xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c60437fb89fee2bd595887ae5346938b62c53a71)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ConvertUTF.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Target/Mangler.h"
49 using namespace clang;
50 using namespace CodeGen;
51 
52 static const char AnnotationSection[] = "llvm.metadata";
53 
54 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
55   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
56   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
57   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
58   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
59   }
60 
61   llvm_unreachable("invalid C++ ABI kind");
62 }
63 
64 
65 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
66                              llvm::Module &M, const llvm::DataLayout &TD,
67                              DiagnosticsEngine &diags)
68   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
69     TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
70     ABI(createCXXABI(*this)),
71     Types(*this),
72     TBAA(0),
73     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
74     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
75     RRData(0), CFConstantStringClassRef(0),
76     ConstantStringClassRef(0), NSConstantStringType(0),
77     VMContext(M.getContext()),
78     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
79     BlockObjectAssign(0), BlockObjectDispose(0),
80     BlockDescriptorType(0), GenericBlockLiteralType(0) {
81 
82   // Initialize the type cache.
83   llvm::LLVMContext &LLVMContext = M.getContext();
84   VoidTy = llvm::Type::getVoidTy(LLVMContext);
85   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
86   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
87   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
88   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
89   FloatTy = llvm::Type::getFloatTy(LLVMContext);
90   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
91   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
92   PointerAlignInBytes =
93   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
94   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
95   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
96   Int8PtrTy = Int8Ty->getPointerTo(0);
97   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
98 
99   if (LangOpts.ObjC1)
100     createObjCRuntime();
101   if (LangOpts.OpenCL)
102     createOpenCLRuntime();
103   if (LangOpts.CUDA)
104     createCUDARuntime();
105 
106   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
107   if (LangOpts.SanitizeThread ||
108       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
109     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
110                            ABI.getMangleContext());
111 
112   // If debug info or coverage generation is enabled, create the CGDebugInfo
113   // object.
114   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
115       CodeGenOpts.EmitGcovArcs ||
116       CodeGenOpts.EmitGcovNotes)
117     DebugInfo = new CGDebugInfo(*this);
118 
119   Block.GlobalUniqueCount = 0;
120 
121   if (C.getLangOpts().ObjCAutoRefCount)
122     ARCData = new ARCEntrypoints();
123   RRData = new RREntrypoints();
124 }
125 
126 CodeGenModule::~CodeGenModule() {
127   delete ObjCRuntime;
128   delete OpenCLRuntime;
129   delete CUDARuntime;
130   delete TheTargetCodeGenInfo;
131   delete &ABI;
132   delete TBAA;
133   delete DebugInfo;
134   delete ARCData;
135   delete RRData;
136 }
137 
138 void CodeGenModule::createObjCRuntime() {
139   // This is just isGNUFamily(), but we want to force implementors of
140   // new ABIs to decide how best to do this.
141   switch (LangOpts.ObjCRuntime.getKind()) {
142   case ObjCRuntime::GNUstep:
143   case ObjCRuntime::GCC:
144   case ObjCRuntime::ObjFW:
145     ObjCRuntime = CreateGNUObjCRuntime(*this);
146     return;
147 
148   case ObjCRuntime::FragileMacOSX:
149   case ObjCRuntime::MacOSX:
150   case ObjCRuntime::iOS:
151     ObjCRuntime = CreateMacObjCRuntime(*this);
152     return;
153   }
154   llvm_unreachable("bad runtime kind");
155 }
156 
157 void CodeGenModule::createOpenCLRuntime() {
158   OpenCLRuntime = new CGOpenCLRuntime(*this);
159 }
160 
161 void CodeGenModule::createCUDARuntime() {
162   CUDARuntime = CreateNVCUDARuntime(*this);
163 }
164 
165 void CodeGenModule::Release() {
166   EmitDeferred();
167   EmitCXXGlobalInitFunc();
168   EmitCXXGlobalDtorFunc();
169   if (ObjCRuntime)
170     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
171       AddGlobalCtor(ObjCInitFunction);
172   EmitCtorList(GlobalCtors, "llvm.global_ctors");
173   EmitCtorList(GlobalDtors, "llvm.global_dtors");
174   EmitGlobalAnnotations();
175   EmitLLVMUsed();
176 
177   if (CodeGenOpts.ModulesAutolink) {
178     EmitModuleLinkOptions();
179   }
180 
181   SimplifyPersonality();
182 
183   if (getCodeGenOpts().EmitDeclMetadata)
184     EmitDeclMetadata();
185 
186   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
187     EmitCoverageFile();
188 
189   if (DebugInfo)
190     DebugInfo->finalize();
191 }
192 
193 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
194   // Make sure that this type is translated.
195   Types.UpdateCompletedType(TD);
196 }
197 
198 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
199   if (!TBAA)
200     return 0;
201   return TBAA->getTBAAInfo(QTy);
202 }
203 
204 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
205   if (!TBAA)
206     return 0;
207   return TBAA->getTBAAInfoForVTablePtr();
208 }
209 
210 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
211   if (!TBAA)
212     return 0;
213   return TBAA->getTBAAStructInfo(QTy);
214 }
215 
216 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
217                                         llvm::MDNode *TBAAInfo) {
218   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
219 }
220 
221 bool CodeGenModule::isTargetDarwin() const {
222   return getContext().getTargetInfo().getTriple().isOSDarwin();
223 }
224 
225 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
226   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
227   getDiags().Report(Context.getFullLoc(loc), diagID);
228 }
229 
230 /// ErrorUnsupported - Print out an error that codegen doesn't support the
231 /// specified stmt yet.
232 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
233                                      bool OmitOnError) {
234   if (OmitOnError && getDiags().hasErrorOccurred())
235     return;
236   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
237                                                "cannot compile this %0 yet");
238   std::string Msg = Type;
239   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
240     << Msg << S->getSourceRange();
241 }
242 
243 /// ErrorUnsupported - Print out an error that codegen doesn't support the
244 /// specified decl yet.
245 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
246                                      bool OmitOnError) {
247   if (OmitOnError && getDiags().hasErrorOccurred())
248     return;
249   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
250                                                "cannot compile this %0 yet");
251   std::string Msg = Type;
252   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
253 }
254 
255 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
256   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
257 }
258 
259 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
260                                         const NamedDecl *D) const {
261   // Internal definitions always have default visibility.
262   if (GV->hasLocalLinkage()) {
263     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
264     return;
265   }
266 
267   // Set visibility for definitions.
268   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
269   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
270     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
271 }
272 
273 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
274   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
275       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
276       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
277       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
278       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
279 }
280 
281 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
282     CodeGenOptions::TLSModel M) {
283   switch (M) {
284   case CodeGenOptions::GeneralDynamicTLSModel:
285     return llvm::GlobalVariable::GeneralDynamicTLSModel;
286   case CodeGenOptions::LocalDynamicTLSModel:
287     return llvm::GlobalVariable::LocalDynamicTLSModel;
288   case CodeGenOptions::InitialExecTLSModel:
289     return llvm::GlobalVariable::InitialExecTLSModel;
290   case CodeGenOptions::LocalExecTLSModel:
291     return llvm::GlobalVariable::LocalExecTLSModel;
292   }
293   llvm_unreachable("Invalid TLS model!");
294 }
295 
296 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
297                                const VarDecl &D) const {
298   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
299 
300   llvm::GlobalVariable::ThreadLocalMode TLM;
301   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
302 
303   // Override the TLS model if it is explicitly specified.
304   if (D.hasAttr<TLSModelAttr>()) {
305     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
306     TLM = GetLLVMTLSModel(Attr->getModel());
307   }
308 
309   GV->setThreadLocalMode(TLM);
310 }
311 
312 /// Set the symbol visibility of type information (vtable and RTTI)
313 /// associated with the given type.
314 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
315                                       const CXXRecordDecl *RD,
316                                       TypeVisibilityKind TVK) const {
317   setGlobalVisibility(GV, RD);
318 
319   if (!CodeGenOpts.HiddenWeakVTables)
320     return;
321 
322   // We never want to drop the visibility for RTTI names.
323   if (TVK == TVK_ForRTTIName)
324     return;
325 
326   // We want to drop the visibility to hidden for weak type symbols.
327   // This isn't possible if there might be unresolved references
328   // elsewhere that rely on this symbol being visible.
329 
330   // This should be kept roughly in sync with setThunkVisibility
331   // in CGVTables.cpp.
332 
333   // Preconditions.
334   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
335       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
336     return;
337 
338   // Don't override an explicit visibility attribute.
339   if (RD->getExplicitVisibility())
340     return;
341 
342   switch (RD->getTemplateSpecializationKind()) {
343   // We have to disable the optimization if this is an EI definition
344   // because there might be EI declarations in other shared objects.
345   case TSK_ExplicitInstantiationDefinition:
346   case TSK_ExplicitInstantiationDeclaration:
347     return;
348 
349   // Every use of a non-template class's type information has to emit it.
350   case TSK_Undeclared:
351     break;
352 
353   // In theory, implicit instantiations can ignore the possibility of
354   // an explicit instantiation declaration because there necessarily
355   // must be an EI definition somewhere with default visibility.  In
356   // practice, it's possible to have an explicit instantiation for
357   // an arbitrary template class, and linkers aren't necessarily able
358   // to deal with mixed-visibility symbols.
359   case TSK_ExplicitSpecialization:
360   case TSK_ImplicitInstantiation:
361     return;
362   }
363 
364   // If there's a key function, there may be translation units
365   // that don't have the key function's definition.  But ignore
366   // this if we're emitting RTTI under -fno-rtti.
367   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
368     if (Context.getKeyFunction(RD))
369       return;
370   }
371 
372   // Otherwise, drop the visibility to hidden.
373   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
374   GV->setUnnamedAddr(true);
375 }
376 
377 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
378   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
379 
380   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
381   if (!Str.empty())
382     return Str;
383 
384   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
385     IdentifierInfo *II = ND->getIdentifier();
386     assert(II && "Attempt to mangle unnamed decl.");
387 
388     Str = II->getName();
389     return Str;
390   }
391 
392   SmallString<256> Buffer;
393   llvm::raw_svector_ostream Out(Buffer);
394   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
395     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
396   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
397     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
398   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
399     getCXXABI().getMangleContext().mangleBlock(BD, Out,
400       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
401   else
402     getCXXABI().getMangleContext().mangleName(ND, Out);
403 
404   // Allocate space for the mangled name.
405   Out.flush();
406   size_t Length = Buffer.size();
407   char *Name = MangledNamesAllocator.Allocate<char>(Length);
408   std::copy(Buffer.begin(), Buffer.end(), Name);
409 
410   Str = StringRef(Name, Length);
411 
412   return Str;
413 }
414 
415 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
416                                         const BlockDecl *BD) {
417   MangleContext &MangleCtx = getCXXABI().getMangleContext();
418   const Decl *D = GD.getDecl();
419   llvm::raw_svector_ostream Out(Buffer.getBuffer());
420   if (D == 0)
421     MangleCtx.mangleGlobalBlock(BD,
422       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
423   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
424     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
425   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
426     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
427   else
428     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
429 }
430 
431 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
432   return getModule().getNamedValue(Name);
433 }
434 
435 /// AddGlobalCtor - Add a function to the list that will be called before
436 /// main() runs.
437 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
438   // FIXME: Type coercion of void()* types.
439   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
440 }
441 
442 /// AddGlobalDtor - Add a function to the list that will be called
443 /// when the module is unloaded.
444 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
445   // FIXME: Type coercion of void()* types.
446   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
447 }
448 
449 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
450   // Ctor function type is void()*.
451   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
452   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
453 
454   // Get the type of a ctor entry, { i32, void ()* }.
455   llvm::StructType *CtorStructTy =
456     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
457 
458   // Construct the constructor and destructor arrays.
