1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 127 IntPtrTy = llvm::IntegerType::get(LLVMContext, 128 C.getTargetInfo().getMaxPointerWidth()); 129 Int8PtrTy = Int8Ty->getPointerTo(0); 130 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 131 AllocaInt8PtrTy = Int8Ty->getPointerTo( 132 M.getDataLayout().getAllocaAddrSpace()); 133 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 134 135 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 136 137 if (LangOpts.ObjC) 138 createObjCRuntime(); 139 if (LangOpts.OpenCL) 140 createOpenCLRuntime(); 141 if (LangOpts.OpenMP) 142 createOpenMPRuntime(); 143 if (LangOpts.CUDA) 144 createCUDARuntime(); 145 146 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 147 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 148 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 149 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 150 getCXXABI().getMangleContext())); 151 152 // If debug info or coverage generation is enabled, create the CGDebugInfo 153 // object. 154 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 155 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 156 DebugInfo.reset(new CGDebugInfo(*this)); 157 158 Block.GlobalUniqueCount = 0; 159 160 if (C.getLangOpts().ObjC) 161 ObjCData.reset(new ObjCEntrypoints()); 162 163 if (CodeGenOpts.hasProfileClangUse()) { 164 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 165 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 166 if (auto E = ReaderOrErr.takeError()) { 167 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 168 "Could not read profile %0: %1"); 169 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 170 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 171 << EI.message(); 172 }); 173 } else 174 PGOReader = std::move(ReaderOrErr.get()); 175 } 176 177 // If coverage mapping generation is enabled, create the 178 // CoverageMappingModuleGen object. 179 if (CodeGenOpts.CoverageMapping) 180 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 181 } 182 183 CodeGenModule::~CodeGenModule() {} 184 185 void CodeGenModule::createObjCRuntime() { 186 // This is just isGNUFamily(), but we want to force implementors of 187 // new ABIs to decide how best to do this. 188 switch (LangOpts.ObjCRuntime.getKind()) { 189 case ObjCRuntime::GNUstep: 190 case ObjCRuntime::GCC: 191 case ObjCRuntime::ObjFW: 192 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 193 return; 194 195 case ObjCRuntime::FragileMacOSX: 196 case ObjCRuntime::MacOSX: 197 case ObjCRuntime::iOS: 198 case ObjCRuntime::WatchOS: 199 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 200 return; 201 } 202 llvm_unreachable("bad runtime kind"); 203 } 204 205 void CodeGenModule::createOpenCLRuntime() { 206 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 207 } 208 209 void CodeGenModule::createOpenMPRuntime() { 210 // Select a specialized code generation class based on the target, if any. 211 // If it does not exist use the default implementation. 212 switch (getTriple().getArch()) { 213 case llvm::Triple::nvptx: 214 case llvm::Triple::nvptx64: 215 assert(getLangOpts().OpenMPIsDevice && 216 "OpenMP NVPTX is only prepared to deal with device code."); 217 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 218 break; 219 case llvm::Triple::amdgcn: 220 assert(getLangOpts().OpenMPIsDevice && 221 "OpenMP AMDGCN is only prepared to deal with device code."); 222 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 223 break; 224 default: 225 if (LangOpts.OpenMPSimd) 226 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 227 else 228 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 229 break; 230 } 231 } 232 233 void CodeGenModule::createCUDARuntime() { 234 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 235 } 236 237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 238 Replacements[Name] = C; 239 } 240 241 void CodeGenModule::applyReplacements() { 242 for (auto &I : Replacements) { 243 StringRef MangledName = I.first(); 244 llvm::Constant *Replacement = I.second; 245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 246 if (!Entry) 247 continue; 248 auto *OldF = cast<llvm::Function>(Entry); 249 auto *NewF = dyn_cast<llvm::Function>(Replacement); 250 if (!NewF) { 251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 253 } else { 254 auto *CE = cast<llvm::ConstantExpr>(Replacement); 255 assert(CE->getOpcode() == llvm::Instruction::BitCast || 256 CE->getOpcode() == llvm::Instruction::GetElementPtr); 257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 258 } 259 } 260 261 // Replace old with new, but keep the old order. 262 OldF->replaceAllUsesWith(Replacement); 263 if (NewF) { 264 NewF->removeFromParent(); 265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 266 NewF); 267 } 268 OldF->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 273 GlobalValReplacements.push_back(std::make_pair(GV, C)); 274 } 275 276 void CodeGenModule::applyGlobalValReplacements() { 277 for (auto &I : GlobalValReplacements) { 278 llvm::GlobalValue *GV = I.first; 279 llvm::Constant *C = I.second; 280 281 GV->replaceAllUsesWith(C); 282 GV->eraseFromParent(); 283 } 284 } 285 286 // This is only used in aliases that we created and we know they have a 287 // linear structure. 288 static const llvm::GlobalObject *getAliasedGlobal( 289 const llvm::GlobalIndirectSymbol &GIS) { 290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 291 const llvm::Constant *C = &GIS; 292 for (;;) { 293 C = C->stripPointerCasts(); 294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 295 return GO; 296 // stripPointerCasts will not walk over weak aliases. 297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 298 if (!GIS2) 299 return nullptr; 300 if (!Visited.insert(GIS2).second) 301 return nullptr; 302 C = GIS2->getIndirectSymbol(); 303 } 304 } 305 306 void CodeGenModule::checkAliases() { 307 // Check if the constructed aliases are well formed. It is really unfortunate 308 // that we have to do this in CodeGen, but we only construct mangled names 309 // and aliases during codegen. 310 bool Error = false; 311 DiagnosticsEngine &Diags = getDiags(); 312 for (const GlobalDecl &GD : Aliases) { 313 const auto *D = cast<ValueDecl>(GD.getDecl()); 314 SourceLocation Location; 315 bool IsIFunc = D->hasAttr<IFuncAttr>(); 316 if (const Attr *A = D->getDefiningAttr()) 317 Location = A->getLocation(); 318 else 319 llvm_unreachable("Not an alias or ifunc?"); 320 StringRef MangledName = getMangledName(GD); 321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 324 if (!GV) { 325 Error = true; 326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 327 } else if (GV->isDeclaration()) { 328 Error = true; 329 Diags.Report(Location, diag::err_alias_to_undefined) 330 << IsIFunc << IsIFunc; 331 } else if (IsIFunc) { 332 // Check resolver function type. 333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 334 GV->getType()->getPointerElementType()); 335 assert(FTy); 336 if (!FTy->getReturnType()->isPointerTy()) 337 Diags.Report(Location, diag::err_ifunc_resolver_return); 338 } 339 340 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 341 llvm::GlobalValue *AliaseeGV; 342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 344 else 345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 346 347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 348 StringRef AliasSection = SA->getName(); 349 if (AliasSection != AliaseeGV->getSection()) 350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 351 << AliasSection << IsIFunc << IsIFunc; 352 } 353 354 // We have to handle alias to weak aliases in here. LLVM itself disallows 355 // this since the object semantics would not match the IL one. For 356 // compatibility with gcc we implement it by just pointing the alias 357 // to its aliasee's aliasee. We also warn, since the user is probably 358 // expecting the link to be weak. 359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 360 if (GA->isInterposable()) { 361 Diags.Report(Location, diag::warn_alias_to_weak_alias) 362 << GV->getName() << GA->getName() << IsIFunc; 363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 364 GA->getIndirectSymbol(), Alias->getType()); 365 Alias->setIndirectSymbol(Aliasee); 366 } 367 } 368 } 369 if (!Error) 370 return; 371 372 for (const GlobalDecl &GD : Aliases) { 373 StringRef MangledName = getMangledName(GD); 374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 375 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 377 Alias->eraseFromParent(); 378 } 379 } 380 381 void CodeGenModule::clear() { 382 DeferredDeclsToEmit.clear(); 383 if (OpenMPRuntime) 384 OpenMPRuntime->clear(); 385 } 386 387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 388 StringRef MainFile) { 389 if (!hasDiagnostics()) 390 return; 391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 392 if (MainFile.empty()) 393 MainFile = "<stdin>"; 394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 395 } else { 396 if (Mismatched > 0) 397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 398 399 if (Missing > 0) 400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 401 } 402 } 403 404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 405 llvm::Module &M) { 406 if (!LO.VisibilityFromDLLStorageClass) 407 return; 408 409 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 410 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 411 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 413 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 416 CodeGenModule::GetLLVMVisibility( 417 LO.getExternDeclNoDLLStorageClassVisibility()); 418 419 for (llvm::GlobalValue &GV : M.global_values()) { 420 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 421 continue; 422 423 // Reset DSO locality before setting the visibility. This removes 424 // any effects that visibility options and annotations may have 425 // had on the DSO locality. Setting the visibility will implicitly set 426 // appropriate globals to DSO Local; however, this will be pessimistic 427 // w.r.t. to the normal compiler IRGen. 428 GV.setDSOLocal(false); 429 430 if (GV.isDeclarationForLinker()) { 431 GV.setVisibility(GV.getDLLStorageClass() == 432 llvm::GlobalValue::DLLImportStorageClass 433 ? ExternDeclDLLImportVisibility 434 : ExternDeclNoDLLStorageClassVisibility); 435 } else { 436 GV.setVisibility(GV.getDLLStorageClass() == 437 llvm::GlobalValue::DLLExportStorageClass 438 ? DLLExportVisibility 439 : NoDLLStorageClassVisibility); 440 } 441 442 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 443 } 444 } 445 446 void CodeGenModule::Release() { 447 EmitDeferred(); 448 EmitVTablesOpportunistically(); 449 applyGlobalValReplacements(); 450 applyReplacements(); 451 checkAliases(); 452 emitMultiVersionFunctions(); 453 EmitCXXGlobalInitFunc(); 454 EmitCXXGlobalCleanUpFunc(); 455 registerGlobalDtorsWithAtExit(); 456 EmitCXXThreadLocalInitFunc(); 457 if (ObjCRuntime) 458 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 459 AddGlobalCtor(ObjCInitFunction); 460 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 461 CUDARuntime) { 462 if (llvm::Function *CudaCtorFunction = 463 CUDARuntime->makeModuleCtorFunction()) 464 AddGlobalCtor(CudaCtorFunction); 465 } 466 if (OpenMPRuntime) { 467 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 468 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 470 } 471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 472 OpenMPRuntime->clear(); 473 } 474 if (PGOReader) { 475 getModule().setProfileSummary( 476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 477 llvm::ProfileSummary::PSK_Instr); 478 if (PGOStats.hasDiagnostics()) 479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 480 } 481 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 482 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 483 EmitGlobalAnnotations(); 484 EmitStaticExternCAliases(); 485 EmitDeferredUnusedCoverageMappings(); 486 if (CoverageMapping) 487 CoverageMapping->emit(); 488 if (CodeGenOpts.SanitizeCfiCrossDso) { 489 CodeGenFunction(*this).EmitCfiCheckFail(); 490 CodeGenFunction(*this).EmitCfiCheckStub(); 491 } 492 emitAtAvailableLinkGuard(); 493 if (Context.getTargetInfo().getTriple().isWasm() && 494 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 495 EmitMainVoidAlias(); 496 } 497 emitLLVMUsed(); 498 if (SanStats) 499 SanStats->finish(); 500 501 if (CodeGenOpts.Autolink && 502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 503 EmitModuleLinkOptions(); 504 } 505 506 // On ELF we pass the dependent library specifiers directly to the linker 507 // without manipulating them. This is in contrast to other platforms where 508 // they are mapped to a specific linker option by the compiler. This 509 // difference is a result of the greater variety of ELF linkers and the fact 510 // that ELF linkers tend to handle libraries in a more complicated fashion 511 // than on other platforms. This forces us to defer handling the dependent 512 // libs to the linker. 513 // 514 // CUDA/HIP device and host libraries are different. Currently there is no 515 // way to differentiate dependent libraries for host or device. Existing 516 // usage of #pragma comment(lib, *) is intended for host libraries on 517 // Windows. Therefore emit llvm.dependent-libraries only for host. 518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 520 for (auto *MD : ELFDependentLibraries) 521 NMD->addOperand(MD); 522 } 523 524 // Record mregparm value now so it is visible through rest of codegen. 525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 527 CodeGenOpts.NumRegisterParameters); 528 529 if (CodeGenOpts.DwarfVersion) { 530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 531 CodeGenOpts.DwarfVersion); 532 } 533 534 if (Context.getLangOpts().SemanticInterposition) 535 // Require various optimization to respect semantic interposition. 536 getModule().setSemanticInterposition(1); 537 else if (Context.getLangOpts().ExplicitNoSemanticInterposition) 538 // Allow dso_local on applicable targets. 539 getModule().setSemanticInterposition(0); 540 541 if (CodeGenOpts.EmitCodeView) { 542 // Indicate that we want CodeView in the metadata. 543 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 544 } 545 if (CodeGenOpts.CodeViewGHash) { 546 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 547 } 548 if (CodeGenOpts.ControlFlowGuard) { 549 // Function ID tables and checks for Control Flow Guard (cfguard=2). 550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 551 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 552 // Function ID tables for Control Flow Guard (cfguard=1). 553 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 554 } 555 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 556 // We don't support LTO with 2 with different StrictVTablePointers 557 // FIXME: we could support it by stripping all the information introduced 558 // by StrictVTablePointers. 559 560 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 561 562 llvm::Metadata *Ops[2] = { 563 llvm::MDString::get(VMContext, "StrictVTablePointers"), 564 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 565 llvm::Type::getInt32Ty(VMContext), 1))}; 566 567 getModule().addModuleFlag(llvm::Module::Require, 568 "StrictVTablePointersRequirement", 569 llvm::MDNode::get(VMContext, Ops)); 570 } 571 if (getModuleDebugInfo()) 572 // We support a single version in the linked module. The LLVM 573 // parser will drop debug info with a different version number 574 // (and warn about it, too). 575 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 576 llvm::DEBUG_METADATA_VERSION); 577 578 // We need to record the widths of enums and wchar_t, so that we can generate 579 // the correct build attributes in the ARM backend. wchar_size is also used by 580 // TargetLibraryInfo. 581 uint64_t WCharWidth = 582 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 583 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 584 585 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 586 if ( Arch == llvm::Triple::arm 587 || Arch == llvm::Triple::armeb 588 || Arch == llvm::Triple::thumb 589 || Arch == llvm::Triple::thumbeb) { 590 // The minimum width of an enum in bytes 591 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 592 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 593 } 594 595 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 596 StringRef ABIStr = Target.getABI(); 597 llvm::LLVMContext &Ctx = TheModule.getContext(); 598 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 599 llvm::MDString::get(Ctx, ABIStr)); 600 } 601 602 if (CodeGenOpts.SanitizeCfiCrossDso) { 603 // Indicate that we want cross-DSO control flow integrity checks. 604 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 605 } 606 607 if (CodeGenOpts.WholeProgramVTables) { 608 // Indicate whether VFE was enabled for this module, so that the 609 // vcall_visibility metadata added under whole program vtables is handled 610 // appropriately in the optimizer. 611 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 612 CodeGenOpts.VirtualFunctionElimination); 613 } 614 615 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 616 getModule().addModuleFlag(llvm::Module::Override, 617 "CFI Canonical Jump Tables", 618 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 619 } 620 621 if (CodeGenOpts.CFProtectionReturn && 622 Target.checkCFProtectionReturnSupported(getDiags())) { 623 // Indicate that we want to instrument return control flow protection. 624 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 625 1); 626 } 627 628 if (CodeGenOpts.CFProtectionBranch && 629 Target.checkCFProtectionBranchSupported(getDiags())) { 630 // Indicate that we want to instrument branch control flow protection. 631 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 632 1); 633 } 634 635 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 636 Arch == llvm::Triple::aarch64_be) { 637 getModule().addModuleFlag(llvm::Module::Error, 638 "branch-target-enforcement", 639 LangOpts.BranchTargetEnforcement); 640 641 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 642 LangOpts.hasSignReturnAddress()); 643 644 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 645 LangOpts.isSignReturnAddressScopeAll()); 646 647 getModule().addModuleFlag(llvm::Module::Error, 648 "sign-return-address-with-bkey", 649 !LangOpts.isSignReturnAddressWithAKey()); 650 } 651 652 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 653 llvm::LLVMContext &Ctx = TheModule.getContext(); 654 getModule().addModuleFlag( 655 llvm::Module::Error, "MemProfProfileFilename", 656 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 657 } 658 659 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 660 // Indicate whether __nvvm_reflect should be configured to flush denormal 661 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 662 // property.) 663 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 664 CodeGenOpts.FP32DenormalMode.Output != 665 llvm::DenormalMode::IEEE); 666 } 667 668 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 669 if (LangOpts.OpenCL) { 670 EmitOpenCLMetadata(); 671 // Emit SPIR version. 672 if (getTriple().isSPIR()) { 673 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 674 // opencl.spir.version named metadata. 675 // C++ is backwards compatible with OpenCL v2.0. 676 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 677 llvm::Metadata *SPIRVerElts[] = { 678 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 679 Int32Ty, Version / 100)), 680 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 681 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 682 llvm::NamedMDNode *SPIRVerMD = 683 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 684 llvm::LLVMContext &Ctx = TheModule.getContext(); 685 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 686 } 687 } 688 689 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 690 assert(PLevel < 3 && "Invalid PIC Level"); 691 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 692 if (Context.getLangOpts().PIE) 693 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 694 } 695 696 if (getCodeGenOpts().CodeModel.size() > 0) { 697 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 698 .Case("tiny", llvm::CodeModel::Tiny) 699 .Case("small", llvm::CodeModel::Small) 700 .Case("kernel", llvm::CodeModel::Kernel) 701 .Case("medium", llvm::CodeModel::Medium) 702 .Case("large", llvm::CodeModel::Large) 703 .Default(~0u); 704 if (CM != ~0u) { 705 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 706 getModule().setCodeModel(codeModel); 707 } 708 } 709 710 if (CodeGenOpts.NoPLT) 711 getModule().setRtLibUseGOT(); 712 713 SimplifyPersonality(); 714 715 if (getCodeGenOpts().EmitDeclMetadata) 716 EmitDeclMetadata(); 717 718 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 719 EmitCoverageFile(); 720 721 if (CGDebugInfo *DI = getModuleDebugInfo()) 722 DI->finalize(); 723 724 if (getCodeGenOpts().EmitVersionIdentMetadata) 725 EmitVersionIdentMetadata(); 726 727 if (!getCodeGenOpts().RecordCommandLine.empty()) 728 EmitCommandLineMetadata(); 729 730 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 731 732 EmitBackendOptionsMetadata(getCodeGenOpts()); 733 734 // Set visibility from DLL storage class 735 // We do this at the end of LLVM IR generation; after any operation 736 // that might affect the DLL storage class or the visibility, and 737 // before anything that might act on these. 738 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 739 } 740 741 void CodeGenModule::EmitOpenCLMetadata() { 742 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 743 // opencl.ocl.version named metadata node. 744 // C++ is backwards compatible with OpenCL v2.0. 745 // FIXME: We might need to add CXX version at some point too? 746 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 747 llvm::Metadata *OCLVerElts[] = { 748 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 749 Int32Ty, Version / 100)), 750 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 751 Int32Ty, (Version % 100) / 10))}; 752 llvm::NamedMDNode *OCLVerMD = 753 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 754 llvm::LLVMContext &Ctx = TheModule.getContext(); 755 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 756 } 757 758 void CodeGenModule::EmitBackendOptionsMetadata( 759 const CodeGenOptions CodeGenOpts) { 760 switch (getTriple().getArch()) { 761 default: 762 break; 763 case llvm::Triple::riscv32: 764 case llvm::Triple::riscv64: 765 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 766 CodeGenOpts.SmallDataLimit); 767 break; 768 } 769 } 770 771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 772 // Make sure that this type is translated. 773 Types.UpdateCompletedType(TD); 774 } 775 776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 777 // Make sure that this type is translated. 778 Types.RefreshTypeCacheForClass(RD); 779 } 780 781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 782 if (!TBAA) 783 return nullptr; 784 return TBAA->getTypeInfo(QTy); 785 } 786 787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 788 if (!TBAA) 789 return TBAAAccessInfo(); 790 if (getLangOpts().CUDAIsDevice) { 791 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 792 // access info. 793 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 794 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 795 nullptr) 796 return TBAAAccessInfo(); 797 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 798 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 799 nullptr) 800 return TBAAAccessInfo(); 801 } 802 } 803 return TBAA->getAccessInfo(AccessType); 804 } 805 806 TBAAAccessInfo 807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 808 if (!TBAA) 809 return TBAAAccessInfo(); 810 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 811 } 812 813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 814 if (!TBAA) 815 return nullptr; 816 return TBAA->getTBAAStructInfo(QTy); 817 } 818 819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 820 if (!TBAA) 821 return nullptr; 822 return TBAA->getBaseTypeInfo(QTy); 823 } 824 825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 826 if (!TBAA) 827 return nullptr; 828 return TBAA->getAccessTagInfo(Info); 829 } 830 831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 832 TBAAAccessInfo TargetInfo) { 833 if (!TBAA) 834 return TBAAAccessInfo(); 835 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 836 } 837 838 TBAAAccessInfo 839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 840 TBAAAccessInfo InfoB) { 841 if (!TBAA) 842 return TBAAAccessInfo(); 843 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 844 } 845 846 TBAAAccessInfo 847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 848 TBAAAccessInfo SrcInfo) { 849 if (!TBAA) 850 return TBAAAccessInfo(); 851 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 852 } 853 854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 855 TBAAAccessInfo TBAAInfo) { 856 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 857 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 858 } 859 860 void CodeGenModule::DecorateInstructionWithInvariantGroup( 861 llvm::Instruction *I, const CXXRecordDecl *RD) { 862 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 863 llvm::MDNode::get(getLLVMContext(), {})); 864 } 865 866 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 867 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 868 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 869 } 870 871 /// ErrorUnsupported - Print out an error that codegen doesn't support the 872 /// specified stmt yet. 873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 874 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 875 "cannot compile this %0 yet"); 876 std::string Msg = Type; 877 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 878 << Msg << S->getSourceRange(); 879 } 880 881 /// ErrorUnsupported - Print out an error that codegen doesn't support the 882 /// specified decl yet. 883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 884 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 885 "cannot compile this %0 yet"); 886 std::string Msg = Type; 887 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 888 } 889 890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 891 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 892 } 893 894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 895 const NamedDecl *D) const { 896 if (GV->hasDLLImportStorageClass()) 897 return; 898 // Internal definitions always have default visibility. 899 if (GV->hasLocalLinkage()) { 900 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 901 return; 902 } 903 if (!D) 904 return; 905 // Set visibility for definitions, and for declarations if requested globally 906 // or set explicitly. 907 LinkageInfo LV = D->getLinkageAndVisibility(); 908 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 909 !GV->isDeclarationForLinker()) 910 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 911 } 912 913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 914 llvm::GlobalValue *GV) { 915 if (GV->hasLocalLinkage()) 916 return true; 917 918 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 919 return true; 920 921 // DLLImport explicitly marks the GV as external. 922 if (GV->hasDLLImportStorageClass()) 923 return false; 924 925 const llvm::Triple &TT = CGM.getTriple(); 926 if (TT.isWindowsGNUEnvironment()) { 927 // In MinGW, variables without DLLImport can still be automatically 928 // imported from a DLL by the linker; don't mark variables that 929 // potentially could come from another DLL as DSO local. 930 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 931 !GV->isThreadLocal()) 932 return false; 933 } 934 935 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 936 // remain unresolved in the link, they can be resolved to zero, which is 937 // outside the current DSO. 938 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 939 return false; 940 941 // Every other GV is local on COFF. 942 // Make an exception for windows OS in the triple: Some firmware builds use 943 // *-win32-macho triples. This (accidentally?) produced windows relocations 944 // without GOT tables in older clang versions; Keep this behaviour. 