xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c4327996caeda7f8bd3ae0ca8209261de53d5c64)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/Version.h"
39 #include "clang/Frontend/CodeGenOptions.h"
40 #include "clang/Sema/SemaDiagnostic.h"
41 #include "llvm/ADT/APSInt.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/IR/CallingConv.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/CallSite.h"
49 #include "llvm/Support/ConvertUTF.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Target/Mangler.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return *CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return *CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0),
81       ConstantStringClassRef(0), NSConstantStringType(0),
82       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
83       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
84       LifetimeStartFn(0), LifetimeEndFn(0),
85       SanitizerBlacklist(
86           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
87       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
88                                           : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::applyReplacements() {
176   for (ReplacementsTy::iterator I = Replacements.begin(),
177                                 E = Replacements.end();
178        I != E; ++I) {
179     StringRef MangledName = I->first();
180     llvm::Constant *Replacement = I->second;
181     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
182     if (!Entry)
183       continue;
184     llvm::Function *OldF = cast<llvm::Function>(Entry);
185     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
186     if (!NewF) {
187       llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
188       assert(CE->getOpcode() == llvm::Instruction::BitCast ||
189              CE->getOpcode() == llvm::Instruction::GetElementPtr);
190       NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
191     }
192 
193     // Replace old with new, but keep the old order.
194     OldF->replaceAllUsesWith(Replacement);
195     if (NewF) {
196       NewF->removeFromParent();
197       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
198     }
199     OldF->eraseFromParent();
200   }
201 }
202 
203 void CodeGenModule::checkAliases() {
204   bool Error = false;
205   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
206          E = Aliases.end(); I != E; ++I) {
207     const GlobalDecl &GD = *I;
208     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
209     const AliasAttr *AA = D->getAttr<AliasAttr>();
210     StringRef MangledName = getMangledName(GD);
211     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
212     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
213     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
214     if (GV->isDeclaration()) {
215       Error = true;
216       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
217     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
218       Error = true;
219       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
220     }
221   }
222   if (!Error)
223     return;
224 
225   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
226          E = Aliases.end(); I != E; ++I) {
227     const GlobalDecl &GD = *I;
228     StringRef MangledName = getMangledName(GD);
229     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
230     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
231     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
232     Alias->eraseFromParent();
233   }
234 }
235 
236 void CodeGenModule::clear() {
237   DeferredDeclsToEmit.clear();
238 }
239 
240 void CodeGenModule::Release() {
241   EmitDeferred();
242   applyReplacements();
243   checkAliases();
244   EmitCXXGlobalInitFunc();
245   EmitCXXGlobalDtorFunc();
246   EmitCXXThreadLocalInitFunc();
247   if (ObjCRuntime)
248     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
249       AddGlobalCtor(ObjCInitFunction);
250   EmitCtorList(GlobalCtors, "llvm.global_ctors");
251   EmitCtorList(GlobalDtors, "llvm.global_dtors");
252   EmitGlobalAnnotations();
253   EmitStaticExternCAliases();
254   EmitLLVMUsed();
255 
256   if (CodeGenOpts.Autolink &&
257       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
258     EmitModuleLinkOptions();
259   }
260   if (CodeGenOpts.DwarfVersion)
261     // We actually want the latest version when there are conflicts.
262     // We can change from Warning to Latest if such mode is supported.
263     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
264                               CodeGenOpts.DwarfVersion);
265   if (DebugInfo)
266     // We support a single version in the linked module: error out when
267     // modules do not have the same version. We are going to implement dropping
268     // debug info when the version number is not up-to-date. Once that is
269     // done, the bitcode linker is not going to see modules with different
270     // version numbers.
271     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
272                               llvm::DEBUG_METADATA_VERSION);
273 
274   SimplifyPersonality();
275 
276   if (getCodeGenOpts().EmitDeclMetadata)
277     EmitDeclMetadata();
278 
279   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
280     EmitCoverageFile();
281 
282   if (DebugInfo)
283     DebugInfo->finalize();
284 
285   EmitVersionIdentMetadata();
286 }
287 
288 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
289   // Make sure that this type is translated.
290   Types.UpdateCompletedType(TD);
291 }
292 
293 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
294   if (!TBAA)
295     return 0;
296   return TBAA->getTBAAInfo(QTy);
297 }
298 
299 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
300   if (!TBAA)
301     return 0;
302   return TBAA->getTBAAInfoForVTablePtr();
303 }
304 
305 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
306   if (!TBAA)
307     return 0;
308   return TBAA->getTBAAStructInfo(QTy);
309 }
310 
311 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
312   if (!TBAA)
313     return 0;
314   return TBAA->getTBAAStructTypeInfo(QTy);
315 }
316 
317 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
318                                                   llvm::MDNode *AccessN,
319                                                   uint64_t O) {
320   if (!TBAA)
321     return 0;
322   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
323 }
324 
325 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
326 /// and struct-path aware TBAA, the tag has the same format:
327 /// base type, access type and offset.
328 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
329 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
330                                         llvm::MDNode *TBAAInfo,
331                                         bool ConvertTypeToTag) {
332   if (ConvertTypeToTag && TBAA)
333     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
334                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
335   else
336     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
337 }
338 
339 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
340   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
341   getDiags().Report(Context.getFullLoc(loc), diagID);
342 }
343 
344 /// ErrorUnsupported - Print out an error that codegen doesn't support the
345 /// specified stmt yet.
346 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
347   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
348                                                "cannot compile this %0 yet");
349   std::string Msg = Type;
350   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
351     << Msg << S->getSourceRange();
352 }
353 
354 /// ErrorUnsupported - Print out an error that codegen doesn't support the
355 /// specified decl yet.
356 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
357   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
358                                                "cannot compile this %0 yet");
359   std::string Msg = Type;
360   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
361 }
362 
363 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
364   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
365 }
366 
367 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
368                                         const NamedDecl *D) const {
369   // Internal definitions always have default visibility.
370   if (GV->hasLocalLinkage()) {
371     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
372     return;
373   }
374 
375   // Set visibility for definitions.
376   LinkageInfo LV = D->getLinkageAndVisibility();
377   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
378     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
379 }
380 
381 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
382   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
383       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
384       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
385       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
386       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
387 }
388 
389 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
390     CodeGenOptions::TLSModel M) {
391   switch (M) {
392   case CodeGenOptions::GeneralDynamicTLSModel:
393     return llvm::GlobalVariable::GeneralDynamicTLSModel;
394   case CodeGenOptions::LocalDynamicTLSModel:
395     return llvm::GlobalVariable::LocalDynamicTLSModel;
396   case CodeGenOptions::InitialExecTLSModel:
397     return llvm::GlobalVariable::InitialExecTLSModel;
398   case CodeGenOptions::LocalExecTLSModel:
399     return llvm::GlobalVariable::LocalExecTLSModel;
400   }
401   llvm_unreachable("Invalid TLS model!");
402 }
403 
404 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
405                                const VarDecl &D) const {
406   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
407 
408   llvm::GlobalVariable::ThreadLocalMode TLM;
409   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
410 
411   // Override the TLS model if it is explicitly specified.
412   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
413     TLM = GetLLVMTLSModel(Attr->getModel());
414   }
415 
416   GV->setThreadLocalMode(TLM);
417 }
418 
419 /// Set the symbol visibility of type information (vtable and RTTI)
420 /// associated with the given type.
421 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
422                                       const CXXRecordDecl *RD,
423                                       TypeVisibilityKind TVK) const {
424   setGlobalVisibility(GV, RD);
425 
426   if (!CodeGenOpts.HiddenWeakVTables)
427     return;
428 
429   // We never want to drop the visibility for RTTI names.
430   if (TVK == TVK_ForRTTIName)
431     return;
432 
433   // We want to drop the visibility to hidden for weak type symbols.
434   // This isn't possible if there might be unresolved references
435   // elsewhere that rely on this symbol being visible.
436 
437   // This should be kept roughly in sync with setThunkVisibility
438   // in CGVTables.cpp.
439 
440   // Preconditions.
441   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
442       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
443     return;
444 
445   // Don't override an explicit visibility attribute.
446   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
447     return;
448 
449   switch (RD->getTemplateSpecializationKind()) {
450   // We have to disable the optimization if this is an EI definition
451   // because there might be EI declarations in other shared objects.
452   case TSK_ExplicitInstantiationDefinition:
453   case TSK_ExplicitInstantiationDeclaration:
454     return;
455 
456   // Every use of a non-template class's type information has to emit it.
457   case TSK_Undeclared:
458     break;
459 
460   // In theory, implicit instantiations can ignore the possibility of
461   // an explicit instantiation declaration because there necessarily
462   // must be an EI definition somewhere with default visibility.  In
463   // practice, it's possible to have an explicit instantiation for
464   // an arbitrary template class, and linkers aren't necessarily able
465   // to deal with mixed-visibility symbols.
466   case TSK_ExplicitSpecialization:
467   case TSK_ImplicitInstantiation:
468     return;
469   }
470 
471   // If there's a key function, there may be translation units
472   // that don't have the key function's definition.  But ignore
473   // this if we're emitting RTTI under -fno-rtti.
474   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
475     // FIXME: what should we do if we "lose" the key function during
476     // the emission of the file?
477     if (Context.getCurrentKeyFunction(RD))
478       return;
479   }
480 
481   // Otherwise, drop the visibility to hidden.
482   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
483   GV->setUnnamedAddr(true);
484 }
485 
486 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
487   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
488 
489   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
490   if (!Str.empty())
491     return Str;
492 
493   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
494     IdentifierInfo *II = ND->getIdentifier();
495     assert(II && "Attempt to mangle unnamed decl.");
496 
497     Str = II->getName();
498     return Str;
499   }
500 
501   SmallString<256> Buffer;
502   llvm::raw_svector_ostream Out(Buffer);
503   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
504     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
505   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
506     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
507   else
508     getCXXABI().getMangleContext().mangleName(ND, Out);
509 
510   // Allocate space for the mangled name.
511   Out.flush();
512   size_t Length = Buffer.size();
513   char *Name = MangledNamesAllocator.Allocate<char>(Length);
514   std::copy(Buffer.begin(), Buffer.end(), Name);
515 
516   Str = StringRef(Name, Length);
517 
518   return Str;
519 }
520 
521 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
522                                         const BlockDecl *BD) {
523   MangleContext &MangleCtx = getCXXABI().getMangleContext();
524   const Decl *D = GD.getDecl();
525   llvm::raw_svector_ostream Out(Buffer.getBuffer());
526   if (D == 0)
527     MangleCtx.mangleGlobalBlock(BD,
528       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
529   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
530     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
531   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
532     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
533   else
534     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
535 }
536 
537 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
538   return getModule().getNamedValue(Name);
539 }
540 
541 /// AddGlobalCtor - Add a function to the list that will be called before
542 /// main() runs.
543 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
544   // FIXME: Type coercion of void()* types.
545   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
546 }
547 
548 /// AddGlobalDtor - Add a function to the list that will be called
549 /// when the module is unloaded.
550 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
551   // FIXME: Type coercion of void()* types.
552   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
553 }
554 
555 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
556   // Ctor function type is void()*.
557   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
558   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
559 
560   // Get the type of a ctor entry, { i32, void ()* }.
561   llvm::StructType *CtorStructTy =
562     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
563 
564   // Construct the constructor and destructor arrays.
565   SmallVector<llvm::Constant*, 8> Ctors;
566   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
567     llvm::Constant *S[] = {
568       llvm::ConstantInt::get(Int32Ty, I->second, false),
569       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
570     };
571     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
572   }
573 
574   if (!Ctors.empty()) {
575     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
576     new llvm::GlobalVariable(TheModule, AT, false,
577                              llvm::GlobalValue::AppendingLinkage,
578                              llvm::ConstantArray::get(AT, Ctors),
579                              GlobalName);
580   }
581 }
582 
583 llvm::GlobalValue::LinkageTypes
584 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
585   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
586 
587   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
588 
589   if (Linkage == GVA_Internal)
590     return llvm::Function::InternalLinkage;
591 
592   if (D->hasAttr<DLLExportAttr>())
593     return llvm::Function::DLLExportLinkage;
594 
595   if (D->hasAttr<WeakAttr>())
596     return llvm::Function::WeakAnyLinkage;
597 
598   // In C99 mode, 'inline' functions are guaranteed to have a strong
599   // definition somewhere else, so we can use available_externally linkage.