459   SmallVector<llvm::Constant*, 8> Ctors;
460   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
461     llvm::Constant *S[] = {
462       llvm::ConstantInt::get(Int32Ty, I->second, false),
463       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
464     };
465     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
466   }
467 
468   if (!Ctors.empty()) {
469     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
470     new llvm::GlobalVariable(TheModule, AT, false,
471                              llvm::GlobalValue::AppendingLinkage,
472                              llvm::ConstantArray::get(AT, Ctors),
473                              GlobalName);
474   }
475 }
476 
477 llvm::GlobalValue::LinkageTypes
478 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
479   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
480 
481   if (Linkage == GVA_Internal)
482     return llvm::Function::InternalLinkage;
483 
484   if (D->hasAttr<DLLExportAttr>())
485     return llvm::Function::DLLExportLinkage;
486 
487   if (D->hasAttr<WeakAttr>())
488     return llvm::Function::WeakAnyLinkage;
489 
490   // In C99 mode, 'inline' functions are guaranteed to have a strong
491   // definition somewhere else, so we can use available_externally linkage.
492   if (Linkage == GVA_C99Inline)
493     return llvm::Function::AvailableExternallyLinkage;
494 
495   // Note that Apple's kernel linker doesn't support symbol
496   // coalescing, so we need to avoid linkonce and weak linkages there.
497   // Normally, this means we just map to internal, but for explicit
498   // instantiations we'll map to external.
499 
500   // In C++, the compiler has to emit a definition in every translation unit
501   // that references the function.  We should use linkonce_odr because
502   // a) if all references in this translation unit are optimized away, we
503   // don't need to codegen it.  b) if the function persists, it needs to be
504   // merged with other definitions. c) C++ has the ODR, so we know the
505   // definition is dependable.
506   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
507     return !Context.getLangOpts().AppleKext
508              ? llvm::Function::LinkOnceODRLinkage
509              : llvm::Function::InternalLinkage;
510 
511   // An explicit instantiation of a template has weak linkage, since
512   // explicit instantiations can occur in multiple translation units
513   // and must all be equivalent. However, we are not allowed to
514   // throw away these explicit instantiations.
515   if (Linkage == GVA_ExplicitTemplateInstantiation)
516     return !Context.getLangOpts().AppleKext
517              ? llvm::Function::WeakODRLinkage
518              : llvm::Function::ExternalLinkage;
519 
520   // Otherwise, we have strong external linkage.
521   assert(Linkage == GVA_StrongExternal);
522   return llvm::Function::ExternalLinkage;
523 }
524 
525 
526 /// SetFunctionDefinitionAttributes - Set attributes for a global.
527 ///
528 /// FIXME: This is currently only done for aliases and functions, but not for
529 /// variables (these details are set in EmitGlobalVarDefinition for variables).
530 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
531                                                     llvm::GlobalValue *GV) {
532   SetCommonAttributes(D, GV);
533 }
534 
535 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
536                                               const CGFunctionInfo &Info,
537                                               llvm::Function *F) {
538   unsigned CallingConv;
539   AttributeListType AttributeList;
540   ConstructAttributeList(Info, D, AttributeList, CallingConv);
541   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
542   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
543 }
544 
545 /// Determines whether the language options require us to model
546 /// unwind exceptions.  We treat -fexceptions as mandating this
547 /// except under the fragile ObjC ABI with only ObjC exceptions
548 /// enabled.  This means, for example, that C with -fexceptions
549 /// enables this.
550 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
551   // If exceptions are completely disabled, obviously this is false.
552   if (!LangOpts.Exceptions) return false;
553 
554   // If C++ exceptions are enabled, this is true.
555   if (LangOpts.CXXExceptions) return true;
556 
557   // If ObjC exceptions are enabled, this depends on the ABI.
558   if (LangOpts.ObjCExceptions) {
559     return LangOpts.ObjCRuntime.hasUnwindExceptions();
560   }
561 
562   return true;
563 }
564 
565 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
566                                                            llvm::Function *F) {
567   if (CodeGenOpts.UnwindTables)
568     F->setHasUWTable();
569 
570   if (!hasUnwindExceptions(LangOpts))
571     F->addFnAttr(llvm::Attribute::NoUnwind);
572 
573   if (D->hasAttr<NakedAttr>()) {
574     // Naked implies noinline: we should not be inlining such functions.
575     F->addFnAttr(llvm::Attribute::Naked);
576     F->addFnAttr(llvm::Attribute::NoInline);
577   }
578 
579   if (D->hasAttr<NoInlineAttr>())
580     F->addFnAttr(llvm::Attribute::NoInline);
581 
582   // (noinline wins over always_inline, and we can't specify both in IR)
583   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
584       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
585                                        llvm::Attribute::NoInline))
586     F->addFnAttr(llvm::Attribute::AlwaysInline);
587 
588   // FIXME: Communicate hot and cold attributes to LLVM more directly.
589   if (D->hasAttr<ColdAttr>())
590     F->addFnAttr(llvm::Attribute::OptimizeForSize);
591 
592   if (D->hasAttr<MinSizeAttr>())
593     F->addFnAttr(llvm::Attribute::MinSize);
594 
595   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
596     F->setUnnamedAddr(true);
597 
598   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
599     if (MD->isVirtual())
600       F->setUnnamedAddr(true);
601 
602   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
603     F->addFnAttr(llvm::Attribute::StackProtect);
604   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
605     F->addFnAttr(llvm::Attribute::StackProtectReq);
606 
607   if (LangOpts.SanitizeAddress) {
608     // When AddressSanitizer is enabled, set AddressSafety attribute
609     // unless __attribute__((no_address_safety_analysis)) is used.
610     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
611       F->addFnAttr(llvm::Attribute::AddressSafety);
612   }
613 
614   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
615   if (alignment)
616     F->setAlignment(alignment);
617 
618   // C++ ABI requires 2-byte alignment for member functions.
619   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
620     F->setAlignment(2);
621 }
622 
623 void CodeGenModule::SetCommonAttributes(const Decl *D,
624                                         llvm::GlobalValue *GV) {
625   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
626     setGlobalVisibility(GV, ND);
627   else
628     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
629 
630   if (D->hasAttr<UsedAttr>())
631     AddUsedGlobal(GV);
632 
633   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
634     GV->setSection(SA->getName());
635 
636   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
637 }
638 
639 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
640                                                   llvm::Function *F,
641                                                   const CGFunctionInfo &FI) {
642   SetLLVMFunctionAttributes(D, FI, F);
643   SetLLVMFunctionAttributesForDefinition(D, F);
644 
645   F->setLinkage(llvm::Function::InternalLinkage);
646 
647   SetCommonAttributes(D, F);
648 }
649 
650 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
651                                           llvm::Function *F,
652                                           bool IsIncompleteFunction) {
653   if (unsigned IID = F->getIntrinsicID()) {
654     // If this is an intrinsic function, set the function's attributes
655     // to the intrinsic's attributes.
656     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
657                                                     (llvm::Intrinsic::ID)IID));
658     return;
659   }
660 
661   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
662 
663   if (!IsIncompleteFunction)
664     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
665 
666   // Only a few attributes are set on declarations; these may later be
667   // overridden by a definition.
668 
669   if (FD->hasAttr<DLLImportAttr>()) {
670     F->setLinkage(llvm::Function::DLLImportLinkage);
671   } else if (FD->hasAttr<WeakAttr>() ||
672              FD->isWeakImported()) {
673     // "extern_weak" is overloaded in LLVM; we probably should have
674     // separate linkage types for this.
675     F->setLinkage(llvm::Function::ExternalWeakLinkage);
676   } else {
677     F->setLinkage(llvm::Function::ExternalLinkage);
678 
679     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
680     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
681       F->setVisibility(GetLLVMVisibility(LV.visibility()));
682     }
683   }
684 
685   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
686     F->setSection(SA->getName());
687 }
688 
689 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
690   assert(!GV->isDeclaration() &&
691          "Only globals with definition can force usage.");
692   LLVMUsed.push_back(GV);
693 }
694 
695 void CodeGenModule::EmitLLVMUsed() {
696   // Don't create llvm.used if there is no need.
697   if (LLVMUsed.empty())
698     return;
699 
700   // Convert LLVMUsed to what ConstantArray needs.
701   SmallVector<llvm::Constant*, 8> UsedArray;
702   UsedArray.resize(LLVMUsed.size());
703   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
704     UsedArray[i] =
705      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
706                                     Int8PtrTy);
707   }
708 
709   if (UsedArray.empty())
710     return;
711   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
712 
713   llvm::GlobalVariable *GV =
714     new llvm::GlobalVariable(getModule(), ATy, false,
715                              llvm::GlobalValue::AppendingLinkage,
716                              llvm::ConstantArray::get(ATy, UsedArray),
717                              "llvm.used");
718 
719   GV->setSection("llvm.metadata");
720 }
721 
722 /// \brief Add link options implied by the given module, including modules
723 /// it depends on, using a postorder walk.
724 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
725                                     Module *Mod,
726                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
727                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
728   // Import this module's parent.
729   if (Mod->Parent && Visited.insert(Mod->Parent)) {
730     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
731   }
732 
733   // Import this module's dependencies.
734   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
735     if (Visited.insert(Mod->Imports[I-1]))
736       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
737   }
738 
739   // Add linker options to link against the libraries/frameworks
740   // described by this module.
741   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
742     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
743     // We need to know more about the linker to know how to encode these
744     // options propertly.
745 
746     // Link against a framework.
747     if (Mod->LinkLibraries[I-1].IsFramework) {
748       llvm::Value *Args[2] = {
749         llvm::MDString::get(Context, "-framework"),
750         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
751       };
752 
753       Metadata.push_back(llvm::MDNode::get(Context, Args));
754       continue;
755     }
756 
757     // Link against a library.
758     llvm::Value *OptString
759     = llvm::MDString::get(Context,
760                           "-l" + Mod->LinkLibraries[I-1].Library);
761     Metadata.push_back(llvm::MDNode::get(Context, OptString));
762   }
763 }
764 
765 void CodeGenModule::EmitModuleLinkOptions() {
766   // Collect the set of all of the modules we want to visit to emit link
767   // options, which is essentially the imported modules and all of their
768   // non-explicit child modules.
769   llvm::SetVector<clang::Module *> LinkModules;
770   llvm::SmallPtrSet<clang::Module *, 16> Visited;
771   SmallVector<clang::Module *, 16> Stack;
772 
773   // Seed the stack with imported modules.
774   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
775                                                MEnd = ImportedModules.end();
776        M != MEnd; ++M) {
777     if (Visited.insert(*M))
778       Stack.push_back(*M);
779   }
780 
781   // Find all of the modules to import, making a little effort to prune
782   // non-leaf modules.
783   while (!Stack.empty()) {
784     clang::Module *Mod = Stack.back();
785     Stack.pop_back();
786 
787     bool AnyChildren = false;
788 
789     // Visit the submodules of this module.
790     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
791                                         SubEnd = Mod->submodule_end();
792          Sub != SubEnd; ++Sub) {
793       // Skip explicit children; they need to be explicitly imported to be
794       // linked against.
795       if ((*Sub)->IsExplicit)
796         continue;
797 
798       if (Visited.insert(*Sub)) {
799         Stack.push_back(*Sub);
800         AnyChildren = true;
801       }
802     }
803 
804     // We didn't find any children, so add this module to the list of
805     // modules to link against.
806     if (!AnyChildren) {
807       LinkModules.insert(Mod);
808     }
809   }
810 
811   // Add link options for all of the imported modules in reverse topological
812   // order.
813   SmallVector<llvm::MDNode *, 16> MetadataArgs;
814   Visited.clear();
815   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
816                                                MEnd = LinkModules.end();
817        M != MEnd; ++M) {
818     if (Visited.insert(*M))
819       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
820   }
821 
822   // Get/create metadata for the link options.
