xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c594135b68e7c8264f4fa045684df9f029798fac)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Diagnostic.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/Basic/ConvertUTF.h"
37 #include "llvm/CallingConv.h"
38 #include "llvm/Module.h"
39 #include "llvm/Intrinsics.h"
40 #include "llvm/LLVMContext.h"
41 #include "llvm/ADT/Triple.h"
42 #include "llvm/Target/Mangler.h"
43 #include "llvm/Target/TargetData.h"
44 #include "llvm/Support/CallSite.h"
45 #include "llvm/Support/ErrorHandling.h"
46 using namespace clang;
47 using namespace CodeGen;
48 
49 static const char AnnotationSection[] = "llvm.metadata";
50 
51 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
52   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
53   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
54   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
55   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
56   }
57 
58   llvm_unreachable("invalid C++ ABI kind");
59   return *CreateItaniumCXXABI(CGM);
60 }
61 
62 
63 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
64                              llvm::Module &M, const llvm::TargetData &TD,
65                              DiagnosticsEngine &diags)
66   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
67     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
68     ABI(createCXXABI(*this)),
69     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
70     TBAA(0),
71     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
72     DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0),
73     ConstantStringClassRef(0), NSConstantStringType(0),
74     VMContext(M.getContext()),
75     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
76     BlockObjectAssign(0), BlockObjectDispose(0),
77     BlockDescriptorType(0), GenericBlockLiteralType(0) {
78   if (Features.ObjC1)
79     createObjCRuntime();
80   if (Features.OpenCL)
81     createOpenCLRuntime();
82   if (Features.CUDA)
83     createCUDARuntime();
84 
85   // Enable TBAA unless it's suppressed.
86   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
87     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
88                            ABI.getMangleContext());
89 
90   // If debug info or coverage generation is enabled, create the CGDebugInfo
91   // object.
92   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
93       CodeGenOpts.EmitGcovNotes)
94     DebugInfo = new CGDebugInfo(*this);
95 
96   Block.GlobalUniqueCount = 0;
97 
98   if (C.getLangOptions().ObjCAutoRefCount)
99     ARCData = new ARCEntrypoints();
100   RRData = new RREntrypoints();
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
109   PointerAlignInBytes =
110     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
111   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
112   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
113   Int8PtrTy = Int8Ty->getPointerTo(0);
114   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
115 }
116 
117 CodeGenModule::~CodeGenModule() {
118   delete ObjCRuntime;
119   delete OpenCLRuntime;
120   delete CUDARuntime;
121   delete TheTargetCodeGenInfo;
122   delete &ABI;
123   delete TBAA;
124   delete DebugInfo;
125   delete ARCData;
126   delete RRData;
127 }
128 
129 void CodeGenModule::createObjCRuntime() {
130   if (!Features.NeXTRuntime)
131     ObjCRuntime = CreateGNUObjCRuntime(*this);
132   else
133     ObjCRuntime = CreateMacObjCRuntime(*this);
134 }
135 
136 void CodeGenModule::createOpenCLRuntime() {
137   OpenCLRuntime = new CGOpenCLRuntime(*this);
138 }
139 
140 void CodeGenModule::createCUDARuntime() {
141   CUDARuntime = CreateNVCUDARuntime(*this);
142 }
143 
144 void CodeGenModule::Release() {
145   EmitDeferred();
146   EmitCXXGlobalInitFunc();
147   EmitCXXGlobalDtorFunc();
148   if (ObjCRuntime)
149     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
150       AddGlobalCtor(ObjCInitFunction);
151   EmitCtorList(GlobalCtors, "llvm.global_ctors");
152   EmitCtorList(GlobalDtors, "llvm.global_dtors");
153   EmitGlobalAnnotations();
154   EmitLLVMUsed();
155 
156   SimplifyPersonality();
157 
158   if (getCodeGenOpts().EmitDeclMetadata)
159     EmitDeclMetadata();
160 
161   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
162     EmitCoverageFile();
163 
164   if (DebugInfo)
165     DebugInfo->finalize();
166 }
167 
168 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
169   // Make sure that this type is translated.
170   Types.UpdateCompletedType(TD);
171   if (DebugInfo)
172     DebugInfo->UpdateCompletedType(TD);
173 }
174 
175 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
176   if (!TBAA)
177     return 0;
178   return TBAA->getTBAAInfo(QTy);
179 }
180 
181 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
182                                         llvm::MDNode *TBAAInfo) {
183   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
184 }
185 
186 bool CodeGenModule::isTargetDarwin() const {
187   return getContext().getTargetInfo().getTriple().isOSDarwin();
188 }
189 
190 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
191   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
192   getDiags().Report(Context.getFullLoc(loc), diagID);
193 }
194 
195 /// ErrorUnsupported - Print out an error that codegen doesn't support the
196 /// specified stmt yet.
197 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
198                                      bool OmitOnError) {
199   if (OmitOnError && getDiags().hasErrorOccurred())
200     return;
201   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
202                                                "cannot compile this %0 yet");
203   std::string Msg = Type;
204   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
205     << Msg << S->getSourceRange();
206 }
207 
208 /// ErrorUnsupported - Print out an error that codegen doesn't support the
209 /// specified decl yet.
210 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
211                                      bool OmitOnError) {
212   if (OmitOnError && getDiags().hasErrorOccurred())
213     return;
214   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
215                                                "cannot compile this %0 yet");
216   std::string Msg = Type;
217   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
218 }
219 
220 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
221   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
222 }
223 
224 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
225                                         const NamedDecl *D) const {
226   // Internal definitions always have default visibility.
227   if (GV->hasLocalLinkage()) {
228     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
229     return;
230   }
231 
232   // Set visibility for definitions.
233   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
234   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
235     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
236 }
237 
238 /// Set the symbol visibility of type information (vtable and RTTI)
239 /// associated with the given type.
240 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
241                                       const CXXRecordDecl *RD,
242                                       TypeVisibilityKind TVK) const {
243   setGlobalVisibility(GV, RD);
244 
245   if (!CodeGenOpts.HiddenWeakVTables)
246     return;
247 
248   // We never want to drop the visibility for RTTI names.
249   if (TVK == TVK_ForRTTIName)
250     return;
251 
252   // We want to drop the visibility to hidden for weak type symbols.
253   // This isn't possible if there might be unresolved references
254   // elsewhere that rely on this symbol being visible.
255 
256   // This should be kept roughly in sync with setThunkVisibility
257   // in CGVTables.cpp.
258 
259   // Preconditions.
260   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
261       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
262     return;
263 
264   // Don't override an explicit visibility attribute.
265   if (RD->getExplicitVisibility())
266     return;
267 
268   switch (RD->getTemplateSpecializationKind()) {
269   // We have to disable the optimization if this is an EI definition
270   // because there might be EI declarations in other shared objects.
271   case TSK_ExplicitInstantiationDefinition:
272   case TSK_ExplicitInstantiationDeclaration:
273     return;
274 
275   // Every use of a non-template class's type information has to emit it.
276   case TSK_Undeclared:
277     break;
278 
279   // In theory, implicit instantiations can ignore the possibility of
280   // an explicit instantiation declaration because there necessarily
281   // must be an EI definition somewhere with default visibility.  In
282   // practice, it's possible to have an explicit instantiation for
283   // an arbitrary template class, and linkers aren't necessarily able
284   // to deal with mixed-visibility symbols.
285   case TSK_ExplicitSpecialization:
286   case TSK_ImplicitInstantiation:
287     if (!CodeGenOpts.HiddenWeakTemplateVTables)
288       return;
289     break;
290   }
291 
292   // If there's a key function, there may be translation units
293   // that don't have the key function's definition.  But ignore
294   // this if we're emitting RTTI under -fno-rtti.
295   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
296     if (Context.getKeyFunction(RD))
297       return;
298   }
299 
300   // Otherwise, drop the visibility to hidden.
301   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
302   GV->setUnnamedAddr(true);
303 }
304 
305 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
306   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
307 
308   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
309   if (!Str.empty())
310     return Str;
311 
312   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
313     IdentifierInfo *II = ND->getIdentifier();
314     assert(II && "Attempt to mangle unnamed decl.");
315 
316     Str = II->getName();
317     return Str;
318   }
319 
320   llvm::SmallString<256> Buffer;
321   llvm::raw_svector_ostream Out(Buffer);
322   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
323     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
324   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
325     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
326   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
327     getCXXABI().getMangleContext().mangleBlock(BD, Out);
328   else
329     getCXXABI().getMangleContext().mangleName(ND, Out);
330 
331   // Allocate space for the mangled name.
332   Out.flush();
333   size_t Length = Buffer.size();
334   char *Name = MangledNamesAllocator.Allocate<char>(Length);
335   std::copy(Buffer.begin(), Buffer.end(), Name);
336 
337   Str = StringRef(Name, Length);
338 
339   return Str;
340 }
341 
342 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
343                                         const BlockDecl *BD) {
344   MangleContext &MangleCtx = getCXXABI().getMangleContext();
345   const Decl *D = GD.getDecl();
346   llvm::raw_svector_ostream Out(Buffer.getBuffer());
347   if (D == 0)
348     MangleCtx.mangleGlobalBlock(BD, Out);
349   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
350     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
351   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
352     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
353   else
354     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
355 }
356 
357 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
358   return getModule().getNamedValue(Name);
359 }
360 
361 /// AddGlobalCtor - Add a function to the list that will be called before
362 /// main() runs.
363 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
364   // FIXME: Type coercion of void()* types.
365   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
366 }
367 
368 /// AddGlobalDtor - Add a function to the list that will be called
369 /// when the module is unloaded.
370 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
371   // FIXME: Type coercion of void()* types.
372   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
373 }
374 
375 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
376   // Ctor function type is void()*.
