1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Diagnostic.h" 34 #include "clang/Basic/SourceManager.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "clang/Basic/ConvertUTF.h" 37 #include "llvm/CallingConv.h" 38 #include "llvm/Module.h" 39 #include "llvm/Intrinsics.h" 40 #include "llvm/LLVMContext.h" 41 #include "llvm/ADT/Triple.h" 42 #include "llvm/Target/Mangler.h" 43 #include "llvm/Target/TargetData.h" 44 #include "llvm/Support/CallSite.h" 45 #include "llvm/Support/ErrorHandling.h" 46 using namespace clang; 47 using namespace CodeGen; 48 49 static const char AnnotationSection[] = "llvm.metadata"; 50 51 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 52 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 53 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 54 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 55 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 56 } 57 58 llvm_unreachable("invalid C++ ABI kind"); 59 return *CreateItaniumCXXABI(CGM); 60 } 61 62 63 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 64 llvm::Module &M, const llvm::TargetData &TD, 65 DiagnosticsEngine &diags) 66 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 67 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 68 ABI(createCXXABI(*this)), 69 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 70 TBAA(0), 71 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 72 DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0), 73 ConstantStringClassRef(0), NSConstantStringType(0), 74 VMContext(M.getContext()), 75 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 76 BlockObjectAssign(0), BlockObjectDispose(0), 77 BlockDescriptorType(0), GenericBlockLiteralType(0) { 78 if (Features.ObjC1) 79 createObjCRuntime(); 80 if (Features.OpenCL) 81 createOpenCLRuntime(); 82 if (Features.CUDA) 83 createCUDARuntime(); 84 85 // Enable TBAA unless it's suppressed. 86 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 87 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 88 ABI.getMangleContext()); 89 90 // If debug info or coverage generation is enabled, create the CGDebugInfo 91 // object. 92 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 93 CodeGenOpts.EmitGcovNotes) 94 DebugInfo = new CGDebugInfo(*this); 95 96 Block.GlobalUniqueCount = 0; 97 98 if (C.getLangOptions().ObjCAutoRefCount) 99 ARCData = new ARCEntrypoints(); 100 RRData = new RREntrypoints(); 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 112 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 113 Int8PtrTy = Int8Ty->getPointerTo(0); 114 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 115 } 116 117 CodeGenModule::~CodeGenModule() { 118 delete ObjCRuntime; 119 delete OpenCLRuntime; 120 delete CUDARuntime; 121 delete TheTargetCodeGenInfo; 122 delete &ABI; 123 delete TBAA; 124 delete DebugInfo; 125 delete ARCData; 126 delete RRData; 127 } 128 129 void CodeGenModule::createObjCRuntime() { 130 if (!Features.NeXTRuntime) 131 ObjCRuntime = CreateGNUObjCRuntime(*this); 132 else 133 ObjCRuntime = CreateMacObjCRuntime(*this); 134 } 135 136 void CodeGenModule::createOpenCLRuntime() { 137 OpenCLRuntime = new CGOpenCLRuntime(*this); 138 } 139 140 void CodeGenModule::createCUDARuntime() { 141 CUDARuntime = CreateNVCUDARuntime(*this); 142 } 143 144 void CodeGenModule::Release() { 145 EmitDeferred(); 146 EmitCXXGlobalInitFunc(); 147 EmitCXXGlobalDtorFunc(); 148 if (ObjCRuntime) 149 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 150 AddGlobalCtor(ObjCInitFunction); 151 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 152 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 153 EmitGlobalAnnotations(); 154 EmitLLVMUsed(); 155 156 SimplifyPersonality(); 157 158 if (getCodeGenOpts().EmitDeclMetadata) 159 EmitDeclMetadata(); 160 161 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 162 EmitCoverageFile(); 163 164 if (DebugInfo) 165 DebugInfo->finalize(); 166 } 167 168 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 169 // Make sure that this type is translated. 170 Types.UpdateCompletedType(TD); 171 if (DebugInfo) 172 DebugInfo->UpdateCompletedType(TD); 173 } 174 175 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 176 if (!TBAA) 177 return 0; 178 return TBAA->getTBAAInfo(QTy); 179 } 180 181 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 182 llvm::MDNode *TBAAInfo) { 183 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 184 } 185 186 bool CodeGenModule::isTargetDarwin() const { 187 return getContext().getTargetInfo().getTriple().isOSDarwin(); 188 } 189 190 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 191 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 192 getDiags().Report(Context.getFullLoc(loc), diagID); 193 } 194 195 /// ErrorUnsupported - Print out an error that codegen doesn't support the 196 /// specified stmt yet. 197 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 198 bool OmitOnError) { 199 if (OmitOnError && getDiags().hasErrorOccurred()) 200 return; 201 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 202 "cannot compile this %0 yet"); 203 std::string Msg = Type; 204 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 205 << Msg << S->getSourceRange(); 206 } 207 208 /// ErrorUnsupported - Print out an error that codegen doesn't support the 209 /// specified decl yet. 210 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 211 bool OmitOnError) { 212 if (OmitOnError && getDiags().hasErrorOccurred()) 213 return; 214 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 215 "cannot compile this %0 yet"); 216 std::string Msg = Type; 217 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 218 } 219 220 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 221 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 222 } 223 224 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 225 const NamedDecl *D) const { 226 // Internal definitions always have default visibility. 227 if (GV->hasLocalLinkage()) { 228 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 229 return; 230 } 231 232 // Set visibility for definitions. 233 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 234 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 235 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 236 } 237 238 /// Set the symbol visibility of type information (vtable and RTTI) 239 /// associated with the given type. 240 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 241 const CXXRecordDecl *RD, 242 TypeVisibilityKind TVK) const { 243 setGlobalVisibility(GV, RD); 244 245 if (!CodeGenOpts.HiddenWeakVTables) 246 return; 247 248 // We never want to drop the visibility for RTTI names. 249 if (TVK == TVK_ForRTTIName) 250 return; 251 252 // We want to drop the visibility to hidden for weak type symbols. 253 // This isn't possible if there might be unresolved references 254 // elsewhere that rely on this symbol being visible. 255 256 // This should be kept roughly in sync with setThunkVisibility 257 // in CGVTables.cpp. 258 259 // Preconditions. 260 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 261 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 262 return; 263 264 // Don't override an explicit visibility attribute. 265 if (RD->getExplicitVisibility()) 266 return; 267 268 switch (RD->getTemplateSpecializationKind()) { 269 // We have to disable the optimization if this is an EI definition 270 // because there might be EI declarations in other shared objects. 271 case TSK_ExplicitInstantiationDefinition: 272 case TSK_ExplicitInstantiationDeclaration: 273 return; 274 275 // Every use of a non-template class's type information has to emit it. 276 case TSK_Undeclared: 277 break; 278 279 // In theory, implicit instantiations can ignore the possibility of 280 // an explicit instantiation declaration because there necessarily 281 // must be an EI definition somewhere with default visibility. In 282 // practice, it's possible to have an explicit instantiation for 283 // an arbitrary template class, and linkers aren't necessarily able 284 // to deal with mixed-visibility symbols. 285 case TSK_ExplicitSpecialization: 286 case TSK_ImplicitInstantiation: 287 if (!CodeGenOpts.HiddenWeakTemplateVTables) 288 return; 289 break; 290 } 291 292 // If there's a key function, there may be translation units 293 // that don't have the key function's definition. But ignore 294 // this if we're emitting RTTI under -fno-rtti. 295 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 296 if (Context.getKeyFunction(RD)) 297 return; 298 } 299 300 // Otherwise, drop the visibility to hidden. 301 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 302 GV->setUnnamedAddr(true); 303 } 304 305 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 306 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 307 308 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 309 if (!Str.empty()) 310 return Str; 311 312 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 313 IdentifierInfo *II = ND->getIdentifier(); 314 assert(II && "Attempt to mangle unnamed decl."); 315 316 Str = II->getName(); 317 return Str; 318 } 319 320 llvm::SmallString<256> Buffer; 321 llvm::raw_svector_ostream Out(Buffer); 322 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 323 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 324 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 325 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 326 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 327 getCXXABI().getMangleContext().mangleBlock(BD, Out); 328 else 329 getCXXABI().getMangleContext().mangleName(ND, Out); 330 331 // Allocate space for the mangled name. 332 Out.flush(); 333 size_t Length = Buffer.size(); 334 char *Name = MangledNamesAllocator.Allocate<char>(Length); 335 std::copy(Buffer.begin(), Buffer.end(), Name); 336 337 Str = StringRef(Name, Length); 338 339 return Str; 340 } 341 342 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 343 const BlockDecl *BD) { 344 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 345 const Decl *D = GD.getDecl(); 346 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 347 if (D == 0) 348 MangleCtx.mangleGlobalBlock(BD, Out); 349 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 350 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 351 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 352 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 353 else 354 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 355 } 356 357 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 358 return getModule().getNamedValue(Name); 359 } 360 361 /// AddGlobalCtor - Add a function to the list that will be called before 362 /// main() runs. 363 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 364 // FIXME: Type coercion of void()* types. 