823   llvm::NamedMDNode *Metadata
824     = getModule().getOrInsertNamedMetadata("llvm.module.linkoptions");
825 
826   // Add link options in topological order.
827   for (unsigned I = MetadataArgs.size(); I > 0; --I) {
828     Metadata->addOperand(MetadataArgs[I-1]);
829   }
830 }
831 
832 void CodeGenModule::EmitDeferred() {
833   // Emit code for any potentially referenced deferred decls.  Since a
834   // previously unused static decl may become used during the generation of code
835   // for a static function, iterate until no changes are made.
836 
837   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
838     if (!DeferredVTables.empty()) {
839       const CXXRecordDecl *RD = DeferredVTables.back();
840       DeferredVTables.pop_back();
841       getCXXABI().EmitVTables(RD);
842       continue;
843     }
844 
845     GlobalDecl D = DeferredDeclsToEmit.back();
846     DeferredDeclsToEmit.pop_back();
847 
848     // Check to see if we've already emitted this.  This is necessary
849     // for a couple of reasons: first, decls can end up in the
850     // deferred-decls queue multiple times, and second, decls can end
851     // up with definitions in unusual ways (e.g. by an extern inline
852     // function acquiring a strong function redefinition).  Just
853     // ignore these cases.
854     //
855     // TODO: That said, looking this up multiple times is very wasteful.
856     StringRef Name = getMangledName(D);
857     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
858     assert(CGRef && "Deferred decl wasn't referenced?");
859 
860     if (!CGRef->isDeclaration())
861       continue;
862 
863     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
864     // purposes an alias counts as a definition.
865     if (isa<llvm::GlobalAlias>(CGRef))
866       continue;
867 
868     // Otherwise, emit the definition and move on to the next one.
869     EmitGlobalDefinition(D);
870   }
871 }
872 
873 void CodeGenModule::EmitGlobalAnnotations() {
874   if (Annotations.empty())
875     return;
876 
877   // Create a new global variable for the ConstantStruct in the Module.
878   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
879     Annotations[0]->getType(), Annotations.size()), Annotations);
880   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
881     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
882     "llvm.global.annotations");
883   gv->setSection(AnnotationSection);
884 }
885 
886 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
887   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
888   if (i != AnnotationStrings.end())
889     return i->second;
890 
891   // Not found yet, create a new global.
892   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
893   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
894     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
895   gv->setSection(AnnotationSection);
896   gv->setUnnamedAddr(true);
897   AnnotationStrings[Str] = gv;
898   return gv;
899 }
900 
901 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
902   SourceManager &SM = getContext().getSourceManager();
903   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
904   if (PLoc.isValid())
905     return EmitAnnotationString(PLoc.getFilename());
906   return EmitAnnotationString(SM.getBufferName(Loc));
907 }
908 
909 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
910   SourceManager &SM = getContext().getSourceManager();
911   PresumedLoc PLoc = SM.getPresumedLoc(L);
912   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
913     SM.getExpansionLineNumber(L);
914   return llvm::ConstantInt::get(Int32Ty, LineNo);
915 }
916 
917 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
918                                                 const AnnotateAttr *AA,
919                                                 SourceLocation L) {
920   // Get the globals for file name, annotation, and the line number.
921   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
922                  *UnitGV = EmitAnnotationUnit(L),
923                  *LineNoCst = EmitAnnotationLineNo(L);
924 
925   // Create the ConstantStruct for the global annotation.
926   llvm::Constant *Fields[4] = {
927     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
928     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
929     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
930     LineNoCst
931   };
932   return llvm::ConstantStruct::getAnon(Fields);
933 }
934 
935 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
936                                          llvm::GlobalValue *GV) {
937   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
938   // Get the struct elements for these annotations.
939   for (specific_attr_iterator<AnnotateAttr>
940        ai = D->specific_attr_begin<AnnotateAttr>(),
941        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
942     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
943 }
944 
945 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
946   // Never defer when EmitAllDecls is specified.
947   if (LangOpts.EmitAllDecls)
948     return false;
949 
950   return !getContext().DeclMustBeEmitted(Global);
951 }
952 
953 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
954     const CXXUuidofExpr* E) {
955   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
956   // well-formed.
957   StringRef Uuid;
958   if (E->isTypeOperand())
959     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
960   else {
961     // Special case: __uuidof(0) means an all-zero GUID.
962     Expr *Op = E->getExprOperand();
963     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
964       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
965     else
966       Uuid = "00000000-0000-0000-0000-000000000000";
967   }
968   std::string Name = "__uuid_" + Uuid.str();
969 
970   // Look for an existing global.
971   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
972     return GV;
973 
974   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
975   assert(Init && "failed to initialize as constant");
976 
977   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
978   // first field is declared as "long", which for many targets is 8 bytes.
979   // Those architectures are not supported. (With the MS abi, long is always 4
980   // bytes.)
981   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
982   if (Init->getType() != GuidType) {
983     DiagnosticsEngine &Diags = getDiags();
984     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
985         "__uuidof codegen is not supported on this architecture");
986     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
987     Init = llvm::UndefValue::get(GuidType);
988   }
989 
990   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
991       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
992   GV->setUnnamedAddr(true);
993   return GV;
994 }
995 
996 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
997   const AliasAttr *AA = VD->getAttr<AliasAttr>();
998   assert(AA && "No alias?");
999 
1000   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1001 
1002   // See if there is already something with the target's name in the module.
1003   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1004   if (Entry) {
1005     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1006     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1007   }
1008 
1009   llvm::Constant *Aliasee;
1010   if (isa<llvm::FunctionType>(DeclTy))
1011     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1012                                       GlobalDecl(cast<FunctionDecl>(VD)),
1013                                       /*ForVTable=*/false);
1014   else
1015     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1016                                     llvm::PointerType::getUnqual(DeclTy), 0);
1017 
1018   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1019   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1020   WeakRefReferences.insert(F);
1021 
1022   return Aliasee;
1023 }
1024 
1025 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1026   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1027 
1028   // Weak references don't produce any output by themselves.
1029   if (Global->hasAttr<WeakRefAttr>())
1030     return;
1031 
1032   // If this is an alias definition (which otherwise looks like a declaration)
1033   // emit it now.
1034   if (Global->hasAttr<AliasAttr>())
1035     return EmitAliasDefinition(GD);
1036 
1037   // If this is CUDA, be selective about which declarations we emit.
1038   if (LangOpts.CUDA) {
1039     if (CodeGenOpts.CUDAIsDevice) {
1040       if (!Global->hasAttr<CUDADeviceAttr>() &&
1041           !Global->hasAttr<CUDAGlobalAttr>() &&
1042           !Global->hasAttr<CUDAConstantAttr>() &&
1043           !Global->hasAttr<CUDASharedAttr>())
1044         return;
1045     } else {
1046       if (!Global->hasAttr<CUDAHostAttr>() && (
1047             Global->hasAttr<CUDADeviceAttr>() ||
1048             Global->hasAttr<CUDAConstantAttr>() ||
1049             Global->hasAttr<CUDASharedAttr>()))
1050         return;
1051     }
1052   }
1053 
1054   // Ignore declarations, they will be emitted on their first use.
1055   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1056     // Forward declarations are emitted lazily on first use.
1057     if (!FD->doesThisDeclarationHaveABody()) {
1058       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1059         return;
1060 
1061       const FunctionDecl *InlineDefinition = 0;
1062       FD->getBody(InlineDefinition);
1063 
1064       StringRef MangledName = getMangledName(GD);
1065       DeferredDecls.erase(MangledName);
1066       EmitGlobalDefinition(InlineDefinition);
1067       return;
1068     }
1069   } else {
1070     const VarDecl *VD = cast<VarDecl>(Global);
1071     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1072 
1073     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1074       return;
1075   }
1076 
1077   // Defer code generation when possible if this is a static definition, inline
1078   // function etc.  These we only want to emit if they are used.
1079   if (!MayDeferGeneration(Global)) {
1080     // Emit the definition if it can't be deferred.
1081     EmitGlobalDefinition(GD);
1082     return;
1083   }
1084 
1085   // If we're deferring emission of a C++ variable with an
1086   // initializer, remember the order in which it appeared in the file.
1087   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1088       cast<VarDecl>(Global)->hasInit()) {
1089     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1090     CXXGlobalInits.push_back(0);
1091   }
1092 
1093   // If the value has already been used, add it directly to the
1094   // DeferredDeclsToEmit list.
1095   StringRef MangledName = getMangledName(GD);
1096   if (GetGlobalValue(MangledName))
1097     DeferredDeclsToEmit.push_back(GD);
1098   else {
1099     // Otherwise, remember that we saw a deferred decl with this name.  The
1100     // first use of the mangled name will cause it to move into
1101     // DeferredDeclsToEmit.
1102     DeferredDecls[MangledName] = GD;
1103   }
1104 }
1105 
1106 namespace {
1107   struct FunctionIsDirectlyRecursive :
1108     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1109     const StringRef Name;
1110     const Builtin::Context &BI;
1111     bool Result;
1112     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1113       Name(N), BI(C), Result(false) {
1114     }
1115     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1116 
1117     bool TraverseCallExpr(CallExpr *E) {
1118       const FunctionDecl *FD = E->getDirectCallee();
1119       if (!FD)
1120         return true;
1121       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1122       if (Attr && Name == Attr->getLabel()) {
1123         Result = true;
1124         return false;
1125       }
1126       unsigned BuiltinID = FD->getBuiltinID();
1127       if (!BuiltinID)
1128         return true;
1129       StringRef BuiltinName = BI.GetName(BuiltinID);
1130       if (BuiltinName.startswith("__builtin_") &&
1131           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1132         Result = true;
1133         return false;
1134       }
1135       return true;
1136     }
1137   };
1138 }
1139 
1140 // isTriviallyRecursive - Check if this function calls another
1141 // decl that, because of the asm attribute or the other decl being a builtin,
1142 // ends up pointing to itself.
1143 bool
1144 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1145   StringRef Name;
1146   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1147     // asm labels are a special kind of mangling we have to support.
1148     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1149     if (!Attr)
1150       return false;
1151     Name = Attr->getLabel();
1152   } else {
1153     Name = FD->getName();
1154   }
1155 
1156   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1157   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1158   return Walker.Result;
1159 }
1160 
1161 bool
1162 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1163   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1164     return true;
1165   if (CodeGenOpts.OptimizationLevel == 0 &&
1166       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1167     return false;
1168   // PR9614. Avoid cases where the source code is lying to us. An available
1169   // externally function should have an equivalent function somewhere else,
1170   // but a function that calls itself is clearly not equivalent to the real
1171   // implementation.
1172   // This happens in glibc's btowc and in some configure checks.
1173   return !isTriviallyRecursive(F);
1174 }
1175 
1176 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1177   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1178 
1179   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1180                                  Context.getSourceManager(),
1181                                  "Generating code for declaration");
1182 
1183   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1184     // At -O0, don't generate IR for functions with available_externally
1185     // linkage.
1186     if (!shouldEmitFunction(Function))
1187       return;
1188 
1189     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1190       // Make sure to emit the definition(s) before we emit the thunks.
1191       // This is necessary for the generation of certain thunks.
1192       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1193         EmitCXXConstructor(CD, GD.getCtorType());
1194       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1195         EmitCXXDestructor(DD, GD.getDtorType());
1196       else
1197         EmitGlobalFunctionDefinition(GD);
1198 
1199       if (Method->isVirtual())
1200         getVTables().EmitThunks(GD);
1201 
1202       return;
1203     }
1204 
1205     return EmitGlobalFunctionDefinition(GD);
1206   }
1207 
1208   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1209     return EmitGlobalVarDefinition(VD);
1210 
1211   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1212 }
1213 
1214 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1215 /// module, create and return an llvm Function with the specified type. If there
1216 /// is something in the module with the specified name, return it potentially
1217 /// bitcasted to the right type.