600   if (Linkage == GVA_C99Inline)
601     return llvm::Function::AvailableExternallyLinkage;
602 
603   // Note that Apple's kernel linker doesn't support symbol
604   // coalescing, so we need to avoid linkonce and weak linkages there.
605   // Normally, this means we just map to internal, but for explicit
606   // instantiations we'll map to external.
607 
608   // In C++, the compiler has to emit a definition in every translation unit
609   // that references the function.  We should use linkonce_odr because
610   // a) if all references in this translation unit are optimized away, we
611   // don't need to codegen it.  b) if the function persists, it needs to be
612   // merged with other definitions. c) C++ has the ODR, so we know the
613   // definition is dependable.
614   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
615     return !Context.getLangOpts().AppleKext
616              ? llvm::Function::LinkOnceODRLinkage
617              : llvm::Function::InternalLinkage;
618 
619   // An explicit instantiation of a template has weak linkage, since
620   // explicit instantiations can occur in multiple translation units
621   // and must all be equivalent. However, we are not allowed to
622   // throw away these explicit instantiations.
623   if (Linkage == GVA_ExplicitTemplateInstantiation)
624     return !Context.getLangOpts().AppleKext
625              ? llvm::Function::WeakODRLinkage
626              : llvm::Function::ExternalLinkage;
627 
628   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
629   // emitted on an as-needed basis.
630   if (isa<CXXDestructorDecl>(D) &&
631       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
632                                          GD.getDtorType()))
633     return llvm::Function::LinkOnceODRLinkage;
634 
635   // Otherwise, we have strong external linkage.
636   assert(Linkage == GVA_StrongExternal);
637   return llvm::Function::ExternalLinkage;
638 }
639 
640 
641 /// SetFunctionDefinitionAttributes - Set attributes for a global.
642 ///
643 /// FIXME: This is currently only done for aliases and functions, but not for
644 /// variables (these details are set in EmitGlobalVarDefinition for variables).
645 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
646                                                     llvm::GlobalValue *GV) {
647   SetCommonAttributes(D, GV);
648 }
649 
650 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
651                                               const CGFunctionInfo &Info,
652                                               llvm::Function *F) {
653   unsigned CallingConv;
654   AttributeListType AttributeList;
655   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
656   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
657   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
658 }
659 
660 /// Determines whether the language options require us to model
661 /// unwind exceptions.  We treat -fexceptions as mandating this
662 /// except under the fragile ObjC ABI with only ObjC exceptions
663 /// enabled.  This means, for example, that C with -fexceptions
664 /// enables this.
665 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
666   // If exceptions are completely disabled, obviously this is false.
667   if (!LangOpts.Exceptions) return false;
668 
669   // If C++ exceptions are enabled, this is true.
670   if (LangOpts.CXXExceptions) return true;
671 
672   // If ObjC exceptions are enabled, this depends on the ABI.
673   if (LangOpts.ObjCExceptions) {
674     return LangOpts.ObjCRuntime.hasUnwindExceptions();
675   }
676 
677   return true;
678 }
679 
680 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
681                                                            llvm::Function *F) {
682   llvm::AttrBuilder B;
683 
684   if (CodeGenOpts.UnwindTables)
685     B.addAttribute(llvm::Attribute::UWTable);
686 
687   if (!hasUnwindExceptions(LangOpts))
688     B.addAttribute(llvm::Attribute::NoUnwind);
689 
690   if (D->hasAttr<NakedAttr>()) {
691     // Naked implies noinline: we should not be inlining such functions.
692     B.addAttribute(llvm::Attribute::Naked);
693     B.addAttribute(llvm::Attribute::NoInline);
694   } else if (D->hasAttr<NoInlineAttr>()) {
695     B.addAttribute(llvm::Attribute::NoInline);
696   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
697               D->hasAttr<ForceInlineAttr>()) &&
698              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
699                                               llvm::Attribute::NoInline)) {
700     // (noinline wins over always_inline, and we can't specify both in IR)
701     B.addAttribute(llvm::Attribute::AlwaysInline);
702   }
703 
704   if (D->hasAttr<ColdAttr>()) {
705     B.addAttribute(llvm::Attribute::OptimizeForSize);
706     B.addAttribute(llvm::Attribute::Cold);
707   }
708 
709   if (D->hasAttr<MinSizeAttr>())
710     B.addAttribute(llvm::Attribute::MinSize);
711 
712   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
713     B.addAttribute(llvm::Attribute::StackProtect);
714   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
715     B.addAttribute(llvm::Attribute::StackProtectReq);
716 
717   // Add sanitizer attributes if function is not blacklisted.
718   if (!SanitizerBlacklist->isIn(*F)) {
719     // When AddressSanitizer is enabled, set SanitizeAddress attribute
720     // unless __attribute__((no_sanitize_address)) is used.
721     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
722       B.addAttribute(llvm::Attribute::SanitizeAddress);
723     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
724     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
725       B.addAttribute(llvm::Attribute::SanitizeThread);
726     }
727     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
728     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
729       B.addAttribute(llvm::Attribute::SanitizeMemory);
730   }
731 
732   F->addAttributes(llvm::AttributeSet::FunctionIndex,
733                    llvm::AttributeSet::get(
734                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
735 
736   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
737     F->setUnnamedAddr(true);
738   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
739     if (MD->isVirtual())
740       F->setUnnamedAddr(true);
741 
742   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
743   if (alignment)
744     F->setAlignment(alignment);
745 
746   // C++ ABI requires 2-byte alignment for member functions.
747   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
748     F->setAlignment(2);
749 }
750 
751 void CodeGenModule::SetCommonAttributes(const Decl *D,
752                                         llvm::GlobalValue *GV) {
753   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
754     setGlobalVisibility(GV, ND);
755   else
756     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
757 
758   if (D->hasAttr<UsedAttr>())
759     AddUsedGlobal(GV);
760 
761   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
762     GV->setSection(SA->getName());
763 
764   // Alias cannot have attributes. Filter them here.
765   if (!isa<llvm::GlobalAlias>(GV))
766     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
767 }
768 
769 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
770                                                   llvm::Function *F,
771                                                   const CGFunctionInfo &FI) {
772   SetLLVMFunctionAttributes(D, FI, F);
773   SetLLVMFunctionAttributesForDefinition(D, F);
774 
775   F->setLinkage(llvm::Function::InternalLinkage);
776 
777   SetCommonAttributes(D, F);
778 }
779 
780 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
781                                           llvm::Function *F,
782                                           bool IsIncompleteFunction) {
783   if (unsigned IID = F->getIntrinsicID()) {
784     // If this is an intrinsic function, set the function's attributes
785     // to the intrinsic's attributes.
786     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
787                                                     (llvm::Intrinsic::ID)IID));
788     return;
789   }
790 
791   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
792 
793   if (!IsIncompleteFunction)
794     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
795 
796   if (getCXXABI().HasThisReturn(GD)) {
797     assert(!F->arg_empty() &&
798            F->arg_begin()->getType()
799              ->canLosslesslyBitCastTo(F->getReturnType()) &&
800            "unexpected this return");
801     F->addAttribute(1, llvm::Attribute::Returned);
802   }
803 
804   // Only a few attributes are set on declarations; these may later be
805   // overridden by a definition.
806 
807   if (FD->hasAttr<DLLImportAttr>()) {
808     F->setLinkage(llvm::Function::DLLImportLinkage);
809   } else if (FD->hasAttr<WeakAttr>() ||
810              FD->isWeakImported()) {
811     // "extern_weak" is overloaded in LLVM; we probably should have
812     // separate linkage types for this.
813     F->setLinkage(llvm::Function::ExternalWeakLinkage);
814   } else {
815     F->setLinkage(llvm::Function::ExternalLinkage);
816 
817     LinkageInfo LV = FD->getLinkageAndVisibility();
818     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
819       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
820     }
821   }
822 
823   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
824     F->setSection(SA->getName());
825 
826   // A replaceable global allocation function does not act like a builtin by
827   // default, only if it is invoked by a new-expression or delete-expression.
828   if (FD->isReplaceableGlobalAllocationFunction())
829     F->addAttribute(llvm::AttributeSet::FunctionIndex,
830                     llvm::Attribute::NoBuiltin);
831 }
832 
833 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
834   assert(!GV->isDeclaration() &&
835          "Only globals with definition can force usage.");
836   LLVMUsed.push_back(GV);
837 }
838 
839 void CodeGenModule::EmitLLVMUsed() {
840   // Don't create llvm.used if there is no need.
841   if (LLVMUsed.empty())
842     return;
843 
844   // Convert LLVMUsed to what ConstantArray needs.
845   SmallVector<llvm::Constant*, 8> UsedArray;
846   UsedArray.resize(LLVMUsed.size());
847   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
848     UsedArray[i] =
849      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
850                                     Int8PtrTy);
851   }
852 
853   if (UsedArray.empty())
854     return;
855   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
856 
857   llvm::GlobalVariable *GV =
858     new llvm::GlobalVariable(getModule(), ATy, false,
859                              llvm::GlobalValue::AppendingLinkage,
860                              llvm::ConstantArray::get(ATy, UsedArray),
861                              "llvm.used");
862 
863   GV->setSection("llvm.metadata");
864 }
865 
866 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
867   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
868   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
869 }
870 
871 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
872   llvm::SmallString<32> Opt;
873   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
874   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
875   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
876 }
877 
878 void CodeGenModule::AddDependentLib(StringRef Lib) {
879   llvm::SmallString<24> Opt;
880   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
881   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
882   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
883 }
884 
885 /// \brief Add link options implied by the given module, including modules
886 /// it depends on, using a postorder walk.
887 static void addLinkOptionsPostorder(CodeGenModule &CGM,
888                                     Module *Mod,
889                                     SmallVectorImpl<llvm::Value *> &Metadata,
890                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
891   // Import this module's parent.
892   if (Mod->Parent && Visited.insert(Mod->Parent)) {
893     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
894   }
895 
896   // Import this module's dependencies.
897   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
898     if (Visited.insert(Mod->Imports[I-1]))
899       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
900   }
901 
902   // Add linker options to link against the libraries/frameworks
903   // described by this module.
904   llvm::LLVMContext &Context = CGM.getLLVMContext();
905   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
906     // Link against a framework.  Frameworks are currently Darwin only, so we
907     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
908     if (Mod->LinkLibraries[I-1].IsFramework) {
909       llvm::Value *Args[2] = {
910         llvm::MDString::get(Context, "-framework"),
911         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
912       };
913 
914       Metadata.push_back(llvm::MDNode::get(Context, Args));
915       continue;
916     }
917 
918     // Link against a library.
919     llvm::SmallString<24> Opt;
920     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
921       Mod->LinkLibraries[I-1].Library, Opt);
922     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
923     Metadata.push_back(llvm::MDNode::get(Context, OptString));
924   }
925 }
926 
927 void CodeGenModule::EmitModuleLinkOptions() {
928   // Collect the set of all of the modules we want to visit to emit link
929   // options, which is essentially the imported modules and all of their
930   // non-explicit child modules.
931   llvm::SetVector<clang::Module *> LinkModules;
932   llvm::SmallPtrSet<clang::Module *, 16> Visited;
933   SmallVector<clang::Module *, 16> Stack;
934 
935   // Seed the stack with imported modules.
936   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
937                                                MEnd = ImportedModules.end();
938        M != MEnd; ++M) {
939     if (Visited.insert(*M))
940       Stack.push_back(*M);
941   }
942 
943   // Find all of the modules to import, making a little effort to prune
944   // non-leaf modules.
