1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/ConvertUTF.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/Module.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Frontend/CodeGenOptions.h" 39 #include "llvm/ADT/APSInt.h" 40 #include "llvm/ADT/Triple.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Target/Mangler.h" 49 using namespace clang; 50 using namespace CodeGen; 51 52 static const char AnnotationSection[] = "llvm.metadata"; 53 54 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 55 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 56 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 57 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 58 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 59 } 60 61 llvm_unreachable("invalid C++ ABI kind"); 62 } 63 64 65 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 66 llvm::Module &M, const llvm::DataLayout &TD, 67 DiagnosticsEngine &diags) 68 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 69 TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags), 70 ABI(createCXXABI(*this)), 71 Types(*this), 72 TBAA(0), 73 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 74 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 75 RRData(0), CFConstantStringClassRef(0), 76 ConstantStringClassRef(0), NSConstantStringType(0), 77 VMContext(M.getContext()), 78 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 79 BlockObjectAssign(0), BlockObjectDispose(0), 80 BlockDescriptorType(0), GenericBlockLiteralType(0) { 81 82 // Initialize the type cache. 83 llvm::LLVMContext &LLVMContext = M.getContext(); 84 VoidTy = llvm::Type::getVoidTy(LLVMContext); 85 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 86 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 87 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 88 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 89 FloatTy = llvm::Type::getFloatTy(LLVMContext); 90 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 91 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 92 PointerAlignInBytes = 93 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 94 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 95 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 96 Int8PtrTy = Int8Ty->getPointerTo(0); 97 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 98 99 if (LangOpts.ObjC1) 100 createObjCRuntime(); 101 if (LangOpts.OpenCL) 102 createOpenCLRuntime(); 103 if (LangOpts.CUDA) 104 createCUDARuntime(); 105 106 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 107 if (LangOpts.SanitizeThread || 108 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 109 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 110 ABI.getMangleContext()); 111 112 // If debug info or coverage generation is enabled, create the CGDebugInfo 113 // object. 114 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 115 CodeGenOpts.EmitGcovArcs || 116 CodeGenOpts.EmitGcovNotes) 117 DebugInfo = new CGDebugInfo(*this); 118 119 Block.GlobalUniqueCount = 0; 120 121 if (C.getLangOpts().ObjCAutoRefCount) 122 ARCData = new ARCEntrypoints(); 123 RRData = new RREntrypoints(); 124 } 125 126 CodeGenModule::~CodeGenModule() { 127 delete ObjCRuntime; 128 delete OpenCLRuntime; 129 delete CUDARuntime; 130 delete TheTargetCodeGenInfo; 131 delete &ABI; 132 delete TBAA; 133 delete DebugInfo; 134 delete ARCData; 135 delete RRData; 136 } 137 138 void CodeGenModule::createObjCRuntime() { 139 // This is just isGNUFamily(), but we want to force implementors of 140 // new ABIs to decide how best to do this. 141 switch (LangOpts.ObjCRuntime.getKind()) { 142 case ObjCRuntime::GNUstep: 143 case ObjCRuntime::GCC: 144 case ObjCRuntime::ObjFW: 145 ObjCRuntime = CreateGNUObjCRuntime(*this); 146 return; 147 148 case ObjCRuntime::FragileMacOSX: 149 case ObjCRuntime::MacOSX: 150 case ObjCRuntime::iOS: 151 ObjCRuntime = CreateMacObjCRuntime(*this); 152 return; 153 } 154 llvm_unreachable("bad runtime kind"); 155 } 156 157 void CodeGenModule::createOpenCLRuntime() { 158 OpenCLRuntime = new CGOpenCLRuntime(*this); 159 } 160 161 void CodeGenModule::createCUDARuntime() { 162 CUDARuntime = CreateNVCUDARuntime(*this); 163 } 164 165 void CodeGenModule::Release() { 166 EmitDeferred(); 167 EmitCXXGlobalInitFunc(); 168 EmitCXXGlobalDtorFunc(); 169 if (ObjCRuntime) 170 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 171 AddGlobalCtor(ObjCInitFunction); 172 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 173 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 174 EmitGlobalAnnotations(); 175 EmitLLVMUsed(); 176 177 if (CodeGenOpts.ModulesAutolink) { 178 EmitModuleLinkOptions(); 179 } 180 181 SimplifyPersonality(); 182 183 if (getCodeGenOpts().EmitDeclMetadata) 184 EmitDeclMetadata(); 185 186 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 187 EmitCoverageFile(); 188 189 if (DebugInfo) 190 DebugInfo->finalize(); 191 } 192 193 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 194 // Make sure that this type is translated. 195 Types.UpdateCompletedType(TD); 196 } 197 198 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 199 if (!TBAA) 200 return 0; 201 return TBAA->getTBAAInfo(QTy); 202 } 203 204 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 205 if (!TBAA) 206 return 0; 207 return TBAA->getTBAAInfoForVTablePtr(); 208 } 209 210 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 211 if (!TBAA) 212 return 0; 213 return TBAA->getTBAAStructInfo(QTy); 214 } 215 216 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 217 llvm::MDNode *TBAAInfo) { 218 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 219 } 220 221 bool CodeGenModule::isTargetDarwin() const { 222 return getContext().getTargetInfo().getTriple().isOSDarwin(); 223 } 224 225 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 226 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 227 getDiags().Report(Context.getFullLoc(loc), diagID); 228 } 229 230 /// ErrorUnsupported - Print out an error that codegen doesn't support the 231 /// specified stmt yet. 232 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 233 bool OmitOnError) { 234 if (OmitOnError && getDiags().hasErrorOccurred()) 235 return; 236 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 237 "cannot compile this %0 yet"); 238 std::string Msg = Type; 239 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 240 << Msg << S->getSourceRange(); 241 } 242 243 /// ErrorUnsupported - Print out an error that codegen doesn't support the 244 /// specified decl yet. 245 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 246 bool OmitOnError) { 247 if (OmitOnError && getDiags().hasErrorOccurred()) 248 return; 249 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 250 "cannot compile this %0 yet"); 251 std::string Msg = Type; 252 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 253 } 254 255 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 256 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 257 } 258 259 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 260 const NamedDecl *D) const { 261 // Internal definitions always have default visibility. 262 if (GV->hasLocalLinkage()) { 263 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 264 return; 265 } 266 267 // Set visibility for definitions. 268 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 269 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 270 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 271 } 272 273 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 274 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 275 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 276 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 277 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 278 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 279 } 280 281 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 282 CodeGenOptions::TLSModel M) { 283 switch (M) { 284 case CodeGenOptions::GeneralDynamicTLSModel: 285 return llvm::GlobalVariable::GeneralDynamicTLSModel; 286 case CodeGenOptions::LocalDynamicTLSModel: 287 return llvm::GlobalVariable::LocalDynamicTLSModel; 288 case CodeGenOptions::InitialExecTLSModel: 289 return llvm::GlobalVariable::InitialExecTLSModel; 290 case CodeGenOptions::LocalExecTLSModel: 291 return llvm::GlobalVariable::LocalExecTLSModel; 292 } 293 llvm_unreachable("Invalid TLS model!"); 294 } 295 296 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 297 const VarDecl &D) const { 298 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!"); 299 300 llvm::GlobalVariable::ThreadLocalMode TLM; 301 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 302 303 // Override the TLS model if it is explicitly specified. 304 if (D.hasAttr<TLSModelAttr>()) { 305 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 306 TLM = GetLLVMTLSModel(Attr->getModel()); 307 } 308 309 GV->setThreadLocalMode(TLM); 310 } 311 312 /// Set the symbol visibility of type information (vtable and RTTI) 313 /// associated with the given type. 314 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 315 const CXXRecordDecl *RD, 316 TypeVisibilityKind TVK) const { 317 setGlobalVisibility(GV, RD); 318 319 if (!CodeGenOpts.HiddenWeakVTables) 320 return; 321 322 // We never want to drop the visibility for RTTI names. 323 if (TVK == TVK_ForRTTIName) 324 return; 325 326 // We want to drop the visibility to hidden for weak type symbols. 327 // This isn't possible if there might be unresolved references 328 // elsewhere that rely on this symbol being visible. 329 330 // This should be kept roughly in sync with setThunkVisibility 331 // in CGVTables.cpp. 332 333 // Preconditions. 334 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 335 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 336 return; 337 338 // Don't override an explicit visibility attribute. 339 if (RD->getExplicitVisibility()) 340 return; 341 342 switch (RD->getTemplateSpecializationKind()) { 343 // We have to disable the optimization if this is an EI definition 344 // because there might be EI declarations in other shared objects. 345 case TSK_ExplicitInstantiationDefinition: 346 case TSK_ExplicitInstantiationDeclaration: 347 return; 348 349 // Every use of a non-template class's type information has to emit it. 350 case TSK_Undeclared: 351 break; 352 353 // In theory, implicit instantiations can ignore the possibility of 354 // an explicit instantiation declaration because there necessarily 355 // must be an EI definition somewhere with default visibility. In 356 // practice, it's possible to have an explicit instantiation for 357 // an arbitrary template class, and linkers aren't necessarily able 358 // to deal with mixed-visibility symbols. 359 case TSK_ExplicitSpecialization: 360 case TSK_ImplicitInstantiation: 361 return; 362 } 363 364 // If there's a key function, there may be translation units 365 // that don't have the key function's definition. But ignore 366 // this if we're emitting RTTI under -fno-rtti. 367 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 368 if (Context.getKeyFunction(RD)) 369 return; 370 } 371 372 // Otherwise, drop the visibility to hidden. 373 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 374 GV->setUnnamedAddr(true); 375 } 376 377 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 378 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 379 380 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 381 if (!Str.empty()) 382 return Str; 383 384 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 385 IdentifierInfo *II = ND->getIdentifier(); 386 assert(II && "Attempt to mangle unnamed decl."); 387 388 Str = II->getName(); 389 return Str; 390 } 391 392 SmallString<256> Buffer; 393 llvm::raw_svector_ostream Out(Buffer); 394 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 395 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 396 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 397 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 398 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 399 getCXXABI().getMangleContext().mangleBlock(BD, Out, 400 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl())); 401 else 402 getCXXABI().getMangleContext().mangleName(ND, Out); 403 404 // Allocate space for the mangled name. 405 Out.flush(); 406 size_t Length = Buffer.size(); 407 char *Name = MangledNamesAllocator.Allocate<char>(Length); 408 std::copy(Buffer.begin(), Buffer.end(), Name); 409 410 Str = StringRef(Name, Length); 411 412 return Str; 413 } 414 415 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 416 const BlockDecl *BD) { 417 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 418 const Decl *D = GD.getDecl(); 419 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 420 if (D == 0) 421 MangleCtx.mangleGlobalBlock(BD, 422 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 423 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 424 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 425 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 426 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 427 else 428 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 429 } 430 431 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 432 return getModule().getNamedValue(Name); 433 } 434 435 /// AddGlobalCtor - Add a function to the list that will be called before 436 /// main() runs. 437 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 438 // FIXME: Type coercion of void()* types. 