377   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
378   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
379 
380   // Get the type of a ctor entry, { i32, void ()* }.
381   llvm::StructType *CtorStructTy =
382     llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
383                           llvm::PointerType::getUnqual(CtorFTy), NULL);
384 
385   // Construct the constructor and destructor arrays.
386   std::vector<llvm::Constant*> Ctors;
387   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
388     std::vector<llvm::Constant*> S;
389     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
390                 I->second, false));
391     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
392     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
393   }
394 
395   if (!Ctors.empty()) {
396     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
397     new llvm::GlobalVariable(TheModule, AT, false,
398                              llvm::GlobalValue::AppendingLinkage,
399                              llvm::ConstantArray::get(AT, Ctors),
400                              GlobalName);
401   }
402 }
403 
404 llvm::GlobalValue::LinkageTypes
405 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
406   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
407 
408   if (Linkage == GVA_Internal)
409     return llvm::Function::InternalLinkage;
410 
411   if (D->hasAttr<DLLExportAttr>())
412     return llvm::Function::DLLExportLinkage;
413 
414   if (D->hasAttr<WeakAttr>())
415     return llvm::Function::WeakAnyLinkage;
416 
417   // In C99 mode, 'inline' functions are guaranteed to have a strong
418   // definition somewhere else, so we can use available_externally linkage.
419   if (Linkage == GVA_C99Inline)
420     return llvm::Function::AvailableExternallyLinkage;
421 
422   // Note that Apple's kernel linker doesn't support symbol
423   // coalescing, so we need to avoid linkonce and weak linkages there.
424   // Normally, this means we just map to internal, but for explicit
425   // instantiations we'll map to external.
426 
427   // In C++, the compiler has to emit a definition in every translation unit
428   // that references the function.  We should use linkonce_odr because
429   // a) if all references in this translation unit are optimized away, we
430   // don't need to codegen it.  b) if the function persists, it needs to be
431   // merged with other definitions. c) C++ has the ODR, so we know the
432   // definition is dependable.
433   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
434     return !Context.getLangOptions().AppleKext
435              ? llvm::Function::LinkOnceODRLinkage
436              : llvm::Function::InternalLinkage;
437 
438   // An explicit instantiation of a template has weak linkage, since
439   // explicit instantiations can occur in multiple translation units
440   // and must all be equivalent. However, we are not allowed to
441   // throw away these explicit instantiations.
442   if (Linkage == GVA_ExplicitTemplateInstantiation)
443     return !Context.getLangOptions().AppleKext
444              ? llvm::Function::WeakODRLinkage
445              : llvm::Function::ExternalLinkage;
446 
447   // Otherwise, we have strong external linkage.
448   assert(Linkage == GVA_StrongExternal);
449   return llvm::Function::ExternalLinkage;
450 }
451 
452 
453 /// SetFunctionDefinitionAttributes - Set attributes for a global.
454 ///
455 /// FIXME: This is currently only done for aliases and functions, but not for
456 /// variables (these details are set in EmitGlobalVarDefinition for variables).
457 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
458                                                     llvm::GlobalValue *GV) {
459   SetCommonAttributes(D, GV);
460 }
461 
462 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
463                                               const CGFunctionInfo &Info,
464                                               llvm::Function *F) {
465   unsigned CallingConv;
466   AttributeListType AttributeList;
467   ConstructAttributeList(Info, D, AttributeList, CallingConv);
468   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
469                                           AttributeList.size()));
470   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
471 }
472 
473 /// Determines whether the language options require us to model
474 /// unwind exceptions.  We treat -fexceptions as mandating this
475 /// except under the fragile ObjC ABI with only ObjC exceptions
476 /// enabled.  This means, for example, that C with -fexceptions
477 /// enables this.
478 static bool hasUnwindExceptions(const LangOptions &Features) {
479   // If exceptions are completely disabled, obviously this is false.
480   if (!Features.Exceptions) return false;
481 
482   // If C++ exceptions are enabled, this is true.
483   if (Features.CXXExceptions) return true;
484 
485   // If ObjC exceptions are enabled, this depends on the ABI.
486   if (Features.ObjCExceptions) {
487     if (!Features.ObjCNonFragileABI) return false;
488   }
489 
490   return true;
491 }
492 
493 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
494                                                            llvm::Function *F) {
495   if (CodeGenOpts.UnwindTables)
496     F->setHasUWTable();
497 
498   if (!hasUnwindExceptions(Features))
499     F->addFnAttr(llvm::Attribute::NoUnwind);
500 
501   if (D->hasAttr<NakedAttr>()) {
502     // Naked implies noinline: we should not be inlining such functions.
503     F->addFnAttr(llvm::Attribute::Naked);
504     F->addFnAttr(llvm::Attribute::NoInline);
505   }
506 
507   if (D->hasAttr<NoInlineAttr>())
508     F->addFnAttr(llvm::Attribute::NoInline);
509 
510   // (noinline wins over always_inline, and we can't specify both in IR)
511   if (D->hasAttr<AlwaysInlineAttr>() &&
512       !F->hasFnAttr(llvm::Attribute::NoInline))
513     F->addFnAttr(llvm::Attribute::AlwaysInline);
514 
515   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
516     F->setUnnamedAddr(true);
517 
518   if (Features.getStackProtector() == LangOptions::SSPOn)
519     F->addFnAttr(llvm::Attribute::StackProtect);
520   else if (Features.getStackProtector() == LangOptions::SSPReq)
521     F->addFnAttr(llvm::Attribute::StackProtectReq);
522 
523   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
524   if (alignment)
525     F->setAlignment(alignment);
526 
527   // C++ ABI requires 2-byte alignment for member functions.
528   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
529     F->setAlignment(2);
530 }
531 
532 void CodeGenModule::SetCommonAttributes(const Decl *D,
533                                         llvm::GlobalValue *GV) {
534   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
535     setGlobalVisibility(GV, ND);
536   else
537     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
538 
539   if (D->hasAttr<UsedAttr>())
540     AddUsedGlobal(GV);
541 
542   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
543     GV->setSection(SA->getName());
544 
545   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
546 }
547 
548 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
549                                                   llvm::Function *F,
550                                                   const CGFunctionInfo &FI) {
551   SetLLVMFunctionAttributes(D, FI, F);
552   SetLLVMFunctionAttributesForDefinition(D, F);
553 
554   F->setLinkage(llvm::Function::InternalLinkage);
555 
556   SetCommonAttributes(D, F);
557 }
558 
559 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
560                                           llvm::Function *F,
561                                           bool IsIncompleteFunction) {
562   if (unsigned IID = F->getIntrinsicID()) {
563     // If this is an intrinsic function, set the function's attributes
564     // to the intrinsic's attributes.
565     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
566     return;
567   }
568 
569   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
570 
571   if (!IsIncompleteFunction)
572     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
573 
574   // Only a few attributes are set on declarations; these may later be
575   // overridden by a definition.
576 
577   if (FD->hasAttr<DLLImportAttr>()) {
578     F->setLinkage(llvm::Function::DLLImportLinkage);
579   } else if (FD->hasAttr<WeakAttr>() ||
580              FD->isWeakImported()) {
581     // "extern_weak" is overloaded in LLVM; we probably should have
582     // separate linkage types for this.
583     F->setLinkage(llvm::Function::ExternalWeakLinkage);
584   } else {
585     F->setLinkage(llvm::Function::ExternalLinkage);
586 
587     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
588     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
589       F->setVisibility(GetLLVMVisibility(LV.visibility()));
590     }
591   }
592 
593   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
594     F->setSection(SA->getName());
595 }
596 
597 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
598   assert(!GV->isDeclaration() &&
599          "Only globals with definition can force usage.");
600   LLVMUsed.push_back(GV);
601 }
602 
603 void CodeGenModule::EmitLLVMUsed() {
604   // Don't create llvm.used if there is no need.
605   if (LLVMUsed.empty())
606     return;
607 
608   llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
609 
610   // Convert LLVMUsed to what ConstantArray needs.
611   std::vector<llvm::Constant*> UsedArray;
612   UsedArray.resize(LLVMUsed.size());
613   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
614     UsedArray[i] =
615      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
616                                       i8PTy);
617   }
618 
619   if (UsedArray.empty())
620     return;
621   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
622 
623   llvm::GlobalVariable *GV =
624     new llvm::GlobalVariable(getModule(), ATy, false,
625                              llvm::GlobalValue::AppendingLinkage,
626                              llvm::ConstantArray::get(ATy, UsedArray),
627                              "llvm.used");
628 
629   GV->setSection("llvm.metadata");
630 }
631 
632 void CodeGenModule::EmitDeferred() {
633   // Emit code for any potentially referenced deferred decls.  Since a
634   // previously unused static decl may become used during the generation of code
635   // for a static function, iterate until no changes are made.
636 
637   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
638     if (!DeferredVTables.empty()) {
639       const CXXRecordDecl *RD = DeferredVTables.back();
640       DeferredVTables.pop_back();
641       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
642       continue;
643     }
644 
645     GlobalDecl D = DeferredDeclsToEmit.back();
646     DeferredDeclsToEmit.pop_back();
647 
648     // Check to see if we've already emitted this.  This is necessary
649     // for a couple of reasons: first, decls can end up in the
650     // deferred-decls queue multiple times, and second, decls can end
651     // up with definitions in unusual ways (e.g. by an extern inline
652     // function acquiring a strong function redefinition).  Just
653     // ignore these cases.
654     //
655     // TODO: That said, looking this up multiple times is very wasteful.
656     StringRef Name = getMangledName(D);
657     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
658     assert(CGRef && "Deferred decl wasn't referenced?");
659 
660     if (!CGRef->isDeclaration())
661       continue;
662 
663     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
664     // purposes an alias counts as a definition.
