1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenPGO.h" 23 #include "CodeGenTBAA.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/CharInfo.h" 35 #include "clang/Basic/Diagnostic.h" 36 #include "clang/Basic/Module.h" 37 #include "clang/Basic/SourceManager.h" 38 #include "clang/Basic/TargetInfo.h" 39 #include "clang/Basic/Version.h" 40 #include "clang/Frontend/CodeGenOptions.h" 41 #include "clang/Sema/SemaDiagnostic.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/CallingConv.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/ProfileData/InstrProfReader.h" 51 #include "llvm/Support/ConvertUTF.h" 52 #include "llvm/Support/ErrorHandling.h" 53 54 using namespace clang; 55 using namespace CodeGen; 56 57 static const char AnnotationSection[] = "llvm.metadata"; 58 59 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 60 switch (CGM.getTarget().getCXXABI().getKind()) { 61 case TargetCXXABI::GenericAArch64: 62 case TargetCXXABI::GenericARM: 63 case TargetCXXABI::iOS: 64 case TargetCXXABI::iOS64: 65 case TargetCXXABI::GenericItanium: 66 return CreateItaniumCXXABI(CGM); 67 case TargetCXXABI::Microsoft: 68 return CreateMicrosoftCXXABI(CGM); 69 } 70 71 llvm_unreachable("invalid C++ ABI kind"); 72 } 73 74 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 75 llvm::Module &M, const llvm::DataLayout &TD, 76 DiagnosticsEngine &diags) 77 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 78 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 79 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 80 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 81 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 82 NoObjCARCExceptionsMetadata(0), RRData(0), PGOReader(nullptr), 83 CFConstantStringClassRef(0), 84 ConstantStringClassRef(0), NSConstantStringType(0), 85 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 86 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 87 LifetimeStartFn(0), LifetimeEndFn(0), 88 SanitizerBlacklist( 89 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 90 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 91 : LangOpts.Sanitize) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 106 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 107 Int8PtrTy = Int8Ty->getPointerTo(0); 108 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 109 110 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 111 112 if (LangOpts.ObjC1) 113 createObjCRuntime(); 114 if (LangOpts.OpenCL) 115 createOpenCLRuntime(); 116 if (LangOpts.CUDA) 117 createCUDARuntime(); 118 119 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 120 if (SanOpts.Thread || 121 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 122 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 123 getCXXABI().getMangleContext()); 124 125 // If debug info or coverage generation is enabled, create the CGDebugInfo 126 // object. 127 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 128 CodeGenOpts.EmitGcovArcs || 129 CodeGenOpts.EmitGcovNotes) 130 DebugInfo = new CGDebugInfo(*this); 131 132 Block.GlobalUniqueCount = 0; 133 134 if (C.getLangOpts().ObjCAutoRefCount) 135 ARCData = new ARCEntrypoints(); 136 RRData = new RREntrypoints(); 137 138 if (!CodeGenOpts.InstrProfileInput.empty()) { 139 if (llvm::error_code EC = llvm::IndexedInstrProfReader::create( 140 CodeGenOpts.InstrProfileInput, PGOReader)) { 141 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 142 "Could not read profile: %0"); 143 getDiags().Report(DiagID) << EC.message(); 144 } 145 } 146 } 147 148 CodeGenModule::~CodeGenModule() { 149 delete ObjCRuntime; 150 delete OpenCLRuntime; 151 delete CUDARuntime; 152 delete TheTargetCodeGenInfo; 153 delete TBAA; 154 delete DebugInfo; 155 delete ARCData; 156 delete RRData; 157 } 158 159 void CodeGenModule::createObjCRuntime() { 160 // This is just isGNUFamily(), but we want to force implementors of 161 // new ABIs to decide how best to do this. 162 switch (LangOpts.ObjCRuntime.getKind()) { 163 case ObjCRuntime::GNUstep: 164 case ObjCRuntime::GCC: 165 case ObjCRuntime::ObjFW: 166 ObjCRuntime = CreateGNUObjCRuntime(*this); 167 return; 168 169 case ObjCRuntime::FragileMacOSX: 170 case ObjCRuntime::MacOSX: 171 case ObjCRuntime::iOS: 172 ObjCRuntime = CreateMacObjCRuntime(*this); 173 return; 174 } 175 llvm_unreachable("bad runtime kind"); 176 } 177 178 void CodeGenModule::createOpenCLRuntime() { 179 OpenCLRuntime = new CGOpenCLRuntime(*this); 180 } 181 182 void CodeGenModule::createCUDARuntime() { 183 CUDARuntime = CreateNVCUDARuntime(*this); 184 } 185 186 void CodeGenModule::applyReplacements() { 187 for (ReplacementsTy::iterator I = Replacements.begin(), 188 E = Replacements.end(); 189 I != E; ++I) { 190 StringRef MangledName = I->first(); 191 llvm::Constant *Replacement = I->second; 192 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 193 if (!Entry) 194 continue; 195 llvm::Function *OldF = cast<llvm::Function>(Entry); 196 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 197 if (!NewF) { 198 if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 199 NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal()); 200 } else { 201 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 202 assert(CE->getOpcode() == llvm::Instruction::BitCast || 203 CE->getOpcode() == llvm::Instruction::GetElementPtr); 204 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 205 } 206 } 207 208 // Replace old with new, but keep the old order. 209 OldF->replaceAllUsesWith(Replacement); 210 if (NewF) { 211 NewF->removeFromParent(); 212 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 213 } 214 OldF->eraseFromParent(); 215 } 216 } 217 218 void CodeGenModule::checkAliases() { 219 // Check if the constructed aliases are well formed. It is really unfortunate 220 // that we have to do this in CodeGen, but we only construct mangled names 221 // and aliases during codegen. 222 bool Error = false; 223 DiagnosticsEngine &Diags = getDiags(); 224 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 225 E = Aliases.end(); I != E; ++I) { 226 const GlobalDecl &GD = *I; 227 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 228 const AliasAttr *AA = D->getAttr<AliasAttr>(); 229 StringRef MangledName = getMangledName(GD); 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 232 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 233 if (!GV) { 234 Error = true; 235 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 236 } else if (GV->isDeclaration()) { 237 Error = true; 238 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 239 } 240 241 // We have to handle alias to weak aliases in here. LLVM itself disallows 242 // this since the object semantics would not match the IL one. For 243 // compatibility with gcc we implement it by just pointing the alias 244 // to its aliasee's aliasee. We also warn, since the user is probably 245 // expecting the link to be weak. 246 llvm::Constant *Aliasee = Alias->getAliasee(); 247 llvm::GlobalValue *AliaseeGV; 248 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) { 249 assert((CE->getOpcode() == llvm::Instruction::BitCast || 250 CE->getOpcode() == llvm::Instruction::AddrSpaceCast) && 251 "Unsupported aliasee"); 252 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 253 } else { 254 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 255 } 256 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 257 if (GA->mayBeOverridden()) { 258 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 259 << GA->getAliasedGlobal()->getName() << GA->getName(); 260 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 261 GA->getAliasee(), Alias->getType()); 262 Alias->setAliasee(Aliasee); 263 } 264 } 265 } 266 if (!Error) 267 return; 268 269 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 270 E = Aliases.end(); I != E; ++I) { 271 const GlobalDecl &GD = *I; 272 StringRef MangledName = getMangledName(GD); 273 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 274 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 275 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 276 Alias->eraseFromParent(); 277 } 278 } 279 280 void CodeGenModule::clear() { 281 DeferredDeclsToEmit.clear(); 282 } 283 284 void CodeGenModule::Release() { 285 EmitDeferred(); 286 applyReplacements(); 287 checkAliases(); 288 EmitCXXGlobalInitFunc(); 289 EmitCXXGlobalDtorFunc(); 290 EmitCXXThreadLocalInitFunc(); 291 if (ObjCRuntime) 292 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 293 AddGlobalCtor(ObjCInitFunction); 294 if (getCodeGenOpts().ProfileInstrGenerate) 295 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 296 AddGlobalCtor(PGOInit, 0); 297 if (PGOReader && PGOStats.isOutOfDate()) 298 getDiags().Report(diag::warn_profile_data_out_of_date) 299 << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched; 300 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 301 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 302 EmitGlobalAnnotations(); 303 EmitStaticExternCAliases(); 304 emitLLVMUsed(); 305 306 if (CodeGenOpts.Autolink && 307 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 308 EmitModuleLinkOptions(); 309 } 310 if (CodeGenOpts.DwarfVersion) 311 // We actually want the latest version when there are conflicts. 312 // We can change from Warning to Latest if such mode is supported. 313 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 314 CodeGenOpts.DwarfVersion); 315 if (DebugInfo) 316 // We support a single version in the linked module: error out when 317 // modules do not have the same version. We are going to implement dropping 318 // debug info when the version number is not up-to-date. Once that is 319 // done, the bitcode linker is not going to see modules with different 320 // version numbers. 321 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 322 llvm::DEBUG_METADATA_VERSION); 323 324 SimplifyPersonality(); 325 326 if (getCodeGenOpts().EmitDeclMetadata) 327 EmitDeclMetadata(); 328 329 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 330 EmitCoverageFile(); 331 332 if (DebugInfo) 333 DebugInfo->finalize(); 334 335 EmitVersionIdentMetadata(); 336 } 337 338 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 339 // Make sure that this type is translated. 340 Types.UpdateCompletedType(TD); 341 } 342 343 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 344 if (!TBAA) 345 return 0; 346 return TBAA->getTBAAInfo(QTy); 347 } 348 349 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 350 if (!TBAA) 351 return 0; 352 return TBAA->getTBAAInfoForVTablePtr(); 353 } 354 355 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 356 if (!TBAA) 357 return 0; 358 return TBAA->getTBAAStructInfo(QTy); 359 } 360 361 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 362 if (!TBAA) 363 return 0; 364 return TBAA->getTBAAStructTypeInfo(QTy); 365 } 366 367 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 368 llvm::MDNode *AccessN, 369 uint64_t O) { 370 if (!TBAA) 371 return 0; 372 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 373 } 374 375 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 376 /// and struct-path aware TBAA, the tag has the same format: 377 /// base type, access type and offset. 378 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 379 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 380 llvm::MDNode *TBAAInfo, 381 bool ConvertTypeToTag) { 382 if (ConvertTypeToTag && TBAA) 383 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 384 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 385 else 386 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 387 } 388 389 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 390 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 391 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 392 } 393 394 /// ErrorUnsupported - Print out an error that codegen doesn't support the 395 /// specified stmt yet. 396 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 397 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 398 "cannot compile this %0 yet"); 399 std::string Msg = Type; 400 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 401 << Msg << S->getSourceRange(); 402 } 403 404 /// ErrorUnsupported - Print out an error that codegen doesn't support the 405 /// specified decl yet. 406 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 407 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 408 "cannot compile this %0 yet"); 409 std::string Msg = Type; 410 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 411 } 412 413 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 414 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 415 } 416 417 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 418 const NamedDecl *D) const { 419 // Internal definitions always have default visibility. 420 if (GV->hasLocalLinkage()) { 421 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 422 return; 423 } 424 425 // Set visibility for definitions. 426 LinkageInfo LV = D->getLinkageAndVisibility(); 427 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 428 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 429 } 430 431 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 432 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 433 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 434 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 435 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 436 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 437 } 438 439 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 440 CodeGenOptions::TLSModel M) { 441 switch (M) { 442 case CodeGenOptions::GeneralDynamicTLSModel: 443 return llvm::GlobalVariable::GeneralDynamicTLSModel; 444 case CodeGenOptions::LocalDynamicTLSModel: 445 return llvm::GlobalVariable::LocalDynamicTLSModel; 446 case CodeGenOptions::InitialExecTLSModel: 447 return llvm::GlobalVariable::InitialExecTLSModel; 448 case CodeGenOptions::LocalExecTLSModel: 449 return llvm::GlobalVariable::LocalExecTLSModel; 450 } 451 llvm_unreachable("Invalid TLS model!"); 452 } 453 454 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 455 const VarDecl &D) const { 456 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 457 458 llvm::GlobalVariable::ThreadLocalMode TLM; 459 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 460 461 // Override the TLS model if it is explicitly specified. 