, not just return a bitcast.) 4364 if (!IsForDefinition) 4365 return llvm::ConstantExpr::getBitCast( 4366 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4367 } 4368 4369 // This function doesn't have a complete type (for example, the return 4370 // type is an incomplete struct). Use a fake type instead, and make 4371 // sure not to try to set attributes. 4372 bool IsIncompleteFunction = false; 4373 4374 llvm::FunctionType *FTy; 4375 if (isa<llvm::FunctionType>(Ty)) { 4376 FTy = cast<llvm::FunctionType>(Ty); 4377 } else { 4378 FTy = llvm::FunctionType::get(VoidTy, false); 4379 IsIncompleteFunction = true; 4380 } 4381 4382 llvm::Function *F = 4383 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4384 Entry ? StringRef() : MangledName, &getModule()); 4385 4386 // Store the declaration associated with this function so it is potentially 4387 // updated by further declarations or definitions and emitted at the end. 4388 if (D && D->hasAttr<AnnotateAttr>()) 4389 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4390 4391 // If we already created a function with the same mangled name (but different 4392 // type) before, take its name and add it to the list of functions to be 4393 // replaced with F at the end of CodeGen. 4394 // 4395 // This happens if there is a prototype for a function (e.g. "int f()") and 4396 // then a definition of a different type (e.g. "int f(int x)"). 4397 if (Entry) { 4398 F->takeName(Entry); 4399 4400 // This might be an implementation of a function without a prototype, in 4401 // which case, try to do special replacement of calls which match the new 4402 // prototype. The really key thing here is that we also potentially drop 4403 // arguments from the call site so as to make a direct call, which makes the 4404 // inliner happier and suppresses a number of optimizer warnings (!) about 4405 // dropping arguments. 4406 if (!Entry->use_empty()) { 4407 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4408 Entry->removeDeadConstantUsers(); 4409 } 4410 4411 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4412 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4413 addGlobalValReplacement(Entry, BC); 4414 } 4415 4416 assert(F->getName() == MangledName && "name was uniqued!"); 4417 if (D) 4418 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4419 if (ExtraAttrs.hasFnAttrs()) { 4420 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4421 F->addFnAttrs(B); 4422 } 4423 4424 if (!DontDefer) { 4425 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4426 // each other bottoming out with the base dtor. Therefore we emit non-base 4427 // dtors on usage, even if there is no dtor definition in the TU. 4428 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4429 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4430 GD.getDtorType())) 4431 addDeferredDeclToEmit(GD); 4432 4433 // This is the first use or definition of a mangled name. If there is a 4434 // deferred decl with this name, remember that we need to emit it at the end 4435 // of the file. 4436 auto DDI = DeferredDecls.find(MangledName); 4437 if (DDI != DeferredDecls.end()) { 4438 // Move the potentially referenced deferred decl to the 4439 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4440 // don't need it anymore). 4441 addDeferredDeclToEmit(DDI->second); 4442 DeferredDecls.erase(DDI); 4443 4444 // Otherwise, there are cases we have to worry about where we're 4445 // using a declaration for which we must emit a definition but where 4446 // we might not find a top-level definition: 4447 // - member functions defined inline in their classes 4448 // - friend functions defined inline in some class 4449 // - special member functions with implicit definitions 4450 // If we ever change our AST traversal to walk into class methods, 4451 // this will be unnecessary. 4452 // 4453 // We also don't emit a definition for a function if it's going to be an 4454 // entry in a vtable, unless it's already marked as used. 4455 } else if (getLangOpts().CPlusPlus && D) { 4456 // Look for a declaration that's lexically in a record. 4457 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4458 FD = FD->getPreviousDecl()) { 4459 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4460 if (FD->doesThisDeclarationHaveABody()) { 4461 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4462 break; 4463 } 4464 } 4465 } 4466 } 4467 } 4468 4469 // Make sure the result is of the requested type. 4470 if (!IsIncompleteFunction) { 4471 assert(F->getFunctionType() == Ty); 4472 return F; 4473 } 4474 4475 return llvm::ConstantExpr::getBitCast(F, 4476 Ty->getPointerTo(F->getAddressSpace())); 4477 } 4478 4479 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4480 /// non-null, then this function will use the specified type if it has to 4481 /// create it (this occurs when we see a definition of the function). 4482 llvm::Constant * 4483 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4484 bool DontDefer, 4485 ForDefinition_t IsForDefinition) { 4486 // If there was no specific requested type, just convert it now. 4487 if (!Ty) { 4488 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4489 Ty = getTypes().ConvertType(FD->getType()); 4490 } 4491 4492 // Devirtualized destructor calls may come through here instead of via 4493 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4494 // of the complete destructor when necessary. 4495 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4496 if (getTarget().getCXXABI().isMicrosoft() && 4497 GD.getDtorType() == Dtor_Complete && 4498 DD->getParent()->getNumVBases() == 0) 4499 GD = GlobalDecl(DD, Dtor_Base); 4500 } 4501 4502 StringRef MangledName = getMangledName(GD); 4503 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4504 /*IsThunk=*/false, llvm::AttributeList(), 4505 IsForDefinition); 4506 // Returns kernel handle for HIP kernel stub function. 4507 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4508 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4509 auto *Handle = getCUDARuntime().getKernelHandle( 4510 cast<llvm::Function>(F->stripPointerCasts()), GD); 4511 if (IsForDefinition) 4512 return F; 4513 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4514 } 4515 return F; 4516 } 4517 4518 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4519 llvm::GlobalValue *F = 4520 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4521 4522 return llvm::ConstantExpr::getBitCast( 4523 llvm::NoCFIValue::get(F), 4524 llvm::PointerType::get(VMContext, F->getAddressSpace())); 4525 } 4526 4527 static const FunctionDecl * 4528 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4529 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4530 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4531 4532 IdentifierInfo &CII = C.Idents.get(Name); 4533 for (const auto *Result : DC->lookup(&CII)) 4534 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4535 return FD; 4536 4537 if (!C.getLangOpts().CPlusPlus) 4538 return nullptr; 4539 4540 // Demangle the premangled name from getTerminateFn() 4541 IdentifierInfo &CXXII = 4542 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4543 ? C.Idents.get("terminate") 4544 : C.Idents.get(Name); 4545 4546 for (const auto &N : {"__cxxabiv1", "std"}) { 4547 IdentifierInfo &NS = C.Idents.get(N); 4548 for (const auto *Result : DC->lookup(&NS)) { 4549 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4550 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4551 for (const auto *Result : LSD->lookup(&NS)) 4552 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4553 break; 4554 4555 if (ND) 4556 for (const auto *Result : ND->lookup(&CXXII)) 4557 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4558 return FD; 4559 } 4560 } 4561 4562 return nullptr; 4563 } 4564 4565 /// CreateRuntimeFunction - Create a new runtime function with the specified 4566 /// type and name. 4567 llvm::FunctionCallee 4568 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4569 llvm::AttributeList ExtraAttrs, bool Local, 4570 bool AssumeConvergent) { 4571 if (AssumeConvergent) { 4572 ExtraAttrs = 4573 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4574 } 4575 4576 llvm::Constant *C = 4577 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4578 /*DontDefer=*/false, /*IsThunk=*/false, 4579 ExtraAttrs); 4580 4581 if (auto *F = dyn_cast<llvm::Function>(C)) { 4582 if (F->empty()) { 4583 F->setCallingConv(getRuntimeCC()); 4584 4585 // In Windows Itanium environments, try to mark runtime functions 4586 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4587 // will link their standard library statically or dynamically. Marking 4588 // functions imported when they are not imported can cause linker errors 4589 // and warnings. 4590 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4591 !getCodeGenOpts().LTOVisibilityPublicStd) { 4592 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4593 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4594 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4595 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4596 } 4597 } 4598 setDSOLocal(F); 4599 } 4600 } 4601 4602 return {FTy, C}; 4603 } 4604 4605 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4606 /// create and return an llvm GlobalVariable with the specified type and address 4607 /// space. If there is something in the module with the specified name, return 4608 /// it potentially bitcasted to the right type. 4609 /// 4610 /// If D is non-null, it specifies a decl that correspond to this. This is used 4611 /// to set the attributes on the global when it is first created. 4612 /// 4613 /// If IsForDefinition is true, it is guaranteed that an actual global with 4614 /// type Ty will be returned, not conversion of a variable with the same 4615 /// mangled name but some other type. 4616 llvm::Constant * 4617 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4618 LangAS AddrSpace, const VarDecl *D, 4619 ForDefinition_t IsForDefinition) { 4620 // Lookup the entry, lazily creating it if necessary. 4621 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4622 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4623 if (Entry) { 4624 if (WeakRefReferences.erase(Entry)) { 4625 if (D && !D->hasAttr<WeakAttr>()) 4626 Entry->setLinkage(llvm::Function::ExternalLinkage); 4627 } 4628 4629 // Handle dropped DLL attributes. 4630 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4631 !shouldMapVisibilityToDLLExport(D)) 4632 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4633 4634 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4635 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4636 4637 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4638 return Entry; 4639 4640 // If there are two attempts to define the same mangled name, issue an 4641 // error. 4642 if (IsForDefinition && !Entry->isDeclaration()) { 4643 GlobalDecl OtherGD; 4644 const VarDecl *OtherD; 4645 4646 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4647 // to make sure that we issue an error only once. 4648 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4649 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4650 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4651 OtherD->hasInit() && 4652 DiagnosedConflictingDefinitions.insert(D).second) { 4653 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4654 << MangledName; 4655 getDiags().Report(OtherGD.getDecl()->getLocation(), 4656 diag::note_previous_definition); 4657 } 4658 } 4659 4660 // Make sure the result is of the correct type. 4661 if (Entry->getType()->getAddressSpace() != TargetAS) { 4662 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4663 Ty->getPointerTo(TargetAS)); 4664 } 4665 4666 // (If global is requested for a definition, we always need to create a new 4667 // global, not just return a bitcast.) 4668 if (!IsForDefinition) 4669 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4670 } 4671 4672 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4673 4674 auto *GV = new llvm::GlobalVariable( 4675 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4676 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4677 getContext().getTargetAddressSpace(DAddrSpace)); 4678 4679 // If we already created a global with the same mangled name (but different 4680 // type) before, take its name and remove it from its parent. 4681 if (Entry) { 4682 GV->takeName(Entry); 4683 4684 if (!Entry->use_empty()) { 4685 llvm::Constant *NewPtrForOldDecl = 4686 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4687 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4688 } 4689 4690 Entry->eraseFromParent(); 4691 } 4692 4693 // This is the first use or definition of a mangled name. If there is a 4694 // deferred decl with this name, remember that we need to emit it at the end 4695 // of the file. 4696 auto DDI = DeferredDecls.find(MangledName); 4697 if (DDI != DeferredDecls.end()) { 4698 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4699 // list, and remove it from DeferredDecls (since we don't need it anymore). 4700 addDeferredDeclToEmit(DDI->second); 4701 DeferredDecls.erase(DDI); 4702 } 4703 4704 // Handle things which are present even on external declarations. 4705 if (D) { 4706 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4707 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4708 4709 // FIXME: This code is overly simple and should be merged with other global 4710 // handling. 4711 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4712 4713 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4714 4715 setLinkageForGV(GV, D); 4716 4717 if (D->getTLSKind()) { 4718 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4719 CXXThreadLocals.push_back(D); 4720 setTLSMode(GV, *D); 4721 } 4722 4723 setGVProperties(GV, D); 4724 4725 // If required by the ABI, treat declarations of static data members with 4726 // inline initializers as definitions. 4727 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4728 EmitGlobalVarDefinition(D); 4729 } 4730 4731 // Emit section information for extern variables. 4732 if (D->hasExternalStorage()) { 4733 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4734 GV->setSection(SA->getName()); 4735 } 4736 4737 // Handle XCore specific ABI requirements. 