1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::GenericMIPS: 69 case TargetCXXABI::GenericItanium: 70 case TargetCXXABI::WebAssembly: 71 return CreateItaniumCXXABI(CGM); 72 case TargetCXXABI::Microsoft: 73 return CreateMicrosoftCXXABI(CGM); 74 } 75 76 llvm_unreachable("invalid C++ ABI kind"); 77 } 78 79 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 80 const PreprocessorOptions &PPO, 81 const CodeGenOptions &CGO, llvm::Module &M, 82 DiagnosticsEngine &diags, 83 CoverageSourceInfo *CoverageInfo) 84 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 85 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 86 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 87 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 88 Types(*this), VTables(*this), ObjCRuntime(nullptr), 89 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 90 DebugInfo(nullptr), ARCData(nullptr), 91 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 92 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 93 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 94 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 95 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 96 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 97 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 IntAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 113 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 114 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 115 Int8PtrTy = Int8Ty->getPointerTo(0); 116 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 117 118 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 119 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 120 121 if (LangOpts.ObjC1) 122 createObjCRuntime(); 123 if (LangOpts.OpenCL) 124 createOpenCLRuntime(); 125 if (LangOpts.OpenMP) 126 createOpenMPRuntime(); 127 if (LangOpts.CUDA) 128 createCUDARuntime(); 129 130 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 131 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 132 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 133 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 134 getCXXABI().getMangleContext()); 135 136 // If debug info or coverage generation is enabled, create the CGDebugInfo 137 // object. 138 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 139 CodeGenOpts.EmitGcovArcs || 140 CodeGenOpts.EmitGcovNotes) 141 DebugInfo = new CGDebugInfo(*this); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjCAutoRefCount) 146 ARCData = new ARCEntrypoints(); 147 RRData = new RREntrypoints(); 148 149 if (!CodeGenOpts.InstrProfileInput.empty()) { 150 auto ReaderOrErr = 151 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 152 if (std::error_code EC = ReaderOrErr.getError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 156 << EC.message(); 157 } else 158 PGOReader = std::move(ReaderOrErr.get()); 159 } 160 161 // If coverage mapping generation is enabled, create the 162 // CoverageMappingModuleGen object. 163 if (CodeGenOpts.CoverageMapping) 164 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 165 } 166 167 CodeGenModule::~CodeGenModule() { 168 delete ObjCRuntime; 169 delete OpenCLRuntime; 170 delete OpenMPRuntime; 171 delete CUDARuntime; 172 delete TheTargetCodeGenInfo; 173 delete TBAA; 174 delete DebugInfo; 175 delete ARCData; 176 delete RRData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 ObjCRuntime = CreateMacObjCRuntime(*this); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime = new CGOpenCLRuntime(*this); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 OpenMPRuntime = new CGOpenMPRuntime(*this); 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime = CreateNVCUDARuntime(*this); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 239 } 240 OldF->eraseFromParent(); 241 } 242 } 243 244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 245 GlobalValReplacements.push_back(std::make_pair(GV, C)); 246 } 247 248 void CodeGenModule::applyGlobalValReplacements() { 249 for (auto &I : GlobalValReplacements) { 250 llvm::GlobalValue *GV = I.first; 251 llvm::Constant *C = I.second; 252 253 GV->replaceAllUsesWith(C); 254 GV->eraseFromParent(); 255 } 256 } 257 258 // This is only used in aliases that we created and we know they have a 259 // linear structure. 260 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 261 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 262 const llvm::Constant *C = &GA; 263 for (;;) { 264 C = C->stripPointerCasts(); 265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 266 return GO; 267 // stripPointerCasts will not walk over weak aliases. 268 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 269 if (!GA2) 270 return nullptr; 271 if (!Visited.insert(GA2).second) 272 return nullptr; 273 C = GA2->getAliasee(); 274 } 275 } 276 277 void CodeGenModule::checkAliases() { 278 // Check if the constructed aliases are well formed. It is really unfortunate 279 // that we have to do this in CodeGen, but we only construct mangled names 280 // and aliases during codegen. 281 bool Error = false; 282 DiagnosticsEngine &Diags = getDiags(); 283 for (const GlobalDecl &GD : Aliases) { 284 const auto *D = cast<ValueDecl>(GD.getDecl()); 285 const AliasAttr *AA = D->getAttr<AliasAttr>(); 286 StringRef MangledName = getMangledName(GD); 287 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 288 auto *Alias = cast<llvm::GlobalAlias>(Entry); 289 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 290 if (!GV) { 291 Error = true; 292 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 293 } else if (GV->isDeclaration()) { 294 Error = true; 295 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 296 } 297 298 llvm::Constant *Aliasee = Alias->getAliasee(); 299 llvm::GlobalValue *AliaseeGV; 300 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 301 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 302 else 303 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 304 305 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 306 StringRef AliasSection = SA->getName(); 307 if (AliasSection != AliaseeGV->getSection()) 308 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 309 << AliasSection; 310 } 311 312 // We have to handle alias to weak aliases in here. LLVM itself disallows 313 // this since the object semantics would not match the IL one. For 314 // compatibility with gcc we implement it by just pointing the alias 315 // to its aliasee's aliasee. We also warn, since the user is probably 316 // expecting the link to be weak. 317 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 318 if (GA->mayBeOverridden()) { 319 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 320 << GV->getName() << GA->getName(); 321 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 322 GA->getAliasee(), Alias->getType()); 323 Alias->setAliasee(Aliasee); 324 } 325 } 326 } 327 if (!Error) 328 return; 329 330 for (const GlobalDecl &GD : Aliases) { 331 StringRef MangledName = getMangledName(GD); 332 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 333 auto *Alias = cast<llvm::GlobalAlias>(Entry); 334 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 335 Alias->eraseFromParent(); 336 } 337 } 338 339 void CodeGenModule::clear() { 340 DeferredDeclsToEmit.clear(); 341 if (OpenMPRuntime) 342 OpenMPRuntime->clear(); 343 } 344 345 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 346 StringRef MainFile) { 347 if (!hasDiagnostics()) 348 return; 349 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 350 if (MainFile.empty()) 351 MainFile = "<stdin>"; 352 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 353 } else 354 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 355 << Mismatched; 356 } 357 358 void CodeGenModule::Release() { 359 EmitDeferred(); 360 applyGlobalValReplacements(); 361 applyReplacements(); 362 checkAliases(); 363 EmitCXXGlobalInitFunc(); 364 EmitCXXGlobalDtorFunc(); 365 EmitCXXThreadLocalInitFunc(); 366 if (ObjCRuntime) 367 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 368 AddGlobalCtor(ObjCInitFunction); 369 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 370 CUDARuntime) { 371 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 372 AddGlobalCtor(CudaCtorFunction); 373 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 374 AddGlobalDtor(CudaDtorFunction); 375 } 376 if (PGOReader && PGOStats.hasDiagnostics()) 377 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 378 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 379 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 380 EmitGlobalAnnotations(); 381 EmitStaticExternCAliases(); 382 EmitDeferredUnusedCoverageMappings(); 383 if (CoverageMapping) 384 CoverageMapping->emit(); 385 emitLLVMUsed(); 386 387 if (CodeGenOpts.Autolink && 388 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 389 EmitModuleLinkOptions(); 390 } 391 if (CodeGenOpts.DwarfVersion) { 392 // We actually want the latest version when there are conflicts. 393 // We can change from Warning to Latest if such mode is supported. 394 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 395 CodeGenOpts.DwarfVersion); 396 } 397 if (CodeGenOpts.EmitCodeView) { 398 // Indicate that we want CodeView in the metadata. 399 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 400 } 401 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 402 // We don't support LTO with 2 with different StrictVTablePointers 403 // FIXME: we could support it by stripping all the information introduced 404 // by StrictVTablePointers. 405 406 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 407 408 llvm::Metadata *Ops[2] = { 409 llvm::MDString::get(VMContext, "StrictVTablePointers"), 410 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 411 llvm::Type::getInt32Ty(VMContext), 1))}; 412 413 getModule().addModuleFlag(llvm::Module::Require, 414 "StrictVTablePointersRequirement", 415 llvm::MDNode::get(VMContext, Ops)); 416 } 417 if (DebugInfo) 418 // We support a single version in the linked module. The LLVM 419 // parser will drop debug info with a different version number 420 // (and warn about it, too). 421 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 422 llvm::DEBUG_METADATA_VERSION); 423 424 // We need to record the widths of enums and wchar_t, so that we can generate 425 // the correct build attributes in the ARM backend. 426 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 427 if ( Arch == llvm::Triple::arm 428 || Arch == llvm::Triple::armeb 429 || Arch == llvm::Triple::thumb 430 || Arch == llvm::Triple::thumbeb) { 431 // Width of wchar_t in bytes 432 uint64_t WCharWidth = 433 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 434 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 435 436 // The minimum width of an enum in bytes 437 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 438 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 439 } 440 441 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 442 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 443 switch (PLevel) { 444 case 0: break; 445 case 1: PL = llvm::PICLevel::Small; break; 446 case 2: PL = llvm::PICLevel::Large; break; 447 default: llvm_unreachable("Invalid PIC Level"); 448 } 449 450 getModule().setPICLevel(PL); 451 } 452 453 SimplifyPersonality(); 454 455 if (getCodeGenOpts().EmitDeclMetadata) 456 EmitDeclMetadata(); 457 458 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 459 EmitCoverageFile(); 460 461 if (DebugInfo) 462 DebugInfo->finalize(); 463 464 EmitVersionIdentMetadata(); 465 466 EmitTargetMetadata(); 467 } 468 469 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 470 // Make sure that this type is translated. 471 Types.UpdateCompletedType(TD); 472 } 473 474 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 475 if (!TBAA) 476 return nullptr; 477 return TBAA->getTBAAInfo(QTy); 478 } 479 480 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 481 if (!TBAA) 482 return nullptr; 483 return TBAA->getTBAAInfoForVTablePtr(); 484 } 485 486 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 487 if (!TBAA) 488 return nullptr; 489 return TBAA->getTBAAStructInfo(QTy); 490 } 491 492 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 493 llvm::MDNode *AccessN, 494 uint64_t O) { 495 if (!TBAA) 496 return nullptr; 497 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 498 } 499 500 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 501 /// and struct-path aware TBAA, the tag has the same format: 502 /// base type, access type and offset. 503 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 504 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 505 llvm::MDNode *TBAAInfo, 506 bool ConvertTypeToTag) { 507 if (ConvertTypeToTag && TBAA) 508 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 509 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 510 else 511 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 512 } 513 514 void CodeGenModule::DecorateInstructionWithInvariantGroup( 515 llvm::Instruction *I, const CXXRecordDecl *RD) { 516 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 517 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 518 // Check if we have to wrap MDString in MDNode. 519 if (!MetaDataNode) 520 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 521 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 522 } 523 524 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 525 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 526 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 527 } 528 529 /// ErrorUnsupported - Print out an error that codegen doesn't support the 530 /// specified stmt yet. 531 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 532 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 533 "cannot compile this %0 yet"); 534 std::string Msg = Type; 535 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 536 << Msg << S->getSourceRange(); 537 } 538 539 /// ErrorUnsupported - Print out an error that codegen doesn't support the 540 /// specified decl yet. 541 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 542 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 543 "cannot compile this %0 yet"); 544 std::string Msg = Type; 545 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 546 } 547 548 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 549 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 550 } 551 552 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 553 const NamedDecl *D) const { 554 // Internal definitions always have default visibility. 555 if (GV->hasLocalLinkage()) { 556 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 557 return; 558 } 559 560 // Set visibility for definitions. 561 LinkageInfo LV = D->getLinkageAndVisibility(); 562 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 563 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 564 } 565 566 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 567 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 568 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 569 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 570 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 571 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 572 } 573 574 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 575 CodeGenOptions::TLSModel M) { 576 switch (M) { 577 case CodeGenOptions::GeneralDynamicTLSModel: 578 return llvm::GlobalVariable::GeneralDynamicTLSModel; 579 case CodeGenOptions::LocalDynamicTLSModel: 580 return llvm::GlobalVariable::LocalDynamicTLSModel; 581 case CodeGenOptions::InitialExecTLSModel: 582 return llvm::GlobalVariable::InitialExecTLSModel; 583 case CodeGenOptions::LocalExecTLSModel: 584 return llvm::GlobalVariable::LocalExecTLSModel; 585 } 586 llvm_unreachable("Invalid TLS model!"); 587 } 588 589 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 590 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 591 592 llvm::GlobalValue::ThreadLocalMode TLM; 593 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 594 595 // Override the TLS model if it is explicitly specified. 596 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 597 TLM = GetLLVMTLSModel(Attr->getModel()); 598 } 599 600 GV->setThreadLocalMode(TLM); 601 } 602 603 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 604 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 605 if (!FoundStr.empty()) 606 return FoundStr; 607 608 const auto *ND = cast<NamedDecl>(GD.getDecl()); 609 SmallString<256> Buffer; 610 StringRef Str; 611 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 612 llvm::raw_svector_ostream Out(Buffer); 613 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 614 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 615 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 616 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 617 else 618 getCXXABI().getMangleContext().mangleName(ND, Out); 619 Str = Out.str(); 620 } else { 621 IdentifierInfo *II = ND->getIdentifier(); 622 assert(II && "Attempt to mangle unnamed decl."); 623 Str = II->getName(); 624 } 625 626 // Keep the first result in the case of a mangling collision. 