945 // FIXME: even thread local variables? 946 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 947 return true; 948 949 // Only handle COFF and ELF for now. 950 if (!TT.isOSBinFormatELF()) 951 return false; 952 953 // If this is not an executable, don't assume anything is local. 954 const auto &CGOpts = CGM.getCodeGenOpts(); 955 llvm::Reloc::Model RM = CGOpts.RelocationModel; 956 const auto &LOpts = CGM.getLangOpts(); 957 if (RM != llvm::Reloc::Static && !LOpts.PIE) 958 return false; 959 960 // A definition cannot be preempted from an executable. 961 if (!GV->isDeclarationForLinker()) 962 return true; 963 964 // Most PIC code sequences that assume that a symbol is local cannot produce a 965 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 966 // depended, it seems worth it to handle it here. 967 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 968 return false; 969 970 // PowerPC64 prefers TOC indirection to avoid copy relocations. 971 if (TT.isPPC64()) 972 return false; 973 974 // If we can use copy relocations we can assume it is local. 975 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 976 if (!Var->isThreadLocal() && 977 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 978 return true; 979 980 // If we can use a plt entry as the symbol address we can assume it 981 // is local. 982 // FIXME: This should work for PIE, but the gold linker doesn't support it. 983 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 984 return true; 985 986 // Otherwise don't assume it is local. 987 return false; 988 } 989 990 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 991 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 992 } 993 994 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 995 GlobalDecl GD) const { 996 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 997 // C++ destructors have a few C++ ABI specific special cases. 998 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 999 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1000 return; 1001 } 1002 setDLLImportDLLExport(GV, D); 1003 } 1004 1005 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1006 const NamedDecl *D) const { 1007 if (D && D->isExternallyVisible()) { 1008 if (D->hasAttr<DLLImportAttr>()) 1009 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1010 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1011 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1012 } 1013 } 1014 1015 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1016 GlobalDecl GD) const { 1017 setDLLImportDLLExport(GV, GD); 1018 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1019 } 1020 1021 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1022 const NamedDecl *D) const { 1023 setDLLImportDLLExport(GV, D); 1024 setGVPropertiesAux(GV, D); 1025 } 1026 1027 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1028 const NamedDecl *D) const { 1029 setGlobalVisibility(GV, D); 1030 setDSOLocal(GV); 1031 GV->setPartition(CodeGenOpts.SymbolPartition); 1032 } 1033 1034 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1035 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1036 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1037 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1038 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1039 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1040 } 1041 1042 llvm::GlobalVariable::ThreadLocalMode 1043 CodeGenModule::GetDefaultLLVMTLSModel() const { 1044 switch (CodeGenOpts.getDefaultTLSModel()) { 1045 case CodeGenOptions::GeneralDynamicTLSModel: 1046 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1047 case CodeGenOptions::LocalDynamicTLSModel: 1048 return llvm::GlobalVariable::LocalDynamicTLSModel; 1049 case CodeGenOptions::InitialExecTLSModel: 1050 return llvm::GlobalVariable::InitialExecTLSModel; 1051 case CodeGenOptions::LocalExecTLSModel: 1052 return llvm::GlobalVariable::LocalExecTLSModel; 1053 } 1054 llvm_unreachable("Invalid TLS model!"); 1055 } 1056 1057 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1058 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1059 1060 llvm::GlobalValue::ThreadLocalMode TLM; 1061 TLM = GetDefaultLLVMTLSModel(); 1062 1063 // Override the TLS model if it is explicitly specified. 1064 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1065 TLM = GetLLVMTLSModel(Attr->getModel()); 1066 } 1067 1068 GV->setThreadLocalMode(TLM); 1069 } 1070 1071 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1072 StringRef Name) { 1073 const TargetInfo &Target = CGM.getTarget(); 1074 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1075 } 1076 1077 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1078 const CPUSpecificAttr *Attr, 1079 unsigned CPUIndex, 1080 raw_ostream &Out) { 1081 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1082 // supported. 1083 if (Attr) 1084 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1085 else if (CGM.getTarget().supportsIFunc()) 1086 Out << ".resolver"; 1087 } 1088 1089 static void AppendTargetMangling(const CodeGenModule &CGM, 1090 const TargetAttr *Attr, raw_ostream &Out) { 1091 if (Attr->isDefaultVersion()) 1092 return; 1093 1094 Out << '.'; 1095 const TargetInfo &Target = CGM.getTarget(); 1096 ParsedTargetAttr Info = 1097 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1098 // Multiversioning doesn't allow "no-${feature}", so we can 1099 // only have "+" prefixes here. 1100 assert(LHS.startswith("+") && RHS.startswith("+") && 1101 "Features should always have a prefix."); 1102 return Target.multiVersionSortPriority(LHS.substr(1)) > 1103 Target.multiVersionSortPriority(RHS.substr(1)); 1104 }); 1105 1106 bool IsFirst = true; 1107 1108 if (!Info.Architecture.empty()) { 1109 IsFirst = false; 1110 Out << "arch_" << Info.Architecture; 1111 } 1112 1113 for (StringRef Feat : Info.Features) { 1114 if (!IsFirst) 1115 Out << '_'; 1116 IsFirst = false; 1117 Out << Feat.substr(1); 1118 } 1119 } 1120 1121 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1122 const NamedDecl *ND, 1123 bool OmitMultiVersionMangling = false) { 1124 SmallString<256> Buffer; 1125 llvm::raw_svector_ostream Out(Buffer); 1126 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1127 if (MC.shouldMangleDeclName(ND)) 1128 MC.mangleName(GD.getWithDecl(ND), Out); 1129 else { 1130 IdentifierInfo *II = ND->getIdentifier(); 1131 assert(II && "Attempt to mangle unnamed decl."); 1132 const auto *FD = dyn_cast<FunctionDecl>(ND); 1133 1134 if (FD && 1135 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1136 Out << "__regcall3__" << II->getName(); 1137 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1138 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1139 Out << "__device_stub__" << II->getName(); 1140 } else { 1141 Out << II->getName(); 1142 } 1143 } 1144 1145 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1146 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1147 switch (FD->getMultiVersionKind()) { 1148 case MultiVersionKind::CPUDispatch: 1149 case MultiVersionKind::CPUSpecific: 1150 AppendCPUSpecificCPUDispatchMangling(CGM, 1151 FD->getAttr<CPUSpecificAttr>(), 1152 GD.getMultiVersionIndex(), Out); 1153 break; 1154 case MultiVersionKind::Target: 1155 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1156 break; 1157 case MultiVersionKind::None: 1158 llvm_unreachable("None multiversion type isn't valid here"); 1159 } 1160 } 1161 1162 return std::string(Out.str()); 1163 } 1164 1165 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1166 const FunctionDecl *FD) { 1167 if (!FD->isMultiVersion()) 1168 return; 1169 1170 // Get the name of what this would be without the 'target' attribute. This 1171 // allows us to lookup the version that was emitted when this wasn't a 1172 // multiversion function. 1173 std::string NonTargetName = 1174 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1175 GlobalDecl OtherGD; 1176 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1177 assert(OtherGD.getCanonicalDecl() 1178 .getDecl() 1179 ->getAsFunction() 1180 ->isMultiVersion() && 1181 "Other GD should now be a multiversioned function"); 1182 // OtherFD is the version of this function that was mangled BEFORE 1183 // becoming a MultiVersion function. It potentially needs to be updated. 1184 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1185 .getDecl() 1186 ->getAsFunction() 1187 ->getMostRecentDecl(); 1188 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1189 // This is so that if the initial version was already the 'default' 1190 // version, we don't try to update it. 1191 if (OtherName != NonTargetName) { 1192 // Remove instead of erase, since others may have stored the StringRef 1193 // to this. 1194 const auto ExistingRecord = Manglings.find(NonTargetName); 1195 if (ExistingRecord != std::end(Manglings)) 1196 Manglings.remove(&(*ExistingRecord)); 1197 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1198 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1199 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1200 Entry->setName(OtherName); 1201 } 1202 } 1203 } 1204 1205 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1206 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1207 1208 // Some ABIs don't have constructor variants. Make sure that base and 1209 // complete constructors get mangled the same. 1210 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1211 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1212 CXXCtorType OrigCtorType = GD.getCtorType(); 1213 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1214 if (OrigCtorType == Ctor_Base) 1215 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1216 } 1217 } 1218 1219 auto FoundName = MangledDeclNames.find(CanonicalGD); 1220 if (FoundName != MangledDeclNames.end()) 1221 return FoundName->second; 1222 1223 // Keep the first result in the case of a mangling collision. 1224 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1225 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1226 1227 // Ensure either we have different ABIs between host and device compilations, 1228 // says host compilation following MSVC ABI but device compilation follows 1229 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1230 // mangling should be the same after name stubbing. The later checking is 1231 // very important as the device kernel name being mangled in host-compilation 1232 // is used to resolve the device binaries to be executed. Inconsistent naming 1233 // result in undefined behavior. Even though we cannot check that naming 1234 // directly between host- and device-compilations, the host- and 1235 // device-mangling in host compilation could help catching certain ones. 1236 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1237 getLangOpts().CUDAIsDevice || 1238 (getContext().getAuxTargetInfo() && 1239 (getContext().getAuxTargetInfo()->getCXXABI() != 1240 getContext().getTargetInfo().getCXXABI())) || 1241 getCUDARuntime().getDeviceSideName(ND) == 1242 getMangledNameImpl( 1243 *this, 1244 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1245 ND)); 1246 1247 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1248 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1249 } 1250 1251 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1252 const BlockDecl *BD) { 1253 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1254 const Decl *D = GD.getDecl(); 1255 1256 SmallString<256> Buffer; 1257 llvm::raw_svector_ostream Out(Buffer); 1258 if (!D) 1259 MangleCtx.mangleGlobalBlock(BD, 1260 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1261 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1262 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1263 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1264 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1265 else 1266 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1267 1268 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1269 return Result.first->first(); 1270 } 1271 1272 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1273 return getModule().getNamedValue(Name); 1274 } 1275 1276 /// AddGlobalCtor - Add a function to the list that will be called before 1277 /// main() runs. 1278 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1279 llvm::Constant *AssociatedData) { 1280 // FIXME: Type coercion of void()* types. 1281 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1282 } 1283 1284 /// AddGlobalDtor - Add a function to the list that will be called 1285 /// when the module is unloaded. 1286 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1287 bool IsDtorAttrFunc) { 1288 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1289 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1290 DtorsUsingAtExit[Priority].push_back(Dtor); 1291 return; 1292 } 1293 1294 // FIXME: Type coercion of void()* types. 1295 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1296 } 1297 1298 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1299 if (Fns.empty()) return; 1300 1301 // Ctor function type is void()*. 1302 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1303 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1304 TheModule.getDataLayout().getProgramAddressSpace()); 1305 1306 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1307 llvm::StructType *CtorStructTy = llvm::StructType::get( 1308 Int32Ty, CtorPFTy, VoidPtrTy); 1309 1310 // Construct the constructor and destructor arrays. 1311 ConstantInitBuilder builder(*this); 1312 auto ctors = builder.beginArray(CtorStructTy); 1313 for (const auto &I : Fns) { 1314 auto ctor = ctors.beginStruct(CtorStructTy); 1315 ctor.addInt(Int32Ty, I.Priority); 1316 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1317 if (I.AssociatedData) 1318 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1319 else 1320 ctor.addNullPointer(VoidPtrTy); 1321 ctor.finishAndAddTo(ctors); 1322 } 1323 1324 auto list = 1325 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1326 /*constant*/ false, 1327 llvm::GlobalValue::AppendingLinkage); 1328 1329 // The LTO linker doesn't seem to like it when we set an alignment 1330 // on appending variables. Take it off as a workaround. 1331 list->setAlignment(llvm::None); 1332 1333 Fns.clear(); 1334 } 1335 1336 llvm::GlobalValue::LinkageTypes 1337 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1338 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1339 1340 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1341 1342 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1343 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1344 1345 if (isa<CXXConstructorDecl>(D) && 1346 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1347 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1348 // Our approach to inheriting constructors is fundamentally different from 1349 // that used by the MS ABI, so keep our inheriting constructor thunks 1350 // internal rather than trying to pick an unambiguous mangling for them. 1351 return llvm::GlobalValue::InternalLinkage; 1352 } 1353 1354 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1355 } 1356 1357 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1358 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1359 if (!MDS) return nullptr; 1360 1361 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1362 } 1363 1364 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1365 const CGFunctionInfo &Info, 1366 llvm::Function *F) { 1367 unsigned CallingConv; 1368 llvm::AttributeList PAL; 1369 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1370 F->setAttributes(PAL); 1371 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1372 } 1373 1374 static void removeImageAccessQualifier(std::string& TyName) { 1375 std::string ReadOnlyQual("__read_only"); 1376 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1377 if (ReadOnlyPos != std::string::npos) 1378 // "+ 1" for the space after access qualifier. 1379 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1380 else { 1381 std::string WriteOnlyQual("__write_only"); 1382 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1383 if (WriteOnlyPos != std::string::npos) 1384 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1385 else { 1386 std::string ReadWriteQual("__read_write"); 1387 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1388 if (ReadWritePos != std::string::npos) 1389 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1390 } 1391 } 1392 } 1393 1394 // Returns the address space id that should be produced to the 1395 // kernel_arg_addr_space metadata. This is always fixed to the ids 1396 // as specified in the SPIR 2.0 specification in order to differentiate 1397 // for example in clGetKernelArgInfo() implementation between the address 1398 // spaces with targets without unique mapping to the OpenCL address spaces 1399 // (basically all single AS CPUs). 1400 static unsigned ArgInfoAddressSpace(LangAS AS) { 1401 switch (AS) { 1402 case LangAS::opencl_global: 1403 return 1; 1404 case LangAS::opencl_constant: 1405 return 2; 1406 case LangAS::opencl_local: 1407 return 3; 1408 case LangAS::opencl_generic: 1409 return 4; // Not in SPIR 2.0 specs. 1410 case LangAS::opencl_global_device: 1411 return 5; 1412 case LangAS::opencl_global_host: 1413 return 6; 1414 default: 1415 return 0; // Assume private. 1416 } 1417 } 1418 1419 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1420 const FunctionDecl *FD, 1421 CodeGenFunction *CGF) { 1422 assert(((FD && CGF) || (!FD && !CGF)) && 1423 "Incorrect use - FD and CGF should either be both null or not!"); 1424 // Create MDNodes that represent the kernel arg metadata. 1425 // Each MDNode is a list in the form of "key", N number of values which is 1426 // the same number of values as their are kernel arguments. 1427 1428 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1429 1430 // MDNode for the kernel argument address space qualifiers. 1431 SmallVector<llvm::Metadata *, 8> addressQuals; 1432 1433 // MDNode for the kernel argument access qualifiers (images only). 1434 SmallVector<llvm::Metadata *, 8> accessQuals; 1435 1436 // MDNode for the kernel argument type names. 1437 SmallVector<llvm::Metadata *, 8> argTypeNames; 1438 1439 // MDNode for the kernel argument base type names. 1440 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1441 1442 // MDNode for the kernel argument type qualifiers. 1443 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1444 1445 // MDNode for the kernel argument names. 1446 SmallVector<llvm::Metadata *, 8> argNames; 1447 1448 if (FD && CGF) 1449 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1450 const ParmVarDecl *parm = FD->getParamDecl(i); 1451 QualType ty = parm->getType(); 1452 std::string typeQuals; 1453 1454 if (ty->isPointerType()) { 1455 QualType pointeeTy = ty->getPointeeType(); 1456 1457 // Get address qualifier. 1458 addressQuals.push_back( 1459 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1460 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1461 1462 // Get argument type name. 1463 std::string typeName = 1464 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1465 1466 // Turn "unsigned type" to "utype" 1467 std::string::size_type pos = typeName.find("unsigned"); 1468 if (pointeeTy.isCanonical() && pos != std::string::npos) 1469 typeName.erase(pos + 1, 8); 1470 1471 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1472 1473 std::string baseTypeName = 1474 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1475 Policy) + 1476 "*"; 1477 1478 // Turn "unsigned type" to "utype" 1479 pos = baseTypeName.find("unsigned"); 1480 if (pos != std::string::npos) 1481 baseTypeName.erase(pos + 1, 8); 1482 1483 argBaseTypeNames.push_back( 1484 llvm::MDString::get(VMContext, baseTypeName)); 1485 1486 // Get argument type qualifiers: 1487 if (ty.isRestrictQualified()) 1488 typeQuals = "restrict"; 1489 if (pointeeTy.isConstQualified() || 1490 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1491 typeQuals += typeQuals.empty() ? "const" : " const"; 1492 if (pointeeTy.isVolatileQualified()) 1493 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1494 } else { 1495 uint32_t AddrSpc = 0; 1496 bool isPipe = ty->isPipeType(); 1497 if (ty->isImageType() || isPipe) 1498 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1499 1500 addressQuals.push_back( 1501 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1502 1503 // Get argument type name. 1504 std::string typeName; 1505 if (isPipe) 1506 typeName = ty.getCanonicalType() 1507 ->castAs<PipeType>() 1508 ->getElementType() 1509 .getAsString(Policy); 1510 else 1511 typeName = ty.getUnqualifiedType().getAsString(Policy); 1512 1513 // Turn "unsigned type" to "utype" 1514 std::string::size_type pos = typeName.find("unsigned"); 1515 if (ty.isCanonical() && pos != std::string::npos) 1516 typeName.erase(pos + 1, 8); 1517 1518 std::string baseTypeName; 1519 if (isPipe) 1520 baseTypeName = ty.getCanonicalType() 1521 ->castAs<PipeType>() 1522 ->getElementType() 1523 .getCanonicalType() 1524 .getAsString(Policy); 1525 else 1526 baseTypeName = 1527 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1528 1529 // Remove access qualifiers on images 1530 // (as they are inseparable from type in clang implementation, 1531 // but OpenCL spec provides a special query to get access qualifier 1532 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1533 if (ty->isImageType()) { 1534 removeImageAccessQualifier(typeName); 1535 removeImageAccessQualifier(baseTypeName); 1536 } 1537 1538 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1539 1540 // Turn "unsigned type" to "utype" 1541 pos = baseTypeName.find("unsigned"); 1542 if (pos != std::string::npos) 1543 baseTypeName.erase(pos + 1, 8); 1544 1545 argBaseTypeNames.push_back( 1546 llvm::MDString::get(VMContext, baseTypeName)); 1547 1548 if (isPipe) 1549 typeQuals = "pipe"; 1550 } 1551 1552 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1553 1554 // Get image and pipe access qualifier: 1555 if (ty->isImageType() || ty->isPipeType()) { 1556 const Decl *PDecl = parm; 1557 if (auto *TD = dyn_cast<TypedefType>(ty)) 1558 PDecl = TD->getDecl(); 1559 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1560 if (A && A->isWriteOnly()) 1561 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1562 else if (A && A->isReadWrite()) 1563 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1564 else 1565 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1566 } else 1567 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1568 1569 // Get argument name. 1570 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1571 } 1572 1573 Fn->setMetadata("kernel_arg_addr_space", 1574 llvm::MDNode::get(VMContext, addressQuals)); 1575 Fn->setMetadata("kernel_arg_access_qual", 1576 llvm::MDNode::get(VMContext, accessQuals)); 1577 Fn->setMetadata("kernel_arg_type", 1578 llvm::MDNode::get(VMContext, argTypeNames)); 1579 Fn->setMetadata("kernel_arg_base_type", 1580 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1581 Fn->setMetadata("kernel_arg_type_qual", 1582 llvm::MDNode::get(VMContext, argTypeQuals)); 1583 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1584 Fn->setMetadata("kernel_arg_name", 1585 llvm::MDNode::get(VMContext, argNames)); 1586 } 1587 1588 /// Determines whether the language options require us to model 1589 /// unwind exceptions. We treat -fexceptions as mandating this 1590 /// except under the fragile ObjC ABI with only ObjC exceptions 1591 /// enabled. This means, for example, that C with -fexceptions 1592 /// enables this. 1593 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1594 // If exceptions are completely disabled, obviously this is false. 1595 if (!LangOpts.Exceptions) return false; 1596 1597 // If C++ exceptions are enabled, this is true. 1598 if (LangOpts.CXXExceptions) return true; 1599 1600 // If ObjC exceptions are enabled, this depends on the ABI. 1601 if (LangOpts.ObjCExceptions) { 1602 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1603 } 1604 1605 return true; 1606 } 1607 1608 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1609 const CXXMethodDecl *MD) { 1610 // Check that the type metadata can ever actually be used by a call. 1611 if (!CGM.getCodeGenOpts().LTOUnit || 1612 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1613 return false; 1614 1615 // Only functions whose address can be taken with a member function pointer 1616 // need this sort of type metadata. 1617 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1618 !isa<CXXDestructorDecl>(MD); 1619 } 1620 1621 std::vector<const CXXRecordDecl *> 1622 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1623 llvm::SetVector<const CXXRecordDecl *> MostBases; 1624 1625 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1626 CollectMostBases = [&](const CXXRecordDecl *RD) { 1627 if (RD->getNumBases() == 0) 1628 MostBases.insert(RD); 1629 for (const CXXBaseSpecifier &B : RD->bases()) 1630 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1631 }; 1632 CollectMostBases(RD); 1633 return MostBases.takeVector(); 1634 } 1635 1636 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1637 llvm::Function *F) { 1638 llvm::AttrBuilder B; 1639 1640 if (CodeGenOpts.UnwindTables) 1641 B.addAttribute(llvm::Attribute::UWTable); 1642 1643 if (CodeGenOpts.StackClashProtector) 1644 B.addAttribute("probe-stack", "inline-asm"); 1645 1646 if (!hasUnwindExceptions(LangOpts)) 1647 B.addAttribute(llvm::Attribute::NoUnwind); 1648 1649 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1650 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1651 B.addAttribute(llvm::Attribute::StackProtect); 1652 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1653 B.addAttribute(llvm::Attribute::StackProtectStrong); 1654 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1655 B.addAttribute(llvm::Attribute::StackProtectReq); 1656 } 1657 1658 if (!D) { 1659 // If we don't have a declaration to control inlining, the function isn't 1660 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1661 // disabled, mark the function as noinline. 1662 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1663 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1664 B.addAttribute(llvm::Attribute::NoInline); 1665 1666 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1667 return; 1668 } 1669 1670 // Track whether we need to add the optnone LLVM attribute, 1671 // starting with the default for this optimization level. 1672 bool ShouldAddOptNone = 1673 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1674 // We can't add optnone in the following cases, it won't pass the verifier. 1675 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1676 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1677 1678 // Add optnone, but do so only if the function isn't always_inline. 1679 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1680 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1681 B.addAttribute(llvm::Attribute::OptimizeNone); 1682 1683 // OptimizeNone implies noinline; we should not be inlining such functions. 1684 B.addAttribute(llvm::Attribute::NoInline); 1685 1686 // We still need to handle naked functions even though optnone subsumes 1687 // much of their semantics. 1688 if (D->hasAttr<NakedAttr>()) 1689 B.addAttribute(llvm::Attribute::Naked); 1690 1691 // OptimizeNone wins over OptimizeForSize and MinSize. 1692 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1693 F->removeFnAttr(llvm::Attribute::MinSize); 1694 } else if (D->hasAttr<NakedAttr>()) { 1695 // Naked implies noinline: we should not be inlining such functions. 1696 B.addAttribute(llvm::Attribute::Naked); 1697 B.addAttribute(llvm::Attribute::NoInline); 1698 } else if (D->hasAttr<NoDuplicateAttr>()) { 1699 B.addAttribute(llvm::Attribute::NoDuplicate); 1700 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1701 // Add noinline if the function isn't always_inline. 