945   while (!Stack.empty()) {
946     clang::Module *Mod = Stack.pop_back_val();
947 
948     bool AnyChildren = false;
949 
950     // Visit the submodules of this module.
951     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
952                                         SubEnd = Mod->submodule_end();
953          Sub != SubEnd; ++Sub) {
954       // Skip explicit children; they need to be explicitly imported to be
955       // linked against.
956       if ((*Sub)->IsExplicit)
957         continue;
958 
959       if (Visited.insert(*Sub)) {
960         Stack.push_back(*Sub);
961         AnyChildren = true;
962       }
963     }
964 
965     // We didn't find any children, so add this module to the list of
966     // modules to link against.
967     if (!AnyChildren) {
968       LinkModules.insert(Mod);
969     }
970   }
971 
972   // Add link options for all of the imported modules in reverse topological
973   // order.  We don't do anything to try to order import link flags with respect
974   // to linker options inserted by things like #pragma comment().
975   SmallVector<llvm::Value *, 16> MetadataArgs;
976   Visited.clear();
977   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
978                                                MEnd = LinkModules.end();
979        M != MEnd; ++M) {
980     if (Visited.insert(*M))
981       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
982   }
983   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
984   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
985 
986   // Add the linker options metadata flag.
987   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
988                             llvm::MDNode::get(getLLVMContext(),
989                                               LinkerOptionsMetadata));
990 }
991 
992 void CodeGenModule::EmitDeferred() {
993   // Emit code for any potentially referenced deferred decls.  Since a
994   // previously unused static decl may become used during the generation of code
995   // for a static function, iterate until no changes are made.
996 
997   while (true) {
998     if (!DeferredVTables.empty()) {
999       EmitDeferredVTables();
1000 
1001       // Emitting a v-table doesn't directly cause more v-tables to
1002       // become deferred, although it can cause functions to be
1003       // emitted that then need those v-tables.
1004       assert(DeferredVTables.empty());
1005     }
1006 
1007     // Stop if we're out of both deferred v-tables and deferred declarations.
1008     if (DeferredDeclsToEmit.empty()) break;
1009 
1010     DeferredGlobal &G = DeferredDeclsToEmit.back();
1011     GlobalDecl D = G.GD;
1012     llvm::GlobalValue *GV = G.GV;
1013     DeferredDeclsToEmit.pop_back();
1014 
1015     assert(GV == GetGlobalValue(getMangledName(D)));
1016     // Check to see if we've already emitted this.  This is necessary
1017     // for a couple of reasons: first, decls can end up in the
1018     // deferred-decls queue multiple times, and second, decls can end
1019     // up with definitions in unusual ways (e.g. by an extern inline
1020     // function acquiring a strong function redefinition).  Just
1021     // ignore these cases.
1022     if(!GV->isDeclaration())
1023       continue;
1024 
1025     // Otherwise, emit the definition and move on to the next one.
1026     EmitGlobalDefinition(D, GV);
1027   }
1028 }
1029 
1030 void CodeGenModule::EmitGlobalAnnotations() {
1031   if (Annotations.empty())
1032     return;
1033 
1034   // Create a new global variable for the ConstantStruct in the Module.
1035   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1036     Annotations[0]->getType(), Annotations.size()), Annotations);
1037   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1038     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1039     "llvm.global.annotations");
1040   gv->setSection(AnnotationSection);
1041 }
1042 
1043 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1044   llvm::Constant *&AStr = AnnotationStrings[Str];
1045   if (AStr)
1046     return AStr;
1047 
1048   // Not found yet, create a new global.
1049   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1050   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1051     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1052   gv->setSection(AnnotationSection);
1053   gv->setUnnamedAddr(true);
1054   AStr = gv;
1055   return gv;
1056 }
1057 
1058 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1059   SourceManager &SM = getContext().getSourceManager();
1060   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1061   if (PLoc.isValid())
1062     return EmitAnnotationString(PLoc.getFilename());
1063   return EmitAnnotationString(SM.getBufferName(Loc));
1064 }
1065 
1066 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1067   SourceManager &SM = getContext().getSourceManager();
1068   PresumedLoc PLoc = SM.getPresumedLoc(L);
1069   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1070     SM.getExpansionLineNumber(L);
1071   return llvm::ConstantInt::get(Int32Ty, LineNo);
1072 }
1073 
1074 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1075                                                 const AnnotateAttr *AA,
1076                                                 SourceLocation L) {
1077   // Get the globals for file name, annotation, and the line number.
1078   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1079                  *UnitGV = EmitAnnotationUnit(L),
1080                  *LineNoCst = EmitAnnotationLineNo(L);
1081 
1082   // Create the ConstantStruct for the global annotation.
1083   llvm::Constant *Fields[4] = {
1084     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1085     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1086     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1087     LineNoCst
1088   };
1089   return llvm::ConstantStruct::getAnon(Fields);
1090 }
1091 
1092 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1093                                          llvm::GlobalValue *GV) {
1094   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1095   // Get the struct elements for these annotations.
1096   for (specific_attr_iterator<AnnotateAttr>
1097        ai = D->specific_attr_begin<AnnotateAttr>(),
1098        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1099     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1100 }
1101 
1102 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1103   // Never defer when EmitAllDecls is specified.
1104   if (LangOpts.EmitAllDecls)
1105     return false;
1106 
1107   return !getContext().DeclMustBeEmitted(Global);
1108 }
1109 
1110 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1111     const CXXUuidofExpr* E) {
1112   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1113   // well-formed.
1114   StringRef Uuid = E->getUuidAsStringRef(Context);
1115   std::string Name = "_GUID_" + Uuid.lower();
1116   std::replace(Name.begin(), Name.end(), '-', '_');
1117 
1118   // Look for an existing global.
1119   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1120     return GV;
1121 
1122   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1123   assert(Init && "failed to initialize as constant");
1124 
1125   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1126       getModule(), Init->getType(),
1127       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1128   return GV;
1129 }
1130 
1131 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1132   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1133   assert(AA && "No alias?");
1134 
1135   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1136 
1137   // See if there is already something with the target's name in the module.
1138   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1139   if (Entry) {
1140     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1141     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1142   }
1143 
1144   llvm::Constant *Aliasee;
1145   if (isa<llvm::FunctionType>(DeclTy))
1146     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1147                                       GlobalDecl(cast<FunctionDecl>(VD)),
1148                                       /*ForVTable=*/false);
1149   else
1150     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1151                                     llvm::PointerType::getUnqual(DeclTy), 0);
1152 
1153   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1154   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1155   WeakRefReferences.insert(F);
1156 
1157   return Aliasee;
1158 }
1159 
1160 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1161   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1162 
1163   // Weak references don't produce any output by themselves.
1164   if (Global->hasAttr<WeakRefAttr>())
1165     return;
1166 
1167   // If this is an alias definition (which otherwise looks like a declaration)
1168   // emit it now.
1169   if (Global->hasAttr<AliasAttr>())
1170     return EmitAliasDefinition(GD);
1171 
1172   // If this is CUDA, be selective about which declarations we emit.
1173   if (LangOpts.CUDA) {
1174     if (CodeGenOpts.CUDAIsDevice) {
1175       if (!Global->hasAttr<CUDADeviceAttr>() &&
1176           !Global->hasAttr<CUDAGlobalAttr>() &&
1177           !Global->hasAttr<CUDAConstantAttr>() &&
1178           !Global->hasAttr<CUDASharedAttr>())
1179         return;
1180     } else {
1181       if (!Global->hasAttr<CUDAHostAttr>() && (
1182             Global->hasAttr<CUDADeviceAttr>() ||
1183             Global->hasAttr<CUDAConstantAttr>() ||
1184             Global->hasAttr<CUDASharedAttr>()))
1185         return;
1186     }
1187   }
1188 
1189   // Ignore declarations, they will be emitted on their first use.
1190   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1191     // Forward declarations are emitted lazily on first use.
1192     if (!FD->doesThisDeclarationHaveABody()) {
1193       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1194         return;
1195 
1196       const FunctionDecl *InlineDefinition = 0;
1197       FD->getBody(InlineDefinition);
1198 
1199       StringRef MangledName = getMangledName(GD);
1200       DeferredDecls.erase(MangledName);
1201       EmitGlobalDefinition(InlineDefinition);
1202       return;
1203     }
1204   } else {
1205     const VarDecl *VD = cast<VarDecl>(Global);
1206     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1207 
1208     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1209       return;
1210   }
1211 
1212   // Defer code generation when possible if this is a static definition, inline
1213   // function etc.  These we only want to emit if they are used.
1214   if (!MayDeferGeneration(Global)) {
1215     // Emit the definition if it can't be deferred.
1216     EmitGlobalDefinition(GD);
1217     return;
1218   }
1219 
1220   // If we're deferring emission of a C++ variable with an
1221   // initializer, remember the order in which it appeared in the file.
1222   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1223       cast<VarDecl>(Global)->hasInit()) {
1224     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1225     CXXGlobalInits.push_back(0);
1226   }
1227 
1228   // If the value has already been used, add it directly to the
1229   // DeferredDeclsToEmit list.
1230   StringRef MangledName = getMangledName(GD);
1231   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1232     addDeferredDeclToEmit(GV, GD);
1233   else {
1234     // Otherwise, remember that we saw a deferred decl with this name.  The
1235     // first use of the mangled name will cause it to move into
1236     // DeferredDeclsToEmit.
1237     DeferredDecls[MangledName] = GD;
1238   }
1239 }
1240 
1241 namespace {
1242   struct FunctionIsDirectlyRecursive :
1243     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1244     const StringRef Name;
1245     const Builtin::Context &BI;
1246     bool Result;
1247     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1248       Name(N), BI(C), Result(false) {
1249     }
1250     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1251 
1252     bool TraverseCallExpr(CallExpr *E) {
1253       const FunctionDecl *FD = E->getDirectCallee();
1254       if (!FD)
1255         return true;
1256       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1257       if (Attr && Name == Attr->getLabel()) {
1258         Result = true;
1259         return false;
1260       }
1261       unsigned BuiltinID = FD->getBuiltinID();
1262       if (!BuiltinID)
1263         return true;
1264       StringRef BuiltinName = BI.GetName(BuiltinID);
1265       if (BuiltinName.startswith("__builtin_") &&
1266           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1267         Result = true;
1268         return false;
1269       }
1270       return true;
1271     }
1272   };
1273 }
1274 
1275 // isTriviallyRecursive - Check if this function calls another
1276 // decl that, because of the asm attribute or the other decl being a builtin,
1277 // ends up pointing to itself.
1278 bool
1279 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1280   StringRef Name;
1281   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1282     // asm labels are a special kind of mangling we have to support.
1283     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1284     if (!Attr)
1285       return false;
1286     Name = Attr->getLabel();
1287   } else {
1288     Name = FD->getName();
1289   }
1290 
1291   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1292   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1293   return Walker.Result;
1294 }
1295 
1296 bool
1297 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1298   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1299     return true;
1300   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1301   if (CodeGenOpts.OptimizationLevel == 0 &&
1302       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1303     return false;
1304   // PR9614. Avoid cases where the source code is lying to us. An available
1305   // externally function should have an equivalent function somewhere else,
1306   // but a function that calls itself is clearly not equivalent to the real
1307   // implementation.
1308   // This happens in glibc's btowc and in some configure checks.
1309   return !isTriviallyRecursive(F);
1310 }
1311 
1312 /// If the type for the method's class was generated by
1313 /// CGDebugInfo::createContextChain(), the cache contains only a
1314 /// limited DIType without any declarations. Since EmitFunctionStart()
1315 /// needs to find the canonical declaration for each method, we need
1316 /// to construct the complete type prior to emitting the method.
1317 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1318   if (!D->isInstance())
1319     return;
1320 
1321   if (CGDebugInfo *DI = getModuleDebugInfo())
1322     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1323       const PointerType *ThisPtr =
1324         cast<PointerType>(D->getThisType(getContext()));
1325       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1326     }
1327 }
1328 
1329 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1330   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1331 
1332   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1333                                  Context.getSourceManager(),
1334                                  "Generating code for declaration");
1335 
1336   if (isa<FunctionDecl>(D)) {
1337     // At -O0, don't generate IR for functions with available_externally
1338     // linkage.