627 auto Result = Manglings.insert(std::make_pair(Str, GD)); 628 return FoundStr = Result.first->first(); 629 } 630 631 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 632 const BlockDecl *BD) { 633 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 634 const Decl *D = GD.getDecl(); 635 636 SmallString<256> Buffer; 637 llvm::raw_svector_ostream Out(Buffer); 638 if (!D) 639 MangleCtx.mangleGlobalBlock(BD, 640 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 641 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 642 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 643 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 644 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 645 else 646 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 647 648 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 649 return Result.first->first(); 650 } 651 652 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 653 return getModule().getNamedValue(Name); 654 } 655 656 /// AddGlobalCtor - Add a function to the list that will be called before 657 /// main() runs. 658 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 659 llvm::Constant *AssociatedData) { 660 // FIXME: Type coercion of void()* types. 661 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 662 } 663 664 /// AddGlobalDtor - Add a function to the list that will be called 665 /// when the module is unloaded. 666 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 667 // FIXME: Type coercion of void()* types. 668 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 669 } 670 671 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 672 // Ctor function type is void()*. 673 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 674 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 675 676 // Get the type of a ctor entry, { i32, void ()*, i8* }. 677 llvm::StructType *CtorStructTy = llvm::StructType::get( 678 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 679 680 // Construct the constructor and destructor arrays. 681 SmallVector<llvm::Constant *, 8> Ctors; 682 for (const auto &I : Fns) { 683 llvm::Constant *S[] = { 684 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 685 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 686 (I.AssociatedData 687 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 688 : llvm::Constant::getNullValue(VoidPtrTy))}; 689 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 690 } 691 692 if (!Ctors.empty()) { 693 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 694 new llvm::GlobalVariable(TheModule, AT, false, 695 llvm::GlobalValue::AppendingLinkage, 696 llvm::ConstantArray::get(AT, Ctors), 697 GlobalName); 698 } 699 } 700 701 llvm::GlobalValue::LinkageTypes 702 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 703 const auto *D = cast<FunctionDecl>(GD.getDecl()); 704 705 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 706 707 if (isa<CXXDestructorDecl>(D) && 708 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 709 GD.getDtorType())) { 710 // Destructor variants in the Microsoft C++ ABI are always internal or 711 // linkonce_odr thunks emitted on an as-needed basis. 712 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 713 : llvm::GlobalValue::LinkOnceODRLinkage; 714 } 715 716 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 717 } 718 719 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 720 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 721 722 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 723 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 724 // Don't dllexport/import destructor thunks. 725 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 726 return; 727 } 728 } 729 730 if (FD->hasAttr<DLLImportAttr>()) 731 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 732 else if (FD->hasAttr<DLLExportAttr>()) 733 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 734 else 735 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 736 } 737 738 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 739 llvm::Function *F) { 740 setNonAliasAttributes(D, F); 741 } 742 743 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 744 const CGFunctionInfo &Info, 745 llvm::Function *F) { 746 unsigned CallingConv; 747 AttributeListType AttributeList; 748 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 749 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 750 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 751 } 752 753 /// Determines whether the language options require us to model 754 /// unwind exceptions. We treat -fexceptions as mandating this 755 /// except under the fragile ObjC ABI with only ObjC exceptions 756 /// enabled. This means, for example, that C with -fexceptions 757 /// enables this. 758 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 759 // If exceptions are completely disabled, obviously this is false. 760 if (!LangOpts.Exceptions) return false; 761 762 // If C++ exceptions are enabled, this is true. 763 if (LangOpts.CXXExceptions) return true; 764 765 // If ObjC exceptions are enabled, this depends on the ABI. 766 if (LangOpts.ObjCExceptions) { 767 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 768 } 769 770 return true; 771 } 772 773 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 774 llvm::Function *F) { 775 llvm::AttrBuilder B; 776 777 if (CodeGenOpts.UnwindTables) 778 B.addAttribute(llvm::Attribute::UWTable); 779 780 if (!hasUnwindExceptions(LangOpts)) 781 B.addAttribute(llvm::Attribute::NoUnwind); 782 783 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 784 B.addAttribute(llvm::Attribute::StackProtect); 785 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 786 B.addAttribute(llvm::Attribute::StackProtectStrong); 787 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 788 B.addAttribute(llvm::Attribute::StackProtectReq); 789 790 if (!D) { 791 F->addAttributes(llvm::AttributeSet::FunctionIndex, 792 llvm::AttributeSet::get( 793 F->getContext(), 794 llvm::AttributeSet::FunctionIndex, B)); 795 return; 796 } 797 798 if (D->hasAttr<NakedAttr>()) { 799 // Naked implies noinline: we should not be inlining such functions. 800 B.addAttribute(llvm::Attribute::Naked); 801 B.addAttribute(llvm::Attribute::NoInline); 802 } else if (D->hasAttr<NoDuplicateAttr>()) { 803 B.addAttribute(llvm::Attribute::NoDuplicate); 804 } else if (D->hasAttr<NoInlineAttr>()) { 805 B.addAttribute(llvm::Attribute::NoInline); 806 } else if (D->hasAttr<AlwaysInlineAttr>() && 807 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 808 llvm::Attribute::NoInline)) { 809 // (noinline wins over always_inline, and we can't specify both in IR) 810 B.addAttribute(llvm::Attribute::AlwaysInline); 811 } 812 813 if (D->hasAttr<ColdAttr>()) { 814 if (!D->hasAttr<OptimizeNoneAttr>()) 815 B.addAttribute(llvm::Attribute::OptimizeForSize); 816 B.addAttribute(llvm::Attribute::Cold); 817 } 818 819 if (D->hasAttr<MinSizeAttr>()) 820 B.addAttribute(llvm::Attribute::MinSize); 821 822 F->addAttributes(llvm::AttributeSet::FunctionIndex, 823 llvm::AttributeSet::get( 824 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 825 826 if (D->hasAttr<OptimizeNoneAttr>()) { 827 // OptimizeNone implies noinline; we should not be inlining such functions. 828 F->addFnAttr(llvm::Attribute::OptimizeNone); 829 F->addFnAttr(llvm::Attribute::NoInline); 830 831 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 832 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 833 F->removeFnAttr(llvm::Attribute::MinSize); 834 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 835 "OptimizeNone and AlwaysInline on same function!"); 836 837 // Attribute 'inlinehint' has no effect on 'optnone' functions. 838 // Explicitly remove it from the set of function attributes. 839 F->removeFnAttr(llvm::Attribute::InlineHint); 840 } 841 842 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 843 F->setUnnamedAddr(true); 844 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 845 if (MD->isVirtual()) 846 F->setUnnamedAddr(true); 847 848 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 849 if (alignment) 850 F->setAlignment(alignment); 851 852 // Some C++ ABIs require 2-byte alignment for member functions, in order to 853 // reserve a bit for differentiating between virtual and non-virtual member 854 // functions. If the current target's C++ ABI requires this and this is a 855 // member function, set its alignment accordingly. 856 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 857 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 858 F->setAlignment(2); 859 } 860 } 861 862 void CodeGenModule::SetCommonAttributes(const Decl *D, 863 llvm::GlobalValue *GV) { 864 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 865 setGlobalVisibility(GV, ND); 866 else 867 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 868 869 if (D && D->hasAttr<UsedAttr>()) 870 addUsedGlobal(GV); 871 } 872 873 void CodeGenModule::setAliasAttributes(const Decl *D, 874 llvm::GlobalValue *GV) { 875 SetCommonAttributes(D, GV); 876 877 // Process the dllexport attribute based on whether the original definition 878 // (not necessarily the aliasee) was exported. 879 if (D->hasAttr<DLLExportAttr>()) 880 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 881 } 882 883 void CodeGenModule::setNonAliasAttributes(const Decl *D, 884 llvm::GlobalObject *GO) { 885 SetCommonAttributes(D, GO); 886 887 if (D) 888 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 889 GO->setSection(SA->getName()); 890 891 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 892 } 893 894 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 895 llvm::Function *F, 896 const CGFunctionInfo &FI) { 897 SetLLVMFunctionAttributes(D, FI, F); 898 SetLLVMFunctionAttributesForDefinition(D, F); 899 900 F->setLinkage(llvm::Function::InternalLinkage); 901 902 setNonAliasAttributes(D, F); 903 } 904 905 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 906 const NamedDecl *ND) { 907 // Set linkage and visibility in case we never see a definition. 908 LinkageInfo LV = ND->getLinkageAndVisibility(); 909 if (LV.getLinkage() != ExternalLinkage) { 910 // Don't set internal linkage on declarations. 911 } else { 912 if (ND->hasAttr<DLLImportAttr>()) { 913 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 914 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 915 } else if (ND->hasAttr<DLLExportAttr>()) { 916 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 917 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 918 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 919 // "extern_weak" is overloaded in LLVM; we probably should have 920 // separate linkage types for this. 921 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 922 } 923 924 // Set visibility on a declaration only if it's explicit. 925 if (LV.isVisibilityExplicit()) 926 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 927 } 928 } 929 930 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 931 bool IsIncompleteFunction, 932 bool IsThunk) { 933 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 934 // If this is an intrinsic function, set the function's attributes 935 // to the intrinsic's attributes. 936 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 937 return; 938 } 939 940 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 941 942 if (!IsIncompleteFunction) 943 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 944 945 // Add the Returned attribute for "this", except for iOS 5 and earlier 946 // where substantial code, including the libstdc++ dylib, was compiled with 947 // GCC and does not actually return "this". 948 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 949 !(getTarget().getTriple().isiOS() && 950 getTarget().getTriple().isOSVersionLT(6))) { 951 assert(!F->arg_empty() && 952 F->arg_begin()->getType() 953 ->canLosslesslyBitCastTo(F->getReturnType()) && 954 "unexpected this return"); 955 F->addAttribute(1, llvm::Attribute::Returned); 956 } 957 958 // Only a few attributes are set on declarations; these may later be 959 // overridden by a definition. 960 961 setLinkageAndVisibilityForGV(F, FD); 962 963 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 964 F->setSection(SA->getName()); 965 966 // A replaceable global allocation function does not act like a builtin by 967 // default, only if it is invoked by a new-expression or delete-expression. 968 if (FD->isReplaceableGlobalAllocationFunction()) 969 F->addAttribute(llvm::AttributeSet::FunctionIndex, 970 llvm::Attribute::NoBuiltin); 971 972 // If we are checking indirect calls and this is not a non-static member 973 // function, emit a bit set entry for the function type. 974 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) && 975 !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) { 976 llvm::NamedMDNode *BitsetsMD = 977 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 978 979 llvm::Metadata *BitsetOps[] = { 980 CreateMetadataIdentifierForType(FD->getType()), 981 llvm::ConstantAsMetadata::get(F), 982 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 983 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 984 } 985 } 986 987 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 988 assert(!GV->isDeclaration() && 989 "Only globals with definition can force usage."); 990 LLVMUsed.emplace_back(GV); 991 } 992 993 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 994 assert(!GV->isDeclaration() && 995 "Only globals with definition can force usage."); 996 LLVMCompilerUsed.emplace_back(GV); 997 } 998 999 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1000 std::vector<llvm::WeakVH> &List) { 1001 // Don't create llvm.used if there is no need. 1002 if (List.empty()) 1003 return; 1004 1005 // Convert List to what ConstantArray needs. 1006 SmallVector<llvm::Constant*, 8> UsedArray; 1007 UsedArray.resize(List.size()); 1008 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1009 UsedArray[i] = 1010 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1011 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1012 } 1013 1014 if (UsedArray.empty()) 1015 return; 1016 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1017 1018 auto *GV = new llvm::GlobalVariable( 1019 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1020 llvm::ConstantArray::get(ATy, UsedArray), Name); 1021 1022 GV->setSection("llvm.metadata"); 1023 } 1024 1025 void CodeGenModule::emitLLVMUsed() { 1026 emitUsed(*this, "llvm.used", LLVMUsed); 1027 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1028 } 1029 1030 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1031 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1032 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1033 } 1034 1035 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1036 llvm::SmallString<32> Opt; 1037 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1038 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1039 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1040 } 1041 1042 void CodeGenModule::AddDependentLib(StringRef Lib) { 1043 llvm::SmallString<24> Opt; 1044 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1045 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1046 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1047 } 1048 1049 /// \brief Add link options implied by the given module, including modules 1050 /// it depends on, using a postorder walk. 1051 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1052 SmallVectorImpl<llvm::Metadata *> &Metadata, 1053 llvm::SmallPtrSet<Module *, 16> &Visited) { 1054 // Import this module's parent. 1055 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1056 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1057 } 1058 1059 // Import this module's dependencies. 1060 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1061 if (Visited.insert(Mod->Imports[I - 1]).second) 1062 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1063 } 1064 1065 // Add linker options to link against the libraries/frameworks 1066 // described by this module. 1067 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1068 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1069 // Link against a framework. Frameworks are currently Darwin only, so we 1070 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1071 if (Mod->LinkLibraries[I-1].IsFramework) { 1072 llvm::Metadata *Args[2] = { 1073 llvm::MDString::get(Context, "-framework"), 1074 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1075 1076 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1077 continue; 1078 } 1079 1080 // Link against a library. 