365 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 366 } 367 368 /// AddGlobalDtor - Add a function to the list that will be called 369 /// when the module is unloaded. 370 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 371 // FIXME: Type coercion of void()* types. 372 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 373 } 374 375 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 376 // Ctor function type is void()*. 377 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 378 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 379 380 // Get the type of a ctor entry, { i32, void ()* }. 381 llvm::StructType *CtorStructTy = 382 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 383 llvm::PointerType::getUnqual(CtorFTy), NULL); 384 385 // Construct the constructor and destructor arrays. 386 std::vector<llvm::Constant*> Ctors; 387 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 388 std::vector<llvm::Constant*> S; 389 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 390 I->second, false)); 391 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 392 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 393 } 394 395 if (!Ctors.empty()) { 396 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 397 new llvm::GlobalVariable(TheModule, AT, false, 398 llvm::GlobalValue::AppendingLinkage, 399 llvm::ConstantArray::get(AT, Ctors), 400 GlobalName); 401 } 402 } 403 404 llvm::GlobalValue::LinkageTypes 405 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 406 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 407 408 if (Linkage == GVA_Internal) 409 return llvm::Function::InternalLinkage; 410 411 if (D->hasAttr<DLLExportAttr>()) 412 return llvm::Function::DLLExportLinkage; 413 414 if (D->hasAttr<WeakAttr>()) 415 return llvm::Function::WeakAnyLinkage; 416 417 // In C99 mode, 'inline' functions are guaranteed to have a strong 418 // definition somewhere else, so we can use available_externally linkage. 419 if (Linkage == GVA_C99Inline) 420 return llvm::Function::AvailableExternallyLinkage; 421 422 // Note that Apple's kernel linker doesn't support symbol 423 // coalescing, so we need to avoid linkonce and weak linkages there. 424 // Normally, this means we just map to internal, but for explicit 425 // instantiations we'll map to external. 426 427 // In C++, the compiler has to emit a definition in every translation unit 428 // that references the function. We should use linkonce_odr because 429 // a) if all references in this translation unit are optimized away, we 430 // don't need to codegen it. b) if the function persists, it needs to be 431 // merged with other definitions. c) C++ has the ODR, so we know the 432 // definition is dependable. 433 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 434 return !Context.getLangOptions().AppleKext 435 ? llvm::Function::LinkOnceODRLinkage 436 : llvm::Function::InternalLinkage; 437 438 // An explicit instantiation of a template has weak linkage, since 439 // explicit instantiations can occur in multiple translation units 440 // and must all be equivalent. However, we are not allowed to 441 // throw away these explicit instantiations. 442 if (Linkage == GVA_ExplicitTemplateInstantiation) 443 return !Context.getLangOptions().AppleKext 444 ? llvm::Function::WeakODRLinkage 445 : llvm::Function::ExternalLinkage; 446 447 // Otherwise, we have strong external linkage. 448 assert(Linkage == GVA_StrongExternal); 449 return llvm::Function::ExternalLinkage; 450 } 451 452 453 /// SetFunctionDefinitionAttributes - Set attributes for a global. 454 /// 455 /// FIXME: This is currently only done for aliases and functions, but not for 456 /// variables (these details are set in EmitGlobalVarDefinition for variables). 457 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 458 llvm::GlobalValue *GV) { 459 SetCommonAttributes(D, GV); 460 } 461 462 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 463 const CGFunctionInfo &Info, 464 llvm::Function *F) { 465 unsigned CallingConv; 466 AttributeListType AttributeList; 467 ConstructAttributeList(Info, D, AttributeList, CallingConv); 468 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 469 AttributeList.size())); 470 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 471 } 472 473 /// Determines whether the language options require us to model 474 /// unwind exceptions. We treat -fexceptions as mandating this 475 /// except under the fragile ObjC ABI with only ObjC exceptions 476 /// enabled. This means, for example, that C with -fexceptions 477 /// enables this. 478 static bool hasUnwindExceptions(const LangOptions &Features) { 479 // If exceptions are completely disabled, obviously this is false. 480 if (!Features.Exceptions) return false; 481 482 // If C++ exceptions are enabled, this is true. 483 if (Features.CXXExceptions) return true; 484 485 // If ObjC exceptions are enabled, this depends on the ABI. 486 if (Features.ObjCExceptions) { 487 if (!Features.ObjCNonFragileABI) return false; 488 } 489 490 return true; 491 } 492 493 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 494 llvm::Function *F) { 495 if (CodeGenOpts.UnwindTables) 496 F->setHasUWTable(); 497 498 if (!hasUnwindExceptions(Features)) 499 F->addFnAttr(llvm::Attribute::NoUnwind); 500 501 if (D->hasAttr<NakedAttr>()) { 502 // Naked implies noinline: we should not be inlining such functions. 503 F->addFnAttr(llvm::Attribute::Naked); 504 F->addFnAttr(llvm::Attribute::NoInline); 505 } 506 507 if (D->hasAttr<NoInlineAttr>()) 508 F->addFnAttr(llvm::Attribute::NoInline); 509 510 // (noinline wins over always_inline, and we can't specify both in IR) 511 if (D->hasAttr<AlwaysInlineAttr>() && 512 !F->hasFnAttr(llvm::Attribute::NoInline)) 513 F->addFnAttr(llvm::Attribute::AlwaysInline); 514 515 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 516 F->setUnnamedAddr(true); 517 518 if (Features.getStackProtector() == LangOptions::SSPOn) 519 F->addFnAttr(llvm::Attribute::StackProtect); 520 else if (Features.getStackProtector() == LangOptions::SSPReq) 521 F->addFnAttr(llvm::Attribute::StackProtectReq); 522 523 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 524 if (alignment) 525 F->setAlignment(alignment); 526 527 // C++ ABI requires 2-byte alignment for member functions. 528 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 529 F->setAlignment(2); 530 } 531 532 void CodeGenModule::SetCommonAttributes(const Decl *D, 533 llvm::GlobalValue *GV) { 534 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 535 setGlobalVisibility(GV, ND); 536 else 537 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 538 539 if (D->hasAttr<UsedAttr>()) 540 AddUsedGlobal(GV); 541 542 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 543 GV->setSection(SA->getName()); 544 545 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 546 } 547 548 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 549 llvm::Function *F, 550 const CGFunctionInfo &FI) { 551 SetLLVMFunctionAttributes(D, FI, F); 552 SetLLVMFunctionAttributesForDefinition(D, F); 553 554 F->setLinkage(llvm::Function::InternalLinkage); 555 556 SetCommonAttributes(D, F); 557 } 558 559 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 560 llvm::Function *F, 561 bool IsIncompleteFunction) { 562 if (unsigned IID = F->getIntrinsicID()) { 563 // If this is an intrinsic function, set the function's attributes 564 // to the intrinsic's attributes. 565 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 566 return; 567 } 568 569 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 570 571 if (!IsIncompleteFunction) 572 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 573 574 // Only a few attributes are set on declarations; these may later be 575 // overridden by a definition. 576 577 if (FD->hasAttr<DLLImportAttr>()) { 578 F->setLinkage(llvm::Function::DLLImportLinkage); 579 } else if (FD->hasAttr<WeakAttr>() || 580 FD->isWeakImported()) { 581 // "extern_weak" is overloaded in LLVM; we probably should have 582 // separate linkage types for this. 583 F->setLinkage(llvm::Function::ExternalWeakLinkage); 584 } else { 585 F->setLinkage(llvm::Function::ExternalLinkage); 586 587 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 588 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 589 F->setVisibility(GetLLVMVisibility(LV.visibility())); 590 } 591 } 592 593 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 594 F->setSection(SA->getName()); 595 } 596 597 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 598 assert(!GV->isDeclaration() && 599 "Only globals with definition can force usage."); 600 LLVMUsed.push_back(GV); 601 } 602 603 void CodeGenModule::EmitLLVMUsed() { 604 // Don't create llvm.used if there is no need. 605 if (LLVMUsed.empty()) 606 return; 607 608 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 609 610 // Convert LLVMUsed to what ConstantArray needs. 611 std::vector<llvm::Constant*> UsedArray; 612 UsedArray.resize(LLVMUsed.size()); 613 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 614 UsedArray[i] = 615 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 616 i8PTy); 617 } 618 619 if (UsedArray.empty()) 620 return; 621 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 622 623 llvm::GlobalVariable *GV = 624 new llvm::GlobalVariable(getModule(), ATy, false, 625 llvm::GlobalValue::AppendingLinkage, 626 llvm::ConstantArray::get(ATy, UsedArray), 627 "llvm.used"); 628 629 GV->setSection("llvm.metadata"); 630 } 631 632 void CodeGenModule::EmitDeferred() { 633 // Emit code for any potentially referenced deferred decls. Since a 634 // previously unused static decl may become used during the generation of code 635 // for a static function, iterate until no changes are made. 636 637 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 638 if (!DeferredVTables.empty()) { 639 const CXXRecordDecl *RD = DeferredVTables.back(); 640 DeferredVTables.pop_back(); 641 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 642 continue; 643 } 644 645 GlobalDecl D = DeferredDeclsToEmit.back(); 646 DeferredDeclsToEmit.pop_back(); 647 648 // Check to see if we've already emitted this. This is necessary 649 // for a couple of reasons: first, decls can end up in the 650 // deferred-decls queue multiple times, and second, decls can end 651 // up with definitions in unusual ways (e.g. by an extern inline 652 // function acquiring a strong function redefinition). Just 653 // ignore these cases. 654 // 655 // TODO: That said, looking this up multiple times is very wasteful. 656 StringRef Name = getMangledName(D); 657 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 658 assert(CGRef && "Deferred decl wasn't referenced?"); 659 660 if (!CGRef->isDeclaration()) 661 continue; 662 663 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 664 // purposes an alias counts as a definition. 