4738 if (getTriple().getArch() == llvm::Triple::xcore && 4739 D->getLanguageLinkage() == CLanguageLinkage && 4740 D->getType().isConstant(Context) && 4741 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4742 GV->setSection(".cp.rodata"); 4743 4744 // Check if we a have a const declaration with an initializer, we may be 4745 // able to emit it as available_externally to expose it's value to the 4746 // optimizer. 4747 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4748 D->getType().isConstQualified() && !GV->hasInitializer() && 4749 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4750 const auto *Record = 4751 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4752 bool HasMutableFields = Record && Record->hasMutableFields(); 4753 if (!HasMutableFields) { 4754 const VarDecl *InitDecl; 4755 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4756 if (InitExpr) { 4757 ConstantEmitter emitter(*this); 4758 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4759 if (Init) { 4760 auto *InitType = Init->getType(); 4761 if (GV->getValueType() != InitType) { 4762 // The type of the initializer does not match the definition. 4763 // This happens when an initializer has a different type from 4764 // the type of the global (because of padding at the end of a 4765 // structure for instance). 4766 GV->setName(StringRef()); 4767 // Make a new global with the correct type, this is now guaranteed 4768 // to work. 4769 auto *NewGV = cast<llvm::GlobalVariable>( 4770 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4771 ->stripPointerCasts()); 4772 4773 // Erase the old global, since it is no longer used. 4774 GV->eraseFromParent(); 4775 GV = NewGV; 4776 } else { 4777 GV->setInitializer(Init); 4778 GV->setConstant(true); 4779 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4780 } 4781 emitter.finalize(GV); 4782 } 4783 } 4784 } 4785 } 4786 } 4787 4788 if (D && 4789 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4790 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4791 // External HIP managed variables needed to be recorded for transformation 4792 // in both device and host compilations. 4793 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4794 D->hasExternalStorage()) 4795 getCUDARuntime().handleVarRegistration(D, *GV); 4796 } 4797 4798 if (D) 4799 SanitizerMD->reportGlobal(GV, *D); 4800 4801 LangAS ExpectedAS = 4802 D ? D->getType().getAddressSpace() 4803 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4804 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4805 if (DAddrSpace != ExpectedAS) { 4806 return getTargetCodeGenInfo().performAddrSpaceCast( 4807 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4808 } 4809 4810 return GV; 4811 } 4812 4813 llvm::Constant * 4814 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4815 const Decl *D = GD.getDecl(); 4816 4817 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4818 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4819 /*DontDefer=*/false, IsForDefinition); 4820 4821 if (isa<CXXMethodDecl>(D)) { 4822 auto FInfo = 4823 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4824 auto Ty = getTypes().GetFunctionType(*FInfo); 4825 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4826 IsForDefinition); 4827 } 4828 4829 if (isa<FunctionDecl>(D)) { 4830 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4831 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4832 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4833 IsForDefinition); 4834 } 4835 4836 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4837 } 4838 4839 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4840 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4841 llvm::Align Alignment) { 4842 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4843 llvm::GlobalVariable *OldGV = nullptr; 4844 4845 if (GV) { 4846 // Check if the variable has the right type. 4847 if (GV->getValueType() == Ty) 4848 return GV; 4849 4850 // Because C++ name mangling, the only way we can end up with an already 4851 // existing global with the same name is if it has been declared extern "C". 4852 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4853 OldGV = GV; 4854 } 4855 4856 // Create a new variable. 4857 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4858 Linkage, nullptr, Name); 4859 4860 if (OldGV) { 4861 // Replace occurrences of the old variable if needed. 4862 GV->takeName(OldGV); 4863 4864 if (!OldGV->use_empty()) { 4865 llvm::Constant *NewPtrForOldDecl = 4866 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4867 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4868 } 4869 4870 OldGV->eraseFromParent(); 4871 } 4872 4873 if (supportsCOMDAT() && GV->isWeakForLinker() && 4874 !GV->hasAvailableExternallyLinkage()) 4875 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4876 4877 GV->setAlignment(Alignment); 4878 4879 return GV; 4880 } 4881 4882 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4883 /// given global variable. If Ty is non-null and if the global doesn't exist, 4884 /// then it will be created with the specified type instead of whatever the 4885 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4886 /// that an actual global with type Ty will be returned, not conversion of a 4887 /// variable with the same mangled name but some other type. 4888 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4889 llvm::Type *Ty, 4890 ForDefinition_t IsForDefinition) { 4891 assert(D->hasGlobalStorage() && "Not a global variable"); 4892 QualType ASTTy = D->getType(); 4893 if (!Ty) 4894 Ty = getTypes().ConvertTypeForMem(ASTTy); 4895 4896 StringRef MangledName = getMangledName(D); 4897 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4898 IsForDefinition); 4899 } 4900 4901 /// CreateRuntimeVariable - Create a new runtime global variable with the 4902 /// specified type and name. 4903 llvm::Constant * 4904 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4905 StringRef Name) { 4906 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4907 : LangAS::Default; 4908 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4909 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4910 return Ret; 4911 } 4912 4913 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4914 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4915 4916 StringRef MangledName = getMangledName(D); 4917 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4918 4919 // We already have a definition, not declaration, with the same mangled name. 4920 // Emitting of declaration is not required (and actually overwrites emitted 4921 // definition). 4922 if (GV && !GV->isDeclaration()) 4923 return; 4924 4925 // If we have not seen a reference to this variable yet, place it into the 4926 // deferred declarations table to be emitted if needed later. 4927 if (!MustBeEmitted(D) && !GV) { 4928 DeferredDecls[MangledName] = D; 4929 return; 4930 } 4931 4932 // The tentative definition is the only definition. 4933 EmitGlobalVarDefinition(D); 4934 } 4935 4936 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4937 EmitExternalVarDeclaration(D); 4938 } 4939 4940 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4941 return Context.toCharUnitsFromBits( 4942 getDataLayout().getTypeStoreSizeInBits(Ty)); 4943 } 4944 4945 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4946 if (LangOpts.OpenCL) { 4947 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4948 assert(AS == LangAS::opencl_global || 4949 AS == LangAS::opencl_global_device || 4950 AS == LangAS::opencl_global_host || 4951 AS == LangAS::opencl_constant || 4952 AS == LangAS::opencl_local || 4953 AS >= LangAS::FirstTargetAddressSpace); 4954 return AS; 4955 } 4956 4957 if (LangOpts.SYCLIsDevice && 4958 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4959 return LangAS::sycl_global; 4960 4961 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4962 if (D) { 4963 if (D->hasAttr<CUDAConstantAttr>()) 4964 return LangAS::cuda_constant; 4965 if (D->hasAttr<CUDASharedAttr>()) 4966 return LangAS::cuda_shared; 4967 if (D->hasAttr<CUDADeviceAttr>()) 4968 return LangAS::cuda_device; 4969 if (D->getType().isConstQualified()) 4970 return LangAS::cuda_constant; 4971 } 4972 return LangAS::cuda_device; 4973 } 4974 4975 if (LangOpts.OpenMP) { 4976 LangAS AS; 4977 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4978 return AS; 4979 } 4980 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4981 } 4982 4983 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4984 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4985 if (LangOpts.OpenCL) 4986 return LangAS::opencl_constant; 4987 if (LangOpts.SYCLIsDevice) 4988 return LangAS::sycl_global; 4989 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4990 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4991 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4992 // with OpVariable instructions with Generic storage class which is not 4993 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4994 // UniformConstant storage class is not viable as pointers to it may not be 4995 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4996 return LangAS::cuda_device; 4997 if (auto AS = getTarget().getConstantAddressSpace()) 4998 return *AS; 4999 return LangAS::Default; 5000 } 5001 5002 // In address space agnostic languages, string literals are in default address 5003 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5004 // emitted in constant address space in LLVM IR. To be consistent with other 5005 // parts of AST, string literal global variables in constant address space 5006 // need to be casted to default address space before being put into address 5007 // map and referenced by other part of CodeGen. 5008 // In OpenCL, string literals are in constant address space in AST, therefore 5009 // they should not be casted to default address space. 5010 static llvm::Constant * 5011 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5012 llvm::GlobalVariable *GV) { 5013 llvm::Constant *Cast = GV; 5014 if (!CGM.getLangOpts().OpenCL) { 5015 auto AS = CGM.GetGlobalConstantAddressSpace(); 5016 if (AS != LangAS::Default) 5017 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5018 CGM, GV, AS, LangAS::Default, 5019 GV->getValueType()->getPointerTo( 5020 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5021 } 5022 return Cast; 5023 } 5024 5025 template<typename SomeDecl> 5026 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5027 llvm::GlobalValue *GV) { 5028 if (!getLangOpts().CPlusPlus) 5029 return; 5030 5031 // Must have 'used' attribute, or else inline assembly can't rely on 5032 // the name existing. 5033 if (!D->template hasAttr<UsedAttr>()) 5034 return; 5035 5036 // Must have internal linkage and an ordinary name. 5037 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 5038 return; 5039 5040 // Must be in an extern "C" context. Entities declared directly within 5041 // a record are not extern "C" even if the record is in such a context. 5042 const SomeDecl *First = D->getFirstDecl(); 5043 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5044 return; 5045 5046 // OK, this is an internal linkage entity inside an extern "C" linkage 5047 // specification. Make a note of that so we can give it the "expected" 5048 // mangled name if nothing else is using that name. 5049 std::pair<StaticExternCMap::iterator, bool> R = 5050 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5051 5052 // If we have multiple internal linkage entities with the same name 5053 // in extern "C" regions, none of them gets that name. 5054 if (!R.second) 5055 R.first->second = nullptr; 5056 } 5057 5058 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5059 if (!CGM.supportsCOMDAT()) 5060 return false; 5061 5062 if (D.hasAttr<SelectAnyAttr>()) 5063 return true; 5064 5065 GVALinkage Linkage; 5066 if (auto *VD = dyn_cast<VarDecl>(&D)) 5067 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5068 else 5069 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5070 5071 switch (Linkage) { 5072 case GVA_Internal: 5073 case GVA_AvailableExternally: 5074 case GVA_StrongExternal: 5075 return false; 5076 case GVA_DiscardableODR: 5077 case GVA_StrongODR: 5078 return true; 5079 } 5080 llvm_unreachable("No such linkage"); 5081 } 5082 5083 bool CodeGenModule::supportsCOMDAT() const { 5084 return getTriple().supportsCOMDAT(); 5085 } 5086 5087 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5088 llvm::GlobalObject &GO) { 5089 if (!shouldBeInCOMDAT(*this, D)) 5090 return; 5091 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5092 } 5093 5094 /// Pass IsTentative as true if you want to create a tentative definition. 5095 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5096 bool IsTentative) { 5097 // OpenCL global variables of sampler type are translated to function calls, 5098 // therefore no need to be translated. 5099 QualType ASTTy = D->getType(); 5100 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5101 return; 5102 5103 // If this is OpenMP device, check if it is legal to emit this global 5104 // normally. 5105 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5106 OpenMPRuntime->emitTargetGlobalVariable(D)) 5107 return; 5108 5109 llvm::TrackingVH<llvm::Constant> Init; 5110 bool NeedsGlobalCtor = false; 5111 // Whether the definition of the variable is available externally. 5112 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5113 // since this is the job for its original source. 5114 bool IsDefinitionAvailableExternally = 5115 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5116 bool NeedsGlobalDtor = 5117 !IsDefinitionAvailableExternally && 5118 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5119 5120 const VarDecl *InitDecl; 5121 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5122 5123 std::optional<ConstantEmitter> emitter; 5124 5125 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5126 // as part of their declaration." Sema has already checked for 5127 // error cases, so we just need to set Init to UndefValue. 5128 bool IsCUDASharedVar = 5129 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5130 // Shadows of initialized device-side global variables are also left 5131 // undefined. 