1339     if (!shouldEmitFunction(GD))
1340       return;
1341 
1342     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1343       CompleteDIClassType(Method);
1344       // Make sure to emit the definition(s) before we emit the thunks.
1345       // This is necessary for the generation of certain thunks.
1346       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1347         EmitCXXConstructor(CD, GD.getCtorType());
1348       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1349         EmitCXXDestructor(DD, GD.getDtorType());
1350       else
1351         EmitGlobalFunctionDefinition(GD, GV);
1352 
1353       if (Method->isVirtual())
1354         getVTables().EmitThunks(GD);
1355 
1356       return;
1357     }
1358 
1359     return EmitGlobalFunctionDefinition(GD, GV);
1360   }
1361 
1362   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1363     return EmitGlobalVarDefinition(VD);
1364 
1365   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1366 }
1367 
1368 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1369 /// module, create and return an llvm Function with the specified type. If there
1370 /// is something in the module with the specified name, return it potentially
1371 /// bitcasted to the right type.
1372 ///
1373 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1374 /// to set the attributes on the function when it is first created.
1375 llvm::Constant *
1376 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1377                                        llvm::Type *Ty,
1378                                        GlobalDecl GD, bool ForVTable,
1379                                        bool DontDefer,
1380                                        llvm::AttributeSet ExtraAttrs) {
1381   const Decl *D = GD.getDecl();
1382 
1383   // Lookup the entry, lazily creating it if necessary.
1384   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1385   if (Entry) {
1386     if (WeakRefReferences.erase(Entry)) {
1387       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1388       if (FD && !FD->hasAttr<WeakAttr>())
1389         Entry->setLinkage(llvm::Function::ExternalLinkage);
1390     }
1391 
1392     if (Entry->getType()->getElementType() == Ty)
1393       return Entry;
1394 
1395     // Make sure the result is of the correct type.
1396     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1397   }
1398 
1399   // This function doesn't have a complete type (for example, the return
1400   // type is an incomplete struct). Use a fake type instead, and make
1401   // sure not to try to set attributes.
1402   bool IsIncompleteFunction = false;
1403 
1404   llvm::FunctionType *FTy;
1405   if (isa<llvm::FunctionType>(Ty)) {
1406     FTy = cast<llvm::FunctionType>(Ty);
1407   } else {
1408     FTy = llvm::FunctionType::get(VoidTy, false);
1409     IsIncompleteFunction = true;
1410   }
1411 
1412   llvm::Function *F = llvm::Function::Create(FTy,
1413                                              llvm::Function::ExternalLinkage,
1414                                              MangledName, &getModule());
1415   assert(F->getName() == MangledName && "name was uniqued!");
1416   if (D)
1417     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1418   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1419     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1420     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1421                      llvm::AttributeSet::get(VMContext,
1422                                              llvm::AttributeSet::FunctionIndex,
1423                                              B));
1424   }
1425 
1426   if (!DontDefer) {
1427     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1428     // each other bottoming out with the base dtor.  Therefore we emit non-base
1429     // dtors on usage, even if there is no dtor definition in the TU.
1430     if (D && isa<CXXDestructorDecl>(D) &&
1431         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1432                                            GD.getDtorType()))
1433       addDeferredDeclToEmit(F, GD);
1434 
1435     // This is the first use or definition of a mangled name.  If there is a
1436     // deferred decl with this name, remember that we need to emit it at the end
1437     // of the file.
1438     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1439     if (DDI != DeferredDecls.end()) {
1440       // Move the potentially referenced deferred decl to the
1441       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1442       // don't need it anymore).
1443       addDeferredDeclToEmit(F, DDI->second);
1444       DeferredDecls.erase(DDI);
1445 
1446       // Otherwise, if this is a sized deallocation function, emit a weak
1447       // definition
1448       // for it at the end of the translation unit.
1449     } else if (D && cast<FunctionDecl>(D)
1450                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1451       addDeferredDeclToEmit(F, GD);
1452 
1453       // Otherwise, there are cases we have to worry about where we're
1454       // using a declaration for which we must emit a definition but where
1455       // we might not find a top-level definition:
1456       //   - member functions defined inline in their classes
1457       //   - friend functions defined inline in some class
1458       //   - special member functions with implicit definitions
1459       // If we ever change our AST traversal to walk into class methods,
1460       // this will be unnecessary.
1461       //
1462       // We also don't emit a definition for a function if it's going to be an
1463       // entry
1464       // in a vtable, unless it's already marked as used.
1465     } else if (getLangOpts().CPlusPlus && D) {
1466       // Look for a declaration that's lexically in a record.
1467       const FunctionDecl *FD = cast<FunctionDecl>(D);
1468       FD = FD->getMostRecentDecl();
1469       do {
1470         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1471           if (FD->isImplicit() && !ForVTable) {
1472             assert(FD->isUsed() &&
1473                    "Sema didn't mark implicit function as used!");
1474             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1475             break;
1476           } else if (FD->doesThisDeclarationHaveABody()) {
1477             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1478             break;
1479           }
1480         }
1481         FD = FD->getPreviousDecl();
1482       } while (FD);
1483     }
1484   }
1485 
1486   // Make sure the result is of the requested type.
1487   if (!IsIncompleteFunction) {
1488     assert(F->getType()->getElementType() == Ty);
1489     return F;
1490   }
1491 
1492   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1493   return llvm::ConstantExpr::getBitCast(F, PTy);
1494 }
1495 
1496 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1497 /// non-null, then this function will use the specified type if it has to
1498 /// create it (this occurs when we see a definition of the function).
1499 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1500                                                  llvm::Type *Ty,
1501                                                  bool ForVTable,
1502                                                  bool DontDefer) {
1503   // If there was no specific requested type, just convert it now.
1504   if (!Ty)
1505     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1506 
1507   StringRef MangledName = getMangledName(GD);
1508   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1509 }
1510 
1511 /// CreateRuntimeFunction - Create a new runtime function with the specified
1512 /// type and name.
1513 llvm::Constant *
1514 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1515                                      StringRef Name,
1516                                      llvm::AttributeSet ExtraAttrs) {
1517   llvm::Constant *C =
1518       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1519                               /*DontDefer=*/false, ExtraAttrs);
1520   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1521     if (F->empty())
1522       F->setCallingConv(getRuntimeCC());
1523   return C;
1524 }
1525 
1526 /// isTypeConstant - Determine whether an object of this type can be emitted
1527 /// as a constant.
1528 ///
1529 /// If ExcludeCtor is true, the duration when the object's constructor runs
1530 /// will not be considered. The caller will need to verify that the object is
1531 /// not written to during its construction.
1532 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1533   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1534     return false;
1535 
1536   if (Context.getLangOpts().CPlusPlus) {
1537     if (const CXXRecordDecl *Record
1538           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1539       return ExcludeCtor && !Record->hasMutableFields() &&
1540              Record->hasTrivialDestructor();
1541   }
1542 
1543   return true;
1544 }
1545 
1546 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1547 /// create and return an llvm GlobalVariable with the specified type.  If there
1548 /// is something in the module with the specified name, return it potentially
1549 /// bitcasted to the right type.
1550 ///
1551 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1552 /// to set the attributes on the global when it is first created.
1553 llvm::Constant *
1554 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1555                                      llvm::PointerType *Ty,
1556                                      const VarDecl *D,
1557                                      bool UnnamedAddr) {
1558   // Lookup the entry, lazily creating it if necessary.
1559   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1560   if (Entry) {
1561     if (WeakRefReferences.erase(Entry)) {
1562       if (D && !D->hasAttr<WeakAttr>())
1563         Entry->setLinkage(llvm::Function::ExternalLinkage);
1564     }
1565 
1566     if (UnnamedAddr)
1567       Entry->setUnnamedAddr(true);
1568 
1569     if (Entry->getType() == Ty)
1570       return Entry;
1571 
1572     // Make sure the result is of the correct type.
1573     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1574       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1575 
1576     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1577   }
1578 
1579   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1580   llvm::GlobalVariable *GV =
1581     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1582                              llvm::GlobalValue::ExternalLinkage,
1583                              0, MangledName, 0,
1584                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1585 
1586   // This is the first use or definition of a mangled name.  If there is a
1587   // deferred decl with this name, remember that we need to emit it at the end
1588   // of the file.
1589   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1590   if (DDI != DeferredDecls.end()) {
1591     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1592     // list, and remove it from DeferredDecls (since we don't need it anymore).
1593     addDeferredDeclToEmit(GV, DDI->second);
1594     DeferredDecls.erase(DDI);
1595   }
1596 
1597   // Handle things which are present even on external declarations.
1598   if (D) {
1599     // FIXME: This code is overly simple and should be merged with other global
1600     // handling.
1601     GV->setConstant(isTypeConstant(D->getType(), false));
1602 
1603     // Set linkage and visibility in case we never see a definition.
1604     LinkageInfo LV = D->getLinkageAndVisibility();
1605     if (LV.getLinkage() != ExternalLinkage) {
1606       // Don't set internal linkage on declarations.
1607     } else {
1608       if (D->hasAttr<DLLImportAttr>())
1609         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1610       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1611         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1612 
1613       // Set visibility on a declaration only if it's explicit.
1614       if (LV.isVisibilityExplicit())
1615         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1616     }
1617 
1618     if (D->getTLSKind()) {
1619       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1620         CXXThreadLocals.push_back(std::make_pair(D, GV));
1621       setTLSMode(GV, *D);
1622     }
1623 
1624     // If required by the ABI, treat declarations of static data members with
1625     // inline initializers as definitions.
1626     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1627         D->isStaticDataMember() && D->hasInit() &&
1628         !D->isThisDeclarationADefinition())
1629       EmitGlobalVarDefinition(D);
1630   }
1631 
1632   if (AddrSpace != Ty->getAddressSpace())
1633     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1634 
1635   return GV;
1636 }
1637 
1638 
1639 llvm::GlobalVariable *
1640 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1641                                       llvm::Type *Ty,
1642                                       llvm::GlobalValue::LinkageTypes Linkage) {
1643   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1644   llvm::GlobalVariable *OldGV = 0;
1645 
1646 
1647   if (GV) {
1648     // Check if the variable has the right type.
1649     if (GV->getType()->getElementType() == Ty)
1650       return GV;
1651 
1652     // Because C++ name mangling, the only way we can end up with an already
1653     // existing global with the same name is if it has been declared extern "C".
1654     assert(GV->isDeclaration() && "Declaration has wrong type!");
1655     OldGV = GV;
1656   }
1657 
1658   // Create a new variable.
1659   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1660                                 Linkage, 0, Name);
1661 
1662   if (OldGV) {
1663     // Replace occurrences of the old variable if needed.
1664     GV->takeName(OldGV);
1665 
1666     if (!OldGV->use_empty()) {
1667       llvm::Constant *NewPtrForOldDecl =
1668       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1669       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1670     }
1671 
1672     OldGV->eraseFromParent();
1673   }
1674 
1675   return GV;
1676 }
1677 
1678 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1679 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1680 /// then it will be created with the specified type instead of whatever the
1681 /// normal requested type would be.
1682 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1683                                                   llvm::Type *Ty) {
1684   assert(D->hasGlobalStorage() && "Not a global variable");
1685   QualType ASTTy = D->getType();
1686   if (Ty == 0)
1687     Ty = getTypes().ConvertTypeForMem(ASTTy);
1688 
1689   llvm::PointerType *PTy =
1690     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1691 
1692   StringRef MangledName = getMangledName(D);
1693   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1694 }
1695 
1696 /// CreateRuntimeVariable - Create a new runtime global variable with the
1697 /// specified type and name.
1698 llvm::Constant *
1699 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1700                                      StringRef Name) {
1701   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1702                                true);
1703 }
1704 
1705 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1706   assert(!D->getInit() && "Cannot emit definite definitions here!");
1707 
1708   if (MayDeferGeneration(D)) {
1709     // If we have not seen a reference to this variable yet, place it
1710     // into the deferred declarations table to be emitted if needed
1711     // later.