665     if (isa<llvm::GlobalAlias>(CGRef))
666       continue;
667 
668     // Otherwise, emit the definition and move on to the next one.
669     EmitGlobalDefinition(D);
670   }
671 }
672 
673 void CodeGenModule::EmitGlobalAnnotations() {
674   if (Annotations.empty())
675     return;
676 
677   // Create a new global variable for the ConstantStruct in the Module.
678   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
679     Annotations[0]->getType(), Annotations.size()), Annotations);
680   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
681     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
682     "llvm.global.annotations");
683   gv->setSection(AnnotationSection);
684 }
685 
686 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
687   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
688   if (i != AnnotationStrings.end())
689     return i->second;
690 
691   // Not found yet, create a new global.
692   llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true);
693   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
694     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
695   gv->setSection(AnnotationSection);
696   gv->setUnnamedAddr(true);
697   AnnotationStrings[Str] = gv;
698   return gv;
699 }
700 
701 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
702   SourceManager &SM = getContext().getSourceManager();
703   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
704   if (PLoc.isValid())
705     return EmitAnnotationString(PLoc.getFilename());
706   return EmitAnnotationString(SM.getBufferName(Loc));
707 }
708 
709 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
710   SourceManager &SM = getContext().getSourceManager();
711   PresumedLoc PLoc = SM.getPresumedLoc(L);
712   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
713     SM.getExpansionLineNumber(L);
714   return llvm::ConstantInt::get(Int32Ty, LineNo);
715 }
716 
717 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
718                                                 const AnnotateAttr *AA,
719                                                 SourceLocation L) {
720   // Get the globals for file name, annotation, and the line number.
721   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
722                  *UnitGV = EmitAnnotationUnit(L),
723                  *LineNoCst = EmitAnnotationLineNo(L);
724 
725   // Create the ConstantStruct for the global annotation.
726   llvm::Constant *Fields[4] = {
727     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
728     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
729     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
730     LineNoCst
731   };
732   return llvm::ConstantStruct::getAnon(Fields);
733 }
734 
735 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
736                                          llvm::GlobalValue *GV) {
737   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
738   // Get the struct elements for these annotations.
739   for (specific_attr_iterator<AnnotateAttr>
740        ai = D->specific_attr_begin<AnnotateAttr>(),
741        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
742     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
743 }
744 
745 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
746   // Never defer when EmitAllDecls is specified.
747   if (Features.EmitAllDecls)
748     return false;
749 
750   return !getContext().DeclMustBeEmitted(Global);
751 }
752 
753 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
754   const AliasAttr *AA = VD->getAttr<AliasAttr>();
755   assert(AA && "No alias?");
756 
757   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
758 
759   // See if there is already something with the target's name in the module.
760   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
761 
762   llvm::Constant *Aliasee;
763   if (isa<llvm::FunctionType>(DeclTy))
764     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
765                                       /*ForVTable=*/false);
766   else
767     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
768                                     llvm::PointerType::getUnqual(DeclTy), 0);
769   if (!Entry) {
770     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
771     F->setLinkage(llvm::Function::ExternalWeakLinkage);
772     WeakRefReferences.insert(F);
773   }
774 
775   return Aliasee;
776 }
777 
778 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
779   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
780 
781   // Weak references don't produce any output by themselves.
782   if (Global->hasAttr<WeakRefAttr>())
783     return;
784 
785   // If this is an alias definition (which otherwise looks like a declaration)
786   // emit it now.
787   if (Global->hasAttr<AliasAttr>())
788     return EmitAliasDefinition(GD);
789 
790   // If this is CUDA, be selective about which declarations we emit.
791   if (Features.CUDA) {
792     if (CodeGenOpts.CUDAIsDevice) {
793       if (!Global->hasAttr<CUDADeviceAttr>() &&
794           !Global->hasAttr<CUDAGlobalAttr>() &&
795           !Global->hasAttr<CUDAConstantAttr>() &&
796           !Global->hasAttr<CUDASharedAttr>())
797         return;
798     } else {
799       if (!Global->hasAttr<CUDAHostAttr>() && (
800             Global->hasAttr<CUDADeviceAttr>() ||
801             Global->hasAttr<CUDAConstantAttr>() ||
802             Global->hasAttr<CUDASharedAttr>()))
803         return;
804     }
805   }
806 
807   // Ignore declarations, they will be emitted on their first use.
808   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
809     // Forward declarations are emitted lazily on first use.
810     if (!FD->doesThisDeclarationHaveABody()) {
811       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
812         return;
813 
814       const FunctionDecl *InlineDefinition = 0;
815       FD->getBody(InlineDefinition);
816 
817       StringRef MangledName = getMangledName(GD);
818       llvm::StringMap<GlobalDecl>::iterator DDI =
819           DeferredDecls.find(MangledName);
820       if (DDI != DeferredDecls.end())
821         DeferredDecls.erase(DDI);
822       EmitGlobalDefinition(InlineDefinition);
823       return;
824     }
825   } else {
826     const VarDecl *VD = cast<VarDecl>(Global);
827     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
828 
829     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
830       return;
831   }
832 
833   // Defer code generation when possible if this is a static definition, inline
834   // function etc.  These we only want to emit if they are used.
835   if (!MayDeferGeneration(Global)) {
836     // Emit the definition if it can't be deferred.
837     EmitGlobalDefinition(GD);
838     return;
839   }
840 
841   // If we're deferring emission of a C++ variable with an
842   // initializer, remember the order in which it appeared in the file.
843   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
844       cast<VarDecl>(Global)->hasInit()) {
845     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
846     CXXGlobalInits.push_back(0);
847   }
848 
849   // If the value has already been used, add it directly to the
850   // DeferredDeclsToEmit list.
851   StringRef MangledName = getMangledName(GD);
852   if (GetGlobalValue(MangledName))
853     DeferredDeclsToEmit.push_back(GD);
854   else {
855     // Otherwise, remember that we saw a deferred decl with this name.  The
856     // first use of the mangled name will cause it to move into
857     // DeferredDeclsToEmit.
858     DeferredDecls[MangledName] = GD;
859   }
860 }
861 
862 namespace {
863   struct FunctionIsDirectlyRecursive :
864     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
865     const StringRef Name;
866     bool Result;
867     FunctionIsDirectlyRecursive(const FunctionDecl *F) :
868       Name(F->getName()), Result(false) {
869     }
870     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
871 
872     bool TraverseCallExpr(CallExpr *E) {
873       const Decl *D = E->getCalleeDecl();
874       if (!D)
875         return true;
876       AsmLabelAttr *Attr = D->getAttr<AsmLabelAttr>();
877       if (!Attr)
878         return true;
879       if (Name == Attr->getLabel()) {
880         Result = true;
881         return false;
882       }
883       return true;
884     }
885   };
886 }
887 
888 // isTriviallyRecursiveViaAsm - Check if this function calls another
889 // decl that, because of the asm attribute, ends up pointing to itself.
890 bool
891 CodeGenModule::isTriviallyRecursiveViaAsm(const FunctionDecl *F) {
892   if (getCXXABI().getMangleContext().shouldMangleDeclName(F))
893     return false;
894 
895   FunctionIsDirectlyRecursive Walker(F);
896   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
897   return Walker.Result;
898 }
899 
900 bool
901 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
902   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
903     return true;
904   if (F->hasAttr<AlwaysInlineAttr>())
905     return true;
906   if (CodeGenOpts.OptimizationLevel == 0)
907     return false;
908   // PR9614. Avoid cases where the source code is lying to us. An available
909   // externally function should have an equivalent function somewhere else,
910   // but a function that calls itself is clearly not equivalent to the real
911   // implementation.
912   // This happens in glibc's btowc and in some configure checks.
913   if (isTriviallyRecursiveViaAsm(F))
914     return false;
915   return true;
916 }
917 
918 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
919   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
920 
921   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
922                                  Context.getSourceManager(),
923                                  "Generating code for declaration");
924 
925   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
926     // At -O0, don't generate IR for functions with available_externally
927     // linkage.
928     if (!shouldEmitFunction(Function))
929       return;
930 
931     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
932       // Make sure to emit the definition(s) before we emit the thunks.
933       // This is necessary for the generation of certain thunks.
934       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
935         EmitCXXConstructor(CD, GD.getCtorType());
936       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
937         EmitCXXDestructor(DD, GD.getDtorType());
938       else
939         EmitGlobalFunctionDefinition(GD);
940 
941       if (Method->isVirtual())
942         getVTables().EmitThunks(GD);
943 
944       return;
945     }
946 
947     return EmitGlobalFunctionDefinition(GD);
948   }
949 
950   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
951     return EmitGlobalVarDefinition(VD);
952 
953   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
954 }
955 
956 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
957 /// module, create and return an llvm Function with the specified type. If there
958 /// is something in the module with the specified name, return it potentially
959 /// bitcasted to the right type.
960 ///
961 /// If D is non-null, it specifies a decl that correspond to this.  This is used
962 /// to set the attributes on the function when it is first created.
963 llvm::Constant *
964 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
965                                        llvm::Type *Ty,
966                                        GlobalDecl D, bool ForVTable,
967                                        llvm::Attributes ExtraAttrs) {
968   // Lookup the entry, lazily creating it if necessary.
969   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
970   if (Entry) {
971     if (WeakRefReferences.count(Entry)) {
972       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
973       if (FD && !FD->hasAttr<WeakAttr>())
974         Entry->setLinkage(llvm::Function::ExternalLinkage);
975 
976       WeakRefReferences.erase(Entry);
977     }
978 
979     if (Entry->getType()->getElementType() == Ty)
980       return Entry;
981 
982     // Make sure the result is of the correct type.
