xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c48d31c31c97dc3b0314f20f2b9c93d8277bfae5)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193   if (CodeGenOpts.DwarfVersion)
194     // We actually want the latest version when there are conflicts.
195     // We can change from Warning to Latest if such mode is supported.
196     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
197                               CodeGenOpts.DwarfVersion);
198 
199   SimplifyPersonality();
200 
201   if (getCodeGenOpts().EmitDeclMetadata)
202     EmitDeclMetadata();
203 
204   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
205     EmitCoverageFile();
206 
207   if (DebugInfo)
208     DebugInfo->finalize();
209 }
210 
211 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
212   // Make sure that this type is translated.
213   Types.UpdateCompletedType(TD);
214 }
215 
216 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
217   if (!TBAA)
218     return 0;
219   return TBAA->getTBAAInfo(QTy);
220 }
221 
222 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
223   if (!TBAA)
224     return 0;
225   return TBAA->getTBAAInfoForVTablePtr();
226 }
227 
228 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
229   if (!TBAA)
230     return 0;
231   return TBAA->getTBAAStructInfo(QTy);
232 }
233 
234 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
235   if (!TBAA)
236     return 0;
237   return TBAA->getTBAAStructTypeInfo(QTy);
238 }
239 
240 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
241                                                   llvm::MDNode *AccessN,
242                                                   uint64_t O) {
243   if (!TBAA)
244     return 0;
245   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
246 }
247 
248 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
249 /// is the same as the type. For struct-path aware TBAA, the tag
250 /// is different from the type: base type, access type and offset.
251 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
252 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
253                                         llvm::MDNode *TBAAInfo,
254                                         bool ConvertTypeToTag) {
255   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
256     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
257                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
258   else
259     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
260 }
261 
262 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
263   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
264   getDiags().Report(Context.getFullLoc(loc), diagID);
265 }
266 
267 /// ErrorUnsupported - Print out an error that codegen doesn't support the
268 /// specified stmt yet.
269 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
270                                      bool OmitOnError) {
271   if (OmitOnError && getDiags().hasErrorOccurred())
272     return;
273   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
274                                                "cannot compile this %0 yet");
275   std::string Msg = Type;
276   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
277     << Msg << S->getSourceRange();
278 }
279 
280 /// ErrorUnsupported - Print out an error that codegen doesn't support the
281 /// specified decl yet.
282 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
283                                      bool OmitOnError) {
284   if (OmitOnError && getDiags().hasErrorOccurred())
285     return;
286   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
287                                                "cannot compile this %0 yet");
288   std::string Msg = Type;
289   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
290 }
291 
292 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
293   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
294 }
295 
296 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
297                                         const NamedDecl *D) const {
298   // Internal definitions always have default visibility.
299   if (GV->hasLocalLinkage()) {
300     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
301     return;
302   }
303 
304   // Set visibility for definitions.
305   LinkageInfo LV = D->getLinkageAndVisibility();
306   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
307     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
308 }
309 
310 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
311   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
312       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
313       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
314       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
315       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
316 }
317 
318 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
319     CodeGenOptions::TLSModel M) {
320   switch (M) {
321   case CodeGenOptions::GeneralDynamicTLSModel:
322     return llvm::GlobalVariable::GeneralDynamicTLSModel;
323   case CodeGenOptions::LocalDynamicTLSModel:
324     return llvm::GlobalVariable::LocalDynamicTLSModel;
325   case CodeGenOptions::InitialExecTLSModel:
326     return llvm::GlobalVariable::InitialExecTLSModel;
327   case CodeGenOptions::LocalExecTLSModel:
328     return llvm::GlobalVariable::LocalExecTLSModel;
329   }
330   llvm_unreachable("Invalid TLS model!");
331 }
332 
333 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
334                                const VarDecl &D) const {
335   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
336 
337   llvm::GlobalVariable::ThreadLocalMode TLM;
338   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
339 
340   // Override the TLS model if it is explicitly specified.
341   if (D.hasAttr<TLSModelAttr>()) {
342     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
343     TLM = GetLLVMTLSModel(Attr->getModel());
344   }
345 
346   GV->setThreadLocalMode(TLM);
347 }
348 
349 /// Set the symbol visibility of type information (vtable and RTTI)
350 /// associated with the given type.
351 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
352                                       const CXXRecordDecl *RD,
353                                       TypeVisibilityKind TVK) const {
354   setGlobalVisibility(GV, RD);
355 
356   if (!CodeGenOpts.HiddenWeakVTables)
357     return;
358 
359   // We never want to drop the visibility for RTTI names.
360   if (TVK == TVK_ForRTTIName)
361     return;
362 
363   // We want to drop the visibility to hidden for weak type symbols.
364   // This isn't possible if there might be unresolved references
365   // elsewhere that rely on this symbol being visible.
366 
367   // This should be kept roughly in sync with setThunkVisibility
368   // in CGVTables.cpp.
369 
370   // Preconditions.
371   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
372       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
373     return;
374 
375   // Don't override an explicit visibility attribute.
376   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
377     return;
378 
379   switch (RD->getTemplateSpecializationKind()) {
380   // We have to disable the optimization if this is an EI definition
381   // because there might be EI declarations in other shared objects.
382   case TSK_ExplicitInstantiationDefinition:
383   case TSK_ExplicitInstantiationDeclaration:
384     return;
385 
386   // Every use of a non-template class's type information has to emit it.
387   case TSK_Undeclared:
388     break;
389 
390   // In theory, implicit instantiations can ignore the possibility of
391   // an explicit instantiation declaration because there necessarily
392   // must be an EI definition somewhere with default visibility.  In
393   // practice, it's possible to have an explicit instantiation for
394   // an arbitrary template class, and linkers aren't necessarily able
395   // to deal with mixed-visibility symbols.
396   case TSK_ExplicitSpecialization:
397   case TSK_ImplicitInstantiation:
398     return;
399   }
400 
401   // If there's a key function, there may be translation units
402   // that don't have the key function's definition.  But ignore
403   // this if we're emitting RTTI under -fno-rtti.
404   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
405     // FIXME: what should we do if we "lose" the key function during
406     // the emission of the file?
407     if (Context.getCurrentKeyFunction(RD))
408       return;
409   }
410 
411   // Otherwise, drop the visibility to hidden.
412   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
413   GV->setUnnamedAddr(true);
414 }
415 
416 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
417   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
418 
419   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
420   if (!Str.empty())
421     return Str;
422 
423   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
424     IdentifierInfo *II = ND->getIdentifier();
425     assert(II && "Attempt to mangle unnamed decl.");
426 
427     Str = II->getName();
428     return Str;
429   }
430 
431   SmallString<256> Buffer;
432   llvm::raw_svector_ostream Out(Buffer);
433   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
434     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
435   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
436     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
437   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
438     getCXXABI().getMangleContext().mangleBlock(BD, Out,
439       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
440   else
441     getCXXABI().getMangleContext().mangleName(ND, Out);
442 
443   // Allocate space for the mangled name.
444   Out.flush();
445   size_t Length = Buffer.size();
446   char *Name = MangledNamesAllocator.Allocate<char>(Length);
447   std::copy(Buffer.begin(), Buffer.end(), Name);
448 
449   Str = StringRef(Name, Length);
450 
451   return Str;
452 }
453 
454 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
455                                         const BlockDecl *BD) {
456   MangleContext &MangleCtx = getCXXABI().getMangleContext();
457   const Decl *D = GD.getDecl();
458   llvm::raw_svector_ostream Out(Buffer.getBuffer());
459   if (D == 0)
460     MangleCtx.mangleGlobalBlock(BD,
461       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
462   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
463     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
464   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
465     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
466   else
467     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
468 }
469 
470 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
471   return getModule().getNamedValue(Name);
472 }
473 
474 /// AddGlobalCtor - Add a function to the list that will be called before
475 /// main() runs.
476 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
477   // FIXME: Type coercion of void()* types.
478   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
479 }
480 
481 /// AddGlobalDtor - Add a function to the list that will be called
482 /// when the module is unloaded.
483 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
484   // FIXME: Type coercion of void()* types.
485   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
486 }
487 
488 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
489   // Ctor function type is void()*.
490   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
491   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
492 
493   // Get the type of a ctor entry, { i32, void ()* }.
494   llvm::StructType *CtorStructTy =
495     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
496 
497   // Construct the constructor and destructor arrays.
498   SmallVector<llvm::Constant*, 8> Ctors;
499   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
500     llvm::Constant *S[] = {
501       llvm::ConstantInt::get(Int32Ty, I->second, false),
502       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
503     };
504     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
505   }
506 
507   if (!Ctors.empty()) {
508     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
509     new llvm::GlobalVariable(TheModule, AT, false,
510                              llvm::GlobalValue::AppendingLinkage,
511                              llvm::ConstantArray::get(AT, Ctors),
512                              GlobalName);
513   }
514 }
515 
516 llvm::GlobalValue::LinkageTypes
517 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
518   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
519   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
520 
521   if (Linkage == GVA_Internal)
522     return llvm::Function::InternalLinkage;
523 
524   if (D->hasAttr<DLLExportAttr>())
525     return llvm::Function::DLLExportLinkage;
526 
527   if (D->hasAttr<WeakAttr>())
528     return llvm::Function::WeakAnyLinkage;
529 
530   // In C99 mode, 'inline' functions are guaranteed to have a strong
531   // definition somewhere else, so we can use available_externally linkage.
532   if (Linkage == GVA_C99Inline)
533     return llvm::Function::AvailableExternallyLinkage;
534 
535   // Note that Apple's kernel linker doesn't support symbol
536   // coalescing, so we need to avoid linkonce and weak linkages there.
537   // Normally, this means we just map to internal, but for explicit
538   // instantiations we'll map to external.
539 
540   // In C++, the compiler has to emit a definition in every translation unit
541   // that references the function.  We should use linkonce_odr because
542   // a) if all references in this translation unit are optimized away, we
543   // don't need to codegen it.  b) if the function persists, it needs to be
544   // merged with other definitions. c) C++ has the ODR, so we know the
545   // definition is dependable.
546   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
547     return !Context.getLangOpts().AppleKext
548              ? llvm::Function::LinkOnceODRLinkage
549              : llvm::Function::InternalLinkage;
550 
551   // An explicit instantiation of a template has weak linkage, since
552   // explicit instantiations can occur in multiple translation units
553   // and must all be equivalent. However, we are not allowed to
554   // throw away these explicit instantiations.
555   if (Linkage == GVA_ExplicitTemplateInstantiation)
556     return !Context.getLangOpts().AppleKext
557              ? llvm::Function::WeakODRLinkage
558              : llvm::Function::ExternalLinkage;
559 
560   // Otherwise, we have strong external linkage.
561   assert(Linkage == GVA_StrongExternal);
562   return llvm::Function::ExternalLinkage;
563 }
564 
565 
566 /// SetFunctionDefinitionAttributes - Set attributes for a global.
567 ///
568 /// FIXME: This is currently only done for aliases and functions, but not for
569 /// variables (these details are set in EmitGlobalVarDefinition for variables).
570 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
571                                                     llvm::GlobalValue *GV) {
572   SetCommonAttributes(D, GV);
573 }
574 
575 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
576                                               const CGFunctionInfo &Info,
577                                               llvm::Function *F) {
578   unsigned CallingConv;
579   AttributeListType AttributeList;
580   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
581   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
582   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
583 }
584 
585 /// Determines whether the language options require us to model
586 /// unwind exceptions.  We treat -fexceptions as mandating this
587 /// except under the fragile ObjC ABI with only ObjC exceptions
588 /// enabled.  This means, for example, that C with -fexceptions
589 /// enables this.