462 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 463 TLM = GetLLVMTLSModel(Attr->getModel()); 464 } 465 466 GV->setThreadLocalMode(TLM); 467 } 468 469 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 470 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 471 472 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 473 if (!Str.empty()) 474 return Str; 475 476 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 477 IdentifierInfo *II = ND->getIdentifier(); 478 assert(II && "Attempt to mangle unnamed decl."); 479 480 Str = II->getName(); 481 return Str; 482 } 483 484 SmallString<256> Buffer; 485 llvm::raw_svector_ostream Out(Buffer); 486 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 487 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 488 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 489 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 490 else 491 getCXXABI().getMangleContext().mangleName(ND, Out); 492 493 // Allocate space for the mangled name. 494 Out.flush(); 495 size_t Length = Buffer.size(); 496 char *Name = MangledNamesAllocator.Allocate<char>(Length); 497 std::copy(Buffer.begin(), Buffer.end(), Name); 498 499 Str = StringRef(Name, Length); 500 501 return Str; 502 } 503 504 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 505 const BlockDecl *BD) { 506 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 507 const Decl *D = GD.getDecl(); 508 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 509 if (D == 0) 510 MangleCtx.mangleGlobalBlock(BD, 511 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 512 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 513 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 514 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 515 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 516 else 517 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 518 } 519 520 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 521 return getModule().getNamedValue(Name); 522 } 523 524 /// AddGlobalCtor - Add a function to the list that will be called before 525 /// main() runs. 526 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 527 // FIXME: Type coercion of void()* types. 528 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 529 } 530 531 /// AddGlobalDtor - Add a function to the list that will be called 532 /// when the module is unloaded. 533 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 534 // FIXME: Type coercion of void()* types. 535 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 536 } 537 538 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 539 // Ctor function type is void()*. 540 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 541 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 542 543 // Get the type of a ctor entry, { i32, void ()* }. 544 llvm::StructType *CtorStructTy = 545 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 546 547 // Construct the constructor and destructor arrays. 548 SmallVector<llvm::Constant*, 8> Ctors; 549 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 550 llvm::Constant *S[] = { 551 llvm::ConstantInt::get(Int32Ty, I->second, false), 552 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 553 }; 554 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 555 } 556 557 if (!Ctors.empty()) { 558 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 559 new llvm::GlobalVariable(TheModule, AT, false, 560 llvm::GlobalValue::AppendingLinkage, 561 llvm::ConstantArray::get(AT, Ctors), 562 GlobalName); 563 } 564 } 565 566 llvm::GlobalValue::LinkageTypes 567 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 568 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 569 570 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 571 572 bool UseThunkForDtorVariant = 573 isa<CXXDestructorDecl>(D) && 574 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 575 GD.getDtorType()); 576 577 return getLLVMLinkageforDeclarator(D, Linkage, /*isConstantVariable=*/false, 578 UseThunkForDtorVariant); 579 } 580 581 582 /// SetFunctionDefinitionAttributes - Set attributes for a global. 583 /// 584 /// FIXME: This is currently only done for aliases and functions, but not for 585 /// variables (these details are set in EmitGlobalVarDefinition for variables). 586 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 587 llvm::GlobalValue *GV) { 588 SetCommonAttributes(D, GV); 589 } 590 591 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 592 const CGFunctionInfo &Info, 593 llvm::Function *F) { 594 unsigned CallingConv; 595 AttributeListType AttributeList; 596 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 597 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 598 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 599 } 600 601 /// Determines whether the language options require us to model 602 /// unwind exceptions. We treat -fexceptions as mandating this 603 /// except under the fragile ObjC ABI with only ObjC exceptions 604 /// enabled. This means, for example, that C with -fexceptions 605 /// enables this. 606 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 607 // If exceptions are completely disabled, obviously this is false. 608 if (!LangOpts.Exceptions) return false; 609 610 // If C++ exceptions are enabled, this is true. 611 if (LangOpts.CXXExceptions) return true; 612 613 // If ObjC exceptions are enabled, this depends on the ABI. 614 if (LangOpts.ObjCExceptions) { 615 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 616 } 617 618 return true; 619 } 620 621 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 622 llvm::Function *F) { 623 llvm::AttrBuilder B; 624 625 if (CodeGenOpts.UnwindTables) 626 B.addAttribute(llvm::Attribute::UWTable); 627 628 if (!hasUnwindExceptions(LangOpts)) 629 B.addAttribute(llvm::Attribute::NoUnwind); 630 631 if (D->hasAttr<NakedAttr>()) { 632 // Naked implies noinline: we should not be inlining such functions. 633 B.addAttribute(llvm::Attribute::Naked); 634 B.addAttribute(llvm::Attribute::NoInline); 635 } else if (D->hasAttr<OptimizeNoneAttr>()) { 636 // OptimizeNone implies noinline; we should not be inlining such functions. 637 B.addAttribute(llvm::Attribute::OptimizeNone); 638 B.addAttribute(llvm::Attribute::NoInline); 639 } else if (D->hasAttr<NoDuplicateAttr>()) { 640 B.addAttribute(llvm::Attribute::NoDuplicate); 641 } else if (D->hasAttr<NoInlineAttr>()) { 642 B.addAttribute(llvm::Attribute::NoInline); 643 } else if (D->hasAttr<AlwaysInlineAttr>() && 644 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 645 llvm::Attribute::NoInline)) { 646 // (noinline wins over always_inline, and we can't specify both in IR) 647 B.addAttribute(llvm::Attribute::AlwaysInline); 648 } 649 650 if (D->hasAttr<ColdAttr>()) { 651 B.addAttribute(llvm::Attribute::OptimizeForSize); 652 B.addAttribute(llvm::Attribute::Cold); 653 } 654 655 if (D->hasAttr<MinSizeAttr>()) 656 B.addAttribute(llvm::Attribute::MinSize); 657 658 if (D->hasAttr<OptimizeNoneAttr>()) { 659 // OptimizeNone wins over OptimizeForSize and MinSize. 660 B.removeAttribute(llvm::Attribute::OptimizeForSize); 661 B.removeAttribute(llvm::Attribute::MinSize); 662 } 663 664 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 665 B.addAttribute(llvm::Attribute::StackProtect); 666 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 667 B.addAttribute(llvm::Attribute::StackProtectStrong); 668 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 669 B.addAttribute(llvm::Attribute::StackProtectReq); 670 671 // Add sanitizer attributes if function is not blacklisted. 672 if (!SanitizerBlacklist->isIn(*F)) { 673 // When AddressSanitizer is enabled, set SanitizeAddress attribute 674 // unless __attribute__((no_sanitize_address)) is used. 675 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 676 B.addAttribute(llvm::Attribute::SanitizeAddress); 677 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 678 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 679 B.addAttribute(llvm::Attribute::SanitizeThread); 680 } 681 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 682 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 683 B.addAttribute(llvm::Attribute::SanitizeMemory); 684 } 685 686 F->addAttributes(llvm::AttributeSet::FunctionIndex, 687 llvm::AttributeSet::get( 688 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 689 690 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 691 F->setUnnamedAddr(true); 692 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 693 if (MD->isVirtual()) 694 F->setUnnamedAddr(true); 695 696 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 697 if (alignment) 698 F->setAlignment(alignment); 699 700 // C++ ABI requires 2-byte alignment for member functions. 701 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 702 F->setAlignment(2); 703 } 704 705 void CodeGenModule::SetCommonAttributes(const Decl *D, 706 llvm::GlobalValue *GV) { 707 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 708 setGlobalVisibility(GV, ND); 709 else 710 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 711 712 if (D->hasAttr<UsedAttr>()) 713 addUsedGlobal(GV); 714 715 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 716 GV->setSection(SA->getName()); 717 718 // Alias cannot have attributes. Filter them here. 719 if (!isa<llvm::GlobalAlias>(GV)) 720 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 721 } 722 723 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 724 llvm::Function *F, 725 const CGFunctionInfo &FI) { 726 SetLLVMFunctionAttributes(D, FI, F); 727 SetLLVMFunctionAttributesForDefinition(D, F); 728 729 F->setLinkage(llvm::Function::InternalLinkage); 730 731 SetCommonAttributes(D, F); 732 } 733 734 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 735 const NamedDecl *ND) { 736 // Set linkage and visibility in case we never see a definition. 737 LinkageInfo LV = ND->getLinkageAndVisibility(); 738 if (LV.getLinkage() != ExternalLinkage) { 739 // Don't set internal linkage on declarations. 740 } else { 741 if (ND->hasAttr<DLLImportAttr>()) { 742 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 743 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 744 } else if (ND->hasAttr<DLLExportAttr>()) { 745 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 746 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 747 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 748 // "extern_weak" is overloaded in LLVM; we probably should have 749 // separate linkage types for this. 750 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 751 } 752 753 // Set visibility on a declaration only if it's explicit. 754 if (LV.isVisibilityExplicit()) 755 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 756 } 757 } 758 759 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 760 llvm::Function *F, 761 bool IsIncompleteFunction) { 762 if (unsigned IID = F->getIntrinsicID()) { 763 // If this is an intrinsic function, set the function's attributes 764 // to the intrinsic's attributes. 765 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 766 (llvm::Intrinsic::ID)IID)); 767 return; 768 } 769 770 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 771 772 if (!IsIncompleteFunction) 773 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 774 775 // Add the Returned attribute for "this", except for iOS 5 and earlier 776 // where substantial code, including the libstdc++ dylib, was compiled with 777 // GCC and does not actually return "this". 778 if (getCXXABI().HasThisReturn(GD) && 779 !(getTarget().getTriple().isiOS() && 780 getTarget().getTriple().isOSVersionLT(6))) { 781 assert(!F->arg_empty() && 782 F->arg_begin()->getType() 783 ->canLosslesslyBitCastTo(F->getReturnType()) && 784 "unexpected this return"); 785 F->addAttribute(1, llvm::Attribute::Returned); 786 } 787 788 // Only a few attributes are set on declarations; these may later be 789 // overridden by a definition. 790 791 setLinkageAndVisibilityForGV(F, FD); 792 793 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 794 F->setSection(SA->getName()); 795 796 // A replaceable global allocation function does not act like a builtin by 797 // default, only if it is invoked by a new-expression or delete-expression. 798 if (FD->isReplaceableGlobalAllocationFunction()) 799 F->addAttribute(llvm::AttributeSet::FunctionIndex, 800 llvm::Attribute::NoBuiltin); 801 } 802 803 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 804 assert(!GV->isDeclaration() && 805 "Only globals with definition can force usage."); 806 LLVMUsed.push_back(GV); 807 } 808 809 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 810 assert(!GV->isDeclaration() && 811 "Only globals with definition can force usage."); 812 LLVMCompilerUsed.push_back(GV); 813 } 814 815 static void emitUsed(CodeGenModule &CGM, StringRef Name, 816 std::vector<llvm::WeakVH> &List) { 817 // Don't create llvm.used if there is no need. 818 if (List.empty()) 819 return; 820 821 // Convert List to what ConstantArray needs. 822 SmallVector<llvm::Constant*, 8> UsedArray; 823 UsedArray.resize(List.size()); 824 for (unsigned i = 0, e = List.size(); i != e; ++i) { 825 UsedArray[i] = 826 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 827 CGM.Int8PtrTy); 828 } 829 830 if (UsedArray.empty()) 831 return; 832 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 833 834 llvm::GlobalVariable *GV = 835 new llvm::GlobalVariable(CGM.getModule(), ATy, false, 836 llvm::GlobalValue::AppendingLinkage, 837 llvm::ConstantArray::get(ATy, UsedArray), 838 Name); 839 840 GV->setSection("llvm.metadata"); 841 } 842 843 void CodeGenModule::emitLLVMUsed() { 844 emitUsed(*this, "llvm.used", LLVMUsed); 845 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 846 } 847 848 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 849 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 850 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 851 } 852 853 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 854 llvm::SmallString<32> Opt; 855 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 856 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 857 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 858 } 859 860 void CodeGenModule::AddDependentLib(StringRef Lib) { 861 llvm::SmallString<24> Opt; 862 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 863 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 864 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 865 } 866 867 /// \brief Add link options implied by the given module, including modules 868 /// it depends on, using a postorder walk. 869 static void addLinkOptionsPostorder(CodeGenModule &CGM, 870 Module *Mod, 871 SmallVectorImpl<llvm::Value *> &Metadata, 872 llvm::SmallPtrSet<Module *, 16> &Visited) { 873 // Import this module's parent. 874 if (Mod->Parent && Visited.insert(Mod->Parent)) { 875 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 876 } 877 878 // Import this module's dependencies. 