665 if (isa<llvm::GlobalAlias>(CGRef)) 666 continue; 667 668 // Otherwise, emit the definition and move on to the next one. 669 EmitGlobalDefinition(D); 670 } 671 } 672 673 void CodeGenModule::EmitGlobalAnnotations() { 674 if (Annotations.empty()) 675 return; 676 677 // Create a new global variable for the ConstantStruct in the Module. 678 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 679 Annotations[0]->getType(), Annotations.size()), Annotations); 680 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 681 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 682 "llvm.global.annotations"); 683 gv->setSection(AnnotationSection); 684 } 685 686 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 687 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 688 if (i != AnnotationStrings.end()) 689 return i->second; 690 691 // Not found yet, create a new global. 692 llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true); 693 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 694 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 695 gv->setSection(AnnotationSection); 696 gv->setUnnamedAddr(true); 697 AnnotationStrings[Str] = gv; 698 return gv; 699 } 700 701 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 702 SourceManager &SM = getContext().getSourceManager(); 703 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 704 if (PLoc.isValid()) 705 return EmitAnnotationString(PLoc.getFilename()); 706 return EmitAnnotationString(SM.getBufferName(Loc)); 707 } 708 709 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 710 SourceManager &SM = getContext().getSourceManager(); 711 PresumedLoc PLoc = SM.getPresumedLoc(L); 712 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 713 SM.getExpansionLineNumber(L); 714 return llvm::ConstantInt::get(Int32Ty, LineNo); 715 } 716 717 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 718 const AnnotateAttr *AA, 719 SourceLocation L) { 720 // Get the globals for file name, annotation, and the line number. 721 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 722 *UnitGV = EmitAnnotationUnit(L), 723 *LineNoCst = EmitAnnotationLineNo(L); 724 725 // Create the ConstantStruct for the global annotation. 726 llvm::Constant *Fields[4] = { 727 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 728 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 729 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 730 LineNoCst 731 }; 732 return llvm::ConstantStruct::getAnon(Fields); 733 } 734 735 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 736 llvm::GlobalValue *GV) { 737 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 738 // Get the struct elements for these annotations. 739 for (specific_attr_iterator<AnnotateAttr> 740 ai = D->specific_attr_begin<AnnotateAttr>(), 741 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 742 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 743 } 744 745 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 746 // Never defer when EmitAllDecls is specified. 747 if (Features.EmitAllDecls) 748 return false; 749 750 return !getContext().DeclMustBeEmitted(Global); 751 } 752 753 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 754 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 755 assert(AA && "No alias?"); 756 757 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 758 759 // See if there is already something with the target's name in the module. 760 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 761 762 llvm::Constant *Aliasee; 763 if (isa<llvm::FunctionType>(DeclTy)) 764 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 765 /*ForVTable=*/false); 766 else 767 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 768 llvm::PointerType::getUnqual(DeclTy), 0); 769 if (!Entry) { 770 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 771 F->setLinkage(llvm::Function::ExternalWeakLinkage); 772 WeakRefReferences.insert(F); 773 } 774 775 return Aliasee; 776 } 777 778 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 779 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 780 781 // Weak references don't produce any output by themselves. 782 if (Global->hasAttr<WeakRefAttr>()) 783 return; 784 785 // If this is an alias definition (which otherwise looks like a declaration) 786 // emit it now. 787 if (Global->hasAttr<AliasAttr>()) 788 return EmitAliasDefinition(GD); 789 790 // If this is CUDA, be selective about which declarations we emit. 791 if (Features.CUDA) { 792 if (CodeGenOpts.CUDAIsDevice) { 793 if (!Global->hasAttr<CUDADeviceAttr>() && 794 !Global->hasAttr<CUDAGlobalAttr>() && 795 !Global->hasAttr<CUDAConstantAttr>() && 796 !Global->hasAttr<CUDASharedAttr>()) 797 return; 798 } else { 799 if (!Global->hasAttr<CUDAHostAttr>() && ( 800 Global->hasAttr<CUDADeviceAttr>() || 801 Global->hasAttr<CUDAConstantAttr>() || 802 Global->hasAttr<CUDASharedAttr>())) 803 return; 804 } 805 } 806 807 // Ignore declarations, they will be emitted on their first use. 808 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 809 // Forward declarations are emitted lazily on first use. 810 if (!FD->doesThisDeclarationHaveABody()) { 811 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 812 return; 813 814 const FunctionDecl *InlineDefinition = 0; 815 FD->getBody(InlineDefinition); 816 817 StringRef MangledName = getMangledName(GD); 818 llvm::StringMap<GlobalDecl>::iterator DDI = 819 DeferredDecls.find(MangledName); 820 if (DDI != DeferredDecls.end()) 821 DeferredDecls.erase(DDI); 822 EmitGlobalDefinition(InlineDefinition); 823 return; 824 } 825 } else { 826 const VarDecl *VD = cast<VarDecl>(Global); 827 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 828 829 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 830 return; 831 } 832 833 // Defer code generation when possible if this is a static definition, inline 834 // function etc. These we only want to emit if they are used. 835 if (!MayDeferGeneration(Global)) { 836 // Emit the definition if it can't be deferred. 837 EmitGlobalDefinition(GD); 838 return; 839 } 840 841 // If we're deferring emission of a C++ variable with an 842 // initializer, remember the order in which it appeared in the file. 843 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 844 cast<VarDecl>(Global)->hasInit()) { 845 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 846 CXXGlobalInits.push_back(0); 847 } 848 849 // If the value has already been used, add it directly to the 850 // DeferredDeclsToEmit list. 851 StringRef MangledName = getMangledName(GD); 852 if (GetGlobalValue(MangledName)) 853 DeferredDeclsToEmit.push_back(GD); 854 else { 855 // Otherwise, remember that we saw a deferred decl with this name. The 856 // first use of the mangled name will cause it to move into 857 // DeferredDeclsToEmit. 858 DeferredDecls[MangledName] = GD; 859 } 860 } 861 862 namespace { 863 struct FunctionIsDirectlyRecursive : 864 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 865 const StringRef Name; 866 bool Result; 867 FunctionIsDirectlyRecursive(const FunctionDecl *F) : 868 Name(F->getName()), Result(false) { 869 } 870 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 871 872 bool TraverseCallExpr(CallExpr *E) { 873 const Decl *D = E->getCalleeDecl(); 874 if (!D) 875 return true; 876 AsmLabelAttr *Attr = D->getAttr<AsmLabelAttr>(); 877 if (!Attr) 878 return true; 879 if (Name == Attr->getLabel()) { 880 Result = true; 881 return false; 882 } 883 return true; 884 } 885 }; 886 } 887 888 // isTriviallyRecursiveViaAsm - Check if this function calls another 889 // decl that, because of the asm attribute, ends up pointing to itself. 890 bool 891 CodeGenModule::isTriviallyRecursiveViaAsm(const FunctionDecl *F) { 892 if (getCXXABI().getMangleContext().shouldMangleDeclName(F)) 893 return false; 894 895 FunctionIsDirectlyRecursive Walker(F); 896 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 897 return Walker.Result; 898 } 899 900 bool 901 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 902 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 903 return true; 904 if (F->hasAttr<AlwaysInlineAttr>()) 905 return true; 906 if (CodeGenOpts.OptimizationLevel == 0) 907 return false; 908 // PR9614. Avoid cases where the source code is lying to us. An available 909 // externally function should have an equivalent function somewhere else, 910 // but a function that calls itself is clearly not equivalent to the real 911 // implementation. 912 // This happens in glibc's btowc and in some configure checks. 913 if (isTriviallyRecursiveViaAsm(F)) 914 return false; 915 return true; 916 } 917 918 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 919 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 920 921 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 922 Context.getSourceManager(), 923 "Generating code for declaration"); 924 925 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 926 // At -O0, don't generate IR for functions with available_externally 927 // linkage. 928 if (!shouldEmitFunction(Function)) 929 return; 930 931 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 932 // Make sure to emit the definition(s) before we emit the thunks. 933 // This is necessary for the generation of certain thunks. 934 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 935 EmitCXXConstructor(CD, GD.getCtorType()); 936 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 937 EmitCXXDestructor(DD, GD.getDtorType()); 938 else 939 EmitGlobalFunctionDefinition(GD); 940 941 if (Method->isVirtual()) 942 getVTables().EmitThunks(GD); 943 944 return; 945 } 946 947 return EmitGlobalFunctionDefinition(GD); 948 } 949 950 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 951 return EmitGlobalVarDefinition(VD); 952 953 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 954 } 955 956 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 957 /// module, create and return an llvm Function with the specified type. If there 958 /// is something in the module with the specified name, return it potentially 959 /// bitcasted to the right type. 960 /// 961 /// If D is non-null, it specifies a decl that correspond to this. This is used 962 /// to set the attributes on the function when it is first created. 963 llvm::Constant * 964 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 965 llvm::Type *Ty, 966 GlobalDecl D, bool ForVTable, 967 llvm::Attributes ExtraAttrs) { 968 // Lookup the entry, lazily creating it if necessary. 