1702 B.addAttribute(llvm::Attribute::NoInline); 1703 } else if (D->hasAttr<AlwaysInlineAttr>() && 1704 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1705 // (noinline wins over always_inline, and we can't specify both in IR) 1706 B.addAttribute(llvm::Attribute::AlwaysInline); 1707 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1708 // If we're not inlining, then force everything that isn't always_inline to 1709 // carry an explicit noinline attribute. 1710 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1711 B.addAttribute(llvm::Attribute::NoInline); 1712 } else { 1713 // Otherwise, propagate the inline hint attribute and potentially use its 1714 // absence to mark things as noinline. 1715 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1716 // Search function and template pattern redeclarations for inline. 1717 auto CheckForInline = [](const FunctionDecl *FD) { 1718 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1719 return Redecl->isInlineSpecified(); 1720 }; 1721 if (any_of(FD->redecls(), CheckRedeclForInline)) 1722 return true; 1723 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1724 if (!Pattern) 1725 return false; 1726 return any_of(Pattern->redecls(), CheckRedeclForInline); 1727 }; 1728 if (CheckForInline(FD)) { 1729 B.addAttribute(llvm::Attribute::InlineHint); 1730 } else if (CodeGenOpts.getInlining() == 1731 CodeGenOptions::OnlyHintInlining && 1732 !FD->isInlined() && 1733 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1734 B.addAttribute(llvm::Attribute::NoInline); 1735 } 1736 } 1737 } 1738 1739 // Add other optimization related attributes if we are optimizing this 1740 // function. 1741 if (!D->hasAttr<OptimizeNoneAttr>()) { 1742 if (D->hasAttr<ColdAttr>()) { 1743 if (!ShouldAddOptNone) 1744 B.addAttribute(llvm::Attribute::OptimizeForSize); 1745 B.addAttribute(llvm::Attribute::Cold); 1746 } 1747 1748 if (D->hasAttr<MinSizeAttr>()) 1749 B.addAttribute(llvm::Attribute::MinSize); 1750 } 1751 1752 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1753 1754 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1755 if (alignment) 1756 F->setAlignment(llvm::Align(alignment)); 1757 1758 if (!D->hasAttr<AlignedAttr>()) 1759 if (LangOpts.FunctionAlignment) 1760 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1761 1762 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1763 // reserve a bit for differentiating between virtual and non-virtual member 1764 // functions. If the current target's C++ ABI requires this and this is a 1765 // member function, set its alignment accordingly. 1766 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1767 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1768 F->setAlignment(llvm::Align(2)); 1769 } 1770 1771 // In the cross-dso CFI mode with canonical jump tables, we want !type 1772 // attributes on definitions only. 1773 if (CodeGenOpts.SanitizeCfiCrossDso && 1774 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1775 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1776 // Skip available_externally functions. They won't be codegen'ed in the 1777 // current module anyway. 1778 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1779 CreateFunctionTypeMetadataForIcall(FD, F); 1780 } 1781 } 1782 1783 // Emit type metadata on member functions for member function pointer checks. 1784 // These are only ever necessary on definitions; we're guaranteed that the 1785 // definition will be present in the LTO unit as a result of LTO visibility. 1786 auto *MD = dyn_cast<CXXMethodDecl>(D); 1787 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1788 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1789 llvm::Metadata *Id = 1790 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1791 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1792 F->addTypeMetadata(0, Id); 1793 } 1794 } 1795 } 1796 1797 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1798 llvm::Function *F) { 1799 if (D->hasAttr<StrictFPAttr>()) { 1800 llvm::AttrBuilder FuncAttrs; 1801 FuncAttrs.addAttribute("strictfp"); 1802 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1803 } 1804 } 1805 1806 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1807 const Decl *D = GD.getDecl(); 1808 if (dyn_cast_or_null<NamedDecl>(D)) 1809 setGVProperties(GV, GD); 1810 else 1811 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1812 1813 if (D && D->hasAttr<UsedAttr>()) 1814 addUsedGlobal(GV); 1815 1816 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1817 const auto *VD = cast<VarDecl>(D); 1818 if (VD->getType().isConstQualified() && 1819 VD->getStorageDuration() == SD_Static) 1820 addUsedGlobal(GV); 1821 } 1822 } 1823 1824 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1825 llvm::AttrBuilder &Attrs) { 1826 // Add target-cpu and target-features attributes to functions. If 1827 // we have a decl for the function and it has a target attribute then 1828 // parse that and add it to the feature set. 1829 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1830 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1831 std::vector<std::string> Features; 1832 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1833 FD = FD ? FD->getMostRecentDecl() : FD; 1834 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1835 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1836 bool AddedAttr = false; 1837 if (TD || SD) { 1838 llvm::StringMap<bool> FeatureMap; 1839 getContext().getFunctionFeatureMap(FeatureMap, GD); 1840 1841 // Produce the canonical string for this set of features. 1842 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1843 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1844 1845 // Now add the target-cpu and target-features to the function. 1846 // While we populated the feature map above, we still need to 1847 // get and parse the target attribute so we can get the cpu for 1848 // the function. 1849 if (TD) { 1850 ParsedTargetAttr ParsedAttr = TD->parse(); 1851 if (!ParsedAttr.Architecture.empty() && 1852 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1853 TargetCPU = ParsedAttr.Architecture; 1854 TuneCPU = ""; // Clear the tune CPU. 1855 } 1856 if (!ParsedAttr.Tune.empty() && 1857 getTarget().isValidCPUName(ParsedAttr.Tune)) 1858 TuneCPU = ParsedAttr.Tune; 1859 } 1860 } else { 1861 // Otherwise just add the existing target cpu and target features to the 1862 // function. 1863 Features = getTarget().getTargetOpts().Features; 1864 } 1865 1866 if (!TargetCPU.empty()) { 1867 Attrs.addAttribute("target-cpu", TargetCPU); 1868 AddedAttr = true; 1869 } 1870 if (!TuneCPU.empty()) { 1871 Attrs.addAttribute("tune-cpu", TuneCPU); 1872 AddedAttr = true; 1873 } 1874 if (!Features.empty()) { 1875 llvm::sort(Features); 1876 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1877 AddedAttr = true; 1878 } 1879 1880 return AddedAttr; 1881 } 1882 1883 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1884 llvm::GlobalObject *GO) { 1885 const Decl *D = GD.getDecl(); 1886 SetCommonAttributes(GD, GO); 1887 1888 if (D) { 1889 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1890 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1891 GV->addAttribute("bss-section", SA->getName()); 1892 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1893 GV->addAttribute("data-section", SA->getName()); 1894 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1895 GV->addAttribute("rodata-section", SA->getName()); 1896 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1897 GV->addAttribute("relro-section", SA->getName()); 1898 } 1899 1900 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1901 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1902 if (!D->getAttr<SectionAttr>()) 1903 F->addFnAttr("implicit-section-name", SA->getName()); 1904 1905 llvm::AttrBuilder Attrs; 1906 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1907 // We know that GetCPUAndFeaturesAttributes will always have the 1908 // newest set, since it has the newest possible FunctionDecl, so the 1909 // new ones should replace the old. 1910 llvm::AttrBuilder RemoveAttrs; 1911 RemoveAttrs.addAttribute("target-cpu"); 1912 RemoveAttrs.addAttribute("target-features"); 1913 RemoveAttrs.addAttribute("tune-cpu"); 1914 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1915 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1916 } 1917 } 1918 1919 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1920 GO->setSection(CSA->getName()); 1921 else if (const auto *SA = D->getAttr<SectionAttr>()) 1922 GO->setSection(SA->getName()); 1923 } 1924 1925 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1926 } 1927 1928 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1929 llvm::Function *F, 1930 const CGFunctionInfo &FI) { 1931 const Decl *D = GD.getDecl(); 1932 SetLLVMFunctionAttributes(GD, FI, F); 1933 SetLLVMFunctionAttributesForDefinition(D, F); 1934 1935 F->setLinkage(llvm::Function::InternalLinkage); 1936 1937 setNonAliasAttributes(GD, F); 1938 } 1939 1940 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1941 // Set linkage and visibility in case we never see a definition. 1942 LinkageInfo LV = ND->getLinkageAndVisibility(); 1943 // Don't set internal linkage on declarations. 1944 // "extern_weak" is overloaded in LLVM; we probably should have 1945 // separate linkage types for this. 1946 if (isExternallyVisible(LV.getLinkage()) && 1947 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1948 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1949 } 1950 1951 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1952 llvm::Function *F) { 1953 // Only if we are checking indirect calls. 1954 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1955 return; 1956 1957 // Non-static class methods are handled via vtable or member function pointer 1958 // checks elsewhere. 1959 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1960 return; 1961 1962 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1963 F->addTypeMetadata(0, MD); 1964 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1965 1966 // Emit a hash-based bit set entry for cross-DSO calls. 1967 if (CodeGenOpts.SanitizeCfiCrossDso) 1968 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1969 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1970 } 1971 1972 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1973 bool IsIncompleteFunction, 1974 bool IsThunk) { 1975 1976 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1977 // If this is an intrinsic function, set the function's attributes 1978 // to the intrinsic's attributes. 1979 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1980 return; 1981 } 1982 1983 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1984 1985 if (!IsIncompleteFunction) 1986 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1987 1988 // Add the Returned attribute for "this", except for iOS 5 and earlier 1989 // where substantial code, including the libstdc++ dylib, was compiled with 1990 // GCC and does not actually return "this". 1991 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1992 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1993 assert(!F->arg_empty() && 1994 F->arg_begin()->getType() 1995 ->canLosslesslyBitCastTo(F->getReturnType()) && 1996 "unexpected this return"); 1997 F->addAttribute(1, llvm::Attribute::Returned); 1998 } 1999 2000 // Only a few attributes are set on declarations; these may later be 2001 // overridden by a definition. 2002 2003 setLinkageForGV(F, FD); 2004 setGVProperties(F, FD); 2005 2006 // Setup target-specific attributes. 2007 if (!IsIncompleteFunction && F->isDeclaration()) 2008 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2009 2010 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2011 F->setSection(CSA->getName()); 2012 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2013 F->setSection(SA->getName()); 2014 2015 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2016 if (FD->isInlineBuiltinDeclaration()) { 2017 const FunctionDecl *FDBody; 2018 bool HasBody = FD->hasBody(FDBody); 2019 (void)HasBody; 2020 assert(HasBody && "Inline builtin declarations should always have an " 2021 "available body!"); 2022 if (shouldEmitFunction(FDBody)) 2023 F->addAttribute(llvm::AttributeList::FunctionIndex, 2024 llvm::Attribute::NoBuiltin); 2025 } 2026 2027 if (FD->isReplaceableGlobalAllocationFunction()) { 2028 // A replaceable global allocation function does not act like a builtin by 2029 // default, only if it is invoked by a new-expression or delete-expression. 2030 F->addAttribute(llvm::AttributeList::FunctionIndex, 2031 llvm::Attribute::NoBuiltin); 2032 } 2033 2034 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2035 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2036 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2037 if (MD->isVirtual()) 2038 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2039 2040 // Don't emit entries for function declarations in the cross-DSO mode. This 2041 // is handled with better precision by the receiving DSO. But if jump tables 2042 // are non-canonical then we need type metadata in order to produce the local 2043 // jump table. 2044 if (!CodeGenOpts.SanitizeCfiCrossDso || 2045 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2046 CreateFunctionTypeMetadataForIcall(FD, F); 2047 2048 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2049 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2050 2051 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2052 // Annotate the callback behavior as metadata: 2053 // - The callback callee (as argument number). 2054 // - The callback payloads (as argument numbers). 2055 llvm::LLVMContext &Ctx = F->getContext(); 2056 llvm::MDBuilder MDB(Ctx); 2057 2058 // The payload indices are all but the first one in the encoding. The first 2059 // identifies the callback callee. 2060 int CalleeIdx = *CB->encoding_begin(); 2061 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2062 F->addMetadata(llvm::LLVMContext::MD_callback, 2063 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2064 CalleeIdx, PayloadIndices, 2065 /* VarArgsArePassed */ false)})); 2066 } 2067 } 2068 2069 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2070 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2071 "Only globals with definition can force usage."); 2072 LLVMUsed.emplace_back(GV); 2073 } 2074 2075 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2076 assert(!GV->isDeclaration() && 2077 "Only globals with definition can force usage."); 2078 LLVMCompilerUsed.emplace_back(GV); 2079 } 2080 2081 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2082 std::vector<llvm::WeakTrackingVH> &List) { 2083 // Don't create llvm.used if there is no need. 2084 if (List.empty()) 2085 return; 2086 2087 // Convert List to what ConstantArray needs. 2088 SmallVector<llvm::Constant*, 8> UsedArray; 2089 UsedArray.resize(List.size()); 2090 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2091 UsedArray[i] = 2092 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2093 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2094 } 2095 2096 if (UsedArray.empty()) 2097 return; 2098 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2099 2100 auto *GV = new llvm::GlobalVariable( 2101 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2102 llvm::ConstantArray::get(ATy, UsedArray), Name); 2103 2104 GV->setSection("llvm.metadata"); 2105 } 2106 2107 void CodeGenModule::emitLLVMUsed() { 2108 emitUsed(*this, "llvm.used", LLVMUsed); 2109 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2110 } 2111 2112 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2113 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2114 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2115 } 2116 2117 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2118 llvm::SmallString<32> Opt; 2119 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2120 if (Opt.empty()) 2121 return; 2122 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2123 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2124 } 2125 2126 void CodeGenModule::AddDependentLib(StringRef Lib) { 2127 auto &C = getLLVMContext(); 2128 if (getTarget().getTriple().isOSBinFormatELF()) { 2129 ELFDependentLibraries.push_back( 2130 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2131 return; 2132 } 2133 2134 llvm::SmallString<24> Opt; 2135 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2136 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2137 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2138 } 2139 2140 /// Add link options implied by the given module, including modules 2141 /// it depends on, using a postorder walk. 2142 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2143 SmallVectorImpl<llvm::MDNode *> &Metadata, 2144 llvm::SmallPtrSet<Module *, 16> &Visited) { 2145 // Import this module's parent. 2146 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2147 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2148 } 2149 2150 // Import this module's dependencies. 2151 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2152 if (Visited.insert(Mod->Imports[I - 1]).second) 2153 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2154 } 2155 2156 // Add linker options to link against the libraries/frameworks 2157 // described by this module. 2158 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2159 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2160 2161 // For modules that use export_as for linking, use that module 2162 // name instead. 2163 if (Mod->UseExportAsModuleLinkName) 2164 return; 2165 2166 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2167 // Link against a framework. Frameworks are currently Darwin only, so we 2168 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2169 if (Mod->LinkLibraries[I-1].IsFramework) { 2170 llvm::Metadata *Args[2] = { 2171 llvm::MDString::get(Context, "-framework"), 2172 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2173 2174 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2175 continue; 2176 } 2177 2178 // Link against a library. 2179 if (IsELF) { 2180 llvm::Metadata *Args[2] = { 2181 llvm::MDString::get(Context, "lib"), 2182 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2183 }; 2184 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2185 } else { 2186 llvm::SmallString<24> Opt; 2187 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2188 Mod->LinkLibraries[I - 1].Library, Opt); 2189 auto *OptString = llvm::MDString::get(Context, Opt); 2190 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2191 } 2192 } 2193 } 2194 2195 void CodeGenModule::EmitModuleLinkOptions() { 2196 // Collect the set of all of the modules we want to visit to emit link 2197 // options, which is essentially the imported modules and all of their 2198 // non-explicit child modules. 2199 llvm::SetVector<clang::Module *> LinkModules; 2200 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2201 SmallVector<clang::Module *, 16> Stack; 2202 2203 // Seed the stack with imported modules. 2204 for (Module *M : ImportedModules) { 2205 // Do not add any link flags when an implementation TU of a module imports 2206 // a header of that same module. 2207 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2208 !getLangOpts().isCompilingModule()) 2209 continue; 2210 if (Visited.insert(M).second) 2211 Stack.push_back(M); 2212 } 2213 2214 // Find all of the modules to import, making a little effort to prune 2215 // non-leaf modules. 2216 while (!Stack.empty()) { 2217 clang::Module *Mod = Stack.pop_back_val(); 2218 2219 bool AnyChildren = false; 2220 2221 // Visit the submodules of this module. 2222 for (const auto &SM : Mod->submodules()) { 2223 // Skip explicit children; they need to be explicitly imported to be 2224 // linked against. 2225 if (SM->IsExplicit) 2226 continue; 2227 2228 if (Visited.insert(SM).second) { 2229 Stack.push_back(SM); 2230 AnyChildren = true; 2231 } 2232 } 2233 2234 // We didn't find any children, so add this module to the list of 2235 // modules to link against. 2236 if (!AnyChildren) { 2237 LinkModules.insert(Mod); 2238 } 2239 } 2240 2241 // Add link options for all of the imported modules in reverse topological 2242 // order. We don't do anything to try to order import link flags with respect 2243 // to linker options inserted by things like #pragma comment(). 2244 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2245 Visited.clear(); 2246 for (Module *M : LinkModules) 2247 if (Visited.insert(M).second) 2248 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2249 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2250 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2251 2252 // Add the linker options metadata flag. 2253 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2254 for (auto *MD : LinkerOptionsMetadata) 2255 NMD->addOperand(MD); 2256 } 2257 2258 void CodeGenModule::EmitDeferred() { 2259 // Emit deferred declare target declarations. 2260 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2261 getOpenMPRuntime().emitDeferredTargetDecls(); 2262 2263 // Emit code for any potentially referenced deferred decls. Since a 2264 // previously unused static decl may become used during the generation of code 2265 // for a static function, iterate until no changes are made. 2266 2267 if (!DeferredVTables.empty()) { 2268 EmitDeferredVTables(); 2269 2270 // Emitting a vtable doesn't directly cause more vtables to 2271 // become deferred, although it can cause functions to be 2272 // emitted that then need those vtables. 2273 assert(DeferredVTables.empty()); 2274 } 2275 2276 // Emit CUDA/HIP static device variables referenced by host code only. 2277 if (getLangOpts().CUDA) 2278 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2279 DeferredDeclsToEmit.push_back(V); 2280 2281 // Stop if we're out of both deferred vtables and deferred declarations. 2282 if (DeferredDeclsToEmit.empty()) 2283 return; 2284 2285 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2286 // work, it will not interfere with this. 2287 std::vector<GlobalDecl> CurDeclsToEmit; 2288 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2289 2290 for (GlobalDecl &D : CurDeclsToEmit) { 2291 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2292 // to get GlobalValue with exactly the type we need, not something that 2293 // might had been created for another decl with the same mangled name but 2294 // different type. 2295 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2296 GetAddrOfGlobal(D, ForDefinition)); 2297 2298 // In case of different address spaces, we may still get a cast, even with 2299 // IsForDefinition equal to true. Query mangled names table to get 2300 // GlobalValue. 2301 if (!GV) 2302 GV = GetGlobalValue(getMangledName(D)); 2303 2304 // Make sure GetGlobalValue returned non-null. 2305 assert(GV); 2306 2307 // Check to see if we've already emitted this. This is necessary 2308 // for a couple of reasons: first, decls can end up in the 2309 // deferred-decls queue multiple times, and second, decls can end 2310 // up with definitions in unusual ways (e.g. by an extern inline 2311 // function acquiring a strong function redefinition). Just 2312 // ignore these cases. 2313 if (!GV->isDeclaration()) 2314 continue; 2315 2316 // If this is OpenMP, check if it is legal to emit this global normally. 2317 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2318 continue; 2319 2320 // Otherwise, emit the definition and move on to the next one. 2321 EmitGlobalDefinition(D, GV); 2322 2323 // If we found out that we need to emit more decls, do that recursively. 2324 // This has the advantage that the decls are emitted in a DFS and related 2325 // ones are close together, which is convenient for testing. 2326 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2327 EmitDeferred(); 2328 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2329 } 2330 } 2331 } 2332 2333 void CodeGenModule::EmitVTablesOpportunistically() { 2334 // Try to emit external vtables as available_externally if they have emitted 2335 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2336 // is not allowed to create new references to things that need to be emitted 2337 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2338 2339 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2340 && "Only emit opportunistic vtables with optimizations"); 2341 2342 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2343 assert(getVTables().isVTableExternal(RD) && 2344 "This queue should only contain external vtables"); 2345 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2346 VTables.GenerateClassData(RD); 2347 } 2348 OpportunisticVTables.clear(); 2349 } 2350 2351 void CodeGenModule::EmitGlobalAnnotations() { 2352 if (Annotations.empty()) 2353 return; 2354 2355 // Create a new global variable for the ConstantStruct in the Module. 2356 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2357 Annotations[0]->getType(), Annotations.size()), Annotations); 2358 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2359 llvm::GlobalValue::AppendingLinkage, 2360 Array, "llvm.global.annotations"); 2361 gv->setSection(AnnotationSection); 2362 } 2363 2364 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2365 llvm::Constant *&AStr = AnnotationStrings[Str]; 2366 if (AStr) 2367 return AStr; 2368 2369 // Not found yet, create a new global. 2370 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2371 auto *gv = 2372 new llvm::GlobalVariable(getModule(), s->getType(), true, 2373 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2374 gv->setSection(AnnotationSection); 2375 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2376 AStr = gv; 2377 return gv; 2378 } 2379 2380 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2381 SourceManager &SM = getContext().getSourceManager(); 2382 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2383 if (PLoc.isValid()) 2384 return EmitAnnotationString(PLoc.getFilename()); 2385 return EmitAnnotationString(SM.getBufferName(Loc)); 2386 } 2387 2388 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2389 SourceManager &SM = getContext().getSourceManager(); 2390 PresumedLoc PLoc = SM.getPresumedLoc(L); 2391 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2392 SM.getExpansionLineNumber(L); 2393 return llvm::ConstantInt::get(Int32Ty, LineNo); 2394 } 2395 2396 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2397 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2398 if (Exprs.empty()) 2399 return llvm::ConstantPointerNull::get(Int8PtrTy); 2400 2401 llvm::FoldingSetNodeID ID; 2402 for (Expr *E : Exprs) { 2403 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2404 } 2405 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2406 if (Lookup) 2407 return Lookup; 2408 2409 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2410 LLVMArgs.reserve(Exprs.size()); 2411 ConstantEmitter ConstEmiter(*this); 2412 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2413 const auto *CE = cast<clang::ConstantExpr>(E); 2414 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2415 CE->getType()); 2416 }); 2417 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2418 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2419 llvm::GlobalValue::PrivateLinkage, Struct, 2420 ".args"); 2421 GV->setSection(AnnotationSection); 2422 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2423 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2424 2425 Lookup = Bitcasted; 2426 return Bitcasted; 2427 } 2428 2429 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2430 const AnnotateAttr *AA, 2431 SourceLocation L) { 2432 // Get the globals for file name, annotation, and the line number. 2433 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2434 *UnitGV = EmitAnnotationUnit(L), 2435 *LineNoCst = EmitAnnotationLineNo(L), 2436 *Args = EmitAnnotationArgs(AA); 2437 2438 llvm::Constant *ASZeroGV = GV; 2439 if (GV->getAddressSpace() != 0) { 2440 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2441 GV, GV->getValueType()->getPointerTo(0)); 2442 } 2443 2444 // Create the ConstantStruct for the global annotation. 