590 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
591   // If exceptions are completely disabled, obviously this is false.
592   if (!LangOpts.Exceptions) return false;
593 
594   // If C++ exceptions are enabled, this is true.
595   if (LangOpts.CXXExceptions) return true;
596 
597   // If ObjC exceptions are enabled, this depends on the ABI.
598   if (LangOpts.ObjCExceptions) {
599     return LangOpts.ObjCRuntime.hasUnwindExceptions();
600   }
601 
602   return true;
603 }
604 
605 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
606                                                            llvm::Function *F) {
607   llvm::AttrBuilder B;
608 
609   if (CodeGenOpts.UnwindTables)
610     B.addAttribute(llvm::Attribute::UWTable);
611 
612   if (!hasUnwindExceptions(LangOpts))
613     B.addAttribute(llvm::Attribute::NoUnwind);
614 
615   if (D->hasAttr<NakedAttr>()) {
616     // Naked implies noinline: we should not be inlining such functions.
617     B.addAttribute(llvm::Attribute::Naked);
618     B.addAttribute(llvm::Attribute::NoInline);
619   } else if (D->hasAttr<NoInlineAttr>()) {
620     B.addAttribute(llvm::Attribute::NoInline);
621   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
622               D->hasAttr<ForceInlineAttr>()) &&
623              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
624                                               llvm::Attribute::NoInline)) {
625     // (noinline wins over always_inline, and we can't specify both in IR)
626     B.addAttribute(llvm::Attribute::AlwaysInline);
627   }
628 
629   if (D->hasAttr<ColdAttr>()) {
630     B.addAttribute(llvm::Attribute::OptimizeForSize);
631     B.addAttribute(llvm::Attribute::Cold);
632   }
633 
634   if (D->hasAttr<MinSizeAttr>())
635     B.addAttribute(llvm::Attribute::MinSize);
636 
637   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
638     B.addAttribute(llvm::Attribute::StackProtect);
639   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
640     B.addAttribute(llvm::Attribute::StackProtectReq);
641 
642   // Add sanitizer attributes if function is not blacklisted.
643   if (!SanitizerBlacklist.isIn(*F)) {
644     // When AddressSanitizer is enabled, set SanitizeAddress attribute
645     // unless __attribute__((no_sanitize_address)) is used.
646     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
647       B.addAttribute(llvm::Attribute::SanitizeAddress);
648     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
649     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
650       B.addAttribute(llvm::Attribute::SanitizeThread);
651     }
652     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
653     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
654       B.addAttribute(llvm::Attribute::SanitizeMemory);
655   }
656 
657   F->addAttributes(llvm::AttributeSet::FunctionIndex,
658                    llvm::AttributeSet::get(
659                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
660 
661   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
662     F->setUnnamedAddr(true);
663   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
664     if (MD->isVirtual())
665       F->setUnnamedAddr(true);
666 
667   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
668   if (alignment)
669     F->setAlignment(alignment);
670 
671   // C++ ABI requires 2-byte alignment for member functions.
672   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
673     F->setAlignment(2);
674 }
675 
676 void CodeGenModule::SetCommonAttributes(const Decl *D,
677                                         llvm::GlobalValue *GV) {
678   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
679     setGlobalVisibility(GV, ND);
680   else
681     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
682 
683   if (D->hasAttr<UsedAttr>())
684     AddUsedGlobal(GV);
685 
686   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
687     GV->setSection(SA->getName());
688 
689   // Alias cannot have attributes. Filter them here.
690   if (!isa<llvm::GlobalAlias>(GV))
691     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
692 }
693 
694 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
695                                                   llvm::Function *F,
696                                                   const CGFunctionInfo &FI) {
697   SetLLVMFunctionAttributes(D, FI, F);
698   SetLLVMFunctionAttributesForDefinition(D, F);
699 
700   F->setLinkage(llvm::Function::InternalLinkage);
701 
702   SetCommonAttributes(D, F);
703 }
704 
705 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
706                                           llvm::Function *F,
707                                           bool IsIncompleteFunction) {
708   if (unsigned IID = F->getIntrinsicID()) {
709     // If this is an intrinsic function, set the function's attributes
710     // to the intrinsic's attributes.
711     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
712                                                     (llvm::Intrinsic::ID)IID));
713     return;
714   }
715 
716   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
717 
718   if (!IsIncompleteFunction)
719     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
720 
721   if (getCXXABI().HasThisReturn(GD)) {
722     assert(!F->arg_empty() &&
723            F->arg_begin()->getType()
724              ->canLosslesslyBitCastTo(F->getReturnType()) &&
725            "unexpected this return");
726     F->addAttribute(1, llvm::Attribute::Returned);
727   }
728 
729   // Only a few attributes are set on declarations; these may later be
730   // overridden by a definition.
731 
732   if (FD->hasAttr<DLLImportAttr>()) {
733     F->setLinkage(llvm::Function::DLLImportLinkage);
734   } else if (FD->hasAttr<WeakAttr>() ||
735              FD->isWeakImported()) {
736     // "extern_weak" is overloaded in LLVM; we probably should have
737     // separate linkage types for this.
738     F->setLinkage(llvm::Function::ExternalWeakLinkage);
739   } else {
740     F->setLinkage(llvm::Function::ExternalLinkage);
741 
742     LinkageInfo LV = FD->getLinkageAndVisibility();
743     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
744       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
745     }
746   }
747 
748   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
749     F->setSection(SA->getName());
750 }
751 
752 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
753   assert(!GV->isDeclaration() &&
754          "Only globals with definition can force usage.");
755   LLVMUsed.push_back(GV);
756 }
757 
758 void CodeGenModule::EmitLLVMUsed() {
759   // Don't create llvm.used if there is no need.
760   if (LLVMUsed.empty())
761     return;
762 
763   // Convert LLVMUsed to what ConstantArray needs.
764   SmallVector<llvm::Constant*, 8> UsedArray;
765   UsedArray.resize(LLVMUsed.size());
766   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
767     UsedArray[i] =
768      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
769                                     Int8PtrTy);
770   }
771 
772   if (UsedArray.empty())
773     return;
774   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
775 
776   llvm::GlobalVariable *GV =
777     new llvm::GlobalVariable(getModule(), ATy, false,
778                              llvm::GlobalValue::AppendingLinkage,
779                              llvm::ConstantArray::get(ATy, UsedArray),
780                              "llvm.used");
781 
782   GV->setSection("llvm.metadata");
783 }
784 
785 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
786   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
787   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
788 }
789 
790 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
791   llvm::SmallString<32> Opt;
792   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
793   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
794   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
795 }
796 
797 void CodeGenModule::AddDependentLib(StringRef Lib) {
798   llvm::SmallString<24> Opt;
799   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
800   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
801   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
802 }
803 
804 /// \brief Add link options implied by the given module, including modules
805 /// it depends on, using a postorder walk.
806 static void addLinkOptionsPostorder(CodeGenModule &CGM,
807                                     Module *Mod,
808                                     SmallVectorImpl<llvm::Value *> &Metadata,
809                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
810   // Import this module's parent.
811   if (Mod->Parent && Visited.insert(Mod->Parent)) {
812     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
813   }
814 
815   // Import this module's dependencies.
816   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
817     if (Visited.insert(Mod->Imports[I-1]))
818       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
819   }
820 
821   // Add linker options to link against the libraries/frameworks
822   // described by this module.
823   llvm::LLVMContext &Context = CGM.getLLVMContext();
824   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
825     // Link against a framework.  Frameworks are currently Darwin only, so we
826     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
827     if (Mod->LinkLibraries[I-1].IsFramework) {
828       llvm::Value *Args[2] = {
829         llvm::MDString::get(Context, "-framework"),
830         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
831       };
832 
833       Metadata.push_back(llvm::MDNode::get(Context, Args));
834       continue;
835     }
836 
837     // Link against a library.
838     llvm::SmallString<24> Opt;
839     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
840       Mod->LinkLibraries[I-1].Library, Opt);
841     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
842     Metadata.push_back(llvm::MDNode::get(Context, OptString));
843   }
844 }
845 
846 void CodeGenModule::EmitModuleLinkOptions() {
847   // Collect the set of all of the modules we want to visit to emit link
848   // options, which is essentially the imported modules and all of their
849   // non-explicit child modules.
850   llvm::SetVector<clang::Module *> LinkModules;
851   llvm::SmallPtrSet<clang::Module *, 16> Visited;
852   SmallVector<clang::Module *, 16> Stack;
853 
854   // Seed the stack with imported modules.
855   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
856                                                MEnd = ImportedModules.end();
857        M != MEnd; ++M) {
858     if (Visited.insert(*M))
859       Stack.push_back(*M);
860   }
861 
862   // Find all of the modules to import, making a little effort to prune
863   // non-leaf modules.
864   while (!Stack.empty()) {
865     clang::Module *Mod = Stack.back();
866     Stack.pop_back();
867 
868     bool AnyChildren = false;
869 
870     // Visit the submodules of this module.
871     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
872                                         SubEnd = Mod->submodule_end();
873          Sub != SubEnd; ++Sub) {
874       // Skip explicit children; they need to be explicitly imported to be
875       // linked against.
876       if ((*Sub)->IsExplicit)
877         continue;
878 
879       if (Visited.insert(*Sub)) {
880         Stack.push_back(*Sub);
881         AnyChildren = true;
882       }
883     }
884 
885     // We didn't find any children, so add this module to the list of
886     // modules to link against.
887     if (!AnyChildren) {
888       LinkModules.insert(Mod);
889     }
890   }
891 
892   // Add link options for all of the imported modules in reverse topological
893   // order.  We don't do anything to try to order import link flags with respect
894   // to linker options inserted by things like #pragma comment().
895   SmallVector<llvm::Value *, 16> MetadataArgs;
896   Visited.clear();
897   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
898                                                MEnd = LinkModules.end();
899        M != MEnd; ++M) {
900     if (Visited.insert(*M))
901       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
902   }
903   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
904   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
905 
906   // Add the linker options metadata flag.
907   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
908                             llvm::MDNode::get(getLLVMContext(),
909                                               LinkerOptionsMetadata));
910 }
911 
912 void CodeGenModule::EmitDeferred() {
913   // Emit code for any potentially referenced deferred decls.  Since a
914   // previously unused static decl may become used during the generation of code
915   // for a static function, iterate until no changes are made.
916 
917   while (true) {
918     if (!DeferredVTables.empty()) {
919       EmitDeferredVTables();
920 
921       // Emitting a v-table doesn't directly cause more v-tables to
922       // become deferred, although it can cause functions to be
923       // emitted that then need those v-tables.
924       assert(DeferredVTables.empty());
925     }
926 
927     // Stop if we're out of both deferred v-tables and deferred declarations.
928     if (DeferredDeclsToEmit.empty()) break;
929 
930     GlobalDecl D = DeferredDeclsToEmit.back();
931     DeferredDeclsToEmit.pop_back();
932 
933     // Check to see if we've already emitted this.  This is necessary
934     // for a couple of reasons: first, decls can end up in the
935     // deferred-decls queue multiple times, and second, decls can end
936     // up with definitions in unusual ways (e.g. by an extern inline
937     // function acquiring a strong function redefinition).  Just
938     // ignore these cases.