879 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 880 if (Visited.insert(Mod->Imports[I-1])) 881 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 882 } 883 884 // Add linker options to link against the libraries/frameworks 885 // described by this module. 886 llvm::LLVMContext &Context = CGM.getLLVMContext(); 887 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 888 // Link against a framework. Frameworks are currently Darwin only, so we 889 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 890 if (Mod->LinkLibraries[I-1].IsFramework) { 891 llvm::Value *Args[2] = { 892 llvm::MDString::get(Context, "-framework"), 893 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 894 }; 895 896 Metadata.push_back(llvm::MDNode::get(Context, Args)); 897 continue; 898 } 899 900 // Link against a library. 901 llvm::SmallString<24> Opt; 902 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 903 Mod->LinkLibraries[I-1].Library, Opt); 904 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 905 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 906 } 907 } 908 909 void CodeGenModule::EmitModuleLinkOptions() { 910 // Collect the set of all of the modules we want to visit to emit link 911 // options, which is essentially the imported modules and all of their 912 // non-explicit child modules. 913 llvm::SetVector<clang::Module *> LinkModules; 914 llvm::SmallPtrSet<clang::Module *, 16> Visited; 915 SmallVector<clang::Module *, 16> Stack; 916 917 // Seed the stack with imported modules. 918 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 919 MEnd = ImportedModules.end(); 920 M != MEnd; ++M) { 921 if (Visited.insert(*M)) 922 Stack.push_back(*M); 923 } 924 925 // Find all of the modules to import, making a little effort to prune 926 // non-leaf modules. 927 while (!Stack.empty()) { 928 clang::Module *Mod = Stack.pop_back_val(); 929 930 bool AnyChildren = false; 931 932 // Visit the submodules of this module. 933 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 934 SubEnd = Mod->submodule_end(); 935 Sub != SubEnd; ++Sub) { 936 // Skip explicit children; they need to be explicitly imported to be 937 // linked against. 938 if ((*Sub)->IsExplicit) 939 continue; 940 941 if (Visited.insert(*Sub)) { 942 Stack.push_back(*Sub); 943 AnyChildren = true; 944 } 945 } 946 947 // We didn't find any children, so add this module to the list of 948 // modules to link against. 949 if (!AnyChildren) { 950 LinkModules.insert(Mod); 951 } 952 } 953 954 // Add link options for all of the imported modules in reverse topological 955 // order. We don't do anything to try to order import link flags with respect 956 // to linker options inserted by things like #pragma comment(). 957 SmallVector<llvm::Value *, 16> MetadataArgs; 958 Visited.clear(); 959 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 960 MEnd = LinkModules.end(); 961 M != MEnd; ++M) { 962 if (Visited.insert(*M)) 963 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 964 } 965 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 966 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 967 968 // Add the linker options metadata flag. 969 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 970 llvm::MDNode::get(getLLVMContext(), 971 LinkerOptionsMetadata)); 972 } 973 974 void CodeGenModule::EmitDeferred() { 975 // Emit code for any potentially referenced deferred decls. Since a 976 // previously unused static decl may become used during the generation of code 977 // for a static function, iterate until no changes are made. 978 979 while (true) { 980 if (!DeferredVTables.empty()) { 981 EmitDeferredVTables(); 982 983 // Emitting a v-table doesn't directly cause more v-tables to 984 // become deferred, although it can cause functions to be 985 // emitted that then need those v-tables. 986 assert(DeferredVTables.empty()); 987 } 988 989 // Stop if we're out of both deferred v-tables and deferred declarations. 990 if (DeferredDeclsToEmit.empty()) break; 991 992 DeferredGlobal &G = DeferredDeclsToEmit.back(); 993 GlobalDecl D = G.GD; 994 llvm::GlobalValue *GV = G.GV; 995 DeferredDeclsToEmit.pop_back(); 996 997 assert(GV == GetGlobalValue(getMangledName(D))); 998 // Check to see if we've already emitted this. This is necessary 999 // for a couple of reasons: first, decls can end up in the 1000 // deferred-decls queue multiple times, and second, decls can end 1001 // up with definitions in unusual ways (e.g. by an extern inline 1002 // function acquiring a strong function redefinition). Just 1003 // ignore these cases. 1004 if(!GV->isDeclaration()) 1005 continue; 1006 1007 // Otherwise, emit the definition and move on to the next one. 1008 EmitGlobalDefinition(D, GV); 1009 } 1010 } 1011 1012 void CodeGenModule::EmitGlobalAnnotations() { 1013 if (Annotations.empty()) 1014 return; 1015 1016 // Create a new global variable for the ConstantStruct in the Module. 1017 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1018 Annotations[0]->getType(), Annotations.size()), Annotations); 1019 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 1020 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 1021 "llvm.global.annotations"); 1022 gv->setSection(AnnotationSection); 1023 } 1024 1025 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1026 llvm::Constant *&AStr = AnnotationStrings[Str]; 1027 if (AStr) 1028 return AStr; 1029 1030 // Not found yet, create a new global. 1031 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1032 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1033 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1034 gv->setSection(AnnotationSection); 1035 gv->setUnnamedAddr(true); 1036 AStr = gv; 1037 return gv; 1038 } 1039 1040 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1041 SourceManager &SM = getContext().getSourceManager(); 1042 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1043 if (PLoc.isValid()) 1044 return EmitAnnotationString(PLoc.getFilename()); 1045 return EmitAnnotationString(SM.getBufferName(Loc)); 1046 } 1047 1048 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1049 SourceManager &SM = getContext().getSourceManager(); 1050 PresumedLoc PLoc = SM.getPresumedLoc(L); 1051 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1052 SM.getExpansionLineNumber(L); 1053 return llvm::ConstantInt::get(Int32Ty, LineNo); 1054 } 1055 1056 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1057 const AnnotateAttr *AA, 1058 SourceLocation L) { 1059 // Get the globals for file name, annotation, and the line number. 1060 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1061 *UnitGV = EmitAnnotationUnit(L), 1062 *LineNoCst = EmitAnnotationLineNo(L); 1063 1064 // Create the ConstantStruct for the global annotation. 1065 llvm::Constant *Fields[4] = { 1066 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1067 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1068 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1069 LineNoCst 1070 }; 1071 return llvm::ConstantStruct::getAnon(Fields); 1072 } 1073 1074 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1075 llvm::GlobalValue *GV) { 1076 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1077 // Get the struct elements for these annotations. 1078 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1079 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1080 } 1081 1082 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1083 // Never defer when EmitAllDecls is specified. 1084 if (LangOpts.EmitAllDecls) 1085 return false; 1086 1087 return !getContext().DeclMustBeEmitted(Global); 1088 } 1089 1090 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1091 const CXXUuidofExpr* E) { 1092 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1093 // well-formed. 1094 StringRef Uuid = E->getUuidAsStringRef(Context); 1095 std::string Name = "_GUID_" + Uuid.lower(); 1096 std::replace(Name.begin(), Name.end(), '-', '_'); 1097 1098 // Look for an existing global. 1099 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1100 return GV; 1101 1102 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1103 assert(Init && "failed to initialize as constant"); 1104 1105 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1106 getModule(), Init->getType(), 1107 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1108 return GV; 1109 } 1110 1111 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1112 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1113 assert(AA && "No alias?"); 1114 1115 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1116 1117 // See if there is already something with the target's name in the module. 1118 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1119 if (Entry) { 1120 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1121 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1122 } 1123 1124 llvm::Constant *Aliasee; 1125 if (isa<llvm::FunctionType>(DeclTy)) 1126 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1127 GlobalDecl(cast<FunctionDecl>(VD)), 1128 /*ForVTable=*/false); 1129 else 1130 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1131 llvm::PointerType::getUnqual(DeclTy), 0); 1132 1133 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1134 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1135 WeakRefReferences.insert(F); 1136 1137 return Aliasee; 1138 } 1139 1140 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1141 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1142 1143 // Weak references don't produce any output by themselves. 1144 if (Global->hasAttr<WeakRefAttr>()) 1145 return; 1146 1147 // If this is an alias definition (which otherwise looks like a declaration) 1148 // emit it now. 1149 if (Global->hasAttr<AliasAttr>()) 1150 return EmitAliasDefinition(GD); 1151 1152 // If this is CUDA, be selective about which declarations we emit. 1153 if (LangOpts.CUDA) { 1154 if (CodeGenOpts.CUDAIsDevice) { 1155 if (!Global->hasAttr<CUDADeviceAttr>() && 1156 !Global->hasAttr<CUDAGlobalAttr>() && 1157 !Global->hasAttr<CUDAConstantAttr>() && 1158 !Global->hasAttr<CUDASharedAttr>()) 1159 return; 1160 } else { 1161 if (!Global->hasAttr<CUDAHostAttr>() && ( 1162 Global->hasAttr<CUDADeviceAttr>() || 1163 Global->hasAttr<CUDAConstantAttr>() || 1164 Global->hasAttr<CUDASharedAttr>())) 1165 return; 1166 } 1167 } 1168 1169 // Ignore declarations, they will be emitted on their first use. 1170 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1171 // Forward declarations are emitted lazily on first use. 1172 if (!FD->doesThisDeclarationHaveABody()) { 1173 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1174 return; 1175 1176 StringRef MangledName = getMangledName(GD); 1177 1178 // Compute the function info and LLVM type. 1179 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1180 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1181 1182 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1183 /*DontDefer=*/false); 1184 return; 1185 } 1186 } else { 1187 const VarDecl *VD = cast<VarDecl>(Global); 1188 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1189 1190 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1191 return; 1192 } 1193 1194 // Defer code generation when possible if this is a static definition, inline 1195 // function etc. These we only want to emit if they are used. 1196 if (!MayDeferGeneration(Global)) { 1197 // Emit the definition if it can't be deferred. 1198 EmitGlobalDefinition(GD); 1199 return; 1200 } 1201 1202 // If we're deferring emission of a C++ variable with an 1203 // initializer, remember the order in which it appeared in the file. 1204 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1205 cast<VarDecl>(Global)->hasInit()) { 1206 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1207 CXXGlobalInits.push_back(0); 1208 } 1209 1210 // If the value has already been used, add it directly to the 1211 // DeferredDeclsToEmit list. 1212 StringRef MangledName = getMangledName(GD); 1213 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1214 addDeferredDeclToEmit(GV, GD); 1215 else { 1216 // Otherwise, remember that we saw a deferred decl with this name. The 1217 // first use of the mangled name will cause it to move into 1218 // DeferredDeclsToEmit. 1219 DeferredDecls[MangledName] = GD; 1220 } 1221 } 1222 1223 namespace { 1224 struct FunctionIsDirectlyRecursive : 1225 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1226 const StringRef Name; 1227 const Builtin::Context &BI; 1228 bool Result; 1229 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1230 Name(N), BI(C), Result(false) { 1231 } 1232 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1233 1234 bool TraverseCallExpr(CallExpr *E) { 1235 const FunctionDecl *FD = E->getDirectCallee(); 1236 if (!FD) 1237 return true; 1238 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1239 if (Attr && Name == Attr->getLabel()) { 1240 Result = true; 1241 return false; 1242 } 1243 unsigned BuiltinID = FD->getBuiltinID(); 1244 if (!BuiltinID) 1245 return true; 1246 StringRef BuiltinName = BI.GetName(BuiltinID); 1247 if (BuiltinName.startswith("__builtin_") && 1248 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1249 Result = true; 1250 return false; 1251 } 1252 return true; 1253 } 1254 }; 1255 } 1256 1257 // isTriviallyRecursive - Check if this function calls another 1258 // decl that, because of the asm attribute or the other decl being a builtin, 1259 // ends up pointing to itself. 1260 bool 1261 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1262 StringRef Name; 1263 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1264 // asm labels are a special kind of mangling we have to support. 1265 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1266 if (!Attr) 1267 return false; 1268 Name = Attr->getLabel(); 1269 } else { 1270 Name = FD->getName(); 1271 } 1272 1273 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1274 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1275 return Walker.Result; 1276 } 1277 1278 bool 1279 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1280 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1281 return true; 1282 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1283 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1284 return false; 1285 // PR9614. Avoid cases where the source code is lying to us. An available 1286 // externally function should have an equivalent function somewhere else, 1287 // but a function that calls itself is clearly not equivalent to the real 1288 // implementation. 1289 // This happens in glibc's btowc and in some configure checks. 