1081 llvm::SmallString<24> Opt; 1082 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1083 Mod->LinkLibraries[I-1].Library, Opt); 1084 auto *OptString = llvm::MDString::get(Context, Opt); 1085 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1086 } 1087 } 1088 1089 void CodeGenModule::EmitModuleLinkOptions() { 1090 // Collect the set of all of the modules we want to visit to emit link 1091 // options, which is essentially the imported modules and all of their 1092 // non-explicit child modules. 1093 llvm::SetVector<clang::Module *> LinkModules; 1094 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1095 SmallVector<clang::Module *, 16> Stack; 1096 1097 // Seed the stack with imported modules. 1098 for (Module *M : ImportedModules) 1099 if (Visited.insert(M).second) 1100 Stack.push_back(M); 1101 1102 // Find all of the modules to import, making a little effort to prune 1103 // non-leaf modules. 1104 while (!Stack.empty()) { 1105 clang::Module *Mod = Stack.pop_back_val(); 1106 1107 bool AnyChildren = false; 1108 1109 // Visit the submodules of this module. 1110 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1111 SubEnd = Mod->submodule_end(); 1112 Sub != SubEnd; ++Sub) { 1113 // Skip explicit children; they need to be explicitly imported to be 1114 // linked against. 1115 if ((*Sub)->IsExplicit) 1116 continue; 1117 1118 if (Visited.insert(*Sub).second) { 1119 Stack.push_back(*Sub); 1120 AnyChildren = true; 1121 } 1122 } 1123 1124 // We didn't find any children, so add this module to the list of 1125 // modules to link against. 1126 if (!AnyChildren) { 1127 LinkModules.insert(Mod); 1128 } 1129 } 1130 1131 // Add link options for all of the imported modules in reverse topological 1132 // order. We don't do anything to try to order import link flags with respect 1133 // to linker options inserted by things like #pragma comment(). 1134 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1135 Visited.clear(); 1136 for (Module *M : LinkModules) 1137 if (Visited.insert(M).second) 1138 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1139 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1140 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1141 1142 // Add the linker options metadata flag. 1143 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1144 llvm::MDNode::get(getLLVMContext(), 1145 LinkerOptionsMetadata)); 1146 } 1147 1148 void CodeGenModule::EmitDeferred() { 1149 // Emit code for any potentially referenced deferred decls. Since a 1150 // previously unused static decl may become used during the generation of code 1151 // for a static function, iterate until no changes are made. 1152 1153 if (!DeferredVTables.empty()) { 1154 EmitDeferredVTables(); 1155 1156 // Emitting a v-table doesn't directly cause more v-tables to 1157 // become deferred, although it can cause functions to be 1158 // emitted that then need those v-tables. 1159 assert(DeferredVTables.empty()); 1160 } 1161 1162 // Stop if we're out of both deferred v-tables and deferred declarations. 1163 if (DeferredDeclsToEmit.empty()) 1164 return; 1165 1166 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1167 // work, it will not interfere with this. 1168 std::vector<DeferredGlobal> CurDeclsToEmit; 1169 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1170 1171 for (DeferredGlobal &G : CurDeclsToEmit) { 1172 GlobalDecl D = G.GD; 1173 llvm::GlobalValue *GV = G.GV; 1174 G.GV = nullptr; 1175 1176 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1177 // to get GlobalValue with exactly the type we need, not something that 1178 // might had been created for another decl with the same mangled name but 1179 // different type. 1180 // FIXME: Support for variables is not implemented yet. 1181 if (isa<FunctionDecl>(D.getDecl())) 1182 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1183 else 1184 if (!GV) 1185 GV = GetGlobalValue(getMangledName(D)); 1186 1187 // Check to see if we've already emitted this. This is necessary 1188 // for a couple of reasons: first, decls can end up in the 1189 // deferred-decls queue multiple times, and second, decls can end 1190 // up with definitions in unusual ways (e.g. by an extern inline 1191 // function acquiring a strong function redefinition). Just 1192 // ignore these cases. 1193 if (GV && !GV->isDeclaration()) 1194 continue; 1195 1196 // Otherwise, emit the definition and move on to the next one. 1197 EmitGlobalDefinition(D, GV); 1198 1199 // If we found out that we need to emit more decls, do that recursively. 1200 // This has the advantage that the decls are emitted in a DFS and related 1201 // ones are close together, which is convenient for testing. 1202 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1203 EmitDeferred(); 1204 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1205 } 1206 } 1207 } 1208 1209 void CodeGenModule::EmitGlobalAnnotations() { 1210 if (Annotations.empty()) 1211 return; 1212 1213 // Create a new global variable for the ConstantStruct in the Module. 1214 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1215 Annotations[0]->getType(), Annotations.size()), Annotations); 1216 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1217 llvm::GlobalValue::AppendingLinkage, 1218 Array, "llvm.global.annotations"); 1219 gv->setSection(AnnotationSection); 1220 } 1221 1222 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1223 llvm::Constant *&AStr = AnnotationStrings[Str]; 1224 if (AStr) 1225 return AStr; 1226 1227 // Not found yet, create a new global. 1228 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1229 auto *gv = 1230 new llvm::GlobalVariable(getModule(), s->getType(), true, 1231 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1232 gv->setSection(AnnotationSection); 1233 gv->setUnnamedAddr(true); 1234 AStr = gv; 1235 return gv; 1236 } 1237 1238 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1239 SourceManager &SM = getContext().getSourceManager(); 1240 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1241 if (PLoc.isValid()) 1242 return EmitAnnotationString(PLoc.getFilename()); 1243 return EmitAnnotationString(SM.getBufferName(Loc)); 1244 } 1245 1246 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1247 SourceManager &SM = getContext().getSourceManager(); 1248 PresumedLoc PLoc = SM.getPresumedLoc(L); 1249 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1250 SM.getExpansionLineNumber(L); 1251 return llvm::ConstantInt::get(Int32Ty, LineNo); 1252 } 1253 1254 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1255 const AnnotateAttr *AA, 1256 SourceLocation L) { 1257 // Get the globals for file name, annotation, and the line number. 1258 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1259 *UnitGV = EmitAnnotationUnit(L), 1260 *LineNoCst = EmitAnnotationLineNo(L); 1261 1262 // Create the ConstantStruct for the global annotation. 1263 llvm::Constant *Fields[4] = { 1264 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1265 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1266 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1267 LineNoCst 1268 }; 1269 return llvm::ConstantStruct::getAnon(Fields); 1270 } 1271 1272 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1273 llvm::GlobalValue *GV) { 1274 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1275 // Get the struct elements for these annotations. 1276 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1277 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1278 } 1279 1280 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1281 SourceLocation Loc) const { 1282 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1283 // Blacklist by function name. 1284 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1285 return true; 1286 // Blacklist by location. 1287 if (Loc.isValid()) 1288 return SanitizerBL.isBlacklistedLocation(Loc); 1289 // If location is unknown, this may be a compiler-generated function. Assume 1290 // it's located in the main file. 1291 auto &SM = Context.getSourceManager(); 1292 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1293 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1294 } 1295 return false; 1296 } 1297 1298 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1299 SourceLocation Loc, QualType Ty, 1300 StringRef Category) const { 1301 // For now globals can be blacklisted only in ASan and KASan. 1302 if (!LangOpts.Sanitize.hasOneOf( 1303 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1304 return false; 1305 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1306 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1307 return true; 1308 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1309 return true; 1310 // Check global type. 1311 if (!Ty.isNull()) { 1312 // Drill down the array types: if global variable of a fixed type is 1313 // blacklisted, we also don't instrument arrays of them. 1314 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1315 Ty = AT->getElementType(); 1316 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1317 // We allow to blacklist only record types (classes, structs etc.) 1318 if (Ty->isRecordType()) { 1319 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1320 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1321 return true; 1322 } 1323 } 1324 return false; 1325 } 1326 1327 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1328 // Never defer when EmitAllDecls is specified. 1329 if (LangOpts.EmitAllDecls) 1330 return true; 1331 1332 return getContext().DeclMustBeEmitted(Global); 1333 } 1334 1335 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1336 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1337 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1338 // Implicit template instantiations may change linkage if they are later 1339 // explicitly instantiated, so they should not be emitted eagerly. 1340 return false; 1341 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1342 // codegen for global variables, because they may be marked as threadprivate. 1343 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1344 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1345 return false; 1346 1347 return true; 1348 } 1349 1350 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1351 const CXXUuidofExpr* E) { 1352 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1353 // well-formed. 1354 StringRef Uuid = E->getUuidAsStringRef(Context); 1355 std::string Name = "_GUID_" + Uuid.lower(); 1356 std::replace(Name.begin(), Name.end(), '-', '_'); 1357 1358 // Contains a 32-bit field. 1359 CharUnits Alignment = CharUnits::fromQuantity(4); 1360 1361 // Look for an existing global. 1362 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1363 return ConstantAddress(GV, Alignment); 1364 1365 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1366 assert(Init && "failed to initialize as constant"); 1367 1368 auto *GV = new llvm::GlobalVariable( 1369 getModule(), Init->getType(), 1370 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1371 if (supportsCOMDAT()) 1372 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1373 return ConstantAddress(GV, Alignment); 1374 } 1375 1376 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1377 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1378 assert(AA && "No alias?"); 1379 1380 CharUnits Alignment = getContext().getDeclAlign(VD); 1381 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1382 1383 // See if there is already something with the target's name in the module. 1384 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1385 if (Entry) { 1386 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1387 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1388 return ConstantAddress(Ptr, Alignment); 1389 } 1390 1391 llvm::Constant *Aliasee; 1392 if (isa<llvm::FunctionType>(DeclTy)) 1393 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1394 GlobalDecl(cast<FunctionDecl>(VD)), 1395 /*ForVTable=*/false); 1396 else 1397 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1398 llvm::PointerType::getUnqual(DeclTy), 1399 nullptr); 1400 1401 auto *F = cast<llvm::GlobalValue>(Aliasee); 1402 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1403 WeakRefReferences.insert(F); 1404 1405 return ConstantAddress(Aliasee, Alignment); 1406 } 1407 1408 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1409 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1410 1411 // Weak references don't produce any output by themselves. 1412 if (Global->hasAttr<WeakRefAttr>()) 1413 return; 1414 1415 // If this is an alias definition (which otherwise looks like a declaration) 1416 // emit it now. 1417 if (Global->hasAttr<AliasAttr>()) 1418 return EmitAliasDefinition(GD); 1419 1420 // If this is CUDA, be selective about which declarations we emit. 1421 if (LangOpts.CUDA) { 1422 if (LangOpts.CUDAIsDevice) { 1423 if (!Global->hasAttr<CUDADeviceAttr>() && 1424 !Global->hasAttr<CUDAGlobalAttr>() && 1425 !Global->hasAttr<CUDAConstantAttr>() && 1426 !Global->hasAttr<CUDASharedAttr>()) 1427 return; 1428 } else { 1429 if (!Global->hasAttr<CUDAHostAttr>() && ( 1430 Global->hasAttr<CUDADeviceAttr>() || 1431 Global->hasAttr<CUDAConstantAttr>() || 1432 Global->hasAttr<CUDASharedAttr>())) 1433 return; 1434 } 1435 } 1436 1437 // Ignore declarations, they will be emitted on their first use. 1438 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1439 // Forward declarations are emitted lazily on first use. 1440 if (!FD->doesThisDeclarationHaveABody()) { 1441 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1442 return; 1443 1444 StringRef MangledName = getMangledName(GD); 1445 1446 // Compute the function info and LLVM type. 1447 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1448 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1449 1450 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1451 /*DontDefer=*/false); 1452 return; 1453 } 1454 } else { 1455 const auto *VD = cast<VarDecl>(Global); 1456 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1457 1458 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1459 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1460 return; 1461 } 1462 1463 // Defer code generation to first use when possible, e.g. if this is an inline 1464 // function. If the global must always be emitted, do it eagerly if possible 1465 // to benefit from cache locality. 1466 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1467 // Emit the definition if it can't be deferred. 1468 EmitGlobalDefinition(GD); 1469 return; 1470 } 1471 1472 // If we're deferring emission of a C++ variable with an 1473 // initializer, remember the order in which it appeared in the file. 1474 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1475 cast<VarDecl>(Global)->hasInit()) { 1476 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1477 CXXGlobalInits.push_back(nullptr); 1478 } 1479 1480 StringRef MangledName = getMangledName(GD); 1481 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1482 // The value has already been used and should therefore be emitted. 1483 addDeferredDeclToEmit(GV, GD); 1484 } else if (MustBeEmitted(Global)) { 1485 // The value must be emitted, but cannot be emitted eagerly. 1486 assert(!MayBeEmittedEagerly(Global)); 1487 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1488 } else { 1489 // Otherwise, remember that we saw a deferred decl with this name. The 1490 // first use of the mangled name will cause it to move into 1491 // DeferredDeclsToEmit. 1492 DeferredDecls[MangledName] = GD; 1493 } 1494 } 1495 1496 namespace { 1497 struct FunctionIsDirectlyRecursive : 1498 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1499 const StringRef Name; 1500 const Builtin::Context &BI; 1501 bool Result; 1502 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1503 Name(N), BI(C), Result(false) { 1504 } 1505 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1506 1507 bool TraverseCallExpr(CallExpr *E) { 1508 const FunctionDecl *FD = E->getDirectCallee(); 1509 if (!FD) 1510 return true; 1511 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1512 if (Attr && Name == Attr->getLabel()) { 1513 Result = true; 1514 return false; 1515 } 1516 unsigned BuiltinID = FD->getBuiltinID(); 1517 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1518 return true; 1519 StringRef BuiltinName = BI.getName(BuiltinID); 1520 if (BuiltinName.startswith("__builtin_") && 1521 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1522 Result = true; 1523 return false; 1524 } 1525 return true; 1526 } 1527 }; 1528 1529 struct DLLImportFunctionVisitor 1530 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1531 bool SafeToInline = true; 1532 1533 bool VisitVarDecl(VarDecl *VD) { 1534 // A thread-local variable cannot be imported. 1535 SafeToInline = !VD->getTLSKind(); 1536 return SafeToInline; 1537 } 1538 1539 // Make sure we're not referencing non-imported vars or functions. 