969 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 970 if (Entry) { 971 if (WeakRefReferences.count(Entry)) { 972 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 973 if (FD && !FD->hasAttr<WeakAttr>()) 974 Entry->setLinkage(llvm::Function::ExternalLinkage); 975 976 WeakRefReferences.erase(Entry); 977 } 978 979 if (Entry->getType()->getElementType() == Ty) 980 return Entry; 981 982 // Make sure the result is of the correct type. 983 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 984 } 985 986 // This function doesn't have a complete type (for example, the return 987 // type is an incomplete struct). Use a fake type instead, and make 988 // sure not to try to set attributes. 989 bool IsIncompleteFunction = false; 990 991 llvm::FunctionType *FTy; 992 if (isa<llvm::FunctionType>(Ty)) { 993 FTy = cast<llvm::FunctionType>(Ty); 994 } else { 995 FTy = llvm::FunctionType::get(VoidTy, false); 996 IsIncompleteFunction = true; 997 } 998 999 llvm::Function *F = llvm::Function::Create(FTy, 1000 llvm::Function::ExternalLinkage, 1001 MangledName, &getModule()); 1002 assert(F->getName() == MangledName && "name was uniqued!"); 1003 if (D.getDecl()) 1004 SetFunctionAttributes(D, F, IsIncompleteFunction); 1005 if (ExtraAttrs != llvm::Attribute::None) 1006 F->addFnAttr(ExtraAttrs); 1007 1008 // This is the first use or definition of a mangled name. If there is a 1009 // deferred decl with this name, remember that we need to emit it at the end 1010 // of the file. 1011 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1012 if (DDI != DeferredDecls.end()) { 1013 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1014 // list, and remove it from DeferredDecls (since we don't need it anymore). 1015 DeferredDeclsToEmit.push_back(DDI->second); 1016 DeferredDecls.erase(DDI); 1017 1018 // Otherwise, there are cases we have to worry about where we're 1019 // using a declaration for which we must emit a definition but where 1020 // we might not find a top-level definition: 1021 // - member functions defined inline in their classes 1022 // - friend functions defined inline in some class 1023 // - special member functions with implicit definitions 1024 // If we ever change our AST traversal to walk into class methods, 1025 // this will be unnecessary. 1026 // 1027 // We also don't emit a definition for a function if it's going to be an entry 1028 // in a vtable, unless it's already marked as used. 1029 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 1030 // Look for a declaration that's lexically in a record. 1031 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1032 do { 1033 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1034 if (FD->isImplicit() && !ForVTable) { 1035 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1036 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1037 break; 1038 } else if (FD->doesThisDeclarationHaveABody()) { 1039 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1040 break; 1041 } 1042 } 1043 FD = FD->getPreviousDeclaration(); 1044 } while (FD); 1045 } 1046 1047 // Make sure the result is of the requested type. 1048 if (!IsIncompleteFunction) { 1049 assert(F->getType()->getElementType() == Ty); 1050 return F; 1051 } 1052 1053 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1054 return llvm::ConstantExpr::getBitCast(F, PTy); 1055 } 1056 1057 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1058 /// non-null, then this function will use the specified type if it has to 1059 /// create it (this occurs when we see a definition of the function). 1060 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1061 llvm::Type *Ty, 1062 bool ForVTable) { 1063 // If there was no specific requested type, just convert it now. 1064 if (!Ty) 1065 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1066 1067 StringRef MangledName = getMangledName(GD); 1068 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1069 } 1070 1071 /// CreateRuntimeFunction - Create a new runtime function with the specified 1072 /// type and name. 1073 llvm::Constant * 1074 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1075 StringRef Name, 1076 llvm::Attributes ExtraAttrs) { 1077 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1078 ExtraAttrs); 1079 } 1080 1081 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 1082 bool ConstantInit) { 1083 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 1084 return false; 1085 1086 if (Context.getLangOptions().CPlusPlus) { 1087 if (const RecordType *Record 1088 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 1089 return ConstantInit && 1090 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 1091 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 1092 } 1093 1094 return true; 1095 } 1096 1097 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1098 /// create and return an llvm GlobalVariable with the specified type. If there 1099 /// is something in the module with the specified name, return it potentially 1100 /// bitcasted to the right type. 1101 /// 1102 /// If D is non-null, it specifies a decl that correspond to this. This is used 1103 /// to set the attributes on the global when it is first created. 1104 llvm::Constant * 1105 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1106 llvm::PointerType *Ty, 1107 const VarDecl *D, 1108 bool UnnamedAddr) { 1109 // Lookup the entry, lazily creating it if necessary. 1110 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1111 if (Entry) { 1112 if (WeakRefReferences.count(Entry)) { 1113 if (D && !D->hasAttr<WeakAttr>()) 1114 Entry->setLinkage(llvm::Function::ExternalLinkage); 1115 1116 WeakRefReferences.erase(Entry); 1117 } 1118 1119 if (UnnamedAddr) 1120 Entry->setUnnamedAddr(true); 1121 1122 if (Entry->getType() == Ty) 1123 return Entry; 1124 1125 // Make sure the result is of the correct type. 1126 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1127 } 1128 1129 // This is the first use or definition of a mangled name. If there is a 1130 // deferred decl with this name, remember that we need to emit it at the end 1131 // of the file. 1132 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1133 if (DDI != DeferredDecls.end()) { 1134 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1135 // list, and remove it from DeferredDecls (since we don't need it anymore). 1136 DeferredDeclsToEmit.push_back(DDI->second); 1137 DeferredDecls.erase(DDI); 1138 } 1139 1140 llvm::GlobalVariable *GV = 1141 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1142 llvm::GlobalValue::ExternalLinkage, 1143 0, MangledName, 0, 1144 false, Ty->getAddressSpace()); 1145 1146 // Handle things which are present even on external declarations. 1147 if (D) { 1148 // FIXME: This code is overly simple and should be merged with other global 1149 // handling. 1150 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1151 1152 // Set linkage and visibility in case we never see a definition. 1153 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1154 if (LV.linkage() != ExternalLinkage) { 1155 // Don't set internal linkage on declarations. 1156 } else { 1157 if (D->hasAttr<DLLImportAttr>()) 1158 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1159 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1160 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1161 1162 // Set visibility on a declaration only if it's explicit. 1163 if (LV.visibilityExplicit()) 1164 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1165 } 1166 1167 GV->setThreadLocal(D->isThreadSpecified()); 1168 } 1169 1170 return GV; 1171 } 1172 1173 1174 llvm::GlobalVariable * 1175 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1176 llvm::Type *Ty, 1177 llvm::GlobalValue::LinkageTypes Linkage) { 1178 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1179 llvm::GlobalVariable *OldGV = 0; 1180 1181 1182 if (GV) { 1183 // Check if the variable has the right type. 1184 if (GV->getType()->getElementType() == Ty) 1185 return GV; 1186 1187 // Because C++ name mangling, the only way we can end up with an already 1188 // existing global with the same name is if it has been declared extern "C". 1189 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1190 OldGV = GV; 1191 } 1192 1193 // Create a new variable. 1194 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1195 Linkage, 0, Name); 1196 1197 if (OldGV) { 1198 // Replace occurrences of the old variable if needed. 1199 GV->takeName(OldGV); 1200 1201 if (!OldGV->use_empty()) { 1202 llvm::Constant *NewPtrForOldDecl = 1203 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1204 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1205 } 1206 1207 OldGV->eraseFromParent(); 1208 } 1209 1210 return GV; 1211 } 1212 1213 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1214 /// given global variable. If Ty is non-null and if the global doesn't exist, 1215 /// then it will be greated with the specified type instead of whatever the 1216 /// normal requested type would be. 1217 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1218 llvm::Type *Ty) { 1219 assert(D->hasGlobalStorage() && "Not a global variable"); 1220 QualType ASTTy = D->getType(); 1221 if (Ty == 0) 1222 Ty = getTypes().ConvertTypeForMem(ASTTy); 1223 1224 llvm::PointerType *PTy = 1225 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1226 1227 StringRef MangledName = getMangledName(D); 1228 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1229 } 1230 1231 /// CreateRuntimeVariable - Create a new runtime global variable with the 1232 /// specified type and name. 1233 llvm::Constant * 1234 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1235 StringRef Name) { 1236 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1237 true); 1238 } 1239 1240 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1241 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1242 1243 if (MayDeferGeneration(D)) { 1244 // If we have not seen a reference to this variable yet, place it 1245 // into the deferred declarations table to be emitted if needed 1246 // later. 1247 StringRef MangledName = getMangledName(D); 1248 if (!GetGlobalValue(MangledName)) { 1249 DeferredDecls[MangledName] = D; 1250 return; 1251 } 1252 } 1253 1254 // The tentative definition is the only definition. 1255 EmitGlobalVarDefinition(D); 1256 } 1257 1258 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1259 if (DefinitionRequired) 1260 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1261 } 1262 1263 llvm::GlobalVariable::LinkageTypes 1264 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1265 if (RD->getLinkage() != ExternalLinkage) 1266 return llvm::GlobalVariable::InternalLinkage; 1267 1268 if (const CXXMethodDecl *KeyFunction 1269 = RD->getASTContext().getKeyFunction(RD)) { 1270 // If this class has a key function, use that to determine the linkage of 1271 // the vtable. 