983     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
984   }
985 
986   // This function doesn't have a complete type (for example, the return
987   // type is an incomplete struct). Use a fake type instead, and make
988   // sure not to try to set attributes.
989   bool IsIncompleteFunction = false;
990 
991   llvm::FunctionType *FTy;
992   if (isa<llvm::FunctionType>(Ty)) {
993     FTy = cast<llvm::FunctionType>(Ty);
994   } else {
995     FTy = llvm::FunctionType::get(VoidTy, false);
996     IsIncompleteFunction = true;
997   }
998 
999   llvm::Function *F = llvm::Function::Create(FTy,
1000                                              llvm::Function::ExternalLinkage,
1001                                              MangledName, &getModule());
1002   assert(F->getName() == MangledName && "name was uniqued!");
1003   if (D.getDecl())
1004     SetFunctionAttributes(D, F, IsIncompleteFunction);
1005   if (ExtraAttrs != llvm::Attribute::None)
1006     F->addFnAttr(ExtraAttrs);
1007 
1008   // This is the first use or definition of a mangled name.  If there is a
1009   // deferred decl with this name, remember that we need to emit it at the end
1010   // of the file.
1011   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1012   if (DDI != DeferredDecls.end()) {
1013     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1014     // list, and remove it from DeferredDecls (since we don't need it anymore).
1015     DeferredDeclsToEmit.push_back(DDI->second);
1016     DeferredDecls.erase(DDI);
1017 
1018   // Otherwise, there are cases we have to worry about where we're
1019   // using a declaration for which we must emit a definition but where
1020   // we might not find a top-level definition:
1021   //   - member functions defined inline in their classes
1022   //   - friend functions defined inline in some class
1023   //   - special member functions with implicit definitions
1024   // If we ever change our AST traversal to walk into class methods,
1025   // this will be unnecessary.
1026   //
1027   // We also don't emit a definition for a function if it's going to be an entry
1028   // in a vtable, unless it's already marked as used.
1029   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1030     // Look for a declaration that's lexically in a record.
1031     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1032     do {
1033       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1034         if (FD->isImplicit() && !ForVTable) {
1035           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1036           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1037           break;
1038         } else if (FD->doesThisDeclarationHaveABody()) {
1039           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1040           break;
1041         }
1042       }
1043       FD = FD->getPreviousDeclaration();
1044     } while (FD);
1045   }
1046 
1047   // Make sure the result is of the requested type.
1048   if (!IsIncompleteFunction) {
1049     assert(F->getType()->getElementType() == Ty);
1050     return F;
1051   }
1052 
1053   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1054   return llvm::ConstantExpr::getBitCast(F, PTy);
1055 }
1056 
1057 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1058 /// non-null, then this function will use the specified type if it has to
1059 /// create it (this occurs when we see a definition of the function).
1060 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1061                                                  llvm::Type *Ty,
1062                                                  bool ForVTable) {
1063   // If there was no specific requested type, just convert it now.
1064   if (!Ty)
1065     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1066 
1067   StringRef MangledName = getMangledName(GD);
1068   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1069 }
1070 
1071 /// CreateRuntimeFunction - Create a new runtime function with the specified
1072 /// type and name.
1073 llvm::Constant *
1074 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1075                                      StringRef Name,
1076                                      llvm::Attributes ExtraAttrs) {
1077   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1078                                  ExtraAttrs);
1079 }
1080 
1081 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
1082                                  bool ConstantInit) {
1083   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
1084     return false;
1085 
1086   if (Context.getLangOptions().CPlusPlus) {
1087     if (const RecordType *Record
1088           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
1089       return ConstantInit &&
1090              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
1091              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
1092   }
1093 
1094   return true;
1095 }
1096 
1097 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1098 /// create and return an llvm GlobalVariable with the specified type.  If there
1099 /// is something in the module with the specified name, return it potentially
1100 /// bitcasted to the right type.
1101 ///
1102 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1103 /// to set the attributes on the global when it is first created.
1104 llvm::Constant *
1105 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1106                                      llvm::PointerType *Ty,
1107                                      const VarDecl *D,
1108                                      bool UnnamedAddr) {
1109   // Lookup the entry, lazily creating it if necessary.
1110   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1111   if (Entry) {
1112     if (WeakRefReferences.count(Entry)) {
1113       if (D && !D->hasAttr<WeakAttr>())
1114         Entry->setLinkage(llvm::Function::ExternalLinkage);
1115 
1116       WeakRefReferences.erase(Entry);
1117     }
1118 
1119     if (UnnamedAddr)
1120       Entry->setUnnamedAddr(true);
1121 
1122     if (Entry->getType() == Ty)
1123       return Entry;
1124 
1125     // Make sure the result is of the correct type.
1126     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1127   }
1128 
1129   // This is the first use or definition of a mangled name.  If there is a
1130   // deferred decl with this name, remember that we need to emit it at the end
1131   // of the file.
1132   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1133   if (DDI != DeferredDecls.end()) {
1134     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1135     // list, and remove it from DeferredDecls (since we don't need it anymore).
1136     DeferredDeclsToEmit.push_back(DDI->second);
1137     DeferredDecls.erase(DDI);
1138   }
1139 
1140   llvm::GlobalVariable *GV =
1141     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1142                              llvm::GlobalValue::ExternalLinkage,
1143                              0, MangledName, 0,
1144                              false, Ty->getAddressSpace());
1145 
1146   // Handle things which are present even on external declarations.
1147   if (D) {
1148     // FIXME: This code is overly simple and should be merged with other global
1149     // handling.
1150     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1151 
1152     // Set linkage and visibility in case we never see a definition.
1153     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1154     if (LV.linkage() != ExternalLinkage) {
1155       // Don't set internal linkage on declarations.
1156     } else {
1157       if (D->hasAttr<DLLImportAttr>())
1158         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1159       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1160         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1161 
1162       // Set visibility on a declaration only if it's explicit.
1163       if (LV.visibilityExplicit())
1164         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1165     }
1166 
1167     GV->setThreadLocal(D->isThreadSpecified());
1168   }
1169 
1170   return GV;
1171 }
1172 
1173 
1174 llvm::GlobalVariable *
1175 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1176                                       llvm::Type *Ty,
1177                                       llvm::GlobalValue::LinkageTypes Linkage) {
1178   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1179   llvm::GlobalVariable *OldGV = 0;
1180 
1181 
1182   if (GV) {
1183     // Check if the variable has the right type.
1184     if (GV->getType()->getElementType() == Ty)
1185       return GV;
1186 
1187     // Because C++ name mangling, the only way we can end up with an already
1188     // existing global with the same name is if it has been declared extern "C".
1189       assert(GV->isDeclaration() && "Declaration has wrong type!");
1190     OldGV = GV;
1191   }
1192 
1193   // Create a new variable.
1194   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1195                                 Linkage, 0, Name);
1196 
1197   if (OldGV) {
1198     // Replace occurrences of the old variable if needed.
1199     GV->takeName(OldGV);
1200 
1201     if (!OldGV->use_empty()) {
1202       llvm::Constant *NewPtrForOldDecl =
1203       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1204       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1205     }
1206 
1207     OldGV->eraseFromParent();
1208   }
1209 
1210   return GV;
1211 }
1212 
1213 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1214 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1215 /// then it will be greated with the specified type instead of whatever the
1216 /// normal requested type would be.
1217 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1218                                                   llvm::Type *Ty) {
1219   assert(D->hasGlobalStorage() && "Not a global variable");
1220   QualType ASTTy = D->getType();
1221   if (Ty == 0)
1222     Ty = getTypes().ConvertTypeForMem(ASTTy);
1223 
1224   llvm::PointerType *PTy =
1225     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1226 
1227   StringRef MangledName = getMangledName(D);
1228   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1229 }
1230 
1231 /// CreateRuntimeVariable - Create a new runtime global variable with the
1232 /// specified type and name.
1233 llvm::Constant *
1234 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1235                                      StringRef Name) {
1236   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1237                                true);
1238 }
1239 
1240 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1241   assert(!D->getInit() && "Cannot emit definite definitions here!");
1242 
1243   if (MayDeferGeneration(D)) {
1244     // If we have not seen a reference to this variable yet, place it
1245     // into the deferred declarations table to be emitted if needed
1246     // later.
1247     StringRef MangledName = getMangledName(D);
1248     if (!GetGlobalValue(MangledName)) {
1249       DeferredDecls[MangledName] = D;
1250       return;
1251     }
1252   }
1253 
1254   // The tentative definition is the only definition.
1255   EmitGlobalVarDefinition(D);
1256 }
1257 
1258 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1259   if (DefinitionRequired)
1260     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1261 }
1262 
1263 llvm::GlobalVariable::LinkageTypes
1264 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1265   if (RD->getLinkage() != ExternalLinkage)
1266     return llvm::GlobalVariable::InternalLinkage;
1267 
1268   if (const CXXMethodDecl *KeyFunction
1269                                     = RD->getASTContext().getKeyFunction(RD)) {
1270     // If this class has a key function, use that to determine the linkage of
1271     // the vtable.
1272     const FunctionDecl *Def = 0;
1273     if (KeyFunction->hasBody(Def))
1274       KeyFunction = cast<CXXMethodDecl>(Def);
1275 
1276     switch (KeyFunction->getTemplateSpecializationKind()) {
1277       case TSK_Undeclared:
1278       case TSK_ExplicitSpecialization:
1279         // When compiling with optimizations turned on, we emit all vtables,
1280         // even if the key function is not defined in the current translation
1281         // unit. If this is the case, use available_externally linkage.
1282         if (!Def && CodeGenOpts.OptimizationLevel)
1283           return llvm::GlobalVariable::AvailableExternallyLinkage;
1284 
1285         if (KeyFunction->isInlined())
1286           return !Context.getLangOptions().AppleKext ?