1540 bool VisitDeclRefExpr(DeclRefExpr *E) { 1541 ValueDecl *VD = E->getDecl(); 1542 if (isa<FunctionDecl>(VD)) 1543 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1544 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1545 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1546 return SafeToInline; 1547 } 1548 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1549 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1550 return SafeToInline; 1551 } 1552 bool VisitCXXNewExpr(CXXNewExpr *E) { 1553 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1554 return SafeToInline; 1555 } 1556 }; 1557 } 1558 1559 // isTriviallyRecursive - Check if this function calls another 1560 // decl that, because of the asm attribute or the other decl being a builtin, 1561 // ends up pointing to itself. 1562 bool 1563 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1564 StringRef Name; 1565 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1566 // asm labels are a special kind of mangling we have to support. 1567 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1568 if (!Attr) 1569 return false; 1570 Name = Attr->getLabel(); 1571 } else { 1572 Name = FD->getName(); 1573 } 1574 1575 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1576 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1577 return Walker.Result; 1578 } 1579 1580 bool 1581 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1582 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1583 return true; 1584 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1585 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1586 return false; 1587 1588 if (F->hasAttr<DLLImportAttr>()) { 1589 // Check whether it would be safe to inline this dllimport function. 1590 DLLImportFunctionVisitor Visitor; 1591 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1592 if (!Visitor.SafeToInline) 1593 return false; 1594 } 1595 1596 // PR9614. Avoid cases where the source code is lying to us. An available 1597 // externally function should have an equivalent function somewhere else, 1598 // but a function that calls itself is clearly not equivalent to the real 1599 // implementation. 1600 // This happens in glibc's btowc and in some configure checks. 1601 return !isTriviallyRecursive(F); 1602 } 1603 1604 /// If the type for the method's class was generated by 1605 /// CGDebugInfo::createContextChain(), the cache contains only a 1606 /// limited DIType without any declarations. Since EmitFunctionStart() 1607 /// needs to find the canonical declaration for each method, we need 1608 /// to construct the complete type prior to emitting the method. 1609 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1610 if (!D->isInstance()) 1611 return; 1612 1613 if (CGDebugInfo *DI = getModuleDebugInfo()) 1614 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1615 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1616 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1617 } 1618 } 1619 1620 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1621 const auto *D = cast<ValueDecl>(GD.getDecl()); 1622 1623 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1624 Context.getSourceManager(), 1625 "Generating code for declaration"); 1626 1627 if (isa<FunctionDecl>(D)) { 1628 // At -O0, don't generate IR for functions with available_externally 1629 // linkage. 1630 if (!shouldEmitFunction(GD)) 1631 return; 1632 1633 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1634 CompleteDIClassType(Method); 1635 // Make sure to emit the definition(s) before we emit the thunks. 1636 // This is necessary for the generation of certain thunks. 1637 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1638 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1639 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1640 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1641 else 1642 EmitGlobalFunctionDefinition(GD, GV); 1643 1644 if (Method->isVirtual()) 1645 getVTables().EmitThunks(GD); 1646 1647 return; 1648 } 1649 1650 return EmitGlobalFunctionDefinition(GD, GV); 1651 } 1652 1653 if (const auto *VD = dyn_cast<VarDecl>(D)) 1654 return EmitGlobalVarDefinition(VD); 1655 1656 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1657 } 1658 1659 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1660 llvm::Function *NewFn); 1661 1662 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1663 /// module, create and return an llvm Function with the specified type. If there 1664 /// is something in the module with the specified name, return it potentially 1665 /// bitcasted to the right type. 1666 /// 1667 /// If D is non-null, it specifies a decl that correspond to this. This is used 1668 /// to set the attributes on the function when it is first created. 1669 llvm::Constant * 1670 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1671 llvm::Type *Ty, 1672 GlobalDecl GD, bool ForVTable, 1673 bool DontDefer, bool IsThunk, 1674 llvm::AttributeSet ExtraAttrs, 1675 bool IsForDefinition) { 1676 const Decl *D = GD.getDecl(); 1677 1678 // Lookup the entry, lazily creating it if necessary. 1679 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1680 if (Entry) { 1681 if (WeakRefReferences.erase(Entry)) { 1682 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1683 if (FD && !FD->hasAttr<WeakAttr>()) 1684 Entry->setLinkage(llvm::Function::ExternalLinkage); 1685 } 1686 1687 // Handle dropped DLL attributes. 1688 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1689 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1690 1691 // If there are two attempts to define the same mangled name, issue an 1692 // error. 1693 if (IsForDefinition && !Entry->isDeclaration()) { 1694 GlobalDecl OtherGD; 1695 // Check that GD is not yet in ExplicitDefinitions is required to make 1696 // sure that we issue an error only once. 1697 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1698 (GD.getCanonicalDecl().getDecl() != 1699 OtherGD.getCanonicalDecl().getDecl()) && 1700 DiagnosedConflictingDefinitions.insert(GD).second) { 1701 getDiags().Report(D->getLocation(), 1702 diag::err_duplicate_mangled_name); 1703 getDiags().Report(OtherGD.getDecl()->getLocation(), 1704 diag::note_previous_definition); 1705 } 1706 } 1707 1708 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1709 (Entry->getType()->getElementType() == Ty)) { 1710 return Entry; 1711 } 1712 1713 // Make sure the result is of the correct type. 1714 // (If function is requested for a definition, we always need to create a new 1715 // function, not just return a bitcast.) 1716 if (!IsForDefinition) 1717 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1718 } 1719 1720 // This function doesn't have a complete type (for example, the return 1721 // type is an incomplete struct). Use a fake type instead, and make 1722 // sure not to try to set attributes. 1723 bool IsIncompleteFunction = false; 1724 1725 llvm::FunctionType *FTy; 1726 if (isa<llvm::FunctionType>(Ty)) { 1727 FTy = cast<llvm::FunctionType>(Ty); 1728 } else { 1729 FTy = llvm::FunctionType::get(VoidTy, false); 1730 IsIncompleteFunction = true; 1731 } 1732 1733 llvm::Function *F = 1734 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1735 Entry ? StringRef() : MangledName, &getModule()); 1736 1737 // If we already created a function with the same mangled name (but different 1738 // type) before, take its name and add it to the list of functions to be 1739 // replaced with F at the end of CodeGen. 1740 // 1741 // This happens if there is a prototype for a function (e.g. "int f()") and 1742 // then a definition of a different type (e.g. "int f(int x)"). 1743 if (Entry) { 1744 F->takeName(Entry); 1745 1746 // This might be an implementation of a function without a prototype, in 1747 // which case, try to do special replacement of calls which match the new 1748 // prototype. The really key thing here is that we also potentially drop 1749 // arguments from the call site so as to make a direct call, which makes the 1750 // inliner happier and suppresses a number of optimizer warnings (!) about 1751 // dropping arguments. 1752 if (!Entry->use_empty()) { 1753 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1754 Entry->removeDeadConstantUsers(); 1755 } 1756 1757 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1758 F, Entry->getType()->getElementType()->getPointerTo()); 1759 addGlobalValReplacement(Entry, BC); 1760 } 1761 1762 assert(F->getName() == MangledName && "name was uniqued!"); 1763 if (D) 1764 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1765 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1766 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1767 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1768 llvm::AttributeSet::get(VMContext, 1769 llvm::AttributeSet::FunctionIndex, 1770 B)); 1771 } 1772 1773 if (!DontDefer) { 1774 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1775 // each other bottoming out with the base dtor. Therefore we emit non-base 1776 // dtors on usage, even if there is no dtor definition in the TU. 1777 if (D && isa<CXXDestructorDecl>(D) && 1778 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1779 GD.getDtorType())) 1780 addDeferredDeclToEmit(F, GD); 1781 1782 // This is the first use or definition of a mangled name. If there is a 1783 // deferred decl with this name, remember that we need to emit it at the end 1784 // of the file. 1785 auto DDI = DeferredDecls.find(MangledName); 1786 if (DDI != DeferredDecls.end()) { 1787 // Move the potentially referenced deferred decl to the 1788 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1789 // don't need it anymore). 1790 addDeferredDeclToEmit(F, DDI->second); 1791 DeferredDecls.erase(DDI); 1792 1793 // Otherwise, there are cases we have to worry about where we're 1794 // using a declaration for which we must emit a definition but where 1795 // we might not find a top-level definition: 1796 // - member functions defined inline in their classes 1797 // - friend functions defined inline in some class 1798 // - special member functions with implicit definitions 1799 // If we ever change our AST traversal to walk into class methods, 1800 // this will be unnecessary. 1801 // 1802 // We also don't emit a definition for a function if it's going to be an 1803 // entry in a vtable, unless it's already marked as used. 1804 } else if (getLangOpts().CPlusPlus && D) { 1805 // Look for a declaration that's lexically in a record. 1806 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1807 FD = FD->getPreviousDecl()) { 1808 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1809 if (FD->doesThisDeclarationHaveABody()) { 1810 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1811 break; 1812 } 1813 } 1814 } 1815 } 1816 } 1817 1818 // Make sure the result is of the requested type. 1819 if (!IsIncompleteFunction) { 1820 assert(F->getType()->getElementType() == Ty); 1821 return F; 1822 } 1823 1824 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1825 return llvm::ConstantExpr::getBitCast(F, PTy); 1826 } 1827 1828 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1829 /// non-null, then this function will use the specified type if it has to 1830 /// create it (this occurs when we see a definition of the function). 1831 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1832 llvm::Type *Ty, 1833 bool ForVTable, 1834 bool DontDefer, 1835 bool IsForDefinition) { 1836 // If there was no specific requested type, just convert it now. 1837 if (!Ty) 1838 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1839 1840 StringRef MangledName = getMangledName(GD); 1841 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1842 /*IsThunk=*/false, llvm::AttributeSet(), 1843 IsForDefinition); 1844 } 1845 1846 /// CreateRuntimeFunction - Create a new runtime function with the specified 1847 /// type and name. 1848 llvm::Constant * 1849 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1850 StringRef Name, 1851 llvm::AttributeSet ExtraAttrs) { 1852 llvm::Constant *C = 1853 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1854 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1855 if (auto *F = dyn_cast<llvm::Function>(C)) 1856 if (F->empty()) 1857 F->setCallingConv(getRuntimeCC()); 1858 return C; 1859 } 1860 1861 /// CreateBuiltinFunction - Create a new builtin function with the specified 1862 /// type and name. 1863 llvm::Constant * 1864 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1865 StringRef Name, 1866 llvm::AttributeSet ExtraAttrs) { 1867 llvm::Constant *C = 1868 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1869 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1870 if (auto *F = dyn_cast<llvm::Function>(C)) 1871 if (F->empty()) 1872 F->setCallingConv(getBuiltinCC()); 1873 return C; 1874 } 1875 1876 /// isTypeConstant - Determine whether an object of this type can be emitted 1877 /// as a constant. 1878 /// 1879 /// If ExcludeCtor is true, the duration when the object's constructor runs 1880 /// will not be considered. The caller will need to verify that the object is 1881 /// not written to during its construction. 1882 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1883 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1884 return false; 1885 1886 if (Context.getLangOpts().CPlusPlus) { 1887 if (const CXXRecordDecl *Record 1888 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1889 return ExcludeCtor && !Record->hasMutableFields() && 1890 Record->hasTrivialDestructor(); 1891 } 1892 1893 return true; 1894 } 1895 1896 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1897 /// create and return an llvm GlobalVariable with the specified type. If there 1898 /// is something in the module with the specified name, return it potentially 1899 /// bitcasted to the right type. 1900 /// 1901 /// If D is non-null, it specifies a decl that correspond to this. This is used 1902 /// to set the attributes on the global when it is first created. 1903 llvm::Constant * 1904 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1905 llvm::PointerType *Ty, 1906 const VarDecl *D) { 1907 // Lookup the entry, lazily creating it if necessary. 1908 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1909 if (Entry) { 1910 if (WeakRefReferences.erase(Entry)) { 1911 if (D && !D->hasAttr<WeakAttr>()) 1912 Entry->setLinkage(llvm::Function::ExternalLinkage); 1913 } 1914 1915 // Handle dropped DLL attributes. 1916 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1917 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1918 1919 if (Entry->getType() == Ty) 1920 return Entry; 1921 1922 // Make sure the result is of the correct type. 1923 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1924 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1925 1926 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1927 } 1928 1929 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1930 auto *GV = new llvm::GlobalVariable( 1931 getModule(), Ty->getElementType(), false, 1932 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1933 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1934 1935 // This is the first use or definition of a mangled name. If there is a 1936 // deferred decl with this name, remember that we need to emit it at the end 1937 // of the file. 1938 auto DDI = DeferredDecls.find(MangledName); 1939 if (DDI != DeferredDecls.end()) { 1940 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1941 // list, and remove it from DeferredDecls (since we don't need it anymore). 1942 addDeferredDeclToEmit(GV, DDI->second); 1943 DeferredDecls.erase(DDI); 1944 } 1945 1946 // Handle things which are present even on external declarations. 1947 if (D) { 1948 // FIXME: This code is overly simple and should be merged with other global 1949 // handling. 1950 GV->setConstant(isTypeConstant(D->getType(), false)); 1951 1952 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1953 1954 setLinkageAndVisibilityForGV(GV, D); 1955 1956 if (D->getTLSKind()) { 1957 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1958 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1959 setTLSMode(GV, *D); 1960 } 1961 1962 // If required by the ABI, treat declarations of static data members with 1963 // inline initializers as definitions. 1964 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1965 EmitGlobalVarDefinition(D); 1966 } 1967 1968 // Handle XCore specific ABI requirements. 