1272 const FunctionDecl *Def = 0; 1273 if (KeyFunction->hasBody(Def)) 1274 KeyFunction = cast<CXXMethodDecl>(Def); 1275 1276 switch (KeyFunction->getTemplateSpecializationKind()) { 1277 case TSK_Undeclared: 1278 case TSK_ExplicitSpecialization: 1279 // When compiling with optimizations turned on, we emit all vtables, 1280 // even if the key function is not defined in the current translation 1281 // unit. If this is the case, use available_externally linkage. 1282 if (!Def && CodeGenOpts.OptimizationLevel) 1283 return llvm::GlobalVariable::AvailableExternallyLinkage; 1284 1285 if (KeyFunction->isInlined()) 1286 return !Context.getLangOptions().AppleKext ? 1287 llvm::GlobalVariable::LinkOnceODRLinkage : 1288 llvm::Function::InternalLinkage; 1289 1290 return llvm::GlobalVariable::ExternalLinkage; 1291 1292 case TSK_ImplicitInstantiation: 1293 return !Context.getLangOptions().AppleKext ? 1294 llvm::GlobalVariable::LinkOnceODRLinkage : 1295 llvm::Function::InternalLinkage; 1296 1297 case TSK_ExplicitInstantiationDefinition: 1298 return !Context.getLangOptions().AppleKext ? 1299 llvm::GlobalVariable::WeakODRLinkage : 1300 llvm::Function::InternalLinkage; 1301 1302 case TSK_ExplicitInstantiationDeclaration: 1303 // FIXME: Use available_externally linkage. However, this currently 1304 // breaks LLVM's build due to undefined symbols. 1305 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1306 return !Context.getLangOptions().AppleKext ? 1307 llvm::GlobalVariable::LinkOnceODRLinkage : 1308 llvm::Function::InternalLinkage; 1309 } 1310 } 1311 1312 if (Context.getLangOptions().AppleKext) 1313 return llvm::Function::InternalLinkage; 1314 1315 switch (RD->getTemplateSpecializationKind()) { 1316 case TSK_Undeclared: 1317 case TSK_ExplicitSpecialization: 1318 case TSK_ImplicitInstantiation: 1319 // FIXME: Use available_externally linkage. However, this currently 1320 // breaks LLVM's build due to undefined symbols. 1321 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1322 case TSK_ExplicitInstantiationDeclaration: 1323 return llvm::GlobalVariable::LinkOnceODRLinkage; 1324 1325 case TSK_ExplicitInstantiationDefinition: 1326 return llvm::GlobalVariable::WeakODRLinkage; 1327 } 1328 1329 // Silence GCC warning. 1330 return llvm::GlobalVariable::LinkOnceODRLinkage; 1331 } 1332 1333 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1334 return Context.toCharUnitsFromBits( 1335 TheTargetData.getTypeStoreSizeInBits(Ty)); 1336 } 1337 1338 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1339 llvm::Constant *Init = 0; 1340 QualType ASTTy = D->getType(); 1341 bool NonConstInit = false; 1342 1343 const Expr *InitExpr = D->getAnyInitializer(); 1344 1345 if (!InitExpr) { 1346 // This is a tentative definition; tentative definitions are 1347 // implicitly initialized with { 0 }. 1348 // 1349 // Note that tentative definitions are only emitted at the end of 1350 // a translation unit, so they should never have incomplete 1351 // type. In addition, EmitTentativeDefinition makes sure that we 1352 // never attempt to emit a tentative definition if a real one 1353 // exists. A use may still exists, however, so we still may need 1354 // to do a RAUW. 1355 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1356 Init = EmitNullConstant(D->getType()); 1357 } else { 1358 Init = EmitConstantExpr(InitExpr, D->getType()); 1359 if (!Init) { 1360 QualType T = InitExpr->getType(); 1361 if (D->getType()->isReferenceType()) 1362 T = D->getType(); 1363 1364 if (getLangOptions().CPlusPlus) { 1365 Init = EmitNullConstant(T); 1366 NonConstInit = true; 1367 } else { 1368 ErrorUnsupported(D, "static initializer"); 1369 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1370 } 1371 } else { 1372 // We don't need an initializer, so remove the entry for the delayed 1373 // initializer position (just in case this entry was delayed). 1374 if (getLangOptions().CPlusPlus) 1375 DelayedCXXInitPosition.erase(D); 1376 } 1377 } 1378 1379 llvm::Type* InitType = Init->getType(); 1380 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1381 1382 // Strip off a bitcast if we got one back. 1383 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1384 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1385 // all zero index gep. 1386 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1387 Entry = CE->getOperand(0); 1388 } 1389 1390 // Entry is now either a Function or GlobalVariable. 1391 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1392 1393 // We have a definition after a declaration with the wrong type. 1394 // We must make a new GlobalVariable* and update everything that used OldGV 1395 // (a declaration or tentative definition) with the new GlobalVariable* 1396 // (which will be a definition). 1397 // 1398 // This happens if there is a prototype for a global (e.g. 1399 // "extern int x[];") and then a definition of a different type (e.g. 1400 // "int x[10];"). This also happens when an initializer has a different type 1401 // from the type of the global (this happens with unions). 1402 if (GV == 0 || 1403 GV->getType()->getElementType() != InitType || 1404 GV->getType()->getAddressSpace() != 1405 getContext().getTargetAddressSpace(ASTTy)) { 1406 1407 // Move the old entry aside so that we'll create a new one. 1408 Entry->setName(StringRef()); 1409 1410 // Make a new global with the correct type, this is now guaranteed to work. 1411 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1412 1413 // Replace all uses of the old global with the new global 1414 llvm::Constant *NewPtrForOldDecl = 1415 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1416 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1417 1418 // Erase the old global, since it is no longer used. 1419 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1420 } 1421 1422 if (D->hasAttr<AnnotateAttr>()) 1423 AddGlobalAnnotations(D, GV); 1424 1425 GV->setInitializer(Init); 1426 1427 // If it is safe to mark the global 'constant', do so now. 1428 GV->setConstant(false); 1429 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1430 GV->setConstant(true); 1431 1432 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1433 1434 // Set the llvm linkage type as appropriate. 1435 llvm::GlobalValue::LinkageTypes Linkage = 1436 GetLLVMLinkageVarDefinition(D, GV); 1437 GV->setLinkage(Linkage); 1438 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1439 // common vars aren't constant even if declared const. 1440 GV->setConstant(false); 1441 1442 SetCommonAttributes(D, GV); 1443 1444 // Emit the initializer function if necessary. 1445 if (NonConstInit) 1446 EmitCXXGlobalVarDeclInitFunc(D, GV); 1447 1448 // Emit global variable debug information. 1449 if (CGDebugInfo *DI = getModuleDebugInfo()) 1450 DI->EmitGlobalVariable(GV, D); 1451 } 1452 1453 llvm::GlobalValue::LinkageTypes 1454 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1455 llvm::GlobalVariable *GV) { 1456 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1457 if (Linkage == GVA_Internal) 1458 return llvm::Function::InternalLinkage; 1459 else if (D->hasAttr<DLLImportAttr>()) 1460 return llvm::Function::DLLImportLinkage; 1461 else if (D->hasAttr<DLLExportAttr>()) 1462 return llvm::Function::DLLExportLinkage; 1463 else if (D->hasAttr<WeakAttr>()) { 1464 if (GV->isConstant()) 1465 return llvm::GlobalVariable::WeakODRLinkage; 1466 else 1467 return llvm::GlobalVariable::WeakAnyLinkage; 1468 } else if (Linkage == GVA_TemplateInstantiation || 1469 Linkage == GVA_ExplicitTemplateInstantiation) 1470 return llvm::GlobalVariable::WeakODRLinkage; 1471 else if (!getLangOptions().CPlusPlus && 1472 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1473 D->getAttr<CommonAttr>()) && 1474 !D->hasExternalStorage() && !D->getInit() && 1475 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1476 !D->getAttr<WeakImportAttr>()) { 1477 // Thread local vars aren't considered common linkage. 1478 return llvm::GlobalVariable::CommonLinkage; 1479 } 1480 return llvm::GlobalVariable::ExternalLinkage; 1481 } 1482 1483 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1484 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1485 /// existing call uses of the old function in the module, this adjusts them to 1486 /// call the new function directly. 1487 /// 1488 /// This is not just a cleanup: the always_inline pass requires direct calls to 1489 /// functions to be able to inline them. If there is a bitcast in the way, it 1490 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1491 /// run at -O0. 1492 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1493 llvm::Function *NewFn) { 1494 // If we're redefining a global as a function, don't transform it. 1495 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1496 if (OldFn == 0) return; 1497 1498 llvm::Type *NewRetTy = NewFn->getReturnType(); 1499 SmallVector<llvm::Value*, 4> ArgList; 1500 1501 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1502 UI != E; ) { 1503 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1504 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1505 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1506 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1507 llvm::CallSite CS(CI); 1508 if (!CI || !CS.isCallee(I)) continue; 1509 1510 // If the return types don't match exactly, and if the call isn't dead, then 1511 // we can't transform this call. 1512 if (CI->getType() != NewRetTy && !CI->use_empty()) 1513 continue; 1514 1515 // Get the attribute list. 1516 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1517 llvm::AttrListPtr AttrList = CI->getAttributes(); 1518 1519 // Get any return attributes. 1520 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1521 1522 // Add the return attributes. 1523 if (RAttrs) 1524 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1525 1526 // If the function was passed too few arguments, don't transform. If extra 1527 // arguments were passed, we silently drop them. If any of the types 1528 // mismatch, we don't transform. 1529 unsigned ArgNo = 0; 1530 bool DontTransform = false; 1531 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1532 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1533 if (CS.arg_size() == ArgNo || 1534 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1535 DontTransform = true; 1536 break; 1537 } 1538 1539 // Add any parameter attributes. 1540 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1541 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1542 } 1543 if (DontTransform) 1544 continue; 1545 1546 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1547 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1548 1549 // Okay, we can transform this. Create the new call instruction and copy 1550 // over the required information. 