1287                    llvm::GlobalVariable::LinkOnceODRLinkage :
1288                    llvm::Function::InternalLinkage;
1289 
1290         return llvm::GlobalVariable::ExternalLinkage;
1291 
1292       case TSK_ImplicitInstantiation:
1293         return !Context.getLangOptions().AppleKext ?
1294                  llvm::GlobalVariable::LinkOnceODRLinkage :
1295                  llvm::Function::InternalLinkage;
1296 
1297       case TSK_ExplicitInstantiationDefinition:
1298         return !Context.getLangOptions().AppleKext ?
1299                  llvm::GlobalVariable::WeakODRLinkage :
1300                  llvm::Function::InternalLinkage;
1301 
1302       case TSK_ExplicitInstantiationDeclaration:
1303         // FIXME: Use available_externally linkage. However, this currently
1304         // breaks LLVM's build due to undefined symbols.
1305         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1306         return !Context.getLangOptions().AppleKext ?
1307                  llvm::GlobalVariable::LinkOnceODRLinkage :
1308                  llvm::Function::InternalLinkage;
1309     }
1310   }
1311 
1312   if (Context.getLangOptions().AppleKext)
1313     return llvm::Function::InternalLinkage;
1314 
1315   switch (RD->getTemplateSpecializationKind()) {
1316   case TSK_Undeclared:
1317   case TSK_ExplicitSpecialization:
1318   case TSK_ImplicitInstantiation:
1319     // FIXME: Use available_externally linkage. However, this currently
1320     // breaks LLVM's build due to undefined symbols.
1321     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1322   case TSK_ExplicitInstantiationDeclaration:
1323     return llvm::GlobalVariable::LinkOnceODRLinkage;
1324 
1325   case TSK_ExplicitInstantiationDefinition:
1326       return llvm::GlobalVariable::WeakODRLinkage;
1327   }
1328 
1329   // Silence GCC warning.
1330   return llvm::GlobalVariable::LinkOnceODRLinkage;
1331 }
1332 
1333 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1334     return Context.toCharUnitsFromBits(
1335       TheTargetData.getTypeStoreSizeInBits(Ty));
1336 }
1337 
1338 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1339   llvm::Constant *Init = 0;
1340   QualType ASTTy = D->getType();
1341   bool NonConstInit = false;
1342 
1343   const Expr *InitExpr = D->getAnyInitializer();
1344 
1345   if (!InitExpr) {
1346     // This is a tentative definition; tentative definitions are
1347     // implicitly initialized with { 0 }.
1348     //
1349     // Note that tentative definitions are only emitted at the end of
1350     // a translation unit, so they should never have incomplete
1351     // type. In addition, EmitTentativeDefinition makes sure that we
1352     // never attempt to emit a tentative definition if a real one
1353     // exists. A use may still exists, however, so we still may need
1354     // to do a RAUW.
1355     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1356     Init = EmitNullConstant(D->getType());
1357   } else {
1358     Init = EmitConstantExpr(InitExpr, D->getType());
1359     if (!Init) {
1360       QualType T = InitExpr->getType();
1361       if (D->getType()->isReferenceType())
1362         T = D->getType();
1363 
1364       if (getLangOptions().CPlusPlus) {
1365         Init = EmitNullConstant(T);
1366         NonConstInit = true;
1367       } else {
1368         ErrorUnsupported(D, "static initializer");
1369         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1370       }
1371     } else {
1372       // We don't need an initializer, so remove the entry for the delayed
1373       // initializer position (just in case this entry was delayed).
1374       if (getLangOptions().CPlusPlus)
1375         DelayedCXXInitPosition.erase(D);
1376     }
1377   }
1378 
1379   llvm::Type* InitType = Init->getType();
1380   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1381 
1382   // Strip off a bitcast if we got one back.
1383   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1384     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1385            // all zero index gep.
1386            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1387     Entry = CE->getOperand(0);
1388   }
1389 
1390   // Entry is now either a Function or GlobalVariable.
1391   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1392 
1393   // We have a definition after a declaration with the wrong type.
1394   // We must make a new GlobalVariable* and update everything that used OldGV
1395   // (a declaration or tentative definition) with the new GlobalVariable*
1396   // (which will be a definition).
1397   //
1398   // This happens if there is a prototype for a global (e.g.
1399   // "extern int x[];") and then a definition of a different type (e.g.
1400   // "int x[10];"). This also happens when an initializer has a different type
1401   // from the type of the global (this happens with unions).
1402   if (GV == 0 ||
1403       GV->getType()->getElementType() != InitType ||
1404       GV->getType()->getAddressSpace() !=
1405         getContext().getTargetAddressSpace(ASTTy)) {
1406 
1407     // Move the old entry aside so that we'll create a new one.
1408     Entry->setName(StringRef());
1409 
1410     // Make a new global with the correct type, this is now guaranteed to work.
1411     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1412 
1413     // Replace all uses of the old global with the new global
1414     llvm::Constant *NewPtrForOldDecl =
1415         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1416     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1417 
1418     // Erase the old global, since it is no longer used.
1419     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1420   }
1421 
1422   if (D->hasAttr<AnnotateAttr>())
1423     AddGlobalAnnotations(D, GV);
1424 
1425   GV->setInitializer(Init);
1426 
1427   // If it is safe to mark the global 'constant', do so now.
1428   GV->setConstant(false);
1429   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1430     GV->setConstant(true);
1431 
1432   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1433 
1434   // Set the llvm linkage type as appropriate.
1435   llvm::GlobalValue::LinkageTypes Linkage =
1436     GetLLVMLinkageVarDefinition(D, GV);
1437   GV->setLinkage(Linkage);
1438   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1439     // common vars aren't constant even if declared const.
1440     GV->setConstant(false);
1441 
1442   SetCommonAttributes(D, GV);
1443 
1444   // Emit the initializer function if necessary.
1445   if (NonConstInit)
1446     EmitCXXGlobalVarDeclInitFunc(D, GV);
1447 
1448   // Emit global variable debug information.
1449   if (CGDebugInfo *DI = getModuleDebugInfo())
1450     DI->EmitGlobalVariable(GV, D);
1451 }
1452 
1453 llvm::GlobalValue::LinkageTypes
1454 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1455                                            llvm::GlobalVariable *GV) {
1456   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1457   if (Linkage == GVA_Internal)
1458     return llvm::Function::InternalLinkage;
1459   else if (D->hasAttr<DLLImportAttr>())
1460     return llvm::Function::DLLImportLinkage;
1461   else if (D->hasAttr<DLLExportAttr>())
1462     return llvm::Function::DLLExportLinkage;
1463   else if (D->hasAttr<WeakAttr>()) {
1464     if (GV->isConstant())
1465       return llvm::GlobalVariable::WeakODRLinkage;
1466     else
1467       return llvm::GlobalVariable::WeakAnyLinkage;
1468   } else if (Linkage == GVA_TemplateInstantiation ||
1469              Linkage == GVA_ExplicitTemplateInstantiation)
1470     return llvm::GlobalVariable::WeakODRLinkage;
1471   else if (!getLangOptions().CPlusPlus &&
1472            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1473              D->getAttr<CommonAttr>()) &&
1474            !D->hasExternalStorage() && !D->getInit() &&
1475            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1476            !D->getAttr<WeakImportAttr>()) {
1477     // Thread local vars aren't considered common linkage.
1478     return llvm::GlobalVariable::CommonLinkage;
1479   }
1480   return llvm::GlobalVariable::ExternalLinkage;
1481 }
1482 
1483 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1484 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1485 /// existing call uses of the old function in the module, this adjusts them to
1486 /// call the new function directly.
1487 ///
1488 /// This is not just a cleanup: the always_inline pass requires direct calls to
1489 /// functions to be able to inline them.  If there is a bitcast in the way, it
1490 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1491 /// run at -O0.
1492 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1493                                                       llvm::Function *NewFn) {
1494   // If we're redefining a global as a function, don't transform it.
1495   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1496   if (OldFn == 0) return;
1497 
1498   llvm::Type *NewRetTy = NewFn->getReturnType();
1499   SmallVector<llvm::Value*, 4> ArgList;
1500 
1501   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1502        UI != E; ) {
1503     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1504     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1505     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1506     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1507     llvm::CallSite CS(CI);
1508     if (!CI || !CS.isCallee(I)) continue;
1509 
1510     // If the return types don't match exactly, and if the call isn't dead, then
1511     // we can't transform this call.
1512     if (CI->getType() != NewRetTy && !CI->use_empty())
1513       continue;
1514 
1515     // Get the attribute list.
1516     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1517     llvm::AttrListPtr AttrList = CI->getAttributes();
1518 
1519     // Get any return attributes.
1520     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1521 
1522     // Add the return attributes.
1523     if (RAttrs)
1524       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1525 
1526     // If the function was passed too few arguments, don't transform.  If extra
1527     // arguments were passed, we silently drop them.  If any of the types
1528     // mismatch, we don't transform.
1529     unsigned ArgNo = 0;
1530     bool DontTransform = false;
1531     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1532          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1533       if (CS.arg_size() == ArgNo ||
1534           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1535         DontTransform = true;
1536         break;
1537       }
1538 
1539       // Add any parameter attributes.
1540       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1541         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1542     }
1543     if (DontTransform)
1544       continue;
1545 
1546     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1547       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1548 
1549     // Okay, we can transform this.  Create the new call instruction and copy
1550     // over the required information.
1551     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1552     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1553     ArgList.clear();
1554     if (!NewCall->getType()->isVoidTy())
1555       NewCall->takeName(CI);
1556     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1557                                                   AttrVec.end()));
1558     NewCall->setCallingConv(CI->getCallingConv());
1559 
1560     // Finally, remove the old call, replacing any uses with the new one.