1218 ///
1219 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1220 /// to set the attributes on the function when it is first created.
1221 llvm::Constant *
1222 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1223                                        llvm::Type *Ty,
1224                                        GlobalDecl D, bool ForVTable,
1225                                        llvm::Attribute ExtraAttrs) {
1226   // Lookup the entry, lazily creating it if necessary.
1227   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1228   if (Entry) {
1229     if (WeakRefReferences.erase(Entry)) {
1230       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1231       if (FD && !FD->hasAttr<WeakAttr>())
1232         Entry->setLinkage(llvm::Function::ExternalLinkage);
1233     }
1234 
1235     if (Entry->getType()->getElementType() == Ty)
1236       return Entry;
1237 
1238     // Make sure the result is of the correct type.
1239     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1240   }
1241 
1242   // This function doesn't have a complete type (for example, the return
1243   // type is an incomplete struct). Use a fake type instead, and make
1244   // sure not to try to set attributes.
1245   bool IsIncompleteFunction = false;
1246 
1247   llvm::FunctionType *FTy;
1248   if (isa<llvm::FunctionType>(Ty)) {
1249     FTy = cast<llvm::FunctionType>(Ty);
1250   } else {
1251     FTy = llvm::FunctionType::get(VoidTy, false);
1252     IsIncompleteFunction = true;
1253   }
1254 
1255   llvm::Function *F = llvm::Function::Create(FTy,
1256                                              llvm::Function::ExternalLinkage,
1257                                              MangledName, &getModule());
1258   assert(F->getName() == MangledName && "name was uniqued!");
1259   if (D.getDecl())
1260     SetFunctionAttributes(D, F, IsIncompleteFunction);
1261   if (ExtraAttrs.hasAttributes())
1262     F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs);
1263 
1264   // This is the first use or definition of a mangled name.  If there is a
1265   // deferred decl with this name, remember that we need to emit it at the end
1266   // of the file.
1267   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1268   if (DDI != DeferredDecls.end()) {
1269     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1270     // list, and remove it from DeferredDecls (since we don't need it anymore).
1271     DeferredDeclsToEmit.push_back(DDI->second);
1272     DeferredDecls.erase(DDI);
1273 
1274   // Otherwise, there are cases we have to worry about where we're
1275   // using a declaration for which we must emit a definition but where
1276   // we might not find a top-level definition:
1277   //   - member functions defined inline in their classes
1278   //   - friend functions defined inline in some class
1279   //   - special member functions with implicit definitions
1280   // If we ever change our AST traversal to walk into class methods,
1281   // this will be unnecessary.
1282   //
1283   // We also don't emit a definition for a function if it's going to be an entry
1284   // in a vtable, unless it's already marked as used.
1285   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1286     // Look for a declaration that's lexically in a record.
1287     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1288     FD = FD->getMostRecentDecl();
1289     do {
1290       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1291         if (FD->isImplicit() && !ForVTable) {
1292           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1293           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1294           break;
1295         } else if (FD->doesThisDeclarationHaveABody()) {
1296           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1297           break;
1298         }
1299       }
1300       FD = FD->getPreviousDecl();
1301     } while (FD);
1302   }
1303 
1304   // Make sure the result is of the requested type.
1305   if (!IsIncompleteFunction) {
1306     assert(F->getType()->getElementType() == Ty);
1307     return F;
1308   }
1309 
1310   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1311   return llvm::ConstantExpr::getBitCast(F, PTy);
1312 }
1313 
1314 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1315 /// non-null, then this function will use the specified type if it has to
1316 /// create it (this occurs when we see a definition of the function).
1317 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1318                                                  llvm::Type *Ty,
1319                                                  bool ForVTable) {
1320   // If there was no specific requested type, just convert it now.
1321   if (!Ty)
1322     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1323 
1324   StringRef MangledName = getMangledName(GD);
1325   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1326 }
1327 
1328 /// CreateRuntimeFunction - Create a new runtime function with the specified
1329 /// type and name.
1330 llvm::Constant *
1331 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1332                                      StringRef Name,
1333                                      llvm::Attribute ExtraAttrs) {
1334   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1335                                  ExtraAttrs);
1336 }
1337 
1338 /// isTypeConstant - Determine whether an object of this type can be emitted
1339 /// as a constant.
1340 ///
1341 /// If ExcludeCtor is true, the duration when the object's constructor runs
1342 /// will not be considered. The caller will need to verify that the object is
1343 /// not written to during its construction.
1344 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1345   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1346     return false;
1347 
1348   if (Context.getLangOpts().CPlusPlus) {
1349     if (const CXXRecordDecl *Record
1350           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1351       return ExcludeCtor && !Record->hasMutableFields() &&
1352              Record->hasTrivialDestructor();
1353   }
1354 
1355   return true;
1356 }
1357 
1358 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1359 /// create and return an llvm GlobalVariable with the specified type.  If there
1360 /// is something in the module with the specified name, return it potentially
1361 /// bitcasted to the right type.
1362 ///
1363 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1364 /// to set the attributes on the global when it is first created.
1365 llvm::Constant *
1366 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1367                                      llvm::PointerType *Ty,
1368                                      const VarDecl *D,
1369                                      bool UnnamedAddr) {
1370   // Lookup the entry, lazily creating it if necessary.
1371   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1372   if (Entry) {
1373     if (WeakRefReferences.erase(Entry)) {
1374       if (D && !D->hasAttr<WeakAttr>())
1375         Entry->setLinkage(llvm::Function::ExternalLinkage);
1376     }
1377 
1378     if (UnnamedAddr)
1379       Entry->setUnnamedAddr(true);
1380 
1381     if (Entry->getType() == Ty)
1382       return Entry;
1383 
1384     // Make sure the result is of the correct type.
1385     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1386   }
1387 
1388   // This is the first use or definition of a mangled name.  If there is a
1389   // deferred decl with this name, remember that we need to emit it at the end
1390   // of the file.
1391   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1392   if (DDI != DeferredDecls.end()) {
1393     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1394     // list, and remove it from DeferredDecls (since we don't need it anymore).
1395     DeferredDeclsToEmit.push_back(DDI->second);
1396     DeferredDecls.erase(DDI);
1397   }
1398 
1399   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1400   llvm::GlobalVariable *GV =
1401     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1402                              llvm::GlobalValue::ExternalLinkage,
1403                              0, MangledName, 0,
1404                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1405 
1406   // Handle things which are present even on external declarations.
1407   if (D) {
1408     // FIXME: This code is overly simple and should be merged with other global
1409     // handling.
1410     GV->setConstant(isTypeConstant(D->getType(), false));
1411 
1412     // Set linkage and visibility in case we never see a definition.
1413     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1414     if (LV.linkage() != ExternalLinkage) {
1415       // Don't set internal linkage on declarations.
1416     } else {
1417       if (D->hasAttr<DLLImportAttr>())
1418         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1419       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1420         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1421 
1422       // Set visibility on a declaration only if it's explicit.
1423       if (LV.visibilityExplicit())
1424         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1425     }
1426 
1427     if (D->isThreadSpecified())
1428       setTLSMode(GV, *D);
1429   }
1430 
1431   if (AddrSpace != Ty->getAddressSpace())
1432     return llvm::ConstantExpr::getBitCast(GV, Ty);
1433   else
1434     return GV;
1435 }
1436 
1437 
1438 llvm::GlobalVariable *
1439 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1440                                       llvm::Type *Ty,
1441                                       llvm::GlobalValue::LinkageTypes Linkage) {
1442   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1443   llvm::GlobalVariable *OldGV = 0;
1444 
1445 
1446   if (GV) {
1447     // Check if the variable has the right type.
1448     if (GV->getType()->getElementType() == Ty)
1449       return GV;
1450 
1451     // Because C++ name mangling, the only way we can end up with an already
1452     // existing global with the same name is if it has been declared extern "C".
1453     assert(GV->isDeclaration() && "Declaration has wrong type!");
1454     OldGV = GV;
1455   }
1456 
1457   // Create a new variable.
1458   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1459                                 Linkage, 0, Name);
1460 
1461   if (OldGV) {
1462     // Replace occurrences of the old variable if needed.
1463     GV->takeName(OldGV);
1464 
1465     if (!OldGV->use_empty()) {
1466       llvm::Constant *NewPtrForOldDecl =
1467       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1468       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1469     }
1470 
1471     OldGV->eraseFromParent();
1472   }
1473 
1474   return GV;
1475 }
1476 
1477 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1478 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1479 /// then it will be created with the specified type instead of whatever the
1480 /// normal requested type would be.
1481 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1482                                                   llvm::Type *Ty) {
1483   assert(D->hasGlobalStorage() && "Not a global variable");
1484   QualType ASTTy = D->getType();
1485   if (Ty == 0)
1486     Ty = getTypes().ConvertTypeForMem(ASTTy);
1487 
1488   llvm::PointerType *PTy =
1489     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1490 
1491   StringRef MangledName = getMangledName(D);
1492   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1493 }
1494 
1495 /// CreateRuntimeVariable - Create a new runtime global variable with the
1496 /// specified type and name.
1497 llvm::Constant *
1498 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1499                                      StringRef Name) {
1500   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1501                                true);
1502 }
1503 
1504 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1505   assert(!D->getInit() && "Cannot emit definite definitions here!");
1506 
1507   if (MayDeferGeneration(D)) {
1508     // If we have not seen a reference to this variable yet, place it
1509     // into the deferred declarations table to be emitted if needed
1510     // later.
1511     StringRef MangledName = getMangledName(D);
1512     if (!GetGlobalValue(MangledName)) {
1513       DeferredDecls[MangledName] = D;
1514       return;
1515     }
1516   }
1517 
1518   // The tentative definition is the only definition.
1519   EmitGlobalVarDefinition(D);
1520 }
1521 
1522 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1523   if (DefinitionRequired)
1524     getCXXABI().EmitVTables(Class);
1525 }
1526 
1527 llvm::GlobalVariable::LinkageTypes
1528 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1529   if (RD->getLinkage() != ExternalLinkage)
1530     return llvm::GlobalVariable::InternalLinkage;
1531 
1532   if (const CXXMethodDecl *KeyFunction
1533                                     = RD->getASTContext().getKeyFunction(RD)) {
1534     // If this class has a key function, use that to determine the linkage of
1535     // the vtable.
1536     const FunctionDecl *Def = 0;
1537     if (KeyFunction->hasBody(Def))
1538       KeyFunction = cast<CXXMethodDecl>(Def);
1539 
1540     switch (KeyFunction->getTemplateSpecializationKind()) {
1541       case TSK_Undeclared:
1542       case TSK_ExplicitSpecialization:
1543         // When compiling with optimizations turned on, we emit all vtables,
1544         // even if the key function is not defined in the current translation
1545         // unit. If this is the case, use available_externally linkage.
1546         if (!Def && CodeGenOpts.OptimizationLevel)
1547           return llvm::GlobalVariable::AvailableExternallyLinkage;
1548 
1549         if (KeyFunction->isInlined())
1550           return !Context.getLangOpts().AppleKext ?
1551                    llvm::GlobalVariable::LinkOnceODRLinkage :
1552                    llvm::Function::InternalLinkage;
1553 
1554         return llvm::GlobalVariable::ExternalLinkage;
1555 
1556       case TSK_ImplicitInstantiation:
1557         return !Context.getLangOpts().AppleKext ?
1558                  llvm::GlobalVariable::LinkOnceODRLinkage :
1559                  llvm::Function::InternalLinkage;
1560 
1561       case TSK_ExplicitInstantiationDefinition:
1562         return !Context.getLangOpts().AppleKext ?
1563                  llvm::GlobalVariable::WeakODRLinkage :
1564                  llvm::Function::InternalLinkage;
1565 
1566       case TSK_ExplicitInstantiationDeclaration:
1567         // FIXME: Use available_externally linkage. However, this currently
1568         // breaks LLVM's build due to undefined symbols.