439 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 440 } 441 442 /// AddGlobalDtor - Add a function to the list that will be called 443 /// when the module is unloaded. 444 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 445 // FIXME: Type coercion of void()* types. 446 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 447 } 448 449 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 450 // Ctor function type is void()*. 451 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 452 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 453 454 // Get the type of a ctor entry, { i32, void ()* }. 455 llvm::StructType *CtorStructTy = 456 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 457 458 // Construct the constructor and destructor arrays. 459 SmallVector<llvm::Constant*, 8> Ctors; 460 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 461 llvm::Constant *S[] = { 462 llvm::ConstantInt::get(Int32Ty, I->second, false), 463 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 464 }; 465 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 466 } 467 468 if (!Ctors.empty()) { 469 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 470 new llvm::GlobalVariable(TheModule, AT, false, 471 llvm::GlobalValue::AppendingLinkage, 472 llvm::ConstantArray::get(AT, Ctors), 473 GlobalName); 474 } 475 } 476 477 llvm::GlobalValue::LinkageTypes 478 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 479 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 480 481 if (Linkage == GVA_Internal) 482 return llvm::Function::InternalLinkage; 483 484 if (D->hasAttr<DLLExportAttr>()) 485 return llvm::Function::DLLExportLinkage; 486 487 if (D->hasAttr<WeakAttr>()) 488 return llvm::Function::WeakAnyLinkage; 489 490 // In C99 mode, 'inline' functions are guaranteed to have a strong 491 // definition somewhere else, so we can use available_externally linkage. 492 if (Linkage == GVA_C99Inline) 493 return llvm::Function::AvailableExternallyLinkage; 494 495 // Note that Apple's kernel linker doesn't support symbol 496 // coalescing, so we need to avoid linkonce and weak linkages there. 497 // Normally, this means we just map to internal, but for explicit 498 // instantiations we'll map to external. 499 500 // In C++, the compiler has to emit a definition in every translation unit 501 // that references the function. We should use linkonce_odr because 502 // a) if all references in this translation unit are optimized away, we 503 // don't need to codegen it. b) if the function persists, it needs to be 504 // merged with other definitions. c) C++ has the ODR, so we know the 505 // definition is dependable. 506 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 507 return !Context.getLangOpts().AppleKext 508 ? llvm::Function::LinkOnceODRLinkage 509 : llvm::Function::InternalLinkage; 510 511 // An explicit instantiation of a template has weak linkage, since 512 // explicit instantiations can occur in multiple translation units 513 // and must all be equivalent. However, we are not allowed to 514 // throw away these explicit instantiations. 515 if (Linkage == GVA_ExplicitTemplateInstantiation) 516 return !Context.getLangOpts().AppleKext 517 ? llvm::Function::WeakODRLinkage 518 : llvm::Function::ExternalLinkage; 519 520 // Otherwise, we have strong external linkage. 521 assert(Linkage == GVA_StrongExternal); 522 return llvm::Function::ExternalLinkage; 523 } 524 525 526 /// SetFunctionDefinitionAttributes - Set attributes for a global. 527 /// 528 /// FIXME: This is currently only done for aliases and functions, but not for 529 /// variables (these details are set in EmitGlobalVarDefinition for variables). 530 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 531 llvm::GlobalValue *GV) { 532 SetCommonAttributes(D, GV); 533 } 534 535 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 536 const CGFunctionInfo &Info, 537 llvm::Function *F) { 538 unsigned CallingConv; 539 AttributeListType AttributeList; 540 ConstructAttributeList(Info, D, AttributeList, CallingConv); 541 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 542 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 543 } 544 545 /// Determines whether the language options require us to model 546 /// unwind exceptions. We treat -fexceptions as mandating this 547 /// except under the fragile ObjC ABI with only ObjC exceptions 548 /// enabled. This means, for example, that C with -fexceptions 549 /// enables this. 550 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 551 // If exceptions are completely disabled, obviously this is false. 552 if (!LangOpts.Exceptions) return false; 553 554 // If C++ exceptions are enabled, this is true. 555 if (LangOpts.CXXExceptions) return true; 556 557 // If ObjC exceptions are enabled, this depends on the ABI. 558 if (LangOpts.ObjCExceptions) { 559 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 560 } 561 562 return true; 563 } 564 565 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 566 llvm::Function *F) { 567 if (CodeGenOpts.UnwindTables) 568 F->setHasUWTable(); 569 570 if (!hasUnwindExceptions(LangOpts)) 571 F->addFnAttr(llvm::Attribute::NoUnwind); 572 573 if (D->hasAttr<NakedAttr>()) { 574 // Naked implies noinline: we should not be inlining such functions. 575 F->addFnAttr(llvm::Attribute::Naked); 576 F->addFnAttr(llvm::Attribute::NoInline); 577 } 578 579 if (D->hasAttr<NoInlineAttr>()) 580 F->addFnAttr(llvm::Attribute::NoInline); 581 582 // (noinline wins over always_inline, and we can't specify both in IR) 583 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 584 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 585 llvm::Attribute::NoInline)) 586 F->addFnAttr(llvm::Attribute::AlwaysInline); 587 588 // FIXME: Communicate hot and cold attributes to LLVM more directly. 589 if (D->hasAttr<ColdAttr>()) 590 F->addFnAttr(llvm::Attribute::OptimizeForSize); 591 592 if (D->hasAttr<MinSizeAttr>()) 593 F->addFnAttr(llvm::Attribute::MinSize); 594 595 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 596 F->setUnnamedAddr(true); 597 598 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 599 if (MD->isVirtual()) 600 F->setUnnamedAddr(true); 601 602 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 603 F->addFnAttr(llvm::Attribute::StackProtect); 604 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 605 F->addFnAttr(llvm::Attribute::StackProtectReq); 606 607 if (LangOpts.SanitizeAddress) { 608 // When AddressSanitizer is enabled, set AddressSafety attribute 609 // unless __attribute__((no_address_safety_analysis)) is used. 610 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 611 F->addFnAttr(llvm::Attribute::AddressSafety); 612 } 613 614 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 615 if (alignment) 616 F->setAlignment(alignment); 617 618 // C++ ABI requires 2-byte alignment for member functions. 619 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 620 F->setAlignment(2); 621 } 622 623 void CodeGenModule::SetCommonAttributes(const Decl *D, 624 llvm::GlobalValue *GV) { 625 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 626 setGlobalVisibility(GV, ND); 627 else 628 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 629 630 if (D->hasAttr<UsedAttr>()) 631 AddUsedGlobal(GV); 632 633 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 634 GV->setSection(SA->getName()); 635 636 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 637 } 638 639 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 640 llvm::Function *F, 641 const CGFunctionInfo &FI) { 642 SetLLVMFunctionAttributes(D, FI, F); 643 SetLLVMFunctionAttributesForDefinition(D, F); 644 645 F->setLinkage(llvm::Function::InternalLinkage); 646 647 SetCommonAttributes(D, F); 648 } 649 650 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 651 llvm::Function *F, 652 bool IsIncompleteFunction) { 653 if (unsigned IID = F->getIntrinsicID()) { 654 // If this is an intrinsic function, set the function's attributes 655 // to the intrinsic's attributes. 656 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 657 (llvm::Intrinsic::ID)IID)); 658 return; 659 } 660 661 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 662 663 if (!IsIncompleteFunction) 664 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 665 666 // Only a few attributes are set on declarations; these may later be 667 // overridden by a definition. 668 669 if (FD->hasAttr<DLLImportAttr>()) { 670 F->setLinkage(llvm::Function::DLLImportLinkage); 671 } else if (FD->hasAttr<WeakAttr>() || 672 FD->isWeakImported()) { 673 // "extern_weak" is overloaded in LLVM; we probably should have 674 // separate linkage types for this. 675 F->setLinkage(llvm::Function::ExternalWeakLinkage); 676 } else { 677 F->setLinkage(llvm::Function::ExternalLinkage); 678 679 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 680 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 681 F->setVisibility(GetLLVMVisibility(LV.visibility())); 682 } 683 } 684 685 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 686 F->setSection(SA->getName()); 687 } 688 689 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 690 assert(!GV->isDeclaration() && 691 "Only globals with definition can force usage."); 692 LLVMUsed.push_back(GV); 693 } 694 695 void CodeGenModule::EmitLLVMUsed() { 696 // Don't create llvm.used if there is no need. 697 if (LLVMUsed.empty()) 698 return; 699 700 // Convert LLVMUsed to what ConstantArray needs. 701 SmallVector<llvm::Constant*, 8> UsedArray; 702 UsedArray.resize(LLVMUsed.size()); 703 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 704 UsedArray[i] = 705 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 706 Int8PtrTy); 707 } 708 709 if (UsedArray.empty()) 710 return; 711 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 712 713 llvm::GlobalVariable *GV = 714 new llvm::GlobalVariable(getModule(), ATy, false, 715 llvm::GlobalValue::AppendingLinkage, 716 llvm::ConstantArray::get(ATy, UsedArray), 717 "llvm.used"); 718 719 GV->setSection("llvm.metadata"); 720 } 721 722 /// \brief Add link options implied by the given module, including modules 723 /// it depends on, using a postorder walk. 724 static void addLinkOptionsPostorder(llvm::LLVMContext &Context, 725 Module *Mod, 726 SmallVectorImpl<llvm::MDNode *> &Metadata, 727 llvm::SmallPtrSet<Module *, 16> &Visited) { 728 // Import this module's parent. 729 if (Mod->Parent && Visited.insert(Mod->Parent)) { 730 addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited); 731 } 732 733 // Import this module's dependencies. 734 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 735 if (Visited.insert(Mod->Imports[I-1])) 736 addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited); 737 } 738 739 // Add linker options to link against the libraries/frameworks 740 // described by this module. 741 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 742 // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric. 743 // We need to know more about the linker to know how to encode these 744 // options propertly. 745 746 // Link against a framework. 747 if (Mod->LinkLibraries[I-1].IsFramework) { 748 llvm::Value *Args[2] = { 749 llvm::MDString::get(Context, "-framework"), 750 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 751 }; 752 753 Metadata.push_back(llvm::MDNode::get(Context, Args)); 754 continue; 755 } 756 757 // Link against a library. 758 llvm::Value *OptString 759 = llvm::MDString::get(Context, 760 "-l" + Mod->LinkLibraries[I-1].Library); 761 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 762 } 763 } 764 765 void CodeGenModule::EmitModuleLinkOptions() { 766 // Collect the set of all of the modules we want to visit to emit link 767 // options, which is essentially the imported modules and all of their 768 // non-explicit child modules. 769 llvm::SetVector<clang::Module *> LinkModules; 770 llvm::SmallPtrSet<clang::Module *, 16> Visited; 771 SmallVector<clang::Module *, 16> Stack; 772 773 // Seed the stack with imported modules. 774 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 775 MEnd = ImportedModules.end(); 776 M != MEnd; ++M) { 777 if (Visited.insert(*M)) 778 Stack.push_back(*M); 779 } 780 781 // Find all of the modules to import, making a little effort to prune 782 // non-leaf modules. 783 while (!Stack.empty()) { 784 clang::Module *Mod = Stack.back(); 785 Stack.pop_back(); 786 787 bool AnyChildren = false; 788 789 // Visit the submodules of this module. 790 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 791 SubEnd = Mod->submodule_end(); 792 Sub != SubEnd; ++Sub) { 793 // Skip explicit children; they need to be explicitly imported to be 794 // linked against. 795 if ((*Sub)->IsExplicit) 796 continue; 797 798 if (Visited.insert(*Sub)) { 799 Stack.push_back(*Sub); 800 AnyChildren = true; 801 } 802 } 803 804 // We didn't find any children, so add this module to the list of 805 // modules to link against. 806 if (!AnyChildren) { 807 LinkModules.insert(Mod); 808 } 809 } 810 811 // Add link options for all of the imported modules in reverse topological 812 // order. 