5132 // Managed Variables should be initialized on both host side and device side. 5133 bool IsCUDAShadowVar = 5134 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5135 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5136 D->hasAttr<CUDASharedAttr>()); 5137 bool IsCUDADeviceShadowVar = 5138 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5139 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5140 D->getType()->isCUDADeviceBuiltinTextureType()); 5141 if (getLangOpts().CUDA && 5142 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5143 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5144 else if (D->hasAttr<LoaderUninitializedAttr>()) 5145 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5146 else if (!InitExpr) { 5147 // This is a tentative definition; tentative definitions are 5148 // implicitly initialized with { 0 }. 5149 // 5150 // Note that tentative definitions are only emitted at the end of 5151 // a translation unit, so they should never have incomplete 5152 // type. In addition, EmitTentativeDefinition makes sure that we 5153 // never attempt to emit a tentative definition if a real one 5154 // exists. A use may still exists, however, so we still may need 5155 // to do a RAUW. 5156 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5157 Init = EmitNullConstant(D->getType()); 5158 } else { 5159 initializedGlobalDecl = GlobalDecl(D); 5160 emitter.emplace(*this); 5161 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5162 if (!Initializer) { 5163 QualType T = InitExpr->getType(); 5164 if (D->getType()->isReferenceType()) 5165 T = D->getType(); 5166 5167 if (getLangOpts().CPlusPlus) { 5168 if (InitDecl->hasFlexibleArrayInit(getContext())) 5169 ErrorUnsupported(D, "flexible array initializer"); 5170 Init = EmitNullConstant(T); 5171 5172 if (!IsDefinitionAvailableExternally) 5173 NeedsGlobalCtor = true; 5174 } else { 5175 ErrorUnsupported(D, "static initializer"); 5176 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5177 } 5178 } else { 5179 Init = Initializer; 5180 // We don't need an initializer, so remove the entry for the delayed 5181 // initializer position (just in case this entry was delayed) if we 5182 // also don't need to register a destructor. 5183 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5184 DelayedCXXInitPosition.erase(D); 5185 5186 #ifndef NDEBUG 5187 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5188 InitDecl->getFlexibleArrayInitChars(getContext()); 5189 CharUnits CstSize = CharUnits::fromQuantity( 5190 getDataLayout().getTypeAllocSize(Init->getType())); 5191 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5192 #endif 5193 } 5194 } 5195 5196 llvm::Type* InitType = Init->getType(); 5197 llvm::Constant *Entry = 5198 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5199 5200 // Strip off pointer casts if we got them. 5201 Entry = Entry->stripPointerCasts(); 5202 5203 // Entry is now either a Function or GlobalVariable. 5204 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5205 5206 // We have a definition after a declaration with the wrong type. 5207 // We must make a new GlobalVariable* and update everything that used OldGV 5208 // (a declaration or tentative definition) with the new GlobalVariable* 5209 // (which will be a definition). 5210 // 5211 // This happens if there is a prototype for a global (e.g. 5212 // "extern int x[];") and then a definition of a different type (e.g. 5213 // "int x[10];"). This also happens when an initializer has a different type 5214 // from the type of the global (this happens with unions). 5215 if (!GV || GV->getValueType() != InitType || 5216 GV->getType()->getAddressSpace() != 5217 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5218 5219 // Move the old entry aside so that we'll create a new one. 5220 Entry->setName(StringRef()); 5221 5222 // Make a new global with the correct type, this is now guaranteed to work. 5223 GV = cast<llvm::GlobalVariable>( 5224 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5225 ->stripPointerCasts()); 5226 5227 // Replace all uses of the old global with the new global 5228 llvm::Constant *NewPtrForOldDecl = 5229 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5230 Entry->getType()); 5231 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5232 5233 // Erase the old global, since it is no longer used. 5234 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5235 } 5236 5237 MaybeHandleStaticInExternC(D, GV); 5238 5239 if (D->hasAttr<AnnotateAttr>()) 5240 AddGlobalAnnotations(D, GV); 5241 5242 // Set the llvm linkage type as appropriate. 5243 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5244 5245 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5246 // the device. [...]" 5247 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5248 // __device__, declares a variable that: [...] 5249 // Is accessible from all the threads within the grid and from the host 5250 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5251 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5252 if (LangOpts.CUDA) { 5253 if (LangOpts.CUDAIsDevice) { 5254 if (Linkage != llvm::GlobalValue::InternalLinkage && 5255 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5256 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5257 D->getType()->isCUDADeviceBuiltinTextureType())) 5258 GV->setExternallyInitialized(true); 5259 } else { 5260 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5261 } 5262 getCUDARuntime().handleVarRegistration(D, *GV); 5263 } 5264 5265 GV->setInitializer(Init); 5266 if (emitter) 5267 emitter->finalize(GV); 5268 5269 // If it is safe to mark the global 'constant', do so now. 5270 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5271 D->getType().isConstantStorage(getContext(), true, true)); 5272 5273 // If it is in a read-only section, mark it 'constant'. 5274 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5275 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5276 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5277 GV->setConstant(true); 5278 } 5279 5280 CharUnits AlignVal = getContext().getDeclAlign(D); 5281 // Check for alignment specifed in an 'omp allocate' directive. 5282 if (std::optional<CharUnits> AlignValFromAllocate = 5283 getOMPAllocateAlignment(D)) 5284 AlignVal = *AlignValFromAllocate; 5285 GV->setAlignment(AlignVal.getAsAlign()); 5286 5287 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5288 // function is only defined alongside the variable, not also alongside 5289 // callers. Normally, all accesses to a thread_local go through the 5290 // thread-wrapper in order to ensure initialization has occurred, underlying 5291 // variable will never be used other than the thread-wrapper, so it can be 5292 // converted to internal linkage. 5293 // 5294 // However, if the variable has the 'constinit' attribute, it _can_ be 5295 // referenced directly, without calling the thread-wrapper, so the linkage 5296 // must not be changed. 5297 // 5298 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5299 // weak or linkonce, the de-duplication semantics are important to preserve, 5300 // so we don't change the linkage. 5301 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5302 Linkage == llvm::GlobalValue::ExternalLinkage && 5303 Context.getTargetInfo().getTriple().isOSDarwin() && 5304 !D->hasAttr<ConstInitAttr>()) 5305 Linkage = llvm::GlobalValue::InternalLinkage; 5306 5307 GV->setLinkage(Linkage); 5308 if (D->hasAttr<DLLImportAttr>()) 5309 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5310 else if (D->hasAttr<DLLExportAttr>()) 5311 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5312 else 5313 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5314 5315 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5316 // common vars aren't constant even if declared const. 5317 GV->setConstant(false); 5318 // Tentative definition of global variables may be initialized with 5319 // non-zero null pointers. In this case they should have weak linkage 5320 // since common linkage must have zero initializer and must not have 5321 // explicit section therefore cannot have non-zero initial value. 5322 if (!GV->getInitializer()->isNullValue()) 5323 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5324 } 5325 5326 setNonAliasAttributes(D, GV); 5327 5328 if (D->getTLSKind() && !GV->isThreadLocal()) { 5329 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5330 CXXThreadLocals.push_back(D); 5331 setTLSMode(GV, *D); 5332 } 5333 5334 maybeSetTrivialComdat(*D, *GV); 5335 5336 // Emit the initializer function if necessary. 5337 if (NeedsGlobalCtor || NeedsGlobalDtor) 5338 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5339 5340 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5341 5342 // Emit global variable debug information. 5343 if (CGDebugInfo *DI = getModuleDebugInfo()) 5344 if (getCodeGenOpts().hasReducedDebugInfo()) 5345 DI->EmitGlobalVariable(GV, D); 5346 } 5347 5348 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5349 if (CGDebugInfo *DI = getModuleDebugInfo()) 5350 if (getCodeGenOpts().hasReducedDebugInfo()) { 5351 QualType ASTTy = D->getType(); 5352 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5353 llvm::Constant *GV = 5354 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5355 DI->EmitExternalVariable( 5356 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5357 } 5358 } 5359 5360 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5361 CodeGenModule &CGM, const VarDecl *D, 5362 bool NoCommon) { 5363 // Don't give variables common linkage if -fno-common was specified unless it 5364 // was overridden by a NoCommon attribute. 5365 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5366 return true; 5367 5368 // C11 6.9.2/2: 5369 // A declaration of an identifier for an object that has file scope without 5370 // an initializer, and without a storage-class specifier or with the 5371 // storage-class specifier static, constitutes a tentative definition. 5372 if (D->getInit() || D->hasExternalStorage()) 5373 return true; 5374 5375 // A variable cannot be both common and exist in a section. 5376 if (D->hasAttr<SectionAttr>()) 5377 return true; 5378 5379 // A variable cannot be both common and exist in a section. 5380 // We don't try to determine which is the right section in the front-end. 5381 // If no specialized section name is applicable, it will resort to default. 5382 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5383 D->hasAttr<PragmaClangDataSectionAttr>() || 5384 D->hasAttr<PragmaClangRelroSectionAttr>() || 5385 D->hasAttr<PragmaClangRodataSectionAttr>()) 5386 return true; 5387 5388 // Thread local vars aren't considered common linkage. 5389 if (D->getTLSKind()) 5390 return true; 5391 5392 // Tentative definitions marked with WeakImportAttr are true definitions. 5393 if (D->hasAttr<WeakImportAttr>()) 5394 return true; 5395 5396 // A variable cannot be both common and exist in a comdat. 5397 if (shouldBeInCOMDAT(CGM, *D)) 5398 return true; 5399 5400 // Declarations with a required alignment do not have common linkage in MSVC 5401 // mode. 5402 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5403 if (D->hasAttr<AlignedAttr>()) 5404 return true; 5405 QualType VarType = D->getType(); 5406 if (Context.isAlignmentRequired(VarType)) 5407 return true; 5408 5409 if (const auto *RT = VarType->getAs<RecordType>()) { 5410 const RecordDecl *RD = RT->getDecl(); 5411 for (const FieldDecl *FD : RD->fields()) { 5412 if (FD->isBitField()) 5413 continue; 5414 if (FD->hasAttr<AlignedAttr>()) 5415 return true; 5416 if (Context.isAlignmentRequired(FD->getType())) 5417 return true; 5418 } 5419 } 5420 } 5421 5422 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5423 // common symbols, so symbols with greater alignment requirements cannot be 5424 // common. 5425 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5426 // alignments for common symbols via the aligncomm directive, so this 5427 // restriction only applies to MSVC environments. 5428 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5429 Context.getTypeAlignIfKnown(D->getType()) > 5430 Context.toBits(CharUnits::fromQuantity(32))) 5431 return true; 5432 5433 return false; 5434 } 5435 5436 llvm::GlobalValue::LinkageTypes 5437 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5438 GVALinkage Linkage) { 5439 if (Linkage == GVA_Internal) 5440 return llvm::Function::InternalLinkage; 5441 5442 if (D->hasAttr<WeakAttr>()) 5443 return llvm::GlobalVariable::WeakAnyLinkage; 5444 5445 if (const auto *FD = D->getAsFunction()) 5446 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5447 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5448 5449 // We are guaranteed to have a strong definition somewhere else, 5450 // so we can use available_externally linkage. 5451 if (Linkage == GVA_AvailableExternally) 5452 return llvm::GlobalValue::AvailableExternallyLinkage; 5453 5454 // Note that Apple's kernel linker doesn't support symbol 5455 // coalescing, so we need to avoid linkonce and weak linkages there. 5456 // Normally, this means we just map to internal, but for explicit 5457 // instantiations we'll map to external. 5458 5459 // In C++, the compiler has to emit a definition in every translation unit 5460 // that references the function. We should use linkonce_odr because 5461 // a) if all references in this translation unit are optimized away, we 5462 // don't need to codegen it. b) if the function persists, it needs to be 5463 // merged with other definitions. c) C++ has the ODR, so we know the 5464 // definition is dependable. 5465 if (Linkage == GVA_DiscardableODR) 5466 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5467 : llvm::Function::InternalLinkage; 5468 5469 // An explicit instantiation of a template has weak linkage, since 5470 // explicit instantiations can occur in multiple translation units 5471 // and must all be equivalent. However, we are not allowed to 5472 // throw away these explicit instantiations. 5473 // 5474 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5475 // so say that CUDA templates are either external (for kernels) or internal. 5476 // This lets llvm perform aggressive inter-procedural optimizations. For 5477 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5478 // therefore we need to follow the normal linkage paradigm. 5479 if (Linkage == GVA_StrongODR) { 5480 if (getLangOpts().AppleKext) 5481 return llvm::Function::ExternalLinkage; 5482 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5483 !getLangOpts().GPURelocatableDeviceCode) 5484 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5485 : llvm::Function::InternalLinkage; 5486 return llvm::Function::WeakODRLinkage; 5487 } 5488 5489 // C++ doesn't have tentative definitions and thus cannot have common 5490 // linkage. 