1712     StringRef MangledName = getMangledName(D);
1713     if (!GetGlobalValue(MangledName)) {
1714       DeferredDecls[MangledName] = D;
1715       return;
1716     }
1717   }
1718 
1719   // The tentative definition is the only definition.
1720   EmitGlobalVarDefinition(D);
1721 }
1722 
1723 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1724     return Context.toCharUnitsFromBits(
1725       TheDataLayout.getTypeStoreSizeInBits(Ty));
1726 }
1727 
1728 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1729                                                  unsigned AddrSpace) {
1730   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1731     if (D->hasAttr<CUDAConstantAttr>())
1732       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1733     else if (D->hasAttr<CUDASharedAttr>())
1734       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1735     else
1736       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1737   }
1738 
1739   return AddrSpace;
1740 }
1741 
1742 template<typename SomeDecl>
1743 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1744                                                llvm::GlobalValue *GV) {
1745   if (!getLangOpts().CPlusPlus)
1746     return;
1747 
1748   // Must have 'used' attribute, or else inline assembly can't rely on
1749   // the name existing.
1750   if (!D->template hasAttr<UsedAttr>())
1751     return;
1752 
1753   // Must have internal linkage and an ordinary name.
1754   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1755     return;
1756 
1757   // Must be in an extern "C" context. Entities declared directly within
1758   // a record are not extern "C" even if the record is in such a context.
1759   const SomeDecl *First = D->getFirstDecl();
1760   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1761     return;
1762 
1763   // OK, this is an internal linkage entity inside an extern "C" linkage
1764   // specification. Make a note of that so we can give it the "expected"
1765   // mangled name if nothing else is using that name.
1766   std::pair<StaticExternCMap::iterator, bool> R =
1767       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1768 
1769   // If we have multiple internal linkage entities with the same name
1770   // in extern "C" regions, none of them gets that name.
1771   if (!R.second)
1772     R.first->second = 0;
1773 }
1774 
1775 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1776   llvm::Constant *Init = 0;
1777   QualType ASTTy = D->getType();
1778   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1779   bool NeedsGlobalCtor = false;
1780   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1781 
1782   const VarDecl *InitDecl;
1783   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1784 
1785   if (!InitExpr) {
1786     // This is a tentative definition; tentative definitions are
1787     // implicitly initialized with { 0 }.
1788     //
1789     // Note that tentative definitions are only emitted at the end of
1790     // a translation unit, so they should never have incomplete
1791     // type. In addition, EmitTentativeDefinition makes sure that we
1792     // never attempt to emit a tentative definition if a real one
1793     // exists. A use may still exists, however, so we still may need
1794     // to do a RAUW.
1795     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1796     Init = EmitNullConstant(D->getType());
1797   } else {
1798     initializedGlobalDecl = GlobalDecl(D);
1799     Init = EmitConstantInit(*InitDecl);
1800 
1801     if (!Init) {
1802       QualType T = InitExpr->getType();
1803       if (D->getType()->isReferenceType())
1804         T = D->getType();
1805 
1806       if (getLangOpts().CPlusPlus) {
1807         Init = EmitNullConstant(T);
1808         NeedsGlobalCtor = true;
1809       } else {
1810         ErrorUnsupported(D, "static initializer");
1811         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1812       }
1813     } else {
1814       // We don't need an initializer, so remove the entry for the delayed
1815       // initializer position (just in case this entry was delayed) if we
1816       // also don't need to register a destructor.
1817       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1818         DelayedCXXInitPosition.erase(D);
1819     }
1820   }
1821 
1822   llvm::Type* InitType = Init->getType();
1823   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1824 
1825   // Strip off a bitcast if we got one back.
1826   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1827     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1828            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1829            // All zero index gep.
1830            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1831     Entry = CE->getOperand(0);
1832   }
1833 
1834   // Entry is now either a Function or GlobalVariable.
1835   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1836 
1837   // We have a definition after a declaration with the wrong type.
1838   // We must make a new GlobalVariable* and update everything that used OldGV
1839   // (a declaration or tentative definition) with the new GlobalVariable*
1840   // (which will be a definition).
1841   //
1842   // This happens if there is a prototype for a global (e.g.
1843   // "extern int x[];") and then a definition of a different type (e.g.
1844   // "int x[10];"). This also happens when an initializer has a different type
1845   // from the type of the global (this happens with unions).
1846   if (GV == 0 ||
1847       GV->getType()->getElementType() != InitType ||
1848       GV->getType()->getAddressSpace() !=
1849        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1850 
1851     // Move the old entry aside so that we'll create a new one.
1852     Entry->setName(StringRef());
1853 
1854     // Make a new global with the correct type, this is now guaranteed to work.
1855     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1856 
1857     // Replace all uses of the old global with the new global
1858     llvm::Constant *NewPtrForOldDecl =
1859         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1860     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1861 
1862     // Erase the old global, since it is no longer used.
1863     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1864   }
1865 
1866   MaybeHandleStaticInExternC(D, GV);
1867 
1868   if (D->hasAttr<AnnotateAttr>())
1869     AddGlobalAnnotations(D, GV);
1870 
1871   GV->setInitializer(Init);
1872 
1873   // If it is safe to mark the global 'constant', do so now.
1874   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1875                   isTypeConstant(D->getType(), true));
1876 
1877   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1878 
1879   // Set the llvm linkage type as appropriate.
1880   llvm::GlobalValue::LinkageTypes Linkage =
1881     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1882   GV->setLinkage(Linkage);
1883 
1884   // If required by the ABI, give definitions of static data members with inline
1885   // initializers linkonce_odr linkage.
1886   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1887       D->isStaticDataMember() && InitExpr &&
1888       !InitDecl->isThisDeclarationADefinition())
1889     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1890 
1891   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1892     // common vars aren't constant even if declared const.
1893     GV->setConstant(false);
1894 
1895   SetCommonAttributes(D, GV);
1896 
1897   // Emit the initializer function if necessary.
1898   if (NeedsGlobalCtor || NeedsGlobalDtor)
1899     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1900 
1901   // If we are compiling with ASan, add metadata indicating dynamically
1902   // initialized globals.
1903   if (SanOpts.Address && NeedsGlobalCtor) {
1904     llvm::Module &M = getModule();
1905 
1906     llvm::NamedMDNode *DynamicInitializers =
1907         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1908     llvm::Value *GlobalToAdd[] = { GV };
1909     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1910     DynamicInitializers->addOperand(ThisGlobal);
1911   }
1912 
1913   // Emit global variable debug information.
1914   if (CGDebugInfo *DI = getModuleDebugInfo())
1915     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1916       DI->EmitGlobalVariable(GV, D);
1917 }
1918 
1919 llvm::GlobalValue::LinkageTypes
1920 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1921   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1922   if (Linkage == GVA_Internal)
1923     return llvm::Function::InternalLinkage;
1924   else if (D->hasAttr<DLLImportAttr>())
1925     return llvm::Function::DLLImportLinkage;
1926   else if (D->hasAttr<DLLExportAttr>())
1927     return llvm::Function::DLLExportLinkage;
1928   else if (D->hasAttr<SelectAnyAttr>()) {
1929     // selectany symbols are externally visible, so use weak instead of
1930     // linkonce.  MSVC optimizes away references to const selectany globals, so
1931     // all definitions should be the same and ODR linkage should be used.
1932     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1933     return llvm::GlobalVariable::WeakODRLinkage;
1934   } else if (D->hasAttr<WeakAttr>()) {
1935     if (isConstant)
1936       return llvm::GlobalVariable::WeakODRLinkage;
1937     else
1938       return llvm::GlobalVariable::WeakAnyLinkage;
1939   } else if (Linkage == GVA_TemplateInstantiation ||
1940              Linkage == GVA_ExplicitTemplateInstantiation)
1941     return llvm::GlobalVariable::WeakODRLinkage;
1942   else if (!getLangOpts().CPlusPlus &&
1943            ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) ||
1944              D->hasAttr<CommonAttr>()) &&
1945            !D->hasExternalStorage() && !D->getInit() &&
1946            !D->hasAttr<SectionAttr>() && !D->getTLSKind() &&
1947            !D->hasAttr<WeakImportAttr>()) {
1948     // Thread local vars aren't considered common linkage.
1949     return llvm::GlobalVariable::CommonLinkage;
1950   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1951              getTarget().getTriple().isMacOSX())
1952     // On Darwin, the backing variable for a C++11 thread_local variable always
1953     // has internal linkage; all accesses should just be calls to the
1954     // Itanium-specified entry point, which has the normal linkage of the
1955     // variable.
1956     return llvm::GlobalValue::InternalLinkage;
1957   return llvm::GlobalVariable::ExternalLinkage;
1958 }
1959 
1960 /// Replace the uses of a function that was declared with a non-proto type.
1961 /// We want to silently drop extra arguments from call sites
1962 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1963                                           llvm::Function *newFn) {
1964   // Fast path.
1965   if (old->use_empty()) return;
1966 
1967   llvm::Type *newRetTy = newFn->getReturnType();
1968   SmallVector<llvm::Value*, 4> newArgs;
1969 
1970   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1971          ui != ue; ) {
1972     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1973     llvm::User *user = *use;
1974 
1975     // Recognize and replace uses of bitcasts.  Most calls to
1976     // unprototyped functions will use bitcasts.
1977     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1978       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1979         replaceUsesOfNonProtoConstant(bitcast, newFn);
1980       continue;
1981     }
1982 
1983     // Recognize calls to the function.
1984     llvm::CallSite callSite(user);
1985     if (!callSite) continue;
1986     if (!callSite.isCallee(use)) continue;
1987 
1988     // If the return types don't match exactly, then we can't
1989     // transform this call unless it's dead.
1990     if (callSite->getType() != newRetTy && !callSite->use_empty())
1991       continue;
1992 
1993     // Get the call site's attribute list.
1994     SmallVector<llvm::AttributeSet, 8> newAttrs;
1995     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1996 
1997     // Collect any return attributes from the call.
1998     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1999       newAttrs.push_back(
2000         llvm::AttributeSet::get(newFn->getContext(),
2001                                 oldAttrs.getRetAttributes()));
2002 
2003     // If the function was passed too few arguments, don't transform.
2004     unsigned newNumArgs = newFn->arg_size();
2005     if (callSite.arg_size() < newNumArgs) continue;
2006 
2007     // If extra arguments were passed, we silently drop them.
2008     // If any of the types mismatch, we don't transform.
2009     unsigned argNo = 0;
2010     bool dontTransform = false;
2011     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2012            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2013       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2014         dontTransform = true;
2015         break;
2016       }
2017 
2018       // Add any parameter attributes.
2019       if (oldAttrs.hasAttributes(argNo + 1))
2020         newAttrs.
2021           push_back(llvm::
2022                     AttributeSet::get(newFn->getContext(),
2023                                       oldAttrs.getParamAttributes(argNo + 1)));
2024     }
2025     if (dontTransform)
2026       continue;
2027 
2028     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2029       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2030                                                  oldAttrs.getFnAttributes()));
2031 
2032     // Okay, we can transform this.  Create the new call instruction and copy
2033     // over the required information.
2034     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2035 
2036     llvm::CallSite newCall;
2037     if (callSite.isCall()) {
2038       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2039                                        callSite.getInstruction());
2040     } else {
2041       llvm::InvokeInst *oldInvoke =
2042         cast<llvm::InvokeInst>(callSite.getInstruction());
2043       newCall = llvm::InvokeInst::Create(newFn,
2044                                          oldInvoke->getNormalDest(),
2045                                          oldInvoke->getUnwindDest(),
2046                                          newArgs, "",
2047                                          callSite.getInstruction());
2048     }
2049     newArgs.clear(); // for the next iteration
2050 
2051     if (!newCall->getType()->isVoidTy())
2052       newCall->takeName(callSite.getInstruction());
2053     newCall.setAttributes(
2054                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2055     newCall.setCallingConv(callSite.getCallingConv());
2056 
2057     // Finally, remove the old call, replacing any uses with the new one.