939     //
940     // TODO: That said, looking this up multiple times is very wasteful.
941     StringRef Name = getMangledName(D);
942     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
943     assert(CGRef && "Deferred decl wasn't referenced?");
944 
945     if (!CGRef->isDeclaration())
946       continue;
947 
948     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
949     // purposes an alias counts as a definition.
950     if (isa<llvm::GlobalAlias>(CGRef))
951       continue;
952 
953     // Otherwise, emit the definition and move on to the next one.
954     EmitGlobalDefinition(D);
955   }
956 }
957 
958 void CodeGenModule::EmitGlobalAnnotations() {
959   if (Annotations.empty())
960     return;
961 
962   // Create a new global variable for the ConstantStruct in the Module.
963   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
964     Annotations[0]->getType(), Annotations.size()), Annotations);
965   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
966     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
967     "llvm.global.annotations");
968   gv->setSection(AnnotationSection);
969 }
970 
971 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
972   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
973   if (i != AnnotationStrings.end())
974     return i->second;
975 
976   // Not found yet, create a new global.
977   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
978   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
979     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
980   gv->setSection(AnnotationSection);
981   gv->setUnnamedAddr(true);
982   AnnotationStrings[Str] = gv;
983   return gv;
984 }
985 
986 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
987   SourceManager &SM = getContext().getSourceManager();
988   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
989   if (PLoc.isValid())
990     return EmitAnnotationString(PLoc.getFilename());
991   return EmitAnnotationString(SM.getBufferName(Loc));
992 }
993 
994 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
995   SourceManager &SM = getContext().getSourceManager();
996   PresumedLoc PLoc = SM.getPresumedLoc(L);
997   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
998     SM.getExpansionLineNumber(L);
999   return llvm::ConstantInt::get(Int32Ty, LineNo);
1000 }
1001 
1002 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1003                                                 const AnnotateAttr *AA,
1004                                                 SourceLocation L) {
1005   // Get the globals for file name, annotation, and the line number.
1006   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1007                  *UnitGV = EmitAnnotationUnit(L),
1008                  *LineNoCst = EmitAnnotationLineNo(L);
1009 
1010   // Create the ConstantStruct for the global annotation.
1011   llvm::Constant *Fields[4] = {
1012     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1013     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1014     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1015     LineNoCst
1016   };
1017   return llvm::ConstantStruct::getAnon(Fields);
1018 }
1019 
1020 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1021                                          llvm::GlobalValue *GV) {
1022   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1023   // Get the struct elements for these annotations.
1024   for (specific_attr_iterator<AnnotateAttr>
1025        ai = D->specific_attr_begin<AnnotateAttr>(),
1026        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1027     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1028 }
1029 
1030 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1031   // Never defer when EmitAllDecls is specified.
1032   if (LangOpts.EmitAllDecls)
1033     return false;
1034 
1035   return !getContext().DeclMustBeEmitted(Global);
1036 }
1037 
1038 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1039     const CXXUuidofExpr* E) {
1040   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1041   // well-formed.
1042   StringRef Uuid;
1043   if (E->isTypeOperand())
1044     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1045   else {
1046     // Special case: __uuidof(0) means an all-zero GUID.
1047     Expr *Op = E->getExprOperand();
1048     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1049       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1050     else
1051       Uuid = "00000000-0000-0000-0000-000000000000";
1052   }
1053   std::string Name = "__uuid_" + Uuid.str();
1054 
1055   // Look for an existing global.
1056   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1057     return GV;
1058 
1059   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1060   assert(Init && "failed to initialize as constant");
1061 
1062   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1063   // first field is declared as "long", which for many targets is 8 bytes.
1064   // Those architectures are not supported. (With the MS abi, long is always 4
1065   // bytes.)
1066   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1067   if (Init->getType() != GuidType) {
1068     DiagnosticsEngine &Diags = getDiags();
1069     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1070         "__uuidof codegen is not supported on this architecture");
1071     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1072     Init = llvm::UndefValue::get(GuidType);
1073   }
1074 
1075   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1076       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1077   GV->setUnnamedAddr(true);
1078   return GV;
1079 }
1080 
1081 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1082   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1083   assert(AA && "No alias?");
1084 
1085   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1086 
1087   // See if there is already something with the target's name in the module.
1088   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1089   if (Entry) {
1090     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1091     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1092   }
1093 
1094   llvm::Constant *Aliasee;
1095   if (isa<llvm::FunctionType>(DeclTy))
1096     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1097                                       GlobalDecl(cast<FunctionDecl>(VD)),
1098                                       /*ForVTable=*/false);
1099   else
1100     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1101                                     llvm::PointerType::getUnqual(DeclTy), 0);
1102 
1103   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1104   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1105   WeakRefReferences.insert(F);
1106 
1107   return Aliasee;
1108 }
1109 
1110 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1111   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1112 
1113   // Weak references don't produce any output by themselves.
1114   if (Global->hasAttr<WeakRefAttr>())
1115     return;
1116 
1117   // If this is an alias definition (which otherwise looks like a declaration)
1118   // emit it now.
1119   if (Global->hasAttr<AliasAttr>())
1120     return EmitAliasDefinition(GD);
1121 
1122   // If this is CUDA, be selective about which declarations we emit.
1123   if (LangOpts.CUDA) {
1124     if (CodeGenOpts.CUDAIsDevice) {
1125       if (!Global->hasAttr<CUDADeviceAttr>() &&
1126           !Global->hasAttr<CUDAGlobalAttr>() &&
1127           !Global->hasAttr<CUDAConstantAttr>() &&
1128           !Global->hasAttr<CUDASharedAttr>())
1129         return;
1130     } else {
1131       if (!Global->hasAttr<CUDAHostAttr>() && (
1132             Global->hasAttr<CUDADeviceAttr>() ||
1133             Global->hasAttr<CUDAConstantAttr>() ||
1134             Global->hasAttr<CUDASharedAttr>()))
1135         return;
1136     }
1137   }
1138 
1139   // Ignore declarations, they will be emitted on their first use.
1140   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1141     // Forward declarations are emitted lazily on first use.
1142     if (!FD->doesThisDeclarationHaveABody()) {
1143       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1144         return;
1145 
1146       const FunctionDecl *InlineDefinition = 0;
1147       FD->getBody(InlineDefinition);
1148 
1149       StringRef MangledName = getMangledName(GD);
1150       DeferredDecls.erase(MangledName);
1151       EmitGlobalDefinition(InlineDefinition);
1152       return;
1153     }
1154   } else {
1155     const VarDecl *VD = cast<VarDecl>(Global);
1156     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1157 
1158     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1159       return;
1160   }
1161 
1162   // Defer code generation when possible if this is a static definition, inline
1163   // function etc.  These we only want to emit if they are used.
1164   if (!MayDeferGeneration(Global)) {
1165     // Emit the definition if it can't be deferred.
1166     EmitGlobalDefinition(GD);
1167     return;
1168   }
1169 
1170   // If we're deferring emission of a C++ variable with an
1171   // initializer, remember the order in which it appeared in the file.
1172   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1173       cast<VarDecl>(Global)->hasInit()) {
1174     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1175     CXXGlobalInits.push_back(0);
1176   }
1177 
1178   // If the value has already been used, add it directly to the
1179   // DeferredDeclsToEmit list.
1180   StringRef MangledName = getMangledName(GD);
1181   if (GetGlobalValue(MangledName))
1182     DeferredDeclsToEmit.push_back(GD);
1183   else {
1184     // Otherwise, remember that we saw a deferred decl with this name.  The
1185     // first use of the mangled name will cause it to move into
1186     // DeferredDeclsToEmit.
1187     DeferredDecls[MangledName] = GD;
1188   }
1189 }
1190 
1191 namespace {
1192   struct FunctionIsDirectlyRecursive :
1193     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1194     const StringRef Name;
1195     const Builtin::Context &BI;
1196     bool Result;
1197     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1198       Name(N), BI(C), Result(false) {
1199     }
1200     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1201 
1202     bool TraverseCallExpr(CallExpr *E) {
1203       const FunctionDecl *FD = E->getDirectCallee();
1204       if (!FD)
1205         return true;
1206       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1207       if (Attr && Name == Attr->getLabel()) {
1208         Result = true;
1209         return false;
1210       }
1211       unsigned BuiltinID = FD->getBuiltinID();
1212       if (!BuiltinID)
1213         return true;
1214       StringRef BuiltinName = BI.GetName(BuiltinID);
1215       if (BuiltinName.startswith("__builtin_") &&
1216           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1217         Result = true;
1218         return false;
1219       }
1220       return true;
1221     }
1222   };
1223 }
1224 
1225 // isTriviallyRecursive - Check if this function calls another
1226 // decl that, because of the asm attribute or the other decl being a builtin,
1227 // ends up pointing to itself.
1228 bool
1229 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1230   StringRef Name;
1231   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1232     // asm labels are a special kind of mangling we have to support.
1233     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1234     if (!Attr)
1235       return false;
1236     Name = Attr->getLabel();
1237   } else {
1238     Name = FD->getName();
1239   }
1240 
1241   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1242   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1243   return Walker.Result;
1244 }
1245 
1246 bool
1247 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1248   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1249     return true;
1250   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1251   if (CodeGenOpts.OptimizationLevel == 0 &&
1252       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1253     return false;
1254   // PR9614. Avoid cases where the source code is lying to us. An available
1255   // externally function should have an equivalent function somewhere else,
1256   // but a function that calls itself is clearly not equivalent to the real
1257   // implementation.
1258   // This happens in glibc's btowc and in some configure checks.
1259   return !isTriviallyRecursive(F);
1260 }
1261 
1262 /// If the type for the method's class was generated by
1263 /// CGDebugInfo::createContextChain(), the cache contains only a
1264 /// limited DIType without any declarations. Since EmitFunctionStart()
1265 /// needs to find the canonical declaration for each method, we need
1266 /// to construct the complete type prior to emitting the method.
1267 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1268   if (!D->isInstance())
1269     return;
1270 
1271   if (CGDebugInfo *DI = getModuleDebugInfo())
1272     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1273       const PointerType *ThisPtr =
1274         cast<PointerType>(D->getThisType(getContext()));
1275       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1276     }
1277 }
1278 
1279 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1280   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1281 
1282   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1283                                  Context.getSourceManager(),
1284                                  "Generating code for declaration");
1285 
1286   if (isa<FunctionDecl>(D)) {
1287     // At -O0, don't generate IR for functions with available_externally
1288     // linkage.
1289     if (!shouldEmitFunction(GD))
1290       return;
1291 
1292     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1293       CompleteDIClassType(Method);
1294       // Make sure to emit the definition(s) before we emit the thunks.
1295       // This is necessary for the generation of certain thunks.
1296       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1297         EmitCXXConstructor(CD, GD.getCtorType());
1298       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1299         EmitCXXDestructor(DD, GD.getDtorType());
1300       else
1301         EmitGlobalFunctionDefinition(GD);
1302 
1303       if (Method->isVirtual())
1304         getVTables().EmitThunks(GD);
1305 
1306       return;
1307     }
1308 
1309     return EmitGlobalFunctionDefinition(GD);
1310   }
1311 
1312   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1313     return EmitGlobalVarDefinition(VD);
1314 
1315   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1316 }
1317 
1318 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1319 /// module, create and return an llvm Function with the specified type. If there
1320 /// is something in the module with the specified name, return it potentially
1321 /// bitcasted to the right type.