5491 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5492 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5493 CodeGenOpts.NoCommon)) 5494 return llvm::GlobalVariable::CommonLinkage; 5495 5496 // selectany symbols are externally visible, so use weak instead of 5497 // linkonce. MSVC optimizes away references to const selectany globals, so 5498 // all definitions should be the same and ODR linkage should be used. 5499 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5500 if (D->hasAttr<SelectAnyAttr>()) 5501 return llvm::GlobalVariable::WeakODRLinkage; 5502 5503 // Otherwise, we have strong external linkage. 5504 assert(Linkage == GVA_StrongExternal); 5505 return llvm::GlobalVariable::ExternalLinkage; 5506 } 5507 5508 llvm::GlobalValue::LinkageTypes 5509 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5510 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5511 return getLLVMLinkageForDeclarator(VD, Linkage); 5512 } 5513 5514 /// Replace the uses of a function that was declared with a non-proto type. 5515 /// We want to silently drop extra arguments from call sites 5516 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5517 llvm::Function *newFn) { 5518 // Fast path. 5519 if (old->use_empty()) return; 5520 5521 llvm::Type *newRetTy = newFn->getReturnType(); 5522 SmallVector<llvm::Value*, 4> newArgs; 5523 5524 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5525 ui != ue; ) { 5526 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5527 llvm::User *user = use->getUser(); 5528 5529 // Recognize and replace uses of bitcasts. Most calls to 5530 // unprototyped functions will use bitcasts. 5531 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5532 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5533 replaceUsesOfNonProtoConstant(bitcast, newFn); 5534 continue; 5535 } 5536 5537 // Recognize calls to the function. 5538 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5539 if (!callSite) continue; 5540 if (!callSite->isCallee(&*use)) 5541 continue; 5542 5543 // If the return types don't match exactly, then we can't 5544 // transform this call unless it's dead. 5545 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5546 continue; 5547 5548 // Get the call site's attribute list. 5549 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5550 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5551 5552 // If the function was passed too few arguments, don't transform. 5553 unsigned newNumArgs = newFn->arg_size(); 5554 if (callSite->arg_size() < newNumArgs) 5555 continue; 5556 5557 // If extra arguments were passed, we silently drop them. 5558 // If any of the types mismatch, we don't transform. 5559 unsigned argNo = 0; 5560 bool dontTransform = false; 5561 for (llvm::Argument &A : newFn->args()) { 5562 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5563 dontTransform = true; 5564 break; 5565 } 5566 5567 // Add any parameter attributes. 5568 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5569 argNo++; 5570 } 5571 if (dontTransform) 5572 continue; 5573 5574 // Okay, we can transform this. Create the new call instruction and copy 5575 // over the required information. 5576 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5577 5578 // Copy over any operand bundles. 5579 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5580 callSite->getOperandBundlesAsDefs(newBundles); 5581 5582 llvm::CallBase *newCall; 5583 if (isa<llvm::CallInst>(callSite)) { 5584 newCall = 5585 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5586 } else { 5587 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5588 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5589 oldInvoke->getUnwindDest(), newArgs, 5590 newBundles, "", callSite); 5591 } 5592 newArgs.clear(); // for the next iteration 5593 5594 if (!newCall->getType()->isVoidTy()) 5595 newCall->takeName(callSite); 5596 newCall->setAttributes( 5597 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5598 oldAttrs.getRetAttrs(), newArgAttrs)); 5599 newCall->setCallingConv(callSite->getCallingConv()); 5600 5601 // Finally, remove the old call, replacing any uses with the new one. 5602 if (!callSite->use_empty()) 5603 callSite->replaceAllUsesWith(newCall); 5604 5605 // Copy debug location attached to CI. 5606 if (callSite->getDebugLoc()) 5607 newCall->setDebugLoc(callSite->getDebugLoc()); 5608 5609 callSite->eraseFromParent(); 5610 } 5611 } 5612 5613 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5614 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5615 /// existing call uses of the old function in the module, this adjusts them to 5616 /// call the new function directly. 5617 /// 5618 /// This is not just a cleanup: the always_inline pass requires direct calls to 5619 /// functions to be able to inline them. If there is a bitcast in the way, it 5620 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5621 /// run at -O0. 5622 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5623 llvm::Function *NewFn) { 5624 // If we're redefining a global as a function, don't transform it. 5625 if (!isa<llvm::Function>(Old)) return; 5626 5627 replaceUsesOfNonProtoConstant(Old, NewFn); 5628 } 5629 5630 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5631 auto DK = VD->isThisDeclarationADefinition(); 5632 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5633 return; 5634 5635 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5636 // If we have a definition, this might be a deferred decl. If the 5637 // instantiation is explicit, make sure we emit it at the end. 5638 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5639 GetAddrOfGlobalVar(VD); 5640 5641 EmitTopLevelDecl(VD); 5642 } 5643 5644 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5645 llvm::GlobalValue *GV) { 5646 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5647 5648 // Compute the function info and LLVM type. 5649 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5650 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5651 5652 // Get or create the prototype for the function. 5653 if (!GV || (GV->getValueType() != Ty)) 5654 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5655 /*DontDefer=*/true, 5656 ForDefinition)); 5657 5658 // Already emitted. 5659 if (!GV->isDeclaration()) 5660 return; 5661 5662 // We need to set linkage and visibility on the function before 5663 // generating code for it because various parts of IR generation 5664 // want to propagate this information down (e.g. to local static 5665 // declarations). 5666 auto *Fn = cast<llvm::Function>(GV); 5667 setFunctionLinkage(GD, Fn); 5668 5669 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5670 setGVProperties(Fn, GD); 5671 5672 MaybeHandleStaticInExternC(D, Fn); 5673 5674 maybeSetTrivialComdat(*D, *Fn); 5675 5676 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5677 5678 setNonAliasAttributes(GD, Fn); 5679 SetLLVMFunctionAttributesForDefinition(D, Fn); 5680 5681 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5682 AddGlobalCtor(Fn, CA->getPriority()); 5683 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5684 AddGlobalDtor(Fn, DA->getPriority(), true); 5685 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5686 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5687 } 5688 5689 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5690 const auto *D = cast<ValueDecl>(GD.getDecl()); 5691 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5692 assert(AA && "Not an alias?"); 5693 5694 StringRef MangledName = getMangledName(GD); 5695 5696 if (AA->getAliasee() == MangledName) { 5697 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5698 return; 5699 } 5700 5701 // If there is a definition in the module, then it wins over the alias. 5702 // This is dubious, but allow it to be safe. Just ignore the alias. 5703 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5704 if (Entry && !Entry->isDeclaration()) 5705 return; 5706 5707 Aliases.push_back(GD); 5708 5709 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5710 5711 // Create a reference to the named value. This ensures that it is emitted 5712 // if a deferred decl. 5713 llvm::Constant *Aliasee; 5714 llvm::GlobalValue::LinkageTypes LT; 5715 if (isa<llvm::FunctionType>(DeclTy)) { 5716 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5717 /*ForVTable=*/false); 5718 LT = getFunctionLinkage(GD); 5719 } else { 5720 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5721 /*D=*/nullptr); 5722 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5723 LT = getLLVMLinkageVarDefinition(VD); 5724 else 5725 LT = getFunctionLinkage(GD); 5726 } 5727 5728 // Create the new alias itself, but don't set a name yet. 5729 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5730 auto *GA = 5731 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5732 5733 if (Entry) { 5734 if (GA->getAliasee() == Entry) { 5735 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5736 return; 5737 } 5738 5739 assert(Entry->isDeclaration()); 5740 5741 // If there is a declaration in the module, then we had an extern followed 5742 // by the alias, as in: 5743 // extern int test6(); 5744 // ... 5745 // int test6() __attribute__((alias("test7"))); 5746 // 5747 // Remove it and replace uses of it with the alias. 5748 GA->takeName(Entry); 5749 5750 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5751 Entry->getType())); 5752 Entry->eraseFromParent(); 5753 } else { 5754 GA->setName(MangledName); 5755 } 5756 5757 // Set attributes which are particular to an alias; this is a 5758 // specialization of the attributes which may be set on a global 5759 // variable/function. 5760 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5761 D->isWeakImported()) { 5762 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5763 } 5764 5765 if (const auto *VD = dyn_cast<VarDecl>(D)) 5766 if (VD->getTLSKind()) 5767 setTLSMode(GA, *VD); 5768 5769 SetCommonAttributes(GD, GA); 5770 5771 // Emit global alias debug information. 5772 if (isa<VarDecl>(D)) 5773 if (CGDebugInfo *DI = getModuleDebugInfo()) 5774 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5775 } 5776 5777 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5778 const auto *D = cast<ValueDecl>(GD.getDecl()); 5779 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5780 assert(IFA && "Not an ifunc?"); 5781 5782 StringRef MangledName = getMangledName(GD); 5783 5784 if (IFA->getResolver() == MangledName) { 5785 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5786 return; 5787 } 5788 5789 // Report an error if some definition overrides ifunc. 5790 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5791 if (Entry && !Entry->isDeclaration()) { 5792 GlobalDecl OtherGD; 5793 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5794 DiagnosedConflictingDefinitions.insert(GD).second) { 5795 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5796 << MangledName; 5797 Diags.Report(OtherGD.getDecl()->getLocation(), 5798 diag::note_previous_definition); 5799 } 5800 return; 5801 } 5802 5803 Aliases.push_back(GD); 5804 5805 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5806 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5807 llvm::Constant *Resolver = 5808 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5809 /*ForVTable=*/false); 5810 llvm::GlobalIFunc *GIF = 5811 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5812 "", Resolver, &getModule()); 5813 if (Entry) { 5814 if (GIF->getResolver() == Entry) { 5815 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5816 return; 5817 } 5818 assert(Entry->isDeclaration()); 5819 5820 // If there is a declaration in the module, then we had an extern followed 5821 // by the ifunc, as in: 5822 // extern int test(); 5823 // ... 5824 // int test() __attribute__((ifunc("resolver"))); 5825 // 5826 // Remove it and replace uses of it with the ifunc. 5827 GIF->takeName(Entry); 5828 5829 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5830 Entry->getType())); 5831 Entry->eraseFromParent(); 5832 } else 5833 GIF->setName(MangledName); 5834 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5835 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5836 } 5837 SetCommonAttributes(GD, GIF); 5838 } 5839 5840 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5841 ArrayRef<llvm::Type*> Tys) { 5842 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5843 Tys); 5844 } 5845 5846 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5847 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5848 const StringLiteral *Literal, bool TargetIsLSB, 5849 bool &IsUTF16, unsigned &StringLength) { 5850 StringRef String = Literal->getString(); 5851 unsigned NumBytes = String.size(); 5852 5853 // Check for simple case. 5854 if (!Literal->containsNonAsciiOrNull()) { 5855 StringLength = NumBytes; 5856 return *Map.insert(std::make_pair(String, nullptr)).first; 5857 } 5858 5859 // Otherwise, convert the UTF8 literals into a string of shorts. 5860 IsUTF16 = true; 5861 5862 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5863 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5864 llvm::UTF16 *ToPtr = &ToBuf[0]; 5865 5866 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5867 ToPtr + NumBytes, llvm::strictConversion); 5868 5869 // ConvertUTF8toUTF16 returns the length in ToPtr. 5870 StringLength = ToPtr - &ToBuf[0]; 5871 5872 // Add an explicit null. 5873 *ToPtr = 0; 5874 return *Map.insert(std::make_pair( 5875 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5876 (StringLength + 1) * 2), 5877 nullptr)).first; 5878 } 5879 5880 ConstantAddress 5881 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5882 unsigned StringLength = 0; 5883 bool isUTF16 = false; 5884 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5885 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5886 getDataLayout().isLittleEndian(), isUTF16, 5887 StringLength); 5888 5889 if (auto *C = Entry.second) 5890 return ConstantAddress( 5891 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5892 5893 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5894 llvm::Constant *Zeros[] = { Zero, Zero }; 5895 5896 const ASTContext &Context = getContext(); 5897 const llvm::Triple &Triple = getTriple(); 5898 5899 const auto CFRuntime = getLangOpts().CFRuntime; 5900 const bool IsSwiftABI = 5901 static_cast<unsigned>(CFRuntime) >= 5902 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5903 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5904 5905 // If we don't already have it, get __CFConstantStringClassReference. 