1551 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1552 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1553 ArgList.clear(); 1554 if (!NewCall->getType()->isVoidTy()) 1555 NewCall->takeName(CI); 1556 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1557 AttrVec.end())); 1558 NewCall->setCallingConv(CI->getCallingConv()); 1559 1560 // Finally, remove the old call, replacing any uses with the new one. 1561 if (!CI->use_empty()) 1562 CI->replaceAllUsesWith(NewCall); 1563 1564 // Copy debug location attached to CI. 1565 if (!CI->getDebugLoc().isUnknown()) 1566 NewCall->setDebugLoc(CI->getDebugLoc()); 1567 CI->eraseFromParent(); 1568 } 1569 } 1570 1571 1572 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1573 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1574 1575 // Compute the function info and LLVM type. 1576 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1577 bool variadic = false; 1578 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1579 variadic = fpt->isVariadic(); 1580 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1581 1582 // Get or create the prototype for the function. 1583 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1584 1585 // Strip off a bitcast if we got one back. 1586 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1587 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1588 Entry = CE->getOperand(0); 1589 } 1590 1591 1592 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1593 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1594 1595 // If the types mismatch then we have to rewrite the definition. 1596 assert(OldFn->isDeclaration() && 1597 "Shouldn't replace non-declaration"); 1598 1599 // F is the Function* for the one with the wrong type, we must make a new 1600 // Function* and update everything that used F (a declaration) with the new 1601 // Function* (which will be a definition). 1602 // 1603 // This happens if there is a prototype for a function 1604 // (e.g. "int f()") and then a definition of a different type 1605 // (e.g. "int f(int x)"). Move the old function aside so that it 1606 // doesn't interfere with GetAddrOfFunction. 1607 OldFn->setName(StringRef()); 1608 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1609 1610 // If this is an implementation of a function without a prototype, try to 1611 // replace any existing uses of the function (which may be calls) with uses 1612 // of the new function 1613 if (D->getType()->isFunctionNoProtoType()) { 1614 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1615 OldFn->removeDeadConstantUsers(); 1616 } 1617 1618 // Replace uses of F with the Function we will endow with a body. 1619 if (!Entry->use_empty()) { 1620 llvm::Constant *NewPtrForOldDecl = 1621 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1622 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1623 } 1624 1625 // Ok, delete the old function now, which is dead. 1626 OldFn->eraseFromParent(); 1627 1628 Entry = NewFn; 1629 } 1630 1631 // We need to set linkage and visibility on the function before 1632 // generating code for it because various parts of IR generation 1633 // want to propagate this information down (e.g. to local static 1634 // declarations). 1635 llvm::Function *Fn = cast<llvm::Function>(Entry); 1636 setFunctionLinkage(D, Fn); 1637 1638 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1639 setGlobalVisibility(Fn, D); 1640 1641 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1642 1643 SetFunctionDefinitionAttributes(D, Fn); 1644 SetLLVMFunctionAttributesForDefinition(D, Fn); 1645 1646 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1647 AddGlobalCtor(Fn, CA->getPriority()); 1648 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1649 AddGlobalDtor(Fn, DA->getPriority()); 1650 if (D->hasAttr<AnnotateAttr>()) 1651 AddGlobalAnnotations(D, Fn); 1652 } 1653 1654 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1655 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1656 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1657 assert(AA && "Not an alias?"); 1658 1659 StringRef MangledName = getMangledName(GD); 1660 1661 // If there is a definition in the module, then it wins over the alias. 1662 // This is dubious, but allow it to be safe. Just ignore the alias. 1663 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1664 if (Entry && !Entry->isDeclaration()) 1665 return; 1666 1667 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1668 1669 // Create a reference to the named value. This ensures that it is emitted 1670 // if a deferred decl. 1671 llvm::Constant *Aliasee; 1672 if (isa<llvm::FunctionType>(DeclTy)) 1673 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1674 /*ForVTable=*/false); 1675 else 1676 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1677 llvm::PointerType::getUnqual(DeclTy), 0); 1678 1679 // Create the new alias itself, but don't set a name yet. 1680 llvm::GlobalValue *GA = 1681 new llvm::GlobalAlias(Aliasee->getType(), 1682 llvm::Function::ExternalLinkage, 1683 "", Aliasee, &getModule()); 1684 1685 if (Entry) { 1686 assert(Entry->isDeclaration()); 1687 1688 // If there is a declaration in the module, then we had an extern followed 1689 // by the alias, as in: 1690 // extern int test6(); 1691 // ... 1692 // int test6() __attribute__((alias("test7"))); 1693 // 1694 // Remove it and replace uses of it with the alias. 1695 GA->takeName(Entry); 1696 1697 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1698 Entry->getType())); 1699 Entry->eraseFromParent(); 1700 } else { 1701 GA->setName(MangledName); 1702 } 1703 1704 // Set attributes which are particular to an alias; this is a 1705 // specialization of the attributes which may be set on a global 1706 // variable/function. 1707 if (D->hasAttr<DLLExportAttr>()) { 1708 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1709 // The dllexport attribute is ignored for undefined symbols. 1710 if (FD->hasBody()) 1711 GA->setLinkage(llvm::Function::DLLExportLinkage); 1712 } else { 1713 GA->setLinkage(llvm::Function::DLLExportLinkage); 1714 } 1715 } else if (D->hasAttr<WeakAttr>() || 1716 D->hasAttr<WeakRefAttr>() || 1717 D->isWeakImported()) { 1718 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1719 } 1720 1721 SetCommonAttributes(D, GA); 1722 } 1723 1724 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1725 ArrayRef<llvm::Type*> Tys) { 1726 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1727 Tys); 1728 } 1729 1730 static llvm::StringMapEntry<llvm::Constant*> & 1731 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1732 const StringLiteral *Literal, 1733 bool TargetIsLSB, 1734 bool &IsUTF16, 1735 unsigned &StringLength) { 1736 StringRef String = Literal->getString(); 1737 unsigned NumBytes = String.size(); 1738 1739 // Check for simple case. 1740 if (!Literal->containsNonAsciiOrNull()) { 1741 StringLength = NumBytes; 1742 return Map.GetOrCreateValue(String); 1743 } 1744 1745 // Otherwise, convert the UTF8 literals into a byte string. 1746 SmallVector<UTF16, 128> ToBuf(NumBytes); 1747 const UTF8 *FromPtr = (UTF8 *)String.data(); 1748 UTF16 *ToPtr = &ToBuf[0]; 1749 1750 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1751 &ToPtr, ToPtr + NumBytes, 1752 strictConversion); 1753 1754 // ConvertUTF8toUTF16 returns the length in ToPtr. 1755 StringLength = ToPtr - &ToBuf[0]; 1756 1757 // Render the UTF-16 string into a byte array and convert to the target byte 1758 // order. 1759 // 1760 // FIXME: This isn't something we should need to do here. 1761 llvm::SmallString<128> AsBytes; 1762 AsBytes.reserve(StringLength * 2); 1763 for (unsigned i = 0; i != StringLength; ++i) { 1764 unsigned short Val = ToBuf[i]; 1765 if (TargetIsLSB) { 1766 AsBytes.push_back(Val & 0xFF); 1767 AsBytes.push_back(Val >> 8); 1768 } else { 1769 AsBytes.push_back(Val >> 8); 1770 AsBytes.push_back(Val & 0xFF); 1771 } 1772 } 1773 // Append one extra null character, the second is automatically added by our 1774 // caller. 1775 AsBytes.push_back(0); 1776 1777 IsUTF16 = true; 1778 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1779 } 1780 1781 static llvm::StringMapEntry<llvm::Constant*> & 1782 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1783 const StringLiteral *Literal, 1784 unsigned &StringLength) 1785 { 1786 StringRef String = Literal->getString(); 1787 StringLength = String.size(); 1788 return Map.GetOrCreateValue(String); 1789 } 1790 1791 llvm::Constant * 1792 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1793 unsigned StringLength = 0; 1794 bool isUTF16 = false; 1795 llvm::StringMapEntry<llvm::Constant*> &Entry = 1796 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1797 getTargetData().isLittleEndian(), 1798 isUTF16, StringLength); 1799 1800 if (llvm::Constant *C = Entry.getValue()) 1801 return C; 1802 1803 llvm::Constant *Zero = 1804 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1805 llvm::Constant *Zeros[] = { Zero, Zero }; 1806 1807 // If we don't already have it, get __CFConstantStringClassReference. 1808 if (!CFConstantStringClassRef) { 1809 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1810 Ty = llvm::ArrayType::get(Ty, 0); 1811 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1812 "__CFConstantStringClassReference"); 1813 // Decay array -> ptr 1814 CFConstantStringClassRef = 1815 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1816 } 1817 1818 QualType CFTy = getContext().getCFConstantStringType(); 1819 1820 llvm::StructType *STy = 1821 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1822 1823 llvm::Constant *Fields[4]; 1824 1825 // Class pointer. 1826 Fields[0] = CFConstantStringClassRef; 1827 1828 // Flags. 1829 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1830 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1831 llvm::ConstantInt::get(Ty, 0x07C8); 1832 1833 // String pointer. 1834 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1835 1836 llvm::GlobalValue::LinkageTypes Linkage; 1837 bool isConstant; 1838 if (isUTF16) { 1839 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1840 Linkage = llvm::GlobalValue::InternalLinkage; 1841 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1842 // does make plain ascii ones writable. 1843 isConstant = true; 1844 } else { 1845 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1846 // when using private linkage. It is not clear if this is a bug in ld 1847 // or a reasonable new restriction. 1848 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1849 isConstant = !Features.WritableStrings; 1850 } 1851 1852 llvm::GlobalVariable *GV = 1853 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1854 ".str"); 1855 GV->setUnnamedAddr(true); 1856 if (isUTF16) { 1857 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1858 GV->setAlignment(Align.getQuantity()); 1859 } else { 1860 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1861 GV->setAlignment(Align.getQuantity()); 1862 } 1863 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1864 1865 // String length. 