2445 llvm::Constant *Fields[] = { 2446 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2447 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2448 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2449 LineNoCst, 2450 Args, 2451 }; 2452 return llvm::ConstantStruct::getAnon(Fields); 2453 } 2454 2455 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2456 llvm::GlobalValue *GV) { 2457 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2458 // Get the struct elements for these annotations. 2459 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2460 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2461 } 2462 2463 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2464 llvm::Function *Fn, 2465 SourceLocation Loc) const { 2466 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2467 // Blacklist by function name. 2468 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2469 return true; 2470 // Blacklist by location. 2471 if (Loc.isValid()) 2472 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2473 // If location is unknown, this may be a compiler-generated function. Assume 2474 // it's located in the main file. 2475 auto &SM = Context.getSourceManager(); 2476 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2477 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2478 } 2479 return false; 2480 } 2481 2482 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2483 SourceLocation Loc, QualType Ty, 2484 StringRef Category) const { 2485 // For now globals can be blacklisted only in ASan and KASan. 2486 const SanitizerMask EnabledAsanMask = 2487 LangOpts.Sanitize.Mask & 2488 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2489 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2490 SanitizerKind::MemTag); 2491 if (!EnabledAsanMask) 2492 return false; 2493 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2494 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2495 return true; 2496 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2497 return true; 2498 // Check global type. 2499 if (!Ty.isNull()) { 2500 // Drill down the array types: if global variable of a fixed type is 2501 // blacklisted, we also don't instrument arrays of them. 2502 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2503 Ty = AT->getElementType(); 2504 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2505 // We allow to blacklist only record types (classes, structs etc.) 2506 if (Ty->isRecordType()) { 2507 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2508 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2509 return true; 2510 } 2511 } 2512 return false; 2513 } 2514 2515 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2516 StringRef Category) const { 2517 const auto &XRayFilter = getContext().getXRayFilter(); 2518 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2519 auto Attr = ImbueAttr::NONE; 2520 if (Loc.isValid()) 2521 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2522 if (Attr == ImbueAttr::NONE) 2523 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2524 switch (Attr) { 2525 case ImbueAttr::NONE: 2526 return false; 2527 case ImbueAttr::ALWAYS: 2528 Fn->addFnAttr("function-instrument", "xray-always"); 2529 break; 2530 case ImbueAttr::ALWAYS_ARG1: 2531 Fn->addFnAttr("function-instrument", "xray-always"); 2532 Fn->addFnAttr("xray-log-args", "1"); 2533 break; 2534 case ImbueAttr::NEVER: 2535 Fn->addFnAttr("function-instrument", "xray-never"); 2536 break; 2537 } 2538 return true; 2539 } 2540 2541 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2542 // Never defer when EmitAllDecls is specified. 2543 if (LangOpts.EmitAllDecls) 2544 return true; 2545 2546 if (CodeGenOpts.KeepStaticConsts) { 2547 const auto *VD = dyn_cast<VarDecl>(Global); 2548 if (VD && VD->getType().isConstQualified() && 2549 VD->getStorageDuration() == SD_Static) 2550 return true; 2551 } 2552 2553 return getContext().DeclMustBeEmitted(Global); 2554 } 2555 2556 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2557 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2558 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2559 // Implicit template instantiations may change linkage if they are later 2560 // explicitly instantiated, so they should not be emitted eagerly. 2561 return false; 2562 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2563 // not emit them eagerly unless we sure that the function must be emitted on 2564 // the host. 2565 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2566 !LangOpts.OpenMPIsDevice && 2567 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2568 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2569 return false; 2570 } 2571 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2572 if (Context.getInlineVariableDefinitionKind(VD) == 2573 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2574 // A definition of an inline constexpr static data member may change 2575 // linkage later if it's redeclared outside the class. 2576 return false; 2577 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2578 // codegen for global variables, because they may be marked as threadprivate. 2579 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2580 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2581 !isTypeConstant(Global->getType(), false) && 2582 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2583 return false; 2584 2585 return true; 2586 } 2587 2588 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2589 StringRef Name = getMangledName(GD); 2590 2591 // The UUID descriptor should be pointer aligned. 2592 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2593 2594 // Look for an existing global. 2595 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2596 return ConstantAddress(GV, Alignment); 2597 2598 ConstantEmitter Emitter(*this); 2599 llvm::Constant *Init; 2600 2601 APValue &V = GD->getAsAPValue(); 2602 if (!V.isAbsent()) { 2603 // If possible, emit the APValue version of the initializer. In particular, 2604 // this gets the type of the constant right. 2605 Init = Emitter.emitForInitializer( 2606 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2607 } else { 2608 // As a fallback, directly construct the constant. 2609 // FIXME: This may get padding wrong under esoteric struct layout rules. 2610 // MSVC appears to create a complete type 'struct __s_GUID' that it 2611 // presumably uses to represent these constants. 2612 MSGuidDecl::Parts Parts = GD->getParts(); 2613 llvm::Constant *Fields[4] = { 2614 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2615 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2616 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2617 llvm::ConstantDataArray::getRaw( 2618 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2619 Int8Ty)}; 2620 Init = llvm::ConstantStruct::getAnon(Fields); 2621 } 2622 2623 auto *GV = new llvm::GlobalVariable( 2624 getModule(), Init->getType(), 2625 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2626 if (supportsCOMDAT()) 2627 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2628 setDSOLocal(GV); 2629 2630 llvm::Constant *Addr = GV; 2631 if (!V.isAbsent()) { 2632 Emitter.finalize(GV); 2633 } else { 2634 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2635 Addr = llvm::ConstantExpr::getBitCast( 2636 GV, Ty->getPointerTo(GV->getAddressSpace())); 2637 } 2638 return ConstantAddress(Addr, Alignment); 2639 } 2640 2641 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2642 const TemplateParamObjectDecl *TPO) { 2643 StringRef Name = getMangledName(TPO); 2644 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2645 2646 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2647 return ConstantAddress(GV, Alignment); 2648 2649 ConstantEmitter Emitter(*this); 2650 llvm::Constant *Init = Emitter.emitForInitializer( 2651 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2652 2653 if (!Init) { 2654 ErrorUnsupported(TPO, "template parameter object"); 2655 return ConstantAddress::invalid(); 2656 } 2657 2658 auto *GV = new llvm::GlobalVariable( 2659 getModule(), Init->getType(), 2660 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2661 if (supportsCOMDAT()) 2662 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2663 Emitter.finalize(GV); 2664 2665 return ConstantAddress(GV, Alignment); 2666 } 2667 2668 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2669 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2670 assert(AA && "No alias?"); 2671 2672 CharUnits Alignment = getContext().getDeclAlign(VD); 2673 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2674 2675 // See if there is already something with the target's name in the module. 2676 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2677 if (Entry) { 2678 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2679 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2680 return ConstantAddress(Ptr, Alignment); 2681 } 2682 2683 llvm::Constant *Aliasee; 2684 if (isa<llvm::FunctionType>(DeclTy)) 2685 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2686 GlobalDecl(cast<FunctionDecl>(VD)), 2687 /*ForVTable=*/false); 2688 else 2689 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2690 llvm::PointerType::getUnqual(DeclTy), 2691 nullptr); 2692 2693 auto *F = cast<llvm::GlobalValue>(Aliasee); 2694 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2695 WeakRefReferences.insert(F); 2696 2697 return ConstantAddress(Aliasee, Alignment); 2698 } 2699 2700 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2701 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2702 2703 // Weak references don't produce any output by themselves. 2704 if (Global->hasAttr<WeakRefAttr>()) 2705 return; 2706 2707 // If this is an alias definition (which otherwise looks like a declaration) 2708 // emit it now. 2709 if (Global->hasAttr<AliasAttr>()) 2710 return EmitAliasDefinition(GD); 2711 2712 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2713 if (Global->hasAttr<IFuncAttr>()) 2714 return emitIFuncDefinition(GD); 2715 2716 // If this is a cpu_dispatch multiversion function, emit the resolver. 2717 if (Global->hasAttr<CPUDispatchAttr>()) 2718 return emitCPUDispatchDefinition(GD); 2719 2720 // If this is CUDA, be selective about which declarations we emit. 2721 if (LangOpts.CUDA) { 2722 if (LangOpts.CUDAIsDevice) { 2723 if (!Global->hasAttr<CUDADeviceAttr>() && 2724 !Global->hasAttr<CUDAGlobalAttr>() && 2725 !Global->hasAttr<CUDAConstantAttr>() && 2726 !Global->hasAttr<CUDASharedAttr>() && 2727 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2728 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2729 return; 2730 } else { 2731 // We need to emit host-side 'shadows' for all global 2732 // device-side variables because the CUDA runtime needs their 2733 // size and host-side address in order to provide access to 2734 // their device-side incarnations. 2735 2736 // So device-only functions are the only things we skip. 2737 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2738 Global->hasAttr<CUDADeviceAttr>()) 2739 return; 2740 2741 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2742 "Expected Variable or Function"); 2743 } 2744 } 2745 2746 if (LangOpts.OpenMP) { 2747 // If this is OpenMP, check if it is legal to emit this global normally. 2748 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2749 return; 2750 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2751 if (MustBeEmitted(Global)) 2752 EmitOMPDeclareReduction(DRD); 2753 return; 2754 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2755 if (MustBeEmitted(Global)) 2756 EmitOMPDeclareMapper(DMD); 2757 return; 2758 } 2759 } 2760 2761 // Ignore declarations, they will be emitted on their first use. 2762 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2763 // Forward declarations are emitted lazily on first use. 2764 if (!FD->doesThisDeclarationHaveABody()) { 2765 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2766 return; 2767 2768 StringRef MangledName = getMangledName(GD); 2769 2770 // Compute the function info and LLVM type. 2771 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2772 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2773 2774 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2775 /*DontDefer=*/false); 2776 return; 2777 } 2778 } else { 2779 const auto *VD = cast<VarDecl>(Global); 2780 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2781 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2782 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2783 if (LangOpts.OpenMP) { 2784 // Emit declaration of the must-be-emitted declare target variable. 2785 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2786 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2787 bool UnifiedMemoryEnabled = 2788 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2789 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2790 !UnifiedMemoryEnabled) { 2791 (void)GetAddrOfGlobalVar(VD); 2792 } else { 2793 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2794 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2795 UnifiedMemoryEnabled)) && 2796 "Link clause or to clause with unified memory expected."); 2797 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2798 } 2799 2800 return; 2801 } 2802 } 2803 // If this declaration may have caused an inline variable definition to 2804 // change linkage, make sure that it's emitted. 2805 if (Context.getInlineVariableDefinitionKind(VD) == 2806 ASTContext::InlineVariableDefinitionKind::Strong) 2807 GetAddrOfGlobalVar(VD); 2808 return; 2809 } 2810 } 2811 2812 // Defer code generation to first use when possible, e.g. if this is an inline 2813 // function. If the global must always be emitted, do it eagerly if possible 2814 // to benefit from cache locality. 2815 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2816 // Emit the definition if it can't be deferred. 2817 EmitGlobalDefinition(GD); 2818 return; 2819 } 2820 2821 // If we're deferring emission of a C++ variable with an 2822 // initializer, remember the order in which it appeared in the file. 2823 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2824 cast<VarDecl>(Global)->hasInit()) { 2825 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2826 CXXGlobalInits.push_back(nullptr); 2827 } 2828 2829 StringRef MangledName = getMangledName(GD); 2830 if (GetGlobalValue(MangledName) != nullptr) { 2831 // The value has already been used and should therefore be emitted. 2832 addDeferredDeclToEmit(GD); 2833 } else if (MustBeEmitted(Global)) { 2834 // The value must be emitted, but cannot be emitted eagerly. 2835 assert(!MayBeEmittedEagerly(Global)); 2836 addDeferredDeclToEmit(GD); 2837 } else { 2838 // Otherwise, remember that we saw a deferred decl with this name. The 2839 // first use of the mangled name will cause it to move into 2840 // DeferredDeclsToEmit. 2841 DeferredDecls[MangledName] = GD; 2842 } 2843 } 2844 2845 // Check if T is a class type with a destructor that's not dllimport. 2846 static bool HasNonDllImportDtor(QualType T) { 2847 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2848 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2849 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2850 return true; 2851 2852 return false; 2853 } 2854 2855 namespace { 2856 struct FunctionIsDirectlyRecursive 2857 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2858 const StringRef Name; 2859 const Builtin::Context &BI; 2860 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2861 : Name(N), BI(C) {} 2862 2863 bool VisitCallExpr(const CallExpr *E) { 2864 const FunctionDecl *FD = E->getDirectCallee(); 2865 if (!FD) 2866 return false; 2867 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2868 if (Attr && Name == Attr->getLabel()) 2869 return true; 2870 unsigned BuiltinID = FD->getBuiltinID(); 2871 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2872 return false; 2873 StringRef BuiltinName = BI.getName(BuiltinID); 2874 if (BuiltinName.startswith("__builtin_") && 2875 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2876 return true; 2877 } 2878 return false; 2879 } 2880 2881 bool VisitStmt(const Stmt *S) { 2882 for (const Stmt *Child : S->children()) 2883 if (Child && this->Visit(Child)) 2884 return true; 2885 return false; 2886 } 2887 }; 2888 2889 // Make sure we're not referencing non-imported vars or functions. 2890 struct DLLImportFunctionVisitor 2891 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2892 bool SafeToInline = true; 2893 2894 bool shouldVisitImplicitCode() const { return true; } 2895 2896 bool VisitVarDecl(VarDecl *VD) { 2897 if (VD->getTLSKind()) { 2898 // A thread-local variable cannot be imported. 2899 SafeToInline = false; 2900 return SafeToInline; 2901 } 2902 2903 // A variable definition might imply a destructor call. 2904 if (VD->isThisDeclarationADefinition()) 2905 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2906 2907 return SafeToInline; 2908 } 2909 2910 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2911 if (const auto *D = E->getTemporary()->getDestructor()) 2912 SafeToInline = D->hasAttr<DLLImportAttr>(); 2913 return SafeToInline; 2914 } 2915 2916 bool VisitDeclRefExpr(DeclRefExpr *E) { 2917 ValueDecl *VD = E->getDecl(); 2918 if (isa<FunctionDecl>(VD)) 2919 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2920 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2921 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2922 return SafeToInline; 2923 } 2924 2925 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2926 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2927 return SafeToInline; 2928 } 2929 2930 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2931 CXXMethodDecl *M = E->getMethodDecl(); 2932 if (!M) { 2933 // Call through a pointer to member function. This is safe to inline. 2934 SafeToInline = true; 2935 } else { 2936 SafeToInline = M->hasAttr<DLLImportAttr>(); 2937 } 2938 return SafeToInline; 2939 } 2940 2941 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2942 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2943 return SafeToInline; 2944 } 2945 2946 bool VisitCXXNewExpr(CXXNewExpr *E) { 2947 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2948 return SafeToInline; 2949 } 2950 }; 2951 } 2952 2953 // isTriviallyRecursive - Check if this function calls another 2954 // decl that, because of the asm attribute or the other decl being a builtin, 2955 // ends up pointing to itself. 2956 bool 2957 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2958 StringRef Name; 2959 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2960 // asm labels are a special kind of mangling we have to support. 2961 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2962 if (!Attr) 2963 return false; 2964 Name = Attr->getLabel(); 2965 } else { 2966 Name = FD->getName(); 2967 } 2968 2969 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2970 const Stmt *Body = FD->getBody(); 2971 return Body ? Walker.Visit(Body) : false; 2972 } 2973 2974 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2975 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2976 return true; 2977 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2978 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2979 return false; 2980 2981 if (F->hasAttr<DLLImportAttr>()) { 2982 // Check whether it would be safe to inline this dllimport function. 2983 DLLImportFunctionVisitor Visitor; 2984 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2985 if (!Visitor.SafeToInline) 2986 return false; 2987 2988 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2989 // Implicit destructor invocations aren't captured in the AST, so the 2990 // check above can't see them. Check for them manually here. 2991 for (const Decl *Member : Dtor->getParent()->decls()) 2992 if (isa<FieldDecl>(Member)) 2993 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2994 return false; 2995 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2996 if (HasNonDllImportDtor(B.getType())) 2997 return false; 2998 } 2999 } 3000 3001 // PR9614. Avoid cases where the source code is lying to us. An available 3002 // externally function should have an equivalent function somewhere else, 3003 // but a function that calls itself through asm label/`__builtin_` trickery is 3004 // clearly not equivalent to the real implementation. 3005 // This happens in glibc's btowc and in some configure checks. 3006 return !isTriviallyRecursive(F); 3007 } 3008 3009 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3010 return CodeGenOpts.OptimizationLevel > 0; 3011 } 3012 3013 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3014 llvm::GlobalValue *GV) { 3015 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3016 3017 if (FD->isCPUSpecificMultiVersion()) { 3018 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3019 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3020 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3021 // Requires multiple emits. 3022 } else 3023 EmitGlobalFunctionDefinition(GD, GV); 3024 } 3025 3026 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3027 const auto *D = cast<ValueDecl>(GD.getDecl()); 3028 3029 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3030 Context.getSourceManager(), 3031 "Generating code for declaration"); 3032 3033 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3034 // At -O0, don't generate IR for functions with available_externally 3035 // linkage. 3036 if (!shouldEmitFunction(GD)) 3037 return; 3038 3039 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3040 std::string Name; 3041 llvm::raw_string_ostream OS(Name); 3042 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3043 /*Qualified=*/true); 3044 return Name; 3045 }); 3046 3047 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3048 // Make sure to emit the definition(s) before we emit the thunks. 3049 // This is necessary for the generation of certain thunks. 3050 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3051 ABI->emitCXXStructor(GD); 3052 else if (FD->isMultiVersion()) 3053 EmitMultiVersionFunctionDefinition(GD, GV); 3054 else 3055 EmitGlobalFunctionDefinition(GD, GV); 3056 3057 if (Method->isVirtual()) 3058 getVTables().EmitThunks(GD); 3059 3060 return; 3061 } 3062 3063 if (FD->isMultiVersion()) 3064 return EmitMultiVersionFunctionDefinition(GD, GV); 3065 return EmitGlobalFunctionDefinition(GD, GV); 3066 } 3067 3068 if (const auto *VD = dyn_cast<VarDecl>(D)) 3069 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3070 3071 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3072 } 3073 3074 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3075 llvm::Function *NewFn); 3076 3077 static unsigned 3078 TargetMVPriority(const TargetInfo &TI, 3079 const CodeGenFunction::MultiVersionResolverOption &RO) { 3080 unsigned Priority = 0; 3081 for (StringRef Feat : RO.Conditions.Features) 3082 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3083 3084 if (!RO.Conditions.Architecture.empty()) 3085 Priority = std::max( 3086 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3087 return Priority; 3088 } 3089 3090 void CodeGenModule::emitMultiVersionFunctions() { 3091 for (GlobalDecl GD : MultiVersionFuncs) { 3092 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3093 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3094 getContext().forEachMultiversionedFunctionVersion( 3095 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3096 GlobalDecl CurGD{ 3097 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3098 StringRef MangledName = getMangledName(CurGD); 3099 llvm::Constant *Func = GetGlobalValue(MangledName); 3100 if (!Func) { 3101 if (CurFD->isDefined()) { 3102 EmitGlobalFunctionDefinition(CurGD, nullptr); 3103 Func = GetGlobalValue(MangledName); 3104 } else { 3105 const CGFunctionInfo &FI = 3106 getTypes().arrangeGlobalDeclaration(GD); 3107 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3108 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3109 /*DontDefer=*/false, ForDefinition); 3110 } 3111 assert(Func && "This should have just been created"); 3112 } 3113 3114 const auto *TA = CurFD->getAttr<TargetAttr>(); 3115 llvm::SmallVector<StringRef, 8> Feats; 3116 TA->getAddedFeatures(Feats); 3117 3118 Options.emplace_back(cast<llvm::Function>(Func), 3119 TA->getArchitecture(), Feats); 3120 }); 3121 3122 llvm::Function *ResolverFunc; 3123 const TargetInfo &TI = getTarget(); 3124 3125 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3126 ResolverFunc = cast<llvm::Function>( 3127 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3128 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3129 } else { 3130 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3131 } 3132 3133 if (supportsCOMDAT()) 3134 ResolverFunc->setComdat( 3135 getModule().getOrInsertComdat(ResolverFunc->getName())); 3136 3137 llvm::stable_sort( 3138 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3139 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3140 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3141 }); 3142 CodeGenFunction CGF(*this); 3143 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3144 } 3145 } 3146 3147 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3148 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3149 assert(FD && "Not a FunctionDecl?"); 3150 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3151 assert(DD && "Not a cpu_dispatch Function?"); 3152 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3153 3154 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3155 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3156 DeclTy = getTypes().GetFunctionType(FInfo); 3157 } 3158 3159 StringRef ResolverName = getMangledName(GD); 3160 3161 llvm::Type *ResolverType; 3162 GlobalDecl ResolverGD; 3163 if (getTarget().supportsIFunc()) 3164 ResolverType = llvm::FunctionType::get( 3165 llvm::PointerType::get(DeclTy, 3166 Context.getTargetAddressSpace(FD->getType())), 3167 false); 3168 else { 3169 ResolverType = DeclTy; 3170 ResolverGD = GD; 3171 } 3172 3173 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3174 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3175 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3176 if (supportsCOMDAT()) 3177 ResolverFunc->setComdat( 3178 getModule().getOrInsertComdat(ResolverFunc->getName())); 3179 3180 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3181 const TargetInfo &Target = getTarget(); 3182 unsigned Index = 0; 3183 for (const IdentifierInfo *II : DD->cpus()) { 3184 // Get the name of the target function so we can look it up/create it. 3185 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3186 getCPUSpecificMangling(*this, II->getName()); 3187 3188 llvm::Constant *Func = GetGlobalValue(MangledName); 3189 3190 if (!Func) { 3191 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3192 if (ExistingDecl.getDecl() && 3193 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3194 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3195 Func = GetGlobalValue(MangledName); 3196 } else { 3197 if (!ExistingDecl.getDecl()) 3198 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3199 3200 Func = GetOrCreateLLVMFunction( 3201 MangledName, DeclTy, ExistingDecl, 3202 /*ForVTable=*/false, /*DontDefer=*/true, 3203 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3204 } 3205 } 3206 3207 llvm::SmallVector<StringRef, 32> Features; 3208 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3209 llvm::transform(Features, Features.begin(), 3210 [](StringRef Str) { return Str.substr(1); }); 3211 Features.erase(std::remove_if( 3212 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3213 return !Target.validateCpuSupports(Feat); 3214 }), Features.end()); 3215 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3216 ++Index; 3217 } 3218 3219 llvm::sort( 3220 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3221 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3222 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3223 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3224 }); 3225 3226 // If the list contains multiple 'default' versions, such as when it contains 3227 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3228 // always run on at least a 'pentium'). We do this by deleting the 'least 3229 // advanced' (read, lowest mangling letter). 