1561     if (!CI->use_empty())
1562       CI->replaceAllUsesWith(NewCall);
1563 
1564     // Copy debug location attached to CI.
1565     if (!CI->getDebugLoc().isUnknown())
1566       NewCall->setDebugLoc(CI->getDebugLoc());
1567     CI->eraseFromParent();
1568   }
1569 }
1570 
1571 
1572 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1573   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1574 
1575   // Compute the function info and LLVM type.
1576   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1577   bool variadic = false;
1578   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1579     variadic = fpt->isVariadic();
1580   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
1581 
1582   // Get or create the prototype for the function.
1583   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1584 
1585   // Strip off a bitcast if we got one back.
1586   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1587     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1588     Entry = CE->getOperand(0);
1589   }
1590 
1591 
1592   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1593     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1594 
1595     // If the types mismatch then we have to rewrite the definition.
1596     assert(OldFn->isDeclaration() &&
1597            "Shouldn't replace non-declaration");
1598 
1599     // F is the Function* for the one with the wrong type, we must make a new
1600     // Function* and update everything that used F (a declaration) with the new
1601     // Function* (which will be a definition).
1602     //
1603     // This happens if there is a prototype for a function
1604     // (e.g. "int f()") and then a definition of a different type
1605     // (e.g. "int f(int x)").  Move the old function aside so that it
1606     // doesn't interfere with GetAddrOfFunction.
1607     OldFn->setName(StringRef());
1608     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1609 
1610     // If this is an implementation of a function without a prototype, try to
1611     // replace any existing uses of the function (which may be calls) with uses
1612     // of the new function
1613     if (D->getType()->isFunctionNoProtoType()) {
1614       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1615       OldFn->removeDeadConstantUsers();
1616     }
1617 
1618     // Replace uses of F with the Function we will endow with a body.
1619     if (!Entry->use_empty()) {
1620       llvm::Constant *NewPtrForOldDecl =
1621         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1622       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1623     }
1624 
1625     // Ok, delete the old function now, which is dead.
1626     OldFn->eraseFromParent();
1627 
1628     Entry = NewFn;
1629   }
1630 
1631   // We need to set linkage and visibility on the function before
1632   // generating code for it because various parts of IR generation
1633   // want to propagate this information down (e.g. to local static
1634   // declarations).
1635   llvm::Function *Fn = cast<llvm::Function>(Entry);
1636   setFunctionLinkage(D, Fn);
1637 
1638   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1639   setGlobalVisibility(Fn, D);
1640 
1641   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1642 
1643   SetFunctionDefinitionAttributes(D, Fn);
1644   SetLLVMFunctionAttributesForDefinition(D, Fn);
1645 
1646   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1647     AddGlobalCtor(Fn, CA->getPriority());
1648   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1649     AddGlobalDtor(Fn, DA->getPriority());
1650   if (D->hasAttr<AnnotateAttr>())
1651     AddGlobalAnnotations(D, Fn);
1652 }
1653 
1654 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1655   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1656   const AliasAttr *AA = D->getAttr<AliasAttr>();
1657   assert(AA && "Not an alias?");
1658 
1659   StringRef MangledName = getMangledName(GD);
1660 
1661   // If there is a definition in the module, then it wins over the alias.
1662   // This is dubious, but allow it to be safe.  Just ignore the alias.
1663   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1664   if (Entry && !Entry->isDeclaration())
1665     return;
1666 
1667   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1668 
1669   // Create a reference to the named value.  This ensures that it is emitted
1670   // if a deferred decl.
1671   llvm::Constant *Aliasee;
1672   if (isa<llvm::FunctionType>(DeclTy))
1673     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1674                                       /*ForVTable=*/false);
1675   else
1676     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1677                                     llvm::PointerType::getUnqual(DeclTy), 0);
1678 
1679   // Create the new alias itself, but don't set a name yet.
1680   llvm::GlobalValue *GA =
1681     new llvm::GlobalAlias(Aliasee->getType(),
1682                           llvm::Function::ExternalLinkage,
1683                           "", Aliasee, &getModule());
1684 
1685   if (Entry) {
1686     assert(Entry->isDeclaration());
1687 
1688     // If there is a declaration in the module, then we had an extern followed
1689     // by the alias, as in:
1690     //   extern int test6();
1691     //   ...
1692     //   int test6() __attribute__((alias("test7")));
1693     //
1694     // Remove it and replace uses of it with the alias.
1695     GA->takeName(Entry);
1696 
1697     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1698                                                           Entry->getType()));
1699     Entry->eraseFromParent();
1700   } else {
1701     GA->setName(MangledName);
1702   }
1703 
1704   // Set attributes which are particular to an alias; this is a
1705   // specialization of the attributes which may be set on a global
1706   // variable/function.
1707   if (D->hasAttr<DLLExportAttr>()) {
1708     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1709       // The dllexport attribute is ignored for undefined symbols.
1710       if (FD->hasBody())
1711         GA->setLinkage(llvm::Function::DLLExportLinkage);
1712     } else {
1713       GA->setLinkage(llvm::Function::DLLExportLinkage);
1714     }
1715   } else if (D->hasAttr<WeakAttr>() ||
1716              D->hasAttr<WeakRefAttr>() ||
1717              D->isWeakImported()) {
1718     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1719   }
1720 
1721   SetCommonAttributes(D, GA);
1722 }
1723 
1724 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1725                                             ArrayRef<llvm::Type*> Tys) {
1726   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1727                                          Tys);
1728 }
1729 
1730 static llvm::StringMapEntry<llvm::Constant*> &
1731 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1732                          const StringLiteral *Literal,
1733                          bool TargetIsLSB,
1734                          bool &IsUTF16,
1735                          unsigned &StringLength) {
1736   StringRef String = Literal->getString();
1737   unsigned NumBytes = String.size();
1738 
1739   // Check for simple case.
1740   if (!Literal->containsNonAsciiOrNull()) {
1741     StringLength = NumBytes;
1742     return Map.GetOrCreateValue(String);
1743   }
1744 
1745   // Otherwise, convert the UTF8 literals into a byte string.
1746   SmallVector<UTF16, 128> ToBuf(NumBytes);
1747   const UTF8 *FromPtr = (UTF8 *)String.data();
1748   UTF16 *ToPtr = &ToBuf[0];
1749 
1750   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1751                            &ToPtr, ToPtr + NumBytes,
1752                            strictConversion);
1753 
1754   // ConvertUTF8toUTF16 returns the length in ToPtr.
1755   StringLength = ToPtr - &ToBuf[0];
1756 
1757   // Render the UTF-16 string into a byte array and convert to the target byte
1758   // order.
1759   //
1760   // FIXME: This isn't something we should need to do here.
1761   llvm::SmallString<128> AsBytes;
1762   AsBytes.reserve(StringLength * 2);
1763   for (unsigned i = 0; i != StringLength; ++i) {
1764     unsigned short Val = ToBuf[i];
1765     if (TargetIsLSB) {
1766       AsBytes.push_back(Val & 0xFF);
1767       AsBytes.push_back(Val >> 8);
1768     } else {
1769       AsBytes.push_back(Val >> 8);
1770       AsBytes.push_back(Val & 0xFF);
1771     }
1772   }
1773   // Append one extra null character, the second is automatically added by our
1774   // caller.
1775   AsBytes.push_back(0);
1776 
1777   IsUTF16 = true;
1778   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1779 }
1780 
1781 static llvm::StringMapEntry<llvm::Constant*> &
1782 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1783 		       const StringLiteral *Literal,
1784 		       unsigned &StringLength)
1785 {
1786 	StringRef String = Literal->getString();
1787 	StringLength = String.size();
1788 	return Map.GetOrCreateValue(String);
1789 }
1790 
1791 llvm::Constant *
1792 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1793   unsigned StringLength = 0;
1794   bool isUTF16 = false;
1795   llvm::StringMapEntry<llvm::Constant*> &Entry =
1796     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1797                              getTargetData().isLittleEndian(),
1798                              isUTF16, StringLength);
1799 
1800   if (llvm::Constant *C = Entry.getValue())
1801     return C;
1802 
1803   llvm::Constant *Zero =
1804       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1805   llvm::Constant *Zeros[] = { Zero, Zero };
1806 
1807   // If we don't already have it, get __CFConstantStringClassReference.
1808   if (!CFConstantStringClassRef) {
1809     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1810     Ty = llvm::ArrayType::get(Ty, 0);
1811     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1812                                            "__CFConstantStringClassReference");
1813     // Decay array -> ptr
1814     CFConstantStringClassRef =
1815       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1816   }
1817 
1818   QualType CFTy = getContext().getCFConstantStringType();
1819 
1820   llvm::StructType *STy =
1821     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1822 
1823   llvm::Constant *Fields[4];
1824 
1825   // Class pointer.
1826   Fields[0] = CFConstantStringClassRef;
1827 
1828   // Flags.
1829   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1830   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1831     llvm::ConstantInt::get(Ty, 0x07C8);
1832 
1833   // String pointer.
1834   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1835 
1836   llvm::GlobalValue::LinkageTypes Linkage;
1837   bool isConstant;
1838   if (isUTF16) {
1839     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1840     Linkage = llvm::GlobalValue::InternalLinkage;
1841     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1842     // does make plain ascii ones writable.
1843     isConstant = true;
1844   } else {
1845     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1846     // when using private linkage. It is not clear if this is a bug in ld
1847     // or a reasonable new restriction.
1848     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1849     isConstant = !Features.WritableStrings;
1850   }
1851 
1852   llvm::GlobalVariable *GV =
1853     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1854                              ".str");
1855   GV->setUnnamedAddr(true);
1856   if (isUTF16) {
1857     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1858     GV->setAlignment(Align.getQuantity());
1859   } else {
1860     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1861     GV->setAlignment(Align.getQuantity());
1862   }
1863   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1864 
1865   // String length.