2058     if (!callSite->use_empty())
2059       callSite->replaceAllUsesWith(newCall.getInstruction());
2060 
2061     // Copy debug location attached to CI.
2062     if (!callSite->getDebugLoc().isUnknown())
2063       newCall->setDebugLoc(callSite->getDebugLoc());
2064     callSite->eraseFromParent();
2065   }
2066 }
2067 
2068 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2069 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2070 /// existing call uses of the old function in the module, this adjusts them to
2071 /// call the new function directly.
2072 ///
2073 /// This is not just a cleanup: the always_inline pass requires direct calls to
2074 /// functions to be able to inline them.  If there is a bitcast in the way, it
2075 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2076 /// run at -O0.
2077 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2078                                                       llvm::Function *NewFn) {
2079   // If we're redefining a global as a function, don't transform it.
2080   if (!isa<llvm::Function>(Old)) return;
2081 
2082   replaceUsesOfNonProtoConstant(Old, NewFn);
2083 }
2084 
2085 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2086   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2087   // If we have a definition, this might be a deferred decl. If the
2088   // instantiation is explicit, make sure we emit it at the end.
2089   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2090     GetAddrOfGlobalVar(VD);
2091 
2092   EmitTopLevelDecl(VD);
2093 }
2094 
2095 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2096                                                  llvm::GlobalValue *GV) {
2097   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2098 
2099   // Compute the function info and LLVM type.
2100   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2101   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2102 
2103   // Get or create the prototype for the function.
2104   llvm::Constant *Entry =
2105       GV ? GV
2106          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2107 
2108   // Strip off a bitcast if we got one back.
2109   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2110     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2111     Entry = CE->getOperand(0);
2112   }
2113 
2114   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2115     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2116     return;
2117   }
2118 
2119   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2120     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2121 
2122     // If the types mismatch then we have to rewrite the definition.
2123     assert(OldFn->isDeclaration() &&
2124            "Shouldn't replace non-declaration");
2125 
2126     // F is the Function* for the one with the wrong type, we must make a new
2127     // Function* and update everything that used F (a declaration) with the new
2128     // Function* (which will be a definition).
2129     //
2130     // This happens if there is a prototype for a function
2131     // (e.g. "int f()") and then a definition of a different type
2132     // (e.g. "int f(int x)").  Move the old function aside so that it
2133     // doesn't interfere with GetAddrOfFunction.
2134     OldFn->setName(StringRef());
2135     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2136 
2137     // This might be an implementation of a function without a
2138     // prototype, in which case, try to do special replacement of
2139     // calls which match the new prototype.  The really key thing here
2140     // is that we also potentially drop arguments from the call site
2141     // so as to make a direct call, which makes the inliner happier
2142     // and suppresses a number of optimizer warnings (!) about
2143     // dropping arguments.
2144     if (!OldFn->use_empty()) {
2145       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2146       OldFn->removeDeadConstantUsers();
2147     }
2148 
2149     // Replace uses of F with the Function we will endow with a body.
2150     if (!Entry->use_empty()) {
2151       llvm::Constant *NewPtrForOldDecl =
2152         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2153       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2154     }
2155 
2156     // Ok, delete the old function now, which is dead.
2157     OldFn->eraseFromParent();
2158 
2159     Entry = NewFn;
2160   }
2161 
2162   // We need to set linkage and visibility on the function before
2163   // generating code for it because various parts of IR generation
2164   // want to propagate this information down (e.g. to local static
2165   // declarations).
2166   llvm::Function *Fn = cast<llvm::Function>(Entry);
2167   setFunctionLinkage(GD, Fn);
2168 
2169   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2170   setGlobalVisibility(Fn, D);
2171 
2172   MaybeHandleStaticInExternC(D, Fn);
2173 
2174   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2175 
2176   SetFunctionDefinitionAttributes(D, Fn);
2177   SetLLVMFunctionAttributesForDefinition(D, Fn);
2178 
2179   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2180     AddGlobalCtor(Fn, CA->getPriority());
2181   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2182     AddGlobalDtor(Fn, DA->getPriority());
2183   if (D->hasAttr<AnnotateAttr>())
2184     AddGlobalAnnotations(D, Fn);
2185 }
2186 
2187 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2188   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2189   const AliasAttr *AA = D->getAttr<AliasAttr>();
2190   assert(AA && "Not an alias?");
2191 
2192   StringRef MangledName = getMangledName(GD);
2193 
2194   // If there is a definition in the module, then it wins over the alias.
2195   // This is dubious, but allow it to be safe.  Just ignore the alias.
2196   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2197   if (Entry && !Entry->isDeclaration())
2198     return;
2199 
2200   Aliases.push_back(GD);
2201 
2202   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2203 
2204   // Create a reference to the named value.  This ensures that it is emitted
2205   // if a deferred decl.
2206   llvm::Constant *Aliasee;
2207   if (isa<llvm::FunctionType>(DeclTy))
2208     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2209                                       /*ForVTable=*/false);
2210   else
2211     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2212                                     llvm::PointerType::getUnqual(DeclTy), 0);
2213 
2214   // Create the new alias itself, but don't set a name yet.
2215   llvm::GlobalValue *GA =
2216     new llvm::GlobalAlias(Aliasee->getType(),
2217                           llvm::Function::ExternalLinkage,
2218                           "", Aliasee, &getModule());
2219 
2220   if (Entry) {
2221     assert(Entry->isDeclaration());
2222 
2223     // If there is a declaration in the module, then we had an extern followed
2224     // by the alias, as in:
2225     //   extern int test6();
2226     //   ...
2227     //   int test6() __attribute__((alias("test7")));
2228     //
2229     // Remove it and replace uses of it with the alias.
2230     GA->takeName(Entry);
2231 
2232     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2233                                                           Entry->getType()));
2234     Entry->eraseFromParent();
2235   } else {
2236     GA->setName(MangledName);
2237   }
2238 
2239   // Set attributes which are particular to an alias; this is a
2240   // specialization of the attributes which may be set on a global
2241   // variable/function.
2242   if (D->hasAttr<DLLExportAttr>()) {
2243     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2244       // The dllexport attribute is ignored for undefined symbols.
2245       if (FD->hasBody())
2246         GA->setLinkage(llvm::Function::DLLExportLinkage);
2247     } else {
2248       GA->setLinkage(llvm::Function::DLLExportLinkage);
2249     }
2250   } else if (D->hasAttr<WeakAttr>() ||
2251              D->hasAttr<WeakRefAttr>() ||
2252              D->isWeakImported()) {
2253     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2254   }
2255 
2256   SetCommonAttributes(D, GA);
2257 }
2258 
2259 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2260                                             ArrayRef<llvm::Type*> Tys) {
2261   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2262                                          Tys);
2263 }
2264 
2265 static llvm::StringMapEntry<llvm::Constant*> &
2266 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2267                          const StringLiteral *Literal,
2268                          bool TargetIsLSB,
2269                          bool &IsUTF16,
2270                          unsigned &StringLength) {
2271   StringRef String = Literal->getString();
2272   unsigned NumBytes = String.size();
2273 
2274   // Check for simple case.
2275   if (!Literal->containsNonAsciiOrNull()) {
2276     StringLength = NumBytes;
2277     return Map.GetOrCreateValue(String);
2278   }
2279 
2280   // Otherwise, convert the UTF8 literals into a string of shorts.
2281   IsUTF16 = true;
2282 
2283   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2284   const UTF8 *FromPtr = (const UTF8 *)String.data();
2285   UTF16 *ToPtr = &ToBuf[0];
2286 
2287   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2288                            &ToPtr, ToPtr + NumBytes,
2289                            strictConversion);
2290 
2291   // ConvertUTF8toUTF16 returns the length in ToPtr.
2292   StringLength = ToPtr - &ToBuf[0];
2293 
2294   // Add an explicit null.
2295   *ToPtr = 0;
2296   return Map.
2297     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2298                                (StringLength + 1) * 2));
2299 }
2300 
2301 static llvm::StringMapEntry<llvm::Constant*> &
2302 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2303                        const StringLiteral *Literal,
2304                        unsigned &StringLength) {
2305   StringRef String = Literal->getString();
2306   StringLength = String.size();
2307   return Map.GetOrCreateValue(String);
2308 }
2309 
2310 llvm::Constant *
2311 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2312   unsigned StringLength = 0;
2313   bool isUTF16 = false;
2314   llvm::StringMapEntry<llvm::Constant*> &Entry =
2315     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2316                              getDataLayout().isLittleEndian(),
2317                              isUTF16, StringLength);
2318 
2319   if (llvm::Constant *C = Entry.getValue())
2320     return C;
2321 
2322   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2323   llvm::Constant *Zeros[] = { Zero, Zero };
2324   llvm::Value *V;
2325 
2326   // If we don't already have it, get __CFConstantStringClassReference.
2327   if (!CFConstantStringClassRef) {
2328     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2329     Ty = llvm::ArrayType::get(Ty, 0);
2330     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2331                                            "__CFConstantStringClassReference");
2332     // Decay array -> ptr
2333     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2334     CFConstantStringClassRef = V;
2335   }
2336   else
2337     V = CFConstantStringClassRef;
2338 
2339   QualType CFTy = getContext().getCFConstantStringType();
2340 
2341   llvm::StructType *STy =
2342     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2343 
2344   llvm::Constant *Fields[4];
2345 
2346   // Class pointer.
2347   Fields[0] = cast<llvm::ConstantExpr>(V);
2348 
2349   // Flags.
2350   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2351   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2352     llvm::ConstantInt::get(Ty, 0x07C8);
2353 
2354   // String pointer.
2355   llvm::Constant *C = 0;
2356   if (isUTF16) {
2357     ArrayRef<uint16_t> Arr =
2358       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2359                                      const_cast<char *>(Entry.getKey().data())),
2360                                    Entry.getKey().size() / 2);
2361     C = llvm::ConstantDataArray::get(VMContext, Arr);
2362   } else {
2363     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2364   }
2365 
2366   llvm::GlobalValue::LinkageTypes Linkage;
2367   if (isUTF16)
2368     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2369     Linkage = llvm::GlobalValue::InternalLinkage;
2370   else
2371     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2372     // when using private linkage. It is not clear if this is a bug in ld
2373     // or a reasonable new restriction.
2374     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2375 
2376   // Note: -fwritable-strings doesn't make the backing store strings of
2377   // CFStrings writable. (See <rdar://problem/10657500>)
2378   llvm::GlobalVariable *GV =
2379     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2380                              Linkage, C, ".str");
2381   GV->setUnnamedAddr(true);
2382   // Don't enforce the target's minimum global alignment, since the only use
2383   // of the string is via this class initializer.
2384   if (isUTF16) {
2385     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2386     GV->setAlignment(Align.getQuantity());
2387   } else {
2388     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2389     GV->setAlignment(Align.getQuantity());
2390   }
2391 
2392   // String.
2393   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2394 
2395   if (isUTF16)
2396     // Cast the UTF16 string to the correct type.
2397     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2398 
2399   // String length.
2400   Ty = getTypes().ConvertType(getContext().LongTy);
2401   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2402 
2403   // The struct.
2404   C = llvm::ConstantStruct::get(STy, Fields);
2405   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2406                                 llvm::GlobalVariable::PrivateLinkage, C,
2407                                 "_unnamed_cfstring_");
2408   if (const char *Sect = getTarget().getCFStringSection())
2409     GV->setSection(Sect);
2410   Entry.setValue(GV);
2411 
2412   return GV;
2413 }
2414 
2415 llvm::Constant *
2416 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2417   unsigned StringLength = 0;
2418   llvm::StringMapEntry<llvm::Constant*> &Entry =
2419     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2420 
2421   if (llvm::Constant *C = Entry.getValue())
2422     return C;
2423 
2424   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2425   llvm::Constant *Zeros[] = { Zero, Zero };
2426   llvm::Value *V;
2427   // If we don't already have it, get _NSConstantStringClassReference.
