xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c2cd2d40aa2e657c4f7bf0bac2594c9ea9611f43)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 #include "llvm/Support/TimeProfiler.h"
62 
63 using namespace clang;
64 using namespace CodeGen;
65 
66 static llvm::cl::opt<bool> LimitedCoverage(
67     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
68     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
69     llvm::cl::init(false));
70 
71 static const char AnnotationSection[] = "llvm.metadata";
72 
73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
74   switch (CGM.getTarget().getCXXABI().getKind()) {
75   case TargetCXXABI::GenericAArch64:
76   case TargetCXXABI::GenericARM:
77   case TargetCXXABI::iOS:
78   case TargetCXXABI::iOS64:
79   case TargetCXXABI::WatchOS:
80   case TargetCXXABI::GenericMIPS:
81   case TargetCXXABI::GenericItanium:
82   case TargetCXXABI::WebAssembly:
83     return CreateItaniumCXXABI(CGM);
84   case TargetCXXABI::Microsoft:
85     return CreateMicrosoftCXXABI(CGM);
86   }
87 
88   llvm_unreachable("invalid C++ ABI kind");
89 }
90 
91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
92                              const PreprocessorOptions &PPO,
93                              const CodeGenOptions &CGO, llvm::Module &M,
94                              DiagnosticsEngine &diags,
95                              CoverageSourceInfo *CoverageInfo)
96     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
97       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
98       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
99       VMContext(M.getContext()), Types(*this), VTables(*this),
100       SanitizerMD(new SanitizerMetadata(*this)) {
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
107   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109   HalfTy = llvm::Type::getHalfTy(LLVMContext);
110   FloatTy = llvm::Type::getFloatTy(LLVMContext);
111   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
112   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
113   PointerAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
115   SizeSizeInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
117   IntAlignInBytes =
118     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
119   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
120   IntPtrTy = llvm::IntegerType::get(LLVMContext,
121     C.getTargetInfo().getMaxPointerWidth());
122   Int8PtrTy = Int8Ty->getPointerTo(0);
123   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
124   AllocaInt8PtrTy = Int8Ty->getPointerTo(
125       M.getDataLayout().getAllocaAddrSpace());
126   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
127 
128   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
129 
130   if (LangOpts.ObjC)
131     createObjCRuntime();
132   if (LangOpts.OpenCL)
133     createOpenCLRuntime();
134   if (LangOpts.OpenMP)
135     createOpenMPRuntime();
136   if (LangOpts.CUDA)
137     createCUDARuntime();
138 
139   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
140   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
141       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
142     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
143                                getCXXABI().getMangleContext()));
144 
145   // If debug info or coverage generation is enabled, create the CGDebugInfo
146   // object.
147   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
148       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
149     DebugInfo.reset(new CGDebugInfo(*this));
150 
151   Block.GlobalUniqueCount = 0;
152 
153   if (C.getLangOpts().ObjC)
154     ObjCData.reset(new ObjCEntrypoints());
155 
156   if (CodeGenOpts.hasProfileClangUse()) {
157     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
158         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
159     if (auto E = ReaderOrErr.takeError()) {
160       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
161                                               "Could not read profile %0: %1");
162       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
163         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
164                                   << EI.message();
165       });
166     } else
167       PGOReader = std::move(ReaderOrErr.get());
168   }
169 
170   // If coverage mapping generation is enabled, create the
171   // CoverageMappingModuleGen object.
172   if (CodeGenOpts.CoverageMapping)
173     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
174 }
175 
176 CodeGenModule::~CodeGenModule() {}
177 
178 void CodeGenModule::createObjCRuntime() {
179   // This is just isGNUFamily(), but we want to force implementors of
180   // new ABIs to decide how best to do this.