813 SmallVector<llvm::MDNode *, 16> MetadataArgs; 814 Visited.clear(); 815 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 816 MEnd = LinkModules.end(); 817 M != MEnd; ++M) { 818 if (Visited.insert(*M)) 819 addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited); 820 } 821 822 // Get/create metadata for the link options. 823 llvm::NamedMDNode *Metadata 824 = getModule().getOrInsertNamedMetadata("llvm.module.linkoptions"); 825 826 // Add link options in topological order. 827 for (unsigned I = MetadataArgs.size(); I > 0; --I) { 828 Metadata->addOperand(MetadataArgs[I-1]); 829 } 830 } 831 832 void CodeGenModule::EmitDeferred() { 833 // Emit code for any potentially referenced deferred decls. Since a 834 // previously unused static decl may become used during the generation of code 835 // for a static function, iterate until no changes are made. 836 837 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 838 if (!DeferredVTables.empty()) { 839 const CXXRecordDecl *RD = DeferredVTables.back(); 840 DeferredVTables.pop_back(); 841 getCXXABI().EmitVTables(RD); 842 continue; 843 } 844 845 GlobalDecl D = DeferredDeclsToEmit.back(); 846 DeferredDeclsToEmit.pop_back(); 847 848 // Check to see if we've already emitted this. This is necessary 849 // for a couple of reasons: first, decls can end up in the 850 // deferred-decls queue multiple times, and second, decls can end 851 // up with definitions in unusual ways (e.g. by an extern inline 852 // function acquiring a strong function redefinition). Just 853 // ignore these cases. 854 // 855 // TODO: That said, looking this up multiple times is very wasteful. 856 StringRef Name = getMangledName(D); 857 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 858 assert(CGRef && "Deferred decl wasn't referenced?"); 859 860 if (!CGRef->isDeclaration()) 861 continue; 862 863 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 864 // purposes an alias counts as a definition. 865 if (isa<llvm::GlobalAlias>(CGRef)) 866 continue; 867 868 // Otherwise, emit the definition and move on to the next one. 869 EmitGlobalDefinition(D); 870 } 871 } 872 873 void CodeGenModule::EmitGlobalAnnotations() { 874 if (Annotations.empty()) 875 return; 876 877 // Create a new global variable for the ConstantStruct in the Module. 878 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 879 Annotations[0]->getType(), Annotations.size()), Annotations); 880 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 881 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 882 "llvm.global.annotations"); 883 gv->setSection(AnnotationSection); 884 } 885 886 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 887 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 888 if (i != AnnotationStrings.end()) 889 return i->second; 890 891 // Not found yet, create a new global. 892 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 893 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 894 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 895 gv->setSection(AnnotationSection); 896 gv->setUnnamedAddr(true); 897 AnnotationStrings[Str] = gv; 898 return gv; 899 } 900 901 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 902 SourceManager &SM = getContext().getSourceManager(); 903 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 904 if (PLoc.isValid()) 905 return EmitAnnotationString(PLoc.getFilename()); 906 return EmitAnnotationString(SM.getBufferName(Loc)); 907 } 908 909 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 910 SourceManager &SM = getContext().getSourceManager(); 911 PresumedLoc PLoc = SM.getPresumedLoc(L); 912 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 913 SM.getExpansionLineNumber(L); 914 return llvm::ConstantInt::get(Int32Ty, LineNo); 915 } 916 917 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 918 const AnnotateAttr *AA, 919 SourceLocation L) { 920 // Get the globals for file name, annotation, and the line number. 921 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 922 *UnitGV = EmitAnnotationUnit(L), 923 *LineNoCst = EmitAnnotationLineNo(L); 924 925 // Create the ConstantStruct for the global annotation. 926 llvm::Constant *Fields[4] = { 927 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 928 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 929 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 930 LineNoCst 931 }; 932 return llvm::ConstantStruct::getAnon(Fields); 933 } 934 935 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 936 llvm::GlobalValue *GV) { 937 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 938 // Get the struct elements for these annotations. 939 for (specific_attr_iterator<AnnotateAttr> 940 ai = D->specific_attr_begin<AnnotateAttr>(), 941 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 942 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 943 } 944 945 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 946 // Never defer when EmitAllDecls is specified. 947 if (LangOpts.EmitAllDecls) 948 return false; 949 950 return !getContext().DeclMustBeEmitted(Global); 951 } 952 953 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 954 const CXXUuidofExpr* E) { 955 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 956 // well-formed. 957 StringRef Uuid; 958 if (E->isTypeOperand()) 959 Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid(); 960 else { 961 // Special case: __uuidof(0) means an all-zero GUID. 962 Expr *Op = E->getExprOperand(); 963 if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 964 Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid(); 965 else 966 Uuid = "00000000-0000-0000-0000-000000000000"; 967 } 968 std::string Name = "__uuid_" + Uuid.str(); 969 970 // Look for an existing global. 971 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 972 return GV; 973 974 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 975 assert(Init && "failed to initialize as constant"); 976 977 // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the 978 // first field is declared as "long", which for many targets is 8 bytes. 979 // Those architectures are not supported. (With the MS abi, long is always 4 980 // bytes.) 981 llvm::Type *GuidType = getTypes().ConvertType(E->getType()); 982 if (Init->getType() != GuidType) { 983 DiagnosticsEngine &Diags = getDiags(); 984 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 985 "__uuidof codegen is not supported on this architecture"); 986 Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange(); 987 Init = llvm::UndefValue::get(GuidType); 988 } 989 990 llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType, 991 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name); 992 GV->setUnnamedAddr(true); 993 return GV; 994 } 995 996 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 997 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 998 assert(AA && "No alias?"); 999 1000 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1001 1002 // See if there is already something with the target's name in the module. 1003 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1004 if (Entry) { 1005 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1006 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1007 } 1008 1009 llvm::Constant *Aliasee; 1010 if (isa<llvm::FunctionType>(DeclTy)) 1011 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1012 GlobalDecl(cast<FunctionDecl>(VD)), 1013 /*ForVTable=*/false); 1014 else 1015 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1016 llvm::PointerType::getUnqual(DeclTy), 0); 1017 1018 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1019 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1020 WeakRefReferences.insert(F); 1021 1022 return Aliasee; 1023 } 1024 1025 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1026 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1027 1028 // Weak references don't produce any output by themselves. 1029 if (Global->hasAttr<WeakRefAttr>()) 1030 return; 1031 1032 // If this is an alias definition (which otherwise looks like a declaration) 1033 // emit it now. 1034 if (Global->hasAttr<AliasAttr>()) 1035 return EmitAliasDefinition(GD); 1036 1037 // If this is CUDA, be selective about which declarations we emit. 1038 if (LangOpts.CUDA) { 1039 if (CodeGenOpts.CUDAIsDevice) { 1040 if (!Global->hasAttr<CUDADeviceAttr>() && 1041 !Global->hasAttr<CUDAGlobalAttr>() && 1042 !Global->hasAttr<CUDAConstantAttr>() && 1043 !Global->hasAttr<CUDASharedAttr>()) 1044 return; 1045 } else { 1046 if (!Global->hasAttr<CUDAHostAttr>() && ( 1047 Global->hasAttr<CUDADeviceAttr>() || 1048 Global->hasAttr<CUDAConstantAttr>() || 1049 Global->hasAttr<CUDASharedAttr>())) 1050 return; 1051 } 1052 } 1053 1054 // Ignore declarations, they will be emitted on their first use. 1055 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1056 // Forward declarations are emitted lazily on first use. 1057 if (!FD->doesThisDeclarationHaveABody()) { 1058 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1059 return; 1060 1061 const FunctionDecl *InlineDefinition = 0; 1062 FD->getBody(InlineDefinition); 1063 1064 StringRef MangledName = getMangledName(GD); 1065 DeferredDecls.erase(MangledName); 1066 EmitGlobalDefinition(InlineDefinition); 1067 return; 1068 } 1069 } else { 1070 const VarDecl *VD = cast<VarDecl>(Global); 1071 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1072 1073 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1074 return; 1075 } 1076 1077 // Defer code generation when possible if this is a static definition, inline 1078 // function etc. These we only want to emit if they are used. 1079 if (!MayDeferGeneration(Global)) { 1080 // Emit the definition if it can't be deferred. 1081 EmitGlobalDefinition(GD); 1082 return; 1083 } 1084 1085 // If we're deferring emission of a C++ variable with an 1086 // initializer, remember the order in which it appeared in the file. 1087 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1088 cast<VarDecl>(Global)->hasInit()) { 1089 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1090 CXXGlobalInits.push_back(0); 1091 } 1092 1093 // If the value has already been used, add it directly to the 1094 // DeferredDeclsToEmit list. 1095 StringRef MangledName = getMangledName(GD); 1096 if (GetGlobalValue(MangledName)) 1097 DeferredDeclsToEmit.push_back(GD); 1098 else { 1099 // Otherwise, remember that we saw a deferred decl with this name. The 1100 // first use of the mangled name will cause it to move into 1101 // DeferredDeclsToEmit. 1102 DeferredDecls[MangledName] = GD; 1103 } 1104 } 1105 1106 namespace { 1107 struct FunctionIsDirectlyRecursive : 1108 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1109 const StringRef Name; 1110 const Builtin::Context &BI; 1111 bool Result; 1112 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1113 Name(N), BI(C), Result(false) { 1114 } 1115 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1116 1117 bool TraverseCallExpr(CallExpr *E) { 1118 const FunctionDecl *FD = E->getDirectCallee(); 1119 if (!FD) 1120 return true; 1121 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1122 if (Attr && Name == Attr->getLabel()) { 1123 Result = true; 1124 return false; 1125 } 1126 unsigned BuiltinID = FD->getBuiltinID(); 1127 if (!BuiltinID) 1128 return true; 1129 StringRef BuiltinName = BI.GetName(BuiltinID); 1130 if (BuiltinName.startswith("__builtin_") && 1131 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1132 Result = true; 1133 return false; 1134 } 1135 return true; 1136 } 1137 }; 1138 } 1139 1140 // isTriviallyRecursive - Check if this function calls another 1141 // decl that, because of the asm attribute or the other decl being a builtin, 1142 // ends up pointing to itself. 1143 bool 1144 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1145 StringRef Name; 1146 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1147 // asm labels are a special kind of mangling we have to support. 1148 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1149 if (!Attr) 1150 return false; 1151 Name = Attr->getLabel(); 1152 } else { 1153 Name = FD->getName(); 1154 } 1155 1156 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1157 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1158 return Walker.Result; 1159 } 1160 1161 bool 1162 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 1163 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 1164 return true; 1165 if (CodeGenOpts.OptimizationLevel == 0 && 1166 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1167 return false; 1168 // PR9614. Avoid cases where the source code is lying to us. An available 1169 // externally function should have an equivalent function somewhere else, 1170 // but a function that calls itself is clearly not equivalent to the real 1171 // implementation. 1172 // This happens in glibc's btowc and in some configure checks. 1173 return !isTriviallyRecursive(F); 1174 } 1175 1176 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1177 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1178 1179 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1180 Context.getSourceManager(), 1181 "Generating code for declaration"); 1182 1183 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1184 // At -O0, don't generate IR for functions with available_externally 1185 // linkage. 