1290 return !isTriviallyRecursive(F); 1291 } 1292 1293 /// If the type for the method's class was generated by 1294 /// CGDebugInfo::createContextChain(), the cache contains only a 1295 /// limited DIType without any declarations. Since EmitFunctionStart() 1296 /// needs to find the canonical declaration for each method, we need 1297 /// to construct the complete type prior to emitting the method. 1298 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1299 if (!D->isInstance()) 1300 return; 1301 1302 if (CGDebugInfo *DI = getModuleDebugInfo()) 1303 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1304 const PointerType *ThisPtr = 1305 cast<PointerType>(D->getThisType(getContext())); 1306 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1307 } 1308 } 1309 1310 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1311 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1312 1313 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1314 Context.getSourceManager(), 1315 "Generating code for declaration"); 1316 1317 if (isa<FunctionDecl>(D)) { 1318 // At -O0, don't generate IR for functions with available_externally 1319 // linkage. 1320 if (!shouldEmitFunction(GD)) 1321 return; 1322 1323 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1324 CompleteDIClassType(Method); 1325 // Make sure to emit the definition(s) before we emit the thunks. 1326 // This is necessary for the generation of certain thunks. 1327 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1328 EmitCXXConstructor(CD, GD.getCtorType()); 1329 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1330 EmitCXXDestructor(DD, GD.getDtorType()); 1331 else 1332 EmitGlobalFunctionDefinition(GD, GV); 1333 1334 if (Method->isVirtual()) 1335 getVTables().EmitThunks(GD); 1336 1337 return; 1338 } 1339 1340 return EmitGlobalFunctionDefinition(GD, GV); 1341 } 1342 1343 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1344 return EmitGlobalVarDefinition(VD); 1345 1346 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1347 } 1348 1349 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1350 /// module, create and return an llvm Function with the specified type. If there 1351 /// is something in the module with the specified name, return it potentially 1352 /// bitcasted to the right type. 1353 /// 1354 /// If D is non-null, it specifies a decl that correspond to this. This is used 1355 /// to set the attributes on the function when it is first created. 1356 llvm::Constant * 1357 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1358 llvm::Type *Ty, 1359 GlobalDecl GD, bool ForVTable, 1360 bool DontDefer, 1361 llvm::AttributeSet ExtraAttrs) { 1362 const Decl *D = GD.getDecl(); 1363 1364 // Lookup the entry, lazily creating it if necessary. 1365 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1366 if (Entry) { 1367 if (WeakRefReferences.erase(Entry)) { 1368 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1369 if (FD && !FD->hasAttr<WeakAttr>()) 1370 Entry->setLinkage(llvm::Function::ExternalLinkage); 1371 } 1372 1373 if (Entry->getType()->getElementType() == Ty) 1374 return Entry; 1375 1376 // Make sure the result is of the correct type. 1377 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1378 } 1379 1380 // This function doesn't have a complete type (for example, the return 1381 // type is an incomplete struct). Use a fake type instead, and make 1382 // sure not to try to set attributes. 1383 bool IsIncompleteFunction = false; 1384 1385 llvm::FunctionType *FTy; 1386 if (isa<llvm::FunctionType>(Ty)) { 1387 FTy = cast<llvm::FunctionType>(Ty); 1388 } else { 1389 FTy = llvm::FunctionType::get(VoidTy, false); 1390 IsIncompleteFunction = true; 1391 } 1392 1393 llvm::Function *F = llvm::Function::Create(FTy, 1394 llvm::Function::ExternalLinkage, 1395 MangledName, &getModule()); 1396 assert(F->getName() == MangledName && "name was uniqued!"); 1397 if (D) 1398 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1399 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1400 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1401 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1402 llvm::AttributeSet::get(VMContext, 1403 llvm::AttributeSet::FunctionIndex, 1404 B)); 1405 } 1406 1407 if (!DontDefer) { 1408 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1409 // each other bottoming out with the base dtor. Therefore we emit non-base 1410 // dtors on usage, even if there is no dtor definition in the TU. 1411 if (D && isa<CXXDestructorDecl>(D) && 1412 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1413 GD.getDtorType())) 1414 addDeferredDeclToEmit(F, GD); 1415 1416 // This is the first use or definition of a mangled name. If there is a 1417 // deferred decl with this name, remember that we need to emit it at the end 1418 // of the file. 1419 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1420 if (DDI != DeferredDecls.end()) { 1421 // Move the potentially referenced deferred decl to the 1422 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1423 // don't need it anymore). 1424 addDeferredDeclToEmit(F, DDI->second); 1425 DeferredDecls.erase(DDI); 1426 1427 // Otherwise, if this is a sized deallocation function, emit a weak 1428 // definition 1429 // for it at the end of the translation unit. 1430 } else if (D && cast<FunctionDecl>(D) 1431 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1432 addDeferredDeclToEmit(F, GD); 1433 1434 // Otherwise, there are cases we have to worry about where we're 1435 // using a declaration for which we must emit a definition but where 1436 // we might not find a top-level definition: 1437 // - member functions defined inline in their classes 1438 // - friend functions defined inline in some class 1439 // - special member functions with implicit definitions 1440 // If we ever change our AST traversal to walk into class methods, 1441 // this will be unnecessary. 1442 // 1443 // We also don't emit a definition for a function if it's going to be an 1444 // entry 1445 // in a vtable, unless it's already marked as used. 1446 } else if (getLangOpts().CPlusPlus && D) { 1447 // Look for a declaration that's lexically in a record. 1448 const FunctionDecl *FD = cast<FunctionDecl>(D); 1449 FD = FD->getMostRecentDecl(); 1450 do { 1451 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1452 if (FD->isImplicit() && !ForVTable) { 1453 assert(FD->isUsed() && 1454 "Sema didn't mark implicit function as used!"); 1455 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1456 break; 1457 } else if (FD->doesThisDeclarationHaveABody()) { 1458 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1459 break; 1460 } 1461 } 1462 FD = FD->getPreviousDecl(); 1463 } while (FD); 1464 } 1465 } 1466 1467 getTargetCodeGenInfo().emitTargetMD(D, F, *this); 1468 1469 // Make sure the result is of the requested type. 1470 if (!IsIncompleteFunction) { 1471 assert(F->getType()->getElementType() == Ty); 1472 return F; 1473 } 1474 1475 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1476 return llvm::ConstantExpr::getBitCast(F, PTy); 1477 } 1478 1479 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1480 /// non-null, then this function will use the specified type if it has to 1481 /// create it (this occurs when we see a definition of the function). 1482 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1483 llvm::Type *Ty, 1484 bool ForVTable, 1485 bool DontDefer) { 1486 // If there was no specific requested type, just convert it now. 1487 if (!Ty) 1488 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1489 1490 StringRef MangledName = getMangledName(GD); 1491 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1492 } 1493 1494 /// CreateRuntimeFunction - Create a new runtime function with the specified 1495 /// type and name. 1496 llvm::Constant * 1497 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1498 StringRef Name, 1499 llvm::AttributeSet ExtraAttrs) { 1500 llvm::Constant *C = 1501 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1502 /*DontDefer=*/false, ExtraAttrs); 1503 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1504 if (F->empty()) 1505 F->setCallingConv(getRuntimeCC()); 1506 return C; 1507 } 1508 1509 /// isTypeConstant - Determine whether an object of this type can be emitted 1510 /// as a constant. 1511 /// 1512 /// If ExcludeCtor is true, the duration when the object's constructor runs 1513 /// will not be considered. The caller will need to verify that the object is 1514 /// not written to during its construction. 1515 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1516 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1517 return false; 1518 1519 if (Context.getLangOpts().CPlusPlus) { 1520 if (const CXXRecordDecl *Record 1521 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1522 return ExcludeCtor && !Record->hasMutableFields() && 1523 Record->hasTrivialDestructor(); 1524 } 1525 1526 return true; 1527 } 1528 1529 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) { 1530 if (!VD->isStaticDataMember()) 1531 return false; 1532 const VarDecl *InitDecl; 1533 const Expr *InitExpr = VD->getAnyInitializer(InitDecl); 1534 if (!InitExpr) 1535 return false; 1536 if (InitDecl->isThisDeclarationADefinition()) 1537 return false; 1538 return true; 1539 } 1540 1541 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1542 /// create and return an llvm GlobalVariable with the specified type. If there 1543 /// is something in the module with the specified name, return it potentially 1544 /// bitcasted to the right type. 1545 /// 1546 /// If D is non-null, it specifies a decl that correspond to this. This is used 1547 /// to set the attributes on the global when it is first created. 1548 llvm::Constant * 1549 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1550 llvm::PointerType *Ty, 1551 const VarDecl *D, 1552 bool UnnamedAddr) { 1553 // Lookup the entry, lazily creating it if necessary. 1554 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1555 if (Entry) { 1556 if (WeakRefReferences.erase(Entry)) { 1557 if (D && !D->hasAttr<WeakAttr>()) 1558 Entry->setLinkage(llvm::Function::ExternalLinkage); 1559 } 1560 1561 if (UnnamedAddr) 1562 Entry->setUnnamedAddr(true); 1563 1564 if (Entry->getType() == Ty) 1565 return Entry; 1566 1567 // Make sure the result is of the correct type. 1568 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1569 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1570 1571 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1572 } 1573 1574 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1575 llvm::GlobalVariable *GV = 1576 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1577 llvm::GlobalValue::ExternalLinkage, 1578 0, MangledName, 0, 1579 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1580 1581 // This is the first use or definition of a mangled name. If there is a 1582 // deferred decl with this name, remember that we need to emit it at the end 1583 // of the file. 1584 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1585 if (DDI != DeferredDecls.end()) { 1586 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1587 // list, and remove it from DeferredDecls (since we don't need it anymore). 1588 addDeferredDeclToEmit(GV, DDI->second); 1589 DeferredDecls.erase(DDI); 1590 } 1591 1592 // Handle things which are present even on external declarations. 1593 if (D) { 1594 // FIXME: This code is overly simple and should be merged with other global 1595 // handling. 1596 GV->setConstant(isTypeConstant(D->getType(), false)); 1597 1598 setLinkageAndVisibilityForGV(GV, D); 1599 1600 if (D->getTLSKind()) { 1601 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1602 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1603 setTLSMode(GV, *D); 1604 } 1605 1606 // If required by the ABI, treat declarations of static data members with 1607 // inline initializers as definitions. 1608 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1609 isVarDeclInlineInitializedStaticDataMember(D)) 1610 EmitGlobalVarDefinition(D); 1611 1612 // Handle XCore specific ABI requirements. 1613 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1614 D->getLanguageLinkage() == CLanguageLinkage && 1615 D->getType().isConstant(Context) && 1616 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1617 GV->setSection(".cp.rodata"); 1618 } 1619 1620 if (AddrSpace != Ty->getAddressSpace()) 1621 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1622 1623 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 1624 1625 return GV; 1626 } 1627 1628 1629 llvm::GlobalVariable * 1630 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1631 llvm::Type *Ty, 1632 llvm::GlobalValue::LinkageTypes Linkage) { 1633 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1634 llvm::GlobalVariable *OldGV = 0; 1635 1636 1637 if (GV) { 1638 // Check if the variable has the right type. 1639 if (GV->getType()->getElementType() == Ty) 1640 return GV; 1641 1642 // Because C++ name mangling, the only way we can end up with an already 1643 // existing global with the same name is if it has been declared extern "C". 1644 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1645 OldGV = GV; 1646 } 1647 1648 // Create a new variable. 1649 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1650 Linkage, 0, Name); 1651 1652 if (OldGV) { 1653 // Replace occurrences of the old variable if needed. 1654 GV->takeName(OldGV); 1655 1656 if (!OldGV->use_empty()) { 1657 llvm::Constant *NewPtrForOldDecl = 1658 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1659 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1660 } 1661 1662 OldGV->eraseFromParent(); 1663 } 1664 1665 return GV; 1666 } 1667 1668 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1669 /// given global variable. If Ty is non-null and if the global doesn't exist, 1670 /// then it will be created with the specified type instead of whatever the 1671 /// normal requested type would be. 1672 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1673 llvm::Type *Ty) { 1674 assert(D->hasGlobalStorage() && "Not a global variable"); 1675 QualType ASTTy = D->getType(); 1676 if (Ty == 0) 1677 Ty = getTypes().ConvertTypeForMem(ASTTy); 1678 1679 llvm::PointerType *PTy = 1680 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1681 1682 StringRef MangledName = getMangledName(D); 1683 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1684 } 1685 1686 /// CreateRuntimeVariable - Create a new runtime global variable with the 1687 /// specified type and name. 1688 llvm::Constant * 1689 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1690 StringRef Name) { 1691 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1692 true); 1693 } 1694 1695 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1696 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1697 1698 if (MayDeferGeneration(D)) { 1699 // If we have not seen a reference to this variable yet, place it 1700 // into the deferred declarations table to be emitted if needed 1701 // later. 