181   switch (LangOpts.ObjCRuntime.getKind()) {
182   case ObjCRuntime::GNUstep:
183   case ObjCRuntime::GCC:
184   case ObjCRuntime::ObjFW:
185     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
186     return;
187 
188   case ObjCRuntime::FragileMacOSX:
189   case ObjCRuntime::MacOSX:
190   case ObjCRuntime::iOS:
191   case ObjCRuntime::WatchOS:
192     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
193     return;
194   }
195   llvm_unreachable("bad runtime kind");
196 }
197 
198 void CodeGenModule::createOpenCLRuntime() {
199   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
200 }
201 
202 void CodeGenModule::createOpenMPRuntime() {
203   // Select a specialized code generation class based on the target, if any.
204   // If it does not exist use the default implementation.
205   switch (getTriple().getArch()) {
206   case llvm::Triple::nvptx:
207   case llvm::Triple::nvptx64:
208     assert(getLangOpts().OpenMPIsDevice &&
209            "OpenMP NVPTX is only prepared to deal with device code.");
210     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
211     break;
212   default:
213     if (LangOpts.OpenMPSimd)
214       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
215     else
216       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
217     break;
218   }
219 }
220 
221 void CodeGenModule::createCUDARuntime() {
222   CUDARuntime.reset(CreateNVCUDARuntime(*this));
223 }
224 
225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
226   Replacements[Name] = C;
227 }
228 
229 void CodeGenModule::applyReplacements() {
230   for (auto &I : Replacements) {
231     StringRef MangledName = I.first();
232     llvm::Constant *Replacement = I.second;
233     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234     if (!Entry)
235       continue;
236     auto *OldF = cast<llvm::Function>(Entry);
237     auto *NewF = dyn_cast<llvm::Function>(Replacement);
238     if (!NewF) {
239       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
240         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
241       } else {
242         auto *CE = cast<llvm::ConstantExpr>(Replacement);
243         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
244                CE->getOpcode() == llvm::Instruction::GetElementPtr);
245         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
246       }
247     }
248 
249     // Replace old with new, but keep the old order.
250     OldF->replaceAllUsesWith(Replacement);
251     if (NewF) {
252       NewF->removeFromParent();
253       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
254                                                        NewF);
255     }
256     OldF->eraseFromParent();
257   }
258 }
259 
260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
261   GlobalValReplacements.push_back(std::make_pair(GV, C));
262 }
263 
264 void CodeGenModule::applyGlobalValReplacements() {
265   for (auto &I : GlobalValReplacements) {
266     llvm::GlobalValue *GV = I.first;
267     llvm::Constant *C = I.second;
268 
269     GV->replaceAllUsesWith(C);
270     GV->eraseFromParent();
271   }
272 }
273 
274 // This is only used in aliases that we created and we know they have a
275 // linear structure.
276 static const llvm::GlobalObject *getAliasedGlobal(
277     const llvm::GlobalIndirectSymbol &GIS) {
278   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
279   const llvm::Constant *C = &GIS;
280   for (;;) {
281     C = C->stripPointerCasts();
282     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283       return GO;
284     // stripPointerCasts will not walk over weak aliases.
285     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
286     if (!GIS2)
287       return nullptr;
288     if (!Visited.insert(GIS2).second)
289       return nullptr;
290     C = GIS2->getIndirectSymbol();
291   }
292 }
293 
294 void CodeGenModule::checkAliases() {
295   // Check if the constructed aliases are well formed. It is really unfortunate
296   // that we have to do this in CodeGen, but we only construct mangled names
297   // and aliases during codegen.
298   bool Error = false;
299   DiagnosticsEngine &Diags = getDiags();
300   for (const GlobalDecl &GD : Aliases) {
301     const auto *D = cast<ValueDecl>(GD.getDecl());
302     SourceLocation Location;
303     bool IsIFunc = D->hasAttr<IFuncAttr>();
304     if (const Attr *A = D->getDefiningAttr())
305       Location = A->getLocation();
306     else
307       llvm_unreachable("Not an alias or ifunc?");
308     StringRef MangledName = getMangledName(GD);
309     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
310     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
311     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
312     if (!GV) {
313       Error = true;
314       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
315     } else if (GV->isDeclaration()) {
316       Error = true;
317       Diags.Report(Location, diag::err_alias_to_undefined)
318           << IsIFunc << IsIFunc;
319     } else if (IsIFunc) {
320       // Check resolver function type.