1322 ///
1323 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1324 /// to set the attributes on the function when it is first created.
1325 llvm::Constant *
1326 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1327                                        llvm::Type *Ty,
1328                                        GlobalDecl D, bool ForVTable,
1329                                        llvm::AttributeSet ExtraAttrs) {
1330   // Lookup the entry, lazily creating it if necessary.
1331   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1332   if (Entry) {
1333     if (WeakRefReferences.erase(Entry)) {
1334       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1335       if (FD && !FD->hasAttr<WeakAttr>())
1336         Entry->setLinkage(llvm::Function::ExternalLinkage);
1337     }
1338 
1339     if (Entry->getType()->getElementType() == Ty)
1340       return Entry;
1341 
1342     // Make sure the result is of the correct type.
1343     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1344   }
1345 
1346   // This function doesn't have a complete type (for example, the return
1347   // type is an incomplete struct). Use a fake type instead, and make
1348   // sure not to try to set attributes.
1349   bool IsIncompleteFunction = false;
1350 
1351   llvm::FunctionType *FTy;
1352   if (isa<llvm::FunctionType>(Ty)) {
1353     FTy = cast<llvm::FunctionType>(Ty);
1354   } else {
1355     FTy = llvm::FunctionType::get(VoidTy, false);
1356     IsIncompleteFunction = true;
1357   }
1358 
1359   llvm::Function *F = llvm::Function::Create(FTy,
1360                                              llvm::Function::ExternalLinkage,
1361                                              MangledName, &getModule());
1362   assert(F->getName() == MangledName && "name was uniqued!");
1363   if (D.getDecl())
1364     SetFunctionAttributes(D, F, IsIncompleteFunction);
1365   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1366     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1367     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1368                      llvm::AttributeSet::get(VMContext,
1369                                              llvm::AttributeSet::FunctionIndex,
1370                                              B));
1371   }
1372 
1373   // This is the first use or definition of a mangled name.  If there is a
1374   // deferred decl with this name, remember that we need to emit it at the end
1375   // of the file.
1376   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1377   if (DDI != DeferredDecls.end()) {
1378     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1379     // list, and remove it from DeferredDecls (since we don't need it anymore).
1380     DeferredDeclsToEmit.push_back(DDI->second);
1381     DeferredDecls.erase(DDI);
1382 
1383   // Otherwise, there are cases we have to worry about where we're
1384   // using a declaration for which we must emit a definition but where
1385   // we might not find a top-level definition:
1386   //   - member functions defined inline in their classes
1387   //   - friend functions defined inline in some class
1388   //   - special member functions with implicit definitions
1389   // If we ever change our AST traversal to walk into class methods,
1390   // this will be unnecessary.
1391   //
1392   // We also don't emit a definition for a function if it's going to be an entry
1393   // in a vtable, unless it's already marked as used.
1394   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1395     // Look for a declaration that's lexically in a record.
1396     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1397     FD = FD->getMostRecentDecl();
1398     do {
1399       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1400         if (FD->isImplicit() && !ForVTable) {
1401           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1402           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1403           break;
1404         } else if (FD->doesThisDeclarationHaveABody()) {
1405           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1406           break;
1407         }
1408       }
1409       FD = FD->getPreviousDecl();
1410     } while (FD);
1411   }
1412 
1413   // Make sure the result is of the requested type.
1414   if (!IsIncompleteFunction) {
1415     assert(F->getType()->getElementType() == Ty);
1416     return F;
1417   }
1418 
1419   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1420   return llvm::ConstantExpr::getBitCast(F, PTy);
1421 }
1422 
1423 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1424 /// non-null, then this function will use the specified type if it has to
1425 /// create it (this occurs when we see a definition of the function).
1426 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1427                                                  llvm::Type *Ty,
1428                                                  bool ForVTable) {
1429   // If there was no specific requested type, just convert it now.
1430   if (!Ty)
1431     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1432 
1433   StringRef MangledName = getMangledName(GD);
1434   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1435 }
1436 
1437 /// CreateRuntimeFunction - Create a new runtime function with the specified
1438 /// type and name.
1439 llvm::Constant *
1440 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1441                                      StringRef Name,
1442                                      llvm::AttributeSet ExtraAttrs) {
1443   llvm::Constant *C
1444     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1445                               ExtraAttrs);
1446   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1447     if (F->empty())
1448       F->setCallingConv(getRuntimeCC());
1449   return C;
1450 }
1451 
1452 /// isTypeConstant - Determine whether an object of this type can be emitted
1453 /// as a constant.
1454 ///
1455 /// If ExcludeCtor is true, the duration when the object's constructor runs
1456 /// will not be considered. The caller will need to verify that the object is
1457 /// not written to during its construction.
1458 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1459   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1460     return false;
1461 
1462   if (Context.getLangOpts().CPlusPlus) {
1463     if (const CXXRecordDecl *Record
1464           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1465       return ExcludeCtor && !Record->hasMutableFields() &&
1466              Record->hasTrivialDestructor();
1467   }
1468 
1469   return true;
1470 }
1471 
1472 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1473 /// create and return an llvm GlobalVariable with the specified type.  If there
1474 /// is something in the module with the specified name, return it potentially
1475 /// bitcasted to the right type.
1476 ///
1477 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1478 /// to set the attributes on the global when it is first created.
1479 llvm::Constant *
1480 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1481                                      llvm::PointerType *Ty,
1482                                      const VarDecl *D,
1483                                      bool UnnamedAddr) {
1484   // Lookup the entry, lazily creating it if necessary.
1485   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1486   if (Entry) {
1487     if (WeakRefReferences.erase(Entry)) {
1488       if (D && !D->hasAttr<WeakAttr>())
1489         Entry->setLinkage(llvm::Function::ExternalLinkage);
1490     }
1491 
1492     if (UnnamedAddr)
1493       Entry->setUnnamedAddr(true);
1494 
1495     if (Entry->getType() == Ty)
1496       return Entry;
1497 
1498     // Make sure the result is of the correct type.
1499     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1500   }
1501 
1502   // This is the first use or definition of a mangled name.  If there is a
1503   // deferred decl with this name, remember that we need to emit it at the end
1504   // of the file.
1505   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1506   if (DDI != DeferredDecls.end()) {
1507     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1508     // list, and remove it from DeferredDecls (since we don't need it anymore).
1509     DeferredDeclsToEmit.push_back(DDI->second);
1510     DeferredDecls.erase(DDI);
1511   }
1512 
1513   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1514   llvm::GlobalVariable *GV =
1515     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1516                              llvm::GlobalValue::ExternalLinkage,
1517                              0, MangledName, 0,
1518                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1519 
1520   // Handle things which are present even on external declarations.
1521   if (D) {
1522     // FIXME: This code is overly simple and should be merged with other global
1523     // handling.
1524     GV->setConstant(isTypeConstant(D->getType(), false));
1525 
1526     // Set linkage and visibility in case we never see a definition.
1527     LinkageInfo LV = D->getLinkageAndVisibility();
1528     if (LV.getLinkage() != ExternalLinkage) {
1529       // Don't set internal linkage on declarations.
1530     } else {
1531       if (D->hasAttr<DLLImportAttr>())
1532         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1533       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1534         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1535 
1536       // Set visibility on a declaration only if it's explicit.
1537       if (LV.isVisibilityExplicit())
1538         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1539     }
1540 
1541     if (D->getTLSKind()) {
1542       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1543         CXXThreadLocals.push_back(std::make_pair(D, GV));
1544       setTLSMode(GV, *D);
1545     }
1546   }
1547 
1548   if (AddrSpace != Ty->getAddressSpace())
1549     return llvm::ConstantExpr::getBitCast(GV, Ty);
1550   else
1551     return GV;
1552 }
1553 
1554 
1555 llvm::GlobalVariable *
1556 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1557                                       llvm::Type *Ty,
1558                                       llvm::GlobalValue::LinkageTypes Linkage) {
1559   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1560   llvm::GlobalVariable *OldGV = 0;
1561 
1562 
1563   if (GV) {
1564     // Check if the variable has the right type.
1565     if (GV->getType()->getElementType() == Ty)
1566       return GV;
1567 
1568     // Because C++ name mangling, the only way we can end up with an already
1569     // existing global with the same name is if it has been declared extern "C".
1570     assert(GV->isDeclaration() && "Declaration has wrong type!");
1571     OldGV = GV;
1572   }
1573 
1574   // Create a new variable.
1575   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1576                                 Linkage, 0, Name);
1577 
1578   if (OldGV) {
1579     // Replace occurrences of the old variable if needed.
1580     GV->takeName(OldGV);
1581 
1582     if (!OldGV->use_empty()) {
1583       llvm::Constant *NewPtrForOldDecl =
1584       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1585       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1586     }
1587 
1588     OldGV->eraseFromParent();
1589   }
1590 
1591   return GV;
1592 }
1593 
1594 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1595 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1596 /// then it will be created with the specified type instead of whatever the
1597 /// normal requested type would be.
1598 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1599                                                   llvm::Type *Ty) {
1600   assert(D->hasGlobalStorage() && "Not a global variable");
1601   QualType ASTTy = D->getType();
1602   if (Ty == 0)
1603     Ty = getTypes().ConvertTypeForMem(ASTTy);
1604 
1605   llvm::PointerType *PTy =
1606     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1607 
1608   StringRef MangledName = getMangledName(D);
1609   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1610 }
1611 
1612 /// CreateRuntimeVariable - Create a new runtime global variable with the
1613 /// specified type and name.
1614 llvm::Constant *
1615 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1616                                      StringRef Name) {
1617   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1618                                true);
1619 }
1620 
1621 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1622   assert(!D->getInit() && "Cannot emit definite definitions here!");
1623 
1624   if (MayDeferGeneration(D)) {
1625     // If we have not seen a reference to this variable yet, place it
1626     // into the deferred declarations table to be emitted if needed
1627     // later.
1628     StringRef MangledName = getMangledName(D);
1629     if (!GetGlobalValue(MangledName)) {
1630       DeferredDecls[MangledName] = D;
1631       return;
1632     }
1633   }
1634 
1635   // The tentative definition is the only definition.
1636   EmitGlobalVarDefinition(D);
1637 }
1638 
1639 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1640     return Context.toCharUnitsFromBits(
1641       TheDataLayout.getTypeStoreSizeInBits(Ty));
1642 }
1643 
1644 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1645                                                  unsigned AddrSpace) {
1646   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1647     if (D->hasAttr<CUDAConstantAttr>())
1648       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1649     else if (D->hasAttr<CUDASharedAttr>())
1650       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1651     else
1652       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1653   }
1654 
1655   return AddrSpace;
1656 }
1657 
1658 template<typename SomeDecl>
1659 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1660                                                llvm::GlobalValue *GV) {
1661   if (!getLangOpts().CPlusPlus)
1662     return;
1663 
1664   // Must have 'used' attribute, or else inline assembly can't rely on
1665   // the name existing.
1666   if (!D->template hasAttr<UsedAttr>())
1667     return;
1668 
1669   // Must have internal linkage and an ordinary name.
1670   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1671     return;
1672 
1673   // Must be in an extern "C" context. Entities declared directly within
1674   // a record are not extern "C" even if the record is in such a context.
1675   const SomeDecl *First = D->getFirstDeclaration();
1676   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1677     return;
1678 
1679   // OK, this is an internal linkage entity inside an extern "C" linkage
1680   // specification. Make a note of that so we can give it the "expected"
1681   // mangled name if nothing else is using that name.