1702 StringRef MangledName = getMangledName(D); 1703 if (!GetGlobalValue(MangledName)) { 1704 DeferredDecls[MangledName] = D; 1705 return; 1706 } 1707 } 1708 1709 // The tentative definition is the only definition. 1710 EmitGlobalVarDefinition(D); 1711 } 1712 1713 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1714 return Context.toCharUnitsFromBits( 1715 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1716 } 1717 1718 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1719 unsigned AddrSpace) { 1720 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1721 if (D->hasAttr<CUDAConstantAttr>()) 1722 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1723 else if (D->hasAttr<CUDASharedAttr>()) 1724 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1725 else 1726 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1727 } 1728 1729 return AddrSpace; 1730 } 1731 1732 template<typename SomeDecl> 1733 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1734 llvm::GlobalValue *GV) { 1735 if (!getLangOpts().CPlusPlus) 1736 return; 1737 1738 // Must have 'used' attribute, or else inline assembly can't rely on 1739 // the name existing. 1740 if (!D->template hasAttr<UsedAttr>()) 1741 return; 1742 1743 // Must have internal linkage and an ordinary name. 1744 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1745 return; 1746 1747 // Must be in an extern "C" context. Entities declared directly within 1748 // a record are not extern "C" even if the record is in such a context. 1749 const SomeDecl *First = D->getFirstDecl(); 1750 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1751 return; 1752 1753 // OK, this is an internal linkage entity inside an extern "C" linkage 1754 // specification. Make a note of that so we can give it the "expected" 1755 // mangled name if nothing else is using that name. 1756 std::pair<StaticExternCMap::iterator, bool> R = 1757 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1758 1759 // If we have multiple internal linkage entities with the same name 1760 // in extern "C" regions, none of them gets that name. 1761 if (!R.second) 1762 R.first->second = 0; 1763 } 1764 1765 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1766 llvm::Constant *Init = 0; 1767 QualType ASTTy = D->getType(); 1768 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1769 bool NeedsGlobalCtor = false; 1770 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1771 1772 const VarDecl *InitDecl; 1773 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1774 1775 if (!InitExpr) { 1776 // This is a tentative definition; tentative definitions are 1777 // implicitly initialized with { 0 }. 1778 // 1779 // Note that tentative definitions are only emitted at the end of 1780 // a translation unit, so they should never have incomplete 1781 // type. In addition, EmitTentativeDefinition makes sure that we 1782 // never attempt to emit a tentative definition if a real one 1783 // exists. A use may still exists, however, so we still may need 1784 // to do a RAUW. 1785 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1786 Init = EmitNullConstant(D->getType()); 1787 } else { 1788 initializedGlobalDecl = GlobalDecl(D); 1789 Init = EmitConstantInit(*InitDecl); 1790 1791 if (!Init) { 1792 QualType T = InitExpr->getType(); 1793 if (D->getType()->isReferenceType()) 1794 T = D->getType(); 1795 1796 if (getLangOpts().CPlusPlus) { 1797 Init = EmitNullConstant(T); 1798 NeedsGlobalCtor = true; 1799 } else { 1800 ErrorUnsupported(D, "static initializer"); 1801 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1802 } 1803 } else { 1804 // We don't need an initializer, so remove the entry for the delayed 1805 // initializer position (just in case this entry was delayed) if we 1806 // also don't need to register a destructor. 1807 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1808 DelayedCXXInitPosition.erase(D); 1809 } 1810 } 1811 1812 llvm::Type* InitType = Init->getType(); 1813 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1814 1815 // Strip off a bitcast if we got one back. 1816 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1817 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1818 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1819 // All zero index gep. 1820 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1821 Entry = CE->getOperand(0); 1822 } 1823 1824 // Entry is now either a Function or GlobalVariable. 1825 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1826 1827 // We have a definition after a declaration with the wrong type. 1828 // We must make a new GlobalVariable* and update everything that used OldGV 1829 // (a declaration or tentative definition) with the new GlobalVariable* 1830 // (which will be a definition). 1831 // 1832 // This happens if there is a prototype for a global (e.g. 1833 // "extern int x[];") and then a definition of a different type (e.g. 1834 // "int x[10];"). This also happens when an initializer has a different type 1835 // from the type of the global (this happens with unions). 1836 if (GV == 0 || 1837 GV->getType()->getElementType() != InitType || 1838 GV->getType()->getAddressSpace() != 1839 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1840 1841 // Move the old entry aside so that we'll create a new one. 1842 Entry->setName(StringRef()); 1843 1844 // Make a new global with the correct type, this is now guaranteed to work. 1845 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1846 1847 // Replace all uses of the old global with the new global 1848 llvm::Constant *NewPtrForOldDecl = 1849 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1850 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1851 1852 // Erase the old global, since it is no longer used. 1853 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1854 } 1855 1856 MaybeHandleStaticInExternC(D, GV); 1857 1858 if (D->hasAttr<AnnotateAttr>()) 1859 AddGlobalAnnotations(D, GV); 1860 1861 GV->setInitializer(Init); 1862 1863 // If it is safe to mark the global 'constant', do so now. 1864 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1865 isTypeConstant(D->getType(), true)); 1866 1867 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1868 1869 // Set the llvm linkage type as appropriate. 1870 llvm::GlobalValue::LinkageTypes Linkage = 1871 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1872 GV->setLinkage(Linkage); 1873 if (D->hasAttr<DLLImportAttr>()) 1874 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1875 else if (D->hasAttr<DLLExportAttr>()) 1876 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1877 1878 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1879 // common vars aren't constant even if declared const. 1880 GV->setConstant(false); 1881 1882 SetCommonAttributes(D, GV); 1883 1884 // Emit the initializer function if necessary. 1885 if (NeedsGlobalCtor || NeedsGlobalDtor) 1886 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1887 1888 // If we are compiling with ASan, add metadata indicating dynamically 1889 // initialized globals. 1890 if (SanOpts.Address && NeedsGlobalCtor) { 1891 llvm::Module &M = getModule(); 1892 1893 llvm::NamedMDNode *DynamicInitializers = 1894 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1895 llvm::Value *GlobalToAdd[] = { GV }; 1896 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1897 DynamicInitializers->addOperand(ThisGlobal); 1898 } 1899 1900 // Emit global variable debug information. 1901 if (CGDebugInfo *DI = getModuleDebugInfo()) 1902 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1903 DI->EmitGlobalVariable(GV, D); 1904 } 1905 1906 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 1907 // Don't give variables common linkage if -fno-common was specified unless it 1908 // was overridden by a NoCommon attribute. 1909 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 1910 return true; 1911 1912 // C11 6.9.2/2: 1913 // A declaration of an identifier for an object that has file scope without 1914 // an initializer, and without a storage-class specifier or with the 1915 // storage-class specifier static, constitutes a tentative definition. 1916 if (D->getInit() || D->hasExternalStorage()) 1917 return true; 1918 1919 // A variable cannot be both common and exist in a section. 1920 if (D->hasAttr<SectionAttr>()) 1921 return true; 1922 1923 // Thread local vars aren't considered common linkage. 1924 if (D->getTLSKind()) 1925 return true; 1926 1927 // Tentative definitions marked with WeakImportAttr are true definitions. 1928 if (D->hasAttr<WeakImportAttr>()) 1929 return true; 1930 1931 return false; 1932 } 1933 1934 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageforDeclarator( 1935 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable, 1936 bool UseThunkForDtorVariant) { 1937 if (Linkage == GVA_Internal) 1938 return llvm::Function::InternalLinkage; 1939 1940 if (D->hasAttr<WeakAttr>()) { 1941 if (IsConstantVariable) 1942 return llvm::GlobalVariable::WeakODRLinkage; 1943 else 1944 return llvm::GlobalVariable::WeakAnyLinkage; 1945 } 1946 1947 // We are guaranteed to have a strong definition somewhere else, 1948 // so we can use available_externally linkage. 1949 if (Linkage == GVA_AvailableExternally) 1950 return llvm::Function::AvailableExternallyLinkage; 1951 1952 // LinkOnceODRLinkage is insufficient if the symbol is required to exist in 1953 // the symbol table. Promote the linkage to WeakODRLinkage to preserve the 1954 // semantics of LinkOnceODRLinkage while providing visibility in the symbol 1955 // table. 1956 llvm::GlobalValue::LinkageTypes OnceLinkage = 1957 llvm::GlobalValue::LinkOnceODRLinkage; 1958 if (D->hasAttr<DLLExportAttr>() || D->hasAttr<DLLImportAttr>()) 1959 OnceLinkage = llvm::GlobalVariable::WeakODRLinkage; 1960 1961 // Note that Apple's kernel linker doesn't support symbol 1962 // coalescing, so we need to avoid linkonce and weak linkages there. 1963 // Normally, this means we just map to internal, but for explicit 1964 // instantiations we'll map to external. 1965 1966 // In C++, the compiler has to emit a definition in every translation unit 1967 // that references the function. We should use linkonce_odr because 1968 // a) if all references in this translation unit are optimized away, we 1969 // don't need to codegen it. b) if the function persists, it needs to be 1970 // merged with other definitions. c) C++ has the ODR, so we know the 1971 // definition is dependable. 1972 if (Linkage == GVA_DiscardableODR) 1973 return !Context.getLangOpts().AppleKext ? OnceLinkage 1974 : llvm::Function::InternalLinkage; 1975 1976 // An explicit instantiation of a template has weak linkage, since 1977 // explicit instantiations can occur in multiple translation units 1978 // and must all be equivalent. However, we are not allowed to 1979 // throw away these explicit instantiations. 1980 if (Linkage == GVA_StrongODR) 1981 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 1982 : llvm::Function::ExternalLinkage; 1983 1984 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 1985 // emitted on an as-needed basis. 1986 if (UseThunkForDtorVariant) 1987 return OnceLinkage; 1988 1989 // If required by the ABI, give definitions of static data members with inline 1990 // initializers at least linkonce_odr linkage. 1991 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1992 isa<VarDecl>(D) && 1993 isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D))) 1994 return OnceLinkage; 1995 1996 // C++ doesn't have tentative definitions and thus cannot have common 1997 // linkage. 1998 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 1999 !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon)) 2000 return llvm::GlobalVariable::CommonLinkage; 2001 2002 // selectany symbols are externally visible, so use weak instead of 2003 // linkonce. MSVC optimizes away references to const selectany globals, so 2004 // all definitions should be the same and ODR linkage should be used. 2005 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2006 if (D->hasAttr<SelectAnyAttr>()) 2007 return llvm::GlobalVariable::WeakODRLinkage; 2008 2009 // Otherwise, we have strong external linkage. 2010 assert(Linkage == GVA_StrongExternal); 2011 return llvm::GlobalVariable::ExternalLinkage; 2012 } 2013 2014 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2015 const VarDecl *VD, bool IsConstant) { 2016 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2017 return getLLVMLinkageforDeclarator(VD, Linkage, IsConstant, 2018 /*UseThunkForDtorVariant=*/false); 2019 } 2020 2021 /// Replace the uses of a function that was declared with a non-proto type. 2022 /// We want to silently drop extra arguments from call sites 2023 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2024 llvm::Function *newFn) { 2025 // Fast path. 2026 if (old->use_empty()) return; 2027 2028 llvm::Type *newRetTy = newFn->getReturnType(); 2029 SmallVector<llvm::Value*, 4> newArgs; 2030 2031 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2032 ui != ue; ) { 2033 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2034 llvm::User *user = use->getUser(); 2035 2036 // Recognize and replace uses of bitcasts. Most calls to 2037 // unprototyped functions will use bitcasts. 2038 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2039 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2040 replaceUsesOfNonProtoConstant(bitcast, newFn); 2041 continue; 2042 } 2043 2044 // Recognize calls to the function. 2045 llvm::CallSite callSite(user); 2046 if (!callSite) continue; 2047 if (!callSite.isCallee(&*use)) continue; 2048 2049 // If the return types don't match exactly, then we can't 2050 // transform this call unless it's dead. 2051 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2052 continue; 2053 2054 // Get the call site's attribute list. 2055 SmallVector<llvm::AttributeSet, 8> newAttrs; 2056 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2057 2058 // Collect any return attributes from the call. 2059 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2060 newAttrs.push_back( 2061 llvm::AttributeSet::get(newFn->getContext(), 2062 oldAttrs.getRetAttributes())); 2063 2064 // If the function was passed too few arguments, don't transform. 2065 unsigned newNumArgs = newFn->arg_size(); 2066 if (callSite.arg_size() < newNumArgs) continue; 2067 2068 // If extra arguments were passed, we silently drop them. 2069 // If any of the types mismatch, we don't transform. 