5906 if (!CFConstantStringClassRef) { 5907 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5908 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5909 Ty = llvm::ArrayType::get(Ty, 0); 5910 5911 switch (CFRuntime) { 5912 default: break; 5913 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5914 case LangOptions::CoreFoundationABI::Swift5_0: 5915 CFConstantStringClassName = 5916 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5917 : "$s10Foundation19_NSCFConstantStringCN"; 5918 Ty = IntPtrTy; 5919 break; 5920 case LangOptions::CoreFoundationABI::Swift4_2: 5921 CFConstantStringClassName = 5922 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5923 : "$S10Foundation19_NSCFConstantStringCN"; 5924 Ty = IntPtrTy; 5925 break; 5926 case LangOptions::CoreFoundationABI::Swift4_1: 5927 CFConstantStringClassName = 5928 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5929 : "__T010Foundation19_NSCFConstantStringCN"; 5930 Ty = IntPtrTy; 5931 break; 5932 } 5933 5934 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5935 5936 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5937 llvm::GlobalValue *GV = nullptr; 5938 5939 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5940 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5941 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5942 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5943 5944 const VarDecl *VD = nullptr; 5945 for (const auto *Result : DC->lookup(&II)) 5946 if ((VD = dyn_cast<VarDecl>(Result))) 5947 break; 5948 5949 if (Triple.isOSBinFormatELF()) { 5950 if (!VD) 5951 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5952 } else { 5953 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5954 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5955 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5956 else 5957 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5958 } 5959 5960 setDSOLocal(GV); 5961 } 5962 } 5963 5964 // Decay array -> ptr 5965 CFConstantStringClassRef = 5966 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5967 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5968 } 5969 5970 QualType CFTy = Context.getCFConstantStringType(); 5971 5972 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5973 5974 ConstantInitBuilder Builder(*this); 5975 auto Fields = Builder.beginStruct(STy); 5976 5977 // Class pointer. 5978 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5979 5980 // Flags. 5981 if (IsSwiftABI) { 5982 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5983 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5984 } else { 5985 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5986 } 5987 5988 // String pointer. 5989 llvm::Constant *C = nullptr; 5990 if (isUTF16) { 5991 auto Arr = llvm::ArrayRef( 5992 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5993 Entry.first().size() / 2); 5994 C = llvm::ConstantDataArray::get(VMContext, Arr); 5995 } else { 5996 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5997 } 5998 5999 // Note: -fwritable-strings doesn't make the backing store strings of 6000 // CFStrings writable. 6001 auto *GV = 6002 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6003 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6004 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6005 // Don't enforce the target's minimum global alignment, since the only use 6006 // of the string is via this class initializer. 6007 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6008 : Context.getTypeAlignInChars(Context.CharTy); 6009 GV->setAlignment(Align.getAsAlign()); 6010 6011 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6012 // Without it LLVM can merge the string with a non unnamed_addr one during 6013 // LTO. Doing that changes the section it ends in, which surprises ld64. 6014 if (Triple.isOSBinFormatMachO()) 6015 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6016 : "__TEXT,__cstring,cstring_literals"); 6017 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6018 // the static linker to adjust permissions to read-only later on. 6019 else if (Triple.isOSBinFormatELF()) 6020 GV->setSection(".rodata"); 6021 6022 // String. 6023 llvm::Constant *Str = 6024 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6025 6026 if (isUTF16) 6027 // Cast the UTF16 string to the correct type. 6028 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 6029 Fields.add(Str); 6030 6031 // String length. 6032 llvm::IntegerType *LengthTy = 6033 llvm::IntegerType::get(getModule().getContext(), 6034 Context.getTargetInfo().getLongWidth()); 6035 if (IsSwiftABI) { 6036 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6037 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6038 LengthTy = Int32Ty; 6039 else 6040 LengthTy = IntPtrTy; 6041 } 6042 Fields.addInt(LengthTy, StringLength); 6043 6044 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6045 // properly aligned on 32-bit platforms. 6046 CharUnits Alignment = 6047 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6048 6049 // The struct. 6050 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6051 /*isConstant=*/false, 6052 llvm::GlobalVariable::PrivateLinkage); 6053 GV->addAttribute("objc_arc_inert"); 6054 switch (Triple.getObjectFormat()) { 6055 case llvm::Triple::UnknownObjectFormat: 6056 llvm_unreachable("unknown file format"); 6057 case llvm::Triple::DXContainer: 6058 case llvm::Triple::GOFF: 6059 case llvm::Triple::SPIRV: 6060 case llvm::Triple::XCOFF: 6061 llvm_unreachable("unimplemented"); 6062 case llvm::Triple::COFF: 6063 case llvm::Triple::ELF: 6064 case llvm::Triple::Wasm: 6065 GV->setSection("cfstring"); 6066 break; 6067 case llvm::Triple::MachO: 6068 GV->setSection("__DATA,__cfstring"); 6069 break; 6070 } 6071 Entry.second = GV; 6072 6073 return ConstantAddress(GV, GV->getValueType(), Alignment); 6074 } 6075 6076 bool CodeGenModule::getExpressionLocationsEnabled() const { 6077 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6078 } 6079 6080 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6081 if (ObjCFastEnumerationStateType.isNull()) { 6082 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6083 D->startDefinition(); 6084 6085 QualType FieldTypes[] = { 6086 Context.UnsignedLongTy, 6087 Context.getPointerType(Context.getObjCIdType()), 6088 Context.getPointerType(Context.UnsignedLongTy), 6089 Context.getConstantArrayType(Context.UnsignedLongTy, 6090 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 6091 }; 6092 6093 for (size_t i = 0; i < 4; ++i) { 6094 FieldDecl *Field = FieldDecl::Create(Context, 6095 D, 6096 SourceLocation(), 6097 SourceLocation(), nullptr, 6098 FieldTypes[i], /*TInfo=*/nullptr, 6099 /*BitWidth=*/nullptr, 6100 /*Mutable=*/false, 6101 ICIS_NoInit); 6102 Field->setAccess(AS_public); 6103 D->addDecl(Field); 6104 } 6105 6106 D->completeDefinition(); 6107 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6108 } 6109 6110 return ObjCFastEnumerationStateType; 6111 } 6112 6113 llvm::Constant * 6114 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6115 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6116 6117 // Don't emit it as the address of the string, emit the string data itself 6118 // as an inline array. 6119 if (E->getCharByteWidth() == 1) { 6120 SmallString<64> Str(E->getString()); 6121 6122 // Resize the string to the right size, which is indicated by its type. 6123 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6124 assert(CAT && "String literal not of constant array type!"); 6125 Str.resize(CAT->getSize().getZExtValue()); 6126 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6127 } 6128 6129 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6130 llvm::Type *ElemTy = AType->getElementType(); 6131 unsigned NumElements = AType->getNumElements(); 6132 6133 // Wide strings have either 2-byte or 4-byte elements. 6134 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6135 SmallVector<uint16_t, 32> Elements; 6136 Elements.reserve(NumElements); 6137 6138 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6139 Elements.push_back(E->getCodeUnit(i)); 6140 Elements.resize(NumElements); 6141 return llvm::ConstantDataArray::get(VMContext, Elements); 6142 } 6143 6144 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6145 SmallVector<uint32_t, 32> Elements; 6146 Elements.reserve(NumElements); 6147 6148 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6149 Elements.push_back(E->getCodeUnit(i)); 6150 Elements.resize(NumElements); 6151 return llvm::ConstantDataArray::get(VMContext, Elements); 6152 } 6153 6154 static llvm::GlobalVariable * 6155 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6156 CodeGenModule &CGM, StringRef GlobalName, 6157 CharUnits Alignment) { 6158 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6159 CGM.GetGlobalConstantAddressSpace()); 6160 6161 llvm::Module &M = CGM.getModule(); 6162 // Create a global variable for this string 6163 auto *GV = new llvm::GlobalVariable( 6164 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6165 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6166 GV->setAlignment(Alignment.getAsAlign()); 6167 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6168 if (GV->isWeakForLinker()) { 6169 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6170 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6171 } 6172 CGM.setDSOLocal(GV); 6173 6174 return GV; 6175 } 6176 6177 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6178 /// constant array for the given string literal. 6179 ConstantAddress 6180 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6181 StringRef Name) { 6182 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6183 6184 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6185 llvm::GlobalVariable **Entry = nullptr; 6186 if (!LangOpts.WritableStrings) { 6187 Entry = &ConstantStringMap[C]; 6188 if (auto GV = *Entry) { 6189 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6190 GV->setAlignment(Alignment.getAsAlign()); 6191 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6192 GV->getValueType(), Alignment); 6193 } 6194 } 6195 6196 SmallString<256> MangledNameBuffer; 6197 StringRef GlobalVariableName; 6198 llvm::GlobalValue::LinkageTypes LT; 6199 6200 // Mangle the string literal if that's how the ABI merges duplicate strings. 6201 // Don't do it if they are writable, since we don't want writes in one TU to 6202 // affect strings in another. 6203 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6204 !LangOpts.WritableStrings) { 6205 llvm::raw_svector_ostream Out(MangledNameBuffer); 6206 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6207 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6208 GlobalVariableName = MangledNameBuffer; 6209 } else { 6210 LT = llvm::GlobalValue::PrivateLinkage; 6211 GlobalVariableName = Name; 6212 } 6213 6214 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6215 6216 CGDebugInfo *DI = getModuleDebugInfo(); 6217 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6218 DI->AddStringLiteralDebugInfo(GV, S); 6219 6220 if (Entry) 6221 *Entry = GV; 6222 6223 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6224 6225 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6226 GV->getValueType(), Alignment); 6227 } 6228 6229 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6230 /// array for the given ObjCEncodeExpr node. 6231 ConstantAddress 6232 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6233 std::string Str; 6234 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6235 6236 return GetAddrOfConstantCString(Str); 6237 } 6238 6239 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6240 /// the literal and a terminating '\0' character. 6241 /// The result has pointer to array type. 6242 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6243 const std::string &Str, const char *GlobalName) { 6244 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6245 CharUnits Alignment = 6246 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6247 6248 llvm::Constant *C = 6249 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6250 6251 // Don't share any string literals if strings aren't constant. 6252 llvm::GlobalVariable **Entry = nullptr; 6253 if (!LangOpts.WritableStrings) { 6254 Entry = &ConstantStringMap[C]; 6255 if (auto GV = *Entry) { 6256 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6257 GV->setAlignment(Alignment.getAsAlign()); 6258 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6259 GV->getValueType(), Alignment); 6260 } 6261 } 6262 6263 // Get the default prefix if a name wasn't specified. 6264 if (!GlobalName) 6265 GlobalName = ".str"; 6266 // Create a global variable for this. 6267 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6268 GlobalName, Alignment); 6269 if (Entry) 6270 *Entry = GV; 6271 6272 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6273 GV->getValueType(), Alignment); 6274 } 6275 6276 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6277 const MaterializeTemporaryExpr *E, const Expr *Init) { 6278 assert((E->getStorageDuration() == SD_Static || 6279 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6280 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6281 6282 // If we're not materializing a subobject of the temporary, keep the 6283 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6284 QualType MaterializedType = Init->getType(); 6285 if (Init == E->getSubExpr()) 6286 MaterializedType = E->getType(); 6287 6288 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6289 6290 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6291 if (!InsertResult.second) { 6292 // We've seen this before: either we already created it or we're in the 6293 // process of doing so. 6294 if (!InsertResult.first->second) { 6295 // We recursively re-entered this function, probably during emission of 6296 // the initializer. Create a placeholder. We'll clean this up in the 6297 // outer call, at the end of this function. 