1682   std::pair<StaticExternCMap::iterator, bool> R =
1683       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1684 
1685   // If we have multiple internal linkage entities with the same name
1686   // in extern "C" regions, none of them gets that name.
1687   if (!R.second)
1688     R.first->second = 0;
1689 }
1690 
1691 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1692   llvm::Constant *Init = 0;
1693   QualType ASTTy = D->getType();
1694   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1695   bool NeedsGlobalCtor = false;
1696   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1697 
1698   const VarDecl *InitDecl;
1699   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1700 
1701   if (!InitExpr) {
1702     // This is a tentative definition; tentative definitions are
1703     // implicitly initialized with { 0 }.
1704     //
1705     // Note that tentative definitions are only emitted at the end of
1706     // a translation unit, so they should never have incomplete
1707     // type. In addition, EmitTentativeDefinition makes sure that we
1708     // never attempt to emit a tentative definition if a real one
1709     // exists. A use may still exists, however, so we still may need
1710     // to do a RAUW.
1711     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1712     Init = EmitNullConstant(D->getType());
1713   } else {
1714     initializedGlobalDecl = GlobalDecl(D);
1715     Init = EmitConstantInit(*InitDecl);
1716 
1717     if (!Init) {
1718       QualType T = InitExpr->getType();
1719       if (D->getType()->isReferenceType())
1720         T = D->getType();
1721 
1722       if (getLangOpts().CPlusPlus) {
1723         Init = EmitNullConstant(T);
1724         NeedsGlobalCtor = true;
1725       } else {
1726         ErrorUnsupported(D, "static initializer");
1727         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1728       }
1729     } else {
1730       // We don't need an initializer, so remove the entry for the delayed
1731       // initializer position (just in case this entry was delayed) if we
1732       // also don't need to register a destructor.
1733       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1734         DelayedCXXInitPosition.erase(D);
1735     }
1736   }
1737 
1738   llvm::Type* InitType = Init->getType();
1739   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1740 
1741   // Strip off a bitcast if we got one back.
1742   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1743     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1744            // all zero index gep.
1745            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1746     Entry = CE->getOperand(0);
1747   }
1748 
1749   // Entry is now either a Function or GlobalVariable.
1750   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1751 
1752   // We have a definition after a declaration with the wrong type.
1753   // We must make a new GlobalVariable* and update everything that used OldGV
1754   // (a declaration or tentative definition) with the new GlobalVariable*
1755   // (which will be a definition).
1756   //
1757   // This happens if there is a prototype for a global (e.g.
1758   // "extern int x[];") and then a definition of a different type (e.g.
1759   // "int x[10];"). This also happens when an initializer has a different type
1760   // from the type of the global (this happens with unions).
1761   if (GV == 0 ||
1762       GV->getType()->getElementType() != InitType ||
1763       GV->getType()->getAddressSpace() !=
1764        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1765 
1766     // Move the old entry aside so that we'll create a new one.
1767     Entry->setName(StringRef());
1768 
1769     // Make a new global with the correct type, this is now guaranteed to work.
1770     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1771 
1772     // Replace all uses of the old global with the new global
1773     llvm::Constant *NewPtrForOldDecl =
1774         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1775     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1776 
1777     // Erase the old global, since it is no longer used.
1778     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1779   }
1780 
1781   MaybeHandleStaticInExternC(D, GV);
1782 
1783   if (D->hasAttr<AnnotateAttr>())
1784     AddGlobalAnnotations(D, GV);
1785 
1786   GV->setInitializer(Init);
1787 
1788   // If it is safe to mark the global 'constant', do so now.
1789   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1790                   isTypeConstant(D->getType(), true));
1791 
1792   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1793 
1794   // Set the llvm linkage type as appropriate.
1795   llvm::GlobalValue::LinkageTypes Linkage =
1796     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1797   GV->setLinkage(Linkage);
1798   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1799     // common vars aren't constant even if declared const.
1800     GV->setConstant(false);
1801 
1802   SetCommonAttributes(D, GV);
1803 
1804   // Emit the initializer function if necessary.
1805   if (NeedsGlobalCtor || NeedsGlobalDtor)
1806     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1807 
1808   // If we are compiling with ASan, add metadata indicating dynamically
1809   // initialized globals.
1810   if (SanOpts.Address && NeedsGlobalCtor) {
1811     llvm::Module &M = getModule();
1812 
1813     llvm::NamedMDNode *DynamicInitializers =
1814         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1815     llvm::Value *GlobalToAdd[] = { GV };
1816     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1817     DynamicInitializers->addOperand(ThisGlobal);
1818   }
1819 
1820   // Emit global variable debug information.
1821   if (CGDebugInfo *DI = getModuleDebugInfo())
1822     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1823       DI->EmitGlobalVariable(GV, D);
1824 }
1825 
1826 llvm::GlobalValue::LinkageTypes
1827 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1828   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1829   if (Linkage == GVA_Internal)
1830     return llvm::Function::InternalLinkage;
1831   else if (D->hasAttr<DLLImportAttr>())
1832     return llvm::Function::DLLImportLinkage;
1833   else if (D->hasAttr<DLLExportAttr>())
1834     return llvm::Function::DLLExportLinkage;
1835   else if (D->hasAttr<SelectAnyAttr>()) {
1836     // selectany symbols are externally visible, so use weak instead of
1837     // linkonce.  MSVC optimizes away references to const selectany globals, so
1838     // all definitions should be the same and ODR linkage should be used.
1839     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1840     return llvm::GlobalVariable::WeakODRLinkage;
1841   } else if (D->hasAttr<WeakAttr>()) {
1842     if (isConstant)
1843       return llvm::GlobalVariable::WeakODRLinkage;
1844     else
1845       return llvm::GlobalVariable::WeakAnyLinkage;
1846   } else if (Linkage == GVA_TemplateInstantiation ||
1847              Linkage == GVA_ExplicitTemplateInstantiation)
1848     return llvm::GlobalVariable::WeakODRLinkage;
1849   else if (!getLangOpts().CPlusPlus &&
1850            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1851              D->getAttr<CommonAttr>()) &&
1852            !D->hasExternalStorage() && !D->getInit() &&
1853            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1854            !D->getAttr<WeakImportAttr>()) {
1855     // Thread local vars aren't considered common linkage.
1856     return llvm::GlobalVariable::CommonLinkage;
1857   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1858              getTarget().getTriple().isMacOSX())
1859     // On Darwin, the backing variable for a C++11 thread_local variable always
1860     // has internal linkage; all accesses should just be calls to the
1861     // Itanium-specified entry point, which has the normal linkage of the
1862     // variable.
1863     return llvm::GlobalValue::InternalLinkage;
1864   return llvm::GlobalVariable::ExternalLinkage;
1865 }
1866 
1867 /// Replace the uses of a function that was declared with a non-proto type.
1868 /// We want to silently drop extra arguments from call sites
1869 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1870                                           llvm::Function *newFn) {
1871   // Fast path.
1872   if (old->use_empty()) return;
1873 
1874   llvm::Type *newRetTy = newFn->getReturnType();
1875   SmallVector<llvm::Value*, 4> newArgs;
1876 
1877   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1878          ui != ue; ) {
1879     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1880     llvm::User *user = *use;
1881 
1882     // Recognize and replace uses of bitcasts.  Most calls to
1883     // unprototyped functions will use bitcasts.
1884     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1885       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1886         replaceUsesOfNonProtoConstant(bitcast, newFn);
1887       continue;
1888     }
1889 
1890     // Recognize calls to the function.
1891     llvm::CallSite callSite(user);
1892     if (!callSite) continue;
1893     if (!callSite.isCallee(use)) continue;
1894 
1895     // If the return types don't match exactly, then we can't
1896     // transform this call unless it's dead.
1897     if (callSite->getType() != newRetTy && !callSite->use_empty())
1898       continue;
1899 
1900     // Get the call site's attribute list.
1901     SmallVector<llvm::AttributeSet, 8> newAttrs;
1902     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1903 
1904     // Collect any return attributes from the call.
1905     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1906       newAttrs.push_back(
1907         llvm::AttributeSet::get(newFn->getContext(),
1908                                 oldAttrs.getRetAttributes()));
1909 
1910     // If the function was passed too few arguments, don't transform.
1911     unsigned newNumArgs = newFn->arg_size();
1912     if (callSite.arg_size() < newNumArgs) continue;
1913 
1914     // If extra arguments were passed, we silently drop them.
1915     // If any of the types mismatch, we don't transform.
1916     unsigned argNo = 0;
1917     bool dontTransform = false;
1918     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1919            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1920       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1921         dontTransform = true;
1922         break;
1923       }
1924 
1925       // Add any parameter attributes.
1926       if (oldAttrs.hasAttributes(argNo + 1))
1927         newAttrs.
1928           push_back(llvm::
1929                     AttributeSet::get(newFn->getContext(),
1930                                       oldAttrs.getParamAttributes(argNo + 1)));
1931     }
1932     if (dontTransform)
1933       continue;
1934 
1935     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1936       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1937                                                  oldAttrs.getFnAttributes()));
1938 
1939     // Okay, we can transform this.  Create the new call instruction and copy
1940     // over the required information.
1941     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1942 
1943     llvm::CallSite newCall;
1944     if (callSite.isCall()) {
1945       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1946                                        callSite.getInstruction());
1947     } else {
1948       llvm::InvokeInst *oldInvoke =
1949         cast<llvm::InvokeInst>(callSite.getInstruction());
1950       newCall = llvm::InvokeInst::Create(newFn,
1951                                          oldInvoke->getNormalDest(),
1952                                          oldInvoke->getUnwindDest(),
1953                                          newArgs, "",
1954                                          callSite.getInstruction());
1955     }
1956     newArgs.clear(); // for the next iteration
1957 
1958     if (!newCall->getType()->isVoidTy())
1959       newCall->takeName(callSite.getInstruction());
1960     newCall.setAttributes(
1961                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1962     newCall.setCallingConv(callSite.getCallingConv());
1963 
1964     // Finally, remove the old call, replacing any uses with the new one.
1965     if (!callSite->use_empty())
1966       callSite->replaceAllUsesWith(newCall.getInstruction());
1967 
1968     // Copy debug location attached to CI.
1969     if (!callSite->getDebugLoc().isUnknown())
1970       newCall->setDebugLoc(callSite->getDebugLoc());
1971     callSite->eraseFromParent();
1972   }
1973 }
1974 
1975 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1976 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1977 /// existing call uses of the old function in the module, this adjusts them to
1978 /// call the new function directly.
1979 ///
1980 /// This is not just a cleanup: the always_inline pass requires direct calls to
1981 /// functions to be able to inline them.  If there is a bitcast in the way, it
1982 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1983 /// run at -O0.
1984 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1985                                                       llvm::Function *NewFn) {
1986   // If we're redefining a global as a function, don't transform it.
1987   if (!isa<llvm::Function>(Old)) return;
1988 
1989   replaceUsesOfNonProtoConstant(Old, NewFn);
1990 }
1991 
1992 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1993   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1994   // If we have a definition, this might be a deferred decl. If the
1995   // instantiation is explicit, make sure we emit it at the end.
1996   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1997     GetAddrOfGlobalVar(VD);
1998 
1999   EmitTopLevelDecl(VD);
2000 }
2001 
2002 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2003   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2004 
2005   // Compute the function info and LLVM type.