2070 unsigned argNo = 0; 2071 bool dontTransform = false; 2072 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2073 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2074 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2075 dontTransform = true; 2076 break; 2077 } 2078 2079 // Add any parameter attributes. 2080 if (oldAttrs.hasAttributes(argNo + 1)) 2081 newAttrs. 2082 push_back(llvm:: 2083 AttributeSet::get(newFn->getContext(), 2084 oldAttrs.getParamAttributes(argNo + 1))); 2085 } 2086 if (dontTransform) 2087 continue; 2088 2089 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2090 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2091 oldAttrs.getFnAttributes())); 2092 2093 // Okay, we can transform this. Create the new call instruction and copy 2094 // over the required information. 2095 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2096 2097 llvm::CallSite newCall; 2098 if (callSite.isCall()) { 2099 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2100 callSite.getInstruction()); 2101 } else { 2102 llvm::InvokeInst *oldInvoke = 2103 cast<llvm::InvokeInst>(callSite.getInstruction()); 2104 newCall = llvm::InvokeInst::Create(newFn, 2105 oldInvoke->getNormalDest(), 2106 oldInvoke->getUnwindDest(), 2107 newArgs, "", 2108 callSite.getInstruction()); 2109 } 2110 newArgs.clear(); // for the next iteration 2111 2112 if (!newCall->getType()->isVoidTy()) 2113 newCall->takeName(callSite.getInstruction()); 2114 newCall.setAttributes( 2115 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2116 newCall.setCallingConv(callSite.getCallingConv()); 2117 2118 // Finally, remove the old call, replacing any uses with the new one. 2119 if (!callSite->use_empty()) 2120 callSite->replaceAllUsesWith(newCall.getInstruction()); 2121 2122 // Copy debug location attached to CI. 2123 if (!callSite->getDebugLoc().isUnknown()) 2124 newCall->setDebugLoc(callSite->getDebugLoc()); 2125 callSite->eraseFromParent(); 2126 } 2127 } 2128 2129 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2130 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2131 /// existing call uses of the old function in the module, this adjusts them to 2132 /// call the new function directly. 2133 /// 2134 /// This is not just a cleanup: the always_inline pass requires direct calls to 2135 /// functions to be able to inline them. If there is a bitcast in the way, it 2136 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2137 /// run at -O0. 2138 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2139 llvm::Function *NewFn) { 2140 // If we're redefining a global as a function, don't transform it. 2141 if (!isa<llvm::Function>(Old)) return; 2142 2143 replaceUsesOfNonProtoConstant(Old, NewFn); 2144 } 2145 2146 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2147 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2148 // If we have a definition, this might be a deferred decl. If the 2149 // instantiation is explicit, make sure we emit it at the end. 2150 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2151 GetAddrOfGlobalVar(VD); 2152 2153 EmitTopLevelDecl(VD); 2154 } 2155 2156 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2157 llvm::GlobalValue *GV) { 2158 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2159 2160 // Compute the function info and LLVM type. 2161 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2162 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2163 2164 // Get or create the prototype for the function. 2165 llvm::Constant *Entry = 2166 GV ? GV 2167 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2168 2169 // Strip off a bitcast if we got one back. 2170 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2171 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2172 Entry = CE->getOperand(0); 2173 } 2174 2175 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2176 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2177 return; 2178 } 2179 2180 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2181 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2182 2183 // If the types mismatch then we have to rewrite the definition. 2184 assert(OldFn->isDeclaration() && 2185 "Shouldn't replace non-declaration"); 2186 2187 // F is the Function* for the one with the wrong type, we must make a new 2188 // Function* and update everything that used F (a declaration) with the new 2189 // Function* (which will be a definition). 2190 // 2191 // This happens if there is a prototype for a function 2192 // (e.g. "int f()") and then a definition of a different type 2193 // (e.g. "int f(int x)"). Move the old function aside so that it 2194 // doesn't interfere with GetAddrOfFunction. 2195 OldFn->setName(StringRef()); 2196 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2197 2198 // This might be an implementation of a function without a 2199 // prototype, in which case, try to do special replacement of 2200 // calls which match the new prototype. The really key thing here 2201 // is that we also potentially drop arguments from the call site 2202 // so as to make a direct call, which makes the inliner happier 2203 // and suppresses a number of optimizer warnings (!) about 2204 // dropping arguments. 2205 if (!OldFn->use_empty()) { 2206 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2207 OldFn->removeDeadConstantUsers(); 2208 } 2209 2210 // Replace uses of F with the Function we will endow with a body. 2211 if (!Entry->use_empty()) { 2212 llvm::Constant *NewPtrForOldDecl = 2213 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2214 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2215 } 2216 2217 // Ok, delete the old function now, which is dead. 2218 OldFn->eraseFromParent(); 2219 2220 Entry = NewFn; 2221 } 2222 2223 // We need to set linkage and visibility on the function before 2224 // generating code for it because various parts of IR generation 2225 // want to propagate this information down (e.g. to local static 2226 // declarations). 2227 llvm::Function *Fn = cast<llvm::Function>(Entry); 2228 setFunctionLinkage(GD, Fn); 2229 2230 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2231 setGlobalVisibility(Fn, D); 2232 2233 MaybeHandleStaticInExternC(D, Fn); 2234 2235 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2236 2237 SetFunctionDefinitionAttributes(D, Fn); 2238 SetLLVMFunctionAttributesForDefinition(D, Fn); 2239 2240 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2241 AddGlobalCtor(Fn, CA->getPriority()); 2242 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2243 AddGlobalDtor(Fn, DA->getPriority()); 2244 if (D->hasAttr<AnnotateAttr>()) 2245 AddGlobalAnnotations(D, Fn); 2246 } 2247 2248 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2249 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2250 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2251 assert(AA && "Not an alias?"); 2252 2253 StringRef MangledName = getMangledName(GD); 2254 2255 // If there is a definition in the module, then it wins over the alias. 2256 // This is dubious, but allow it to be safe. Just ignore the alias. 2257 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2258 if (Entry && !Entry->isDeclaration()) 2259 return; 2260 2261 Aliases.push_back(GD); 2262 2263 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2264 2265 // Create a reference to the named value. This ensures that it is emitted 2266 // if a deferred decl. 2267 llvm::Constant *Aliasee; 2268 if (isa<llvm::FunctionType>(DeclTy)) 2269 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2270 /*ForVTable=*/false); 2271 else 2272 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2273 llvm::PointerType::getUnqual(DeclTy), 0); 2274 2275 // Create the new alias itself, but don't set a name yet. 2276 llvm::GlobalValue *GA = 2277 new llvm::GlobalAlias(Aliasee->getType(), 2278 llvm::Function::ExternalLinkage, 2279 "", Aliasee, &getModule()); 2280 2281 if (Entry) { 2282 assert(Entry->isDeclaration()); 2283 2284 // If there is a declaration in the module, then we had an extern followed 2285 // by the alias, as in: 2286 // extern int test6(); 2287 // ... 2288 // int test6() __attribute__((alias("test7"))); 2289 // 2290 // Remove it and replace uses of it with the alias. 2291 GA->takeName(Entry); 2292 2293 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2294 Entry->getType())); 2295 Entry->eraseFromParent(); 2296 } else { 2297 GA->setName(MangledName); 2298 } 2299 2300 // Set attributes which are particular to an alias; this is a 2301 // specialization of the attributes which may be set on a global 2302 // variable/function. 2303 if (D->hasAttr<DLLExportAttr>()) { 2304 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2305 // The dllexport attribute is ignored for undefined symbols. 2306 if (FD->hasBody()) 2307 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2308 } else { 2309 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2310 } 2311 } else if (D->hasAttr<WeakAttr>() || 2312 D->hasAttr<WeakRefAttr>() || 2313 D->isWeakImported()) { 2314 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2315 } 2316 2317 SetCommonAttributes(D, GA); 2318 } 2319 2320 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2321 ArrayRef<llvm::Type*> Tys) { 2322 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2323 Tys); 2324 } 2325 2326 static llvm::StringMapEntry<llvm::Constant*> & 2327 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2328 const StringLiteral *Literal, 2329 bool TargetIsLSB, 2330 bool &IsUTF16, 2331 unsigned &StringLength) { 2332 StringRef String = Literal->getString(); 2333 unsigned NumBytes = String.size(); 2334 2335 // Check for simple case. 2336 if (!Literal->containsNonAsciiOrNull()) { 2337 StringLength = NumBytes; 2338 return Map.GetOrCreateValue(String); 2339 } 2340 2341 // Otherwise, convert the UTF8 literals into a string of shorts. 2342 IsUTF16 = true; 2343 2344 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2345 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2346 UTF16 *ToPtr = &ToBuf[0]; 2347 2348 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2349 &ToPtr, ToPtr + NumBytes, 2350 strictConversion); 2351 2352 // ConvertUTF8toUTF16 returns the length in ToPtr. 2353 StringLength = ToPtr - &ToBuf[0]; 2354 2355 // Add an explicit null. 2356 *ToPtr = 0; 2357 return Map. 2358 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2359 (StringLength + 1) * 2)); 2360 } 2361 2362 static llvm::StringMapEntry<llvm::Constant*> & 2363 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2364 const StringLiteral *Literal, 2365 unsigned &StringLength) { 2366 StringRef String = Literal->getString(); 2367 StringLength = String.size(); 2368 return Map.GetOrCreateValue(String); 2369 } 2370 2371 llvm::Constant * 2372 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2373 unsigned StringLength = 0; 2374 bool isUTF16 = false; 2375 llvm::StringMapEntry<llvm::Constant*> &Entry = 2376 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2377 getDataLayout().isLittleEndian(), 2378 isUTF16, StringLength); 2379 2380 if (llvm::Constant *C = Entry.getValue()) 2381 return C; 2382 2383 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2384 llvm::Constant *Zeros[] = { Zero, Zero }; 2385 llvm::Value *V; 2386 2387 // If we don't already have it, get __CFConstantStringClassReference. 2388 if (!CFConstantStringClassRef) { 2389 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2390 Ty = llvm::ArrayType::get(Ty, 0); 2391 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2392 "__CFConstantStringClassReference"); 2393 // Decay array -> ptr 2394 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2395 CFConstantStringClassRef = V; 2396 } 2397 else 2398 V = CFConstantStringClassRef; 2399 2400 QualType CFTy = getContext().getCFConstantStringType(); 2401 2402 llvm::StructType *STy = 2403 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2404 2405 llvm::Constant *Fields[4]; 2406 2407 // Class pointer. 2408 Fields[0] = cast<llvm::ConstantExpr>(V); 2409 2410 // Flags. 2411 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2412 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2413 llvm::ConstantInt::get(Ty, 0x07C8); 2414 2415 // String pointer. 2416 llvm::Constant *C = 0; 2417 if (isUTF16) { 2418 ArrayRef<uint16_t> Arr = 2419 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2420 const_cast<char *>(Entry.getKey().data())), 2421 Entry.getKey().size() / 2); 2422 C = llvm::ConstantDataArray::get(VMContext, Arr); 2423 } else { 2424 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2425 } 2426 2427 // Note: -fwritable-strings doesn't make the backing store strings of 2428 // CFStrings writable. (See <rdar://problem/10657500>) 2429 llvm::GlobalVariable *GV = 2430 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2431 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2432 GV->setUnnamedAddr(true); 2433 // Don't enforce the target's minimum global alignment, since the only use 2434 // of the string is via this class initializer. 2435 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2436 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2437 // that changes the section it ends in, which surprises ld64. 2438 if (isUTF16) { 2439 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2440 GV->setAlignment(Align.getQuantity()); 2441 GV->setSection("__TEXT,__ustring"); 2442 } else { 2443 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2444 GV->setAlignment(Align.getQuantity()); 2445 GV->setSection("__TEXT,__cstring,cstring_literals"); 2446 } 2447 2448 // String. 2449 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2450 2451 if (isUTF16) 2452 // Cast the UTF16 string to the correct type. 2453 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2454 2455 // String length. 2456 Ty = getTypes().ConvertType(getContext().LongTy); 2457 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2458 2459 // The struct. 2460 C = llvm::ConstantStruct::get(STy, Fields); 2461 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2462 llvm::GlobalVariable::PrivateLinkage, C, 2463 "_unnamed_cfstring_"); 2464 GV->setSection("__DATA,__cfstring"); 2465 Entry.setValue(GV); 2466 2467 return GV; 2468 } 2469 2470 llvm::Constant * 2471 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2472 unsigned StringLength = 0; 2473 llvm::StringMapEntry<llvm::Constant*> &Entry = 2474 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2475 2476 if (llvm::Constant *C = Entry.getValue()) 2477 return C; 2478 2479 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2480 llvm::Constant *Zeros[] = { Zero, Zero }; 2481 llvm::Value *V; 2482 // If we don't already have it, get _NSConstantStringClassReference. 