6298 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6299 InsertResult.first->second = new llvm::GlobalVariable( 6300 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6301 nullptr); 6302 } 6303 return ConstantAddress(InsertResult.first->second, 6304 llvm::cast<llvm::GlobalVariable>( 6305 InsertResult.first->second->stripPointerCasts()) 6306 ->getValueType(), 6307 Align); 6308 } 6309 6310 // FIXME: If an externally-visible declaration extends multiple temporaries, 6311 // we need to give each temporary the same name in every translation unit (and 6312 // we also need to make the temporaries externally-visible). 6313 SmallString<256> Name; 6314 llvm::raw_svector_ostream Out(Name); 6315 getCXXABI().getMangleContext().mangleReferenceTemporary( 6316 VD, E->getManglingNumber(), Out); 6317 6318 APValue *Value = nullptr; 6319 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6320 // If the initializer of the extending declaration is a constant 6321 // initializer, we should have a cached constant initializer for this 6322 // temporary. Note that this might have a different value from the value 6323 // computed by evaluating the initializer if the surrounding constant 6324 // expression modifies the temporary. 6325 Value = E->getOrCreateValue(false); 6326 } 6327 6328 // Try evaluating it now, it might have a constant initializer. 6329 Expr::EvalResult EvalResult; 6330 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6331 !EvalResult.hasSideEffects()) 6332 Value = &EvalResult.Val; 6333 6334 LangAS AddrSpace = 6335 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6336 6337 std::optional<ConstantEmitter> emitter; 6338 llvm::Constant *InitialValue = nullptr; 6339 bool Constant = false; 6340 llvm::Type *Type; 6341 if (Value) { 6342 // The temporary has a constant initializer, use it. 6343 emitter.emplace(*this); 6344 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6345 MaterializedType); 6346 Constant = 6347 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6348 /*ExcludeDtor*/ false); 6349 Type = InitialValue->getType(); 6350 } else { 6351 // No initializer, the initialization will be provided when we 6352 // initialize the declaration which performed lifetime extension. 6353 Type = getTypes().ConvertTypeForMem(MaterializedType); 6354 } 6355 6356 // Create a global variable for this lifetime-extended temporary. 6357 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6358 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6359 const VarDecl *InitVD; 6360 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6361 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6362 // Temporaries defined inside a class get linkonce_odr linkage because the 6363 // class can be defined in multiple translation units. 6364 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6365 } else { 6366 // There is no need for this temporary to have external linkage if the 6367 // VarDecl has external linkage. 6368 Linkage = llvm::GlobalVariable::InternalLinkage; 6369 } 6370 } 6371 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6372 auto *GV = new llvm::GlobalVariable( 6373 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6374 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6375 if (emitter) emitter->finalize(GV); 6376 // Don't assign dllimport or dllexport to local linkage globals. 6377 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6378 setGVProperties(GV, VD); 6379 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6380 // The reference temporary should never be dllexport. 6381 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6382 } 6383 GV->setAlignment(Align.getAsAlign()); 6384 if (supportsCOMDAT() && GV->isWeakForLinker()) 6385 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6386 if (VD->getTLSKind()) 6387 setTLSMode(GV, *VD); 6388 llvm::Constant *CV = GV; 6389 if (AddrSpace != LangAS::Default) 6390 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6391 *this, GV, AddrSpace, LangAS::Default, 6392 Type->getPointerTo( 6393 getContext().getTargetAddressSpace(LangAS::Default))); 6394 6395 // Update the map with the new temporary. If we created a placeholder above, 6396 // replace it with the new global now. 6397 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6398 if (Entry) { 6399 Entry->replaceAllUsesWith( 6400 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6401 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6402 } 6403 Entry = CV; 6404 6405 return ConstantAddress(CV, Type, Align); 6406 } 6407 6408 /// EmitObjCPropertyImplementations - Emit information for synthesized 6409 /// properties for an implementation. 6410 void CodeGenModule::EmitObjCPropertyImplementations(const 6411 ObjCImplementationDecl *D) { 6412 for (const auto *PID : D->property_impls()) { 6413 // Dynamic is just for type-checking. 6414 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6415 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6416 6417 // Determine which methods need to be implemented, some may have 6418 // been overridden. Note that ::isPropertyAccessor is not the method 6419 // we want, that just indicates if the decl came from a 6420 // property. What we want to know is if the method is defined in 6421 // this implementation. 6422 auto *Getter = PID->getGetterMethodDecl(); 6423 if (!Getter || Getter->isSynthesizedAccessorStub()) 6424 CodeGenFunction(*this).GenerateObjCGetter( 6425 const_cast<ObjCImplementationDecl *>(D), PID); 6426 auto *Setter = PID->getSetterMethodDecl(); 6427 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6428 CodeGenFunction(*this).GenerateObjCSetter( 6429 const_cast<ObjCImplementationDecl *>(D), PID); 6430 } 6431 } 6432 } 6433 6434 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6435 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6436 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6437 ivar; ivar = ivar->getNextIvar()) 6438 if (ivar->getType().isDestructedType()) 6439 return true; 6440 6441 return false; 6442 } 6443 6444 static bool AllTrivialInitializers(CodeGenModule &CGM, 6445 ObjCImplementationDecl *D) { 6446 CodeGenFunction CGF(CGM); 6447 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6448 E = D->init_end(); B != E; ++B) { 6449 CXXCtorInitializer *CtorInitExp = *B; 6450 Expr *Init = CtorInitExp->getInit(); 6451 if (!CGF.isTrivialInitializer(Init)) 6452 return false; 6453 } 6454 return true; 6455 } 6456 6457 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6458 /// for an implementation. 6459 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6460 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6461 if (needsDestructMethod(D)) { 6462 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6463 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6464 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6465 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6466 getContext().VoidTy, nullptr, D, 6467 /*isInstance=*/true, /*isVariadic=*/false, 6468 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6469 /*isImplicitlyDeclared=*/true, 6470 /*isDefined=*/false, ObjCMethodDecl::Required); 6471 D->addInstanceMethod(DTORMethod); 6472 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6473 D->setHasDestructors(true); 6474 } 6475 6476 // If the implementation doesn't have any ivar initializers, we don't need 6477 // a .cxx_construct. 6478 if (D->getNumIvarInitializers() == 0 || 6479 AllTrivialInitializers(*this, D)) 6480 return; 6481 6482 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6483 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6484 // The constructor returns 'self'. 6485 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6486 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6487 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6488 /*isVariadic=*/false, 6489 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6490 /*isImplicitlyDeclared=*/true, 6491 /*isDefined=*/false, ObjCMethodDecl::Required); 6492 D->addInstanceMethod(CTORMethod); 6493 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6494 D->setHasNonZeroConstructors(true); 6495 } 6496 6497 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6498 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6499 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6500 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6501 ErrorUnsupported(LSD, "linkage spec"); 6502 return; 6503 } 6504 6505 EmitDeclContext(LSD); 6506 } 6507 6508 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6509 // Device code should not be at top level. 6510 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6511 return; 6512 6513 std::unique_ptr<CodeGenFunction> &CurCGF = 6514 GlobalTopLevelStmtBlockInFlight.first; 6515 6516 // We emitted a top-level stmt but after it there is initialization. 6517 // Stop squashing the top-level stmts into a single function. 6518 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6519 CurCGF->FinishFunction(D->getEndLoc()); 6520 CurCGF = nullptr; 6521 } 6522 6523 if (!CurCGF) { 6524 // void __stmts__N(void) 6525 // FIXME: Ask the ABI name mangler to pick a name. 6526 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6527 FunctionArgList Args; 6528 QualType RetTy = getContext().VoidTy; 6529 const CGFunctionInfo &FnInfo = 6530 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6531 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6532 llvm::Function *Fn = llvm::Function::Create( 6533 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6534 6535 CurCGF.reset(new CodeGenFunction(*this)); 6536 GlobalTopLevelStmtBlockInFlight.second = D; 6537 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6538 D->getBeginLoc(), D->getBeginLoc()); 6539 CXXGlobalInits.push_back(Fn); 6540 } 6541 6542 CurCGF->EmitStmt(D->getStmt()); 6543 } 6544 6545 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6546 for (auto *I : DC->decls()) { 6547 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6548 // are themselves considered "top-level", so EmitTopLevelDecl on an 6549 // ObjCImplDecl does not recursively visit them. We need to do that in 6550 // case they're nested inside another construct (LinkageSpecDecl / 6551 // ExportDecl) that does stop them from being considered "top-level". 6552 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6553 for (auto *M : OID->methods()) 6554 EmitTopLevelDecl(M); 6555 } 6556 6557 EmitTopLevelDecl(I); 6558 } 6559 } 6560 6561 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6562 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6563 // Ignore dependent declarations. 6564 if (D->isTemplated()) 6565 return; 6566 6567 // Consteval function shouldn't be emitted. 6568 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6569 return; 6570 6571 switch (D->getKind()) { 6572 case Decl::CXXConversion: 6573 case Decl::CXXMethod: 6574 case Decl::Function: 6575 EmitGlobal(cast<FunctionDecl>(D)); 6576 // Always provide some coverage mapping 6577 // even for the functions that aren't emitted. 6578 AddDeferredUnusedCoverageMapping(D); 6579 break; 6580 6581 case Decl::CXXDeductionGuide: 6582 // Function-like, but does not result in code emission. 6583 break; 6584 6585 case Decl::Var: 6586 case Decl::Decomposition: 6587 case Decl::VarTemplateSpecialization: 6588 EmitGlobal(cast<VarDecl>(D)); 6589 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6590 for (auto *B : DD->bindings()) 6591 if (auto *HD = B->getHoldingVar()) 6592 EmitGlobal(HD); 6593 break; 6594 6595 // Indirect fields from global anonymous structs and unions can be 6596 // ignored; only the actual variable requires IR gen support. 6597 case Decl::IndirectField: 6598 break; 6599 6600 // C++ Decls 6601 case Decl::Namespace: 6602 EmitDeclContext(cast<NamespaceDecl>(D)); 6603 break; 6604 case Decl::ClassTemplateSpecialization: { 6605 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6606 if (CGDebugInfo *DI = getModuleDebugInfo()) 6607 if (Spec->getSpecializationKind() == 6608 TSK_ExplicitInstantiationDefinition && 6609 Spec->hasDefinition()) 6610 DI->completeTemplateDefinition(*Spec); 6611 } [[fallthrough]]; 6612 case Decl::CXXRecord: { 6613 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6614 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6615 if (CRD->hasDefinition()) 6616 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6617 if (auto *ES = D->getASTContext().getExternalSource()) 6618 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6619 DI->completeUnusedClass(*CRD); 6620 } 6621 // Emit any static data members, they may be definitions. 6622 for (auto *I : CRD->decls()) 6623 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6624 EmitTopLevelDecl(I); 6625 break; 6626 } 6627 // No code generation needed. 6628 case Decl::UsingShadow: 6629 case Decl::ClassTemplate: 6630 case Decl::VarTemplate: 6631 case Decl::Concept: 6632 case Decl::VarTemplatePartialSpecialization: 6633 case Decl::FunctionTemplate: 6634 case Decl::TypeAliasTemplate: 6635 case Decl::Block: 6636 case Decl::Empty: 6637 case Decl::Binding: 6638 break; 6639 case Decl::Using: // using X; [C++] 6640 if (CGDebugInfo *DI = getModuleDebugInfo()) 6641 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6642 break; 6643 case Decl::UsingEnum: // using enum X; [C++] 6644 if (CGDebugInfo *DI = getModuleDebugInfo()) 6645 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6646 break; 6647 case Decl::NamespaceAlias: 6648 if (CGDebugInfo *DI = getModuleDebugInfo()) 6649 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6650 break; 6651 case Decl::UsingDirective: // using namespace X; [C++] 6652 if (CGDebugInfo *DI = getModuleDebugInfo()) 6653 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6654 break; 6655 case Decl::CXXConstructor: 6656 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6657 break; 6658 case Decl::CXXDestructor: 6659 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6660 break; 6661 6662 case Decl::StaticAssert: 6663 // Nothing to do. 6664 break; 6665 6666 // Objective-C Decls 6667 6668 // Forward declarations, no (immediate) code generation. 6669 case Decl::ObjCInterface: 6670 case Decl::ObjCCategory: 6671 break; 6672 6673 case Decl::ObjCProtocol: { 6674 auto *Proto = cast<ObjCProtocolDecl>(D); 6675 if (Proto->isThisDeclarationADefinition()) 6676 ObjCRuntime->GenerateProtocol(Proto); 6677 break; 6678 } 6679 6680 case Decl::ObjCCategoryImpl: 6681 // Categories have properties but don't support synthesize so we 6682 // can ignore them here. 6683 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6684 break; 6685 6686 case Decl::ObjCImplementation: { 6687 auto *OMD = cast<ObjCImplementationDecl>(D); 6688 EmitObjCPropertyImplementations(OMD); 6689 EmitObjCIvarInitializations(OMD); 6690 ObjCRuntime->GenerateClass(OMD); 6691 // Emit global variable debug information. 