3230 while (Options.size() > 1 && 3231 CodeGenFunction::GetX86CpuSupportsMask( 3232 (Options.end() - 2)->Conditions.Features) == 0) { 3233 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3234 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3235 if (LHSName.compare(RHSName) < 0) 3236 Options.erase(Options.end() - 2); 3237 else 3238 Options.erase(Options.end() - 1); 3239 } 3240 3241 CodeGenFunction CGF(*this); 3242 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3243 3244 if (getTarget().supportsIFunc()) { 3245 std::string AliasName = getMangledNameImpl( 3246 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3247 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3248 if (!AliasFunc) { 3249 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3250 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3251 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3252 auto *GA = llvm::GlobalAlias::create( 3253 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3254 GA->setLinkage(llvm::Function::WeakODRLinkage); 3255 SetCommonAttributes(GD, GA); 3256 } 3257 } 3258 } 3259 3260 /// If a dispatcher for the specified mangled name is not in the module, create 3261 /// and return an llvm Function with the specified type. 3262 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3263 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3264 std::string MangledName = 3265 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3266 3267 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3268 // a separate resolver). 3269 std::string ResolverName = MangledName; 3270 if (getTarget().supportsIFunc()) 3271 ResolverName += ".ifunc"; 3272 else if (FD->isTargetMultiVersion()) 3273 ResolverName += ".resolver"; 3274 3275 // If this already exists, just return that one. 3276 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3277 return ResolverGV; 3278 3279 // Since this is the first time we've created this IFunc, make sure 3280 // that we put this multiversioned function into the list to be 3281 // replaced later if necessary (target multiversioning only). 3282 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3283 MultiVersionFuncs.push_back(GD); 3284 3285 if (getTarget().supportsIFunc()) { 3286 llvm::Type *ResolverType = llvm::FunctionType::get( 3287 llvm::PointerType::get( 3288 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3289 false); 3290 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3291 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3292 /*ForVTable=*/false); 3293 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3294 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3295 GIF->setName(ResolverName); 3296 SetCommonAttributes(FD, GIF); 3297 3298 return GIF; 3299 } 3300 3301 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3302 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3303 assert(isa<llvm::GlobalValue>(Resolver) && 3304 "Resolver should be created for the first time"); 3305 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3306 return Resolver; 3307 } 3308 3309 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3310 /// module, create and return an llvm Function with the specified type. If there 3311 /// is something in the module with the specified name, return it potentially 3312 /// bitcasted to the right type. 3313 /// 3314 /// If D is non-null, it specifies a decl that correspond to this. This is used 3315 /// to set the attributes on the function when it is first created. 3316 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3317 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3318 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3319 ForDefinition_t IsForDefinition) { 3320 const Decl *D = GD.getDecl(); 3321 3322 // Any attempts to use a MultiVersion function should result in retrieving 3323 // the iFunc instead. Name Mangling will handle the rest of the changes. 3324 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3325 // For the device mark the function as one that should be emitted. 3326 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3327 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3328 !DontDefer && !IsForDefinition) { 3329 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3330 GlobalDecl GDDef; 3331 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3332 GDDef = GlobalDecl(CD, GD.getCtorType()); 3333 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3334 GDDef = GlobalDecl(DD, GD.getDtorType()); 3335 else 3336 GDDef = GlobalDecl(FDDef); 3337 EmitGlobal(GDDef); 3338 } 3339 } 3340 3341 if (FD->isMultiVersion()) { 3342 if (FD->hasAttr<TargetAttr>()) 3343 UpdateMultiVersionNames(GD, FD); 3344 if (!IsForDefinition) 3345 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3346 } 3347 } 3348 3349 // Lookup the entry, lazily creating it if necessary. 3350 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3351 if (Entry) { 3352 if (WeakRefReferences.erase(Entry)) { 3353 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3354 if (FD && !FD->hasAttr<WeakAttr>()) 3355 Entry->setLinkage(llvm::Function::ExternalLinkage); 3356 } 3357 3358 // Handle dropped DLL attributes. 3359 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3360 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3361 setDSOLocal(Entry); 3362 } 3363 3364 // If there are two attempts to define the same mangled name, issue an 3365 // error. 3366 if (IsForDefinition && !Entry->isDeclaration()) { 3367 GlobalDecl OtherGD; 3368 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3369 // to make sure that we issue an error only once. 3370 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3371 (GD.getCanonicalDecl().getDecl() != 3372 OtherGD.getCanonicalDecl().getDecl()) && 3373 DiagnosedConflictingDefinitions.insert(GD).second) { 3374 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3375 << MangledName; 3376 getDiags().Report(OtherGD.getDecl()->getLocation(), 3377 diag::note_previous_definition); 3378 } 3379 } 3380 3381 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3382 (Entry->getValueType() == Ty)) { 3383 return Entry; 3384 } 3385 3386 // Make sure the result is of the correct type. 3387 // (If function is requested for a definition, we always need to create a new 3388 // function, not just return a bitcast.) 3389 if (!IsForDefinition) 3390 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3391 } 3392 3393 // This function doesn't have a complete type (for example, the return 3394 // type is an incomplete struct). Use a fake type instead, and make 3395 // sure not to try to set attributes. 3396 bool IsIncompleteFunction = false; 3397 3398 llvm::FunctionType *FTy; 3399 if (isa<llvm::FunctionType>(Ty)) { 3400 FTy = cast<llvm::FunctionType>(Ty); 3401 } else { 3402 FTy = llvm::FunctionType::get(VoidTy, false); 3403 IsIncompleteFunction = true; 3404 } 3405 3406 llvm::Function *F = 3407 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3408 Entry ? StringRef() : MangledName, &getModule()); 3409 3410 // If we already created a function with the same mangled name (but different 3411 // type) before, take its name and add it to the list of functions to be 3412 // replaced with F at the end of CodeGen. 3413 // 3414 // This happens if there is a prototype for a function (e.g. "int f()") and 3415 // then a definition of a different type (e.g. "int f(int x)"). 3416 if (Entry) { 3417 F->takeName(Entry); 3418 3419 // This might be an implementation of a function without a prototype, in 3420 // which case, try to do special replacement of calls which match the new 3421 // prototype. The really key thing here is that we also potentially drop 3422 // arguments from the call site so as to make a direct call, which makes the 3423 // inliner happier and suppresses a number of optimizer warnings (!) about 3424 // dropping arguments. 3425 if (!Entry->use_empty()) { 3426 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3427 Entry->removeDeadConstantUsers(); 3428 } 3429 3430 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3431 F, Entry->getValueType()->getPointerTo()); 3432 addGlobalValReplacement(Entry, BC); 3433 } 3434 3435 assert(F->getName() == MangledName && "name was uniqued!"); 3436 if (D) 3437 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3438 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3439 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3440 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3441 } 3442 3443 if (!DontDefer) { 3444 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3445 // each other bottoming out with the base dtor. Therefore we emit non-base 3446 // dtors on usage, even if there is no dtor definition in the TU. 3447 if (D && isa<CXXDestructorDecl>(D) && 3448 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3449 GD.getDtorType())) 3450 addDeferredDeclToEmit(GD); 3451 3452 // This is the first use or definition of a mangled name. If there is a 3453 // deferred decl with this name, remember that we need to emit it at the end 3454 // of the file. 3455 auto DDI = DeferredDecls.find(MangledName); 3456 if (DDI != DeferredDecls.end()) { 3457 // Move the potentially referenced deferred decl to the 3458 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3459 // don't need it anymore). 3460 addDeferredDeclToEmit(DDI->second); 3461 DeferredDecls.erase(DDI); 3462 3463 // Otherwise, there are cases we have to worry about where we're 3464 // using a declaration for which we must emit a definition but where 3465 // we might not find a top-level definition: 3466 // - member functions defined inline in their classes 3467 // - friend functions defined inline in some class 3468 // - special member functions with implicit definitions 3469 // If we ever change our AST traversal to walk into class methods, 3470 // this will be unnecessary. 3471 // 3472 // We also don't emit a definition for a function if it's going to be an 3473 // entry in a vtable, unless it's already marked as used. 3474 } else if (getLangOpts().CPlusPlus && D) { 3475 // Look for a declaration that's lexically in a record. 3476 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3477 FD = FD->getPreviousDecl()) { 3478 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3479 if (FD->doesThisDeclarationHaveABody()) { 3480 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3481 break; 3482 } 3483 } 3484 } 3485 } 3486 } 3487 3488 // Make sure the result is of the requested type. 3489 if (!IsIncompleteFunction) { 3490 assert(F->getFunctionType() == Ty); 3491 return F; 3492 } 3493 3494 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3495 return llvm::ConstantExpr::getBitCast(F, PTy); 3496 } 3497 3498 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3499 /// non-null, then this function will use the specified type if it has to 3500 /// create it (this occurs when we see a definition of the function). 3501 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3502 llvm::Type *Ty, 3503 bool ForVTable, 3504 bool DontDefer, 3505 ForDefinition_t IsForDefinition) { 3506 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3507 "consteval function should never be emitted"); 3508 // If there was no specific requested type, just convert it now. 3509 if (!Ty) { 3510 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3511 Ty = getTypes().ConvertType(FD->getType()); 3512 } 3513 3514 // Devirtualized destructor calls may come through here instead of via 3515 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3516 // of the complete destructor when necessary. 3517 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3518 if (getTarget().getCXXABI().isMicrosoft() && 3519 GD.getDtorType() == Dtor_Complete && 3520 DD->getParent()->getNumVBases() == 0) 3521 GD = GlobalDecl(DD, Dtor_Base); 3522 } 3523 3524 StringRef MangledName = getMangledName(GD); 3525 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3526 /*IsThunk=*/false, llvm::AttributeList(), 3527 IsForDefinition); 3528 } 3529 3530 static const FunctionDecl * 3531 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3532 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3533 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3534 3535 IdentifierInfo &CII = C.Idents.get(Name); 3536 for (const auto &Result : DC->lookup(&CII)) 3537 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3538 return FD; 3539 3540 if (!C.getLangOpts().CPlusPlus) 3541 return nullptr; 3542 3543 // Demangle the premangled name from getTerminateFn() 3544 IdentifierInfo &CXXII = 3545 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3546 ? C.Idents.get("terminate") 3547 : C.Idents.get(Name); 3548 3549 for (const auto &N : {"__cxxabiv1", "std"}) { 3550 IdentifierInfo &NS = C.Idents.get(N); 3551 for (const auto &Result : DC->lookup(&NS)) { 3552 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3553 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3554 for (const auto &Result : LSD->lookup(&NS)) 3555 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3556 break; 3557 3558 if (ND) 3559 for (const auto &Result : ND->lookup(&CXXII)) 3560 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3561 return FD; 3562 } 3563 } 3564 3565 return nullptr; 3566 } 3567 3568 /// CreateRuntimeFunction - Create a new runtime function with the specified 3569 /// type and name. 3570 llvm::FunctionCallee 3571 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3572 llvm::AttributeList ExtraAttrs, bool Local, 3573 bool AssumeConvergent) { 3574 if (AssumeConvergent) { 3575 ExtraAttrs = 3576 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3577 llvm::Attribute::Convergent); 3578 } 3579 3580 llvm::Constant *C = 3581 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3582 /*DontDefer=*/false, /*IsThunk=*/false, 3583 ExtraAttrs); 3584 3585 if (auto *F = dyn_cast<llvm::Function>(C)) { 3586 if (F->empty()) { 3587 F->setCallingConv(getRuntimeCC()); 3588 3589 // In Windows Itanium environments, try to mark runtime functions 3590 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3591 // will link their standard library statically or dynamically. Marking 3592 // functions imported when they are not imported can cause linker errors 3593 // and warnings. 3594 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3595 !getCodeGenOpts().LTOVisibilityPublicStd) { 3596 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3597 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3598 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3599 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3600 } 3601 } 3602 setDSOLocal(F); 3603 } 3604 } 3605 3606 return {FTy, C}; 3607 } 3608 3609 /// isTypeConstant - Determine whether an object of this type can be emitted 3610 /// as a constant. 3611 /// 3612 /// If ExcludeCtor is true, the duration when the object's constructor runs 3613 /// will not be considered. The caller will need to verify that the object is 3614 /// not written to during its construction. 3615 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3616 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3617 return false; 3618 3619 if (Context.getLangOpts().CPlusPlus) { 3620 if (const CXXRecordDecl *Record 3621 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3622 return ExcludeCtor && !Record->hasMutableFields() && 3623 Record->hasTrivialDestructor(); 3624 } 3625 3626 return true; 3627 } 3628 3629 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3630 /// create and return an llvm GlobalVariable with the specified type. If there 3631 /// is something in the module with the specified name, return it potentially 3632 /// bitcasted to the right type. 3633 /// 3634 /// If D is non-null, it specifies a decl that correspond to this. This is used 3635 /// to set the attributes on the global when it is first created. 3636 /// 3637 /// If IsForDefinition is true, it is guaranteed that an actual global with 3638 /// type Ty will be returned, not conversion of a variable with the same 3639 /// mangled name but some other type. 3640 llvm::Constant * 3641 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3642 llvm::PointerType *Ty, 3643 const VarDecl *D, 3644 ForDefinition_t IsForDefinition) { 3645 // Lookup the entry, lazily creating it if necessary. 3646 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3647 if (Entry) { 3648 if (WeakRefReferences.erase(Entry)) { 3649 if (D && !D->hasAttr<WeakAttr>()) 3650 Entry->setLinkage(llvm::Function::ExternalLinkage); 3651 } 3652 3653 // Handle dropped DLL attributes. 3654 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3655 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3656 3657 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3658 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3659 3660 if (Entry->getType() == Ty) 3661 return Entry; 3662 3663 // If there are two attempts to define the same mangled name, issue an 3664 // error. 3665 if (IsForDefinition && !Entry->isDeclaration()) { 3666 GlobalDecl OtherGD; 3667 const VarDecl *OtherD; 3668 3669 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3670 // to make sure that we issue an error only once. 3671 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3672 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3673 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3674 OtherD->hasInit() && 3675 DiagnosedConflictingDefinitions.insert(D).second) { 3676 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3677 << MangledName; 3678 getDiags().Report(OtherGD.getDecl()->getLocation(), 3679 diag::note_previous_definition); 3680 } 3681 } 3682 3683 // Make sure the result is of the correct type. 3684 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3685 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3686 3687 // (If global is requested for a definition, we always need to create a new 3688 // global, not just return a bitcast.) 3689 if (!IsForDefinition) 3690 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3691 } 3692 3693 auto AddrSpace = GetGlobalVarAddressSpace(D); 3694 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3695 3696 auto *GV = new llvm::GlobalVariable( 3697 getModule(), Ty->getElementType(), false, 3698 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3699 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3700 3701 // If we already created a global with the same mangled name (but different 3702 // type) before, take its name and remove it from its parent. 3703 if (Entry) { 3704 GV->takeName(Entry); 3705 3706 if (!Entry->use_empty()) { 3707 llvm::Constant *NewPtrForOldDecl = 3708 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3709 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3710 } 3711 3712 Entry->eraseFromParent(); 3713 } 3714 3715 // This is the first use or definition of a mangled name. If there is a 3716 // deferred decl with this name, remember that we need to emit it at the end 3717 // of the file. 3718 auto DDI = DeferredDecls.find(MangledName); 3719 if (DDI != DeferredDecls.end()) { 3720 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3721 // list, and remove it from DeferredDecls (since we don't need it anymore). 3722 addDeferredDeclToEmit(DDI->second); 3723 DeferredDecls.erase(DDI); 3724 } 3725 3726 // Handle things which are present even on external declarations. 3727 if (D) { 3728 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3729 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3730 3731 // FIXME: This code is overly simple and should be merged with other global 3732 // handling. 3733 GV->setConstant(isTypeConstant(D->getType(), false)); 3734 3735 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3736 3737 setLinkageForGV(GV, D); 3738 3739 if (D->getTLSKind()) { 3740 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3741 CXXThreadLocals.push_back(D); 3742 setTLSMode(GV, *D); 3743 } 3744 3745 setGVProperties(GV, D); 3746 3747 // If required by the ABI, treat declarations of static data members with 3748 // inline initializers as definitions. 3749 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3750 EmitGlobalVarDefinition(D); 3751 } 3752 3753 // Emit section information for extern variables. 3754 if (D->hasExternalStorage()) { 3755 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3756 GV->setSection(SA->getName()); 3757 } 3758 3759 // Handle XCore specific ABI requirements. 3760 if (getTriple().getArch() == llvm::Triple::xcore && 3761 D->getLanguageLinkage() == CLanguageLinkage && 3762 D->getType().isConstant(Context) && 3763 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3764 GV->setSection(".cp.rodata"); 3765 3766 // Check if we a have a const declaration with an initializer, we may be 3767 // able to emit it as available_externally to expose it's value to the 3768 // optimizer. 3769 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3770 D->getType().isConstQualified() && !GV->hasInitializer() && 3771 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3772 const auto *Record = 3773 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3774 bool HasMutableFields = Record && Record->hasMutableFields(); 3775 if (!HasMutableFields) { 3776 const VarDecl *InitDecl; 3777 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3778 if (InitExpr) { 3779 ConstantEmitter emitter(*this); 3780 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3781 if (Init) { 3782 auto *InitType = Init->getType(); 3783 if (GV->getValueType() != InitType) { 3784 // The type of the initializer does not match the definition. 3785 // This happens when an initializer has a different type from 3786 // the type of the global (because of padding at the end of a 3787 // structure for instance). 3788 GV->setName(StringRef()); 3789 // Make a new global with the correct type, this is now guaranteed 3790 // to work. 3791 auto *NewGV = cast<llvm::GlobalVariable>( 3792 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3793 ->stripPointerCasts()); 3794 3795 // Erase the old global, since it is no longer used. 3796 GV->eraseFromParent(); 3797 GV = NewGV; 3798 } else { 3799 GV->setInitializer(Init); 3800 GV->setConstant(true); 3801 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3802 } 3803 emitter.finalize(GV); 3804 } 3805 } 3806 } 3807 } 3808 } 3809 3810 if (GV->isDeclaration()) 3811 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3812 3813 LangAS ExpectedAS = 3814 D ? D->getType().getAddressSpace() 3815 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3816 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3817 Ty->getPointerAddressSpace()); 3818 if (AddrSpace != ExpectedAS) 3819 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3820 ExpectedAS, Ty); 3821 3822 return GV; 3823 } 3824 3825 llvm::Constant * 3826 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3827 const Decl *D = GD.getDecl(); 3828 3829 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3830 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3831 /*DontDefer=*/false, IsForDefinition); 3832 3833 if (isa<CXXMethodDecl>(D)) { 3834 auto FInfo = 3835 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3836 auto Ty = getTypes().GetFunctionType(*FInfo); 3837 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3838 IsForDefinition); 3839 } 3840 3841 if (isa<FunctionDecl>(D)) { 3842 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3843 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3844 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3845 IsForDefinition); 3846 } 3847 3848 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3849 } 3850 3851 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3852 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3853 unsigned Alignment) { 3854 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3855 llvm::GlobalVariable *OldGV = nullptr; 3856 3857 if (GV) { 3858 // Check if the variable has the right type. 3859 if (GV->getValueType() == Ty) 3860 return GV; 3861 3862 // Because C++ name mangling, the only way we can end up with an already 3863 // existing global with the same name is if it has been declared extern "C". 3864 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3865 OldGV = GV; 3866 } 3867 3868 // Create a new variable. 3869 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3870 Linkage, nullptr, Name); 3871 3872 if (OldGV) { 3873 // Replace occurrences of the old variable if needed. 3874 GV->takeName(OldGV); 3875 3876 if (!OldGV->use_empty()) { 3877 llvm::Constant *NewPtrForOldDecl = 3878 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3879 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3880 } 3881 3882 OldGV->eraseFromParent(); 3883 } 3884 3885 if (supportsCOMDAT() && GV->isWeakForLinker() && 3886 !GV->hasAvailableExternallyLinkage()) 3887 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3888 3889 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3890 3891 return GV; 3892 } 3893 3894 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3895 /// given global variable. If Ty is non-null and if the global doesn't exist, 3896 /// then it will be created with the specified type instead of whatever the 3897 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3898 /// that an actual global with type Ty will be returned, not conversion of a 3899 /// variable with the same mangled name but some other type. 3900 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3901 llvm::Type *Ty, 3902 ForDefinition_t IsForDefinition) { 3903 assert(D->hasGlobalStorage() && "Not a global variable"); 3904 QualType ASTTy = D->getType(); 3905 if (!Ty) 3906 Ty = getTypes().ConvertTypeForMem(ASTTy); 3907 3908 llvm::PointerType *PTy = 3909 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3910 3911 StringRef MangledName = getMangledName(D); 3912 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3913 } 3914 3915 /// CreateRuntimeVariable - Create a new runtime global variable with the 3916 /// specified type and name. 3917 llvm::Constant * 3918 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3919 StringRef Name) { 3920 auto PtrTy = 3921 getContext().getLangOpts().OpenCL 3922 ? llvm::PointerType::get( 3923 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3924 : llvm::PointerType::getUnqual(Ty); 3925 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3926 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3927 return Ret; 3928 } 3929 3930 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3931 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3932 3933 StringRef MangledName = getMangledName(D); 3934 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3935 3936 // We already have a definition, not declaration, with the same mangled name. 3937 // Emitting of declaration is not required (and actually overwrites emitted 3938 // definition). 3939 if (GV && !GV->isDeclaration()) 3940 return; 3941 3942 // If we have not seen a reference to this variable yet, place it into the 3943 // deferred declarations table to be emitted if needed later. 3944 if (!MustBeEmitted(D) && !GV) { 3945 DeferredDecls[MangledName] = D; 3946 return; 3947 } 3948 3949 // The tentative definition is the only definition. 