1186 if (!shouldEmitFunction(Function)) 1187 return; 1188 1189 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1190 // Make sure to emit the definition(s) before we emit the thunks. 1191 // This is necessary for the generation of certain thunks. 1192 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1193 EmitCXXConstructor(CD, GD.getCtorType()); 1194 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1195 EmitCXXDestructor(DD, GD.getDtorType()); 1196 else 1197 EmitGlobalFunctionDefinition(GD); 1198 1199 if (Method->isVirtual()) 1200 getVTables().EmitThunks(GD); 1201 1202 return; 1203 } 1204 1205 return EmitGlobalFunctionDefinition(GD); 1206 } 1207 1208 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1209 return EmitGlobalVarDefinition(VD); 1210 1211 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1212 } 1213 1214 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1215 /// module, create and return an llvm Function with the specified type. If there 1216 /// is something in the module with the specified name, return it potentially 1217 /// bitcasted to the right type. 1218 /// 1219 /// If D is non-null, it specifies a decl that correspond to this. This is used 1220 /// to set the attributes on the function when it is first created. 1221 llvm::Constant * 1222 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1223 llvm::Type *Ty, 1224 GlobalDecl D, bool ForVTable, 1225 llvm::Attribute ExtraAttrs) { 1226 // Lookup the entry, lazily creating it if necessary. 1227 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1228 if (Entry) { 1229 if (WeakRefReferences.erase(Entry)) { 1230 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1231 if (FD && !FD->hasAttr<WeakAttr>()) 1232 Entry->setLinkage(llvm::Function::ExternalLinkage); 1233 } 1234 1235 if (Entry->getType()->getElementType() == Ty) 1236 return Entry; 1237 1238 // Make sure the result is of the correct type. 1239 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1240 } 1241 1242 // This function doesn't have a complete type (for example, the return 1243 // type is an incomplete struct). Use a fake type instead, and make 1244 // sure not to try to set attributes. 1245 bool IsIncompleteFunction = false; 1246 1247 llvm::FunctionType *FTy; 1248 if (isa<llvm::FunctionType>(Ty)) { 1249 FTy = cast<llvm::FunctionType>(Ty); 1250 } else { 1251 FTy = llvm::FunctionType::get(VoidTy, false); 1252 IsIncompleteFunction = true; 1253 } 1254 1255 llvm::Function *F = llvm::Function::Create(FTy, 1256 llvm::Function::ExternalLinkage, 1257 MangledName, &getModule()); 1258 assert(F->getName() == MangledName && "name was uniqued!"); 1259 if (D.getDecl()) 1260 SetFunctionAttributes(D, F, IsIncompleteFunction); 1261 if (ExtraAttrs.hasAttributes()) 1262 F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs); 1263 1264 // This is the first use or definition of a mangled name. If there is a 1265 // deferred decl with this name, remember that we need to emit it at the end 1266 // of the file. 1267 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1268 if (DDI != DeferredDecls.end()) { 1269 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1270 // list, and remove it from DeferredDecls (since we don't need it anymore). 1271 DeferredDeclsToEmit.push_back(DDI->second); 1272 DeferredDecls.erase(DDI); 1273 1274 // Otherwise, there are cases we have to worry about where we're 1275 // using a declaration for which we must emit a definition but where 1276 // we might not find a top-level definition: 1277 // - member functions defined inline in their classes 1278 // - friend functions defined inline in some class 1279 // - special member functions with implicit definitions 1280 // If we ever change our AST traversal to walk into class methods, 1281 // this will be unnecessary. 1282 // 1283 // We also don't emit a definition for a function if it's going to be an entry 1284 // in a vtable, unless it's already marked as used. 1285 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1286 // Look for a declaration that's lexically in a record. 1287 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1288 FD = FD->getMostRecentDecl(); 1289 do { 1290 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1291 if (FD->isImplicit() && !ForVTable) { 1292 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1293 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1294 break; 1295 } else if (FD->doesThisDeclarationHaveABody()) { 1296 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1297 break; 1298 } 1299 } 1300 FD = FD->getPreviousDecl(); 1301 } while (FD); 1302 } 1303 1304 // Make sure the result is of the requested type. 1305 if (!IsIncompleteFunction) { 1306 assert(F->getType()->getElementType() == Ty); 1307 return F; 1308 } 1309 1310 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1311 return llvm::ConstantExpr::getBitCast(F, PTy); 1312 } 1313 1314 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1315 /// non-null, then this function will use the specified type if it has to 1316 /// create it (this occurs when we see a definition of the function). 1317 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1318 llvm::Type *Ty, 1319 bool ForVTable) { 1320 // If there was no specific requested type, just convert it now. 1321 if (!Ty) 1322 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1323 1324 StringRef MangledName = getMangledName(GD); 1325 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1326 } 1327 1328 /// CreateRuntimeFunction - Create a new runtime function with the specified 1329 /// type and name. 1330 llvm::Constant * 1331 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1332 StringRef Name, 1333 llvm::Attribute ExtraAttrs) { 1334 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1335 ExtraAttrs); 1336 } 1337 1338 /// isTypeConstant - Determine whether an object of this type can be emitted 1339 /// as a constant. 1340 /// 1341 /// If ExcludeCtor is true, the duration when the object's constructor runs 1342 /// will not be considered. The caller will need to verify that the object is 1343 /// not written to during its construction. 1344 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1345 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1346 return false; 1347 1348 if (Context.getLangOpts().CPlusPlus) { 1349 if (const CXXRecordDecl *Record 1350 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1351 return ExcludeCtor && !Record->hasMutableFields() && 1352 Record->hasTrivialDestructor(); 1353 } 1354 1355 return true; 1356 } 1357 1358 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1359 /// create and return an llvm GlobalVariable with the specified type. If there 1360 /// is something in the module with the specified name, return it potentially 1361 /// bitcasted to the right type. 1362 /// 1363 /// If D is non-null, it specifies a decl that correspond to this. This is used 1364 /// to set the attributes on the global when it is first created. 1365 llvm::Constant * 1366 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1367 llvm::PointerType *Ty, 1368 const VarDecl *D, 1369 bool UnnamedAddr) { 1370 // Lookup the entry, lazily creating it if necessary. 1371 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1372 if (Entry) { 1373 if (WeakRefReferences.erase(Entry)) { 1374 if (D && !D->hasAttr<WeakAttr>()) 1375 Entry->setLinkage(llvm::Function::ExternalLinkage); 1376 } 1377 1378 if (UnnamedAddr) 1379 Entry->setUnnamedAddr(true); 1380 1381 if (Entry->getType() == Ty) 1382 return Entry; 1383 1384 // Make sure the result is of the correct type. 1385 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1386 } 1387 1388 // This is the first use or definition of a mangled name. If there is a 1389 // deferred decl with this name, remember that we need to emit it at the end 1390 // of the file. 1391 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1392 if (DDI != DeferredDecls.end()) { 1393 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1394 // list, and remove it from DeferredDecls (since we don't need it anymore). 1395 DeferredDeclsToEmit.push_back(DDI->second); 1396 DeferredDecls.erase(DDI); 1397 } 1398 1399 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1400 llvm::GlobalVariable *GV = 1401 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1402 llvm::GlobalValue::ExternalLinkage, 1403 0, MangledName, 0, 1404 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1405 1406 // Handle things which are present even on external declarations. 1407 if (D) { 1408 // FIXME: This code is overly simple and should be merged with other global 1409 // handling. 1410 GV->setConstant(isTypeConstant(D->getType(), false)); 1411 1412 // Set linkage and visibility in case we never see a definition. 1413 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1414 if (LV.linkage() != ExternalLinkage) { 1415 // Don't set internal linkage on declarations. 1416 } else { 1417 if (D->hasAttr<DLLImportAttr>()) 1418 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1419 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1420 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1421 1422 // Set visibility on a declaration only if it's explicit. 1423 if (LV.visibilityExplicit()) 1424 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1425 } 1426 1427 if (D->isThreadSpecified()) 1428 setTLSMode(GV, *D); 1429 } 1430 1431 if (AddrSpace != Ty->getAddressSpace()) 1432 return llvm::ConstantExpr::getBitCast(GV, Ty); 1433 else 1434 return GV; 1435 } 1436 1437 1438 llvm::GlobalVariable * 1439 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1440 llvm::Type *Ty, 1441 llvm::GlobalValue::LinkageTypes Linkage) { 1442 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1443 llvm::GlobalVariable *OldGV = 0; 1444 1445 1446 if (GV) { 1447 // Check if the variable has the right type. 1448 if (GV->getType()->getElementType() == Ty) 1449 return GV; 1450 1451 // Because C++ name mangling, the only way we can end up with an already 1452 // existing global with the same name is if it has been declared extern "C". 1453 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1454 OldGV = GV; 1455 } 1456 1457 // Create a new variable. 1458 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1459 Linkage, 0, Name); 1460 1461 if (OldGV) { 1462 // Replace occurrences of the old variable if needed. 1463 GV->takeName(OldGV); 1464 1465 if (!OldGV->use_empty()) { 1466 llvm::Constant *NewPtrForOldDecl = 1467 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1468 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1469 } 1470 1471 OldGV->eraseFromParent(); 1472 } 1473 1474 return GV; 1475 } 1476 1477 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1478 /// given global variable. If Ty is non-null and if the global doesn't exist, 1479 /// then it will be created with the specified type instead of whatever the 1480 /// normal requested type would be. 1481 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1482 llvm::Type *Ty) { 1483 assert(D->hasGlobalStorage() && "Not a global variable"); 1484 QualType ASTTy = D->getType(); 1485 if (Ty == 0) 1486 Ty = getTypes().ConvertTypeForMem(ASTTy); 1487 1488 llvm::PointerType *PTy = 1489 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1490 1491 StringRef MangledName = getMangledName(D); 1492 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1493 } 1494 1495 /// CreateRuntimeVariable - Create a new runtime global variable with the 1496 /// specified type and name. 1497 llvm::Constant * 1498 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1499 StringRef Name) { 1500 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1501 true); 1502 } 1503 1504 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1505 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1506 1507 if (MayDeferGeneration(D)) { 1508 // If we have not seen a reference to this variable yet, place it 1509 // into the deferred declarations table to be emitted if needed 1510 // later. 1511 StringRef MangledName = getMangledName(D); 1512 if (!GetGlobalValue(MangledName)) { 1513 DeferredDecls[MangledName] = D; 1514 return; 1515 } 1516 } 1517 1518 // The tentative definition is the only definition. 1519 EmitGlobalVarDefinition(D); 1520 } 1521 1522 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1523 if (DefinitionRequired) 1524 getCXXABI().EmitVTables(Class); 1525 } 1526 1527 llvm::GlobalVariable::LinkageTypes 1528 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1529 if (RD->getLinkage() != ExternalLinkage) 1530 return llvm::GlobalVariable::InternalLinkage; 1531 1532 if (const CXXMethodDecl *KeyFunction 1533 = RD->getASTContext().getKeyFunction(RD)) { 1534 // If this class has a key function, use that to determine the linkage of 1535 // the vtable. 1536 const FunctionDecl *Def = 0; 1537 if (KeyFunction->hasBody(Def)) 1538 KeyFunction = cast<CXXMethodDecl>(Def); 1539 1540 switch (KeyFunction->getTemplateSpecializationKind()) { 1541 case TSK_Undeclared: 1542 case TSK_ExplicitSpecialization: 1543 // When compiling with optimizations turned on, we emit all vtables, 1544 // even if the key function is not defined in the current translation 1545 // unit. If this is the case, use available_externally linkage. 