321       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
322           GV->getType()->getPointerElementType());
323       assert(FTy);
324       if (!FTy->getReturnType()->isPointerTy())
325         Diags.Report(Location, diag::err_ifunc_resolver_return);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   registerGlobalDtorsWithAtExit();
402   EmitCXXThreadLocalInitFunc();
403   if (ObjCRuntime)
404     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
405       AddGlobalCtor(ObjCInitFunction);
406   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
407       CUDARuntime) {
408     if (llvm::Function *CudaCtorFunction =
409             CUDARuntime->makeModuleCtorFunction())
410       AddGlobalCtor(CudaCtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
414             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
415       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
416     }
417     if (llvm::Function *OpenMPRegistrationFunction =
418             OpenMPRuntime->emitRegistrationFunction()) {
419       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
420         OpenMPRegistrationFunction : nullptr;
421       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
422     }
423     OpenMPRuntime->clear();
424   }
425   if (PGOReader) {
426     getModule().setProfileSummary(
427         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
428         llvm::ProfileSummary::PSK_Instr);
429     if (PGOStats.hasDiagnostics())
430       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
431   }
432   EmitCtorList(GlobalCtors, "llvm.global_ctors");
433   EmitCtorList(GlobalDtors, "llvm.global_dtors");
434   EmitGlobalAnnotations();
435   EmitStaticExternCAliases();
436   EmitDeferredUnusedCoverageMappings();
437   if (CoverageMapping)
438     CoverageMapping->emit();
439   if (CodeGenOpts.SanitizeCfiCrossDso) {
440     CodeGenFunction(*this).EmitCfiCheckFail();
441     CodeGenFunction(*this).EmitCfiCheckStub();
442   }
443   emitAtAvailableLinkGuard();
444   emitLLVMUsed();
445   if (SanStats)
446     SanStats->finish();
447 
448   if (CodeGenOpts.Autolink &&
449       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
450     EmitModuleLinkOptions();
451   }
452 
453   // On ELF we pass the dependent library specifiers directly to the linker
454   // without manipulating them. This is in contrast to other platforms where
455   // they are mapped to a specific linker option by the compiler. This
456   // difference is a result of the greater variety of ELF linkers and the fact
457   // that ELF linkers tend to handle libraries in a more complicated fashion
458   // than on other platforms. This forces us to defer handling the dependent
459   // libs to the linker.
460   //
461   // CUDA/HIP device and host libraries are different. Currently there is no
462   // way to differentiate dependent libraries for host or device. Existing
463   // usage of #pragma comment(lib, *) is intended for host libraries on
464   // Windows. Therefore emit llvm.dependent-libraries only for host.
465   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
466     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
467     for (auto *MD : ELFDependentLibraries)
468       NMD->addOperand(MD);
469   }
470 
471   // Record mregparm value now so it is visible through rest of codegen.
472   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
473     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
474                               CodeGenOpts.NumRegisterParameters);
475 
476   if (CodeGenOpts.DwarfVersion) {
477     // We actually want the latest version when there are conflicts.
478     // We can change from Warning to Latest if such mode is supported.
479     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
480                               CodeGenOpts.DwarfVersion);
481   }
482   if (CodeGenOpts.EmitCodeView) {
483     // Indicate that we want CodeView in the metadata.
484     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
485   }
486   if (CodeGenOpts.CodeViewGHash) {
487     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
488   }
489   if (CodeGenOpts.ControlFlowGuard) {
490     // We want function ID tables for Control Flow Guard.
491     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
492   }
493   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
494     // We don't support LTO with 2 with different StrictVTablePointers
495     // FIXME: we could support it by stripping all the information introduced
496     // by StrictVTablePointers.
497 
498     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
499 
500     llvm::Metadata *Ops[2] = {
501               llvm::MDString::get(VMContext, "StrictVTablePointers"),
502               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
503                   llvm::Type::getInt32Ty(VMContext), 1))};
504 
505     getModule().addModuleFlag(llvm::Module::Require,
506                               "StrictVTablePointersRequirement",
507                               llvm::MDNode::get(VMContext, Ops));
508   }
509   if (DebugInfo)
510     // We support a single version in the linked module. The LLVM
511     // parser will drop debug info with a different version number
512     // (and warn about it, too).