3950 EmitGlobalVarDefinition(D); 3951 } 3952 3953 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3954 EmitExternalVarDeclaration(D); 3955 } 3956 3957 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3958 return Context.toCharUnitsFromBits( 3959 getDataLayout().getTypeStoreSizeInBits(Ty)); 3960 } 3961 3962 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3963 LangAS AddrSpace = LangAS::Default; 3964 if (LangOpts.OpenCL) { 3965 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3966 assert(AddrSpace == LangAS::opencl_global || 3967 AddrSpace == LangAS::opencl_global_device || 3968 AddrSpace == LangAS::opencl_global_host || 3969 AddrSpace == LangAS::opencl_constant || 3970 AddrSpace == LangAS::opencl_local || 3971 AddrSpace >= LangAS::FirstTargetAddressSpace); 3972 return AddrSpace; 3973 } 3974 3975 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3976 if (D && D->hasAttr<CUDAConstantAttr>()) 3977 return LangAS::cuda_constant; 3978 else if (D && D->hasAttr<CUDASharedAttr>()) 3979 return LangAS::cuda_shared; 3980 else if (D && D->hasAttr<CUDADeviceAttr>()) 3981 return LangAS::cuda_device; 3982 else if (D && D->getType().isConstQualified()) 3983 return LangAS::cuda_constant; 3984 else 3985 return LangAS::cuda_device; 3986 } 3987 3988 if (LangOpts.OpenMP) { 3989 LangAS AS; 3990 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3991 return AS; 3992 } 3993 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3994 } 3995 3996 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3997 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3998 if (LangOpts.OpenCL) 3999 return LangAS::opencl_constant; 4000 if (auto AS = getTarget().getConstantAddressSpace()) 4001 return AS.getValue(); 4002 return LangAS::Default; 4003 } 4004 4005 // In address space agnostic languages, string literals are in default address 4006 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4007 // emitted in constant address space in LLVM IR. To be consistent with other 4008 // parts of AST, string literal global variables in constant address space 4009 // need to be casted to default address space before being put into address 4010 // map and referenced by other part of CodeGen. 4011 // In OpenCL, string literals are in constant address space in AST, therefore 4012 // they should not be casted to default address space. 4013 static llvm::Constant * 4014 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4015 llvm::GlobalVariable *GV) { 4016 llvm::Constant *Cast = GV; 4017 if (!CGM.getLangOpts().OpenCL) { 4018 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4019 if (AS != LangAS::Default) 4020 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4021 CGM, GV, AS.getValue(), LangAS::Default, 4022 GV->getValueType()->getPointerTo( 4023 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4024 } 4025 } 4026 return Cast; 4027 } 4028 4029 template<typename SomeDecl> 4030 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4031 llvm::GlobalValue *GV) { 4032 if (!getLangOpts().CPlusPlus) 4033 return; 4034 4035 // Must have 'used' attribute, or else inline assembly can't rely on 4036 // the name existing. 4037 if (!D->template hasAttr<UsedAttr>()) 4038 return; 4039 4040 // Must have internal linkage and an ordinary name. 4041 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4042 return; 4043 4044 // Must be in an extern "C" context. Entities declared directly within 4045 // a record are not extern "C" even if the record is in such a context. 4046 const SomeDecl *First = D->getFirstDecl(); 4047 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4048 return; 4049 4050 // OK, this is an internal linkage entity inside an extern "C" linkage 4051 // specification. Make a note of that so we can give it the "expected" 4052 // mangled name if nothing else is using that name. 4053 std::pair<StaticExternCMap::iterator, bool> R = 4054 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4055 4056 // If we have multiple internal linkage entities with the same name 4057 // in extern "C" regions, none of them gets that name. 4058 if (!R.second) 4059 R.first->second = nullptr; 4060 } 4061 4062 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4063 if (!CGM.supportsCOMDAT()) 4064 return false; 4065 4066 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4067 // them being "merged" by the COMDAT Folding linker optimization. 4068 if (D.hasAttr<CUDAGlobalAttr>()) 4069 return false; 4070 4071 if (D.hasAttr<SelectAnyAttr>()) 4072 return true; 4073 4074 GVALinkage Linkage; 4075 if (auto *VD = dyn_cast<VarDecl>(&D)) 4076 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4077 else 4078 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4079 4080 switch (Linkage) { 4081 case GVA_Internal: 4082 case GVA_AvailableExternally: 4083 case GVA_StrongExternal: 4084 return false; 4085 case GVA_DiscardableODR: 4086 case GVA_StrongODR: 4087 return true; 4088 } 4089 llvm_unreachable("No such linkage"); 4090 } 4091 4092 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4093 llvm::GlobalObject &GO) { 4094 if (!shouldBeInCOMDAT(*this, D)) 4095 return; 4096 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4097 } 4098 4099 /// Pass IsTentative as true if you want to create a tentative definition. 4100 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4101 bool IsTentative) { 4102 // OpenCL global variables of sampler type are translated to function calls, 4103 // therefore no need to be translated. 4104 QualType ASTTy = D->getType(); 4105 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4106 return; 4107 4108 // If this is OpenMP device, check if it is legal to emit this global 4109 // normally. 4110 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4111 OpenMPRuntime->emitTargetGlobalVariable(D)) 4112 return; 4113 4114 llvm::Constant *Init = nullptr; 4115 bool NeedsGlobalCtor = false; 4116 bool NeedsGlobalDtor = 4117 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4118 4119 const VarDecl *InitDecl; 4120 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4121 4122 Optional<ConstantEmitter> emitter; 4123 4124 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4125 // as part of their declaration." Sema has already checked for 4126 // error cases, so we just need to set Init to UndefValue. 4127 bool IsCUDASharedVar = 4128 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4129 // Shadows of initialized device-side global variables are also left 4130 // undefined. 4131 bool IsCUDAShadowVar = 4132 !getLangOpts().CUDAIsDevice && 4133 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4134 D->hasAttr<CUDASharedAttr>()); 4135 bool IsCUDADeviceShadowVar = 4136 getLangOpts().CUDAIsDevice && 4137 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4138 D->getType()->isCUDADeviceBuiltinTextureType()); 4139 // HIP pinned shadow of initialized host-side global variables are also 4140 // left undefined. 4141 if (getLangOpts().CUDA && 4142 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4143 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4144 else if (D->hasAttr<LoaderUninitializedAttr>()) 4145 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4146 else if (!InitExpr) { 4147 // This is a tentative definition; tentative definitions are 4148 // implicitly initialized with { 0 }. 4149 // 4150 // Note that tentative definitions are only emitted at the end of 4151 // a translation unit, so they should never have incomplete 4152 // type. In addition, EmitTentativeDefinition makes sure that we 4153 // never attempt to emit a tentative definition if a real one 4154 // exists. A use may still exists, however, so we still may need 4155 // to do a RAUW. 4156 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4157 Init = EmitNullConstant(D->getType()); 4158 } else { 4159 initializedGlobalDecl = GlobalDecl(D); 4160 emitter.emplace(*this); 4161 Init = emitter->tryEmitForInitializer(*InitDecl); 4162 4163 if (!Init) { 4164 QualType T = InitExpr->getType(); 4165 if (D->getType()->isReferenceType()) 4166 T = D->getType(); 4167 4168 if (getLangOpts().CPlusPlus) { 4169 Init = EmitNullConstant(T); 4170 NeedsGlobalCtor = true; 4171 } else { 4172 ErrorUnsupported(D, "static initializer"); 4173 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4174 } 4175 } else { 4176 // We don't need an initializer, so remove the entry for the delayed 4177 // initializer position (just in case this entry was delayed) if we 4178 // also don't need to register a destructor. 4179 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4180 DelayedCXXInitPosition.erase(D); 4181 } 4182 } 4183 4184 llvm::Type* InitType = Init->getType(); 4185 llvm::Constant *Entry = 4186 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4187 4188 // Strip off pointer casts if we got them. 4189 Entry = Entry->stripPointerCasts(); 4190 4191 // Entry is now either a Function or GlobalVariable. 4192 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4193 4194 // We have a definition after a declaration with the wrong type. 4195 // We must make a new GlobalVariable* and update everything that used OldGV 4196 // (a declaration or tentative definition) with the new GlobalVariable* 4197 // (which will be a definition). 4198 // 4199 // This happens if there is a prototype for a global (e.g. 4200 // "extern int x[];") and then a definition of a different type (e.g. 4201 // "int x[10];"). This also happens when an initializer has a different type 4202 // from the type of the global (this happens with unions). 4203 if (!GV || GV->getValueType() != InitType || 4204 GV->getType()->getAddressSpace() != 4205 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4206 4207 // Move the old entry aside so that we'll create a new one. 4208 Entry->setName(StringRef()); 4209 4210 // Make a new global with the correct type, this is now guaranteed to work. 4211 GV = cast<llvm::GlobalVariable>( 4212 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4213 ->stripPointerCasts()); 4214 4215 // Replace all uses of the old global with the new global 4216 llvm::Constant *NewPtrForOldDecl = 4217 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4218 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4219 4220 // Erase the old global, since it is no longer used. 4221 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4222 } 4223 4224 MaybeHandleStaticInExternC(D, GV); 4225 4226 if (D->hasAttr<AnnotateAttr>()) 4227 AddGlobalAnnotations(D, GV); 4228 4229 // Set the llvm linkage type as appropriate. 4230 llvm::GlobalValue::LinkageTypes Linkage = 4231 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4232 4233 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4234 // the device. [...]" 4235 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4236 // __device__, declares a variable that: [...] 4237 // Is accessible from all the threads within the grid and from the host 4238 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4239 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4240 if (GV && LangOpts.CUDA) { 4241 if (LangOpts.CUDAIsDevice) { 4242 if (Linkage != llvm::GlobalValue::InternalLinkage && 4243 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4244 GV->setExternallyInitialized(true); 4245 } else { 4246 // Host-side shadows of external declarations of device-side 4247 // global variables become internal definitions. These have to 4248 // be internal in order to prevent name conflicts with global 4249 // host variables with the same name in a different TUs. 4250 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4251 Linkage = llvm::GlobalValue::InternalLinkage; 4252 // Shadow variables and their properties must be registered with CUDA 4253 // runtime. Skip Extern global variables, which will be registered in 4254 // the TU where they are defined. 4255 // 4256 // Don't register a C++17 inline variable. The local symbol can be 4257 // discarded and referencing a discarded local symbol from outside the 4258 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 4259 // TODO: Reject __device__ constexpr and __device__ inline in Sema. 4260 if (!D->hasExternalStorage() && !D->isInline()) 4261 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4262 D->hasAttr<CUDAConstantAttr>()); 4263 } else if (D->hasAttr<CUDASharedAttr>()) { 4264 // __shared__ variables are odd. Shadows do get created, but 4265 // they are not registered with the CUDA runtime, so they 4266 // can't really be used to access their device-side 4267 // counterparts. It's not clear yet whether it's nvcc's bug or 4268 // a feature, but we've got to do the same for compatibility. 4269 Linkage = llvm::GlobalValue::InternalLinkage; 4270 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4271 D->getType()->isCUDADeviceBuiltinTextureType()) { 4272 // Builtin surfaces and textures and their template arguments are 4273 // also registered with CUDA runtime. 4274 Linkage = llvm::GlobalValue::InternalLinkage; 4275 const ClassTemplateSpecializationDecl *TD = 4276 cast<ClassTemplateSpecializationDecl>( 4277 D->getType()->getAs<RecordType>()->getDecl()); 4278 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4279 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4280 assert(Args.size() == 2 && 4281 "Unexpected number of template arguments of CUDA device " 4282 "builtin surface type."); 4283 auto SurfType = Args[1].getAsIntegral(); 4284 if (!D->hasExternalStorage()) 4285 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4286 SurfType.getSExtValue()); 4287 } else { 4288 assert(Args.size() == 3 && 4289 "Unexpected number of template arguments of CUDA device " 4290 "builtin texture type."); 4291 auto TexType = Args[1].getAsIntegral(); 4292 auto Normalized = Args[2].getAsIntegral(); 4293 if (!D->hasExternalStorage()) 4294 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4295 TexType.getSExtValue(), 4296 Normalized.getZExtValue()); 4297 } 4298 } 4299 } 4300 } 4301 4302 GV->setInitializer(Init); 4303 if (emitter) 4304 emitter->finalize(GV); 4305 4306 // If it is safe to mark the global 'constant', do so now. 4307 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4308 isTypeConstant(D->getType(), true)); 4309 4310 // If it is in a read-only section, mark it 'constant'. 4311 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4312 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4313 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4314 GV->setConstant(true); 4315 } 4316 4317 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4318 4319 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4320 // function is only defined alongside the variable, not also alongside 4321 // callers. Normally, all accesses to a thread_local go through the 4322 // thread-wrapper in order to ensure initialization has occurred, underlying 4323 // variable will never be used other than the thread-wrapper, so it can be 4324 // converted to internal linkage. 4325 // 4326 // However, if the variable has the 'constinit' attribute, it _can_ be 4327 // referenced directly, without calling the thread-wrapper, so the linkage 4328 // must not be changed. 4329 // 4330 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4331 // weak or linkonce, the de-duplication semantics are important to preserve, 4332 // so we don't change the linkage. 4333 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4334 Linkage == llvm::GlobalValue::ExternalLinkage && 4335 Context.getTargetInfo().getTriple().isOSDarwin() && 4336 !D->hasAttr<ConstInitAttr>()) 4337 Linkage = llvm::GlobalValue::InternalLinkage; 4338 4339 GV->setLinkage(Linkage); 4340 if (D->hasAttr<DLLImportAttr>()) 4341 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4342 else if (D->hasAttr<DLLExportAttr>()) 4343 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4344 else 4345 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4346 4347 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4348 // common vars aren't constant even if declared const. 4349 GV->setConstant(false); 4350 // Tentative definition of global variables may be initialized with 4351 // non-zero null pointers. In this case they should have weak linkage 4352 // since common linkage must have zero initializer and must not have 4353 // explicit section therefore cannot have non-zero initial value. 4354 if (!GV->getInitializer()->isNullValue()) 4355 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4356 } 4357 4358 setNonAliasAttributes(D, GV); 4359 4360 if (D->getTLSKind() && !GV->isThreadLocal()) { 4361 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4362 CXXThreadLocals.push_back(D); 4363 setTLSMode(GV, *D); 4364 } 4365 4366 maybeSetTrivialComdat(*D, *GV); 4367 4368 // Emit the initializer function if necessary. 4369 if (NeedsGlobalCtor || NeedsGlobalDtor) 4370 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4371 4372 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4373 4374 // Emit global variable debug information. 4375 if (CGDebugInfo *DI = getModuleDebugInfo()) 4376 if (getCodeGenOpts().hasReducedDebugInfo()) 4377 DI->EmitGlobalVariable(GV, D); 4378 } 4379 4380 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4381 if (CGDebugInfo *DI = getModuleDebugInfo()) 4382 if (getCodeGenOpts().hasReducedDebugInfo()) { 4383 QualType ASTTy = D->getType(); 4384 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4385 llvm::PointerType *PTy = 4386 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4387 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4388 DI->EmitExternalVariable( 4389 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4390 } 4391 } 4392 4393 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4394 CodeGenModule &CGM, const VarDecl *D, 4395 bool NoCommon) { 4396 // Don't give variables common linkage if -fno-common was specified unless it 4397 // was overridden by a NoCommon attribute. 4398 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4399 return true; 4400 4401 // C11 6.9.2/2: 4402 // A declaration of an identifier for an object that has file scope without 4403 // an initializer, and without a storage-class specifier or with the 4404 // storage-class specifier static, constitutes a tentative definition. 4405 if (D->getInit() || D->hasExternalStorage()) 4406 return true; 4407 4408 // A variable cannot be both common and exist in a section. 4409 if (D->hasAttr<SectionAttr>()) 4410 return true; 4411 4412 // A variable cannot be both common and exist in a section. 4413 // We don't try to determine which is the right section in the front-end. 4414 // If no specialized section name is applicable, it will resort to default. 4415 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4416 D->hasAttr<PragmaClangDataSectionAttr>() || 4417 D->hasAttr<PragmaClangRelroSectionAttr>() || 4418 D->hasAttr<PragmaClangRodataSectionAttr>()) 4419 return true; 4420 4421 // Thread local vars aren't considered common linkage. 4422 if (D->getTLSKind()) 4423 return true; 4424 4425 // Tentative definitions marked with WeakImportAttr are true definitions. 4426 if (D->hasAttr<WeakImportAttr>()) 4427 return true; 4428 4429 // A variable cannot be both common and exist in a comdat. 4430 if (shouldBeInCOMDAT(CGM, *D)) 4431 return true; 4432 4433 // Declarations with a required alignment do not have common linkage in MSVC 4434 // mode. 4435 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4436 if (D->hasAttr<AlignedAttr>()) 4437 return true; 4438 QualType VarType = D->getType(); 4439 if (Context.isAlignmentRequired(VarType)) 4440 return true; 4441 4442 if (const auto *RT = VarType->getAs<RecordType>()) { 4443 const RecordDecl *RD = RT->getDecl(); 4444 for (const FieldDecl *FD : RD->fields()) { 4445 if (FD->isBitField()) 4446 continue; 4447 if (FD->hasAttr<AlignedAttr>()) 4448 return true; 4449 if (Context.isAlignmentRequired(FD->getType())) 4450 return true; 4451 } 4452 } 4453 } 4454 4455 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4456 // common symbols, so symbols with greater alignment requirements cannot be 4457 // common. 4458 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4459 // alignments for common symbols via the aligncomm directive, so this 4460 // restriction only applies to MSVC environments. 4461 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4462 Context.getTypeAlignIfKnown(D->getType()) > 4463 Context.toBits(CharUnits::fromQuantity(32))) 4464 return true; 4465 4466 return false; 4467 } 4468 4469 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4470 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4471 if (Linkage == GVA_Internal) 4472 return llvm::Function::InternalLinkage; 4473 4474 if (D->hasAttr<WeakAttr>()) { 4475 if (IsConstantVariable) 4476 return llvm::GlobalVariable::WeakODRLinkage; 4477 else 4478 return llvm::GlobalVariable::WeakAnyLinkage; 4479 } 4480 4481 if (const auto *FD = D->getAsFunction()) 4482 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4483 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4484 4485 // We are guaranteed to have a strong definition somewhere else, 4486 // so we can use available_externally linkage. 4487 if (Linkage == GVA_AvailableExternally) 4488 return llvm::GlobalValue::AvailableExternallyLinkage; 4489 4490 // Note that Apple's kernel linker doesn't support symbol 4491 // coalescing, so we need to avoid linkonce and weak linkages there. 4492 // Normally, this means we just map to internal, but for explicit 4493 // instantiations we'll map to external. 4494 4495 // In C++, the compiler has to emit a definition in every translation unit 4496 // that references the function. We should use linkonce_odr because 4497 // a) if all references in this translation unit are optimized away, we 4498 // don't need to codegen it. b) if the function persists, it needs to be 4499 // merged with other definitions. c) C++ has the ODR, so we know the 4500 // definition is dependable. 4501 if (Linkage == GVA_DiscardableODR) 4502 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4503 : llvm::Function::InternalLinkage; 4504 4505 // An explicit instantiation of a template has weak linkage, since 4506 // explicit instantiations can occur in multiple translation units 4507 // and must all be equivalent. However, we are not allowed to 4508 // throw away these explicit instantiations. 4509 // 4510 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4511 // so say that CUDA templates are either external (for kernels) or internal. 4512 // This lets llvm perform aggressive inter-procedural optimizations. For 4513 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4514 // therefore we need to follow the normal linkage paradigm. 4515 if (Linkage == GVA_StrongODR) { 4516 if (getLangOpts().AppleKext) 4517 return llvm::Function::ExternalLinkage; 4518 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4519 !getLangOpts().GPURelocatableDeviceCode) 4520 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4521 : llvm::Function::InternalLinkage; 4522 return llvm::Function::WeakODRLinkage; 4523 } 4524 4525 // C++ doesn't have tentative definitions and thus cannot have common 4526 // linkage. 4527 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4528 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4529 CodeGenOpts.NoCommon)) 4530 return llvm::GlobalVariable::CommonLinkage; 4531 4532 // selectany symbols are externally visible, so use weak instead of 4533 // linkonce. MSVC optimizes away references to const selectany globals, so 4534 // all definitions should be the same and ODR linkage should be used. 4535 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4536 if (D->hasAttr<SelectAnyAttr>()) 4537 return llvm::GlobalVariable::WeakODRLinkage; 4538 4539 // Otherwise, we have strong external linkage. 4540 assert(Linkage == GVA_StrongExternal); 4541 return llvm::GlobalVariable::ExternalLinkage; 4542 } 4543 4544 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4545 const VarDecl *VD, bool IsConstant) { 4546 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4547 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4548 } 4549 4550 /// Replace the uses of a function that was declared with a non-proto type. 4551 /// We want to silently drop extra arguments from call sites 4552 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4553 llvm::Function *newFn) { 4554 // Fast path. 4555 if (old->use_empty()) return; 4556 4557 llvm::Type *newRetTy = newFn->getReturnType(); 4558 SmallVector<llvm::Value*, 4> newArgs; 4559 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4560 4561 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4562 ui != ue; ) { 4563 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4564 llvm::User *user = use->getUser(); 4565 4566 // Recognize and replace uses of bitcasts. Most calls to 4567 // unprototyped functions will use bitcasts. 4568 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4569 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4570 replaceUsesOfNonProtoConstant(bitcast, newFn); 4571 continue; 4572 } 4573 4574 // Recognize calls to the function. 4575 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4576 if (!callSite) continue; 4577 if (!callSite->isCallee(&*use)) 4578 continue; 4579 4580 // If the return types don't match exactly, then we can't 4581 // transform this call unless it's dead. 4582 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4583 continue; 4584 4585 // Get the call site's attribute list. 4586 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4587 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4588 4589 // If the function was passed too few arguments, don't transform. 4590 unsigned newNumArgs = newFn->arg_size(); 4591 if (callSite->arg_size() < newNumArgs) 4592 continue; 4593 4594 // If extra arguments were passed, we silently drop them. 4595 // If any of the types mismatch, we don't transform. 4596 unsigned argNo = 0; 4597 bool dontTransform = false; 4598 for (llvm::Argument &A : newFn->args()) { 4599 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4600 dontTransform = true; 4601 break; 4602 } 4603 4604 // Add any parameter attributes. 4605 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4606 argNo++; 4607 } 4608 if (dontTransform) 4609 continue; 4610 4611 // Okay, we can transform this. Create the new call instruction and copy 4612 // over the required information. 4613 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4614 4615 // Copy over any operand bundles. 4616 callSite->getOperandBundlesAsDefs(newBundles); 4617 4618 llvm::CallBase *newCall; 4619 if (dyn_cast<llvm::CallInst>(callSite)) { 4620 newCall = 4621 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4622 } else { 4623 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4624 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4625 oldInvoke->getUnwindDest(), newArgs, 4626 newBundles, "", callSite); 4627 } 4628 newArgs.clear(); // for the next iteration 4629 4630 if (!newCall->getType()->isVoidTy()) 4631 newCall->takeName(callSite); 4632 newCall->setAttributes(llvm::AttributeList::get( 4633 newFn->getContext(), oldAttrs.getFnAttributes(), 4634 oldAttrs.getRetAttributes(), newArgAttrs)); 4635 newCall->setCallingConv(callSite->getCallingConv()); 4636 4637 // Finally, remove the old call, replacing any uses with the new one. 4638 if (!callSite->use_empty()) 4639 callSite->replaceAllUsesWith(newCall); 4640 4641 // Copy debug location attached to CI. 4642 if (callSite->getDebugLoc()) 4643 newCall->setDebugLoc(callSite->getDebugLoc()); 4644 4645 callSite->eraseFromParent(); 4646 } 4647 } 4648 4649 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4650 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4651 /// existing call uses of the old function in the module, this adjusts them to 4652 /// call the new function directly. 4653 /// 4654 /// This is not just a cleanup: the always_inline pass requires direct calls to 4655 /// functions to be able to inline them. If there is a bitcast in the way, it 4656 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4657 /// run at -O0. 4658 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4659 llvm::Function *NewFn) { 4660 // If we're redefining a global as a function, don't transform it. 4661 if (!isa<llvm::Function>(Old)) return; 4662 4663 replaceUsesOfNonProtoConstant(Old, NewFn); 4664 } 4665 4666 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4667 auto DK = VD->isThisDeclarationADefinition(); 4668 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4669 return; 4670 4671 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4672 // If we have a definition, this might be a deferred decl. If the 4673 // instantiation is explicit, make sure we emit it at the end. 4674 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4675 GetAddrOfGlobalVar(VD); 4676 4677 EmitTopLevelDecl(VD); 4678 } 4679 4680 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4681 llvm::GlobalValue *GV) { 4682 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4683 4684 // Compute the function info and LLVM type. 4685 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4686 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4687 4688 // Get or create the prototype for the function. 