2483 if (!ConstantStringClassRef) { 2484 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2485 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2486 llvm::Constant *GV; 2487 if (LangOpts.ObjCRuntime.isNonFragile()) { 2488 std::string str = 2489 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2490 : "OBJC_CLASS_$_" + StringClass; 2491 GV = getObjCRuntime().GetClassGlobal(str); 2492 // Make sure the result is of the correct type. 2493 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2494 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2495 ConstantStringClassRef = V; 2496 } else { 2497 std::string str = 2498 StringClass.empty() ? "_NSConstantStringClassReference" 2499 : "_" + StringClass + "ClassReference"; 2500 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2501 GV = CreateRuntimeVariable(PTy, str); 2502 // Decay array -> ptr 2503 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2504 ConstantStringClassRef = V; 2505 } 2506 } 2507 else 2508 V = ConstantStringClassRef; 2509 2510 if (!NSConstantStringType) { 2511 // Construct the type for a constant NSString. 2512 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2513 D->startDefinition(); 2514 2515 QualType FieldTypes[3]; 2516 2517 // const int *isa; 2518 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2519 // const char *str; 2520 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2521 // unsigned int length; 2522 FieldTypes[2] = Context.UnsignedIntTy; 2523 2524 // Create fields 2525 for (unsigned i = 0; i < 3; ++i) { 2526 FieldDecl *Field = FieldDecl::Create(Context, D, 2527 SourceLocation(), 2528 SourceLocation(), 0, 2529 FieldTypes[i], /*TInfo=*/0, 2530 /*BitWidth=*/0, 2531 /*Mutable=*/false, 2532 ICIS_NoInit); 2533 Field->setAccess(AS_public); 2534 D->addDecl(Field); 2535 } 2536 2537 D->completeDefinition(); 2538 QualType NSTy = Context.getTagDeclType(D); 2539 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2540 } 2541 2542 llvm::Constant *Fields[3]; 2543 2544 // Class pointer. 2545 Fields[0] = cast<llvm::ConstantExpr>(V); 2546 2547 // String pointer. 2548 llvm::Constant *C = 2549 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2550 2551 llvm::GlobalValue::LinkageTypes Linkage; 2552 bool isConstant; 2553 Linkage = llvm::GlobalValue::PrivateLinkage; 2554 isConstant = !LangOpts.WritableStrings; 2555 2556 llvm::GlobalVariable *GV = 2557 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2558 ".str"); 2559 GV->setUnnamedAddr(true); 2560 // Don't enforce the target's minimum global alignment, since the only use 2561 // of the string is via this class initializer. 2562 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2563 GV->setAlignment(Align.getQuantity()); 2564 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2565 2566 // String length. 2567 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2568 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2569 2570 // The struct. 2571 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2572 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2573 llvm::GlobalVariable::PrivateLinkage, C, 2574 "_unnamed_nsstring_"); 2575 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2576 const char *NSStringNonFragileABISection = 2577 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2578 // FIXME. Fix section. 2579 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2580 ? NSStringNonFragileABISection 2581 : NSStringSection); 2582 Entry.setValue(GV); 2583 2584 return GV; 2585 } 2586 2587 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2588 if (ObjCFastEnumerationStateType.isNull()) { 2589 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2590 D->startDefinition(); 2591 2592 QualType FieldTypes[] = { 2593 Context.UnsignedLongTy, 2594 Context.getPointerType(Context.getObjCIdType()), 2595 Context.getPointerType(Context.UnsignedLongTy), 2596 Context.getConstantArrayType(Context.UnsignedLongTy, 2597 llvm::APInt(32, 5), ArrayType::Normal, 0) 2598 }; 2599 2600 for (size_t i = 0; i < 4; ++i) { 2601 FieldDecl *Field = FieldDecl::Create(Context, 2602 D, 2603 SourceLocation(), 2604 SourceLocation(), 0, 2605 FieldTypes[i], /*TInfo=*/0, 2606 /*BitWidth=*/0, 2607 /*Mutable=*/false, 2608 ICIS_NoInit); 2609 Field->setAccess(AS_public); 2610 D->addDecl(Field); 2611 } 2612 2613 D->completeDefinition(); 2614 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2615 } 2616 2617 return ObjCFastEnumerationStateType; 2618 } 2619 2620 llvm::Constant * 2621 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2622 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2623 2624 // Don't emit it as the address of the string, emit the string data itself 2625 // as an inline array. 2626 if (E->getCharByteWidth() == 1) { 2627 SmallString<64> Str(E->getString()); 2628 2629 // Resize the string to the right size, which is indicated by its type. 2630 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2631 Str.resize(CAT->getSize().getZExtValue()); 2632 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2633 } 2634 2635 llvm::ArrayType *AType = 2636 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2637 llvm::Type *ElemTy = AType->getElementType(); 2638 unsigned NumElements = AType->getNumElements(); 2639 2640 // Wide strings have either 2-byte or 4-byte elements. 2641 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2642 SmallVector<uint16_t, 32> Elements; 2643 Elements.reserve(NumElements); 2644 2645 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2646 Elements.push_back(E->getCodeUnit(i)); 2647 Elements.resize(NumElements); 2648 return llvm::ConstantDataArray::get(VMContext, Elements); 2649 } 2650 2651 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2652 SmallVector<uint32_t, 32> Elements; 2653 Elements.reserve(NumElements); 2654 2655 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2656 Elements.push_back(E->getCodeUnit(i)); 2657 Elements.resize(NumElements); 2658 return llvm::ConstantDataArray::get(VMContext, Elements); 2659 } 2660 2661 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2662 /// constant array for the given string literal. 2663 llvm::Constant * 2664 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2665 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2666 2667 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2668 llvm::GlobalVariable *GV = nullptr; 2669 if (!LangOpts.WritableStrings) { 2670 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2671 switch (S->getCharByteWidth()) { 2672 case 1: 2673 ConstantStringMap = &Constant1ByteStringMap; 2674 break; 2675 case 2: 2676 ConstantStringMap = &Constant2ByteStringMap; 2677 break; 2678 case 4: 2679 ConstantStringMap = &Constant4ByteStringMap; 2680 break; 2681 default: 2682 llvm_unreachable("unhandled byte width!"); 2683 } 2684 Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes()); 2685 GV = Entry->getValue(); 2686 } 2687 2688 if (!GV) { 2689 SmallString<256> MangledNameBuffer; 2690 StringRef GlobalVariableName; 2691 llvm::GlobalValue::LinkageTypes LT; 2692 2693 // Mangle the string literal if the ABI allows for it. However, we cannot 2694 // do this if we are compiling with ASan or -fwritable-strings because they 2695 // rely on strings having normal linkage. 2696 if (!LangOpts.WritableStrings && !SanOpts.Address && 2697 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2698 llvm::raw_svector_ostream Out(MangledNameBuffer); 2699 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2700 Out.flush(); 2701 2702 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2703 GlobalVariableName = MangledNameBuffer; 2704 } else { 2705 LT = llvm::GlobalValue::PrivateLinkage; 2706 GlobalVariableName = ".str"; 2707 } 2708 2709 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2710 unsigned AddrSpace = 0; 2711 if (getLangOpts().OpenCL) 2712 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant); 2713 2714 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2715 GV = new llvm::GlobalVariable( 2716 getModule(), C->getType(), !LangOpts.WritableStrings, LT, C, 2717 GlobalVariableName, /*InsertBefore=*/nullptr, 2718 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2719 GV->setUnnamedAddr(true); 2720 if (Entry) 2721 Entry->setValue(GV); 2722 } 2723 2724 if (Align.getQuantity() > GV->getAlignment()) 2725 GV->setAlignment(Align.getQuantity()); 2726 2727 return GV; 2728 } 2729 2730 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2731 /// array for the given ObjCEncodeExpr node. 2732 llvm::Constant * 2733 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2734 std::string Str; 2735 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2736 2737 return GetAddrOfConstantCString(Str); 2738 } 2739 2740 2741 /// GenerateWritableString -- Creates storage for a string literal. 2742 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2743 bool constant, 2744 CodeGenModule &CGM, 2745 const char *GlobalName, 2746 unsigned Alignment) { 2747 // Create Constant for this string literal. Don't add a '\0'. 2748 llvm::Constant *C = 2749 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2750 2751 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2752 unsigned AddrSpace = 0; 2753 if (CGM.getLangOpts().OpenCL) 2754 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2755 2756 // Create a global variable for this string 2757 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2758 CGM.getModule(), C->getType(), constant, 2759 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2760 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2761 GV->setAlignment(Alignment); 2762 GV->setUnnamedAddr(true); 2763 return GV; 2764 } 2765 2766 /// GetAddrOfConstantString - Returns a pointer to a character array 2767 /// containing the literal. This contents are exactly that of the 2768 /// given string, i.e. it will not be null terminated automatically; 2769 /// see GetAddrOfConstantCString. Note that whether the result is 2770 /// actually a pointer to an LLVM constant depends on 2771 /// Feature.WriteableStrings. 2772 /// 2773 /// The result has pointer to array type. 2774 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2775 const char *GlobalName, 2776 unsigned Alignment) { 2777 // Get the default prefix if a name wasn't specified. 2778 if (!GlobalName) 2779 GlobalName = ".str"; 2780 2781 if (Alignment == 0) 2782 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2783 .getQuantity(); 2784 2785 // Don't share any string literals if strings aren't constant. 2786 if (LangOpts.WritableStrings) 2787 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2788 2789 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2790 Constant1ByteStringMap.GetOrCreateValue(Str); 2791 2792 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2793 if (Alignment > GV->getAlignment()) { 2794 GV->setAlignment(Alignment); 2795 } 2796 return GV; 2797 } 2798 2799 // Create a global variable for this. 2800 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2801 Alignment); 2802 Entry.setValue(GV); 2803 return GV; 2804 } 2805 2806 /// GetAddrOfConstantCString - Returns a pointer to a character 2807 /// array containing the literal and a terminating '\0' 2808 /// character. The result has pointer to array type. 2809 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2810 const char *GlobalName, 2811 unsigned Alignment) { 2812 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2813 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2814 } 2815 2816 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2817 const MaterializeTemporaryExpr *E, const Expr *Init) { 2818 assert((E->getStorageDuration() == SD_Static || 2819 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2820 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2821 2822 // If we're not materializing a subobject of the temporary, keep the 2823 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2824 QualType MaterializedType = Init->getType(); 2825 if (Init == E->GetTemporaryExpr()) 2826 MaterializedType = E->getType(); 2827 2828 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2829 if (Slot) 2830 return Slot; 2831 2832 // FIXME: If an externally-visible declaration extends multiple temporaries, 2833 // we need to give each temporary the same name in every translation unit (and 2834 // we also need to make the temporaries externally-visible). 2835 SmallString<256> Name; 2836 llvm::raw_svector_ostream Out(Name); 2837 getCXXABI().getMangleContext().mangleReferenceTemporary( 2838 VD, E->getManglingNumber(), Out); 2839 Out.flush(); 2840 2841 APValue *Value = 0; 2842 if (E->getStorageDuration() == SD_Static) { 2843 // We might have a cached constant initializer for this temporary. Note 2844 // that this might have a different value from the value computed by 2845 // evaluating the initializer if the surrounding constant expression 2846 // modifies the temporary. 2847 Value = getContext().getMaterializedTemporaryValue(E, false); 2848 if (Value && Value->isUninit()) 2849 Value = 0; 2850 } 2851 2852 // Try evaluating it now, it might have a constant initializer. 2853 Expr::EvalResult EvalResult; 2854 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2855 !EvalResult.hasSideEffects()) 2856 Value = &EvalResult.Val; 2857 2858 llvm::Constant *InitialValue = 0; 2859 bool Constant = false; 2860 llvm::Type *Type; 2861 if (Value) { 2862 // The temporary has a constant initializer, use it. 2863 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2864 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2865 Type = InitialValue->getType(); 2866 } else { 2867 // No initializer, the initialization will be provided when we 2868 // initialize the declaration which performed lifetime extension. 2869 Type = getTypes().ConvertTypeForMem(MaterializedType); 2870 } 2871 2872 // Create a global variable for this lifetime-extended temporary. 2873 llvm::GlobalValue::LinkageTypes Linkage = 2874 getLLVMLinkageVarDefinition(VD, Constant); 2875 // There is no need for this temporary to have global linkage if the global 2876 // variable has external linkage. 2877 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2878 Linkage = llvm::GlobalVariable::PrivateLinkage; 2879 unsigned AddrSpace = GetGlobalVarAddressSpace( 2880 VD, getContext().getTargetAddressSpace(MaterializedType)); 2881 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2882 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2883 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2884 AddrSpace); 2885 setGlobalVisibility(GV, VD); 2886 GV->setAlignment( 2887 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2888 if (VD->getTLSKind()) 2889 setTLSMode(GV, *VD); 2890 Slot = GV; 2891 return GV; 2892 } 2893 2894 /// EmitObjCPropertyImplementations - Emit information for synthesized 2895 /// properties for an implementation. 