1969 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1970 D->getLanguageLinkage() == CLanguageLinkage && 1971 D->getType().isConstant(Context) && 1972 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1973 GV->setSection(".cp.rodata"); 1974 } 1975 1976 if (AddrSpace != Ty->getAddressSpace()) 1977 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1978 1979 return GV; 1980 } 1981 1982 llvm::Constant * 1983 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 1984 bool IsForDefinition) { 1985 if (isa<CXXConstructorDecl>(GD.getDecl())) 1986 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 1987 getFromCtorType(GD.getCtorType()), 1988 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1989 /*DontDefer=*/false, IsForDefinition); 1990 else if (isa<CXXDestructorDecl>(GD.getDecl())) 1991 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 1992 getFromDtorType(GD.getDtorType()), 1993 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1994 /*DontDefer=*/false, IsForDefinition); 1995 else if (isa<CXXMethodDecl>(GD.getDecl())) { 1996 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 1997 cast<CXXMethodDecl>(GD.getDecl())); 1998 auto Ty = getTypes().GetFunctionType(*FInfo); 1999 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2000 IsForDefinition); 2001 } else if (isa<FunctionDecl>(GD.getDecl())) { 2002 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2003 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2004 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2005 IsForDefinition); 2006 } else 2007 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 2008 } 2009 2010 llvm::GlobalVariable * 2011 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2012 llvm::Type *Ty, 2013 llvm::GlobalValue::LinkageTypes Linkage) { 2014 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2015 llvm::GlobalVariable *OldGV = nullptr; 2016 2017 if (GV) { 2018 // Check if the variable has the right type. 2019 if (GV->getType()->getElementType() == Ty) 2020 return GV; 2021 2022 // Because C++ name mangling, the only way we can end up with an already 2023 // existing global with the same name is if it has been declared extern "C". 2024 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2025 OldGV = GV; 2026 } 2027 2028 // Create a new variable. 2029 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2030 Linkage, nullptr, Name); 2031 2032 if (OldGV) { 2033 // Replace occurrences of the old variable if needed. 2034 GV->takeName(OldGV); 2035 2036 if (!OldGV->use_empty()) { 2037 llvm::Constant *NewPtrForOldDecl = 2038 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2039 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2040 } 2041 2042 OldGV->eraseFromParent(); 2043 } 2044 2045 if (supportsCOMDAT() && GV->isWeakForLinker() && 2046 !GV->hasAvailableExternallyLinkage()) 2047 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2048 2049 return GV; 2050 } 2051 2052 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2053 /// given global variable. If Ty is non-null and if the global doesn't exist, 2054 /// then it will be created with the specified type instead of whatever the 2055 /// normal requested type would be. 2056 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2057 llvm::Type *Ty) { 2058 assert(D->hasGlobalStorage() && "Not a global variable"); 2059 QualType ASTTy = D->getType(); 2060 if (!Ty) 2061 Ty = getTypes().ConvertTypeForMem(ASTTy); 2062 2063 llvm::PointerType *PTy = 2064 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2065 2066 StringRef MangledName = getMangledName(D); 2067 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2068 } 2069 2070 /// CreateRuntimeVariable - Create a new runtime global variable with the 2071 /// specified type and name. 2072 llvm::Constant * 2073 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2074 StringRef Name) { 2075 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2076 } 2077 2078 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2079 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2080 2081 if (!MustBeEmitted(D)) { 2082 // If we have not seen a reference to this variable yet, place it 2083 // into the deferred declarations table to be emitted if needed 2084 // later. 2085 StringRef MangledName = getMangledName(D); 2086 if (!GetGlobalValue(MangledName)) { 2087 DeferredDecls[MangledName] = D; 2088 return; 2089 } 2090 } 2091 2092 // The tentative definition is the only definition. 2093 EmitGlobalVarDefinition(D); 2094 } 2095 2096 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2097 return Context.toCharUnitsFromBits( 2098 getDataLayout().getTypeStoreSizeInBits(Ty)); 2099 } 2100 2101 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2102 unsigned AddrSpace) { 2103 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2104 if (D->hasAttr<CUDAConstantAttr>()) 2105 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2106 else if (D->hasAttr<CUDASharedAttr>()) 2107 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2108 else 2109 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2110 } 2111 2112 return AddrSpace; 2113 } 2114 2115 template<typename SomeDecl> 2116 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2117 llvm::GlobalValue *GV) { 2118 if (!getLangOpts().CPlusPlus) 2119 return; 2120 2121 // Must have 'used' attribute, or else inline assembly can't rely on 2122 // the name existing. 2123 if (!D->template hasAttr<UsedAttr>()) 2124 return; 2125 2126 // Must have internal linkage and an ordinary name. 2127 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2128 return; 2129 2130 // Must be in an extern "C" context. Entities declared directly within 2131 // a record are not extern "C" even if the record is in such a context. 2132 const SomeDecl *First = D->getFirstDecl(); 2133 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2134 return; 2135 2136 // OK, this is an internal linkage entity inside an extern "C" linkage 2137 // specification. Make a note of that so we can give it the "expected" 2138 // mangled name if nothing else is using that name. 2139 std::pair<StaticExternCMap::iterator, bool> R = 2140 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2141 2142 // If we have multiple internal linkage entities with the same name 2143 // in extern "C" regions, none of them gets that name. 2144 if (!R.second) 2145 R.first->second = nullptr; 2146 } 2147 2148 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2149 if (!CGM.supportsCOMDAT()) 2150 return false; 2151 2152 if (D.hasAttr<SelectAnyAttr>()) 2153 return true; 2154 2155 GVALinkage Linkage; 2156 if (auto *VD = dyn_cast<VarDecl>(&D)) 2157 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2158 else 2159 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2160 2161 switch (Linkage) { 2162 case GVA_Internal: 2163 case GVA_AvailableExternally: 2164 case GVA_StrongExternal: 2165 return false; 2166 case GVA_DiscardableODR: 2167 case GVA_StrongODR: 2168 return true; 2169 } 2170 llvm_unreachable("No such linkage"); 2171 } 2172 2173 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2174 llvm::GlobalObject &GO) { 2175 if (!shouldBeInCOMDAT(*this, D)) 2176 return; 2177 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2178 } 2179 2180 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2181 llvm::Constant *Init = nullptr; 2182 QualType ASTTy = D->getType(); 2183 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2184 bool NeedsGlobalCtor = false; 2185 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2186 2187 const VarDecl *InitDecl; 2188 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2189 2190 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2191 // of their declaration." 2192 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2193 && D->hasAttr<CUDASharedAttr>()) { 2194 if (InitExpr) { 2195 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2196 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2197 Error(D->getLocation(), 2198 "__shared__ variable cannot have an initialization."); 2199 } 2200 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2201 } else if (!InitExpr) { 2202 // This is a tentative definition; tentative definitions are 2203 // implicitly initialized with { 0 }. 2204 // 2205 // Note that tentative definitions are only emitted at the end of 2206 // a translation unit, so they should never have incomplete 2207 // type. In addition, EmitTentativeDefinition makes sure that we 2208 // never attempt to emit a tentative definition if a real one 2209 // exists. A use may still exists, however, so we still may need 2210 // to do a RAUW. 2211 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2212 Init = EmitNullConstant(D->getType()); 2213 } else { 2214 initializedGlobalDecl = GlobalDecl(D); 2215 Init = EmitConstantInit(*InitDecl); 2216 2217 if (!Init) { 2218 QualType T = InitExpr->getType(); 2219 if (D->getType()->isReferenceType()) 2220 T = D->getType(); 2221 2222 if (getLangOpts().CPlusPlus) { 2223 Init = EmitNullConstant(T); 2224 NeedsGlobalCtor = true; 2225 } else { 2226 ErrorUnsupported(D, "static initializer"); 2227 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2228 } 2229 } else { 2230 // We don't need an initializer, so remove the entry for the delayed 2231 // initializer position (just in case this entry was delayed) if we 2232 // also don't need to register a destructor. 2233 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2234 DelayedCXXInitPosition.erase(D); 2235 } 2236 } 2237 2238 llvm::Type* InitType = Init->getType(); 2239 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2240 2241 // Strip off a bitcast if we got one back. 2242 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2244 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2245 // All zero index gep. 2246 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2247 Entry = CE->getOperand(0); 2248 } 2249 2250 // Entry is now either a Function or GlobalVariable. 2251 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2252 2253 // We have a definition after a declaration with the wrong type. 2254 // We must make a new GlobalVariable* and update everything that used OldGV 2255 // (a declaration or tentative definition) with the new GlobalVariable* 2256 // (which will be a definition). 2257 // 2258 // This happens if there is a prototype for a global (e.g. 2259 // "extern int x[];") and then a definition of a different type (e.g. 2260 // "int x[10];"). This also happens when an initializer has a different type 2261 // from the type of the global (this happens with unions). 2262 if (!GV || 2263 GV->getType()->getElementType() != InitType || 2264 GV->getType()->getAddressSpace() != 2265 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2266 2267 // Move the old entry aside so that we'll create a new one. 2268 Entry->setName(StringRef()); 2269 2270 // Make a new global with the correct type, this is now guaranteed to work. 2271 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2272 2273 // Replace all uses of the old global with the new global 2274 llvm::Constant *NewPtrForOldDecl = 2275 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2276 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2277 2278 // Erase the old global, since it is no longer used. 2279 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2280 } 2281 2282 MaybeHandleStaticInExternC(D, GV); 2283 2284 if (D->hasAttr<AnnotateAttr>()) 2285 AddGlobalAnnotations(D, GV); 2286 2287 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2288 // the device. [...]" 2289 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2290 // __device__, declares a variable that: [...] 2291 // Is accessible from all the threads within the grid and from the host 2292 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2293 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2294 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2295 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2296 GV->setExternallyInitialized(true); 2297 } 2298 GV->setInitializer(Init); 2299 2300 // If it is safe to mark the global 'constant', do so now. 2301 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2302 isTypeConstant(D->getType(), true)); 2303 2304 // If it is in a read-only section, mark it 'constant'. 2305 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2306 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2307 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2308 GV->setConstant(true); 2309 } 2310 2311 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2312 2313 // Set the llvm linkage type as appropriate. 2314 llvm::GlobalValue::LinkageTypes Linkage = 2315 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2316 2317 // On Darwin, the backing variable for a C++11 thread_local variable always 2318 // has internal linkage; all accesses should just be calls to the 2319 // Itanium-specified entry point, which has the normal linkage of the 2320 // variable. 2321 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2322 Context.getTargetInfo().getTriple().isMacOSX()) 2323 Linkage = llvm::GlobalValue::InternalLinkage; 2324 2325 GV->setLinkage(Linkage); 2326 if (D->hasAttr<DLLImportAttr>()) 2327 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2328 else if (D->hasAttr<DLLExportAttr>()) 2329 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2330 else 2331 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2332 2333 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2334 // common vars aren't constant even if declared const. 2335 GV->setConstant(false); 2336 2337 setNonAliasAttributes(D, GV); 2338 2339 if (D->getTLSKind() && !GV->isThreadLocal()) { 2340 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2341 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2342 setTLSMode(GV, *D); 2343 } 2344 2345 maybeSetTrivialComdat(*D, *GV); 2346 2347 // Emit the initializer function if necessary. 2348 if (NeedsGlobalCtor || NeedsGlobalDtor) 2349 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2350 2351 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2352 2353 // Emit global variable debug information. 2354 if (CGDebugInfo *DI = getModuleDebugInfo()) 2355 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2356 DI->EmitGlobalVariable(GV, D); 2357 } 2358 2359 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2360 CodeGenModule &CGM, const VarDecl *D, 2361 bool NoCommon) { 2362 // Don't give variables common linkage if -fno-common was specified unless it 2363 // was overridden by a NoCommon attribute. 2364 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2365 return true; 2366 2367 // C11 6.9.2/2: 2368 // A declaration of an identifier for an object that has file scope without 2369 // an initializer, and without a storage-class specifier or with the 2370 // storage-class specifier static, constitutes a tentative definition. 2371 if (D->getInit() || D->hasExternalStorage()) 2372 return true; 2373 2374 // A variable cannot be both common and exist in a section. 2375 if (D->hasAttr<SectionAttr>()) 2376 return true; 2377 2378 // Thread local vars aren't considered common linkage. 2379 if (D->getTLSKind()) 2380 return true; 2381 2382 // Tentative definitions marked with WeakImportAttr are true definitions. 2383 if (D->hasAttr<WeakImportAttr>()) 2384 return true; 2385 2386 // A variable cannot be both common and exist in a comdat. 2387 if (shouldBeInCOMDAT(CGM, *D)) 2388 return true; 2389 2390 // Declarations with a required alignment do not have common linakge in MSVC 2391 // mode. 2392 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2393 if (D->hasAttr<AlignedAttr>()) 2394 return true; 2395 QualType VarType = D->getType(); 2396 if (Context.isAlignmentRequired(VarType)) 2397 return true; 2398 2399 if (const auto *RT = VarType->getAs<RecordType>()) { 2400 const RecordDecl *RD = RT->getDecl(); 2401 for (const FieldDecl *FD : RD->fields()) { 2402 if (FD->isBitField()) 2403 continue; 2404 if (FD->hasAttr<AlignedAttr>()) 2405 return true; 2406 if (Context.isAlignmentRequired(FD->getType())) 2407 return true; 2408 } 2409 } 2410 } 2411 2412 return false; 2413 } 2414 2415 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2416 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2417 if (Linkage == GVA_Internal) 2418 return llvm::Function::InternalLinkage; 2419 2420 if (D->hasAttr<WeakAttr>()) { 2421 if (IsConstantVariable) 2422 return llvm::GlobalVariable::WeakODRLinkage; 2423 else 2424 return llvm::GlobalVariable::WeakAnyLinkage; 2425 } 2426 2427 // We are guaranteed to have a strong definition somewhere else, 2428 // so we can use available_externally linkage. 2429 if (Linkage == GVA_AvailableExternally) 2430 return llvm::Function::AvailableExternallyLinkage; 2431 2432 // Note that Apple's kernel linker doesn't support symbol 2433 // coalescing, so we need to avoid linkonce and weak linkages there. 2434 // Normally, this means we just map to internal, but for explicit 2435 // instantiations we'll map to external. 2436 2437 // In C++, the compiler has to emit a definition in every translation unit 2438 // that references the function. We should use linkonce_odr because 2439 // a) if all references in this translation unit are optimized away, we 2440 // don't need to codegen it. b) if the function persists, it needs to be 2441 // merged with other definitions. c) C++ has the ODR, so we know the 2442 // definition is dependable. 2443 if (Linkage == GVA_DiscardableODR) 2444 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2445 : llvm::Function::InternalLinkage; 2446 2447 // An explicit instantiation of a template has weak linkage, since 2448 // explicit instantiations can occur in multiple translation units 2449 // and must all be equivalent. However, we are not allowed to 2450 // throw away these explicit instantiations. 