6692 if (CGDebugInfo *DI = getModuleDebugInfo()) 6693 if (getCodeGenOpts().hasReducedDebugInfo()) 6694 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6695 OMD->getClassInterface()), OMD->getLocation()); 6696 break; 6697 } 6698 case Decl::ObjCMethod: { 6699 auto *OMD = cast<ObjCMethodDecl>(D); 6700 // If this is not a prototype, emit the body. 6701 if (OMD->getBody()) 6702 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6703 break; 6704 } 6705 case Decl::ObjCCompatibleAlias: 6706 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6707 break; 6708 6709 case Decl::PragmaComment: { 6710 const auto *PCD = cast<PragmaCommentDecl>(D); 6711 switch (PCD->getCommentKind()) { 6712 case PCK_Unknown: 6713 llvm_unreachable("unexpected pragma comment kind"); 6714 case PCK_Linker: 6715 AppendLinkerOptions(PCD->getArg()); 6716 break; 6717 case PCK_Lib: 6718 AddDependentLib(PCD->getArg()); 6719 break; 6720 case PCK_Compiler: 6721 case PCK_ExeStr: 6722 case PCK_User: 6723 break; // We ignore all of these. 6724 } 6725 break; 6726 } 6727 6728 case Decl::PragmaDetectMismatch: { 6729 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6730 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6731 break; 6732 } 6733 6734 case Decl::LinkageSpec: 6735 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6736 break; 6737 6738 case Decl::FileScopeAsm: { 6739 // File-scope asm is ignored during device-side CUDA compilation. 6740 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6741 break; 6742 // File-scope asm is ignored during device-side OpenMP compilation. 6743 if (LangOpts.OpenMPIsTargetDevice) 6744 break; 6745 // File-scope asm is ignored during device-side SYCL compilation. 6746 if (LangOpts.SYCLIsDevice) 6747 break; 6748 auto *AD = cast<FileScopeAsmDecl>(D); 6749 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6750 break; 6751 } 6752 6753 case Decl::TopLevelStmt: 6754 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6755 break; 6756 6757 case Decl::Import: { 6758 auto *Import = cast<ImportDecl>(D); 6759 6760 // If we've already imported this module, we're done. 6761 if (!ImportedModules.insert(Import->getImportedModule())) 6762 break; 6763 6764 // Emit debug information for direct imports. 6765 if (!Import->getImportedOwningModule()) { 6766 if (CGDebugInfo *DI = getModuleDebugInfo()) 6767 DI->EmitImportDecl(*Import); 6768 } 6769 6770 // For C++ standard modules we are done - we will call the module 6771 // initializer for imported modules, and that will likewise call those for 6772 // any imports it has. 6773 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6774 !Import->getImportedOwningModule()->isModuleMapModule()) 6775 break; 6776 6777 // For clang C++ module map modules the initializers for sub-modules are 6778 // emitted here. 6779 6780 // Find all of the submodules and emit the module initializers. 6781 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6782 SmallVector<clang::Module *, 16> Stack; 6783 Visited.insert(Import->getImportedModule()); 6784 Stack.push_back(Import->getImportedModule()); 6785 6786 while (!Stack.empty()) { 6787 clang::Module *Mod = Stack.pop_back_val(); 6788 if (!EmittedModuleInitializers.insert(Mod).second) 6789 continue; 6790 6791 for (auto *D : Context.getModuleInitializers(Mod)) 6792 EmitTopLevelDecl(D); 6793 6794 // Visit the submodules of this module. 6795 for (auto *Submodule : Mod->submodules()) { 6796 // Skip explicit children; they need to be explicitly imported to emit 6797 // the initializers. 6798 if (Submodule->IsExplicit) 6799 continue; 6800 6801 if (Visited.insert(Submodule).second) 6802 Stack.push_back(Submodule); 6803 } 6804 } 6805 break; 6806 } 6807 6808 case Decl::Export: 6809 EmitDeclContext(cast<ExportDecl>(D)); 6810 break; 6811 6812 case Decl::OMPThreadPrivate: 6813 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6814 break; 6815 6816 case Decl::OMPAllocate: 6817 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6818 break; 6819 6820 case Decl::OMPDeclareReduction: 6821 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6822 break; 6823 6824 case Decl::OMPDeclareMapper: 6825 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6826 break; 6827 6828 case Decl::OMPRequires: 6829 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6830 break; 6831 6832 case Decl::Typedef: 6833 case Decl::TypeAlias: // using foo = bar; [C++11] 6834 if (CGDebugInfo *DI = getModuleDebugInfo()) 6835 DI->EmitAndRetainType( 6836 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6837 break; 6838 6839 case Decl::Record: 6840 if (CGDebugInfo *DI = getModuleDebugInfo()) 6841 if (cast<RecordDecl>(D)->getDefinition()) 6842 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6843 break; 6844 6845 case Decl::Enum: 6846 if (CGDebugInfo *DI = getModuleDebugInfo()) 6847 if (cast<EnumDecl>(D)->getDefinition()) 6848 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6849 break; 6850 6851 case Decl::HLSLBuffer: 6852 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6853 break; 6854 6855 default: 6856 // Make sure we handled everything we should, every other kind is a 6857 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6858 // function. Need to recode Decl::Kind to do that easily. 6859 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6860 break; 6861 } 6862 } 6863 6864 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6865 // Do we need to generate coverage mapping? 6866 if (!CodeGenOpts.CoverageMapping) 6867 return; 6868 switch (D->getKind()) { 6869 case Decl::CXXConversion: 6870 case Decl::CXXMethod: 6871 case Decl::Function: 6872 case Decl::ObjCMethod: 6873 case Decl::CXXConstructor: 6874 case Decl::CXXDestructor: { 6875 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6876 break; 6877 SourceManager &SM = getContext().getSourceManager(); 6878 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6879 break; 6880 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6881 if (I == DeferredEmptyCoverageMappingDecls.end()) 6882 DeferredEmptyCoverageMappingDecls[D] = true; 6883 break; 6884 } 6885 default: 6886 break; 6887 }; 6888 } 6889 6890 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6891 // Do we need to generate coverage mapping? 6892 if (!CodeGenOpts.CoverageMapping) 6893 return; 6894 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6895 if (Fn->isTemplateInstantiation()) 6896 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6897 } 6898 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6899 if (I == DeferredEmptyCoverageMappingDecls.end()) 6900 DeferredEmptyCoverageMappingDecls[D] = false; 6901 else 6902 I->second = false; 6903 } 6904 6905 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6906 // We call takeVector() here to avoid use-after-free. 6907 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6908 // we deserialize function bodies to emit coverage info for them, and that 6909 // deserializes more declarations. How should we handle that case? 6910 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6911 if (!Entry.second) 6912 continue; 6913 const Decl *D = Entry.first; 6914 switch (D->getKind()) { 6915 case Decl::CXXConversion: 6916 case Decl::CXXMethod: 6917 case Decl::Function: 6918 case Decl::ObjCMethod: { 6919 CodeGenPGO PGO(*this); 6920 GlobalDecl GD(cast<FunctionDecl>(D)); 6921 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6922 getFunctionLinkage(GD)); 6923 break; 6924 } 6925 case Decl::CXXConstructor: { 6926 CodeGenPGO PGO(*this); 6927 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6928 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6929 getFunctionLinkage(GD)); 6930 break; 6931 } 6932 case Decl::CXXDestructor: { 6933 CodeGenPGO PGO(*this); 6934 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6935 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6936 getFunctionLinkage(GD)); 6937 break; 6938 } 6939 default: 6940 break; 6941 }; 6942 } 6943 } 6944 6945 void CodeGenModule::EmitMainVoidAlias() { 6946 // In order to transition away from "__original_main" gracefully, emit an 6947 // alias for "main" in the no-argument case so that libc can detect when 6948 // new-style no-argument main is in used. 6949 if (llvm::Function *F = getModule().getFunction("main")) { 6950 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6951 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6952 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6953 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6954 } 6955 } 6956 } 6957 6958 /// Turns the given pointer into a constant. 6959 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6960 const void *Ptr) { 6961 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6962 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6963 return llvm::ConstantInt::get(i64, PtrInt); 6964 } 6965 6966 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6967 llvm::NamedMDNode *&GlobalMetadata, 6968 GlobalDecl D, 6969 llvm::GlobalValue *Addr) { 6970 if (!GlobalMetadata) 6971 GlobalMetadata = 6972 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6973 6974 // TODO: should we report variant information for ctors/dtors? 6975 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6976 llvm::ConstantAsMetadata::get(GetPointerConstant( 6977 CGM.getLLVMContext(), D.getDecl()))}; 6978 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6979 } 6980 6981 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6982 llvm::GlobalValue *CppFunc) { 6983 // Store the list of ifuncs we need to replace uses in. 6984 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6985 // List of ConstantExprs that we should be able to delete when we're done 6986 // here. 6987 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6988 6989 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6990 if (Elem == CppFunc) 6991 return false; 6992 6993 // First make sure that all users of this are ifuncs (or ifuncs via a 6994 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6995 // later. 6996 for (llvm::User *User : Elem->users()) { 6997 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6998 // ifunc directly. In any other case, just give up, as we don't know what we 6999 // could break by changing those. 7000 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7001 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7002 return false; 7003 7004 for (llvm::User *CEUser : ConstExpr->users()) { 7005 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7006 IFuncs.push_back(IFunc); 7007 } else { 7008 return false; 7009 } 7010 } 7011 CEs.push_back(ConstExpr); 7012 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7013 IFuncs.push_back(IFunc); 7014 } else { 7015 // This user is one we don't know how to handle, so fail redirection. This 7016 // will result in an ifunc retaining a resolver name that will ultimately 7017 // fail to be resolved to a defined function. 7018 return false; 7019 } 7020 } 7021 7022 // Now we know this is a valid case where we can do this alias replacement, we 7023 // need to remove all of the references to Elem (and the bitcasts!) so we can 7024 // delete it. 7025 for (llvm::GlobalIFunc *IFunc : IFuncs) 7026 IFunc->setResolver(nullptr); 7027 for (llvm::ConstantExpr *ConstExpr : CEs) 7028 ConstExpr->destroyConstant(); 7029 7030 // We should now be out of uses for the 'old' version of this function, so we 7031 // can erase it as well. 7032 Elem->eraseFromParent(); 7033 7034 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7035 // The type of the resolver is always just a function-type that returns the 7036 // type of the IFunc, so create that here. If the type of the actual 7037 // resolver doesn't match, it just gets bitcast to the right thing. 7038 auto *ResolverTy = 7039 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7040 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7041 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7042 IFunc->setResolver(Resolver); 7043 } 7044 return true; 7045 } 7046 7047 /// For each function which is declared within an extern "C" region and marked 7048 /// as 'used', but has internal linkage, create an alias from the unmangled 7049 /// name to the mangled name if possible. People expect to be able to refer 7050 /// to such functions with an unmangled name from inline assembly within the 7051 /// same translation unit. 7052 void CodeGenModule::EmitStaticExternCAliases() { 7053 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7054 return; 7055 for (auto &I : StaticExternCValues) { 7056 IdentifierInfo *Name = I.first; 7057 llvm::GlobalValue *Val = I.second; 7058 7059 // If Val is null, that implies there were multiple declarations that each 7060 // had a claim to the unmangled name. In this case, generation of the alias 7061 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7062 if (!Val) 7063 break; 7064 7065 llvm::GlobalValue *ExistingElem = 7066 getModule().getNamedValue(Name->getName()); 7067 7068 // If there is either not something already by this name, or we were able to 7069 // replace all uses from IFuncs, create the alias. 7070 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7071 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7072 } 7073 } 7074 7075 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7076 GlobalDecl &Result) const { 7077 auto Res = Manglings.find(MangledName); 7078 if (Res == Manglings.end()) 7079 return false; 7080 Result = Res->getValue(); 7081 return true; 7082 } 7083 7084 /// Emits metadata nodes associating all the global values in the 7085 /// current module with the Decls they came from. This is useful for 7086 /// projects using IR gen as a subroutine. 7087 /// 7088 /// Since there's currently no way to associate an MDNode directly 7089 /// with an llvm::GlobalValue, we create a global named metadata 7090 /// with the name 'clang.global.decl.ptrs'. 7091 void CodeGenModule::EmitDeclMetadata() { 7092 llvm::NamedMDNode *GlobalMetadata = nullptr; 7093 7094 for (auto &I : MangledDeclNames) { 7095 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7096 // Some mangled names don't necessarily have an associated GlobalValue 7097 // in this module, e.g. if we mangled it for DebugInfo. 