1569         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1570         return !Context.getLangOpts().AppleKext ?
1571                  llvm::GlobalVariable::LinkOnceODRLinkage :
1572                  llvm::Function::InternalLinkage;
1573     }
1574   }
1575 
1576   if (Context.getLangOpts().AppleKext)
1577     return llvm::Function::InternalLinkage;
1578 
1579   switch (RD->getTemplateSpecializationKind()) {
1580   case TSK_Undeclared:
1581   case TSK_ExplicitSpecialization:
1582   case TSK_ImplicitInstantiation:
1583     // FIXME: Use available_externally linkage. However, this currently
1584     // breaks LLVM's build due to undefined symbols.
1585     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1586   case TSK_ExplicitInstantiationDeclaration:
1587     return llvm::GlobalVariable::LinkOnceODRLinkage;
1588 
1589   case TSK_ExplicitInstantiationDefinition:
1590       return llvm::GlobalVariable::WeakODRLinkage;
1591   }
1592 
1593   llvm_unreachable("Invalid TemplateSpecializationKind!");
1594 }
1595 
1596 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1597     return Context.toCharUnitsFromBits(
1598       TheDataLayout.getTypeStoreSizeInBits(Ty));
1599 }
1600 
1601 llvm::Constant *
1602 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1603                                                        const Expr *rawInit) {
1604   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1605   if (const ExprWithCleanups *withCleanups =
1606           dyn_cast<ExprWithCleanups>(rawInit)) {
1607     cleanups = withCleanups->getObjects();
1608     rawInit = withCleanups->getSubExpr();
1609   }
1610 
1611   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1612   if (!init || !init->initializesStdInitializerList() ||
1613       init->getNumInits() == 0)
1614     return 0;
1615 
1616   ASTContext &ctx = getContext();
1617   unsigned numInits = init->getNumInits();
1618   // FIXME: This check is here because we would otherwise silently miscompile
1619   // nested global std::initializer_lists. Better would be to have a real
1620   // implementation.
1621   for (unsigned i = 0; i < numInits; ++i) {
1622     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1623     if (inner && inner->initializesStdInitializerList()) {
1624       ErrorUnsupported(inner, "nested global std::initializer_list");
1625       return 0;
1626     }
1627   }
1628 
1629   // Synthesize a fake VarDecl for the array and initialize that.
1630   QualType elementType = init->getInit(0)->getType();
1631   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1632   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1633                                                 ArrayType::Normal, 0);
1634 
1635   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1636   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1637                                               arrayType, D->getLocation());
1638   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1639                                                           D->getDeclContext()),
1640                                           D->getLocStart(), D->getLocation(),
1641                                           name, arrayType, sourceInfo,
1642                                           SC_Static, SC_Static);
1643 
1644   // Now clone the InitListExpr to initialize the array instead.
1645   // Incredible hack: we want to use the existing InitListExpr here, so we need
1646   // to tell it that it no longer initializes a std::initializer_list.
1647   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1648                         init->getNumInits());
1649   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1650                                            init->getRBraceLoc());
1651   arrayInit->setType(arrayType);
1652 
1653   if (!cleanups.empty())
1654     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1655 
1656   backingArray->setInit(arrayInit);
1657 
1658   // Emit the definition of the array.
1659   EmitGlobalVarDefinition(backingArray);
1660 
1661   // Inspect the initializer list to validate it and determine its type.
1662   // FIXME: doing this every time is probably inefficient; caching would be nice
1663   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1664   RecordDecl::field_iterator field = record->field_begin();
1665   if (field == record->field_end()) {
1666     ErrorUnsupported(D, "weird std::initializer_list");
1667     return 0;
1668   }
1669   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1670   // Start pointer.
1671   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1672     ErrorUnsupported(D, "weird std::initializer_list");
1673     return 0;
1674   }
1675   ++field;
1676   if (field == record->field_end()) {
1677     ErrorUnsupported(D, "weird std::initializer_list");
1678     return 0;
1679   }
1680   bool isStartEnd = false;
1681   if (ctx.hasSameType(field->getType(), elementPtr)) {
1682     // End pointer.
1683     isStartEnd = true;
1684   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1685     ErrorUnsupported(D, "weird std::initializer_list");
1686     return 0;
1687   }
1688 
1689   // Now build an APValue representing the std::initializer_list.
1690   APValue initListValue(APValue::UninitStruct(), 0, 2);
1691   APValue &startField = initListValue.getStructField(0);
1692   APValue::LValuePathEntry startOffsetPathEntry;
1693   startOffsetPathEntry.ArrayIndex = 0;
1694   startField = APValue(APValue::LValueBase(backingArray),
1695                        CharUnits::fromQuantity(0),
1696                        llvm::makeArrayRef(startOffsetPathEntry),
1697                        /*IsOnePastTheEnd=*/false, 0);
1698 
1699   if (isStartEnd) {
1700     APValue &endField = initListValue.getStructField(1);
1701     APValue::LValuePathEntry endOffsetPathEntry;
1702     endOffsetPathEntry.ArrayIndex = numInits;
1703     endField = APValue(APValue::LValueBase(backingArray),
1704                        ctx.getTypeSizeInChars(elementType) * numInits,
1705                        llvm::makeArrayRef(endOffsetPathEntry),
1706                        /*IsOnePastTheEnd=*/true, 0);
1707   } else {
1708     APValue &sizeField = initListValue.getStructField(1);
1709     sizeField = APValue(llvm::APSInt(numElements));
1710   }
1711 
1712   // Emit the constant for the initializer_list.
1713   llvm::Constant *llvmInit =
1714       EmitConstantValueForMemory(initListValue, D->getType());
1715   assert(llvmInit && "failed to initialize as constant");
1716   return llvmInit;
1717 }
1718 
1719 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1720                                                  unsigned AddrSpace) {
1721   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1722     if (D->hasAttr<CUDAConstantAttr>())
1723       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1724     else if (D->hasAttr<CUDASharedAttr>())
1725       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1726     else
1727       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1728   }
1729 
1730   return AddrSpace;
1731 }
1732 
1733 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1734   llvm::Constant *Init = 0;
1735   QualType ASTTy = D->getType();
1736   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1737   bool NeedsGlobalCtor = false;
1738   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1739 
1740   const VarDecl *InitDecl;
1741   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1742 
1743   if (!InitExpr) {
1744     // This is a tentative definition; tentative definitions are
1745     // implicitly initialized with { 0 }.
1746     //
1747     // Note that tentative definitions are only emitted at the end of
1748     // a translation unit, so they should never have incomplete
1749     // type. In addition, EmitTentativeDefinition makes sure that we
1750     // never attempt to emit a tentative definition if a real one
1751     // exists. A use may still exists, however, so we still may need
1752     // to do a RAUW.
1753     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1754     Init = EmitNullConstant(D->getType());
1755   } else {
1756     // If this is a std::initializer_list, emit the special initializer.
1757     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1758     // An empty init list will perform zero-initialization, which happens
1759     // to be exactly what we want.
1760     // FIXME: It does so in a global constructor, which is *not* what we
1761     // want.
1762 
1763     if (!Init) {
1764       initializedGlobalDecl = GlobalDecl(D);
1765       Init = EmitConstantInit(*InitDecl);
1766     }
1767     if (!Init) {
1768       QualType T = InitExpr->getType();
1769       if (D->getType()->isReferenceType())
1770         T = D->getType();
1771 
1772       if (getLangOpts().CPlusPlus) {
1773         Init = EmitNullConstant(T);
1774         NeedsGlobalCtor = true;
1775       } else {
1776         ErrorUnsupported(D, "static initializer");
1777         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1778       }
1779     } else {
1780       // We don't need an initializer, so remove the entry for the delayed
1781       // initializer position (just in case this entry was delayed) if we
1782       // also don't need to register a destructor.
1783       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1784         DelayedCXXInitPosition.erase(D);
1785     }
1786   }
1787 
1788   llvm::Type* InitType = Init->getType();
1789   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1790 
1791   // Strip off a bitcast if we got one back.
1792   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1793     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1794            // all zero index gep.
1795            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1796     Entry = CE->getOperand(0);
1797   }
1798 
1799   // Entry is now either a Function or GlobalVariable.
1800   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1801 
1802   // We have a definition after a declaration with the wrong type.
1803   // We must make a new GlobalVariable* and update everything that used OldGV
1804   // (a declaration or tentative definition) with the new GlobalVariable*
1805   // (which will be a definition).
1806   //
1807   // This happens if there is a prototype for a global (e.g.
1808   // "extern int x[];") and then a definition of a different type (e.g.
1809   // "int x[10];"). This also happens when an initializer has a different type
1810   // from the type of the global (this happens with unions).
1811   if (GV == 0 ||
1812       GV->getType()->getElementType() != InitType ||
1813       GV->getType()->getAddressSpace() !=
1814        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1815 
1816     // Move the old entry aside so that we'll create a new one.
1817     Entry->setName(StringRef());
1818 
1819     // Make a new global with the correct type, this is now guaranteed to work.
1820     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1821 
1822     // Replace all uses of the old global with the new global
1823     llvm::Constant *NewPtrForOldDecl =
1824         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1825     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1826 
1827     // Erase the old global, since it is no longer used.
1828     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1829   }
1830 
1831   if (D->hasAttr<AnnotateAttr>())
1832     AddGlobalAnnotations(D, GV);
1833 
1834   GV->setInitializer(Init);
1835 
1836   // If it is safe to mark the global 'constant', do so now.
1837   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1838                   isTypeConstant(D->getType(), true));
1839 
1840   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1841 
1842   // Set the llvm linkage type as appropriate.
1843   llvm::GlobalValue::LinkageTypes Linkage =
1844     GetLLVMLinkageVarDefinition(D, GV);
1845   GV->setLinkage(Linkage);
1846   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1847     // common vars aren't constant even if declared const.
1848     GV->setConstant(false);
1849 
1850   SetCommonAttributes(D, GV);
1851 
1852   // Emit the initializer function if necessary.
1853   if (NeedsGlobalCtor || NeedsGlobalDtor)
1854     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1855 
1856   // If we are compiling with ASan, add metadata indicating dynamically
1857   // initialized globals.
1858   if (LangOpts.SanitizeAddress && NeedsGlobalCtor) {
1859     llvm::Module &M = getModule();
1860 
1861     llvm::NamedMDNode *DynamicInitializers =
1862         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1863     llvm::Value *GlobalToAdd[] = { GV };
1864     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1865     DynamicInitializers->addOperand(ThisGlobal);
1866   }
1867 
1868   // Emit global variable debug information.
1869   if (CGDebugInfo *DI = getModuleDebugInfo())
1870     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1871       DI->EmitGlobalVariable(GV, D);
1872 }
1873 
1874 llvm::GlobalValue::LinkageTypes
1875 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1876                                            llvm::GlobalVariable *GV) {
1877   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1878   if (Linkage == GVA_Internal)
1879     return llvm::Function::InternalLinkage;
1880   else if (D->hasAttr<DLLImportAttr>())
1881     return llvm::Function::DLLImportLinkage;
1882   else if (D->hasAttr<DLLExportAttr>())
1883     return llvm::Function::DLLExportLinkage;
1884   else if (D->hasAttr<WeakAttr>()) {
1885     if (GV->isConstant())
1886       return llvm::GlobalVariable::WeakODRLinkage;
1887     else
1888       return llvm::GlobalVariable::WeakAnyLinkage;
1889   } else if (Linkage == GVA_TemplateInstantiation ||
1890              Linkage == GVA_ExplicitTemplateInstantiation)
1891     return llvm::GlobalVariable::WeakODRLinkage;
1892   else if (!getLangOpts().CPlusPlus &&
1893            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1894              D->getAttr<CommonAttr>()) &&
1895            !D->hasExternalStorage() && !D->getInit() &&
1896            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1897            !D->getAttr<WeakImportAttr>()) {
1898     // Thread local vars aren't considered common linkage.