1546 if (!Def && CodeGenOpts.OptimizationLevel) 1547 return llvm::GlobalVariable::AvailableExternallyLinkage; 1548 1549 if (KeyFunction->isInlined()) 1550 return !Context.getLangOpts().AppleKext ? 1551 llvm::GlobalVariable::LinkOnceODRLinkage : 1552 llvm::Function::InternalLinkage; 1553 1554 return llvm::GlobalVariable::ExternalLinkage; 1555 1556 case TSK_ImplicitInstantiation: 1557 return !Context.getLangOpts().AppleKext ? 1558 llvm::GlobalVariable::LinkOnceODRLinkage : 1559 llvm::Function::InternalLinkage; 1560 1561 case TSK_ExplicitInstantiationDefinition: 1562 return !Context.getLangOpts().AppleKext ? 1563 llvm::GlobalVariable::WeakODRLinkage : 1564 llvm::Function::InternalLinkage; 1565 1566 case TSK_ExplicitInstantiationDeclaration: 1567 // FIXME: Use available_externally linkage. However, this currently 1568 // breaks LLVM's build due to undefined symbols. 1569 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1570 return !Context.getLangOpts().AppleKext ? 1571 llvm::GlobalVariable::LinkOnceODRLinkage : 1572 llvm::Function::InternalLinkage; 1573 } 1574 } 1575 1576 if (Context.getLangOpts().AppleKext) 1577 return llvm::Function::InternalLinkage; 1578 1579 switch (RD->getTemplateSpecializationKind()) { 1580 case TSK_Undeclared: 1581 case TSK_ExplicitSpecialization: 1582 case TSK_ImplicitInstantiation: 1583 // FIXME: Use available_externally linkage. However, this currently 1584 // breaks LLVM's build due to undefined symbols. 1585 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1586 case TSK_ExplicitInstantiationDeclaration: 1587 return llvm::GlobalVariable::LinkOnceODRLinkage; 1588 1589 case TSK_ExplicitInstantiationDefinition: 1590 return llvm::GlobalVariable::WeakODRLinkage; 1591 } 1592 1593 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1594 } 1595 1596 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1597 return Context.toCharUnitsFromBits( 1598 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1599 } 1600 1601 llvm::Constant * 1602 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1603 const Expr *rawInit) { 1604 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1605 if (const ExprWithCleanups *withCleanups = 1606 dyn_cast<ExprWithCleanups>(rawInit)) { 1607 cleanups = withCleanups->getObjects(); 1608 rawInit = withCleanups->getSubExpr(); 1609 } 1610 1611 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1612 if (!init || !init->initializesStdInitializerList() || 1613 init->getNumInits() == 0) 1614 return 0; 1615 1616 ASTContext &ctx = getContext(); 1617 unsigned numInits = init->getNumInits(); 1618 // FIXME: This check is here because we would otherwise silently miscompile 1619 // nested global std::initializer_lists. Better would be to have a real 1620 // implementation. 1621 for (unsigned i = 0; i < numInits; ++i) { 1622 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1623 if (inner && inner->initializesStdInitializerList()) { 1624 ErrorUnsupported(inner, "nested global std::initializer_list"); 1625 return 0; 1626 } 1627 } 1628 1629 // Synthesize a fake VarDecl for the array and initialize that. 1630 QualType elementType = init->getInit(0)->getType(); 1631 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1632 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1633 ArrayType::Normal, 0); 1634 1635 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1636 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1637 arrayType, D->getLocation()); 1638 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1639 D->getDeclContext()), 1640 D->getLocStart(), D->getLocation(), 1641 name, arrayType, sourceInfo, 1642 SC_Static, SC_Static); 1643 1644 // Now clone the InitListExpr to initialize the array instead. 1645 // Incredible hack: we want to use the existing InitListExpr here, so we need 1646 // to tell it that it no longer initializes a std::initializer_list. 1647 ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(), 1648 init->getNumInits()); 1649 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits, 1650 init->getRBraceLoc()); 1651 arrayInit->setType(arrayType); 1652 1653 if (!cleanups.empty()) 1654 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1655 1656 backingArray->setInit(arrayInit); 1657 1658 // Emit the definition of the array. 1659 EmitGlobalVarDefinition(backingArray); 1660 1661 // Inspect the initializer list to validate it and determine its type. 1662 // FIXME: doing this every time is probably inefficient; caching would be nice 1663 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1664 RecordDecl::field_iterator field = record->field_begin(); 1665 if (field == record->field_end()) { 1666 ErrorUnsupported(D, "weird std::initializer_list"); 1667 return 0; 1668 } 1669 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1670 // Start pointer. 1671 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1672 ErrorUnsupported(D, "weird std::initializer_list"); 1673 return 0; 1674 } 1675 ++field; 1676 if (field == record->field_end()) { 1677 ErrorUnsupported(D, "weird std::initializer_list"); 1678 return 0; 1679 } 1680 bool isStartEnd = false; 1681 if (ctx.hasSameType(field->getType(), elementPtr)) { 1682 // End pointer. 1683 isStartEnd = true; 1684 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1685 ErrorUnsupported(D, "weird std::initializer_list"); 1686 return 0; 1687 } 1688 1689 // Now build an APValue representing the std::initializer_list. 1690 APValue initListValue(APValue::UninitStruct(), 0, 2); 1691 APValue &startField = initListValue.getStructField(0); 1692 APValue::LValuePathEntry startOffsetPathEntry; 1693 startOffsetPathEntry.ArrayIndex = 0; 1694 startField = APValue(APValue::LValueBase(backingArray), 1695 CharUnits::fromQuantity(0), 1696 llvm::makeArrayRef(startOffsetPathEntry), 1697 /*IsOnePastTheEnd=*/false, 0); 1698 1699 if (isStartEnd) { 1700 APValue &endField = initListValue.getStructField(1); 1701 APValue::LValuePathEntry endOffsetPathEntry; 1702 endOffsetPathEntry.ArrayIndex = numInits; 1703 endField = APValue(APValue::LValueBase(backingArray), 1704 ctx.getTypeSizeInChars(elementType) * numInits, 1705 llvm::makeArrayRef(endOffsetPathEntry), 1706 /*IsOnePastTheEnd=*/true, 0); 1707 } else { 1708 APValue &sizeField = initListValue.getStructField(1); 1709 sizeField = APValue(llvm::APSInt(numElements)); 1710 } 1711 1712 // Emit the constant for the initializer_list. 1713 llvm::Constant *llvmInit = 1714 EmitConstantValueForMemory(initListValue, D->getType()); 1715 assert(llvmInit && "failed to initialize as constant"); 1716 return llvmInit; 1717 } 1718 1719 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1720 unsigned AddrSpace) { 1721 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1722 if (D->hasAttr<CUDAConstantAttr>()) 1723 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1724 else if (D->hasAttr<CUDASharedAttr>()) 1725 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1726 else 1727 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1728 } 1729 1730 return AddrSpace; 1731 } 1732 1733 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1734 llvm::Constant *Init = 0; 1735 QualType ASTTy = D->getType(); 1736 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1737 bool NeedsGlobalCtor = false; 1738 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1739 1740 const VarDecl *InitDecl; 1741 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1742 1743 if (!InitExpr) { 1744 // This is a tentative definition; tentative definitions are 1745 // implicitly initialized with { 0 }. 1746 // 1747 // Note that tentative definitions are only emitted at the end of 1748 // a translation unit, so they should never have incomplete 1749 // type. In addition, EmitTentativeDefinition makes sure that we 1750 // never attempt to emit a tentative definition if a real one 1751 // exists. A use may still exists, however, so we still may need 1752 // to do a RAUW. 1753 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1754 Init = EmitNullConstant(D->getType()); 1755 } else { 1756 // If this is a std::initializer_list, emit the special initializer. 1757 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1758 // An empty init list will perform zero-initialization, which happens 1759 // to be exactly what we want. 1760 // FIXME: It does so in a global constructor, which is *not* what we 1761 // want. 1762 1763 if (!Init) { 1764 initializedGlobalDecl = GlobalDecl(D); 1765 Init = EmitConstantInit(*InitDecl); 1766 } 1767 if (!Init) { 1768 QualType T = InitExpr->getType(); 1769 if (D->getType()->isReferenceType()) 1770 T = D->getType(); 1771 1772 if (getLangOpts().CPlusPlus) { 1773 Init = EmitNullConstant(T); 1774 NeedsGlobalCtor = true; 1775 } else { 1776 ErrorUnsupported(D, "static initializer"); 1777 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1778 } 1779 } else { 1780 // We don't need an initializer, so remove the entry for the delayed 1781 // initializer position (just in case this entry was delayed) if we 1782 // also don't need to register a destructor. 1783 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1784 DelayedCXXInitPosition.erase(D); 1785 } 1786 } 1787 1788 llvm::Type* InitType = Init->getType(); 1789 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1790 1791 // Strip off a bitcast if we got one back. 1792 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1793 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1794 // all zero index gep. 1795 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1796 Entry = CE->getOperand(0); 1797 } 1798 1799 // Entry is now either a Function or GlobalVariable. 1800 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1801 1802 // We have a definition after a declaration with the wrong type. 1803 // We must make a new GlobalVariable* and update everything that used OldGV 1804 // (a declaration or tentative definition) with the new GlobalVariable* 1805 // (which will be a definition). 1806 // 1807 // This happens if there is a prototype for a global (e.g. 1808 // "extern int x[];") and then a definition of a different type (e.g. 1809 // "int x[10];"). This also happens when an initializer has a different type 1810 // from the type of the global (this happens with unions). 1811 if (GV == 0 || 1812 GV->getType()->getElementType() != InitType || 1813 GV->getType()->getAddressSpace() != 1814 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1815 1816 // Move the old entry aside so that we'll create a new one. 1817 Entry->setName(StringRef()); 1818 1819 // Make a new global with the correct type, this is now guaranteed to work. 1820 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1821 1822 // Replace all uses of the old global with the new global 1823 llvm::Constant *NewPtrForOldDecl = 1824 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1825 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1826 1827 // Erase the old global, since it is no longer used. 1828 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1829 } 1830 1831 if (D->hasAttr<AnnotateAttr>()) 1832 AddGlobalAnnotations(D, GV); 1833 1834 GV->setInitializer(Init); 1835 1836 // If it is safe to mark the global 'constant', do so now. 1837 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1838 isTypeConstant(D->getType(), true)); 1839 1840 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1841 1842 // Set the llvm linkage type as appropriate. 1843 llvm::GlobalValue::LinkageTypes Linkage = 1844 GetLLVMLinkageVarDefinition(D, GV); 1845 GV->setLinkage(Linkage); 1846 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1847 // common vars aren't constant even if declared const. 1848 GV->setConstant(false); 1849 1850 SetCommonAttributes(D, GV); 1851 1852 // Emit the initializer function if necessary. 1853 if (NeedsGlobalCtor || NeedsGlobalDtor) 1854 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1855 1856 // If we are compiling with ASan, add metadata indicating dynamically 1857 // initialized globals. 1858 if (LangOpts.SanitizeAddress && NeedsGlobalCtor) { 1859 llvm::Module &M = getModule(); 1860 1861 llvm::NamedMDNode *DynamicInitializers = 1862 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1863 llvm::Value *GlobalToAdd[] = { GV }; 1864 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1865 DynamicInitializers->addOperand(ThisGlobal); 1866 } 1867 1868 // Emit global variable debug information. 1869 if (CGDebugInfo *DI = getModuleDebugInfo()) 1870 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1871 DI->EmitGlobalVariable(GV, D); 1872 } 1873 1874 llvm::GlobalValue::LinkageTypes 1875 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1876 llvm::GlobalVariable *GV) { 1877 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1878 if (Linkage == GVA_Internal) 1879 return llvm::Function::InternalLinkage; 1880 else if (D->hasAttr<DLLImportAttr>()) 1881 return llvm::Function::DLLImportLinkage; 1882 else if (D->hasAttr<DLLExportAttr>()) 1883 return llvm::Function::DLLExportLinkage; 1884 else if (D->hasAttr<WeakAttr>()) { 1885 if (GV->isConstant()) 1886 return llvm::GlobalVariable::WeakODRLinkage; 1887 else 1888 return llvm::GlobalVariable::WeakAnyLinkage; 1889 } else if (Linkage == GVA_TemplateInstantiation || 1890 Linkage == GVA_ExplicitTemplateInstantiation) 1891 return llvm::GlobalVariable::WeakODRLinkage; 1892 else if (!getLangOpts().CPlusPlus && 1893 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1894 D->getAttr<CommonAttr>()) && 1895 !D->hasExternalStorage() && !D->getInit() && 1896 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1897 !D->getAttr<WeakImportAttr>()) { 1898 // Thread local vars aren't considered common linkage. 