7098 if (Addr) 7099 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7100 } 7101 } 7102 7103 /// Emits metadata nodes for all the local variables in the current 7104 /// function. 7105 void CodeGenFunction::EmitDeclMetadata() { 7106 if (LocalDeclMap.empty()) return; 7107 7108 llvm::LLVMContext &Context = getLLVMContext(); 7109 7110 // Find the unique metadata ID for this name. 7111 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7112 7113 llvm::NamedMDNode *GlobalMetadata = nullptr; 7114 7115 for (auto &I : LocalDeclMap) { 7116 const Decl *D = I.first; 7117 llvm::Value *Addr = I.second.getPointer(); 7118 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7119 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7120 Alloca->setMetadata( 7121 DeclPtrKind, llvm::MDNode::get( 7122 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7123 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7124 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7125 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7126 } 7127 } 7128 } 7129 7130 void CodeGenModule::EmitVersionIdentMetadata() { 7131 llvm::NamedMDNode *IdentMetadata = 7132 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7133 std::string Version = getClangFullVersion(); 7134 llvm::LLVMContext &Ctx = TheModule.getContext(); 7135 7136 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7137 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7138 } 7139 7140 void CodeGenModule::EmitCommandLineMetadata() { 7141 llvm::NamedMDNode *CommandLineMetadata = 7142 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7143 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7144 llvm::LLVMContext &Ctx = TheModule.getContext(); 7145 7146 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7147 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7148 } 7149 7150 void CodeGenModule::EmitCoverageFile() { 7151 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7152 if (!CUNode) 7153 return; 7154 7155 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7156 llvm::LLVMContext &Ctx = TheModule.getContext(); 7157 auto *CoverageDataFile = 7158 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7159 auto *CoverageNotesFile = 7160 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7161 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7162 llvm::MDNode *CU = CUNode->getOperand(i); 7163 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7164 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7165 } 7166 } 7167 7168 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7169 bool ForEH) { 7170 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7171 // FIXME: should we even be calling this method if RTTI is disabled 7172 // and it's not for EH? 7173 if (!shouldEmitRTTI(ForEH)) 7174 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7175 7176 if (ForEH && Ty->isObjCObjectPointerType() && 7177 LangOpts.ObjCRuntime.isGNUFamily()) 7178 return ObjCRuntime->GetEHType(Ty); 7179 7180 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7181 } 7182 7183 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7184 // Do not emit threadprivates in simd-only mode. 7185 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7186 return; 7187 for (auto RefExpr : D->varlists()) { 7188 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7189 bool PerformInit = 7190 VD->getAnyInitializer() && 7191 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7192 /*ForRef=*/false); 7193 7194 Address Addr(GetAddrOfGlobalVar(VD), 7195 getTypes().ConvertTypeForMem(VD->getType()), 7196 getContext().getDeclAlign(VD)); 7197 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7198 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7199 CXXGlobalInits.push_back(InitFunction); 7200 } 7201 } 7202 7203 llvm::Metadata * 7204 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7205 StringRef Suffix) { 7206 if (auto *FnType = T->getAs<FunctionProtoType>()) 7207 T = getContext().getFunctionType( 7208 FnType->getReturnType(), FnType->getParamTypes(), 7209 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7210 7211 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7212 if (InternalId) 7213 return InternalId; 7214 7215 if (isExternallyVisible(T->getLinkage())) { 7216 std::string OutName; 7217 llvm::raw_string_ostream Out(OutName); 7218 getCXXABI().getMangleContext().mangleTypeName( 7219 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7220 7221 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7222 Out << ".normalized"; 7223 7224 Out << Suffix; 7225 7226 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7227 } else { 7228 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7229 llvm::ArrayRef<llvm::Metadata *>()); 7230 } 7231 7232 return InternalId; 7233 } 7234 7235 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7236 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7237 } 7238 7239 llvm::Metadata * 7240 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7241 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7242 } 7243 7244 // Generalize pointer types to a void pointer with the qualifiers of the 7245 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7246 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7247 // 'void *'. 7248 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7249 if (!Ty->isPointerType()) 7250 return Ty; 7251 7252 return Ctx.getPointerType( 7253 QualType(Ctx.VoidTy).withCVRQualifiers( 7254 Ty->getPointeeType().getCVRQualifiers())); 7255 } 7256 7257 // Apply type generalization to a FunctionType's return and argument types 7258 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7259 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7260 SmallVector<QualType, 8> GeneralizedParams; 7261 for (auto &Param : FnType->param_types()) 7262 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7263 7264 return Ctx.getFunctionType( 7265 GeneralizeType(Ctx, FnType->getReturnType()), 7266 GeneralizedParams, FnType->getExtProtoInfo()); 7267 } 7268 7269 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7270 return Ctx.getFunctionNoProtoType( 7271 GeneralizeType(Ctx, FnType->getReturnType())); 7272 7273 llvm_unreachable("Encountered unknown FunctionType"); 7274 } 7275 7276 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7277 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7278 GeneralizedMetadataIdMap, ".generalized"); 7279 } 7280 7281 /// Returns whether this module needs the "all-vtables" type identifier. 7282 bool CodeGenModule::NeedAllVtablesTypeId() const { 7283 // Returns true if at least one of vtable-based CFI checkers is enabled and 7284 // is not in the trapping mode. 7285 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7286 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7287 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7288 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7289 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7290 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7291 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7292 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7293 } 7294 7295 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7296 CharUnits Offset, 7297 const CXXRecordDecl *RD) { 7298 llvm::Metadata *MD = 7299 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7300 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7301 7302 if (CodeGenOpts.SanitizeCfiCrossDso) 7303 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7304 VTable->addTypeMetadata(Offset.getQuantity(), 7305 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7306 7307 if (NeedAllVtablesTypeId()) { 7308 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7309 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7310 } 7311 } 7312 7313 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7314 if (!SanStats) 7315 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7316 7317 return *SanStats; 7318 } 7319 7320 llvm::Value * 7321 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7322 CodeGenFunction &CGF) { 7323 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7324 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7325 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7326 auto *Call = CGF.EmitRuntimeCall( 7327 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7328 return Call; 7329 } 7330 7331 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7332 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7333 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7334 /* forPointeeType= */ true); 7335 } 7336 7337 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7338 LValueBaseInfo *BaseInfo, 7339 TBAAAccessInfo *TBAAInfo, 7340 bool forPointeeType) { 7341 if (TBAAInfo) 7342 *TBAAInfo = getTBAAAccessInfo(T); 7343 7344 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7345 // that doesn't return the information we need to compute BaseInfo. 7346 7347 // Honor alignment typedef attributes even on incomplete types. 7348 // We also honor them straight for C++ class types, even as pointees; 7349 // there's an expressivity gap here. 7350 if (auto TT = T->getAs<TypedefType>()) { 7351 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7352 if (BaseInfo) 7353 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7354 return getContext().toCharUnitsFromBits(Align); 7355 } 7356 } 7357 7358 bool AlignForArray = T->isArrayType(); 7359 7360 // Analyze the base element type, so we don't get confused by incomplete 7361 // array types. 7362 T = getContext().getBaseElementType(T); 7363 7364 if (T->isIncompleteType()) { 7365 // We could try to replicate the logic from 7366 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7367 // type is incomplete, so it's impossible to test. We could try to reuse 7368 // getTypeAlignIfKnown, but that doesn't return the information we need 7369 // to set BaseInfo. So just ignore the possibility that the alignment is 7370 // greater than one. 7371 if (BaseInfo) 7372 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7373 return CharUnits::One(); 7374 } 7375 7376 if (BaseInfo) 7377 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7378 7379 CharUnits Alignment; 7380 const CXXRecordDecl *RD; 7381 if (T.getQualifiers().hasUnaligned()) { 7382 Alignment = CharUnits::One(); 7383 } else if (forPointeeType && !AlignForArray && 7384 (RD = T->getAsCXXRecordDecl())) { 7385 // For C++ class pointees, we don't know whether we're pointing at a 7386 // base or a complete object, so we generally need to use the 7387 // non-virtual alignment. 7388 Alignment = getClassPointerAlignment(RD); 7389 } else { 7390 Alignment = getContext().getTypeAlignInChars(T); 7391 } 7392 7393 // Cap to the global maximum type alignment unless the alignment 7394 // was somehow explicit on the type. 7395 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7396 if (Alignment.getQuantity() > MaxAlign && 7397 !getContext().isAlignmentRequired(T)) 7398 Alignment = CharUnits::fromQuantity(MaxAlign); 7399 } 7400 return Alignment; 7401 } 7402 7403 bool CodeGenModule::stopAutoInit() { 7404 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7405 if (StopAfter) { 7406 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7407 // used 7408 if (NumAutoVarInit >= StopAfter) { 7409 return true; 7410 } 7411 if (!NumAutoVarInit) { 7412 unsigned DiagID = getDiags().getCustomDiagID( 7413 DiagnosticsEngine::Warning, 7414 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7415 "number of times ftrivial-auto-var-init=%1 gets applied."); 7416 getDiags().Report(DiagID) 7417 << StopAfter 7418 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7419 LangOptions::TrivialAutoVarInitKind::Zero 7420 ? "zero" 7421 : "pattern"); 7422 } 7423 ++NumAutoVarInit; 7424 } 7425 return false; 7426 } 7427 7428 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7429 const Decl *D) const { 7430 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7431 // postfix beginning with '.' since the symbol name can be demangled. 7432 if (LangOpts.HIP) 7433 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7434 else 7435 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7436 7437 // If the CUID is not specified we try to generate a unique postfix. 7438 if (getLangOpts().CUID.empty()) { 7439 SourceManager &SM = getContext().getSourceManager(); 7440 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7441 assert(PLoc.isValid() && "Source location is expected to be valid."); 7442 7443 // Get the hash of the user defined macros. 7444 llvm::MD5 Hash; 7445 llvm::MD5::MD5Result Result; 7446 for (const auto &Arg : PreprocessorOpts.Macros) 7447 Hash.update(Arg.first); 7448 Hash.final(Result); 7449 7450 // Get the UniqueID for the file containing the decl. 7451 llvm::sys::fs::UniqueID ID; 7452 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7453 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7454 assert(PLoc.isValid() && "Source location is expected to be valid."); 7455 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7456 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7457 << PLoc.getFilename() << EC.message(); 7458 } 7459 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7460 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7461 } else { 7462 OS << getContext().getCUIDHash(); 7463 } 7464 } 7465 7466 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7467 assert(DeferredDeclsToEmit.empty() && 7468 "Should have emitted all decls deferred to emit."); 7469 assert(NewBuilder->DeferredDecls.empty() && 7470 "Newly created module should not have deferred decls"); 7471 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7472 assert(EmittedDeferredDecls.empty() && 7473 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7474 7475 assert(NewBuilder->DeferredVTables.empty() && 7476 "Newly created module should not have deferred vtables"); 7477 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7478 7479 assert(NewBuilder->MangledDeclNames.empty() && 7480 "Newly created module should not have mangled decl names"); 7481 assert(NewBuilder->Manglings.empty() && 7482 "Newly created module should not have manglings"); 7483 NewBuilder->Manglings = std::move(Manglings); 7484 7485 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7486 7487 NewBuilder->TBAA = std::move(TBAA); 7488 7489 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7490 } 7491