1866   Ty = getTypes().ConvertType(getContext().LongTy);
1867   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1868 
1869   // The struct.
1870   C = llvm::ConstantStruct::get(STy, Fields);
1871   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1872                                 llvm::GlobalVariable::PrivateLinkage, C,
1873                                 "_unnamed_cfstring_");
1874   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1875     GV->setSection(Sect);
1876   Entry.setValue(GV);
1877 
1878   return GV;
1879 }
1880 
1881 static RecordDecl *
1882 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1883                  DeclContext *DC, IdentifierInfo *Id) {
1884   SourceLocation Loc;
1885   if (Ctx.getLangOptions().CPlusPlus)
1886     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1887   else
1888     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1889 }
1890 
1891 llvm::Constant *
1892 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1893   unsigned StringLength = 0;
1894   llvm::StringMapEntry<llvm::Constant*> &Entry =
1895     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1896 
1897   if (llvm::Constant *C = Entry.getValue())
1898     return C;
1899 
1900   llvm::Constant *Zero =
1901   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1902   llvm::Constant *Zeros[] = { Zero, Zero };
1903 
1904   // If we don't already have it, get _NSConstantStringClassReference.
1905   if (!ConstantStringClassRef) {
1906     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1907     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1908     llvm::Constant *GV;
1909     if (Features.ObjCNonFragileABI) {
1910       std::string str =
1911         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1912                             : "OBJC_CLASS_$_" + StringClass;
1913       GV = getObjCRuntime().GetClassGlobal(str);
1914       // Make sure the result is of the correct type.
1915       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1916       ConstantStringClassRef =
1917         llvm::ConstantExpr::getBitCast(GV, PTy);
1918     } else {
1919       std::string str =
1920         StringClass.empty() ? "_NSConstantStringClassReference"
1921                             : "_" + StringClass + "ClassReference";
1922       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1923       GV = CreateRuntimeVariable(PTy, str);
1924       // Decay array -> ptr
1925       ConstantStringClassRef =
1926         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1927     }
1928   }
1929 
1930   if (!NSConstantStringType) {
1931     // Construct the type for a constant NSString.
1932     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1933                                      Context.getTranslationUnitDecl(),
1934                                    &Context.Idents.get("__builtin_NSString"));
1935     D->startDefinition();
1936 
1937     QualType FieldTypes[3];
1938 
1939     // const int *isa;
1940     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1941     // const char *str;
1942     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1943     // unsigned int length;
1944     FieldTypes[2] = Context.UnsignedIntTy;
1945 
1946     // Create fields
1947     for (unsigned i = 0; i < 3; ++i) {
1948       FieldDecl *Field = FieldDecl::Create(Context, D,
1949                                            SourceLocation(),
1950                                            SourceLocation(), 0,
1951                                            FieldTypes[i], /*TInfo=*/0,
1952                                            /*BitWidth=*/0,
1953                                            /*Mutable=*/false,
1954                                            /*HasInit=*/false);
1955       Field->setAccess(AS_public);
1956       D->addDecl(Field);
1957     }
1958 
1959     D->completeDefinition();
1960     QualType NSTy = Context.getTagDeclType(D);
1961     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1962   }
1963 
1964   llvm::Constant *Fields[3];
1965 
1966   // Class pointer.
1967   Fields[0] = ConstantStringClassRef;
1968 
1969   // String pointer.
1970   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1971 
1972   llvm::GlobalValue::LinkageTypes Linkage;
1973   bool isConstant;
1974   Linkage = llvm::GlobalValue::PrivateLinkage;
1975   isConstant = !Features.WritableStrings;
1976 
1977   llvm::GlobalVariable *GV =
1978   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1979                            ".str");
1980   GV->setUnnamedAddr(true);
1981   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1982   GV->setAlignment(Align.getQuantity());
1983   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1984 
1985   // String length.
1986   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1987   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1988 
1989   // The struct.
1990   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
1991   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1992                                 llvm::GlobalVariable::PrivateLinkage, C,
1993                                 "_unnamed_nsstring_");
1994   // FIXME. Fix section.
1995   if (const char *Sect =
1996         Features.ObjCNonFragileABI
1997           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
1998           : getContext().getTargetInfo().getNSStringSection())
1999     GV->setSection(Sect);
2000   Entry.setValue(GV);
2001 
2002   return GV;
2003 }
2004 
2005 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2006   if (ObjCFastEnumerationStateType.isNull()) {
2007     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2008                                      Context.getTranslationUnitDecl(),
2009                       &Context.Idents.get("__objcFastEnumerationState"));
2010     D->startDefinition();
2011 
2012     QualType FieldTypes[] = {
2013       Context.UnsignedLongTy,
2014       Context.getPointerType(Context.getObjCIdType()),
2015       Context.getPointerType(Context.UnsignedLongTy),
2016       Context.getConstantArrayType(Context.UnsignedLongTy,
2017                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2018     };
2019 
2020     for (size_t i = 0; i < 4; ++i) {
2021       FieldDecl *Field = FieldDecl::Create(Context,
2022                                            D,
2023                                            SourceLocation(),
2024                                            SourceLocation(), 0,
2025                                            FieldTypes[i], /*TInfo=*/0,
2026                                            /*BitWidth=*/0,
2027                                            /*Mutable=*/false,
2028                                            /*HasInit=*/false);
2029       Field->setAccess(AS_public);
2030       D->addDecl(Field);
2031     }
2032 
2033     D->completeDefinition();
2034     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2035   }
2036 
2037   return ObjCFastEnumerationStateType;
2038 }
2039 
2040 /// GetStringForStringLiteral - Return the appropriate bytes for a
2041 /// string literal, properly padded to match the literal type.
2042 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
2043   const ASTContext &Context = getContext();
2044   const ConstantArrayType *CAT =
2045     Context.getAsConstantArrayType(E->getType());
2046   assert(CAT && "String isn't pointer or array!");
2047 
2048   // Resize the string to the right size.
2049   uint64_t RealLen = CAT->getSize().getZExtValue();
2050 
2051   switch (E->getKind()) {
2052   case StringLiteral::Ascii:
2053   case StringLiteral::UTF8:
2054     break;
2055   case StringLiteral::Wide:
2056     RealLen *= Context.getTargetInfo().getWCharWidth() / Context.getCharWidth();
2057     break;
2058   case StringLiteral::UTF16:
2059     RealLen *= Context.getTargetInfo().getChar16Width() / Context.getCharWidth();
2060     break;
2061   case StringLiteral::UTF32:
2062     RealLen *= Context.getTargetInfo().getChar32Width() / Context.getCharWidth();
2063     break;
2064   }
2065 
2066   std::string Str = E->getString().str();
2067   Str.resize(RealLen, '\0');
2068 
2069   return Str;
2070 }
2071 
2072 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2073 /// constant array for the given string literal.
2074 llvm::Constant *
2075 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2076   // FIXME: This can be more efficient.
2077   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
2078   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2079   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S),
2080                                               /* GlobalName */ 0,
2081                                               Align.getQuantity());
2082   if (S->isWide() || S->isUTF16() || S->isUTF32()) {
2083     llvm::Type *DestTy =
2084         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
2085     C = llvm::ConstantExpr::getBitCast(C, DestTy);
2086   }
2087   return C;
2088 }
2089 
2090 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2091 /// array for the given ObjCEncodeExpr node.
2092 llvm::Constant *
2093 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2094   std::string Str;
2095   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2096 
2097   return GetAddrOfConstantCString(Str);
2098 }
2099 
2100 
2101 /// GenerateWritableString -- Creates storage for a string literal.
2102 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2103                                              bool constant,
2104                                              CodeGenModule &CGM,
2105                                              const char *GlobalName,
2106                                              unsigned Alignment) {
2107   // Create Constant for this string literal. Don't add a '\0'.
2108   llvm::Constant *C =
2109       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
2110 
2111   // Create a global variable for this string
2112   llvm::GlobalVariable *GV =
2113     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2114                              llvm::GlobalValue::PrivateLinkage,
2115                              C, GlobalName);
2116   GV->setAlignment(Alignment);
2117   GV->setUnnamedAddr(true);
2118   return GV;
2119 }
2120 
2121 /// GetAddrOfConstantString - Returns a pointer to a character array
2122 /// containing the literal. This contents are exactly that of the
2123 /// given string, i.e. it will not be null terminated automatically;
2124 /// see GetAddrOfConstantCString. Note that whether the result is
2125 /// actually a pointer to an LLVM constant depends on
2126 /// Feature.WriteableStrings.
2127 ///
2128 /// The result has pointer to array type.
2129 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2130                                                        const char *GlobalName,
2131                                                        unsigned Alignment) {
2132   bool IsConstant = !Features.WritableStrings;
2133 
2134   // Get the default prefix if a name wasn't specified.
2135   if (!GlobalName)
2136     GlobalName = ".str";
2137 
2138   // Don't share any string literals if strings aren't constant.
2139   if (!IsConstant)
2140     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2141 
2142   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2143     ConstantStringMap.GetOrCreateValue(Str);
2144 
2145   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2146     if (Alignment > GV->getAlignment()) {
2147       GV->setAlignment(Alignment);
2148     }
2149     return GV;
2150   }
2151 
2152   // Create a global variable for this.
2153   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment);
2154   Entry.setValue(GV);
2155   return GV;
2156 }
2157 
2158 /// GetAddrOfConstantCString - Returns a pointer to a character
2159 /// array containing the literal and a terminating '\0'
2160 /// character. The result has pointer to array type.