2451 if (Linkage == GVA_StrongODR) 2452 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2453 : llvm::Function::ExternalLinkage; 2454 2455 // C++ doesn't have tentative definitions and thus cannot have common 2456 // linkage. 2457 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2458 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2459 CodeGenOpts.NoCommon)) 2460 return llvm::GlobalVariable::CommonLinkage; 2461 2462 // selectany symbols are externally visible, so use weak instead of 2463 // linkonce. MSVC optimizes away references to const selectany globals, so 2464 // all definitions should be the same and ODR linkage should be used. 2465 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2466 if (D->hasAttr<SelectAnyAttr>()) 2467 return llvm::GlobalVariable::WeakODRLinkage; 2468 2469 // Otherwise, we have strong external linkage. 2470 assert(Linkage == GVA_StrongExternal); 2471 return llvm::GlobalVariable::ExternalLinkage; 2472 } 2473 2474 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2475 const VarDecl *VD, bool IsConstant) { 2476 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2477 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2478 } 2479 2480 /// Replace the uses of a function that was declared with a non-proto type. 2481 /// We want to silently drop extra arguments from call sites 2482 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2483 llvm::Function *newFn) { 2484 // Fast path. 2485 if (old->use_empty()) return; 2486 2487 llvm::Type *newRetTy = newFn->getReturnType(); 2488 SmallVector<llvm::Value*, 4> newArgs; 2489 2490 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2491 ui != ue; ) { 2492 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2493 llvm::User *user = use->getUser(); 2494 2495 // Recognize and replace uses of bitcasts. Most calls to 2496 // unprototyped functions will use bitcasts. 2497 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2498 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2499 replaceUsesOfNonProtoConstant(bitcast, newFn); 2500 continue; 2501 } 2502 2503 // Recognize calls to the function. 2504 llvm::CallSite callSite(user); 2505 if (!callSite) continue; 2506 if (!callSite.isCallee(&*use)) continue; 2507 2508 // If the return types don't match exactly, then we can't 2509 // transform this call unless it's dead. 2510 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2511 continue; 2512 2513 // Get the call site's attribute list. 2514 SmallVector<llvm::AttributeSet, 8> newAttrs; 2515 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2516 2517 // Collect any return attributes from the call. 2518 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2519 newAttrs.push_back( 2520 llvm::AttributeSet::get(newFn->getContext(), 2521 oldAttrs.getRetAttributes())); 2522 2523 // If the function was passed too few arguments, don't transform. 2524 unsigned newNumArgs = newFn->arg_size(); 2525 if (callSite.arg_size() < newNumArgs) continue; 2526 2527 // If extra arguments were passed, we silently drop them. 2528 // If any of the types mismatch, we don't transform. 2529 unsigned argNo = 0; 2530 bool dontTransform = false; 2531 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2532 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2533 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2534 dontTransform = true; 2535 break; 2536 } 2537 2538 // Add any parameter attributes. 2539 if (oldAttrs.hasAttributes(argNo + 1)) 2540 newAttrs. 2541 push_back(llvm:: 2542 AttributeSet::get(newFn->getContext(), 2543 oldAttrs.getParamAttributes(argNo + 1))); 2544 } 2545 if (dontTransform) 2546 continue; 2547 2548 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2549 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2550 oldAttrs.getFnAttributes())); 2551 2552 // Okay, we can transform this. Create the new call instruction and copy 2553 // over the required information. 2554 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2555 2556 llvm::CallSite newCall; 2557 if (callSite.isCall()) { 2558 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2559 callSite.getInstruction()); 2560 } else { 2561 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2562 newCall = llvm::InvokeInst::Create(newFn, 2563 oldInvoke->getNormalDest(), 2564 oldInvoke->getUnwindDest(), 2565 newArgs, "", 2566 callSite.getInstruction()); 2567 } 2568 newArgs.clear(); // for the next iteration 2569 2570 if (!newCall->getType()->isVoidTy()) 2571 newCall->takeName(callSite.getInstruction()); 2572 newCall.setAttributes( 2573 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2574 newCall.setCallingConv(callSite.getCallingConv()); 2575 2576 // Finally, remove the old call, replacing any uses with the new one. 2577 if (!callSite->use_empty()) 2578 callSite->replaceAllUsesWith(newCall.getInstruction()); 2579 2580 // Copy debug location attached to CI. 2581 if (callSite->getDebugLoc()) 2582 newCall->setDebugLoc(callSite->getDebugLoc()); 2583 callSite->eraseFromParent(); 2584 } 2585 } 2586 2587 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2588 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2589 /// existing call uses of the old function in the module, this adjusts them to 2590 /// call the new function directly. 2591 /// 2592 /// This is not just a cleanup: the always_inline pass requires direct calls to 2593 /// functions to be able to inline them. If there is a bitcast in the way, it 2594 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2595 /// run at -O0. 2596 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2597 llvm::Function *NewFn) { 2598 // If we're redefining a global as a function, don't transform it. 2599 if (!isa<llvm::Function>(Old)) return; 2600 2601 replaceUsesOfNonProtoConstant(Old, NewFn); 2602 } 2603 2604 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2605 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2606 // If we have a definition, this might be a deferred decl. If the 2607 // instantiation is explicit, make sure we emit it at the end. 2608 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2609 GetAddrOfGlobalVar(VD); 2610 2611 EmitTopLevelDecl(VD); 2612 } 2613 2614 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2615 llvm::GlobalValue *GV) { 2616 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2617 2618 // Compute the function info and LLVM type. 2619 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2620 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2621 2622 // Get or create the prototype for the function. 2623 if (!GV || (GV->getType()->getElementType() != Ty)) 2624 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2625 /*DontDefer=*/true, 2626 /*IsForDefinition=*/true)); 2627 2628 // Already emitted. 2629 if (!GV->isDeclaration()) 2630 return; 2631 2632 // We need to set linkage and visibility on the function before 2633 // generating code for it because various parts of IR generation 2634 // want to propagate this information down (e.g. to local static 2635 // declarations). 2636 auto *Fn = cast<llvm::Function>(GV); 2637 setFunctionLinkage(GD, Fn); 2638 setFunctionDLLStorageClass(GD, Fn); 2639 2640 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2641 setGlobalVisibility(Fn, D); 2642 2643 MaybeHandleStaticInExternC(D, Fn); 2644 2645 maybeSetTrivialComdat(*D, *Fn); 2646 2647 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2648 2649 setFunctionDefinitionAttributes(D, Fn); 2650 SetLLVMFunctionAttributesForDefinition(D, Fn); 2651 2652 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2653 AddGlobalCtor(Fn, CA->getPriority()); 2654 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2655 AddGlobalDtor(Fn, DA->getPriority()); 2656 if (D->hasAttr<AnnotateAttr>()) 2657 AddGlobalAnnotations(D, Fn); 2658 } 2659 2660 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2661 const auto *D = cast<ValueDecl>(GD.getDecl()); 2662 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2663 assert(AA && "Not an alias?"); 2664 2665 StringRef MangledName = getMangledName(GD); 2666 2667 if (AA->getAliasee() == MangledName) { 2668 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2669 return; 2670 } 2671 2672 // If there is a definition in the module, then it wins over the alias. 2673 // This is dubious, but allow it to be safe. Just ignore the alias. 2674 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2675 if (Entry && !Entry->isDeclaration()) 2676 return; 2677 2678 Aliases.push_back(GD); 2679 2680 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2681 2682 // Create a reference to the named value. This ensures that it is emitted 2683 // if a deferred decl. 2684 llvm::Constant *Aliasee; 2685 if (isa<llvm::FunctionType>(DeclTy)) 2686 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2687 /*ForVTable=*/false); 2688 else 2689 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2690 llvm::PointerType::getUnqual(DeclTy), 2691 /*D=*/nullptr); 2692 2693 // Create the new alias itself, but don't set a name yet. 2694 auto *GA = llvm::GlobalAlias::create( 2695 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2696 2697 if (Entry) { 2698 if (GA->getAliasee() == Entry) { 2699 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2700 return; 2701 } 2702 2703 assert(Entry->isDeclaration()); 2704 2705 // If there is a declaration in the module, then we had an extern followed 2706 // by the alias, as in: 2707 // extern int test6(); 2708 // ... 2709 // int test6() __attribute__((alias("test7"))); 2710 // 2711 // Remove it and replace uses of it with the alias. 2712 GA->takeName(Entry); 2713 2714 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2715 Entry->getType())); 2716 Entry->eraseFromParent(); 2717 } else { 2718 GA->setName(MangledName); 2719 } 2720 2721 // Set attributes which are particular to an alias; this is a 2722 // specialization of the attributes which may be set on a global 2723 // variable/function. 2724 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2725 D->isWeakImported()) { 2726 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2727 } 2728 2729 if (const auto *VD = dyn_cast<VarDecl>(D)) 2730 if (VD->getTLSKind()) 2731 setTLSMode(GA, *VD); 2732 2733 setAliasAttributes(D, GA); 2734 } 2735 2736 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2737 ArrayRef<llvm::Type*> Tys) { 2738 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2739 Tys); 2740 } 2741 2742 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2743 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2744 const StringLiteral *Literal, bool TargetIsLSB, 2745 bool &IsUTF16, unsigned &StringLength) { 2746 StringRef String = Literal->getString(); 2747 unsigned NumBytes = String.size(); 2748 2749 // Check for simple case. 2750 if (!Literal->containsNonAsciiOrNull()) { 2751 StringLength = NumBytes; 2752 return *Map.insert(std::make_pair(String, nullptr)).first; 2753 } 2754 2755 // Otherwise, convert the UTF8 literals into a string of shorts. 2756 IsUTF16 = true; 2757 2758 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2759 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2760 UTF16 *ToPtr = &ToBuf[0]; 2761 2762 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2763 &ToPtr, ToPtr + NumBytes, 2764 strictConversion); 2765 2766 // ConvertUTF8toUTF16 returns the length in ToPtr. 2767 StringLength = ToPtr - &ToBuf[0]; 2768 2769 // Add an explicit null. 2770 *ToPtr = 0; 2771 return *Map.insert(std::make_pair( 2772 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2773 (StringLength + 1) * 2), 2774 nullptr)).first; 2775 } 2776 2777 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2778 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2779 const StringLiteral *Literal, unsigned &StringLength) { 2780 StringRef String = Literal->getString(); 2781 StringLength = String.size(); 2782 return *Map.insert(std::make_pair(String, nullptr)).first; 2783 } 2784 2785 ConstantAddress 2786 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2787 unsigned StringLength = 0; 2788 bool isUTF16 = false; 2789 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2790 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2791 getDataLayout().isLittleEndian(), isUTF16, 2792 StringLength); 2793 2794 if (auto *C = Entry.second) 2795 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2796 2797 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2798 llvm::Constant *Zeros[] = { Zero, Zero }; 2799 llvm::Value *V; 2800 2801 // If we don't already have it, get __CFConstantStringClassReference. 2802 if (!CFConstantStringClassRef) { 2803 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2804 Ty = llvm::ArrayType::get(Ty, 0); 2805 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2806 "__CFConstantStringClassReference"); 2807 // Decay array -> ptr 2808 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2809 CFConstantStringClassRef = V; 2810 } 2811 else 2812 V = CFConstantStringClassRef; 2813 2814 QualType CFTy = getContext().getCFConstantStringType(); 2815 2816 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2817 2818 llvm::Constant *Fields[4]; 2819 2820 // Class pointer. 2821 Fields[0] = cast<llvm::ConstantExpr>(V); 2822 2823 // Flags. 2824 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2825 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2826 llvm::ConstantInt::get(Ty, 0x07C8); 2827 2828 // String pointer. 2829 llvm::Constant *C = nullptr; 2830 if (isUTF16) { 2831 auto Arr = llvm::makeArrayRef( 2832 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2833 Entry.first().size() / 2); 2834 C = llvm::ConstantDataArray::get(VMContext, Arr); 2835 } else { 2836 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2837 } 2838 2839 // Note: -fwritable-strings doesn't make the backing store strings of 2840 // CFStrings writable. (See <rdar://problem/10657500>) 2841 auto *GV = 2842 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2843 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2844 GV->setUnnamedAddr(true); 2845 // Don't enforce the target's minimum global alignment, since the only use 2846 // of the string is via this class initializer. 2847 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2848 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2849 // that changes the section it ends in, which surprises ld64. 2850 if (isUTF16) { 2851 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2852 GV->setAlignment(Align.getQuantity()); 2853 GV->setSection("__TEXT,__ustring"); 2854 } else { 2855 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2856 GV->setAlignment(Align.getQuantity()); 2857 GV->setSection("__TEXT,__cstring,cstring_literals"); 2858 } 2859 2860 // String. 2861 Fields[2] = 2862 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2863 2864 if (isUTF16) 2865 // Cast the UTF16 string to the correct type. 2866 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2867 2868 // String length. 2869 Ty = getTypes().ConvertType(getContext().LongTy); 2870 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2871 2872 CharUnits Alignment = getPointerAlign(); 2873 2874 // The struct. 2875 C = llvm::ConstantStruct::get(STy, Fields); 2876 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2877 llvm::GlobalVariable::PrivateLinkage, C, 2878 "_unnamed_cfstring_"); 2879 GV->setSection("__DATA,__cfstring"); 2880 GV->setAlignment(Alignment.getQuantity()); 2881 Entry.second = GV; 2882 2883 return ConstantAddress(GV, Alignment); 2884 } 2885 2886 ConstantAddress 2887 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2888 unsigned StringLength = 0; 2889 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2890 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2891 2892 if (auto *C = Entry.second) 2893 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2894 2895 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2896 llvm::Constant *Zeros[] = { Zero, Zero }; 2897 llvm::Value *V; 2898 // If we don't already have it, get _NSConstantStringClassReference. 2899 if (!ConstantStringClassRef) { 2900 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2901 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2902 llvm::Constant *GV; 2903 if (LangOpts.ObjCRuntime.isNonFragile()) { 2904 std::string str = 2905 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2906 : "OBJC_CLASS_$_" + StringClass; 2907 GV = getObjCRuntime().GetClassGlobal(str); 2908 // Make sure the result is of the correct type. 2909 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2910 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2911 ConstantStringClassRef = V; 2912 } else { 2913 std::string str = 2914 StringClass.empty() ? "_NSConstantStringClassReference" 2915 : "_" + StringClass + "ClassReference"; 2916 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2917 GV = CreateRuntimeVariable(PTy, str); 2918 // Decay array -> ptr 2919 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2920 ConstantStringClassRef = V; 2921 } 2922 } else 2923 V = ConstantStringClassRef; 2924 2925 if (!NSConstantStringType) { 2926 // Construct the type for a constant NSString. 