1899     return llvm::GlobalVariable::CommonLinkage;
1900   }
1901   return llvm::GlobalVariable::ExternalLinkage;
1902 }
1903 
1904 /// Replace the uses of a function that was declared with a non-proto type.
1905 /// We want to silently drop extra arguments from call sites
1906 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1907                                           llvm::Function *newFn) {
1908   // Fast path.
1909   if (old->use_empty()) return;
1910 
1911   llvm::Type *newRetTy = newFn->getReturnType();
1912   SmallVector<llvm::Value*, 4> newArgs;
1913 
1914   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1915          ui != ue; ) {
1916     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1917     llvm::User *user = *use;
1918 
1919     // Recognize and replace uses of bitcasts.  Most calls to
1920     // unprototyped functions will use bitcasts.
1921     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1922       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1923         replaceUsesOfNonProtoConstant(bitcast, newFn);
1924       continue;
1925     }
1926 
1927     // Recognize calls to the function.
1928     llvm::CallSite callSite(user);
1929     if (!callSite) continue;
1930     if (!callSite.isCallee(use)) continue;
1931 
1932     // If the return types don't match exactly, then we can't
1933     // transform this call unless it's dead.
1934     if (callSite->getType() != newRetTy && !callSite->use_empty())
1935       continue;
1936 
1937     // Get the call site's attribute list.
1938     SmallVector<llvm::AttributeWithIndex, 8> newAttrs;
1939     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1940 
1941     // Collect any return attributes from the call.
1942     llvm::Attribute returnAttrs = oldAttrs.getRetAttributes();
1943     if (returnAttrs.hasAttributes())
1944       newAttrs.push_back(llvm::AttributeWithIndex::get(
1945                                 llvm::AttributeSet::ReturnIndex, returnAttrs));
1946 
1947     // If the function was passed too few arguments, don't transform.
1948     unsigned newNumArgs = newFn->arg_size();
1949     if (callSite.arg_size() < newNumArgs) continue;
1950 
1951     // If extra arguments were passed, we silently drop them.
1952     // If any of the types mismatch, we don't transform.
1953     unsigned argNo = 0;
1954     bool dontTransform = false;
1955     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1956            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1957       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1958         dontTransform = true;
1959         break;
1960       }
1961 
1962       // Add any parameter attributes.
1963       llvm::Attribute pAttrs = oldAttrs.getParamAttributes(argNo + 1);
1964       if (pAttrs.hasAttributes())
1965         newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs));
1966     }
1967     if (dontTransform)
1968       continue;
1969 
1970     llvm::Attribute fnAttrs = oldAttrs.getFnAttributes();
1971     if (fnAttrs.hasAttributes())
1972       newAttrs.push_back(llvm::
1973                        AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex,
1974                                                fnAttrs));
1975 
1976     // Okay, we can transform this.  Create the new call instruction and copy
1977     // over the required information.
1978     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1979 
1980     llvm::CallSite newCall;
1981     if (callSite.isCall()) {
1982       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1983                                        callSite.getInstruction());
1984     } else {
1985       llvm::InvokeInst *oldInvoke =
1986         cast<llvm::InvokeInst>(callSite.getInstruction());
1987       newCall = llvm::InvokeInst::Create(newFn,
1988                                          oldInvoke->getNormalDest(),
1989                                          oldInvoke->getUnwindDest(),
1990                                          newArgs, "",
1991                                          callSite.getInstruction());
1992     }
1993     newArgs.clear(); // for the next iteration
1994 
1995     if (!newCall->getType()->isVoidTy())
1996       newCall->takeName(callSite.getInstruction());
1997     newCall.setAttributes(
1998                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1999     newCall.setCallingConv(callSite.getCallingConv());
2000 
2001     // Finally, remove the old call, replacing any uses with the new one.
2002     if (!callSite->use_empty())
2003       callSite->replaceAllUsesWith(newCall.getInstruction());
2004 
2005     // Copy debug location attached to CI.
2006     if (!callSite->getDebugLoc().isUnknown())
2007       newCall->setDebugLoc(callSite->getDebugLoc());
2008     callSite->eraseFromParent();
2009   }
2010 }
2011 
2012 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2013 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2014 /// existing call uses of the old function in the module, this adjusts them to
2015 /// call the new function directly.
2016 ///
2017 /// This is not just a cleanup: the always_inline pass requires direct calls to
2018 /// functions to be able to inline them.  If there is a bitcast in the way, it
2019 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2020 /// run at -O0.
2021 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2022                                                       llvm::Function *NewFn) {
2023   // If we're redefining a global as a function, don't transform it.
2024   if (!isa<llvm::Function>(Old)) return;
2025 
2026   replaceUsesOfNonProtoConstant(Old, NewFn);
2027 }
2028 
2029 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2030   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2031   // If we have a definition, this might be a deferred decl. If the
2032   // instantiation is explicit, make sure we emit it at the end.
2033   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2034     GetAddrOfGlobalVar(VD);
2035 }
2036 
2037 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2038   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2039 
2040   // Compute the function info and LLVM type.
2041   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2042   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2043 
2044   // Get or create the prototype for the function.
2045   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2046 
2047   // Strip off a bitcast if we got one back.
2048   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2049     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2050     Entry = CE->getOperand(0);
2051   }
2052 
2053 
2054   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2055     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2056 
2057     // If the types mismatch then we have to rewrite the definition.
2058     assert(OldFn->isDeclaration() &&
2059            "Shouldn't replace non-declaration");
2060 
2061     // F is the Function* for the one with the wrong type, we must make a new
2062     // Function* and update everything that used F (a declaration) with the new
2063     // Function* (which will be a definition).
2064     //
2065     // This happens if there is a prototype for a function
2066     // (e.g. "int f()") and then a definition of a different type
2067     // (e.g. "int f(int x)").  Move the old function aside so that it
2068     // doesn't interfere with GetAddrOfFunction.
2069     OldFn->setName(StringRef());
2070     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2071 
2072     // This might be an implementation of a function without a
2073     // prototype, in which case, try to do special replacement of
2074     // calls which match the new prototype.  The really key thing here
2075     // is that we also potentially drop arguments from the call site
2076     // so as to make a direct call, which makes the inliner happier
2077     // and suppresses a number of optimizer warnings (!) about
2078     // dropping arguments.
2079     if (!OldFn->use_empty()) {
2080       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2081       OldFn->removeDeadConstantUsers();
2082     }
2083 
2084     // Replace uses of F with the Function we will endow with a body.
2085     if (!Entry->use_empty()) {
2086       llvm::Constant *NewPtrForOldDecl =
2087         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2088       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2089     }
2090 
2091     // Ok, delete the old function now, which is dead.
2092     OldFn->eraseFromParent();
2093 
2094     Entry = NewFn;
2095   }
2096 
2097   // We need to set linkage and visibility on the function before
2098   // generating code for it because various parts of IR generation
2099   // want to propagate this information down (e.g. to local static
2100   // declarations).
2101   llvm::Function *Fn = cast<llvm::Function>(Entry);
2102   setFunctionLinkage(D, Fn);
2103 
2104   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2105   setGlobalVisibility(Fn, D);
2106 
2107   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2108 
2109   SetFunctionDefinitionAttributes(D, Fn);
2110   SetLLVMFunctionAttributesForDefinition(D, Fn);
2111 
2112   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2113     AddGlobalCtor(Fn, CA->getPriority());
2114   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2115     AddGlobalDtor(Fn, DA->getPriority());
2116   if (D->hasAttr<AnnotateAttr>())
2117     AddGlobalAnnotations(D, Fn);
2118 }
2119 
2120 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2121   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2122   const AliasAttr *AA = D->getAttr<AliasAttr>();
2123   assert(AA && "Not an alias?");
2124 
2125   StringRef MangledName = getMangledName(GD);
2126 
2127   // If there is a definition in the module, then it wins over the alias.
2128   // This is dubious, but allow it to be safe.  Just ignore the alias.
2129   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2130   if (Entry && !Entry->isDeclaration())
2131     return;
2132 
2133   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2134 
2135   // Create a reference to the named value.  This ensures that it is emitted
2136   // if a deferred decl.
2137   llvm::Constant *Aliasee;
2138   if (isa<llvm::FunctionType>(DeclTy))
2139     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2140                                       /*ForVTable=*/false);
2141   else
2142     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2143                                     llvm::PointerType::getUnqual(DeclTy), 0);
2144 
2145   // Create the new alias itself, but don't set a name yet.
2146   llvm::GlobalValue *GA =
2147     new llvm::GlobalAlias(Aliasee->getType(),
2148                           llvm::Function::ExternalLinkage,
2149                           "", Aliasee, &getModule());
2150 
2151   if (Entry) {
2152     assert(Entry->isDeclaration());
2153 
2154     // If there is a declaration in the module, then we had an extern followed
2155     // by the alias, as in:
2156     //   extern int test6();
2157     //   ...
2158     //   int test6() __attribute__((alias("test7")));
2159     //
2160     // Remove it and replace uses of it with the alias.
2161     GA->takeName(Entry);
2162 
2163     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2164                                                           Entry->getType()));
2165     Entry->eraseFromParent();
2166   } else {
2167     GA->setName(MangledName);
2168   }
2169 
2170   // Set attributes which are particular to an alias; this is a
2171   // specialization of the attributes which may be set on a global
2172   // variable/function.
2173   if (D->hasAttr<DLLExportAttr>()) {
2174     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2175       // The dllexport attribute is ignored for undefined symbols.
2176       if (FD->hasBody())
2177         GA->setLinkage(llvm::Function::DLLExportLinkage);
2178     } else {
2179       GA->setLinkage(llvm::Function::DLLExportLinkage);
2180     }
2181   } else if (D->hasAttr<WeakAttr>() ||
2182              D->hasAttr<WeakRefAttr>() ||
2183              D->isWeakImported()) {
2184     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2185   }
2186 
2187   SetCommonAttributes(D, GA);
2188 }
2189 
2190 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2191                                             ArrayRef<llvm::Type*> Tys) {
2192   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2193                                          Tys);
2194 }
2195 
2196 static llvm::StringMapEntry<llvm::Constant*> &
2197 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2198                          const StringLiteral *Literal,
2199                          bool TargetIsLSB,
2200                          bool &IsUTF16,
2201                          unsigned &StringLength) {
2202   StringRef String = Literal->getString();
2203   unsigned NumBytes = String.size();
2204 
2205   // Check for simple case.
2206   if (!Literal->containsNonAsciiOrNull()) {
2207     StringLength = NumBytes;
2208     return Map.GetOrCreateValue(String);
2209   }
2210 
2211   // Otherwise, convert the UTF8 literals into a string of shorts.
2212   IsUTF16 = true;
2213 
2214   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2215   const UTF8 *FromPtr = (const UTF8 *)String.data();
2216   UTF16 *ToPtr = &ToBuf[0];
2217 
2218   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2219                            &ToPtr, ToPtr + NumBytes,
2220                            strictConversion);
2221 
2222   // ConvertUTF8toUTF16 returns the length in ToPtr.
2223   StringLength = ToPtr - &ToBuf[0];
2224 
2225   // Add an explicit null.
2226   *ToPtr = 0;
2227   return Map.