1899 return llvm::GlobalVariable::CommonLinkage; 1900 } 1901 return llvm::GlobalVariable::ExternalLinkage; 1902 } 1903 1904 /// Replace the uses of a function that was declared with a non-proto type. 1905 /// We want to silently drop extra arguments from call sites 1906 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1907 llvm::Function *newFn) { 1908 // Fast path. 1909 if (old->use_empty()) return; 1910 1911 llvm::Type *newRetTy = newFn->getReturnType(); 1912 SmallVector<llvm::Value*, 4> newArgs; 1913 1914 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1915 ui != ue; ) { 1916 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1917 llvm::User *user = *use; 1918 1919 // Recognize and replace uses of bitcasts. Most calls to 1920 // unprototyped functions will use bitcasts. 1921 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1922 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1923 replaceUsesOfNonProtoConstant(bitcast, newFn); 1924 continue; 1925 } 1926 1927 // Recognize calls to the function. 1928 llvm::CallSite callSite(user); 1929 if (!callSite) continue; 1930 if (!callSite.isCallee(use)) continue; 1931 1932 // If the return types don't match exactly, then we can't 1933 // transform this call unless it's dead. 1934 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1935 continue; 1936 1937 // Get the call site's attribute list. 1938 SmallVector<llvm::AttributeWithIndex, 8> newAttrs; 1939 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1940 1941 // Collect any return attributes from the call. 1942 llvm::Attribute returnAttrs = oldAttrs.getRetAttributes(); 1943 if (returnAttrs.hasAttributes()) 1944 newAttrs.push_back(llvm::AttributeWithIndex::get( 1945 llvm::AttributeSet::ReturnIndex, returnAttrs)); 1946 1947 // If the function was passed too few arguments, don't transform. 1948 unsigned newNumArgs = newFn->arg_size(); 1949 if (callSite.arg_size() < newNumArgs) continue; 1950 1951 // If extra arguments were passed, we silently drop them. 1952 // If any of the types mismatch, we don't transform. 1953 unsigned argNo = 0; 1954 bool dontTransform = false; 1955 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1956 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1957 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1958 dontTransform = true; 1959 break; 1960 } 1961 1962 // Add any parameter attributes. 1963 llvm::Attribute pAttrs = oldAttrs.getParamAttributes(argNo + 1); 1964 if (pAttrs.hasAttributes()) 1965 newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs)); 1966 } 1967 if (dontTransform) 1968 continue; 1969 1970 llvm::Attribute fnAttrs = oldAttrs.getFnAttributes(); 1971 if (fnAttrs.hasAttributes()) 1972 newAttrs.push_back(llvm:: 1973 AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex, 1974 fnAttrs)); 1975 1976 // Okay, we can transform this. Create the new call instruction and copy 1977 // over the required information. 1978 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1979 1980 llvm::CallSite newCall; 1981 if (callSite.isCall()) { 1982 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1983 callSite.getInstruction()); 1984 } else { 1985 llvm::InvokeInst *oldInvoke = 1986 cast<llvm::InvokeInst>(callSite.getInstruction()); 1987 newCall = llvm::InvokeInst::Create(newFn, 1988 oldInvoke->getNormalDest(), 1989 oldInvoke->getUnwindDest(), 1990 newArgs, "", 1991 callSite.getInstruction()); 1992 } 1993 newArgs.clear(); // for the next iteration 1994 1995 if (!newCall->getType()->isVoidTy()) 1996 newCall->takeName(callSite.getInstruction()); 1997 newCall.setAttributes( 1998 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 1999 newCall.setCallingConv(callSite.getCallingConv()); 2000 2001 // Finally, remove the old call, replacing any uses with the new one. 2002 if (!callSite->use_empty()) 2003 callSite->replaceAllUsesWith(newCall.getInstruction()); 2004 2005 // Copy debug location attached to CI. 2006 if (!callSite->getDebugLoc().isUnknown()) 2007 newCall->setDebugLoc(callSite->getDebugLoc()); 2008 callSite->eraseFromParent(); 2009 } 2010 } 2011 2012 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2013 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2014 /// existing call uses of the old function in the module, this adjusts them to 2015 /// call the new function directly. 2016 /// 2017 /// This is not just a cleanup: the always_inline pass requires direct calls to 2018 /// functions to be able to inline them. If there is a bitcast in the way, it 2019 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2020 /// run at -O0. 2021 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2022 llvm::Function *NewFn) { 2023 // If we're redefining a global as a function, don't transform it. 2024 if (!isa<llvm::Function>(Old)) return; 2025 2026 replaceUsesOfNonProtoConstant(Old, NewFn); 2027 } 2028 2029 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2030 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2031 // If we have a definition, this might be a deferred decl. If the 2032 // instantiation is explicit, make sure we emit it at the end. 2033 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2034 GetAddrOfGlobalVar(VD); 2035 } 2036 2037 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 2038 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2039 2040 // Compute the function info and LLVM type. 2041 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2042 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2043 2044 // Get or create the prototype for the function. 2045 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 2046 2047 // Strip off a bitcast if we got one back. 2048 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2049 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2050 Entry = CE->getOperand(0); 2051 } 2052 2053 2054 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2055 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2056 2057 // If the types mismatch then we have to rewrite the definition. 2058 assert(OldFn->isDeclaration() && 2059 "Shouldn't replace non-declaration"); 2060 2061 // F is the Function* for the one with the wrong type, we must make a new 2062 // Function* and update everything that used F (a declaration) with the new 2063 // Function* (which will be a definition). 2064 // 2065 // This happens if there is a prototype for a function 2066 // (e.g. "int f()") and then a definition of a different type 2067 // (e.g. "int f(int x)"). Move the old function aside so that it 2068 // doesn't interfere with GetAddrOfFunction. 2069 OldFn->setName(StringRef()); 2070 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2071 2072 // This might be an implementation of a function without a 2073 // prototype, in which case, try to do special replacement of 2074 // calls which match the new prototype. The really key thing here 2075 // is that we also potentially drop arguments from the call site 2076 // so as to make a direct call, which makes the inliner happier 2077 // and suppresses a number of optimizer warnings (!) about 2078 // dropping arguments. 2079 if (!OldFn->use_empty()) { 2080 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2081 OldFn->removeDeadConstantUsers(); 2082 } 2083 2084 // Replace uses of F with the Function we will endow with a body. 2085 if (!Entry->use_empty()) { 2086 llvm::Constant *NewPtrForOldDecl = 2087 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2088 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2089 } 2090 2091 // Ok, delete the old function now, which is dead. 2092 OldFn->eraseFromParent(); 2093 2094 Entry = NewFn; 2095 } 2096 2097 // We need to set linkage and visibility on the function before 2098 // generating code for it because various parts of IR generation 2099 // want to propagate this information down (e.g. to local static 2100 // declarations). 2101 llvm::Function *Fn = cast<llvm::Function>(Entry); 2102 setFunctionLinkage(D, Fn); 2103 2104 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2105 setGlobalVisibility(Fn, D); 2106 2107 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2108 2109 SetFunctionDefinitionAttributes(D, Fn); 2110 SetLLVMFunctionAttributesForDefinition(D, Fn); 2111 2112 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2113 AddGlobalCtor(Fn, CA->getPriority()); 2114 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2115 AddGlobalDtor(Fn, DA->getPriority()); 2116 if (D->hasAttr<AnnotateAttr>()) 2117 AddGlobalAnnotations(D, Fn); 2118 } 2119 2120 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2121 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2122 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2123 assert(AA && "Not an alias?"); 2124 2125 StringRef MangledName = getMangledName(GD); 2126 2127 // If there is a definition in the module, then it wins over the alias. 2128 // This is dubious, but allow it to be safe. Just ignore the alias. 2129 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2130 if (Entry && !Entry->isDeclaration()) 2131 return; 2132 2133 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2134 2135 // Create a reference to the named value. This ensures that it is emitted 2136 // if a deferred decl. 2137 llvm::Constant *Aliasee; 2138 if (isa<llvm::FunctionType>(DeclTy)) 2139 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2140 /*ForVTable=*/false); 2141 else 2142 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2143 llvm::PointerType::getUnqual(DeclTy), 0); 2144 2145 // Create the new alias itself, but don't set a name yet. 2146 llvm::GlobalValue *GA = 2147 new llvm::GlobalAlias(Aliasee->getType(), 2148 llvm::Function::ExternalLinkage, 2149 "", Aliasee, &getModule()); 2150 2151 if (Entry) { 2152 assert(Entry->isDeclaration()); 2153 2154 // If there is a declaration in the module, then we had an extern followed 2155 // by the alias, as in: 2156 // extern int test6(); 2157 // ... 2158 // int test6() __attribute__((alias("test7"))); 2159 // 2160 // Remove it and replace uses of it with the alias. 2161 GA->takeName(Entry); 2162 2163 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2164 Entry->getType())); 2165 Entry->eraseFromParent(); 2166 } else { 2167 GA->setName(MangledName); 2168 } 2169 2170 // Set attributes which are particular to an alias; this is a 2171 // specialization of the attributes which may be set on a global 2172 // variable/function. 2173 if (D->hasAttr<DLLExportAttr>()) { 2174 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2175 // The dllexport attribute is ignored for undefined symbols. 2176 if (FD->hasBody()) 2177 GA->setLinkage(llvm::Function::DLLExportLinkage); 2178 } else { 2179 GA->setLinkage(llvm::Function::DLLExportLinkage); 2180 } 2181 } else if (D->hasAttr<WeakAttr>() || 2182 D->hasAttr<WeakRefAttr>() || 2183 D->isWeakImported()) { 2184 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2185 } 2186 2187 SetCommonAttributes(D, GA); 2188 } 2189 2190 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2191 ArrayRef<llvm::Type*> Tys) { 2192 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2193 Tys); 2194 } 2195 2196 static llvm::StringMapEntry<llvm::Constant*> & 2197 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2198 const StringLiteral *Literal, 2199 bool TargetIsLSB, 2200 bool &IsUTF16, 2201 unsigned &StringLength) { 2202 StringRef String = Literal->getString(); 2203 unsigned NumBytes = String.size(); 2204 2205 // Check for simple case. 2206 if (!Literal->containsNonAsciiOrNull()) { 2207 StringLength = NumBytes; 2208 return Map.GetOrCreateValue(String); 2209 } 2210 2211 // Otherwise, convert the UTF8 literals into a string of shorts. 2212 IsUTF16 = true; 2213 2214 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2215 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2216 UTF16 *ToPtr = &ToBuf[0]; 2217 2218 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2219 &ToPtr, ToPtr + NumBytes, 2220 strictConversion); 2221 2222 // ConvertUTF8toUTF16 returns the length in ToPtr. 2223 StringLength = ToPtr - &ToBuf[0]; 2224 2225 // Add an explicit null. 2226 *ToPtr = 0; 2227 return Map. 2228 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2229 (StringLength + 1) * 2)); 2230 } 2231 2232 static llvm::StringMapEntry<llvm::Constant*> & 2233 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2234 const StringLiteral *Literal, 2235 unsigned &StringLength) { 2236 StringRef String = Literal->getString(); 2237 StringLength = String.size(); 2238 return Map.GetOrCreateValue(String); 2239 } 2240 2241 llvm::Constant * 2242 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2243 unsigned StringLength = 0; 2244 bool isUTF16 = false; 2245 llvm::StringMapEntry<llvm::Constant*> &Entry = 2246 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2247 getDataLayout().isLittleEndian(), 2248 isUTF16, StringLength); 2249 2250 if (llvm::Constant *C = Entry.getValue()) 2251 return C; 2252 2253 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2254 llvm::Constant *Zeros[] = { Zero, Zero }; 2255 2256 // If we don't already have it, get __CFConstantStringClassReference. 