513     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
514                               llvm::DEBUG_METADATA_VERSION);
515 
516   // We need to record the widths of enums and wchar_t, so that we can generate
517   // the correct build attributes in the ARM backend. wchar_size is also used by
518   // TargetLibraryInfo.
519   uint64_t WCharWidth =
520       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
521   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
522 
523   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
524   if (   Arch == llvm::Triple::arm
525       || Arch == llvm::Triple::armeb
526       || Arch == llvm::Triple::thumb
527       || Arch == llvm::Triple::thumbeb) {
528     // The minimum width of an enum in bytes
529     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
530     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
531   }
532 
533   if (CodeGenOpts.SanitizeCfiCrossDso) {
534     // Indicate that we want cross-DSO control flow integrity checks.
535     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
536   }
537 
538   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
539     getModule().addModuleFlag(llvm::Module::Override,
540                               "CFI Canonical Jump Tables",
541                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
542   }
543 
544   if (CodeGenOpts.CFProtectionReturn &&
545       Target.checkCFProtectionReturnSupported(getDiags())) {
546     // Indicate that we want to instrument return control flow protection.
547     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
548                               1);
549   }
550 
551   if (CodeGenOpts.CFProtectionBranch &&
552       Target.checkCFProtectionBranchSupported(getDiags())) {
553     // Indicate that we want to instrument branch control flow protection.
554     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
555                               1);
556   }
557 
558   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
559     // Indicate whether __nvvm_reflect should be configured to flush denormal
560     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
561     // property.)
562     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
563                               CodeGenOpts.FlushDenorm ? 1 : 0);
564   }
565 
566   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
567   if (LangOpts.OpenCL) {
568     EmitOpenCLMetadata();
569     // Emit SPIR version.
570     if (getTriple().isSPIR()) {
571       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
572       // opencl.spir.version named metadata.
573       // C++ is backwards compatible with OpenCL v2.0.
574       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
575       llvm::Metadata *SPIRVerElts[] = {
576           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
577               Int32Ty, Version / 100)),
578           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
580       llvm::NamedMDNode *SPIRVerMD =
581           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
582       llvm::LLVMContext &Ctx = TheModule.getContext();
583       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
584     }
585   }
586 
587   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
588     assert(PLevel < 3 && "Invalid PIC Level");
589     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
590     if (Context.getLangOpts().PIE)
591       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
592   }
593 
594   if (getCodeGenOpts().CodeModel.size() > 0) {
595     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
596                   .Case("tiny", llvm::CodeModel::Tiny)
597                   .Case("small", llvm::CodeModel::Small)
598                   .Case("kernel", llvm::CodeModel::Kernel)
599                   .Case("medium", llvm::CodeModel::Medium)
600                   .Case("large", llvm::CodeModel::Large)
601                   .Default(~0u);
602     if (CM != ~0u) {
603       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
604       getModule().setCodeModel(codeModel);
605     }
606   }
607 
608   if (CodeGenOpts.NoPLT)
609     getModule().setRtLibUseGOT();
610 
611   SimplifyPersonality();
612 
613   if (getCodeGenOpts().EmitDeclMetadata)
614     EmitDeclMetadata();
615 
616   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
617     EmitCoverageFile();
618 
619   if (DebugInfo)
620     DebugInfo->finalize();
621 
622   if (getCodeGenOpts().EmitVersionIdentMetadata)
623     EmitVersionIdentMetadata();
624 
625   if (!getCodeGenOpts().RecordCommandLine.empty())
626     EmitCommandLineMetadata();
627 
628   EmitTargetMetadata();
629 }
630 
631 void CodeGenModule::EmitOpenCLMetadata() {
632   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
633   // opencl.ocl.version named metadata node.
634   // C++ is backwards compatible with OpenCL v2.0.
635   // FIXME: We might need to add CXX version at some point too?