2228     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2229                                (StringLength + 1) * 2));
2230 }
2231 
2232 static llvm::StringMapEntry<llvm::Constant*> &
2233 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2234                        const StringLiteral *Literal,
2235                        unsigned &StringLength) {
2236   StringRef String = Literal->getString();
2237   StringLength = String.size();
2238   return Map.GetOrCreateValue(String);
2239 }
2240 
2241 llvm::Constant *
2242 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2243   unsigned StringLength = 0;
2244   bool isUTF16 = false;
2245   llvm::StringMapEntry<llvm::Constant*> &Entry =
2246     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2247                              getDataLayout().isLittleEndian(),
2248                              isUTF16, StringLength);
2249 
2250   if (llvm::Constant *C = Entry.getValue())
2251     return C;
2252 
2253   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2254   llvm::Constant *Zeros[] = { Zero, Zero };
2255 
2256   // If we don't already have it, get __CFConstantStringClassReference.
2257   if (!CFConstantStringClassRef) {
2258     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2259     Ty = llvm::ArrayType::get(Ty, 0);
2260     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2261                                            "__CFConstantStringClassReference");
2262     // Decay array -> ptr
2263     CFConstantStringClassRef =
2264       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2265   }
2266 
2267   QualType CFTy = getContext().getCFConstantStringType();
2268 
2269   llvm::StructType *STy =
2270     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2271 
2272   llvm::Constant *Fields[4];
2273 
2274   // Class pointer.
2275   Fields[0] = CFConstantStringClassRef;
2276 
2277   // Flags.
2278   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2279   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2280     llvm::ConstantInt::get(Ty, 0x07C8);
2281 
2282   // String pointer.
2283   llvm::Constant *C = 0;
2284   if (isUTF16) {
2285     ArrayRef<uint16_t> Arr =
2286       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2287                                      const_cast<char *>(Entry.getKey().data())),
2288                                    Entry.getKey().size() / 2);
2289     C = llvm::ConstantDataArray::get(VMContext, Arr);
2290   } else {
2291     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2292   }
2293 
2294   llvm::GlobalValue::LinkageTypes Linkage;
2295   if (isUTF16)
2296     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2297     Linkage = llvm::GlobalValue::InternalLinkage;
2298   else
2299     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2300     // when using private linkage. It is not clear if this is a bug in ld
2301     // or a reasonable new restriction.
2302     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2303 
2304   // Note: -fwritable-strings doesn't make the backing store strings of
2305   // CFStrings writable. (See <rdar://problem/10657500>)
2306   llvm::GlobalVariable *GV =
2307     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2308                              Linkage, C, ".str");
2309   GV->setUnnamedAddr(true);
2310   if (isUTF16) {
2311     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2312     GV->setAlignment(Align.getQuantity());
2313   } else {
2314     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2315     GV->setAlignment(Align.getQuantity());
2316   }
2317 
2318   // String.
2319   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2320 
2321   if (isUTF16)
2322     // Cast the UTF16 string to the correct type.
2323     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2324 
2325   // String length.
2326   Ty = getTypes().ConvertType(getContext().LongTy);
2327   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2328 
2329   // The struct.
2330   C = llvm::ConstantStruct::get(STy, Fields);
2331   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2332                                 llvm::GlobalVariable::PrivateLinkage, C,
2333                                 "_unnamed_cfstring_");
2334   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2335     GV->setSection(Sect);
2336   Entry.setValue(GV);
2337 
2338   return GV;
2339 }
2340 
2341 static RecordDecl *
2342 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2343                  DeclContext *DC, IdentifierInfo *Id) {
2344   SourceLocation Loc;
2345   if (Ctx.getLangOpts().CPlusPlus)
2346     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2347   else
2348     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2349 }
2350 
2351 llvm::Constant *
2352 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2353   unsigned StringLength = 0;
2354   llvm::StringMapEntry<llvm::Constant*> &Entry =
2355     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2356 
2357   if (llvm::Constant *C = Entry.getValue())
2358     return C;
2359 
2360   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2361   llvm::Constant *Zeros[] = { Zero, Zero };
2362 
2363   // If we don't already have it, get _NSConstantStringClassReference.
2364   if (!ConstantStringClassRef) {
2365     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2366     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2367     llvm::Constant *GV;
2368     if (LangOpts.ObjCRuntime.isNonFragile()) {
2369       std::string str =
2370         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2371                             : "OBJC_CLASS_$_" + StringClass;
2372       GV = getObjCRuntime().GetClassGlobal(str);
2373       // Make sure the result is of the correct type.
2374       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2375       ConstantStringClassRef =
2376         llvm::ConstantExpr::getBitCast(GV, PTy);
2377     } else {
2378       std::string str =
2379         StringClass.empty() ? "_NSConstantStringClassReference"
2380                             : "_" + StringClass + "ClassReference";
2381       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2382       GV = CreateRuntimeVariable(PTy, str);
2383       // Decay array -> ptr
2384       ConstantStringClassRef =
2385         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2386     }
2387   }
2388 
2389   if (!NSConstantStringType) {
2390     // Construct the type for a constant NSString.
2391     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2392                                      Context.getTranslationUnitDecl(),
2393                                    &Context.Idents.get("__builtin_NSString"));
2394     D->startDefinition();
2395 
2396     QualType FieldTypes[3];
2397 
2398     // const int *isa;
2399     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2400     // const char *str;
2401     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2402     // unsigned int length;
2403     FieldTypes[2] = Context.UnsignedIntTy;
2404 
2405     // Create fields
2406     for (unsigned i = 0; i < 3; ++i) {
2407       FieldDecl *Field = FieldDecl::Create(Context, D,
2408                                            SourceLocation(),
2409                                            SourceLocation(), 0,
2410                                            FieldTypes[i], /*TInfo=*/0,
2411                                            /*BitWidth=*/0,
2412                                            /*Mutable=*/false,
2413                                            ICIS_NoInit);
2414       Field->setAccess(AS_public);
2415       D->addDecl(Field);
2416     }
2417 
2418     D->completeDefinition();
2419     QualType NSTy = Context.getTagDeclType(D);
2420     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2421   }
2422 
2423   llvm::Constant *Fields[3];
2424 
2425   // Class pointer.
2426   Fields[0] = ConstantStringClassRef;
2427 
2428   // String pointer.
2429   llvm::Constant *C =
2430     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2431 
2432   llvm::GlobalValue::LinkageTypes Linkage;
2433   bool isConstant;
2434   Linkage = llvm::GlobalValue::PrivateLinkage;
2435   isConstant = !LangOpts.WritableStrings;
2436 
2437   llvm::GlobalVariable *GV =
2438   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2439                            ".str");
2440   GV->setUnnamedAddr(true);
2441   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2442   GV->setAlignment(Align.getQuantity());
2443   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2444 
2445   // String length.
2446   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2447   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2448 
2449   // The struct.
2450   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2451   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2452                                 llvm::GlobalVariable::PrivateLinkage, C,
2453                                 "_unnamed_nsstring_");
2454   // FIXME. Fix section.
2455   if (const char *Sect =
2456         LangOpts.ObjCRuntime.isNonFragile()
2457           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2458           : getContext().getTargetInfo().getNSStringSection())
2459     GV->setSection(Sect);
2460   Entry.setValue(GV);
2461 
2462   return GV;
2463 }
2464 
2465 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2466   if (ObjCFastEnumerationStateType.isNull()) {
2467     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2468                                      Context.getTranslationUnitDecl(),
2469                       &Context.Idents.get("__objcFastEnumerationState"));
2470     D->startDefinition();
2471 
2472     QualType FieldTypes[] = {
2473       Context.UnsignedLongTy,
2474       Context.getPointerType(Context.getObjCIdType()),
2475       Context.getPointerType(Context.UnsignedLongTy),
2476       Context.getConstantArrayType(Context.UnsignedLongTy,
2477                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2478     };
2479 
2480     for (size_t i = 0; i < 4; ++i) {
2481       FieldDecl *Field = FieldDecl::Create(Context,
2482                                            D,
2483                                            SourceLocation(),
2484                                            SourceLocation(), 0,
2485                                            FieldTypes[i], /*TInfo=*/0,
2486                                            /*BitWidth=*/0,
2487                                            /*Mutable=*/false,
2488                                            ICIS_NoInit);
2489       Field->setAccess(AS_public);
2490       D->addDecl(Field);
2491     }
2492 
2493     D->completeDefinition();
2494     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2495   }
2496 
2497   return ObjCFastEnumerationStateType;
2498 }
2499 
2500 llvm::Constant *
2501 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2502   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2503 
2504   // Don't emit it as the address of the string, emit the string data itself
2505   // as an inline array.
2506   if (E->getCharByteWidth() == 1) {
2507     SmallString<64> Str(E->getString());
2508 
2509     // Resize the string to the right size, which is indicated by its type.
2510     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2511     Str.resize(CAT->getSize().getZExtValue());
2512     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2513   }
2514 
2515   llvm::ArrayType *AType =
2516     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2517   llvm::Type *ElemTy = AType->getElementType();
2518   unsigned NumElements = AType->getNumElements();
2519 
2520   // Wide strings have either 2-byte or 4-byte elements.
2521   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2522     SmallVector<uint16_t, 32> Elements;
2523     Elements.reserve(NumElements);
2524 
2525     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2526       Elements.push_back(E->getCodeUnit(i));
2527     Elements.resize(NumElements);
2528     return llvm::ConstantDataArray::get(VMContext, Elements);
2529   }
2530 
2531   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2532   SmallVector<uint32_t, 32> Elements;
2533   Elements.reserve(NumElements);
2534 
2535   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2536     Elements.push_back(E->getCodeUnit(i));
2537   Elements.resize(NumElements);
2538   return llvm::ConstantDataArray::get(VMContext, Elements);
2539 }
2540 
2541 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2542 /// constant array for the given string literal.
2543 llvm::Constant *
2544 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2545   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2546   if (S->isAscii() || S->isUTF8()) {
2547     SmallString<64> Str(S->getString());
2548 
2549     // Resize the string to the right size, which is indicated by its type.
2550     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2551     Str.resize(CAT->getSize().getZExtValue());
2552     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2553   }
2554 
2555   // FIXME: the following does not memoize wide strings.
2556   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2557   llvm::GlobalVariable *GV =
2558     new llvm::GlobalVariable(getModule(),C->getType(),
2559                              !LangOpts.WritableStrings,
2560                              llvm::GlobalValue::PrivateLinkage,
2561                              C,".str");
2562 
2563   GV->setAlignment(Align.getQuantity());
2564   GV->setUnnamedAddr(true);
2565   return GV;
2566 }
2567 
2568 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2569 /// array for the given ObjCEncodeExpr node.
2570 llvm::Constant *
2571 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2572   std::string Str;
2573   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2574 
2575   return GetAddrOfConstantCString(Str);
2576 }
2577 
2578 
2579 /// GenerateWritableString -- Creates storage for a string literal.
2580 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2581                                              bool constant,
2582                                              CodeGenModule &CGM,
2583                                              const char *GlobalName,
2584                                              unsigned Alignment) {
2585   // Create Constant for this string literal. Don't add a '\0'.
2586   llvm::Constant *C =
2587       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2588 
2589   // Create a global variable for this string
2590   llvm::GlobalVariable *GV =
2591     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2592                              llvm::GlobalValue::PrivateLinkage,
2593                              C, GlobalName);
2594   GV->setAlignment(Alignment);
2595   GV->setUnnamedAddr(true);
2596   return GV;
2597 }
2598 
2599 /// GetAddrOfConstantString - Returns a pointer to a character array
2600 /// containing the literal. This contents are exactly that of the
2601 /// given string, i.e. it will not be null terminated automatically;
2602 /// see GetAddrOfConstantCString. Note that whether the result is
2603 /// actually a pointer to an LLVM constant depends on
2604 /// Feature.WriteableStrings.
2605 ///
2606 /// The result has pointer to array type.
2607 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2608                                                        const char *GlobalName,
2609                                                        unsigned Alignment) {
2610   // Get the default prefix if a name wasn't specified.
2611   if (!GlobalName)
2612     GlobalName = ".str";
2613 
2614   // Don't share any string literals if strings aren't constant.