2927 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2928 D->startDefinition(); 2929 2930 QualType FieldTypes[3]; 2931 2932 // const int *isa; 2933 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2934 // const char *str; 2935 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2936 // unsigned int length; 2937 FieldTypes[2] = Context.UnsignedIntTy; 2938 2939 // Create fields 2940 for (unsigned i = 0; i < 3; ++i) { 2941 FieldDecl *Field = FieldDecl::Create(Context, D, 2942 SourceLocation(), 2943 SourceLocation(), nullptr, 2944 FieldTypes[i], /*TInfo=*/nullptr, 2945 /*BitWidth=*/nullptr, 2946 /*Mutable=*/false, 2947 ICIS_NoInit); 2948 Field->setAccess(AS_public); 2949 D->addDecl(Field); 2950 } 2951 2952 D->completeDefinition(); 2953 QualType NSTy = Context.getTagDeclType(D); 2954 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2955 } 2956 2957 llvm::Constant *Fields[3]; 2958 2959 // Class pointer. 2960 Fields[0] = cast<llvm::ConstantExpr>(V); 2961 2962 // String pointer. 2963 llvm::Constant *C = 2964 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2965 2966 llvm::GlobalValue::LinkageTypes Linkage; 2967 bool isConstant; 2968 Linkage = llvm::GlobalValue::PrivateLinkage; 2969 isConstant = !LangOpts.WritableStrings; 2970 2971 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2972 Linkage, C, ".str"); 2973 GV->setUnnamedAddr(true); 2974 // Don't enforce the target's minimum global alignment, since the only use 2975 // of the string is via this class initializer. 2976 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2977 GV->setAlignment(Align.getQuantity()); 2978 Fields[1] = 2979 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2980 2981 // String length. 2982 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2983 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2984 2985 // The struct. 2986 CharUnits Alignment = getPointerAlign(); 2987 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2988 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2989 llvm::GlobalVariable::PrivateLinkage, C, 2990 "_unnamed_nsstring_"); 2991 GV->setAlignment(Alignment.getQuantity()); 2992 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2993 const char *NSStringNonFragileABISection = 2994 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2995 // FIXME. Fix section. 2996 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2997 ? NSStringNonFragileABISection 2998 : NSStringSection); 2999 Entry.second = GV; 3000 3001 return ConstantAddress(GV, Alignment); 3002 } 3003 3004 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3005 if (ObjCFastEnumerationStateType.isNull()) { 3006 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3007 D->startDefinition(); 3008 3009 QualType FieldTypes[] = { 3010 Context.UnsignedLongTy, 3011 Context.getPointerType(Context.getObjCIdType()), 3012 Context.getPointerType(Context.UnsignedLongTy), 3013 Context.getConstantArrayType(Context.UnsignedLongTy, 3014 llvm::APInt(32, 5), ArrayType::Normal, 0) 3015 }; 3016 3017 for (size_t i = 0; i < 4; ++i) { 3018 FieldDecl *Field = FieldDecl::Create(Context, 3019 D, 3020 SourceLocation(), 3021 SourceLocation(), nullptr, 3022 FieldTypes[i], /*TInfo=*/nullptr, 3023 /*BitWidth=*/nullptr, 3024 /*Mutable=*/false, 3025 ICIS_NoInit); 3026 Field->setAccess(AS_public); 3027 D->addDecl(Field); 3028 } 3029 3030 D->completeDefinition(); 3031 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3032 } 3033 3034 return ObjCFastEnumerationStateType; 3035 } 3036 3037 llvm::Constant * 3038 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3039 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3040 3041 // Don't emit it as the address of the string, emit the string data itself 3042 // as an inline array. 3043 if (E->getCharByteWidth() == 1) { 3044 SmallString<64> Str(E->getString()); 3045 3046 // Resize the string to the right size, which is indicated by its type. 3047 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3048 Str.resize(CAT->getSize().getZExtValue()); 3049 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3050 } 3051 3052 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3053 llvm::Type *ElemTy = AType->getElementType(); 3054 unsigned NumElements = AType->getNumElements(); 3055 3056 // Wide strings have either 2-byte or 4-byte elements. 3057 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3058 SmallVector<uint16_t, 32> Elements; 3059 Elements.reserve(NumElements); 3060 3061 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3062 Elements.push_back(E->getCodeUnit(i)); 3063 Elements.resize(NumElements); 3064 return llvm::ConstantDataArray::get(VMContext, Elements); 3065 } 3066 3067 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3068 SmallVector<uint32_t, 32> Elements; 3069 Elements.reserve(NumElements); 3070 3071 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3072 Elements.push_back(E->getCodeUnit(i)); 3073 Elements.resize(NumElements); 3074 return llvm::ConstantDataArray::get(VMContext, Elements); 3075 } 3076 3077 static llvm::GlobalVariable * 3078 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3079 CodeGenModule &CGM, StringRef GlobalName, 3080 CharUnits Alignment) { 3081 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3082 unsigned AddrSpace = 0; 3083 if (CGM.getLangOpts().OpenCL) 3084 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3085 3086 llvm::Module &M = CGM.getModule(); 3087 // Create a global variable for this string 3088 auto *GV = new llvm::GlobalVariable( 3089 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3090 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3091 GV->setAlignment(Alignment.getQuantity()); 3092 GV->setUnnamedAddr(true); 3093 if (GV->isWeakForLinker()) { 3094 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3095 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3096 } 3097 3098 return GV; 3099 } 3100 3101 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3102 /// constant array for the given string literal. 3103 ConstantAddress 3104 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3105 StringRef Name) { 3106 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3107 3108 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3109 llvm::GlobalVariable **Entry = nullptr; 3110 if (!LangOpts.WritableStrings) { 3111 Entry = &ConstantStringMap[C]; 3112 if (auto GV = *Entry) { 3113 if (Alignment.getQuantity() > GV->getAlignment()) 3114 GV->setAlignment(Alignment.getQuantity()); 3115 return ConstantAddress(GV, Alignment); 3116 } 3117 } 3118 3119 SmallString<256> MangledNameBuffer; 3120 StringRef GlobalVariableName; 3121 llvm::GlobalValue::LinkageTypes LT; 3122 3123 // Mangle the string literal if the ABI allows for it. However, we cannot 3124 // do this if we are compiling with ASan or -fwritable-strings because they 3125 // rely on strings having normal linkage. 3126 if (!LangOpts.WritableStrings && 3127 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3128 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3129 llvm::raw_svector_ostream Out(MangledNameBuffer); 3130 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3131 3132 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3133 GlobalVariableName = MangledNameBuffer; 3134 } else { 3135 LT = llvm::GlobalValue::PrivateLinkage; 3136 GlobalVariableName = Name; 3137 } 3138 3139 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3140 if (Entry) 3141 *Entry = GV; 3142 3143 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3144 QualType()); 3145 return ConstantAddress(GV, Alignment); 3146 } 3147 3148 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3149 /// array for the given ObjCEncodeExpr node. 3150 ConstantAddress 3151 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3152 std::string Str; 3153 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3154 3155 return GetAddrOfConstantCString(Str); 3156 } 3157 3158 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3159 /// the literal and a terminating '\0' character. 3160 /// The result has pointer to array type. 3161 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3162 const std::string &Str, const char *GlobalName) { 3163 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3164 CharUnits Alignment = 3165 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3166 3167 llvm::Constant *C = 3168 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3169 3170 // Don't share any string literals if strings aren't constant. 3171 llvm::GlobalVariable **Entry = nullptr; 3172 if (!LangOpts.WritableStrings) { 3173 Entry = &ConstantStringMap[C]; 3174 if (auto GV = *Entry) { 3175 if (Alignment.getQuantity() > GV->getAlignment()) 3176 GV->setAlignment(Alignment.getQuantity()); 3177 return ConstantAddress(GV, Alignment); 3178 } 3179 } 3180 3181 // Get the default prefix if a name wasn't specified. 3182 if (!GlobalName) 3183 GlobalName = ".str"; 3184 // Create a global variable for this. 3185 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3186 GlobalName, Alignment); 3187 if (Entry) 3188 *Entry = GV; 3189 return ConstantAddress(GV, Alignment); 3190 } 3191 3192 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3193 const MaterializeTemporaryExpr *E, const Expr *Init) { 3194 assert((E->getStorageDuration() == SD_Static || 3195 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3196 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3197 3198 // If we're not materializing a subobject of the temporary, keep the 3199 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3200 QualType MaterializedType = Init->getType(); 3201 if (Init == E->GetTemporaryExpr()) 3202 MaterializedType = E->getType(); 3203 3204 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3205 3206 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3207 return ConstantAddress(Slot, Align); 3208 3209 // FIXME: If an externally-visible declaration extends multiple temporaries, 3210 // we need to give each temporary the same name in every translation unit (and 3211 // we also need to make the temporaries externally-visible). 3212 SmallString<256> Name; 3213 llvm::raw_svector_ostream Out(Name); 3214 getCXXABI().getMangleContext().mangleReferenceTemporary( 3215 VD, E->getManglingNumber(), Out); 3216 3217 APValue *Value = nullptr; 3218 if (E->getStorageDuration() == SD_Static) { 3219 // We might have a cached constant initializer for this temporary. Note 3220 // that this might have a different value from the value computed by 3221 // evaluating the initializer if the surrounding constant expression 3222 // modifies the temporary. 3223 Value = getContext().getMaterializedTemporaryValue(E, false); 3224 if (Value && Value->isUninit()) 3225 Value = nullptr; 3226 } 3227 3228 // Try evaluating it now, it might have a constant initializer. 3229 Expr::EvalResult EvalResult; 3230 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3231 !EvalResult.hasSideEffects()) 3232 Value = &EvalResult.Val; 3233 3234 llvm::Constant *InitialValue = nullptr; 3235 bool Constant = false; 3236 llvm::Type *Type; 3237 if (Value) { 3238 // The temporary has a constant initializer, use it. 3239 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3240 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3241 Type = InitialValue->getType(); 3242 } else { 3243 // No initializer, the initialization will be provided when we 3244 // initialize the declaration which performed lifetime extension. 3245 Type = getTypes().ConvertTypeForMem(MaterializedType); 3246 } 3247 3248 // Create a global variable for this lifetime-extended temporary. 3249 llvm::GlobalValue::LinkageTypes Linkage = 3250 getLLVMLinkageVarDefinition(VD, Constant); 3251 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3252 const VarDecl *InitVD; 3253 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3254 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3255 // Temporaries defined inside a class get linkonce_odr linkage because the 3256 // class can be defined in multipe translation units. 3257 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3258 } else { 3259 // There is no need for this temporary to have external linkage if the 3260 // VarDecl has external linkage. 3261 Linkage = llvm::GlobalVariable::InternalLinkage; 3262 } 3263 } 3264 unsigned AddrSpace = GetGlobalVarAddressSpace( 3265 VD, getContext().getTargetAddressSpace(MaterializedType)); 3266 auto *GV = new llvm::GlobalVariable( 3267 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3268 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3269 AddrSpace); 3270 setGlobalVisibility(GV, VD); 3271 GV->setAlignment(Align.getQuantity()); 3272 if (supportsCOMDAT() && GV->isWeakForLinker()) 3273 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3274 if (VD->getTLSKind()) 3275 setTLSMode(GV, *VD); 3276 MaterializedGlobalTemporaryMap[E] = GV; 3277 return ConstantAddress(GV, Align); 3278 } 3279 3280 /// EmitObjCPropertyImplementations - Emit information for synthesized 3281 /// properties for an implementation. 3282 void CodeGenModule::EmitObjCPropertyImplementations(const 3283 ObjCImplementationDecl *D) { 3284 for (const auto *PID : D->property_impls()) { 3285 // Dynamic is just for type-checking. 3286 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3287 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3288 3289 // Determine which methods need to be implemented, some may have 3290 // been overridden. Note that ::isPropertyAccessor is not the method 3291 // we want, that just indicates if the decl came from a 3292 // property. What we want to know is if the method is defined in 3293 // this implementation. 3294 if (!D->getInstanceMethod(PD->getGetterName())) 3295 CodeGenFunction(*this).GenerateObjCGetter( 3296 const_cast<ObjCImplementationDecl *>(D), PID); 3297 if (!PD->isReadOnly() && 3298 !D->getInstanceMethod(PD->getSetterName())) 3299 CodeGenFunction(*this).GenerateObjCSetter( 3300 const_cast<ObjCImplementationDecl *>(D), PID); 3301 } 3302 } 3303 } 3304 3305 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3306 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3307 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3308 ivar; ivar = ivar->getNextIvar()) 3309 if (ivar->getType().isDestructedType()) 3310 return true; 3311 3312 return false; 3313 } 3314 3315 static bool AllTrivialInitializers(CodeGenModule &CGM, 3316 ObjCImplementationDecl *D) { 3317 CodeGenFunction CGF(CGM); 3318 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3319 E = D->init_end(); B != E; ++B) { 3320 CXXCtorInitializer *CtorInitExp = *B; 3321 Expr *Init = CtorInitExp->getInit(); 3322 if (!CGF.isTrivialInitializer(Init)) 3323 return false; 3324 } 3325 return true; 3326 } 3327 3328 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3329 /// for an implementation. 3330 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3331 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3332 if (needsDestructMethod(D)) { 3333 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3334 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3335 ObjCMethodDecl *DTORMethod = 3336 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3337 cxxSelector, getContext().VoidTy, nullptr, D, 3338 /*isInstance=*/true, /*isVariadic=*/false, 3339 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3340 /*isDefined=*/false, ObjCMethodDecl::Required); 3341 D->addInstanceMethod(DTORMethod); 3342 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3343 D->setHasDestructors(true); 3344 } 3345 3346 // If the implementation doesn't have any ivar initializers, we don't need 3347 // a .cxx_construct. 3348 if (D->getNumIvarInitializers() == 0 || 3349 AllTrivialInitializers(*this, D)) 3350 return; 3351 3352 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3353 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3354 // The constructor returns 'self'. 3355 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3356 D->getLocation(), 3357 D->getLocation(), 3358 cxxSelector, 3359 getContext().getObjCIdType(), 3360 nullptr, D, /*isInstance=*/true, 3361 /*isVariadic=*/false, 3362 /*isPropertyAccessor=*/true, 3363 /*isImplicitlyDeclared=*/true, 3364 /*isDefined=*/false, 3365 ObjCMethodDecl::Required); 3366 D->addInstanceMethod(CTORMethod); 3367 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3368 D->setHasNonZeroConstructors(true); 3369 } 3370 3371 /// EmitNamespace - Emit all declarations in a namespace. 