2006   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2007   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2008 
2009   // Get or create the prototype for the function.
2010   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2011 
2012   // Strip off a bitcast if we got one back.
2013   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2014     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2015     Entry = CE->getOperand(0);
2016   }
2017 
2018 
2019   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2020     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2021 
2022     // If the types mismatch then we have to rewrite the definition.
2023     assert(OldFn->isDeclaration() &&
2024            "Shouldn't replace non-declaration");
2025 
2026     // F is the Function* for the one with the wrong type, we must make a new
2027     // Function* and update everything that used F (a declaration) with the new
2028     // Function* (which will be a definition).
2029     //
2030     // This happens if there is a prototype for a function
2031     // (e.g. "int f()") and then a definition of a different type
2032     // (e.g. "int f(int x)").  Move the old function aside so that it
2033     // doesn't interfere with GetAddrOfFunction.
2034     OldFn->setName(StringRef());
2035     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2036 
2037     // This might be an implementation of a function without a
2038     // prototype, in which case, try to do special replacement of
2039     // calls which match the new prototype.  The really key thing here
2040     // is that we also potentially drop arguments from the call site
2041     // so as to make a direct call, which makes the inliner happier
2042     // and suppresses a number of optimizer warnings (!) about
2043     // dropping arguments.
2044     if (!OldFn->use_empty()) {
2045       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2046       OldFn->removeDeadConstantUsers();
2047     }
2048 
2049     // Replace uses of F with the Function we will endow with a body.
2050     if (!Entry->use_empty()) {
2051       llvm::Constant *NewPtrForOldDecl =
2052         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2053       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2054     }
2055 
2056     // Ok, delete the old function now, which is dead.
2057     OldFn->eraseFromParent();
2058 
2059     Entry = NewFn;
2060   }
2061 
2062   // We need to set linkage and visibility on the function before
2063   // generating code for it because various parts of IR generation
2064   // want to propagate this information down (e.g. to local static
2065   // declarations).
2066   llvm::Function *Fn = cast<llvm::Function>(Entry);
2067   setFunctionLinkage(GD, Fn);
2068 
2069   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2070   setGlobalVisibility(Fn, D);
2071 
2072   MaybeHandleStaticInExternC(D, Fn);
2073 
2074   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2075 
2076   SetFunctionDefinitionAttributes(D, Fn);
2077   SetLLVMFunctionAttributesForDefinition(D, Fn);
2078 
2079   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2080     AddGlobalCtor(Fn, CA->getPriority());
2081   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2082     AddGlobalDtor(Fn, DA->getPriority());
2083   if (D->hasAttr<AnnotateAttr>())
2084     AddGlobalAnnotations(D, Fn);
2085 }
2086 
2087 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2088   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2089   const AliasAttr *AA = D->getAttr<AliasAttr>();
2090   assert(AA && "Not an alias?");
2091 
2092   StringRef MangledName = getMangledName(GD);
2093 
2094   // If there is a definition in the module, then it wins over the alias.
2095   // This is dubious, but allow it to be safe.  Just ignore the alias.
2096   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2097   if (Entry && !Entry->isDeclaration())
2098     return;
2099 
2100   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2101 
2102   // Create a reference to the named value.  This ensures that it is emitted
2103   // if a deferred decl.
2104   llvm::Constant *Aliasee;
2105   if (isa<llvm::FunctionType>(DeclTy))
2106     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2107                                       /*ForVTable=*/false);
2108   else
2109     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2110                                     llvm::PointerType::getUnqual(DeclTy), 0);
2111 
2112   // Create the new alias itself, but don't set a name yet.
2113   llvm::GlobalValue *GA =
2114     new llvm::GlobalAlias(Aliasee->getType(),
2115                           llvm::Function::ExternalLinkage,
2116                           "", Aliasee, &getModule());
2117 
2118   if (Entry) {
2119     assert(Entry->isDeclaration());
2120 
2121     // If there is a declaration in the module, then we had an extern followed
2122     // by the alias, as in:
2123     //   extern int test6();
2124     //   ...
2125     //   int test6() __attribute__((alias("test7")));
2126     //
2127     // Remove it and replace uses of it with the alias.
2128     GA->takeName(Entry);
2129 
2130     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2131                                                           Entry->getType()));
2132     Entry->eraseFromParent();
2133   } else {
2134     GA->setName(MangledName);
2135   }
2136 
2137   // Set attributes which are particular to an alias; this is a
2138   // specialization of the attributes which may be set on a global
2139   // variable/function.
2140   if (D->hasAttr<DLLExportAttr>()) {
2141     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2142       // The dllexport attribute is ignored for undefined symbols.
2143       if (FD->hasBody())
2144         GA->setLinkage(llvm::Function::DLLExportLinkage);
2145     } else {
2146       GA->setLinkage(llvm::Function::DLLExportLinkage);
2147     }
2148   } else if (D->hasAttr<WeakAttr>() ||
2149              D->hasAttr<WeakRefAttr>() ||
2150              D->isWeakImported()) {
2151     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2152   }
2153 
2154   SetCommonAttributes(D, GA);
2155 }
2156 
2157 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2158                                             ArrayRef<llvm::Type*> Tys) {
2159   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2160                                          Tys);
2161 }
2162 
2163 static llvm::StringMapEntry<llvm::Constant*> &
2164 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2165                          const StringLiteral *Literal,
2166                          bool TargetIsLSB,
2167                          bool &IsUTF16,
2168                          unsigned &StringLength) {
2169   StringRef String = Literal->getString();
2170   unsigned NumBytes = String.size();
2171 
2172   // Check for simple case.
2173   if (!Literal->containsNonAsciiOrNull()) {
2174     StringLength = NumBytes;
2175     return Map.GetOrCreateValue(String);
2176   }
2177 
2178   // Otherwise, convert the UTF8 literals into a string of shorts.
2179   IsUTF16 = true;
2180 
2181   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2182   const UTF8 *FromPtr = (const UTF8 *)String.data();
2183   UTF16 *ToPtr = &ToBuf[0];
2184 
2185   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2186                            &ToPtr, ToPtr + NumBytes,
2187                            strictConversion);
2188 
2189   // ConvertUTF8toUTF16 returns the length in ToPtr.
2190   StringLength = ToPtr - &ToBuf[0];
2191 
2192   // Add an explicit null.
2193   *ToPtr = 0;
2194   return Map.
2195     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2196                                (StringLength + 1) * 2));
2197 }
2198 
2199 static llvm::StringMapEntry<llvm::Constant*> &
2200 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2201                        const StringLiteral *Literal,
2202                        unsigned &StringLength) {
2203   StringRef String = Literal->getString();
2204   StringLength = String.size();
2205   return Map.GetOrCreateValue(String);
2206 }
2207 
2208 llvm::Constant *
2209 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2210   unsigned StringLength = 0;
2211   bool isUTF16 = false;
2212   llvm::StringMapEntry<llvm::Constant*> &Entry =
2213     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2214                              getDataLayout().isLittleEndian(),
2215                              isUTF16, StringLength);
2216 
2217   if (llvm::Constant *C = Entry.getValue())
2218     return C;
2219 
2220   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2221   llvm::Constant *Zeros[] = { Zero, Zero };
2222   llvm::Value *V;
2223 
2224   // If we don't already have it, get __CFConstantStringClassReference.
2225   if (!CFConstantStringClassRef) {
2226     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2227     Ty = llvm::ArrayType::get(Ty, 0);
2228     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2229                                            "__CFConstantStringClassReference");
2230     // Decay array -> ptr
2231     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2232     CFConstantStringClassRef = V;
2233   }
2234   else
2235     V = CFConstantStringClassRef;
2236 
2237   QualType CFTy = getContext().getCFConstantStringType();
2238 
2239   llvm::StructType *STy =
2240     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2241 
2242   llvm::Constant *Fields[4];
2243 
2244   // Class pointer.
2245   Fields[0] = cast<llvm::ConstantExpr>(V);
2246 
2247   // Flags.
2248   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2249   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2250     llvm::ConstantInt::get(Ty, 0x07C8);
2251 
2252   // String pointer.
2253   llvm::Constant *C = 0;
2254   if (isUTF16) {
2255     ArrayRef<uint16_t> Arr =
2256       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2257                                      const_cast<char *>(Entry.getKey().data())),
2258                                    Entry.getKey().size() / 2);
2259     C = llvm::ConstantDataArray::get(VMContext, Arr);
2260   } else {
2261     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2262   }
2263 
2264   llvm::GlobalValue::LinkageTypes Linkage;
2265   if (isUTF16)
2266     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2267     Linkage = llvm::GlobalValue::InternalLinkage;
2268   else
2269     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2270     // when using private linkage. It is not clear if this is a bug in ld
2271     // or a reasonable new restriction.
2272     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2273 
2274   // Note: -fwritable-strings doesn't make the backing store strings of
2275   // CFStrings writable. (See <rdar://problem/10657500>)
2276   llvm::GlobalVariable *GV =
2277     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2278                              Linkage, C, ".str");
2279   GV->setUnnamedAddr(true);
2280   // Don't enforce the target's minimum global alignment, since the only use
2281   // of the string is via this class initializer.
2282   if (isUTF16) {
2283     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2284     GV->setAlignment(Align.getQuantity());
2285   } else {
2286     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2287     GV->setAlignment(Align.getQuantity());
2288   }
2289 
2290   // String.
2291   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2292 
2293   if (isUTF16)
2294     // Cast the UTF16 string to the correct type.
2295     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2296 
2297   // String length.
2298   Ty = getTypes().ConvertType(getContext().LongTy);
2299   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2300 
2301   // The struct.
2302   C = llvm::ConstantStruct::get(STy, Fields);
2303   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2304                                 llvm::GlobalVariable::PrivateLinkage, C,
2305                                 "_unnamed_cfstring_");
2306   if (const char *Sect = getTarget().getCFStringSection())
2307     GV->setSection(Sect);
2308   Entry.setValue(GV);
2309 
2310   return GV;
2311 }
2312 
2313 static RecordDecl *
2314 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2315                  DeclContext *DC, IdentifierInfo *Id) {
2316   SourceLocation Loc;
2317   if (Ctx.getLangOpts().CPlusPlus)
2318     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2319   else
2320     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2321 }
2322 
2323 llvm::Constant *
2324 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2325   unsigned StringLength = 0;
2326   llvm::StringMapEntry<llvm::Constant*> &Entry =
2327     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2328 
2329   if (llvm::Constant *C = Entry.getValue())
2330     return C;
2331 
2332   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2333   llvm::Constant *Zeros[] = { Zero, Zero };
2334   llvm::Value *V;
2335   // If we don't already have it, get _NSConstantStringClassReference.
2336   if (!ConstantStringClassRef) {
2337     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2338     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2339     llvm::Constant *GV;
2340     if (LangOpts.ObjCRuntime.isNonFragile()) {
2341       std::string str =
2342         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2343                             : "OBJC_CLASS_$_" + StringClass;
2344       GV = getObjCRuntime().GetClassGlobal(str);
2345       // Make sure the result is of the correct type.
2346       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2347       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2348       ConstantStringClassRef = V;
2349     } else {
2350       std::string str =
2351         StringClass.empty() ? "_NSConstantStringClassReference"
2352                             : "_" + StringClass + "ClassReference";
2353       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2354       GV = CreateRuntimeVariable(PTy, str);
2355       // Decay array -> ptr
2356       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2357       ConstantStringClassRef = V;
2358     }
2359   }
2360   else
2361     V = ConstantStringClassRef;
2362 
2363   if (!NSConstantStringType) {
2364     // Construct the type for a constant NSString.