636   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
637   llvm::Metadata *OCLVerElts[] = {
638       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
639           Int32Ty, Version / 100)),
640       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
641           Int32Ty, (Version % 100) / 10))};
642   llvm::NamedMDNode *OCLVerMD =
643       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
644   llvm::LLVMContext &Ctx = TheModule.getContext();
645   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
646 }
647 
648 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
649   // Make sure that this type is translated.
650   Types.UpdateCompletedType(TD);
651 }
652 
653 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
654   // Make sure that this type is translated.
655   Types.RefreshTypeCacheForClass(RD);
656 }
657 
658 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
659   if (!TBAA)
660     return nullptr;
661   return TBAA->getTypeInfo(QTy);
662 }
663 
664 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
665   if (!TBAA)
666     return TBAAAccessInfo();
667   return TBAA->getAccessInfo(AccessType);
668 }
669 
670 TBAAAccessInfo
671 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
672   if (!TBAA)
673     return TBAAAccessInfo();
674   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
675 }
676 
677 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
678   if (!TBAA)
679     return nullptr;
680   return TBAA->getTBAAStructInfo(QTy);
681 }
682 
683 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
684   if (!TBAA)
685     return nullptr;
686   return TBAA->getBaseTypeInfo(QTy);
687 }
688 
689 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
690   if (!TBAA)
691     return nullptr;
692   return TBAA->getAccessTagInfo(Info);
693 }
694 
695 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
696                                                    TBAAAccessInfo TargetInfo) {
697   if (!TBAA)
698     return TBAAAccessInfo();
699   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
700 }
701 
702 TBAAAccessInfo
703 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
704                                                    TBAAAccessInfo InfoB) {
705   if (!TBAA)
706     return TBAAAccessInfo();
707   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
708 }
709 
710 TBAAAccessInfo
711 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
712                                               TBAAAccessInfo SrcInfo) {
713   if (!TBAA)
714     return TBAAAccessInfo();
715   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
716 }
717 
718 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
719                                                 TBAAAccessInfo TBAAInfo) {
720   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
721     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
722 }
723 
724 void CodeGenModule::DecorateInstructionWithInvariantGroup(
725     llvm::Instruction *I, const CXXRecordDecl *RD) {
726   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
727                  llvm::MDNode::get(getLLVMContext(), {}));
728 }
729 
730 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
731   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
732   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
733 }
734 
735 /// ErrorUnsupported - Print out an error that codegen doesn't support the
736 /// specified stmt yet.
737 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
738   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
739                                                "cannot compile this %0 yet");
740   std::string Msg = Type;
741   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
742       << Msg << S->getSourceRange();
743 }
744 
745 /// ErrorUnsupported - Print out an error that codegen doesn't support the
746 /// specified decl yet.
747 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
748   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
749                                                "cannot compile this %0 yet");
750   std::string Msg = Type;
751   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
752 }
753 
754 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
755   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
756 }
757 
758 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
759                                         const NamedDecl *D) const {
760   if (GV->hasDLLImportStorageClass())
761     return;
762   // Internal definitions always have default visibility.
763   if (GV->hasLocalLinkage()) {
764     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
765     return;
766   }
767   if (!D)
768     return;
769   // Set visibility for definitions, and for declarations if requested globally
770   // or set explicitly.
771   LinkageInfo LV = D->getLinkageAndVisibility();
772   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
773       !GV->isDeclarationForLinker())
774     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
775 }
776 
777 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
778                                  llvm::GlobalValue *GV) {
779   if (GV->hasLocalLinkage())
780     return true;
781 
782   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
783     return true;
784 
785   // DLLImport explicitly marks the GV as external.
786   if (GV->hasDLLImportStorageClass())
787     return false;
788 
789   const llvm::Triple &TT = CGM.getTriple();
790   if (TT.isWindowsGNUEnvironment()) {
791     // In MinGW, variables without DLLImport can still be automatically
792     // imported from a DLL by the linker; don't mark variables that
793     // potentially could come from another DLL as DSO local.