2428   if (!ConstantStringClassRef) {
2429     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2430     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2431     llvm::Constant *GV;
2432     if (LangOpts.ObjCRuntime.isNonFragile()) {
2433       std::string str =
2434         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2435                             : "OBJC_CLASS_$_" + StringClass;
2436       GV = getObjCRuntime().GetClassGlobal(str);
2437       // Make sure the result is of the correct type.
2438       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2439       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2440       ConstantStringClassRef = V;
2441     } else {
2442       std::string str =
2443         StringClass.empty() ? "_NSConstantStringClassReference"
2444                             : "_" + StringClass + "ClassReference";
2445       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2446       GV = CreateRuntimeVariable(PTy, str);
2447       // Decay array -> ptr
2448       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2449       ConstantStringClassRef = V;
2450     }
2451   }
2452   else
2453     V = ConstantStringClassRef;
2454 
2455   if (!NSConstantStringType) {
2456     // Construct the type for a constant NSString.
2457     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2458     D->startDefinition();
2459 
2460     QualType FieldTypes[3];
2461 
2462     // const int *isa;
2463     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2464     // const char *str;
2465     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2466     // unsigned int length;
2467     FieldTypes[2] = Context.UnsignedIntTy;
2468 
2469     // Create fields
2470     for (unsigned i = 0; i < 3; ++i) {
2471       FieldDecl *Field = FieldDecl::Create(Context, D,
2472                                            SourceLocation(),
2473                                            SourceLocation(), 0,
2474                                            FieldTypes[i], /*TInfo=*/0,
2475                                            /*BitWidth=*/0,
2476                                            /*Mutable=*/false,
2477                                            ICIS_NoInit);
2478       Field->setAccess(AS_public);
2479       D->addDecl(Field);
2480     }
2481 
2482     D->completeDefinition();
2483     QualType NSTy = Context.getTagDeclType(D);
2484     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2485   }
2486 
2487   llvm::Constant *Fields[3];
2488 
2489   // Class pointer.
2490   Fields[0] = cast<llvm::ConstantExpr>(V);
2491 
2492   // String pointer.
2493   llvm::Constant *C =
2494     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2495 
2496   llvm::GlobalValue::LinkageTypes Linkage;
2497   bool isConstant;
2498   Linkage = llvm::GlobalValue::PrivateLinkage;
2499   isConstant = !LangOpts.WritableStrings;
2500 
2501   llvm::GlobalVariable *GV =
2502   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2503                            ".str");
2504   GV->setUnnamedAddr(true);
2505   // Don't enforce the target's minimum global alignment, since the only use
2506   // of the string is via this class initializer.
2507   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2508   GV->setAlignment(Align.getQuantity());
2509   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2510 
2511   // String length.
2512   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2513   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2514 
2515   // The struct.
2516   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2517   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2518                                 llvm::GlobalVariable::PrivateLinkage, C,
2519                                 "_unnamed_nsstring_");
2520   // FIXME. Fix section.
2521   if (const char *Sect =
2522         LangOpts.ObjCRuntime.isNonFragile()
2523           ? getTarget().getNSStringNonFragileABISection()
2524           : getTarget().getNSStringSection())
2525     GV->setSection(Sect);
2526   Entry.setValue(GV);
2527 
2528   return GV;
2529 }
2530 
2531 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2532   if (ObjCFastEnumerationStateType.isNull()) {
2533     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2534     D->startDefinition();
2535 
2536     QualType FieldTypes[] = {
2537       Context.UnsignedLongTy,
2538       Context.getPointerType(Context.getObjCIdType()),
2539       Context.getPointerType(Context.UnsignedLongTy),
2540       Context.getConstantArrayType(Context.UnsignedLongTy,
2541                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2542     };
2543 
2544     for (size_t i = 0; i < 4; ++i) {
2545       FieldDecl *Field = FieldDecl::Create(Context,
2546                                            D,
2547                                            SourceLocation(),
2548                                            SourceLocation(), 0,
2549                                            FieldTypes[i], /*TInfo=*/0,
2550                                            /*BitWidth=*/0,
2551                                            /*Mutable=*/false,
2552                                            ICIS_NoInit);
2553       Field->setAccess(AS_public);
2554       D->addDecl(Field);
2555     }
2556 
2557     D->completeDefinition();
2558     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2559   }
2560 
2561   return ObjCFastEnumerationStateType;
2562 }
2563 
2564 llvm::Constant *
2565 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2566   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2567 
2568   // Don't emit it as the address of the string, emit the string data itself
2569   // as an inline array.
2570   if (E->getCharByteWidth() == 1) {
2571     SmallString<64> Str(E->getString());
2572 
2573     // Resize the string to the right size, which is indicated by its type.
2574     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2575     Str.resize(CAT->getSize().getZExtValue());
2576     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2577   }
2578 
2579   llvm::ArrayType *AType =
2580     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2581   llvm::Type *ElemTy = AType->getElementType();
2582   unsigned NumElements = AType->getNumElements();
2583 
2584   // Wide strings have either 2-byte or 4-byte elements.
2585   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2586     SmallVector<uint16_t, 32> Elements;
2587     Elements.reserve(NumElements);
2588 
2589     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2590       Elements.push_back(E->getCodeUnit(i));
2591     Elements.resize(NumElements);
2592     return llvm::ConstantDataArray::get(VMContext, Elements);
2593   }
2594 
2595   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2596   SmallVector<uint32_t, 32> Elements;
2597   Elements.reserve(NumElements);
2598 
2599   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2600     Elements.push_back(E->getCodeUnit(i));
2601   Elements.resize(NumElements);
2602   return llvm::ConstantDataArray::get(VMContext, Elements);
2603 }
2604 
2605 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2606 /// constant array for the given string literal.
2607 llvm::Constant *
2608 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2609   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2610   if (S->isAscii() || S->isUTF8()) {
2611     SmallString<64> Str(S->getString());
2612 
2613     // Resize the string to the right size, which is indicated by its type.
2614     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2615     Str.resize(CAT->getSize().getZExtValue());
2616     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2617   }
2618 
2619   // FIXME: the following does not memoize wide strings.
2620   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2621   llvm::GlobalVariable *GV =
2622     new llvm::GlobalVariable(getModule(),C->getType(),
2623                              !LangOpts.WritableStrings,
2624                              llvm::GlobalValue::PrivateLinkage,
2625                              C,".str");
2626 
2627   GV->setAlignment(Align.getQuantity());
2628   GV->setUnnamedAddr(true);
2629   return GV;
2630 }
2631 
2632 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2633 /// array for the given ObjCEncodeExpr node.
2634 llvm::Constant *
2635 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2636   std::string Str;
2637   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2638 
2639   return GetAddrOfConstantCString(Str);
2640 }
2641 
2642 
2643 /// GenerateWritableString -- Creates storage for a string literal.
2644 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2645                                              bool constant,
2646                                              CodeGenModule &CGM,
2647                                              const char *GlobalName,
2648                                              unsigned Alignment) {
2649   // Create Constant for this string literal. Don't add a '\0'.
2650   llvm::Constant *C =
2651       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2652 
2653   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
2654   unsigned AddrSpace = 0;
2655   if (CGM.getLangOpts().OpenCL)
2656     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2657 
2658   // Create a global variable for this string
2659   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2660       CGM.getModule(), C->getType(), constant,
2661       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2662       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2663   GV->setAlignment(Alignment);
2664   GV->setUnnamedAddr(true);
2665   return GV;
2666 }
2667 
2668 /// GetAddrOfConstantString - Returns a pointer to a character array
2669 /// containing the literal. This contents are exactly that of the
2670 /// given string, i.e. it will not be null terminated automatically;
2671 /// see GetAddrOfConstantCString. Note that whether the result is
2672 /// actually a pointer to an LLVM constant depends on
2673 /// Feature.WriteableStrings.
2674 ///
2675 /// The result has pointer to array type.
2676 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2677                                                        const char *GlobalName,
2678                                                        unsigned Alignment) {
2679   // Get the default prefix if a name wasn't specified.
2680   if (!GlobalName)
2681     GlobalName = ".str";
2682 
2683   if (Alignment == 0)
2684     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2685       .getQuantity();
2686 
2687   // Don't share any string literals if strings aren't constant.
2688   if (LangOpts.WritableStrings)
2689     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2690 
2691   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2692     ConstantStringMap.GetOrCreateValue(Str);
2693 
2694   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2695     if (Alignment > GV->getAlignment()) {
2696       GV->setAlignment(Alignment);
2697     }
2698     return GV;
2699   }
2700 
2701   // Create a global variable for this.
2702   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2703                                                    Alignment);
2704   Entry.setValue(GV);
2705   return GV;
2706 }
2707 
2708 /// GetAddrOfConstantCString - Returns a pointer to a character
2709 /// array containing the literal and a terminating '\0'
2710 /// character. The result has pointer to array type.
2711 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2712                                                         const char *GlobalName,
2713                                                         unsigned Alignment) {
2714   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2715   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2716 }
2717 
2718 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2719     const MaterializeTemporaryExpr *E, const Expr *Init) {
2720   assert((E->getStorageDuration() == SD_Static ||
2721           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2722   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2723 
2724   // If we're not materializing a subobject of the temporary, keep the
2725   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2726   QualType MaterializedType = Init->getType();
2727   if (Init == E->GetTemporaryExpr())
2728     MaterializedType = E->getType();
2729 
2730   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2731   if (Slot)
2732     return Slot;
2733 
2734   // FIXME: If an externally-visible declaration extends multiple temporaries,
2735   // we need to give each temporary the same name in every translation unit (and
2736   // we also need to make the temporaries externally-visible).
2737   SmallString<256> Name;
2738   llvm::raw_svector_ostream Out(Name);
2739   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2740   Out.flush();
2741 
2742   APValue *Value = 0;
2743   if (E->getStorageDuration() == SD_Static) {
2744     // We might have a cached constant initializer for this temporary. Note
2745     // that this might have a different value from the value computed by
2746     // evaluating the initializer if the surrounding constant expression
2747     // modifies the temporary.
2748     Value = getContext().getMaterializedTemporaryValue(E, false);
2749     if (Value && Value->isUninit())
2750       Value = 0;
2751   }
2752 
2753   // Try evaluating it now, it might have a constant initializer.
2754   Expr::EvalResult EvalResult;
2755   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2756       !EvalResult.hasSideEffects())
2757     Value = &EvalResult.Val;
2758 
2759   llvm::Constant *InitialValue = 0;
2760   bool Constant = false;
2761   llvm::Type *Type;
2762   if (Value) {
2763     // The temporary has a constant initializer, use it.
2764     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2765     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2766     Type = InitialValue->getType();
2767   } else {
2768     // No initializer, the initialization will be provided when we
2769     // initialize the declaration which performed lifetime extension.
2770     Type = getTypes().ConvertTypeForMem(MaterializedType);
2771   }
2772 
2773   // Create a global variable for this lifetime-extended temporary.
2774   llvm::GlobalVariable *GV =
2775     new llvm::GlobalVariable(getModule(), Type, Constant,
2776                              llvm::GlobalValue::PrivateLinkage,
2777                              InitialValue, Name.c_str());
2778   GV->setAlignment(
2779       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2780   if (VD->getTLSKind())
2781     setTLSMode(GV, *VD);
2782   Slot = GV;
2783   return GV;
2784 }
2785 
2786 /// EmitObjCPropertyImplementations - Emit information for synthesized
2787 /// properties for an implementation.
2788 void CodeGenModule::EmitObjCPropertyImplementations(const
2789                                                     ObjCImplementationDecl *D) {
2790   for (ObjCImplementationDecl::propimpl_iterator
2791          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2792     ObjCPropertyImplDecl *PID = *i;
2793 
2794     // Dynamic is just for type-checking.
2795     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2796       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2797 
2798       // Determine which methods need to be implemented, some may have
2799       // been overridden. Note that ::isPropertyAccessor is not the method
2800       // we want, that just indicates if the decl came from a
2801       // property. What we want to know is if the method is defined in
2802       // this implementation.