2257 if (!CFConstantStringClassRef) { 2258 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2259 Ty = llvm::ArrayType::get(Ty, 0); 2260 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2261 "__CFConstantStringClassReference"); 2262 // Decay array -> ptr 2263 CFConstantStringClassRef = 2264 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2265 } 2266 2267 QualType CFTy = getContext().getCFConstantStringType(); 2268 2269 llvm::StructType *STy = 2270 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2271 2272 llvm::Constant *Fields[4]; 2273 2274 // Class pointer. 2275 Fields[0] = CFConstantStringClassRef; 2276 2277 // Flags. 2278 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2279 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2280 llvm::ConstantInt::get(Ty, 0x07C8); 2281 2282 // String pointer. 2283 llvm::Constant *C = 0; 2284 if (isUTF16) { 2285 ArrayRef<uint16_t> Arr = 2286 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2287 const_cast<char *>(Entry.getKey().data())), 2288 Entry.getKey().size() / 2); 2289 C = llvm::ConstantDataArray::get(VMContext, Arr); 2290 } else { 2291 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2292 } 2293 2294 llvm::GlobalValue::LinkageTypes Linkage; 2295 if (isUTF16) 2296 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2297 Linkage = llvm::GlobalValue::InternalLinkage; 2298 else 2299 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2300 // when using private linkage. It is not clear if this is a bug in ld 2301 // or a reasonable new restriction. 2302 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2303 2304 // Note: -fwritable-strings doesn't make the backing store strings of 2305 // CFStrings writable. (See <rdar://problem/10657500>) 2306 llvm::GlobalVariable *GV = 2307 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2308 Linkage, C, ".str"); 2309 GV->setUnnamedAddr(true); 2310 if (isUTF16) { 2311 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2312 GV->setAlignment(Align.getQuantity()); 2313 } else { 2314 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2315 GV->setAlignment(Align.getQuantity()); 2316 } 2317 2318 // String. 2319 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2320 2321 if (isUTF16) 2322 // Cast the UTF16 string to the correct type. 2323 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2324 2325 // String length. 2326 Ty = getTypes().ConvertType(getContext().LongTy); 2327 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2328 2329 // The struct. 2330 C = llvm::ConstantStruct::get(STy, Fields); 2331 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2332 llvm::GlobalVariable::PrivateLinkage, C, 2333 "_unnamed_cfstring_"); 2334 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2335 GV->setSection(Sect); 2336 Entry.setValue(GV); 2337 2338 return GV; 2339 } 2340 2341 static RecordDecl * 2342 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2343 DeclContext *DC, IdentifierInfo *Id) { 2344 SourceLocation Loc; 2345 if (Ctx.getLangOpts().CPlusPlus) 2346 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2347 else 2348 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2349 } 2350 2351 llvm::Constant * 2352 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2353 unsigned StringLength = 0; 2354 llvm::StringMapEntry<llvm::Constant*> &Entry = 2355 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2356 2357 if (llvm::Constant *C = Entry.getValue()) 2358 return C; 2359 2360 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2361 llvm::Constant *Zeros[] = { Zero, Zero }; 2362 2363 // If we don't already have it, get _NSConstantStringClassReference. 2364 if (!ConstantStringClassRef) { 2365 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2366 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2367 llvm::Constant *GV; 2368 if (LangOpts.ObjCRuntime.isNonFragile()) { 2369 std::string str = 2370 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2371 : "OBJC_CLASS_$_" + StringClass; 2372 GV = getObjCRuntime().GetClassGlobal(str); 2373 // Make sure the result is of the correct type. 2374 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2375 ConstantStringClassRef = 2376 llvm::ConstantExpr::getBitCast(GV, PTy); 2377 } else { 2378 std::string str = 2379 StringClass.empty() ? "_NSConstantStringClassReference" 2380 : "_" + StringClass + "ClassReference"; 2381 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2382 GV = CreateRuntimeVariable(PTy, str); 2383 // Decay array -> ptr 2384 ConstantStringClassRef = 2385 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2386 } 2387 } 2388 2389 if (!NSConstantStringType) { 2390 // Construct the type for a constant NSString. 2391 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2392 Context.getTranslationUnitDecl(), 2393 &Context.Idents.get("__builtin_NSString")); 2394 D->startDefinition(); 2395 2396 QualType FieldTypes[3]; 2397 2398 // const int *isa; 2399 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2400 // const char *str; 2401 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2402 // unsigned int length; 2403 FieldTypes[2] = Context.UnsignedIntTy; 2404 2405 // Create fields 2406 for (unsigned i = 0; i < 3; ++i) { 2407 FieldDecl *Field = FieldDecl::Create(Context, D, 2408 SourceLocation(), 2409 SourceLocation(), 0, 2410 FieldTypes[i], /*TInfo=*/0, 2411 /*BitWidth=*/0, 2412 /*Mutable=*/false, 2413 ICIS_NoInit); 2414 Field->setAccess(AS_public); 2415 D->addDecl(Field); 2416 } 2417 2418 D->completeDefinition(); 2419 QualType NSTy = Context.getTagDeclType(D); 2420 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2421 } 2422 2423 llvm::Constant *Fields[3]; 2424 2425 // Class pointer. 2426 Fields[0] = ConstantStringClassRef; 2427 2428 // String pointer. 2429 llvm::Constant *C = 2430 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2431 2432 llvm::GlobalValue::LinkageTypes Linkage; 2433 bool isConstant; 2434 Linkage = llvm::GlobalValue::PrivateLinkage; 2435 isConstant = !LangOpts.WritableStrings; 2436 2437 llvm::GlobalVariable *GV = 2438 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2439 ".str"); 2440 GV->setUnnamedAddr(true); 2441 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2442 GV->setAlignment(Align.getQuantity()); 2443 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2444 2445 // String length. 2446 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2447 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2448 2449 // The struct. 2450 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2451 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2452 llvm::GlobalVariable::PrivateLinkage, C, 2453 "_unnamed_nsstring_"); 2454 // FIXME. Fix section. 2455 if (const char *Sect = 2456 LangOpts.ObjCRuntime.isNonFragile() 2457 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2458 : getContext().getTargetInfo().getNSStringSection()) 2459 GV->setSection(Sect); 2460 Entry.setValue(GV); 2461 2462 return GV; 2463 } 2464 2465 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2466 if (ObjCFastEnumerationStateType.isNull()) { 2467 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2468 Context.getTranslationUnitDecl(), 2469 &Context.Idents.get("__objcFastEnumerationState")); 2470 D->startDefinition(); 2471 2472 QualType FieldTypes[] = { 2473 Context.UnsignedLongTy, 2474 Context.getPointerType(Context.getObjCIdType()), 2475 Context.getPointerType(Context.UnsignedLongTy), 2476 Context.getConstantArrayType(Context.UnsignedLongTy, 2477 llvm::APInt(32, 5), ArrayType::Normal, 0) 2478 }; 2479 2480 for (size_t i = 0; i < 4; ++i) { 2481 FieldDecl *Field = FieldDecl::Create(Context, 2482 D, 2483 SourceLocation(), 2484 SourceLocation(), 0, 2485 FieldTypes[i], /*TInfo=*/0, 2486 /*BitWidth=*/0, 2487 /*Mutable=*/false, 2488 ICIS_NoInit); 2489 Field->setAccess(AS_public); 2490 D->addDecl(Field); 2491 } 2492 2493 D->completeDefinition(); 2494 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2495 } 2496 2497 return ObjCFastEnumerationStateType; 2498 } 2499 2500 llvm::Constant * 2501 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2502 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2503 2504 // Don't emit it as the address of the string, emit the string data itself 2505 // as an inline array. 2506 if (E->getCharByteWidth() == 1) { 2507 SmallString<64> Str(E->getString()); 2508 2509 // Resize the string to the right size, which is indicated by its type. 2510 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2511 Str.resize(CAT->getSize().getZExtValue()); 2512 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2513 } 2514 2515 llvm::ArrayType *AType = 2516 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2517 llvm::Type *ElemTy = AType->getElementType(); 2518 unsigned NumElements = AType->getNumElements(); 2519 2520 // Wide strings have either 2-byte or 4-byte elements. 2521 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2522 SmallVector<uint16_t, 32> Elements; 2523 Elements.reserve(NumElements); 2524 2525 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2526 Elements.push_back(E->getCodeUnit(i)); 2527 Elements.resize(NumElements); 2528 return llvm::ConstantDataArray::get(VMContext, Elements); 2529 } 2530 2531 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2532 SmallVector<uint32_t, 32> Elements; 2533 Elements.reserve(NumElements); 2534 2535 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2536 Elements.push_back(E->getCodeUnit(i)); 2537 Elements.resize(NumElements); 2538 return llvm::ConstantDataArray::get(VMContext, Elements); 2539 } 2540 2541 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2542 /// constant array for the given string literal. 2543 llvm::Constant * 2544 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2545 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2546 if (S->isAscii() || S->isUTF8()) { 2547 SmallString<64> Str(S->getString()); 2548 2549 // Resize the string to the right size, which is indicated by its type. 2550 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2551 Str.resize(CAT->getSize().getZExtValue()); 2552 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2553 } 2554 2555 // FIXME: the following does not memoize wide strings. 2556 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2557 llvm::GlobalVariable *GV = 2558 new llvm::GlobalVariable(getModule(),C->getType(), 2559 !LangOpts.WritableStrings, 2560 llvm::GlobalValue::PrivateLinkage, 2561 C,".str"); 2562 2563 GV->setAlignment(Align.getQuantity()); 2564 GV->setUnnamedAddr(true); 2565 return GV; 2566 } 2567 2568 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2569 /// array for the given ObjCEncodeExpr node. 2570 llvm::Constant * 2571 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2572 std::string Str; 2573 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2574 2575 return GetAddrOfConstantCString(Str); 2576 } 2577 2578 2579 /// GenerateWritableString -- Creates storage for a string literal. 2580 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2581 bool constant, 2582 CodeGenModule &CGM, 2583 const char *GlobalName, 2584 unsigned Alignment) { 2585 // Create Constant for this string literal. Don't add a '\0'. 2586 llvm::Constant *C = 2587 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2588 2589 // Create a global variable for this string 2590 llvm::GlobalVariable *GV = 2591 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2592 llvm::GlobalValue::PrivateLinkage, 2593 C, GlobalName); 2594 GV->setAlignment(Alignment); 2595 GV->setUnnamedAddr(true); 2596 return GV; 2597 } 2598 2599 /// GetAddrOfConstantString - Returns a pointer to a character array 2600 /// containing the literal. This contents are exactly that of the 2601 /// given string, i.e. it will not be null terminated automatically; 2602 /// see GetAddrOfConstantCString. Note that whether the result is 2603 /// actually a pointer to an LLVM constant depends on 2604 /// Feature.WriteableStrings. 2605 /// 2606 /// The result has pointer to array type. 2607 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2608 const char *GlobalName, 2609 unsigned Alignment) { 2610 // Get the default prefix if a name wasn't specified. 2611 if (!GlobalName) 2612 GlobalName = ".str"; 2613 2614 // Don't share any string literals if strings aren't constant. 2615 if (LangOpts.WritableStrings) 2616 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2617 2618 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2619 ConstantStringMap.GetOrCreateValue(Str); 2620 2621 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2622 if (Alignment > GV->getAlignment()) { 2623 GV->setAlignment(Alignment); 2624 } 2625 return GV; 2626 } 2627 2628 // Create a global variable for this. 2629 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2630 Alignment); 2631 Entry.setValue(GV); 2632 return GV; 2633 } 2634 2635 /// GetAddrOfConstantCString - Returns a pointer to a character 2636 /// array containing the literal and a terminating '\0' 2637 /// character. The result has pointer to array type. 2638 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2639 const char *GlobalName, 2640 unsigned Alignment) { 2641 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2642 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2643 } 2644 2645 /// EmitObjCPropertyImplementations - Emit information for synthesized 2646 /// properties for an implementation. 