2896 void CodeGenModule::EmitObjCPropertyImplementations(const 2897 ObjCImplementationDecl *D) { 2898 for (const auto *PID : D->property_impls()) { 2899 // Dynamic is just for type-checking. 2900 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2901 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2902 2903 // Determine which methods need to be implemented, some may have 2904 // been overridden. Note that ::isPropertyAccessor is not the method 2905 // we want, that just indicates if the decl came from a 2906 // property. What we want to know is if the method is defined in 2907 // this implementation. 2908 if (!D->getInstanceMethod(PD->getGetterName())) 2909 CodeGenFunction(*this).GenerateObjCGetter( 2910 const_cast<ObjCImplementationDecl *>(D), PID); 2911 if (!PD->isReadOnly() && 2912 !D->getInstanceMethod(PD->getSetterName())) 2913 CodeGenFunction(*this).GenerateObjCSetter( 2914 const_cast<ObjCImplementationDecl *>(D), PID); 2915 } 2916 } 2917 } 2918 2919 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2920 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2921 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2922 ivar; ivar = ivar->getNextIvar()) 2923 if (ivar->getType().isDestructedType()) 2924 return true; 2925 2926 return false; 2927 } 2928 2929 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2930 /// for an implementation. 2931 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2932 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2933 if (needsDestructMethod(D)) { 2934 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2935 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2936 ObjCMethodDecl *DTORMethod = 2937 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2938 cxxSelector, getContext().VoidTy, 0, D, 2939 /*isInstance=*/true, /*isVariadic=*/false, 2940 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2941 /*isDefined=*/false, ObjCMethodDecl::Required); 2942 D->addInstanceMethod(DTORMethod); 2943 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2944 D->setHasDestructors(true); 2945 } 2946 2947 // If the implementation doesn't have any ivar initializers, we don't need 2948 // a .cxx_construct. 2949 if (D->getNumIvarInitializers() == 0) 2950 return; 2951 2952 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2953 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2954 // The constructor returns 'self'. 2955 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2956 D->getLocation(), 2957 D->getLocation(), 2958 cxxSelector, 2959 getContext().getObjCIdType(), 0, 2960 D, /*isInstance=*/true, 2961 /*isVariadic=*/false, 2962 /*isPropertyAccessor=*/true, 2963 /*isImplicitlyDeclared=*/true, 2964 /*isDefined=*/false, 2965 ObjCMethodDecl::Required); 2966 D->addInstanceMethod(CTORMethod); 2967 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2968 D->setHasNonZeroConstructors(true); 2969 } 2970 2971 /// EmitNamespace - Emit all declarations in a namespace. 2972 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2973 for (auto *I : ND->decls()) { 2974 if (const auto *VD = dyn_cast<VarDecl>(I)) 2975 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2976 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2977 continue; 2978 EmitTopLevelDecl(I); 2979 } 2980 } 2981 2982 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2983 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2984 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2985 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2986 ErrorUnsupported(LSD, "linkage spec"); 2987 return; 2988 } 2989 2990 for (auto *I : LSD->decls()) { 2991 // Meta-data for ObjC class includes references to implemented methods. 2992 // Generate class's method definitions first. 2993 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 2994 for (auto *M : OID->methods()) 2995 EmitTopLevelDecl(M); 2996 } 2997 EmitTopLevelDecl(I); 2998 } 2999 } 3000 3001 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3002 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3003 // Ignore dependent declarations. 3004 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3005 return; 3006 3007 switch (D->getKind()) { 3008 case Decl::CXXConversion: 3009 case Decl::CXXMethod: 3010 case Decl::Function: 3011 // Skip function templates 3012 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3013 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3014 return; 3015 3016 EmitGlobal(cast<FunctionDecl>(D)); 3017 break; 3018 3019 case Decl::Var: 3020 // Skip variable templates 3021 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3022 return; 3023 case Decl::VarTemplateSpecialization: 3024 EmitGlobal(cast<VarDecl>(D)); 3025 break; 3026 3027 // Indirect fields from global anonymous structs and unions can be 3028 // ignored; only the actual variable requires IR gen support. 3029 case Decl::IndirectField: 3030 break; 3031 3032 // C++ Decls 3033 case Decl::Namespace: 3034 EmitNamespace(cast<NamespaceDecl>(D)); 3035 break; 3036 // No code generation needed. 3037 case Decl::UsingShadow: 3038 case Decl::ClassTemplate: 3039 case Decl::VarTemplate: 3040 case Decl::VarTemplatePartialSpecialization: 3041 case Decl::FunctionTemplate: 3042 case Decl::TypeAliasTemplate: 3043 case Decl::Block: 3044 case Decl::Empty: 3045 break; 3046 case Decl::Using: // using X; [C++] 3047 if (CGDebugInfo *DI = getModuleDebugInfo()) 3048 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3049 return; 3050 case Decl::NamespaceAlias: 3051 if (CGDebugInfo *DI = getModuleDebugInfo()) 3052 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3053 return; 3054 case Decl::UsingDirective: // using namespace X; [C++] 3055 if (CGDebugInfo *DI = getModuleDebugInfo()) 3056 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3057 return; 3058 case Decl::CXXConstructor: 3059 // Skip function templates 3060 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3061 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3062 return; 3063 3064 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3065 break; 3066 case Decl::CXXDestructor: 3067 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3068 return; 3069 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3070 break; 3071 3072 case Decl::StaticAssert: 3073 // Nothing to do. 3074 break; 3075 3076 // Objective-C Decls 3077 3078 // Forward declarations, no (immediate) code generation. 3079 case Decl::ObjCInterface: 3080 case Decl::ObjCCategory: 3081 break; 3082 3083 case Decl::ObjCProtocol: { 3084 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 3085 if (Proto->isThisDeclarationADefinition()) 3086 ObjCRuntime->GenerateProtocol(Proto); 3087 break; 3088 } 3089 3090 case Decl::ObjCCategoryImpl: 3091 // Categories have properties but don't support synthesize so we 3092 // can ignore them here. 3093 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3094 break; 3095 3096 case Decl::ObjCImplementation: { 3097 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 3098 EmitObjCPropertyImplementations(OMD); 3099 EmitObjCIvarInitializations(OMD); 3100 ObjCRuntime->GenerateClass(OMD); 3101 // Emit global variable debug information. 3102 if (CGDebugInfo *DI = getModuleDebugInfo()) 3103 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3104 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3105 OMD->getClassInterface()), OMD->getLocation()); 3106 break; 3107 } 3108 case Decl::ObjCMethod: { 3109 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 3110 // If this is not a prototype, emit the body. 3111 if (OMD->getBody()) 3112 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3113 break; 3114 } 3115 case Decl::ObjCCompatibleAlias: 3116 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3117 break; 3118 3119 case Decl::LinkageSpec: 3120 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3121 break; 3122 3123 case Decl::FileScopeAsm: { 3124 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 3125 StringRef AsmString = AD->getAsmString()->getString(); 3126 3127 const std::string &S = getModule().getModuleInlineAsm(); 3128 if (S.empty()) 3129 getModule().setModuleInlineAsm(AsmString); 3130 else if (S.end()[-1] == '\n') 3131 getModule().setModuleInlineAsm(S + AsmString.str()); 3132 else 3133 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3134 break; 3135 } 3136 3137 case Decl::Import: { 3138 ImportDecl *Import = cast<ImportDecl>(D); 3139 3140 // Ignore import declarations that come from imported modules. 3141 if (clang::Module *Owner = Import->getOwningModule()) { 3142 if (getLangOpts().CurrentModule.empty() || 3143 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3144 break; 3145 } 3146 3147 ImportedModules.insert(Import->getImportedModule()); 3148 break; 3149 } 3150 3151 case Decl::ClassTemplateSpecialization: { 3152 const ClassTemplateSpecializationDecl *Spec = 3153 cast<ClassTemplateSpecializationDecl>(D); 3154 if (DebugInfo && 3155 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3156 DebugInfo->completeTemplateDefinition(*Spec); 3157 } 3158 3159 default: 3160 // Make sure we handled everything we should, every other kind is a 3161 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3162 // function. Need to recode Decl::Kind to do that easily. 3163 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3164 } 3165 } 3166 3167 /// Turns the given pointer into a constant. 3168 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3169 const void *Ptr) { 3170 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3171 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3172 return llvm::ConstantInt::get(i64, PtrInt); 3173 } 3174 3175 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3176 llvm::NamedMDNode *&GlobalMetadata, 3177 GlobalDecl D, 3178 llvm::GlobalValue *Addr) { 3179 if (!GlobalMetadata) 3180 GlobalMetadata = 3181 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3182 3183 // TODO: should we report variant information for ctors/dtors? 3184 llvm::Value *Ops[] = { 3185 Addr, 3186 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3187 }; 3188 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3189 } 3190 3191 /// For each function which is declared within an extern "C" region and marked 3192 /// as 'used', but has internal linkage, create an alias from the unmangled 3193 /// name to the mangled name if possible. People expect to be able to refer 3194 /// to such functions with an unmangled name from inline assembly within the 3195 /// same translation unit. 3196 void CodeGenModule::EmitStaticExternCAliases() { 3197 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3198 E = StaticExternCValues.end(); 3199 I != E; ++I) { 3200 IdentifierInfo *Name = I->first; 3201 llvm::GlobalValue *Val = I->second; 3202 if (Val && !getModule().getNamedValue(Name->getName())) 3203 addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3204 Name->getName(), Val, &getModule())); 3205 } 3206 } 3207 3208 /// Emits metadata nodes associating all the global values in the 3209 /// current module with the Decls they came from. This is useful for 3210 /// projects using IR gen as a subroutine. 3211 /// 3212 /// Since there's currently no way to associate an MDNode directly 3213 /// with an llvm::GlobalValue, we create a global named metadata 3214 /// with the name 'clang.global.decl.ptrs'. 3215 void CodeGenModule::EmitDeclMetadata() { 3216 llvm::NamedMDNode *GlobalMetadata = 0; 3217 3218 // StaticLocalDeclMap 3219 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3220 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3221 I != E; ++I) { 3222 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3223 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3224 } 3225 } 3226 3227 /// Emits metadata nodes for all the local variables in the current 3228 /// function. 3229 void CodeGenFunction::EmitDeclMetadata() { 3230 if (LocalDeclMap.empty()) return; 3231 3232 llvm::LLVMContext &Context = getLLVMContext(); 3233 3234 // Find the unique metadata ID for this name. 3235 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3236 3237 llvm::NamedMDNode *GlobalMetadata = 0; 3238 3239 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3240 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3241 const Decl *D = I->first; 3242 llvm::Value *Addr = I->second; 3243 3244 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3245 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3246 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3247 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3248 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3249 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3250 } 3251 } 3252 } 3253 3254 void CodeGenModule::EmitVersionIdentMetadata() { 3255 llvm::NamedMDNode *IdentMetadata = 3256 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3257 std::string Version = getClangFullVersion(); 3258 llvm::LLVMContext &Ctx = TheModule.getContext(); 3259 3260 llvm::Value *IdentNode[] = { 3261 llvm::MDString::get(Ctx, Version) 3262 }; 3263 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3264 } 3265 3266 void CodeGenModule::EmitCoverageFile() { 3267 if (!getCodeGenOpts().CoverageFile.empty()) { 3268 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3269 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3270 llvm::LLVMContext &Ctx = TheModule.getContext(); 3271 llvm::MDString *CoverageFile = 3272 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3273 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3274 llvm::MDNode *CU = CUNode->getOperand(i); 3275 llvm::Value *node[] = { CoverageFile, CU }; 3276 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3277 GCov->addOperand(N); 3278 } 3279 } 3280 } 3281 } 3282 3283 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3284 QualType GuidType) { 3285 // Sema has checked that all uuid strings are of the form 3286 // "12345678-1234-1234-1234-1234567890ab". 3287 assert(Uuid.size() == 36); 3288 for (unsigned i = 0; i < 36; ++i) { 3289 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3290 else assert(isHexDigit(Uuid[i])); 3291 } 3292 3293 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3294 3295 llvm::Constant *Field3[8]; 3296 for (unsigned Idx = 0; Idx < 8; ++Idx) 3297 Field3[Idx] = llvm::ConstantInt::get( 3298 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3299 3300 llvm::Constant *Fields[4] = { 3301 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3302 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3303 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3304 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3305 }; 3306 3307 return llvm::ConstantStruct::getAnon(Fields); 3308 } 3309