2615   if (LangOpts.WritableStrings)
2616     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2617 
2618   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2619     ConstantStringMap.GetOrCreateValue(Str);
2620 
2621   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2622     if (Alignment > GV->getAlignment()) {
2623       GV->setAlignment(Alignment);
2624     }
2625     return GV;
2626   }
2627 
2628   // Create a global variable for this.
2629   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2630                                                    Alignment);
2631   Entry.setValue(GV);
2632   return GV;
2633 }
2634 
2635 /// GetAddrOfConstantCString - Returns a pointer to a character
2636 /// array containing the literal and a terminating '\0'
2637 /// character. The result has pointer to array type.
2638 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2639                                                         const char *GlobalName,
2640                                                         unsigned Alignment) {
2641   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2642   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2643 }
2644 
2645 /// EmitObjCPropertyImplementations - Emit information for synthesized
2646 /// properties for an implementation.
2647 void CodeGenModule::EmitObjCPropertyImplementations(const
2648                                                     ObjCImplementationDecl *D) {
2649   for (ObjCImplementationDecl::propimpl_iterator
2650          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2651     ObjCPropertyImplDecl *PID = *i;
2652 
2653     // Dynamic is just for type-checking.
2654     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2655       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2656 
2657       // Determine which methods need to be implemented, some may have
2658       // been overridden. Note that ::isPropertyAccessor is not the method
2659       // we want, that just indicates if the decl came from a
2660       // property. What we want to know is if the method is defined in
2661       // this implementation.
2662       if (!D->getInstanceMethod(PD->getGetterName()))
2663         CodeGenFunction(*this).GenerateObjCGetter(
2664                                  const_cast<ObjCImplementationDecl *>(D), PID);
2665       if (!PD->isReadOnly() &&
2666           !D->getInstanceMethod(PD->getSetterName()))
2667         CodeGenFunction(*this).GenerateObjCSetter(
2668                                  const_cast<ObjCImplementationDecl *>(D), PID);
2669     }
2670   }
2671 }
2672 
2673 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2674   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2675   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2676        ivar; ivar = ivar->getNextIvar())
2677     if (ivar->getType().isDestructedType())
2678       return true;
2679 
2680   return false;
2681 }
2682 
2683 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2684 /// for an implementation.
2685 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2686   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2687   if (needsDestructMethod(D)) {
2688     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2689     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2690     ObjCMethodDecl *DTORMethod =
2691       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2692                              cxxSelector, getContext().VoidTy, 0, D,
2693                              /*isInstance=*/true, /*isVariadic=*/false,
2694                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2695                              /*isDefined=*/false, ObjCMethodDecl::Required);
2696     D->addInstanceMethod(DTORMethod);
2697     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2698     D->setHasDestructors(true);
2699   }
2700 
2701   // If the implementation doesn't have any ivar initializers, we don't need
2702   // a .cxx_construct.
2703   if (D->getNumIvarInitializers() == 0)
2704     return;
2705 
2706   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2707   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2708   // The constructor returns 'self'.
2709   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2710                                                 D->getLocation(),
2711                                                 D->getLocation(),
2712                                                 cxxSelector,
2713                                                 getContext().getObjCIdType(), 0,
2714                                                 D, /*isInstance=*/true,
2715                                                 /*isVariadic=*/false,
2716                                                 /*isPropertyAccessor=*/true,
2717                                                 /*isImplicitlyDeclared=*/true,
2718                                                 /*isDefined=*/false,
2719                                                 ObjCMethodDecl::Required);
2720   D->addInstanceMethod(CTORMethod);
2721   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2722   D->setHasNonZeroConstructors(true);
2723 }
2724 
2725 /// EmitNamespace - Emit all declarations in a namespace.
2726 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2727   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2728        I != E; ++I)
2729     EmitTopLevelDecl(*I);
2730 }
2731 
2732 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2733 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2734   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2735       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2736     ErrorUnsupported(LSD, "linkage spec");
2737     return;
2738   }
2739 
2740   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2741        I != E; ++I) {
2742     // Meta-data for ObjC class includes references to implemented methods.
2743     // Generate class's method definitions first.
2744     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2745       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2746            MEnd = OID->meth_end();
2747            M != MEnd; ++M)
2748         EmitTopLevelDecl(*M);
2749     }
2750     EmitTopLevelDecl(*I);
2751   }
2752 }
2753 
2754 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2755 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2756   // If an error has occurred, stop code generation, but continue
2757   // parsing and semantic analysis (to ensure all warnings and errors
2758   // are emitted).
2759   if (Diags.hasErrorOccurred())
2760     return;
2761 
2762   // Ignore dependent declarations.
2763   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2764     return;
2765 
2766   switch (D->getKind()) {
2767   case Decl::CXXConversion:
2768   case Decl::CXXMethod:
2769   case Decl::Function:
2770     // Skip function templates
2771     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2772         cast<FunctionDecl>(D)->isLateTemplateParsed())
2773       return;
2774 
2775     EmitGlobal(cast<FunctionDecl>(D));
2776     break;
2777 
2778   case Decl::Var:
2779     EmitGlobal(cast<VarDecl>(D));
2780     break;
2781 
2782   // Indirect fields from global anonymous structs and unions can be
2783   // ignored; only the actual variable requires IR gen support.
2784   case Decl::IndirectField:
2785     break;
2786 
2787   // C++ Decls
2788   case Decl::Namespace:
2789     EmitNamespace(cast<NamespaceDecl>(D));
2790     break;
2791     // No code generation needed.
2792   case Decl::UsingShadow:
2793   case Decl::Using:
2794   case Decl::UsingDirective:
2795   case Decl::ClassTemplate:
2796   case Decl::FunctionTemplate:
2797   case Decl::TypeAliasTemplate:
2798   case Decl::NamespaceAlias:
2799   case Decl::Block:
2800     break;
2801   case Decl::CXXConstructor:
2802     // Skip function templates
2803     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2804         cast<FunctionDecl>(D)->isLateTemplateParsed())
2805       return;
2806 
2807     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2808     break;
2809   case Decl::CXXDestructor:
2810     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2811       return;
2812     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2813     break;
2814 
2815   case Decl::StaticAssert:
2816     // Nothing to do.
2817     break;
2818 
2819   // Objective-C Decls
2820 
2821   // Forward declarations, no (immediate) code generation.
2822   case Decl::ObjCInterface:
2823   case Decl::ObjCCategory:
2824     break;
2825 
2826   case Decl::ObjCProtocol: {
2827     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2828     if (Proto->isThisDeclarationADefinition())
2829       ObjCRuntime->GenerateProtocol(Proto);
2830     break;
2831   }
2832 
2833   case Decl::ObjCCategoryImpl:
2834     // Categories have properties but don't support synthesize so we
2835     // can ignore them here.
2836     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2837     break;
2838 
2839   case Decl::ObjCImplementation: {
2840     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2841     EmitObjCPropertyImplementations(OMD);
2842     EmitObjCIvarInitializations(OMD);
2843     ObjCRuntime->GenerateClass(OMD);
2844     // Emit global variable debug information.
2845     if (CGDebugInfo *DI = getModuleDebugInfo())
2846       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2847         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2848             OMD->getClassInterface()), OMD->getLocation());
2849     break;
2850   }
2851   case Decl::ObjCMethod: {
2852     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2853     // If this is not a prototype, emit the body.
2854     if (OMD->getBody())
2855       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2856     break;
2857   }
2858   case Decl::ObjCCompatibleAlias:
2859     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2860     break;
2861 
2862   case Decl::LinkageSpec:
2863     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2864     break;
2865 
2866   case Decl::FileScopeAsm: {
2867     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2868     StringRef AsmString = AD->getAsmString()->getString();
2869 
2870     const std::string &S = getModule().getModuleInlineAsm();
2871     if (S.empty())
2872       getModule().setModuleInlineAsm(AsmString);
2873     else if (S.end()[-1] == '\n')
2874       getModule().setModuleInlineAsm(S + AsmString.str());
2875     else
2876       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2877     break;
2878   }
2879 
2880   case Decl::Import: {
2881     ImportDecl *Import = cast<ImportDecl>(D);
2882 
2883     // Ignore import declarations that come from imported modules.
2884     if (clang::Module *Owner = Import->getOwningModule()) {
2885       if (getLangOpts().CurrentModule.empty() ||
2886           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2887         break;
2888     }
2889 
2890     ImportedModules.insert(Import->getImportedModule());
2891     break;
2892  }
2893 
2894   default:
2895     // Make sure we handled everything we should, every other kind is a
2896     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2897     // function. Need to recode Decl::Kind to do that easily.
2898     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2899   }
2900 }
2901 
2902 /// Turns the given pointer into a constant.
2903 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2904                                           const void *Ptr) {
2905   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2906   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2907   return llvm::ConstantInt::get(i64, PtrInt);
2908 }
2909 
2910 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2911                                    llvm::NamedMDNode *&GlobalMetadata,
2912                                    GlobalDecl D,
2913                                    llvm::GlobalValue *Addr) {
2914   if (!GlobalMetadata)
2915     GlobalMetadata =
2916       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2917 
2918   // TODO: should we report variant information for ctors/dtors?
2919   llvm::Value *Ops[] = {
2920     Addr,
2921     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2922   };
2923   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2924 }
2925 
2926 /// Emits metadata nodes associating all the global values in the
2927 /// current module with the Decls they came from.  This is useful for
2928 /// projects using IR gen as a subroutine.
2929 ///
2930 /// Since there's currently no way to associate an MDNode directly
2931 /// with an llvm::GlobalValue, we create a global named metadata
2932 /// with the name 'clang.global.decl.ptrs'.
2933 void CodeGenModule::EmitDeclMetadata() {
2934   llvm::NamedMDNode *GlobalMetadata = 0;
2935 
2936   // StaticLocalDeclMap
2937   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2938          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2939        I != E; ++I) {
2940     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2941     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2942   }
2943 }
2944 
2945 /// Emits metadata nodes for all the local variables in the current
2946 /// function.
2947 void CodeGenFunction::EmitDeclMetadata() {
2948   if (LocalDeclMap.empty()) return;
2949 
2950   llvm::LLVMContext &Context = getLLVMContext();
2951 
2952   // Find the unique metadata ID for this name.
2953   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2954 
2955   llvm::NamedMDNode *GlobalMetadata = 0;
2956 
2957   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2958          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2959     const Decl *D = I->first;
2960     llvm::Value *Addr = I->second;
2961 
2962     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2963       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2964       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2965     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2966       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2967       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2968     }
2969   }
2970 }
2971 
2972 void CodeGenModule::EmitCoverageFile() {
2973   if (!getCodeGenOpts().CoverageFile.empty()) {
2974     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2975       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2976       llvm::LLVMContext &Ctx = TheModule.getContext();
2977       llvm::MDString *CoverageFile =
2978           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2979       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2980         llvm::MDNode *CU = CUNode->getOperand(i);
2981         llvm::Value *node[] = { CoverageFile, CU };
2982         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2983         GCov->addOperand(N);
2984       }
2985     }
2986   }
2987 }
2988 
2989 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2990                                                      QualType GuidType) {
2991   // Sema has checked that all uuid strings are of the form
2992   // "12345678-1234-1234-1234-1234567890ab".
2993   assert(Uuid.size() == 36);
2994   const char *Uuidstr = Uuid.data();
2995   for (int i = 0; i < 36; ++i) {
2996     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2997     else                                         assert(isxdigit(Uuidstr[i]));
2998   }
2999 
3000   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3001   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3002   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3003   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3004 
3005   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3006   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3007   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3008   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3009   APValue& Arr = InitStruct.getStructField(3);
3010   Arr = APValue(APValue::UninitArray(), 8, 8);
3011   for (int t = 0; t < 8; ++t)
3012     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3013           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3014 
3015   return EmitConstantValue(InitStruct, GuidType);
3016 }
3017