2365     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2366                                      Context.getTranslationUnitDecl(),
2367                                    &Context.Idents.get("__builtin_NSString"));
2368     D->startDefinition();
2369 
2370     QualType FieldTypes[3];
2371 
2372     // const int *isa;
2373     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2374     // const char *str;
2375     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2376     // unsigned int length;
2377     FieldTypes[2] = Context.UnsignedIntTy;
2378 
2379     // Create fields
2380     for (unsigned i = 0; i < 3; ++i) {
2381       FieldDecl *Field = FieldDecl::Create(Context, D,
2382                                            SourceLocation(),
2383                                            SourceLocation(), 0,
2384                                            FieldTypes[i], /*TInfo=*/0,
2385                                            /*BitWidth=*/0,
2386                                            /*Mutable=*/false,
2387                                            ICIS_NoInit);
2388       Field->setAccess(AS_public);
2389       D->addDecl(Field);
2390     }
2391 
2392     D->completeDefinition();
2393     QualType NSTy = Context.getTagDeclType(D);
2394     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2395   }
2396 
2397   llvm::Constant *Fields[3];
2398 
2399   // Class pointer.
2400   Fields[0] = cast<llvm::ConstantExpr>(V);
2401 
2402   // String pointer.
2403   llvm::Constant *C =
2404     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2405 
2406   llvm::GlobalValue::LinkageTypes Linkage;
2407   bool isConstant;
2408   Linkage = llvm::GlobalValue::PrivateLinkage;
2409   isConstant = !LangOpts.WritableStrings;
2410 
2411   llvm::GlobalVariable *GV =
2412   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2413                            ".str");
2414   GV->setUnnamedAddr(true);
2415   // Don't enforce the target's minimum global alignment, since the only use
2416   // of the string is via this class initializer.
2417   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2418   GV->setAlignment(Align.getQuantity());
2419   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2420 
2421   // String length.
2422   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2423   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2424 
2425   // The struct.
2426   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2427   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2428                                 llvm::GlobalVariable::PrivateLinkage, C,
2429                                 "_unnamed_nsstring_");
2430   // FIXME. Fix section.
2431   if (const char *Sect =
2432         LangOpts.ObjCRuntime.isNonFragile()
2433           ? getTarget().getNSStringNonFragileABISection()
2434           : getTarget().getNSStringSection())
2435     GV->setSection(Sect);
2436   Entry.setValue(GV);
2437 
2438   return GV;
2439 }
2440 
2441 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2442   if (ObjCFastEnumerationStateType.isNull()) {
2443     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2444                                      Context.getTranslationUnitDecl(),
2445                       &Context.Idents.get("__objcFastEnumerationState"));
2446     D->startDefinition();
2447 
2448     QualType FieldTypes[] = {
2449       Context.UnsignedLongTy,
2450       Context.getPointerType(Context.getObjCIdType()),
2451       Context.getPointerType(Context.UnsignedLongTy),
2452       Context.getConstantArrayType(Context.UnsignedLongTy,
2453                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2454     };
2455 
2456     for (size_t i = 0; i < 4; ++i) {
2457       FieldDecl *Field = FieldDecl::Create(Context,
2458                                            D,
2459                                            SourceLocation(),
2460                                            SourceLocation(), 0,
2461                                            FieldTypes[i], /*TInfo=*/0,
2462                                            /*BitWidth=*/0,
2463                                            /*Mutable=*/false,
2464                                            ICIS_NoInit);
2465       Field->setAccess(AS_public);
2466       D->addDecl(Field);
2467     }
2468 
2469     D->completeDefinition();
2470     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2471   }
2472 
2473   return ObjCFastEnumerationStateType;
2474 }
2475 
2476 llvm::Constant *
2477 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2478   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2479 
2480   // Don't emit it as the address of the string, emit the string data itself
2481   // as an inline array.
2482   if (E->getCharByteWidth() == 1) {
2483     SmallString<64> Str(E->getString());
2484 
2485     // Resize the string to the right size, which is indicated by its type.
2486     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2487     Str.resize(CAT->getSize().getZExtValue());
2488     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2489   }
2490 
2491   llvm::ArrayType *AType =
2492     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2493   llvm::Type *ElemTy = AType->getElementType();
2494   unsigned NumElements = AType->getNumElements();
2495 
2496   // Wide strings have either 2-byte or 4-byte elements.
2497   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2498     SmallVector<uint16_t, 32> Elements;
2499     Elements.reserve(NumElements);
2500 
2501     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2502       Elements.push_back(E->getCodeUnit(i));
2503     Elements.resize(NumElements);
2504     return llvm::ConstantDataArray::get(VMContext, Elements);
2505   }
2506 
2507   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2508   SmallVector<uint32_t, 32> Elements;
2509   Elements.reserve(NumElements);
2510 
2511   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2512     Elements.push_back(E->getCodeUnit(i));
2513   Elements.resize(NumElements);
2514   return llvm::ConstantDataArray::get(VMContext, Elements);
2515 }
2516 
2517 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2518 /// constant array for the given string literal.
2519 llvm::Constant *
2520 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2521   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2522   if (S->isAscii() || S->isUTF8()) {
2523     SmallString<64> Str(S->getString());
2524 
2525     // Resize the string to the right size, which is indicated by its type.
2526     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2527     Str.resize(CAT->getSize().getZExtValue());
2528     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2529   }
2530 
2531   // FIXME: the following does not memoize wide strings.
2532   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2533   llvm::GlobalVariable *GV =
2534     new llvm::GlobalVariable(getModule(),C->getType(),
2535                              !LangOpts.WritableStrings,
2536                              llvm::GlobalValue::PrivateLinkage,
2537                              C,".str");
2538 
2539   GV->setAlignment(Align.getQuantity());
2540   GV->setUnnamedAddr(true);
2541   return GV;
2542 }
2543 
2544 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2545 /// array for the given ObjCEncodeExpr node.
2546 llvm::Constant *
2547 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2548   std::string Str;
2549   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2550 
2551   return GetAddrOfConstantCString(Str);
2552 }
2553 
2554 
2555 /// GenerateWritableString -- Creates storage for a string literal.
2556 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2557                                              bool constant,
2558                                              CodeGenModule &CGM,
2559                                              const char *GlobalName,
2560                                              unsigned Alignment) {
2561   // Create Constant for this string literal. Don't add a '\0'.
2562   llvm::Constant *C =
2563       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2564 
2565   // Create a global variable for this string
2566   llvm::GlobalVariable *GV =
2567     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2568                              llvm::GlobalValue::PrivateLinkage,
2569                              C, GlobalName);
2570   GV->setAlignment(Alignment);
2571   GV->setUnnamedAddr(true);
2572   return GV;
2573 }
2574 
2575 /// GetAddrOfConstantString - Returns a pointer to a character array
2576 /// containing the literal. This contents are exactly that of the
2577 /// given string, i.e. it will not be null terminated automatically;
2578 /// see GetAddrOfConstantCString. Note that whether the result is
2579 /// actually a pointer to an LLVM constant depends on
2580 /// Feature.WriteableStrings.
2581 ///
2582 /// The result has pointer to array type.
2583 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2584                                                        const char *GlobalName,
2585                                                        unsigned Alignment) {
2586   // Get the default prefix if a name wasn't specified.
2587   if (!GlobalName)
2588     GlobalName = ".str";
2589 
2590   if (Alignment == 0)
2591     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2592       .getQuantity();
2593 
2594   // Don't share any string literals if strings aren't constant.
2595   if (LangOpts.WritableStrings)
2596     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2597 
2598   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2599     ConstantStringMap.GetOrCreateValue(Str);
2600 
2601   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2602     if (Alignment > GV->getAlignment()) {
2603       GV->setAlignment(Alignment);
2604     }
2605     return GV;
2606   }
2607 
2608   // Create a global variable for this.
2609   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2610                                                    Alignment);
2611   Entry.setValue(GV);
2612   return GV;
2613 }
2614 
2615 /// GetAddrOfConstantCString - Returns a pointer to a character
2616 /// array containing the literal and a terminating '\0'
2617 /// character. The result has pointer to array type.
2618 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2619                                                         const char *GlobalName,
2620                                                         unsigned Alignment) {
2621   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2622   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2623 }
2624 
2625 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2626     const MaterializeTemporaryExpr *E, const Expr *Init) {
2627   assert((E->getStorageDuration() == SD_Static ||
2628           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2629   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2630 
2631   // If we're not materializing a subobject of the temporary, keep the
2632   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2633   QualType MaterializedType = Init->getType();
2634   if (Init == E->GetTemporaryExpr())
2635     MaterializedType = E->getType();
2636 
2637   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2638   if (Slot)
2639     return Slot;
2640 
2641   // FIXME: If an externally-visible declaration extends multiple temporaries,
2642   // we need to give each temporary the same name in every translation unit (and
2643   // we also need to make the temporaries externally-visible).
2644   SmallString<256> Name;
2645   llvm::raw_svector_ostream Out(Name);
2646   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2647   Out.flush();
2648 
2649   APValue *Value = 0;
2650   if (E->getStorageDuration() == SD_Static) {
2651     // We might have a cached constant initializer for this temporary. Note
2652     // that this might have a different value from the value computed by
2653     // evaluating the initializer if the surrounding constant expression
2654     // modifies the temporary.
2655     Value = getContext().getMaterializedTemporaryValue(E, false);
2656     if (Value && Value->isUninit())
2657       Value = 0;
2658   }
2659 
2660   // Try evaluating it now, it might have a constant initializer.
2661   Expr::EvalResult EvalResult;
2662   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2663       !EvalResult.hasSideEffects())
2664     Value = &EvalResult.Val;
2665 
2666   llvm::Constant *InitialValue = 0;
2667   bool Constant = false;
2668   llvm::Type *Type;
2669   if (Value) {
2670     // The temporary has a constant initializer, use it.
2671     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2672     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2673     Type = InitialValue->getType();
2674   } else {
2675     // No initializer, the initialization will be provided when we
2676     // initialize the declaration which performed lifetime extension.
2677     Type = getTypes().ConvertTypeForMem(MaterializedType);
2678   }
2679 
2680   // Create a global variable for this lifetime-extended temporary.
2681   llvm::GlobalVariable *GV =
2682     new llvm::GlobalVariable(getModule(), Type, Constant,
2683                              llvm::GlobalValue::PrivateLinkage,
2684                              InitialValue, Name.c_str());
2685   GV->setAlignment(
2686       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2687   if (VD->getTLSKind())
2688     setTLSMode(GV, *VD);
2689   Slot = GV;
2690   return GV;
2691 }
2692 
2693 /// EmitObjCPropertyImplementations - Emit information for synthesized
2694 /// properties for an implementation.
2695 void CodeGenModule::EmitObjCPropertyImplementations(const
2696                                                     ObjCImplementationDecl *D) {
2697   for (ObjCImplementationDecl::propimpl_iterator
2698          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2699     ObjCPropertyImplDecl *PID = *i;
2700 
2701     // Dynamic is just for type-checking.
2702     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2703       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2704 
2705       // Determine which methods need to be implemented, some may have
2706       // been overridden. Note that ::isPropertyAccessor is not the method
2707       // we want, that just indicates if the decl came from a
2708       // property. What we want to know is if the method is defined in
2709       // this implementation.