4689 if (!GV || (GV->getValueType() != Ty)) 4690 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4691 /*DontDefer=*/true, 4692 ForDefinition)); 4693 4694 // Already emitted. 4695 if (!GV->isDeclaration()) 4696 return; 4697 4698 // We need to set linkage and visibility on the function before 4699 // generating code for it because various parts of IR generation 4700 // want to propagate this information down (e.g. to local static 4701 // declarations). 4702 auto *Fn = cast<llvm::Function>(GV); 4703 setFunctionLinkage(GD, Fn); 4704 4705 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4706 setGVProperties(Fn, GD); 4707 4708 MaybeHandleStaticInExternC(D, Fn); 4709 4710 maybeSetTrivialComdat(*D, *Fn); 4711 4712 // Set CodeGen attributes that represent floating point environment. 4713 setLLVMFunctionFEnvAttributes(D, Fn); 4714 4715 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4716 4717 setNonAliasAttributes(GD, Fn); 4718 SetLLVMFunctionAttributesForDefinition(D, Fn); 4719 4720 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4721 AddGlobalCtor(Fn, CA->getPriority()); 4722 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4723 AddGlobalDtor(Fn, DA->getPriority(), true); 4724 if (D->hasAttr<AnnotateAttr>()) 4725 AddGlobalAnnotations(D, Fn); 4726 } 4727 4728 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4729 const auto *D = cast<ValueDecl>(GD.getDecl()); 4730 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4731 assert(AA && "Not an alias?"); 4732 4733 StringRef MangledName = getMangledName(GD); 4734 4735 if (AA->getAliasee() == MangledName) { 4736 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4737 return; 4738 } 4739 4740 // If there is a definition in the module, then it wins over the alias. 4741 // This is dubious, but allow it to be safe. Just ignore the alias. 4742 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4743 if (Entry && !Entry->isDeclaration()) 4744 return; 4745 4746 Aliases.push_back(GD); 4747 4748 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4749 4750 // Create a reference to the named value. This ensures that it is emitted 4751 // if a deferred decl. 4752 llvm::Constant *Aliasee; 4753 llvm::GlobalValue::LinkageTypes LT; 4754 if (isa<llvm::FunctionType>(DeclTy)) { 4755 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4756 /*ForVTable=*/false); 4757 LT = getFunctionLinkage(GD); 4758 } else { 4759 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4760 llvm::PointerType::getUnqual(DeclTy), 4761 /*D=*/nullptr); 4762 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4763 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4764 else 4765 LT = getFunctionLinkage(GD); 4766 } 4767 4768 // Create the new alias itself, but don't set a name yet. 4769 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4770 auto *GA = 4771 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4772 4773 if (Entry) { 4774 if (GA->getAliasee() == Entry) { 4775 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4776 return; 4777 } 4778 4779 assert(Entry->isDeclaration()); 4780 4781 // If there is a declaration in the module, then we had an extern followed 4782 // by the alias, as in: 4783 // extern int test6(); 4784 // ... 4785 // int test6() __attribute__((alias("test7"))); 4786 // 4787 // Remove it and replace uses of it with the alias. 4788 GA->takeName(Entry); 4789 4790 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4791 Entry->getType())); 4792 Entry->eraseFromParent(); 4793 } else { 4794 GA->setName(MangledName); 4795 } 4796 4797 // Set attributes which are particular to an alias; this is a 4798 // specialization of the attributes which may be set on a global 4799 // variable/function. 4800 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4801 D->isWeakImported()) { 4802 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4803 } 4804 4805 if (const auto *VD = dyn_cast<VarDecl>(D)) 4806 if (VD->getTLSKind()) 4807 setTLSMode(GA, *VD); 4808 4809 SetCommonAttributes(GD, GA); 4810 } 4811 4812 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4813 const auto *D = cast<ValueDecl>(GD.getDecl()); 4814 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4815 assert(IFA && "Not an ifunc?"); 4816 4817 StringRef MangledName = getMangledName(GD); 4818 4819 if (IFA->getResolver() == MangledName) { 4820 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4821 return; 4822 } 4823 4824 // Report an error if some definition overrides ifunc. 4825 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4826 if (Entry && !Entry->isDeclaration()) { 4827 GlobalDecl OtherGD; 4828 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4829 DiagnosedConflictingDefinitions.insert(GD).second) { 4830 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4831 << MangledName; 4832 Diags.Report(OtherGD.getDecl()->getLocation(), 4833 diag::note_previous_definition); 4834 } 4835 return; 4836 } 4837 4838 Aliases.push_back(GD); 4839 4840 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4841 llvm::Constant *Resolver = 4842 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4843 /*ForVTable=*/false); 4844 llvm::GlobalIFunc *GIF = 4845 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4846 "", Resolver, &getModule()); 4847 if (Entry) { 4848 if (GIF->getResolver() == Entry) { 4849 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4850 return; 4851 } 4852 assert(Entry->isDeclaration()); 4853 4854 // If there is a declaration in the module, then we had an extern followed 4855 // by the ifunc, as in: 4856 // extern int test(); 4857 // ... 4858 // int test() __attribute__((ifunc("resolver"))); 4859 // 4860 // Remove it and replace uses of it with the ifunc. 4861 GIF->takeName(Entry); 4862 4863 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4864 Entry->getType())); 4865 Entry->eraseFromParent(); 4866 } else 4867 GIF->setName(MangledName); 4868 4869 SetCommonAttributes(GD, GIF); 4870 } 4871 4872 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4873 ArrayRef<llvm::Type*> Tys) { 4874 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4875 Tys); 4876 } 4877 4878 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4879 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4880 const StringLiteral *Literal, bool TargetIsLSB, 4881 bool &IsUTF16, unsigned &StringLength) { 4882 StringRef String = Literal->getString(); 4883 unsigned NumBytes = String.size(); 4884 4885 // Check for simple case. 4886 if (!Literal->containsNonAsciiOrNull()) { 4887 StringLength = NumBytes; 4888 return *Map.insert(std::make_pair(String, nullptr)).first; 4889 } 4890 4891 // Otherwise, convert the UTF8 literals into a string of shorts. 4892 IsUTF16 = true; 4893 4894 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4895 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4896 llvm::UTF16 *ToPtr = &ToBuf[0]; 4897 4898 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4899 ToPtr + NumBytes, llvm::strictConversion); 4900 4901 // ConvertUTF8toUTF16 returns the length in ToPtr. 4902 StringLength = ToPtr - &ToBuf[0]; 4903 4904 // Add an explicit null. 4905 *ToPtr = 0; 4906 return *Map.insert(std::make_pair( 4907 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4908 (StringLength + 1) * 2), 4909 nullptr)).first; 4910 } 4911 4912 ConstantAddress 4913 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4914 unsigned StringLength = 0; 4915 bool isUTF16 = false; 4916 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4917 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4918 getDataLayout().isLittleEndian(), isUTF16, 4919 StringLength); 4920 4921 if (auto *C = Entry.second) 4922 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4923 4924 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4925 llvm::Constant *Zeros[] = { Zero, Zero }; 4926 4927 const ASTContext &Context = getContext(); 4928 const llvm::Triple &Triple = getTriple(); 4929 4930 const auto CFRuntime = getLangOpts().CFRuntime; 4931 const bool IsSwiftABI = 4932 static_cast<unsigned>(CFRuntime) >= 4933 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4934 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4935 4936 // If we don't already have it, get __CFConstantStringClassReference. 4937 if (!CFConstantStringClassRef) { 4938 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4939 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4940 Ty = llvm::ArrayType::get(Ty, 0); 4941 4942 switch (CFRuntime) { 4943 default: break; 4944 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4945 case LangOptions::CoreFoundationABI::Swift5_0: 4946 CFConstantStringClassName = 4947 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4948 : "$s10Foundation19_NSCFConstantStringCN"; 4949 Ty = IntPtrTy; 4950 break; 4951 case LangOptions::CoreFoundationABI::Swift4_2: 4952 CFConstantStringClassName = 4953 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4954 : "$S10Foundation19_NSCFConstantStringCN"; 4955 Ty = IntPtrTy; 4956 break; 4957 case LangOptions::CoreFoundationABI::Swift4_1: 4958 CFConstantStringClassName = 4959 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4960 : "__T010Foundation19_NSCFConstantStringCN"; 4961 Ty = IntPtrTy; 4962 break; 4963 } 4964 4965 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4966 4967 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4968 llvm::GlobalValue *GV = nullptr; 4969 4970 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4971 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4972 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4973 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4974 4975 const VarDecl *VD = nullptr; 4976 for (const auto &Result : DC->lookup(&II)) 4977 if ((VD = dyn_cast<VarDecl>(Result))) 4978 break; 4979 4980 if (Triple.isOSBinFormatELF()) { 4981 if (!VD) 4982 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4983 } else { 4984 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4985 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4986 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4987 else 4988 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4989 } 4990 4991 setDSOLocal(GV); 4992 } 4993 } 4994 4995 // Decay array -> ptr 4996 CFConstantStringClassRef = 4997 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4998 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4999 } 5000 5001 QualType CFTy = Context.getCFConstantStringType(); 5002 5003 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5004 5005 ConstantInitBuilder Builder(*this); 5006 auto Fields = Builder.beginStruct(STy); 5007 5008 // Class pointer. 5009 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5010 5011 // Flags. 5012 if (IsSwiftABI) { 5013 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5014 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5015 } else { 5016 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5017 } 5018 5019 // String pointer. 5020 llvm::Constant *C = nullptr; 5021 if (isUTF16) { 5022 auto Arr = llvm::makeArrayRef( 5023 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5024 Entry.first().size() / 2); 5025 C = llvm::ConstantDataArray::get(VMContext, Arr); 5026 } else { 5027 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5028 } 5029 5030 // Note: -fwritable-strings doesn't make the backing store strings of 5031 // CFStrings writable. (See <rdar://problem/10657500>) 5032 auto *GV = 5033 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5034 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5035 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5036 // Don't enforce the target's minimum global alignment, since the only use 5037 // of the string is via this class initializer. 5038 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5039 : Context.getTypeAlignInChars(Context.CharTy); 5040 GV->setAlignment(Align.getAsAlign()); 5041 5042 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5043 // Without it LLVM can merge the string with a non unnamed_addr one during 5044 // LTO. Doing that changes the section it ends in, which surprises ld64. 5045 if (Triple.isOSBinFormatMachO()) 5046 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5047 : "__TEXT,__cstring,cstring_literals"); 5048 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5049 // the static linker to adjust permissions to read-only later on. 5050 else if (Triple.isOSBinFormatELF()) 5051 GV->setSection(".rodata"); 5052 5053 // String. 5054 llvm::Constant *Str = 5055 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5056 5057 if (isUTF16) 5058 // Cast the UTF16 string to the correct type. 5059 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5060 Fields.add(Str); 5061 5062 // String length. 5063 llvm::IntegerType *LengthTy = 5064 llvm::IntegerType::get(getModule().getContext(), 5065 Context.getTargetInfo().getLongWidth()); 5066 if (IsSwiftABI) { 5067 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5068 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5069 LengthTy = Int32Ty; 5070 else 5071 LengthTy = IntPtrTy; 5072 } 5073 Fields.addInt(LengthTy, StringLength); 5074 5075 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5076 // properly aligned on 32-bit platforms. 5077 CharUnits Alignment = 5078 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5079 5080 // The struct. 5081 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5082 /*isConstant=*/false, 5083 llvm::GlobalVariable::PrivateLinkage); 5084 GV->addAttribute("objc_arc_inert"); 5085 switch (Triple.getObjectFormat()) { 5086 case llvm::Triple::UnknownObjectFormat: 5087 llvm_unreachable("unknown file format"); 5088 case llvm::Triple::GOFF: 5089 llvm_unreachable("GOFF is not yet implemented"); 5090 case llvm::Triple::XCOFF: 5091 llvm_unreachable("XCOFF is not yet implemented"); 5092 case llvm::Triple::COFF: 5093 case llvm::Triple::ELF: 5094 case llvm::Triple::Wasm: 5095 GV->setSection("cfstring"); 5096 break; 5097 case llvm::Triple::MachO: 5098 GV->setSection("__DATA,__cfstring"); 5099 break; 5100 } 5101 Entry.second = GV; 5102 5103 return ConstantAddress(GV, Alignment); 5104 } 5105 5106 bool CodeGenModule::getExpressionLocationsEnabled() const { 5107 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5108 } 5109 5110 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5111 if (ObjCFastEnumerationStateType.isNull()) { 5112 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5113 D->startDefinition(); 5114 5115 QualType FieldTypes[] = { 5116 Context.UnsignedLongTy, 5117 Context.getPointerType(Context.getObjCIdType()), 5118 Context.getPointerType(Context.UnsignedLongTy), 5119 Context.getConstantArrayType(Context.UnsignedLongTy, 5120 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5121 }; 5122 5123 for (size_t i = 0; i < 4; ++i) { 5124 FieldDecl *Field = FieldDecl::Create(Context, 5125 D, 5126 SourceLocation(), 5127 SourceLocation(), nullptr, 5128 FieldTypes[i], /*TInfo=*/nullptr, 5129 /*BitWidth=*/nullptr, 5130 /*Mutable=*/false, 5131 ICIS_NoInit); 5132 Field->setAccess(AS_public); 5133 D->addDecl(Field); 5134 } 5135 5136 D->completeDefinition(); 5137 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5138 } 5139 5140 return ObjCFastEnumerationStateType; 5141 } 5142 5143 llvm::Constant * 5144 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5145 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5146 5147 // Don't emit it as the address of the string, emit the string data itself 5148 // as an inline array. 5149 if (E->getCharByteWidth() == 1) { 5150 SmallString<64> Str(E->getString()); 5151 5152 // Resize the string to the right size, which is indicated by its type. 5153 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5154 Str.resize(CAT->getSize().getZExtValue()); 5155 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5156 } 5157 5158 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5159 llvm::Type *ElemTy = AType->getElementType(); 5160 unsigned NumElements = AType->getNumElements(); 5161 5162 // Wide strings have either 2-byte or 4-byte elements. 5163 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5164 SmallVector<uint16_t, 32> Elements; 5165 Elements.reserve(NumElements); 5166 5167 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5168 Elements.push_back(E->getCodeUnit(i)); 5169 Elements.resize(NumElements); 5170 return llvm::ConstantDataArray::get(VMContext, Elements); 5171 } 5172 5173 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5174 SmallVector<uint32_t, 32> Elements; 5175 Elements.reserve(NumElements); 5176 5177 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5178 Elements.push_back(E->getCodeUnit(i)); 5179 Elements.resize(NumElements); 5180 return llvm::ConstantDataArray::get(VMContext, Elements); 5181 } 5182 5183 static llvm::GlobalVariable * 5184 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5185 CodeGenModule &CGM, StringRef GlobalName, 5186 CharUnits Alignment) { 5187 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5188 CGM.getStringLiteralAddressSpace()); 5189 5190 llvm::Module &M = CGM.getModule(); 5191 // Create a global variable for this string 5192 auto *GV = new llvm::GlobalVariable( 5193 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5194 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5195 GV->setAlignment(Alignment.getAsAlign()); 5196 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5197 if (GV->isWeakForLinker()) { 5198 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5199 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5200 } 5201 CGM.setDSOLocal(GV); 5202 5203 return GV; 5204 } 5205 5206 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5207 /// constant array for the given string literal. 5208 ConstantAddress 5209 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5210 StringRef Name) { 5211 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5212 5213 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5214 llvm::GlobalVariable **Entry = nullptr; 5215 if (!LangOpts.WritableStrings) { 5216 Entry = &ConstantStringMap[C]; 5217 if (auto GV = *Entry) { 5218 if (Alignment.getQuantity() > GV->getAlignment()) 5219 GV->setAlignment(Alignment.getAsAlign()); 5220 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5221 Alignment); 5222 } 5223 } 5224 5225 SmallString<256> MangledNameBuffer; 5226 StringRef GlobalVariableName; 5227 llvm::GlobalValue::LinkageTypes LT; 5228 5229 // Mangle the string literal if that's how the ABI merges duplicate strings. 5230 // Don't do it if they are writable, since we don't want writes in one TU to 5231 // affect strings in another. 5232 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5233 !LangOpts.WritableStrings) { 5234 llvm::raw_svector_ostream Out(MangledNameBuffer); 5235 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5236 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5237 GlobalVariableName = MangledNameBuffer; 5238 } else { 5239 LT = llvm::GlobalValue::PrivateLinkage; 5240 GlobalVariableName = Name; 5241 } 5242 5243 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5244 if (Entry) 5245 *Entry = GV; 5246 5247 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5248 QualType()); 5249 5250 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5251 Alignment); 5252 } 5253 5254 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5255 /// array for the given ObjCEncodeExpr node. 5256 ConstantAddress 5257 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5258 std::string Str; 5259 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5260 5261 return GetAddrOfConstantCString(Str); 5262 } 5263 5264 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5265 /// the literal and a terminating '\0' character. 5266 /// The result has pointer to array type. 5267 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5268 const std::string &Str, const char *GlobalName) { 5269 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5270 CharUnits Alignment = 5271 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5272 5273 llvm::Constant *C = 5274 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5275 5276 // Don't share any string literals if strings aren't constant. 5277 llvm::GlobalVariable **Entry = nullptr; 5278 if (!LangOpts.WritableStrings) { 5279 Entry = &ConstantStringMap[C]; 5280 if (auto GV = *Entry) { 5281 if (Alignment.getQuantity() > GV->getAlignment()) 5282 GV->setAlignment(Alignment.getAsAlign()); 5283 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5284 Alignment); 5285 } 5286 } 5287 5288 // Get the default prefix if a name wasn't specified. 5289 if (!GlobalName) 5290 GlobalName = ".str"; 5291 // Create a global variable for this. 5292 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5293 GlobalName, Alignment); 5294 if (Entry) 5295 *Entry = GV; 5296 5297 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5298 Alignment); 5299 } 5300 5301 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5302 const MaterializeTemporaryExpr *E, const Expr *Init) { 5303 assert((E->getStorageDuration() == SD_Static || 5304 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5305 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5306 5307 // If we're not materializing a subobject of the temporary, keep the 5308 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5309 QualType MaterializedType = Init->getType(); 5310 if (Init == E->getSubExpr()) 5311 MaterializedType = E->getType(); 5312 5313 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5314 5315 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5316 return ConstantAddress(Slot, Align); 5317 5318 // FIXME: If an externally-visible declaration extends multiple temporaries, 5319 // we need to give each temporary the same name in every translation unit (and 5320 // we also need to make the temporaries externally-visible). 5321 SmallString<256> Name; 5322 llvm::raw_svector_ostream Out(Name); 5323 getCXXABI().getMangleContext().mangleReferenceTemporary( 5324 VD, E->getManglingNumber(), Out); 5325 5326 APValue *Value = nullptr; 5327 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5328 // If the initializer of the extending declaration is a constant 5329 // initializer, we should have a cached constant initializer for this 5330 // temporary. Note that this might have a different value from the value 5331 // computed by evaluating the initializer if the surrounding constant 5332 // expression modifies the temporary. 5333 Value = E->getOrCreateValue(false); 5334 } 5335 5336 // Try evaluating it now, it might have a constant initializer. 5337 Expr::EvalResult EvalResult; 5338 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5339 !EvalResult.hasSideEffects()) 5340 Value = &EvalResult.Val; 5341 5342 LangAS AddrSpace = 5343 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5344 5345 Optional<ConstantEmitter> emitter; 5346 llvm::Constant *InitialValue = nullptr; 5347 bool Constant = false; 5348 llvm::Type *Type; 5349 if (Value) { 5350 // The temporary has a constant initializer, use it. 5351 emitter.emplace(*this); 5352 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5353 MaterializedType); 5354 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5355 Type = InitialValue->getType(); 5356 } else { 5357 // No initializer, the initialization will be provided when we 5358 // initialize the declaration which performed lifetime extension. 5359 Type = getTypes().ConvertTypeForMem(MaterializedType); 5360 } 5361 5362 // Create a global variable for this lifetime-extended temporary. 5363 llvm::GlobalValue::LinkageTypes Linkage = 5364 getLLVMLinkageVarDefinition(VD, Constant); 5365 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5366 const VarDecl *InitVD; 5367 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5368 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5369 // Temporaries defined inside a class get linkonce_odr linkage because the 5370 // class can be defined in multiple translation units. 5371 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5372 } else { 5373 // There is no need for this temporary to have external linkage if the 5374 // VarDecl has external linkage. 5375 Linkage = llvm::GlobalVariable::InternalLinkage; 5376 } 5377 } 5378 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5379 auto *GV = new llvm::GlobalVariable( 5380 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5381 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5382 if (emitter) emitter->finalize(GV); 5383 setGVProperties(GV, VD); 5384 GV->setAlignment(Align.getAsAlign()); 5385 if (supportsCOMDAT() && GV->isWeakForLinker()) 5386 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5387 if (VD->getTLSKind()) 5388 setTLSMode(GV, *VD); 5389 llvm::Constant *CV = GV; 5390 if (AddrSpace != LangAS::Default) 5391 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5392 *this, GV, AddrSpace, LangAS::Default, 5393 Type->getPointerTo( 5394 getContext().getTargetAddressSpace(LangAS::Default))); 5395 MaterializedGlobalTemporaryMap[E] = CV; 5396 return ConstantAddress(CV, Align); 5397 } 5398 5399 /// EmitObjCPropertyImplementations - Emit information for synthesized 5400 /// properties for an implementation. 5401 void CodeGenModule::EmitObjCPropertyImplementations(const 5402 ObjCImplementationDecl *D) { 5403 for (const auto *PID : D->property_impls()) { 5404 // Dynamic is just for type-checking. 5405 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5406 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5407 5408 // Determine which methods need to be implemented, some may have 5409 // been overridden. Note that ::isPropertyAccessor is not the method 5410 // we want, that just indicates if the decl came from a 5411 // property. What we want to know is if the method is defined in 5412 // this implementation. 5413 auto *Getter = PID->getGetterMethodDecl(); 5414 if (!Getter || Getter->isSynthesizedAccessorStub()) 5415 CodeGenFunction(*this).GenerateObjCGetter( 5416 const_cast<ObjCImplementationDecl *>(D), PID); 5417 auto *Setter = PID->getSetterMethodDecl(); 5418 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5419 CodeGenFunction(*this).GenerateObjCSetter( 5420 const_cast<ObjCImplementationDecl *>(D), PID); 5421 } 5422 } 5423 } 5424 5425 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5426 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5427 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5428 ivar; ivar = ivar->getNextIvar()) 5429 if (ivar->getType().isDestructedType()) 5430 return true; 5431 5432 return false; 5433 } 5434 5435 static bool AllTrivialInitializers(CodeGenModule &CGM, 5436 ObjCImplementationDecl *D) { 5437 CodeGenFunction CGF(CGM); 5438 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5439 E = D->init_end(); B != E; ++B) { 5440 CXXCtorInitializer *CtorInitExp = *B; 5441 Expr *Init = CtorInitExp->getInit(); 5442 if (!CGF.isTrivialInitializer(Init)) 5443 return false; 5444 } 5445 return true; 5446 } 5447 5448 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5449 /// for an implementation. 5450 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5451 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5452 if (needsDestructMethod(D)) { 5453 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5454 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5455 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5456 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5457 getContext().VoidTy, nullptr, D, 5458 /*isInstance=*/true, /*isVariadic=*/false, 5459 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5460 /*isImplicitlyDeclared=*/true, 5461 /*isDefined=*/false, ObjCMethodDecl::Required); 5462 D->addInstanceMethod(DTORMethod); 5463 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5464 D->setHasDestructors(true); 5465 } 5466 5467 // If the implementation doesn't have any ivar initializers, we don't need 5468 // a .cxx_construct. 