1866 Ty = getTypes().ConvertType(getContext().LongTy); 1867 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1868 1869 // The struct. 1870 C = llvm::ConstantStruct::get(STy, Fields); 1871 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1872 llvm::GlobalVariable::PrivateLinkage, C, 1873 "_unnamed_cfstring_"); 1874 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 1875 GV->setSection(Sect); 1876 Entry.setValue(GV); 1877 1878 return GV; 1879 } 1880 1881 static RecordDecl * 1882 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1883 DeclContext *DC, IdentifierInfo *Id) { 1884 SourceLocation Loc; 1885 if (Ctx.getLangOptions().CPlusPlus) 1886 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1887 else 1888 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1889 } 1890 1891 llvm::Constant * 1892 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1893 unsigned StringLength = 0; 1894 llvm::StringMapEntry<llvm::Constant*> &Entry = 1895 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1896 1897 if (llvm::Constant *C = Entry.getValue()) 1898 return C; 1899 1900 llvm::Constant *Zero = 1901 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1902 llvm::Constant *Zeros[] = { Zero, Zero }; 1903 1904 // If we don't already have it, get _NSConstantStringClassReference. 1905 if (!ConstantStringClassRef) { 1906 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1907 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1908 llvm::Constant *GV; 1909 if (Features.ObjCNonFragileABI) { 1910 std::string str = 1911 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1912 : "OBJC_CLASS_$_" + StringClass; 1913 GV = getObjCRuntime().GetClassGlobal(str); 1914 // Make sure the result is of the correct type. 1915 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1916 ConstantStringClassRef = 1917 llvm::ConstantExpr::getBitCast(GV, PTy); 1918 } else { 1919 std::string str = 1920 StringClass.empty() ? "_NSConstantStringClassReference" 1921 : "_" + StringClass + "ClassReference"; 1922 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1923 GV = CreateRuntimeVariable(PTy, str); 1924 // Decay array -> ptr 1925 ConstantStringClassRef = 1926 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1927 } 1928 } 1929 1930 if (!NSConstantStringType) { 1931 // Construct the type for a constant NSString. 1932 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1933 Context.getTranslationUnitDecl(), 1934 &Context.Idents.get("__builtin_NSString")); 1935 D->startDefinition(); 1936 1937 QualType FieldTypes[3]; 1938 1939 // const int *isa; 1940 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1941 // const char *str; 1942 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1943 // unsigned int length; 1944 FieldTypes[2] = Context.UnsignedIntTy; 1945 1946 // Create fields 1947 for (unsigned i = 0; i < 3; ++i) { 1948 FieldDecl *Field = FieldDecl::Create(Context, D, 1949 SourceLocation(), 1950 SourceLocation(), 0, 1951 FieldTypes[i], /*TInfo=*/0, 1952 /*BitWidth=*/0, 1953 /*Mutable=*/false, 1954 /*HasInit=*/false); 1955 Field->setAccess(AS_public); 1956 D->addDecl(Field); 1957 } 1958 1959 D->completeDefinition(); 1960 QualType NSTy = Context.getTagDeclType(D); 1961 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1962 } 1963 1964 llvm::Constant *Fields[3]; 1965 1966 // Class pointer. 1967 Fields[0] = ConstantStringClassRef; 1968 1969 // String pointer. 1970 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1971 1972 llvm::GlobalValue::LinkageTypes Linkage; 1973 bool isConstant; 1974 Linkage = llvm::GlobalValue::PrivateLinkage; 1975 isConstant = !Features.WritableStrings; 1976 1977 llvm::GlobalVariable *GV = 1978 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1979 ".str"); 1980 GV->setUnnamedAddr(true); 1981 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1982 GV->setAlignment(Align.getQuantity()); 1983 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1984 1985 // String length. 1986 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1987 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1988 1989 // The struct. 1990 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 1991 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1992 llvm::GlobalVariable::PrivateLinkage, C, 1993 "_unnamed_nsstring_"); 1994 // FIXME. Fix section. 1995 if (const char *Sect = 1996 Features.ObjCNonFragileABI 1997 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 1998 : getContext().getTargetInfo().getNSStringSection()) 1999 GV->setSection(Sect); 2000 Entry.setValue(GV); 2001 2002 return GV; 2003 } 2004 2005 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2006 if (ObjCFastEnumerationStateType.isNull()) { 2007 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2008 Context.getTranslationUnitDecl(), 2009 &Context.Idents.get("__objcFastEnumerationState")); 2010 D->startDefinition(); 2011 2012 QualType FieldTypes[] = { 2013 Context.UnsignedLongTy, 2014 Context.getPointerType(Context.getObjCIdType()), 2015 Context.getPointerType(Context.UnsignedLongTy), 2016 Context.getConstantArrayType(Context.UnsignedLongTy, 2017 llvm::APInt(32, 5), ArrayType::Normal, 0) 2018 }; 2019 2020 for (size_t i = 0; i < 4; ++i) { 2021 FieldDecl *Field = FieldDecl::Create(Context, 2022 D, 2023 SourceLocation(), 2024 SourceLocation(), 0, 2025 FieldTypes[i], /*TInfo=*/0, 2026 /*BitWidth=*/0, 2027 /*Mutable=*/false, 2028 /*HasInit=*/false); 2029 Field->setAccess(AS_public); 2030 D->addDecl(Field); 2031 } 2032 2033 D->completeDefinition(); 2034 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2035 } 2036 2037 return ObjCFastEnumerationStateType; 2038 } 2039 2040 /// GetStringForStringLiteral - Return the appropriate bytes for a 2041 /// string literal, properly padded to match the literal type. 2042 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 2043 const ASTContext &Context = getContext(); 2044 const ConstantArrayType *CAT = 2045 Context.getAsConstantArrayType(E->getType()); 2046 assert(CAT && "String isn't pointer or array!"); 2047 2048 // Resize the string to the right size. 2049 uint64_t RealLen = CAT->getSize().getZExtValue(); 2050 2051 switch (E->getKind()) { 2052 case StringLiteral::Ascii: 2053 case StringLiteral::UTF8: 2054 break; 2055 case StringLiteral::Wide: 2056 RealLen *= Context.getTargetInfo().getWCharWidth() / Context.getCharWidth(); 2057 break; 2058 case StringLiteral::UTF16: 2059 RealLen *= Context.getTargetInfo().getChar16Width() / Context.getCharWidth(); 2060 break; 2061 case StringLiteral::UTF32: 2062 RealLen *= Context.getTargetInfo().getChar32Width() / Context.getCharWidth(); 2063 break; 2064 } 2065 2066 std::string Str = E->getString().str(); 2067 Str.resize(RealLen, '\0'); 2068 2069 return Str; 2070 } 2071 2072 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2073 /// constant array for the given string literal. 2074 llvm::Constant * 2075 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2076 // FIXME: This can be more efficient. 2077 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 2078 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2079 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S), 2080 /* GlobalName */ 0, 2081 Align.getQuantity()); 2082 if (S->isWide() || S->isUTF16() || S->isUTF32()) { 2083 llvm::Type *DestTy = 2084 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 2085 C = llvm::ConstantExpr::getBitCast(C, DestTy); 2086 } 2087 return C; 2088 } 2089 2090 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2091 /// array for the given ObjCEncodeExpr node. 2092 llvm::Constant * 2093 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2094 std::string Str; 2095 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2096 2097 return GetAddrOfConstantCString(Str); 2098 } 2099 2100 2101 /// GenerateWritableString -- Creates storage for a string literal. 2102 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2103 bool constant, 2104 CodeGenModule &CGM, 2105 const char *GlobalName, 2106 unsigned Alignment) { 2107 // Create Constant for this string literal. Don't add a '\0'. 2108 llvm::Constant *C = 2109 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 2110 2111 // Create a global variable for this string 2112 llvm::GlobalVariable *GV = 2113 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2114 llvm::GlobalValue::PrivateLinkage, 2115 C, GlobalName); 2116 GV->setAlignment(Alignment); 2117 GV->setUnnamedAddr(true); 2118 return GV; 2119 } 2120 2121 /// GetAddrOfConstantString - Returns a pointer to a character array 2122 /// containing the literal. This contents are exactly that of the 2123 /// given string, i.e. it will not be null terminated automatically; 2124 /// see GetAddrOfConstantCString. Note that whether the result is 2125 /// actually a pointer to an LLVM constant depends on 2126 /// Feature.WriteableStrings. 2127 /// 2128 /// The result has pointer to array type. 2129 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2130 const char *GlobalName, 2131 unsigned Alignment) { 2132 bool IsConstant = !Features.WritableStrings; 2133 2134 // Get the default prefix if a name wasn't specified. 2135 if (!GlobalName) 2136 GlobalName = ".str"; 2137 2138 // Don't share any string literals if strings aren't constant. 2139 if (!IsConstant) 2140 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2141 2142 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2143 ConstantStringMap.GetOrCreateValue(Str); 2144 2145 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2146 if (Alignment > GV->getAlignment()) { 2147 GV->setAlignment(Alignment); 2148 } 2149 return GV; 2150 } 2151 2152 // Create a global variable for this. 2153 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); 2154 Entry.setValue(GV); 2155 return GV; 2156 } 2157 2158 /// GetAddrOfConstantCString - Returns a pointer to a character 2159 /// array containing the literal and a terminating '\0' 2160 /// character. The result has pointer to array type. 2161 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2162 const char *GlobalName, 2163 unsigned Alignment) { 2164 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2165 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2166 } 2167 2168 /// EmitObjCPropertyImplementations - Emit information for synthesized 2169 /// properties for an implementation. 2170 void CodeGenModule::EmitObjCPropertyImplementations(const 2171 ObjCImplementationDecl *D) { 2172 for (ObjCImplementationDecl::propimpl_iterator 2173 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2174 ObjCPropertyImplDecl *PID = *i; 2175 2176 // Dynamic is just for type-checking. 