2803       if (!D->getInstanceMethod(PD->getGetterName()))
2804         CodeGenFunction(*this).GenerateObjCGetter(
2805                                  const_cast<ObjCImplementationDecl *>(D), PID);
2806       if (!PD->isReadOnly() &&
2807           !D->getInstanceMethod(PD->getSetterName()))
2808         CodeGenFunction(*this).GenerateObjCSetter(
2809                                  const_cast<ObjCImplementationDecl *>(D), PID);
2810     }
2811   }
2812 }
2813 
2814 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2815   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2816   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2817        ivar; ivar = ivar->getNextIvar())
2818     if (ivar->getType().isDestructedType())
2819       return true;
2820 
2821   return false;
2822 }
2823 
2824 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2825 /// for an implementation.
2826 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2827   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2828   if (needsDestructMethod(D)) {
2829     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2830     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2831     ObjCMethodDecl *DTORMethod =
2832       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2833                              cxxSelector, getContext().VoidTy, 0, D,
2834                              /*isInstance=*/true, /*isVariadic=*/false,
2835                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2836                              /*isDefined=*/false, ObjCMethodDecl::Required);
2837     D->addInstanceMethod(DTORMethod);
2838     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2839     D->setHasDestructors(true);
2840   }
2841 
2842   // If the implementation doesn't have any ivar initializers, we don't need
2843   // a .cxx_construct.
2844   if (D->getNumIvarInitializers() == 0)
2845     return;
2846 
2847   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2848   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2849   // The constructor returns 'self'.
2850   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2851                                                 D->getLocation(),
2852                                                 D->getLocation(),
2853                                                 cxxSelector,
2854                                                 getContext().getObjCIdType(), 0,
2855                                                 D, /*isInstance=*/true,
2856                                                 /*isVariadic=*/false,
2857                                                 /*isPropertyAccessor=*/true,
2858                                                 /*isImplicitlyDeclared=*/true,
2859                                                 /*isDefined=*/false,
2860                                                 ObjCMethodDecl::Required);
2861   D->addInstanceMethod(CTORMethod);
2862   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2863   D->setHasNonZeroConstructors(true);
2864 }
2865 
2866 /// EmitNamespace - Emit all declarations in a namespace.
2867 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2868   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2869        I != E; ++I) {
2870     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2871       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2872           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2873         continue;
2874     EmitTopLevelDecl(*I);
2875   }
2876 }
2877 
2878 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2879 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2880   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2881       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2882     ErrorUnsupported(LSD, "linkage spec");
2883     return;
2884   }
2885 
2886   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2887        I != E; ++I) {
2888     // Meta-data for ObjC class includes references to implemented methods.
2889     // Generate class's method definitions first.
2890     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2891       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2892            MEnd = OID->meth_end();
2893            M != MEnd; ++M)
2894         EmitTopLevelDecl(*M);
2895     }
2896     EmitTopLevelDecl(*I);
2897   }
2898 }
2899 
2900 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2901 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2902   // Ignore dependent declarations.
2903   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2904     return;
2905 
2906   switch (D->getKind()) {
2907   case Decl::CXXConversion:
2908   case Decl::CXXMethod:
2909   case Decl::Function:
2910     // Skip function templates
2911     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2912         cast<FunctionDecl>(D)->isLateTemplateParsed())
2913       return;
2914 
2915     EmitGlobal(cast<FunctionDecl>(D));
2916     break;
2917 
2918   case Decl::Var:
2919     // Skip variable templates
2920     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2921       return;
2922   case Decl::VarTemplateSpecialization:
2923     EmitGlobal(cast<VarDecl>(D));
2924     break;
2925 
2926   // Indirect fields from global anonymous structs and unions can be
2927   // ignored; only the actual variable requires IR gen support.
2928   case Decl::IndirectField:
2929     break;
2930 
2931   // C++ Decls
2932   case Decl::Namespace:
2933     EmitNamespace(cast<NamespaceDecl>(D));
2934     break;
2935     // No code generation needed.
2936   case Decl::UsingShadow:
2937   case Decl::Using:
2938   case Decl::ClassTemplate:
2939   case Decl::VarTemplate:
2940   case Decl::VarTemplatePartialSpecialization:
2941   case Decl::FunctionTemplate:
2942   case Decl::TypeAliasTemplate:
2943   case Decl::Block:
2944   case Decl::Empty:
2945     break;
2946   case Decl::NamespaceAlias:
2947     if (CGDebugInfo *DI = getModuleDebugInfo())
2948         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2949     return;
2950   case Decl::UsingDirective: // using namespace X; [C++]
2951     if (CGDebugInfo *DI = getModuleDebugInfo())
2952       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2953     return;
2954   case Decl::CXXConstructor:
2955     // Skip function templates
2956     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2957         cast<FunctionDecl>(D)->isLateTemplateParsed())
2958       return;
2959 
2960     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2961     break;
2962   case Decl::CXXDestructor:
2963     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2964       return;
2965     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2966     break;
2967 
2968   case Decl::StaticAssert:
2969     // Nothing to do.
2970     break;
2971 
2972   // Objective-C Decls
2973 
2974   // Forward declarations, no (immediate) code generation.
2975   case Decl::ObjCInterface:
2976   case Decl::ObjCCategory:
2977     break;
2978 
2979   case Decl::ObjCProtocol: {
2980     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2981     if (Proto->isThisDeclarationADefinition())
2982       ObjCRuntime->GenerateProtocol(Proto);
2983     break;
2984   }
2985 
2986   case Decl::ObjCCategoryImpl:
2987     // Categories have properties but don't support synthesize so we
2988     // can ignore them here.
2989     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2990     break;
2991 
2992   case Decl::ObjCImplementation: {
2993     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2994     EmitObjCPropertyImplementations(OMD);
2995     EmitObjCIvarInitializations(OMD);
2996     ObjCRuntime->GenerateClass(OMD);
2997     // Emit global variable debug information.
2998     if (CGDebugInfo *DI = getModuleDebugInfo())
2999       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3000         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3001             OMD->getClassInterface()), OMD->getLocation());
3002     break;
3003   }
3004   case Decl::ObjCMethod: {
3005     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3006     // If this is not a prototype, emit the body.
3007     if (OMD->getBody())
3008       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3009     break;
3010   }
3011   case Decl::ObjCCompatibleAlias:
3012     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3013     break;
3014 
3015   case Decl::LinkageSpec:
3016     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3017     break;
3018 
3019   case Decl::FileScopeAsm: {
3020     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3021     StringRef AsmString = AD->getAsmString()->getString();
3022 
3023     const std::string &S = getModule().getModuleInlineAsm();
3024     if (S.empty())
3025       getModule().setModuleInlineAsm(AsmString);
3026     else if (S.end()[-1] == '\n')
3027       getModule().setModuleInlineAsm(S + AsmString.str());
3028     else
3029       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3030     break;
3031   }
3032 
3033   case Decl::Import: {
3034     ImportDecl *Import = cast<ImportDecl>(D);
3035 
3036     // Ignore import declarations that come from imported modules.
3037     if (clang::Module *Owner = Import->getOwningModule()) {
3038       if (getLangOpts().CurrentModule.empty() ||
3039           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3040         break;
3041     }
3042 
3043     ImportedModules.insert(Import->getImportedModule());
3044     break;
3045  }
3046 
3047   default:
3048     // Make sure we handled everything we should, every other kind is a
3049     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3050     // function. Need to recode Decl::Kind to do that easily.
3051     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3052   }
3053 }
3054 
3055 /// Turns the given pointer into a constant.
3056 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3057                                           const void *Ptr) {
3058   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3059   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3060   return llvm::ConstantInt::get(i64, PtrInt);
3061 }
3062 
3063 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3064                                    llvm::NamedMDNode *&GlobalMetadata,
3065                                    GlobalDecl D,
3066                                    llvm::GlobalValue *Addr) {
3067   if (!GlobalMetadata)
3068     GlobalMetadata =
3069       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3070 
3071   // TODO: should we report variant information for ctors/dtors?
3072   llvm::Value *Ops[] = {
3073     Addr,
3074     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3075   };
3076   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3077 }
3078 
3079 /// For each function which is declared within an extern "C" region and marked
3080 /// as 'used', but has internal linkage, create an alias from the unmangled
3081 /// name to the mangled name if possible. People expect to be able to refer
3082 /// to such functions with an unmangled name from inline assembly within the
3083 /// same translation unit.
3084 void CodeGenModule::EmitStaticExternCAliases() {
3085   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3086                                   E = StaticExternCValues.end();
3087        I != E; ++I) {
3088     IdentifierInfo *Name = I->first;
3089     llvm::GlobalValue *Val = I->second;
3090     if (Val && !getModule().getNamedValue(Name->getName()))
3091       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3092                                           Name->getName(), Val, &getModule()));
3093   }
3094 }
3095 
3096 /// Emits metadata nodes associating all the global values in the
3097 /// current module with the Decls they came from.  This is useful for
3098 /// projects using IR gen as a subroutine.
3099 ///
3100 /// Since there's currently no way to associate an MDNode directly
3101 /// with an llvm::GlobalValue, we create a global named metadata
3102 /// with the name 'clang.global.decl.ptrs'.
3103 void CodeGenModule::EmitDeclMetadata() {
3104   llvm::NamedMDNode *GlobalMetadata = 0;
3105 
3106   // StaticLocalDeclMap
3107   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3108          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3109        I != E; ++I) {
3110     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3111     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3112   }
3113 }
3114 
3115 /// Emits metadata nodes for all the local variables in the current
3116 /// function.
3117 void CodeGenFunction::EmitDeclMetadata() {
3118   if (LocalDeclMap.empty()) return;
3119 
3120   llvm::LLVMContext &Context = getLLVMContext();
3121 
3122   // Find the unique metadata ID for this name.
3123   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3124 
3125   llvm::NamedMDNode *GlobalMetadata = 0;
3126 
3127   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3128          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3129     const Decl *D = I->first;
3130     llvm::Value *Addr = I->second;
3131 
3132     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3133       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3134       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3135     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3136       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3137       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3138     }
3139   }
3140 }
3141 
3142 void CodeGenModule::EmitVersionIdentMetadata() {
3143   llvm::NamedMDNode *IdentMetadata =
3144     TheModule.getOrInsertNamedMetadata("llvm.ident");
3145   std::string Version = getClangFullVersion();
3146   llvm::LLVMContext &Ctx = TheModule.getContext();
3147 
3148   llvm::Value *IdentNode[] = {
3149     llvm::MDString::get(Ctx, Version)
3150   };
3151   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3152 }
3153 
3154 void CodeGenModule::EmitCoverageFile() {
3155   if (!getCodeGenOpts().CoverageFile.empty()) {
3156     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3157       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3158       llvm::LLVMContext &Ctx = TheModule.getContext();
3159       llvm::MDString *CoverageFile =
3160           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3161       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3162         llvm::MDNode *CU = CUNode->getOperand(i);
3163         llvm::Value *node[] = { CoverageFile, CU };
3164         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3165         GCov->addOperand(N);
3166       }
3167     }
3168   }
3169 }
3170 
3171 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3172                                                      QualType GuidType) {
3173   // Sema has checked that all uuid strings are of the form
3174   // "12345678-1234-1234-1234-1234567890ab".
3175   assert(Uuid.size() == 36);
3176   for (unsigned i = 0; i < 36; ++i) {
3177     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3178     else                                         assert(isHexDigit(Uuid[i]));
3179   }
3180 
3181   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3182 
3183   llvm::Constant *Field3[8];
3184   for (unsigned Idx = 0; Idx < 8; ++Idx)
3185     Field3[Idx] = llvm::ConstantInt::get(
3186         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3187 
3188   llvm::Constant *Fields[4] = {
3189     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3190     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3191     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3192     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3193   };
3194 
3195   return llvm::ConstantStruct::getAnon(Fields);
3196 }
3197