2710       if (!D->getInstanceMethod(PD->getGetterName()))
2711         CodeGenFunction(*this).GenerateObjCGetter(
2712                                  const_cast<ObjCImplementationDecl *>(D), PID);
2713       if (!PD->isReadOnly() &&
2714           !D->getInstanceMethod(PD->getSetterName()))
2715         CodeGenFunction(*this).GenerateObjCSetter(
2716                                  const_cast<ObjCImplementationDecl *>(D), PID);
2717     }
2718   }
2719 }
2720 
2721 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2722   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2723   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2724        ivar; ivar = ivar->getNextIvar())
2725     if (ivar->getType().isDestructedType())
2726       return true;
2727 
2728   return false;
2729 }
2730 
2731 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2732 /// for an implementation.
2733 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2734   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2735   if (needsDestructMethod(D)) {
2736     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2737     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2738     ObjCMethodDecl *DTORMethod =
2739       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2740                              cxxSelector, getContext().VoidTy, 0, D,
2741                              /*isInstance=*/true, /*isVariadic=*/false,
2742                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2743                              /*isDefined=*/false, ObjCMethodDecl::Required);
2744     D->addInstanceMethod(DTORMethod);
2745     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2746     D->setHasDestructors(true);
2747   }
2748 
2749   // If the implementation doesn't have any ivar initializers, we don't need
2750   // a .cxx_construct.
2751   if (D->getNumIvarInitializers() == 0)
2752     return;
2753 
2754   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2755   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2756   // The constructor returns 'self'.
2757   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2758                                                 D->getLocation(),
2759                                                 D->getLocation(),
2760                                                 cxxSelector,
2761                                                 getContext().getObjCIdType(), 0,
2762                                                 D, /*isInstance=*/true,
2763                                                 /*isVariadic=*/false,
2764                                                 /*isPropertyAccessor=*/true,
2765                                                 /*isImplicitlyDeclared=*/true,
2766                                                 /*isDefined=*/false,
2767                                                 ObjCMethodDecl::Required);
2768   D->addInstanceMethod(CTORMethod);
2769   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2770   D->setHasNonZeroConstructors(true);
2771 }
2772 
2773 /// EmitNamespace - Emit all declarations in a namespace.
2774 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2775   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2776        I != E; ++I)
2777     EmitTopLevelDecl(*I);
2778 }
2779 
2780 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2781 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2782   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2783       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2784     ErrorUnsupported(LSD, "linkage spec");
2785     return;
2786   }
2787 
2788   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2789        I != E; ++I) {
2790     // Meta-data for ObjC class includes references to implemented methods.
2791     // Generate class's method definitions first.
2792     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2793       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2794            MEnd = OID->meth_end();
2795            M != MEnd; ++M)
2796         EmitTopLevelDecl(*M);
2797     }
2798     EmitTopLevelDecl(*I);
2799   }
2800 }
2801 
2802 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2803 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2804   // If an error has occurred, stop code generation, but continue
2805   // parsing and semantic analysis (to ensure all warnings and errors
2806   // are emitted).
2807   if (Diags.hasErrorOccurred())
2808     return;
2809 
2810   // Ignore dependent declarations.
2811   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2812     return;
2813 
2814   switch (D->getKind()) {
2815   case Decl::CXXConversion:
2816   case Decl::CXXMethod:
2817   case Decl::Function:
2818     // Skip function templates
2819     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2820         cast<FunctionDecl>(D)->isLateTemplateParsed())
2821       return;
2822 
2823     EmitGlobal(cast<FunctionDecl>(D));
2824     break;
2825 
2826   case Decl::Var:
2827     EmitGlobal(cast<VarDecl>(D));
2828     break;
2829 
2830   // Indirect fields from global anonymous structs and unions can be
2831   // ignored; only the actual variable requires IR gen support.
2832   case Decl::IndirectField:
2833     break;
2834 
2835   // C++ Decls
2836   case Decl::Namespace:
2837     EmitNamespace(cast<NamespaceDecl>(D));
2838     break;
2839     // No code generation needed.
2840   case Decl::UsingShadow:
2841   case Decl::Using:
2842   case Decl::ClassTemplate:
2843   case Decl::FunctionTemplate:
2844   case Decl::TypeAliasTemplate:
2845   case Decl::Block:
2846   case Decl::Empty:
2847     break;
2848   case Decl::NamespaceAlias:
2849     if (CGDebugInfo *DI = getModuleDebugInfo())
2850         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2851     return;
2852   case Decl::UsingDirective: // using namespace X; [C++]
2853     if (CGDebugInfo *DI = getModuleDebugInfo())
2854       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2855     return;
2856   case Decl::CXXConstructor:
2857     // Skip function templates
2858     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2859         cast<FunctionDecl>(D)->isLateTemplateParsed())
2860       return;
2861 
2862     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2863     break;
2864   case Decl::CXXDestructor:
2865     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2866       return;
2867     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2868     break;
2869 
2870   case Decl::StaticAssert:
2871     // Nothing to do.
2872     break;
2873 
2874   // Objective-C Decls
2875 
2876   // Forward declarations, no (immediate) code generation.
2877   case Decl::ObjCInterface:
2878   case Decl::ObjCCategory:
2879     break;
2880 
2881   case Decl::ObjCProtocol: {
2882     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2883     if (Proto->isThisDeclarationADefinition())
2884       ObjCRuntime->GenerateProtocol(Proto);
2885     break;
2886   }
2887 
2888   case Decl::ObjCCategoryImpl:
2889     // Categories have properties but don't support synthesize so we
2890     // can ignore them here.
2891     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2892     break;
2893 
2894   case Decl::ObjCImplementation: {
2895     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2896     EmitObjCPropertyImplementations(OMD);
2897     EmitObjCIvarInitializations(OMD);
2898     ObjCRuntime->GenerateClass(OMD);
2899     // Emit global variable debug information.
2900     if (CGDebugInfo *DI = getModuleDebugInfo())
2901       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2902         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2903             OMD->getClassInterface()), OMD->getLocation());
2904     break;
2905   }
2906   case Decl::ObjCMethod: {
2907     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2908     // If this is not a prototype, emit the body.
2909     if (OMD->getBody())
2910       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2911     break;
2912   }
2913   case Decl::ObjCCompatibleAlias:
2914     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2915     break;
2916 
2917   case Decl::LinkageSpec:
2918     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2919     break;
2920 
2921   case Decl::FileScopeAsm: {
2922     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2923     StringRef AsmString = AD->getAsmString()->getString();
2924 
2925     const std::string &S = getModule().getModuleInlineAsm();
2926     if (S.empty())
2927       getModule().setModuleInlineAsm(AsmString);
2928     else if (S.end()[-1] == '\n')
2929       getModule().setModuleInlineAsm(S + AsmString.str());
2930     else
2931       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2932     break;
2933   }
2934 
2935   case Decl::Import: {
2936     ImportDecl *Import = cast<ImportDecl>(D);
2937 
2938     // Ignore import declarations that come from imported modules.
2939     if (clang::Module *Owner = Import->getOwningModule()) {
2940       if (getLangOpts().CurrentModule.empty() ||
2941           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2942         break;
2943     }
2944 
2945     ImportedModules.insert(Import->getImportedModule());
2946     break;
2947  }
2948 
2949   default:
2950     // Make sure we handled everything we should, every other kind is a
2951     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2952     // function. Need to recode Decl::Kind to do that easily.
2953     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2954   }
2955 }
2956 
2957 /// Turns the given pointer into a constant.
2958 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2959                                           const void *Ptr) {
2960   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2961   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2962   return llvm::ConstantInt::get(i64, PtrInt);
2963 }
2964 
2965 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2966                                    llvm::NamedMDNode *&GlobalMetadata,
2967                                    GlobalDecl D,
2968                                    llvm::GlobalValue *Addr) {
2969   if (!GlobalMetadata)
2970     GlobalMetadata =
2971       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2972 
2973   // TODO: should we report variant information for ctors/dtors?
2974   llvm::Value *Ops[] = {
2975     Addr,
2976     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2977   };
2978   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2979 }
2980 
2981 /// For each function which is declared within an extern "C" region and marked
2982 /// as 'used', but has internal linkage, create an alias from the unmangled
2983 /// name to the mangled name if possible. People expect to be able to refer
2984 /// to such functions with an unmangled name from inline assembly within the
2985 /// same translation unit.
2986 void CodeGenModule::EmitStaticExternCAliases() {
2987   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2988                                   E = StaticExternCValues.end();
2989        I != E; ++I) {
2990     IdentifierInfo *Name = I->first;
2991     llvm::GlobalValue *Val = I->second;
2992     if (Val && !getModule().getNamedValue(Name->getName()))
2993       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2994                                           Name->getName(), Val, &getModule()));
2995   }
2996 }
2997 
2998 /// Emits metadata nodes associating all the global values in the
2999 /// current module with the Decls they came from.  This is useful for
3000 /// projects using IR gen as a subroutine.
3001 ///
3002 /// Since there's currently no way to associate an MDNode directly
3003 /// with an llvm::GlobalValue, we create a global named metadata
3004 /// with the name 'clang.global.decl.ptrs'.
3005 void CodeGenModule::EmitDeclMetadata() {
3006   llvm::NamedMDNode *GlobalMetadata = 0;
3007 
3008   // StaticLocalDeclMap
3009   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3010          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3011        I != E; ++I) {
3012     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3013     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3014   }
3015 }
3016 
3017 /// Emits metadata nodes for all the local variables in the current
3018 /// function.
3019 void CodeGenFunction::EmitDeclMetadata() {
3020   if (LocalDeclMap.empty()) return;
3021 
3022   llvm::LLVMContext &Context = getLLVMContext();
3023 
3024   // Find the unique metadata ID for this name.
3025   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3026 
3027   llvm::NamedMDNode *GlobalMetadata = 0;
3028 
3029   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3030          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3031     const Decl *D = I->first;
3032     llvm::Value *Addr = I->second;
3033 
3034     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3035       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3036       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3037     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3038       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3039       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3040     }
3041   }
3042 }
3043 
3044 void CodeGenModule::EmitCoverageFile() {
3045   if (!getCodeGenOpts().CoverageFile.empty()) {
3046     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3047       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3048       llvm::LLVMContext &Ctx = TheModule.getContext();
3049       llvm::MDString *CoverageFile =
3050           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3051       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3052         llvm::MDNode *CU = CUNode->getOperand(i);
3053         llvm::Value *node[] = { CoverageFile, CU };
3054         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3055         GCov->addOperand(N);
3056       }
3057     }
3058   }
3059 }
3060 
3061 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3062                                                      QualType GuidType) {
3063   // Sema has checked that all uuid strings are of the form
3064   // "12345678-1234-1234-1234-1234567890ab".
3065   assert(Uuid.size() == 36);
3066   const char *Uuidstr = Uuid.data();
3067   for (int i = 0; i < 36; ++i) {
3068     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3069     else                                         assert(isHexDigit(Uuidstr[i]));
3070   }
3071 
3072   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3073   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3074   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3075   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3076 
3077   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3078   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3079   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3080   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3081   APValue& Arr = InitStruct.getStructField(3);
3082   Arr = APValue(APValue::UninitArray(), 8, 8);
3083   for (int t = 0; t < 8; ++t)
3084     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3085           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3086 
3087   return EmitConstantValue(InitStruct, GuidType);
3088 }
3089