3372 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3373 for (auto *I : ND->decls()) { 3374 if (const auto *VD = dyn_cast<VarDecl>(I)) 3375 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3376 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3377 continue; 3378 EmitTopLevelDecl(I); 3379 } 3380 } 3381 3382 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3383 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3384 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3385 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3386 ErrorUnsupported(LSD, "linkage spec"); 3387 return; 3388 } 3389 3390 for (auto *I : LSD->decls()) { 3391 // Meta-data for ObjC class includes references to implemented methods. 3392 // Generate class's method definitions first. 3393 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3394 for (auto *M : OID->methods()) 3395 EmitTopLevelDecl(M); 3396 } 3397 EmitTopLevelDecl(I); 3398 } 3399 } 3400 3401 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3402 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3403 // Ignore dependent declarations. 3404 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3405 return; 3406 3407 switch (D->getKind()) { 3408 case Decl::CXXConversion: 3409 case Decl::CXXMethod: 3410 case Decl::Function: 3411 // Skip function templates 3412 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3413 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3414 return; 3415 3416 EmitGlobal(cast<FunctionDecl>(D)); 3417 // Always provide some coverage mapping 3418 // even for the functions that aren't emitted. 3419 AddDeferredUnusedCoverageMapping(D); 3420 break; 3421 3422 case Decl::Var: 3423 // Skip variable templates 3424 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3425 return; 3426 case Decl::VarTemplateSpecialization: 3427 EmitGlobal(cast<VarDecl>(D)); 3428 break; 3429 3430 // Indirect fields from global anonymous structs and unions can be 3431 // ignored; only the actual variable requires IR gen support. 3432 case Decl::IndirectField: 3433 break; 3434 3435 // C++ Decls 3436 case Decl::Namespace: 3437 EmitNamespace(cast<NamespaceDecl>(D)); 3438 break; 3439 // No code generation needed. 3440 case Decl::UsingShadow: 3441 case Decl::ClassTemplate: 3442 case Decl::VarTemplate: 3443 case Decl::VarTemplatePartialSpecialization: 3444 case Decl::FunctionTemplate: 3445 case Decl::TypeAliasTemplate: 3446 case Decl::Block: 3447 case Decl::Empty: 3448 break; 3449 case Decl::Using: // using X; [C++] 3450 if (CGDebugInfo *DI = getModuleDebugInfo()) 3451 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3452 return; 3453 case Decl::NamespaceAlias: 3454 if (CGDebugInfo *DI = getModuleDebugInfo()) 3455 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3456 return; 3457 case Decl::UsingDirective: // using namespace X; [C++] 3458 if (CGDebugInfo *DI = getModuleDebugInfo()) 3459 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3460 return; 3461 case Decl::CXXConstructor: 3462 // Skip function templates 3463 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3464 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3465 return; 3466 3467 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3468 break; 3469 case Decl::CXXDestructor: 3470 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3471 return; 3472 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3473 break; 3474 3475 case Decl::StaticAssert: 3476 // Nothing to do. 3477 break; 3478 3479 // Objective-C Decls 3480 3481 // Forward declarations, no (immediate) code generation. 3482 case Decl::ObjCInterface: 3483 case Decl::ObjCCategory: 3484 break; 3485 3486 case Decl::ObjCProtocol: { 3487 auto *Proto = cast<ObjCProtocolDecl>(D); 3488 if (Proto->isThisDeclarationADefinition()) 3489 ObjCRuntime->GenerateProtocol(Proto); 3490 break; 3491 } 3492 3493 case Decl::ObjCCategoryImpl: 3494 // Categories have properties but don't support synthesize so we 3495 // can ignore them here. 3496 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3497 break; 3498 3499 case Decl::ObjCImplementation: { 3500 auto *OMD = cast<ObjCImplementationDecl>(D); 3501 EmitObjCPropertyImplementations(OMD); 3502 EmitObjCIvarInitializations(OMD); 3503 ObjCRuntime->GenerateClass(OMD); 3504 // Emit global variable debug information. 3505 if (CGDebugInfo *DI = getModuleDebugInfo()) 3506 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3507 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3508 OMD->getClassInterface()), OMD->getLocation()); 3509 break; 3510 } 3511 case Decl::ObjCMethod: { 3512 auto *OMD = cast<ObjCMethodDecl>(D); 3513 // If this is not a prototype, emit the body. 3514 if (OMD->getBody()) 3515 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3516 break; 3517 } 3518 case Decl::ObjCCompatibleAlias: 3519 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3520 break; 3521 3522 case Decl::LinkageSpec: 3523 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3524 break; 3525 3526 case Decl::FileScopeAsm: { 3527 // File-scope asm is ignored during device-side CUDA compilation. 3528 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3529 break; 3530 auto *AD = cast<FileScopeAsmDecl>(D); 3531 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3532 break; 3533 } 3534 3535 case Decl::Import: { 3536 auto *Import = cast<ImportDecl>(D); 3537 3538 // Ignore import declarations that come from imported modules. 3539 if (Import->getImportedOwningModule()) 3540 break; 3541 if (CGDebugInfo *DI = getModuleDebugInfo()) 3542 DI->EmitImportDecl(*Import); 3543 3544 ImportedModules.insert(Import->getImportedModule()); 3545 break; 3546 } 3547 3548 case Decl::OMPThreadPrivate: 3549 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3550 break; 3551 3552 case Decl::ClassTemplateSpecialization: { 3553 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3554 if (DebugInfo && 3555 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3556 Spec->hasDefinition()) 3557 DebugInfo->completeTemplateDefinition(*Spec); 3558 break; 3559 } 3560 3561 default: 3562 // Make sure we handled everything we should, every other kind is a 3563 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3564 // function. Need to recode Decl::Kind to do that easily. 3565 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3566 break; 3567 } 3568 } 3569 3570 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3571 // Do we need to generate coverage mapping? 3572 if (!CodeGenOpts.CoverageMapping) 3573 return; 3574 switch (D->getKind()) { 3575 case Decl::CXXConversion: 3576 case Decl::CXXMethod: 3577 case Decl::Function: 3578 case Decl::ObjCMethod: 3579 case Decl::CXXConstructor: 3580 case Decl::CXXDestructor: { 3581 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3582 return; 3583 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3584 if (I == DeferredEmptyCoverageMappingDecls.end()) 3585 DeferredEmptyCoverageMappingDecls[D] = true; 3586 break; 3587 } 3588 default: 3589 break; 3590 }; 3591 } 3592 3593 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3594 // Do we need to generate coverage mapping? 3595 if (!CodeGenOpts.CoverageMapping) 3596 return; 3597 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3598 if (Fn->isTemplateInstantiation()) 3599 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3600 } 3601 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3602 if (I == DeferredEmptyCoverageMappingDecls.end()) 3603 DeferredEmptyCoverageMappingDecls[D] = false; 3604 else 3605 I->second = false; 3606 } 3607 3608 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3609 std::vector<const Decl *> DeferredDecls; 3610 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3611 if (!I.second) 3612 continue; 3613 DeferredDecls.push_back(I.first); 3614 } 3615 // Sort the declarations by their location to make sure that the tests get a 3616 // predictable order for the coverage mapping for the unused declarations. 3617 if (CodeGenOpts.DumpCoverageMapping) 3618 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3619 [] (const Decl *LHS, const Decl *RHS) { 3620 return LHS->getLocStart() < RHS->getLocStart(); 3621 }); 3622 for (const auto *D : DeferredDecls) { 3623 switch (D->getKind()) { 3624 case Decl::CXXConversion: 3625 case Decl::CXXMethod: 3626 case Decl::Function: 3627 case Decl::ObjCMethod: { 3628 CodeGenPGO PGO(*this); 3629 GlobalDecl GD(cast<FunctionDecl>(D)); 3630 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3631 getFunctionLinkage(GD)); 3632 break; 3633 } 3634 case Decl::CXXConstructor: { 3635 CodeGenPGO PGO(*this); 3636 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3637 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3638 getFunctionLinkage(GD)); 3639 break; 3640 } 3641 case Decl::CXXDestructor: { 3642 CodeGenPGO PGO(*this); 3643 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3644 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3645 getFunctionLinkage(GD)); 3646 break; 3647 } 3648 default: 3649 break; 3650 }; 3651 } 3652 } 3653 3654 /// Turns the given pointer into a constant. 3655 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3656 const void *Ptr) { 3657 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3658 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3659 return llvm::ConstantInt::get(i64, PtrInt); 3660 } 3661 3662 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3663 llvm::NamedMDNode *&GlobalMetadata, 3664 GlobalDecl D, 3665 llvm::GlobalValue *Addr) { 3666 if (!GlobalMetadata) 3667 GlobalMetadata = 3668 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3669 3670 // TODO: should we report variant information for ctors/dtors? 3671 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3672 llvm::ConstantAsMetadata::get(GetPointerConstant( 3673 CGM.getLLVMContext(), D.getDecl()))}; 3674 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3675 } 3676 3677 /// For each function which is declared within an extern "C" region and marked 3678 /// as 'used', but has internal linkage, create an alias from the unmangled 3679 /// name to the mangled name if possible. People expect to be able to refer 3680 /// to such functions with an unmangled name from inline assembly within the 3681 /// same translation unit. 3682 void CodeGenModule::EmitStaticExternCAliases() { 3683 for (auto &I : StaticExternCValues) { 3684 IdentifierInfo *Name = I.first; 3685 llvm::GlobalValue *Val = I.second; 3686 if (Val && !getModule().getNamedValue(Name->getName())) 3687 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3688 } 3689 } 3690 3691 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3692 GlobalDecl &Result) const { 3693 auto Res = Manglings.find(MangledName); 3694 if (Res == Manglings.end()) 3695 return false; 3696 Result = Res->getValue(); 3697 return true; 3698 } 3699 3700 /// Emits metadata nodes associating all the global values in the 3701 /// current module with the Decls they came from. This is useful for 3702 /// projects using IR gen as a subroutine. 3703 /// 3704 /// Since there's currently no way to associate an MDNode directly 3705 /// with an llvm::GlobalValue, we create a global named metadata 3706 /// with the name 'clang.global.decl.ptrs'. 3707 void CodeGenModule::EmitDeclMetadata() { 3708 llvm::NamedMDNode *GlobalMetadata = nullptr; 3709 3710 // StaticLocalDeclMap 3711 for (auto &I : MangledDeclNames) { 3712 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3713 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3714 } 3715 } 3716 3717 /// Emits metadata nodes for all the local variables in the current 3718 /// function. 3719 void CodeGenFunction::EmitDeclMetadata() { 3720 if (LocalDeclMap.empty()) return; 3721 3722 llvm::LLVMContext &Context = getLLVMContext(); 3723 3724 // Find the unique metadata ID for this name. 3725 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3726 3727 llvm::NamedMDNode *GlobalMetadata = nullptr; 3728 3729 for (auto &I : LocalDeclMap) { 3730 const Decl *D = I.first; 3731 llvm::Value *Addr = I.second.getPointer(); 3732 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3733 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3734 Alloca->setMetadata( 3735 DeclPtrKind, llvm::MDNode::get( 3736 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3737 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3738 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3739 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3740 } 3741 } 3742 } 3743 3744 void CodeGenModule::EmitVersionIdentMetadata() { 3745 llvm::NamedMDNode *IdentMetadata = 3746 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3747 std::string Version = getClangFullVersion(); 3748 llvm::LLVMContext &Ctx = TheModule.getContext(); 3749 3750 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3751 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3752 } 3753 3754 void CodeGenModule::EmitTargetMetadata() { 3755 // Warning, new MangledDeclNames may be appended within this loop. 3756 // We rely on MapVector insertions adding new elements to the end 3757 // of the container. 3758 // FIXME: Move this loop into the one target that needs it, and only 3759 // loop over those declarations for which we couldn't emit the target 3760 // metadata when we emitted the declaration. 3761 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3762 auto Val = *(MangledDeclNames.begin() + I); 3763 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3764 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3765 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3766 } 3767 } 3768 3769 void CodeGenModule::EmitCoverageFile() { 3770 if (!getCodeGenOpts().CoverageFile.empty()) { 3771 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3772 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3773 llvm::LLVMContext &Ctx = TheModule.getContext(); 3774 llvm::MDString *CoverageFile = 3775 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3776 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3777 llvm::MDNode *CU = CUNode->getOperand(i); 3778 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3779 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3780 } 3781 } 3782 } 3783 } 3784 3785 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3786 // Sema has checked that all uuid strings are of the form 3787 // "12345678-1234-1234-1234-1234567890ab". 3788 assert(Uuid.size() == 36); 3789 for (unsigned i = 0; i < 36; ++i) { 3790 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3791 else assert(isHexDigit(Uuid[i])); 3792 } 3793 3794 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3795 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3796 3797 llvm::Constant *Field3[8]; 3798 for (unsigned Idx = 0; Idx < 8; ++Idx) 3799 Field3[Idx] = llvm::ConstantInt::get( 3800 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3801 3802 llvm::Constant *Fields[4] = { 3803 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3804 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3805 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3806 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3807 }; 3808 3809 return llvm::ConstantStruct::getAnon(Fields); 3810 } 3811 3812 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3813 bool ForEH) { 3814 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3815 // FIXME: should we even be calling this method if RTTI is disabled 3816 // and it's not for EH? 3817 if (!ForEH && !getLangOpts().RTTI) 3818 return llvm::Constant::getNullValue(Int8PtrTy); 3819 3820 if (ForEH && Ty->isObjCObjectPointerType() && 3821 LangOpts.ObjCRuntime.isGNUFamily()) 3822 return ObjCRuntime->GetEHType(Ty); 3823 3824 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3825 } 3826 3827 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3828 for (auto RefExpr : D->varlists()) { 3829 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3830 bool PerformInit = 3831 VD->getAnyInitializer() && 3832 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3833 /*ForRef=*/false); 3834 3835 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3836 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3837 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3838 CXXGlobalInits.push_back(InitFunction); 3839 } 3840 } 3841 3842 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3843 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3844 if (InternalId) 3845 return InternalId; 3846 3847 if (isExternallyVisible(T->getLinkage())) { 3848 std::string OutName; 3849 llvm::raw_string_ostream Out(OutName); 3850 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3851 3852 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3853 } else { 3854 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3855 llvm::ArrayRef<llvm::Metadata *>()); 3856 } 3857 3858 return InternalId; 3859 } 3860 3861 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3862 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3863 llvm::Metadata *BitsetOps[] = { 3864 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)), 3865 llvm::ConstantAsMetadata::get(VTable), 3866 llvm::ConstantAsMetadata::get( 3867 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3868 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3869 } 3870