2647 void CodeGenModule::EmitObjCPropertyImplementations(const 2648 ObjCImplementationDecl *D) { 2649 for (ObjCImplementationDecl::propimpl_iterator 2650 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2651 ObjCPropertyImplDecl *PID = *i; 2652 2653 // Dynamic is just for type-checking. 2654 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2655 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2656 2657 // Determine which methods need to be implemented, some may have 2658 // been overridden. Note that ::isPropertyAccessor is not the method 2659 // we want, that just indicates if the decl came from a 2660 // property. What we want to know is if the method is defined in 2661 // this implementation. 2662 if (!D->getInstanceMethod(PD->getGetterName())) 2663 CodeGenFunction(*this).GenerateObjCGetter( 2664 const_cast<ObjCImplementationDecl *>(D), PID); 2665 if (!PD->isReadOnly() && 2666 !D->getInstanceMethod(PD->getSetterName())) 2667 CodeGenFunction(*this).GenerateObjCSetter( 2668 const_cast<ObjCImplementationDecl *>(D), PID); 2669 } 2670 } 2671 } 2672 2673 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2674 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2675 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2676 ivar; ivar = ivar->getNextIvar()) 2677 if (ivar->getType().isDestructedType()) 2678 return true; 2679 2680 return false; 2681 } 2682 2683 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2684 /// for an implementation. 2685 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2686 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2687 if (needsDestructMethod(D)) { 2688 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2689 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2690 ObjCMethodDecl *DTORMethod = 2691 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2692 cxxSelector, getContext().VoidTy, 0, D, 2693 /*isInstance=*/true, /*isVariadic=*/false, 2694 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2695 /*isDefined=*/false, ObjCMethodDecl::Required); 2696 D->addInstanceMethod(DTORMethod); 2697 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2698 D->setHasDestructors(true); 2699 } 2700 2701 // If the implementation doesn't have any ivar initializers, we don't need 2702 // a .cxx_construct. 2703 if (D->getNumIvarInitializers() == 0) 2704 return; 2705 2706 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2707 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2708 // The constructor returns 'self'. 2709 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2710 D->getLocation(), 2711 D->getLocation(), 2712 cxxSelector, 2713 getContext().getObjCIdType(), 0, 2714 D, /*isInstance=*/true, 2715 /*isVariadic=*/false, 2716 /*isPropertyAccessor=*/true, 2717 /*isImplicitlyDeclared=*/true, 2718 /*isDefined=*/false, 2719 ObjCMethodDecl::Required); 2720 D->addInstanceMethod(CTORMethod); 2721 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2722 D->setHasNonZeroConstructors(true); 2723 } 2724 2725 /// EmitNamespace - Emit all declarations in a namespace. 2726 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2727 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2728 I != E; ++I) 2729 EmitTopLevelDecl(*I); 2730 } 2731 2732 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2733 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2734 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2735 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2736 ErrorUnsupported(LSD, "linkage spec"); 2737 return; 2738 } 2739 2740 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2741 I != E; ++I) { 2742 // Meta-data for ObjC class includes references to implemented methods. 2743 // Generate class's method definitions first. 2744 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2745 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2746 MEnd = OID->meth_end(); 2747 M != MEnd; ++M) 2748 EmitTopLevelDecl(*M); 2749 } 2750 EmitTopLevelDecl(*I); 2751 } 2752 } 2753 2754 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2755 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2756 // If an error has occurred, stop code generation, but continue 2757 // parsing and semantic analysis (to ensure all warnings and errors 2758 // are emitted). 2759 if (Diags.hasErrorOccurred()) 2760 return; 2761 2762 // Ignore dependent declarations. 2763 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2764 return; 2765 2766 switch (D->getKind()) { 2767 case Decl::CXXConversion: 2768 case Decl::CXXMethod: 2769 case Decl::Function: 2770 // Skip function templates 2771 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2772 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2773 return; 2774 2775 EmitGlobal(cast<FunctionDecl>(D)); 2776 break; 2777 2778 case Decl::Var: 2779 EmitGlobal(cast<VarDecl>(D)); 2780 break; 2781 2782 // Indirect fields from global anonymous structs and unions can be 2783 // ignored; only the actual variable requires IR gen support. 2784 case Decl::IndirectField: 2785 break; 2786 2787 // C++ Decls 2788 case Decl::Namespace: 2789 EmitNamespace(cast<NamespaceDecl>(D)); 2790 break; 2791 // No code generation needed. 2792 case Decl::UsingShadow: 2793 case Decl::Using: 2794 case Decl::UsingDirective: 2795 case Decl::ClassTemplate: 2796 case Decl::FunctionTemplate: 2797 case Decl::TypeAliasTemplate: 2798 case Decl::NamespaceAlias: 2799 case Decl::Block: 2800 break; 2801 case Decl::CXXConstructor: 2802 // Skip function templates 2803 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2804 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2805 return; 2806 2807 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2808 break; 2809 case Decl::CXXDestructor: 2810 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2811 return; 2812 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2813 break; 2814 2815 case Decl::StaticAssert: 2816 // Nothing to do. 2817 break; 2818 2819 // Objective-C Decls 2820 2821 // Forward declarations, no (immediate) code generation. 2822 case Decl::ObjCInterface: 2823 case Decl::ObjCCategory: 2824 break; 2825 2826 case Decl::ObjCProtocol: { 2827 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2828 if (Proto->isThisDeclarationADefinition()) 2829 ObjCRuntime->GenerateProtocol(Proto); 2830 break; 2831 } 2832 2833 case Decl::ObjCCategoryImpl: 2834 // Categories have properties but don't support synthesize so we 2835 // can ignore them here. 2836 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2837 break; 2838 2839 case Decl::ObjCImplementation: { 2840 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2841 EmitObjCPropertyImplementations(OMD); 2842 EmitObjCIvarInitializations(OMD); 2843 ObjCRuntime->GenerateClass(OMD); 2844 // Emit global variable debug information. 2845 if (CGDebugInfo *DI = getModuleDebugInfo()) 2846 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2847 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2848 OMD->getClassInterface()), OMD->getLocation()); 2849 break; 2850 } 2851 case Decl::ObjCMethod: { 2852 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2853 // If this is not a prototype, emit the body. 2854 if (OMD->getBody()) 2855 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2856 break; 2857 } 2858 case Decl::ObjCCompatibleAlias: 2859 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2860 break; 2861 2862 case Decl::LinkageSpec: 2863 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2864 break; 2865 2866 case Decl::FileScopeAsm: { 2867 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2868 StringRef AsmString = AD->getAsmString()->getString(); 2869 2870 const std::string &S = getModule().getModuleInlineAsm(); 2871 if (S.empty()) 2872 getModule().setModuleInlineAsm(AsmString); 2873 else if (S.end()[-1] == '\n') 2874 getModule().setModuleInlineAsm(S + AsmString.str()); 2875 else 2876 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2877 break; 2878 } 2879 2880 case Decl::Import: { 2881 ImportDecl *Import = cast<ImportDecl>(D); 2882 2883 // Ignore import declarations that come from imported modules. 2884 if (clang::Module *Owner = Import->getOwningModule()) { 2885 if (getLangOpts().CurrentModule.empty() || 2886 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 2887 break; 2888 } 2889 2890 ImportedModules.insert(Import->getImportedModule()); 2891 break; 2892 } 2893 2894 default: 2895 // Make sure we handled everything we should, every other kind is a 2896 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2897 // function. Need to recode Decl::Kind to do that easily. 2898 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2899 } 2900 } 2901 2902 /// Turns the given pointer into a constant. 2903 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2904 const void *Ptr) { 2905 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2906 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2907 return llvm::ConstantInt::get(i64, PtrInt); 2908 } 2909 2910 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2911 llvm::NamedMDNode *&GlobalMetadata, 2912 GlobalDecl D, 2913 llvm::GlobalValue *Addr) { 2914 if (!GlobalMetadata) 2915 GlobalMetadata = 2916 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2917 2918 // TODO: should we report variant information for ctors/dtors? 2919 llvm::Value *Ops[] = { 2920 Addr, 2921 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2922 }; 2923 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2924 } 2925 2926 /// Emits metadata nodes associating all the global values in the 2927 /// current module with the Decls they came from. This is useful for 2928 /// projects using IR gen as a subroutine. 2929 /// 2930 /// Since there's currently no way to associate an MDNode directly 2931 /// with an llvm::GlobalValue, we create a global named metadata 2932 /// with the name 'clang.global.decl.ptrs'. 2933 void CodeGenModule::EmitDeclMetadata() { 2934 llvm::NamedMDNode *GlobalMetadata = 0; 2935 2936 // StaticLocalDeclMap 2937 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2938 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2939 I != E; ++I) { 2940 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2941 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2942 } 2943 } 2944 2945 /// Emits metadata nodes for all the local variables in the current 2946 /// function. 2947 void CodeGenFunction::EmitDeclMetadata() { 2948 if (LocalDeclMap.empty()) return; 2949 2950 llvm::LLVMContext &Context = getLLVMContext(); 2951 2952 // Find the unique metadata ID for this name. 2953 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2954 2955 llvm::NamedMDNode *GlobalMetadata = 0; 2956 2957 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2958 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2959 const Decl *D = I->first; 2960 llvm::Value *Addr = I->second; 2961 2962 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2963 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2964 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2965 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2966 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2967 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2968 } 2969 } 2970 } 2971 2972 void CodeGenModule::EmitCoverageFile() { 2973 if (!getCodeGenOpts().CoverageFile.empty()) { 2974 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2975 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2976 llvm::LLVMContext &Ctx = TheModule.getContext(); 2977 llvm::MDString *CoverageFile = 2978 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2979 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2980 llvm::MDNode *CU = CUNode->getOperand(i); 2981 llvm::Value *node[] = { CoverageFile, CU }; 2982 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2983 GCov->addOperand(N); 2984 } 2985 } 2986 } 2987 } 2988 2989 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 2990 QualType GuidType) { 2991 // Sema has checked that all uuid strings are of the form 2992 // "12345678-1234-1234-1234-1234567890ab". 2993 assert(Uuid.size() == 36); 2994 const char *Uuidstr = Uuid.data(); 2995 for (int i = 0; i < 36; ++i) { 2996 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-'); 2997 else assert(isxdigit(Uuidstr[i])); 2998 } 2999 3000 llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16); 3001 llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16); 3002 llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16); 3003 static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3004 3005 APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4); 3006 InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0)); 3007 InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1)); 3008 InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2)); 3009 APValue& Arr = InitStruct.getStructField(3); 3010 Arr = APValue(APValue::UninitArray(), 8, 8); 3011 for (int t = 0; t < 8; ++t) 3012 Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt( 3013 llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16))); 3014 3015 return EmitConstantValue(InitStruct, GuidType); 3016 } 3017