5469 if (D->getNumIvarInitializers() == 0 || 5470 AllTrivialInitializers(*this, D)) 5471 return; 5472 5473 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5474 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5475 // The constructor returns 'self'. 5476 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5477 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5478 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5479 /*isVariadic=*/false, 5480 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5481 /*isImplicitlyDeclared=*/true, 5482 /*isDefined=*/false, ObjCMethodDecl::Required); 5483 D->addInstanceMethod(CTORMethod); 5484 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5485 D->setHasNonZeroConstructors(true); 5486 } 5487 5488 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5489 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5490 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5491 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5492 ErrorUnsupported(LSD, "linkage spec"); 5493 return; 5494 } 5495 5496 EmitDeclContext(LSD); 5497 } 5498 5499 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5500 for (auto *I : DC->decls()) { 5501 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5502 // are themselves considered "top-level", so EmitTopLevelDecl on an 5503 // ObjCImplDecl does not recursively visit them. We need to do that in 5504 // case they're nested inside another construct (LinkageSpecDecl / 5505 // ExportDecl) that does stop them from being considered "top-level". 5506 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5507 for (auto *M : OID->methods()) 5508 EmitTopLevelDecl(M); 5509 } 5510 5511 EmitTopLevelDecl(I); 5512 } 5513 } 5514 5515 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5516 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5517 // Ignore dependent declarations. 5518 if (D->isTemplated()) 5519 return; 5520 5521 // Consteval function shouldn't be emitted. 5522 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5523 if (FD->isConsteval()) 5524 return; 5525 5526 switch (D->getKind()) { 5527 case Decl::CXXConversion: 5528 case Decl::CXXMethod: 5529 case Decl::Function: 5530 EmitGlobal(cast<FunctionDecl>(D)); 5531 // Always provide some coverage mapping 5532 // even for the functions that aren't emitted. 5533 AddDeferredUnusedCoverageMapping(D); 5534 break; 5535 5536 case Decl::CXXDeductionGuide: 5537 // Function-like, but does not result in code emission. 5538 break; 5539 5540 case Decl::Var: 5541 case Decl::Decomposition: 5542 case Decl::VarTemplateSpecialization: 5543 EmitGlobal(cast<VarDecl>(D)); 5544 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5545 for (auto *B : DD->bindings()) 5546 if (auto *HD = B->getHoldingVar()) 5547 EmitGlobal(HD); 5548 break; 5549 5550 // Indirect fields from global anonymous structs and unions can be 5551 // ignored; only the actual variable requires IR gen support. 5552 case Decl::IndirectField: 5553 break; 5554 5555 // C++ Decls 5556 case Decl::Namespace: 5557 EmitDeclContext(cast<NamespaceDecl>(D)); 5558 break; 5559 case Decl::ClassTemplateSpecialization: { 5560 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5561 if (CGDebugInfo *DI = getModuleDebugInfo()) 5562 if (Spec->getSpecializationKind() == 5563 TSK_ExplicitInstantiationDefinition && 5564 Spec->hasDefinition()) 5565 DI->completeTemplateDefinition(*Spec); 5566 } LLVM_FALLTHROUGH; 5567 case Decl::CXXRecord: { 5568 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5569 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5570 if (CRD->hasDefinition()) 5571 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5572 if (auto *ES = D->getASTContext().getExternalSource()) 5573 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5574 DI->completeUnusedClass(*CRD); 5575 } 5576 // Emit any static data members, they may be definitions. 5577 for (auto *I : CRD->decls()) 5578 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5579 EmitTopLevelDecl(I); 5580 break; 5581 } 5582 // No code generation needed. 5583 case Decl::UsingShadow: 5584 case Decl::ClassTemplate: 5585 case Decl::VarTemplate: 5586 case Decl::Concept: 5587 case Decl::VarTemplatePartialSpecialization: 5588 case Decl::FunctionTemplate: 5589 case Decl::TypeAliasTemplate: 5590 case Decl::Block: 5591 case Decl::Empty: 5592 case Decl::Binding: 5593 break; 5594 case Decl::Using: // using X; [C++] 5595 if (CGDebugInfo *DI = getModuleDebugInfo()) 5596 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5597 break; 5598 case Decl::NamespaceAlias: 5599 if (CGDebugInfo *DI = getModuleDebugInfo()) 5600 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5601 break; 5602 case Decl::UsingDirective: // using namespace X; [C++] 5603 if (CGDebugInfo *DI = getModuleDebugInfo()) 5604 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5605 break; 5606 case Decl::CXXConstructor: 5607 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5608 break; 5609 case Decl::CXXDestructor: 5610 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5611 break; 5612 5613 case Decl::StaticAssert: 5614 // Nothing to do. 5615 break; 5616 5617 // Objective-C Decls 5618 5619 // Forward declarations, no (immediate) code generation. 5620 case Decl::ObjCInterface: 5621 case Decl::ObjCCategory: 5622 break; 5623 5624 case Decl::ObjCProtocol: { 5625 auto *Proto = cast<ObjCProtocolDecl>(D); 5626 if (Proto->isThisDeclarationADefinition()) 5627 ObjCRuntime->GenerateProtocol(Proto); 5628 break; 5629 } 5630 5631 case Decl::ObjCCategoryImpl: 5632 // Categories have properties but don't support synthesize so we 5633 // can ignore them here. 5634 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5635 break; 5636 5637 case Decl::ObjCImplementation: { 5638 auto *OMD = cast<ObjCImplementationDecl>(D); 5639 EmitObjCPropertyImplementations(OMD); 5640 EmitObjCIvarInitializations(OMD); 5641 ObjCRuntime->GenerateClass(OMD); 5642 // Emit global variable debug information. 5643 if (CGDebugInfo *DI = getModuleDebugInfo()) 5644 if (getCodeGenOpts().hasReducedDebugInfo()) 5645 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5646 OMD->getClassInterface()), OMD->getLocation()); 5647 break; 5648 } 5649 case Decl::ObjCMethod: { 5650 auto *OMD = cast<ObjCMethodDecl>(D); 5651 // If this is not a prototype, emit the body. 5652 if (OMD->getBody()) 5653 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5654 break; 5655 } 5656 case Decl::ObjCCompatibleAlias: 5657 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5658 break; 5659 5660 case Decl::PragmaComment: { 5661 const auto *PCD = cast<PragmaCommentDecl>(D); 5662 switch (PCD->getCommentKind()) { 5663 case PCK_Unknown: 5664 llvm_unreachable("unexpected pragma comment kind"); 5665 case PCK_Linker: 5666 AppendLinkerOptions(PCD->getArg()); 5667 break; 5668 case PCK_Lib: 5669 AddDependentLib(PCD->getArg()); 5670 break; 5671 case PCK_Compiler: 5672 case PCK_ExeStr: 5673 case PCK_User: 5674 break; // We ignore all of these. 5675 } 5676 break; 5677 } 5678 5679 case Decl::PragmaDetectMismatch: { 5680 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5681 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5682 break; 5683 } 5684 5685 case Decl::LinkageSpec: 5686 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5687 break; 5688 5689 case Decl::FileScopeAsm: { 5690 // File-scope asm is ignored during device-side CUDA compilation. 5691 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5692 break; 5693 // File-scope asm is ignored during device-side OpenMP compilation. 5694 if (LangOpts.OpenMPIsDevice) 5695 break; 5696 auto *AD = cast<FileScopeAsmDecl>(D); 5697 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5698 break; 5699 } 5700 5701 case Decl::Import: { 5702 auto *Import = cast<ImportDecl>(D); 5703 5704 // If we've already imported this module, we're done. 5705 if (!ImportedModules.insert(Import->getImportedModule())) 5706 break; 5707 5708 // Emit debug information for direct imports. 5709 if (!Import->getImportedOwningModule()) { 5710 if (CGDebugInfo *DI = getModuleDebugInfo()) 5711 DI->EmitImportDecl(*Import); 5712 } 5713 5714 // Find all of the submodules and emit the module initializers. 5715 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5716 SmallVector<clang::Module *, 16> Stack; 5717 Visited.insert(Import->getImportedModule()); 5718 Stack.push_back(Import->getImportedModule()); 5719 5720 while (!Stack.empty()) { 5721 clang::Module *Mod = Stack.pop_back_val(); 5722 if (!EmittedModuleInitializers.insert(Mod).second) 5723 continue; 5724 5725 for (auto *D : Context.getModuleInitializers(Mod)) 5726 EmitTopLevelDecl(D); 5727 5728 // Visit the submodules of this module. 5729 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5730 SubEnd = Mod->submodule_end(); 5731 Sub != SubEnd; ++Sub) { 5732 // Skip explicit children; they need to be explicitly imported to emit 5733 // the initializers. 5734 if ((*Sub)->IsExplicit) 5735 continue; 5736 5737 if (Visited.insert(*Sub).second) 5738 Stack.push_back(*Sub); 5739 } 5740 } 5741 break; 5742 } 5743 5744 case Decl::Export: 5745 EmitDeclContext(cast<ExportDecl>(D)); 5746 break; 5747 5748 case Decl::OMPThreadPrivate: 5749 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5750 break; 5751 5752 case Decl::OMPAllocate: 5753 break; 5754 5755 case Decl::OMPDeclareReduction: 5756 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5757 break; 5758 5759 case Decl::OMPDeclareMapper: 5760 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5761 break; 5762 5763 case Decl::OMPRequires: 5764 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5765 break; 5766 5767 case Decl::Typedef: 5768 case Decl::TypeAlias: // using foo = bar; [C++11] 5769 if (CGDebugInfo *DI = getModuleDebugInfo()) 5770 DI->EmitAndRetainType( 5771 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5772 break; 5773 5774 case Decl::Record: 5775 if (CGDebugInfo *DI = getModuleDebugInfo()) 5776 if (cast<RecordDecl>(D)->getDefinition()) 5777 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5778 break; 5779 5780 case Decl::Enum: 5781 if (CGDebugInfo *DI = getModuleDebugInfo()) 5782 if (cast<EnumDecl>(D)->getDefinition()) 5783 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5784 break; 5785 5786 default: 5787 // Make sure we handled everything we should, every other kind is a 5788 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5789 // function. Need to recode Decl::Kind to do that easily. 5790 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5791 break; 5792 } 5793 } 5794 5795 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5796 // Do we need to generate coverage mapping? 5797 if (!CodeGenOpts.CoverageMapping) 5798 return; 5799 switch (D->getKind()) { 5800 case Decl::CXXConversion: 5801 case Decl::CXXMethod: 5802 case Decl::Function: 5803 case Decl::ObjCMethod: 5804 case Decl::CXXConstructor: 5805 case Decl::CXXDestructor: { 5806 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5807 break; 5808 SourceManager &SM = getContext().getSourceManager(); 5809 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5810 break; 5811 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5812 if (I == DeferredEmptyCoverageMappingDecls.end()) 5813 DeferredEmptyCoverageMappingDecls[D] = true; 5814 break; 5815 } 5816 default: 5817 break; 5818 }; 5819 } 5820 5821 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5822 // Do we need to generate coverage mapping? 5823 if (!CodeGenOpts.CoverageMapping) 5824 return; 5825 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5826 if (Fn->isTemplateInstantiation()) 5827 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5828 } 5829 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5830 if (I == DeferredEmptyCoverageMappingDecls.end()) 5831 DeferredEmptyCoverageMappingDecls[D] = false; 5832 else 5833 I->second = false; 5834 } 5835 5836 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5837 // We call takeVector() here to avoid use-after-free. 5838 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5839 // we deserialize function bodies to emit coverage info for them, and that 5840 // deserializes more declarations. How should we handle that case? 5841 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5842 if (!Entry.second) 5843 continue; 5844 const Decl *D = Entry.first; 5845 switch (D->getKind()) { 5846 case Decl::CXXConversion: 5847 case Decl::CXXMethod: 5848 case Decl::Function: 5849 case Decl::ObjCMethod: { 5850 CodeGenPGO PGO(*this); 5851 GlobalDecl GD(cast<FunctionDecl>(D)); 5852 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5853 getFunctionLinkage(GD)); 5854 break; 5855 } 5856 case Decl::CXXConstructor: { 5857 CodeGenPGO PGO(*this); 5858 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5859 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5860 getFunctionLinkage(GD)); 5861 break; 5862 } 5863 case Decl::CXXDestructor: { 5864 CodeGenPGO PGO(*this); 5865 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5866 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5867 getFunctionLinkage(GD)); 5868 break; 5869 } 5870 default: 5871 break; 5872 }; 5873 } 5874 } 5875 5876 void CodeGenModule::EmitMainVoidAlias() { 5877 // In order to transition away from "__original_main" gracefully, emit an 5878 // alias for "main" in the no-argument case so that libc can detect when 5879 // new-style no-argument main is in used. 5880 if (llvm::Function *F = getModule().getFunction("main")) { 5881 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5882 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5883 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5884 } 5885 } 5886 5887 /// Turns the given pointer into a constant. 5888 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5889 const void *Ptr) { 5890 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5891 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5892 return llvm::ConstantInt::get(i64, PtrInt); 5893 } 5894 5895 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5896 llvm::NamedMDNode *&GlobalMetadata, 5897 GlobalDecl D, 5898 llvm::GlobalValue *Addr) { 5899 if (!GlobalMetadata) 5900 GlobalMetadata = 5901 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5902 5903 // TODO: should we report variant information for ctors/dtors? 5904 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5905 llvm::ConstantAsMetadata::get(GetPointerConstant( 5906 CGM.getLLVMContext(), D.getDecl()))}; 5907 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5908 } 5909 5910 /// For each function which is declared within an extern "C" region and marked 5911 /// as 'used', but has internal linkage, create an alias from the unmangled 5912 /// name to the mangled name if possible. People expect to be able to refer 5913 /// to such functions with an unmangled name from inline assembly within the 5914 /// same translation unit. 5915 void CodeGenModule::EmitStaticExternCAliases() { 5916 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5917 return; 5918 for (auto &I : StaticExternCValues) { 5919 IdentifierInfo *Name = I.first; 5920 llvm::GlobalValue *Val = I.second; 5921 if (Val && !getModule().getNamedValue(Name->getName())) 5922 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5923 } 5924 } 5925 5926 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5927 GlobalDecl &Result) const { 5928 auto Res = Manglings.find(MangledName); 5929 if (Res == Manglings.end()) 5930 return false; 5931 Result = Res->getValue(); 5932 return true; 5933 } 5934 5935 /// Emits metadata nodes associating all the global values in the 5936 /// current module with the Decls they came from. This is useful for 5937 /// projects using IR gen as a subroutine. 5938 /// 5939 /// Since there's currently no way to associate an MDNode directly 5940 /// with an llvm::GlobalValue, we create a global named metadata 5941 /// with the name 'clang.global.decl.ptrs'. 5942 void CodeGenModule::EmitDeclMetadata() { 5943 llvm::NamedMDNode *GlobalMetadata = nullptr; 5944 5945 for (auto &I : MangledDeclNames) { 5946 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5947 // Some mangled names don't necessarily have an associated GlobalValue 5948 // in this module, e.g. if we mangled it for DebugInfo. 5949 if (Addr) 5950 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5951 } 5952 } 5953 5954 /// Emits metadata nodes for all the local variables in the current 5955 /// function. 5956 void CodeGenFunction::EmitDeclMetadata() { 5957 if (LocalDeclMap.empty()) return; 5958 5959 llvm::LLVMContext &Context = getLLVMContext(); 5960 5961 // Find the unique metadata ID for this name. 5962 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5963 5964 llvm::NamedMDNode *GlobalMetadata = nullptr; 5965 5966 for (auto &I : LocalDeclMap) { 5967 const Decl *D = I.first; 5968 llvm::Value *Addr = I.second.getPointer(); 5969 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5970 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5971 Alloca->setMetadata( 5972 DeclPtrKind, llvm::MDNode::get( 5973 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5974 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5975 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5976 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5977 } 5978 } 5979 } 5980 5981 void CodeGenModule::EmitVersionIdentMetadata() { 5982 llvm::NamedMDNode *IdentMetadata = 5983 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5984 std::string Version = getClangFullVersion(); 5985 llvm::LLVMContext &Ctx = TheModule.getContext(); 5986 5987 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5988 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5989 } 5990 5991 void CodeGenModule::EmitCommandLineMetadata() { 5992 llvm::NamedMDNode *CommandLineMetadata = 5993 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5994 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5995 llvm::LLVMContext &Ctx = TheModule.getContext(); 5996 5997 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5998 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5999 } 6000 6001 void CodeGenModule::EmitCoverageFile() { 6002 if (getCodeGenOpts().CoverageDataFile.empty() && 6003 getCodeGenOpts().CoverageNotesFile.empty()) 6004 return; 6005 6006 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6007 if (!CUNode) 6008 return; 6009 6010 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6011 llvm::LLVMContext &Ctx = TheModule.getContext(); 6012 auto *CoverageDataFile = 6013 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6014 auto *CoverageNotesFile = 6015 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6016 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6017 llvm::MDNode *CU = CUNode->getOperand(i); 6018 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6019 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6020 } 6021 } 6022 6023 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6024 bool ForEH) { 6025 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6026 // FIXME: should we even be calling this method if RTTI is disabled 6027 // and it's not for EH? 6028 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6029 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6030 getTriple().isNVPTX())) 6031 return llvm::Constant::getNullValue(Int8PtrTy); 6032 6033 if (ForEH && Ty->isObjCObjectPointerType() && 6034 LangOpts.ObjCRuntime.isGNUFamily()) 6035 return ObjCRuntime->GetEHType(Ty); 6036 6037 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6038 } 6039 6040 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6041 // Do not emit threadprivates in simd-only mode. 6042 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6043 return; 6044 for (auto RefExpr : D->varlists()) { 6045 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6046 bool PerformInit = 6047 VD->getAnyInitializer() && 6048 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6049 /*ForRef=*/false); 6050 6051 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6052 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6053 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6054 CXXGlobalInits.push_back(InitFunction); 6055 } 6056 } 6057 6058 llvm::Metadata * 6059 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6060 StringRef Suffix) { 6061 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6062 if (InternalId) 6063 return InternalId; 6064 6065 if (isExternallyVisible(T->getLinkage())) { 6066 std::string OutName; 6067 llvm::raw_string_ostream Out(OutName); 6068 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6069 Out << Suffix; 6070 6071 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6072 } else { 6073 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6074 llvm::ArrayRef<llvm::Metadata *>()); 6075 } 6076 6077 return InternalId; 6078 } 6079 6080 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6081 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6082 } 6083 6084 llvm::Metadata * 6085 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6086 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6087 } 6088 6089 // Generalize pointer types to a void pointer with the qualifiers of the 6090 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6091 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6092 // 'void *'. 6093 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6094 if (!Ty->isPointerType()) 6095 return Ty; 6096 6097 return Ctx.getPointerType( 6098 QualType(Ctx.VoidTy).withCVRQualifiers( 6099 Ty->getPointeeType().getCVRQualifiers())); 6100 } 6101 6102 // Apply type generalization to a FunctionType's return and argument types 6103 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6104 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6105 SmallVector<QualType, 8> GeneralizedParams; 6106 for (auto &Param : FnType->param_types()) 6107 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6108 6109 return Ctx.getFunctionType( 6110 GeneralizeType(Ctx, FnType->getReturnType()), 6111 GeneralizedParams, FnType->getExtProtoInfo()); 6112 } 6113 6114 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6115 return Ctx.getFunctionNoProtoType( 6116 GeneralizeType(Ctx, FnType->getReturnType())); 6117 6118 llvm_unreachable("Encountered unknown FunctionType"); 6119 } 6120 6121 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6122 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6123 GeneralizedMetadataIdMap, ".generalized"); 6124 } 6125 6126 /// Returns whether this module needs the "all-vtables" type identifier. 6127 bool CodeGenModule::NeedAllVtablesTypeId() const { 6128 // Returns true if at least one of vtable-based CFI checkers is enabled and 6129 // is not in the trapping mode. 6130 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6131 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6132 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6133 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6134 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6135 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6136 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6137 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6138 } 6139 6140 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6141 CharUnits Offset, 6142 const CXXRecordDecl *RD) { 6143 llvm::Metadata *MD = 6144 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6145 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6146 6147 if (CodeGenOpts.SanitizeCfiCrossDso) 6148 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6149 VTable->addTypeMetadata(Offset.getQuantity(), 6150 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6151 6152 if (NeedAllVtablesTypeId()) { 6153 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6154 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6155 } 6156 } 6157 6158 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6159 if (!SanStats) 6160 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6161 6162 return *SanStats; 6163 } 6164 llvm::Value * 6165 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6166 CodeGenFunction &CGF) { 6167 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6168 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6169 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6170 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6171 "__translate_sampler_initializer"), 6172 {C}); 6173 } 6174 6175 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6176 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6177 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6178 /* forPointeeType= */ true); 6179 } 6180 6181 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6182 LValueBaseInfo *BaseInfo, 6183 TBAAAccessInfo *TBAAInfo, 6184 bool forPointeeType) { 6185 if (TBAAInfo) 6186 *TBAAInfo = getTBAAAccessInfo(T); 6187 6188 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6189 // that doesn't return the information we need to compute BaseInfo. 6190 6191 // Honor alignment typedef attributes even on incomplete types. 6192 // We also honor them straight for C++ class types, even as pointees; 6193 // there's an expressivity gap here. 6194 if (auto TT = T->getAs<TypedefType>()) { 6195 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6196 if (BaseInfo) 6197 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6198 return getContext().toCharUnitsFromBits(Align); 6199 } 6200 } 6201 6202 bool AlignForArray = T->isArrayType(); 6203 6204 // Analyze the base element type, so we don't get confused by incomplete 6205 // array types. 6206 T = getContext().getBaseElementType(T); 6207 6208 if (T->isIncompleteType()) { 6209 // We could try to replicate the logic from 6210 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6211 // type is incomplete, so it's impossible to test. We could try to reuse 6212 // getTypeAlignIfKnown, but that doesn't return the information we need 6213 // to set BaseInfo. So just ignore the possibility that the alignment is 6214 // greater than one. 6215 if (BaseInfo) 6216 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6217 return CharUnits::One(); 6218 } 6219 6220 if (BaseInfo) 6221 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6222 6223 CharUnits Alignment; 6224 const CXXRecordDecl *RD; 6225 if (T.getQualifiers().hasUnaligned()) { 6226 Alignment = CharUnits::One(); 6227 } else if (forPointeeType && !AlignForArray && 6228 (RD = T->getAsCXXRecordDecl())) { 6229 // For C++ class pointees, we don't know whether we're pointing at a 6230 // base or a complete object, so we generally need to use the 6231 // non-virtual alignment. 6232 Alignment = getClassPointerAlignment(RD); 6233 } else { 6234 Alignment = getContext().getTypeAlignInChars(T); 6235 } 6236 6237 // Cap to the global maximum type alignment unless the alignment 6238 // was somehow explicit on the type. 6239 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6240 if (Alignment.getQuantity() > MaxAlign && 6241 !getContext().isAlignmentRequired(T)) 6242 Alignment = CharUnits::fromQuantity(MaxAlign); 6243 } 6244 return Alignment; 6245 } 6246 6247 bool CodeGenModule::stopAutoInit() { 6248 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6249 if (StopAfter) { 6250 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6251 // used 6252 if (NumAutoVarInit >= StopAfter) { 6253 return true; 6254 } 6255 if (!NumAutoVarInit) { 6256 unsigned DiagID = getDiags().getCustomDiagID( 6257 DiagnosticsEngine::Warning, 6258 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6259 "number of times ftrivial-auto-var-init=%1 gets applied."); 6260 getDiags().Report(DiagID) 6261 << StopAfter 6262 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6263 LangOptions::TrivialAutoVarInitKind::Zero 6264 ? "zero" 6265 : "pattern"); 6266 } 6267 ++NumAutoVarInit; 6268 } 6269 return false; 6270 } 6271