2161 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2162                                                         const char *GlobalName,
2163                                                         unsigned Alignment) {
2164   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2165   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2166 }
2167 
2168 /// EmitObjCPropertyImplementations - Emit information for synthesized
2169 /// properties for an implementation.
2170 void CodeGenModule::EmitObjCPropertyImplementations(const
2171                                                     ObjCImplementationDecl *D) {
2172   for (ObjCImplementationDecl::propimpl_iterator
2173          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2174     ObjCPropertyImplDecl *PID = *i;
2175 
2176     // Dynamic is just for type-checking.
2177     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2178       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2179 
2180       // Determine which methods need to be implemented, some may have
2181       // been overridden. Note that ::isSynthesized is not the method
2182       // we want, that just indicates if the decl came from a
2183       // property. What we want to know is if the method is defined in
2184       // this implementation.
2185       if (!D->getInstanceMethod(PD->getGetterName()))
2186         CodeGenFunction(*this).GenerateObjCGetter(
2187                                  const_cast<ObjCImplementationDecl *>(D), PID);
2188       if (!PD->isReadOnly() &&
2189           !D->getInstanceMethod(PD->getSetterName()))
2190         CodeGenFunction(*this).GenerateObjCSetter(
2191                                  const_cast<ObjCImplementationDecl *>(D), PID);
2192     }
2193   }
2194 }
2195 
2196 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2197   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2198   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2199        ivar; ivar = ivar->getNextIvar())
2200     if (ivar->getType().isDestructedType())
2201       return true;
2202 
2203   return false;
2204 }
2205 
2206 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2207 /// for an implementation.
2208 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2209   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2210   if (needsDestructMethod(D)) {
2211     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2212     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2213     ObjCMethodDecl *DTORMethod =
2214       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2215                              cxxSelector, getContext().VoidTy, 0, D,
2216                              /*isInstance=*/true, /*isVariadic=*/false,
2217                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2218                              /*isDefined=*/false, ObjCMethodDecl::Required);
2219     D->addInstanceMethod(DTORMethod);
2220     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2221     D->setHasCXXStructors(true);
2222   }
2223 
2224   // If the implementation doesn't have any ivar initializers, we don't need
2225   // a .cxx_construct.
2226   if (D->getNumIvarInitializers() == 0)
2227     return;
2228 
2229   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2230   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2231   // The constructor returns 'self'.
2232   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2233                                                 D->getLocation(),
2234                                                 D->getLocation(),
2235                                                 cxxSelector,
2236                                                 getContext().getObjCIdType(), 0,
2237                                                 D, /*isInstance=*/true,
2238                                                 /*isVariadic=*/false,
2239                                                 /*isSynthesized=*/true,
2240                                                 /*isImplicitlyDeclared=*/true,
2241                                                 /*isDefined=*/false,
2242                                                 ObjCMethodDecl::Required);
2243   D->addInstanceMethod(CTORMethod);
2244   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2245   D->setHasCXXStructors(true);
2246 }
2247 
2248 /// EmitNamespace - Emit all declarations in a namespace.
2249 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2250   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2251        I != E; ++I)
2252     EmitTopLevelDecl(*I);
2253 }
2254 
2255 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2256 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2257   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2258       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2259     ErrorUnsupported(LSD, "linkage spec");
2260     return;
2261   }
2262 
2263   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2264        I != E; ++I)
2265     EmitTopLevelDecl(*I);
2266 }
2267 
2268 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2269 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2270   // If an error has occurred, stop code generation, but continue
2271   // parsing and semantic analysis (to ensure all warnings and errors
2272   // are emitted).
2273   if (Diags.hasErrorOccurred())
2274     return;
2275 
2276   // Ignore dependent declarations.
2277   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2278     return;
2279 
2280   switch (D->getKind()) {
2281   case Decl::CXXConversion:
2282   case Decl::CXXMethod:
2283   case Decl::Function:
2284     // Skip function templates
2285     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2286         cast<FunctionDecl>(D)->isLateTemplateParsed())
2287       return;
2288 
2289     EmitGlobal(cast<FunctionDecl>(D));
2290     break;
2291 
2292   case Decl::Var:
2293     EmitGlobal(cast<VarDecl>(D));
2294     break;
2295 
2296   // Indirect fields from global anonymous structs and unions can be
2297   // ignored; only the actual variable requires IR gen support.
2298   case Decl::IndirectField:
2299     break;
2300 
2301   // C++ Decls
2302   case Decl::Namespace:
2303     EmitNamespace(cast<NamespaceDecl>(D));
2304     break;
2305     // No code generation needed.
2306   case Decl::UsingShadow:
2307   case Decl::Using:
2308   case Decl::UsingDirective:
2309   case Decl::ClassTemplate:
2310   case Decl::FunctionTemplate:
2311   case Decl::TypeAliasTemplate:
2312   case Decl::NamespaceAlias:
2313   case Decl::Block:
2314     break;
2315   case Decl::CXXConstructor:
2316     // Skip function templates
2317     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2318         cast<FunctionDecl>(D)->isLateTemplateParsed())
2319       return;
2320 
2321     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2322     break;
2323   case Decl::CXXDestructor:
2324     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2325       return;
2326     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2327     break;
2328 
2329   case Decl::StaticAssert:
2330     // Nothing to do.
2331     break;
2332 
2333   // Objective-C Decls
2334 
2335   // Forward declarations, no (immediate) code generation.
2336   case Decl::ObjCClass:
2337   case Decl::ObjCForwardProtocol:
2338   case Decl::ObjCInterface:
2339     break;
2340 
2341   case Decl::ObjCCategory: {
2342     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2343     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2344       Context.ResetObjCLayout(CD->getClassInterface());
2345     break;
2346   }
2347 
2348   case Decl::ObjCProtocol:
2349     ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2350     break;
2351 
2352   case Decl::ObjCCategoryImpl:
2353     // Categories have properties but don't support synthesize so we
2354     // can ignore them here.
2355     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2356     break;
2357 
2358   case Decl::ObjCImplementation: {
2359     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2360     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2361       Context.ResetObjCLayout(OMD->getClassInterface());
2362     EmitObjCPropertyImplementations(OMD);
2363     EmitObjCIvarInitializations(OMD);
2364     ObjCRuntime->GenerateClass(OMD);
2365     break;
2366   }
2367   case Decl::ObjCMethod: {
2368     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2369     // If this is not a prototype, emit the body.
2370     if (OMD->getBody())
2371       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2372     break;
2373   }
2374   case Decl::ObjCCompatibleAlias:
2375     // compatibility-alias is a directive and has no code gen.
2376     break;
2377 
2378   case Decl::LinkageSpec:
2379     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2380     break;
2381 
2382   case Decl::FileScopeAsm: {
2383     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2384     StringRef AsmString = AD->getAsmString()->getString();
2385 
2386     const std::string &S = getModule().getModuleInlineAsm();
2387     if (S.empty())
2388       getModule().setModuleInlineAsm(AsmString);
2389     else if (*--S.end() == '\n')
2390       getModule().setModuleInlineAsm(S + AsmString.str());
2391     else
2392       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2393     break;
2394   }
2395 
2396   default:
2397     // Make sure we handled everything we should, every other kind is a
2398     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2399     // function. Need to recode Decl::Kind to do that easily.
2400     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2401   }
2402 }
2403 
2404 /// Turns the given pointer into a constant.
2405 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2406                                           const void *Ptr) {
2407   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2408   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2409   return llvm::ConstantInt::get(i64, PtrInt);
2410 }
2411 
2412 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2413                                    llvm::NamedMDNode *&GlobalMetadata,
2414                                    GlobalDecl D,
2415                                    llvm::GlobalValue *Addr) {
2416   if (!GlobalMetadata)
2417     GlobalMetadata =
2418       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2419 
2420   // TODO: should we report variant information for ctors/dtors?
2421   llvm::Value *Ops[] = {
2422     Addr,
2423     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2424   };
2425   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2426 }
2427 
2428 /// Emits metadata nodes associating all the global values in the
2429 /// current module with the Decls they came from.  This is useful for
2430 /// projects using IR gen as a subroutine.
2431 ///
2432 /// Since there's currently no way to associate an MDNode directly
2433 /// with an llvm::GlobalValue, we create a global named metadata
2434 /// with the name 'clang.global.decl.ptrs'.
2435 void CodeGenModule::EmitDeclMetadata() {
2436   llvm::NamedMDNode *GlobalMetadata = 0;
2437 
2438   // StaticLocalDeclMap
2439   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2440          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2441        I != E; ++I) {
2442     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2443     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2444   }
2445 }
2446 
2447 /// Emits metadata nodes for all the local variables in the current
2448 /// function.
2449 void CodeGenFunction::EmitDeclMetadata() {
2450   if (LocalDeclMap.empty()) return;
2451 
2452   llvm::LLVMContext &Context = getLLVMContext();
2453 
2454   // Find the unique metadata ID for this name.
2455   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2456 
2457   llvm::NamedMDNode *GlobalMetadata = 0;
2458 
2459   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2460          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2461     const Decl *D = I->first;
2462     llvm::Value *Addr = I->second;
2463 
2464     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2465       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2466       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2467     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2468       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2469       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2470     }
2471   }
2472 }
2473 
2474 void CodeGenModule::EmitCoverageFile() {
2475   if (!getCodeGenOpts().CoverageFile.empty()) {
2476     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2477       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2478       llvm::LLVMContext &Ctx = TheModule.getContext();
2479       llvm::MDString *CoverageFile =
2480           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2481       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2482         llvm::MDNode *CU = CUNode->getOperand(i);
2483         llvm::Value *node[] = { CoverageFile, CU };
2484         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2485         GCov->addOperand(N);
2486       }
2487     }
2488   }
2489 }
2490