2177 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2178 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2179 2180 // Determine which methods need to be implemented, some may have 2181 // been overridden. Note that ::isSynthesized is not the method 2182 // we want, that just indicates if the decl came from a 2183 // property. What we want to know is if the method is defined in 2184 // this implementation. 2185 if (!D->getInstanceMethod(PD->getGetterName())) 2186 CodeGenFunction(*this).GenerateObjCGetter( 2187 const_cast<ObjCImplementationDecl *>(D), PID); 2188 if (!PD->isReadOnly() && 2189 !D->getInstanceMethod(PD->getSetterName())) 2190 CodeGenFunction(*this).GenerateObjCSetter( 2191 const_cast<ObjCImplementationDecl *>(D), PID); 2192 } 2193 } 2194 } 2195 2196 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2197 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2198 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2199 ivar; ivar = ivar->getNextIvar()) 2200 if (ivar->getType().isDestructedType()) 2201 return true; 2202 2203 return false; 2204 } 2205 2206 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2207 /// for an implementation. 2208 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2209 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2210 if (needsDestructMethod(D)) { 2211 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2212 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2213 ObjCMethodDecl *DTORMethod = 2214 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2215 cxxSelector, getContext().VoidTy, 0, D, 2216 /*isInstance=*/true, /*isVariadic=*/false, 2217 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2218 /*isDefined=*/false, ObjCMethodDecl::Required); 2219 D->addInstanceMethod(DTORMethod); 2220 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2221 D->setHasCXXStructors(true); 2222 } 2223 2224 // If the implementation doesn't have any ivar initializers, we don't need 2225 // a .cxx_construct. 2226 if (D->getNumIvarInitializers() == 0) 2227 return; 2228 2229 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2230 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2231 // The constructor returns 'self'. 2232 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2233 D->getLocation(), 2234 D->getLocation(), 2235 cxxSelector, 2236 getContext().getObjCIdType(), 0, 2237 D, /*isInstance=*/true, 2238 /*isVariadic=*/false, 2239 /*isSynthesized=*/true, 2240 /*isImplicitlyDeclared=*/true, 2241 /*isDefined=*/false, 2242 ObjCMethodDecl::Required); 2243 D->addInstanceMethod(CTORMethod); 2244 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2245 D->setHasCXXStructors(true); 2246 } 2247 2248 /// EmitNamespace - Emit all declarations in a namespace. 2249 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2250 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2251 I != E; ++I) 2252 EmitTopLevelDecl(*I); 2253 } 2254 2255 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2256 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2257 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2258 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2259 ErrorUnsupported(LSD, "linkage spec"); 2260 return; 2261 } 2262 2263 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2264 I != E; ++I) 2265 EmitTopLevelDecl(*I); 2266 } 2267 2268 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2269 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2270 // If an error has occurred, stop code generation, but continue 2271 // parsing and semantic analysis (to ensure all warnings and errors 2272 // are emitted). 2273 if (Diags.hasErrorOccurred()) 2274 return; 2275 2276 // Ignore dependent declarations. 2277 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2278 return; 2279 2280 switch (D->getKind()) { 2281 case Decl::CXXConversion: 2282 case Decl::CXXMethod: 2283 case Decl::Function: 2284 // Skip function templates 2285 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2286 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2287 return; 2288 2289 EmitGlobal(cast<FunctionDecl>(D)); 2290 break; 2291 2292 case Decl::Var: 2293 EmitGlobal(cast<VarDecl>(D)); 2294 break; 2295 2296 // Indirect fields from global anonymous structs and unions can be 2297 // ignored; only the actual variable requires IR gen support. 2298 case Decl::IndirectField: 2299 break; 2300 2301 // C++ Decls 2302 case Decl::Namespace: 2303 EmitNamespace(cast<NamespaceDecl>(D)); 2304 break; 2305 // No code generation needed. 2306 case Decl::UsingShadow: 2307 case Decl::Using: 2308 case Decl::UsingDirective: 2309 case Decl::ClassTemplate: 2310 case Decl::FunctionTemplate: 2311 case Decl::TypeAliasTemplate: 2312 case Decl::NamespaceAlias: 2313 case Decl::Block: 2314 break; 2315 case Decl::CXXConstructor: 2316 // Skip function templates 2317 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2318 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2319 return; 2320 2321 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2322 break; 2323 case Decl::CXXDestructor: 2324 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2325 return; 2326 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2327 break; 2328 2329 case Decl::StaticAssert: 2330 // Nothing to do. 2331 break; 2332 2333 // Objective-C Decls 2334 2335 // Forward declarations, no (immediate) code generation. 2336 case Decl::ObjCClass: 2337 case Decl::ObjCForwardProtocol: 2338 case Decl::ObjCInterface: 2339 break; 2340 2341 case Decl::ObjCCategory: { 2342 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2343 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2344 Context.ResetObjCLayout(CD->getClassInterface()); 2345 break; 2346 } 2347 2348 case Decl::ObjCProtocol: 2349 ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2350 break; 2351 2352 case Decl::ObjCCategoryImpl: 2353 // Categories have properties but don't support synthesize so we 2354 // can ignore them here. 2355 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2356 break; 2357 2358 case Decl::ObjCImplementation: { 2359 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2360 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2361 Context.ResetObjCLayout(OMD->getClassInterface()); 2362 EmitObjCPropertyImplementations(OMD); 2363 EmitObjCIvarInitializations(OMD); 2364 ObjCRuntime->GenerateClass(OMD); 2365 break; 2366 } 2367 case Decl::ObjCMethod: { 2368 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2369 // If this is not a prototype, emit the body. 2370 if (OMD->getBody()) 2371 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2372 break; 2373 } 2374 case Decl::ObjCCompatibleAlias: 2375 // compatibility-alias is a directive and has no code gen. 2376 break; 2377 2378 case Decl::LinkageSpec: 2379 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2380 break; 2381 2382 case Decl::FileScopeAsm: { 2383 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2384 StringRef AsmString = AD->getAsmString()->getString(); 2385 2386 const std::string &S = getModule().getModuleInlineAsm(); 2387 if (S.empty()) 2388 getModule().setModuleInlineAsm(AsmString); 2389 else if (*--S.end() == '\n') 2390 getModule().setModuleInlineAsm(S + AsmString.str()); 2391 else 2392 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2393 break; 2394 } 2395 2396 default: 2397 // Make sure we handled everything we should, every other kind is a 2398 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2399 // function. Need to recode Decl::Kind to do that easily. 2400 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2401 } 2402 } 2403 2404 /// Turns the given pointer into a constant. 2405 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2406 const void *Ptr) { 2407 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2408 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2409 return llvm::ConstantInt::get(i64, PtrInt); 2410 } 2411 2412 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2413 llvm::NamedMDNode *&GlobalMetadata, 2414 GlobalDecl D, 2415 llvm::GlobalValue *Addr) { 2416 if (!GlobalMetadata) 2417 GlobalMetadata = 2418 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2419 2420 // TODO: should we report variant information for ctors/dtors? 2421 llvm::Value *Ops[] = { 2422 Addr, 2423 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2424 }; 2425 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2426 } 2427 2428 /// Emits metadata nodes associating all the global values in the 2429 /// current module with the Decls they came from. This is useful for 2430 /// projects using IR gen as a subroutine. 2431 /// 2432 /// Since there's currently no way to associate an MDNode directly 2433 /// with an llvm::GlobalValue, we create a global named metadata 2434 /// with the name 'clang.global.decl.ptrs'. 2435 void CodeGenModule::EmitDeclMetadata() { 2436 llvm::NamedMDNode *GlobalMetadata = 0; 2437 2438 // StaticLocalDeclMap 2439 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2440 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2441 I != E; ++I) { 2442 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2443 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2444 } 2445 } 2446 2447 /// Emits metadata nodes for all the local variables in the current 2448 /// function. 2449 void CodeGenFunction::EmitDeclMetadata() { 2450 if (LocalDeclMap.empty()) return; 2451 2452 llvm::LLVMContext &Context = getLLVMContext(); 2453 2454 // Find the unique metadata ID for this name. 2455 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2456 2457 llvm::NamedMDNode *GlobalMetadata = 0; 2458 2459 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2460 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2461 const Decl *D = I->first; 2462 llvm::Value *Addr = I->second; 2463 2464 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2465 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2466 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2467 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2468 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2469 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2470 } 2471 } 2472 } 2473 2474 void CodeGenModule::EmitCoverageFile() { 2475 if (!getCodeGenOpts().CoverageFile.empty()) { 2476 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2477 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2478 llvm::LLVMContext &Ctx = TheModule.getContext(); 2479 llvm::MDString *CoverageFile = 2480 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2481 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2482 llvm::MDNode *CU = CUNode->getOperand(i); 2483 llvm::Value *node[] = { CoverageFile, CU }; 2484 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2485 GCov->addOperand(N); 2486 } 2487 } 2488 } 2489 } 2490