794     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
795         !GV->isThreadLocal())
796       return false;
797   }
798 
799   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
800   // remain unresolved in the link, they can be resolved to zero, which is
801   // outside the current DSO.
802   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
803     return false;
804 
805   // Every other GV is local on COFF.
806   // Make an exception for windows OS in the triple: Some firmware builds use
807   // *-win32-macho triples. This (accidentally?) produced windows relocations
808   // without GOT tables in older clang versions; Keep this behaviour.
809   // FIXME: even thread local variables?
810   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
811     return true;
812 
813   // Only handle COFF and ELF for now.
814   if (!TT.isOSBinFormatELF())
815     return false;
816 
817   // If this is not an executable, don't assume anything is local.
818   const auto &CGOpts = CGM.getCodeGenOpts();
819   llvm::Reloc::Model RM = CGOpts.RelocationModel;
820   const auto &LOpts = CGM.getLangOpts();
821   if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
822     return false;
823 
824   // A definition cannot be preempted from an executable.
825   if (!GV->isDeclarationForLinker())
826     return true;
827 
828   // Most PIC code sequences that assume that a symbol is local cannot produce a
829   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
830   // depended, it seems worth it to handle it here.
831   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
832     return false;
833 
834   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
835   llvm::Triple::ArchType Arch = TT.getArch();
836   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
837       Arch == llvm::Triple::ppc64le)
838     return false;
839 
840   // If we can use copy relocations we can assume it is local.
841   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
842     if (!Var->isThreadLocal() &&
843         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
844       return true;
845 
846   // If we can use a plt entry as the symbol address we can assume it
847   // is local.
848   // FIXME: This should work for PIE, but the gold linker doesn't support it.
849   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
850     return true;
851 
852   // Otherwise don't assue it is local.
853   return false;
854 }
855 
856 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
857   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
858 }
859 
860 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
861                                           GlobalDecl GD) const {
862   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
863   // C++ destructors have a few C++ ABI specific special cases.
864   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
865     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
866     return;
867   }
868   setDLLImportDLLExport(GV, D);
869 }
870 
871 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
872                                           const NamedDecl *D) const {
873   if (D && D->isExternallyVisible()) {
874     if (D->hasAttr<DLLImportAttr>())
875       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
876     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
877       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
878   }
879 }
880 
881 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
882                                     GlobalDecl GD) const {
883   setDLLImportDLLExport(GV, GD);
884   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
885 }
886 
887 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
888                                     const NamedDecl *D) const {
889   setDLLImportDLLExport(GV, D);
890   setGVPropertiesAux(GV, D);
891 }
892 
893 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
894                                        const NamedDecl *D) const {
895   setGlobalVisibility(GV, D);
896   setDSOLocal(GV);
897   GV->setPartition(CodeGenOpts.SymbolPartition);
898 }
899 
900 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
901   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
902       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
903       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
904       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
905       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
906 }
907 
908 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
909     CodeGenOptions::TLSModel M) {
910   switch (M) {
911   case CodeGenOptions::GeneralDynamicTLSModel:
912     return llvm::GlobalVariable::GeneralDynamicTLSModel;
913   case CodeGenOptions::LocalDynamicTLSModel:
914     return llvm::GlobalVariable::LocalDynamicTLSModel;
915   case CodeGenOptions::InitialExecTLSModel:
916     return llvm::GlobalVariable::InitialExecTLSModel;
917   case CodeGenOptions::LocalExecTLSModel:
918     return llvm::GlobalVariable::LocalExecTLSModel;
919   }
920   llvm_unreachable("Invalid TLS model!");
921 }
922 
923 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
924   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
925 
926   llvm::GlobalValue::ThreadLocalMode TLM;
927   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
928 
929   // Override the TLS model if it is explicitly specified.
930   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
931     TLM = GetLLVMTLSModel(Attr->getModel());
932   }
933 
934   GV->setThreadLocalMode(TLM);
935 }
936 
937 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
938                                           StringRef Name) {
939   const TargetInfo &Target = CGM.getTarget();
940   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
941 }
942 
943 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
944                                                  const CPUSpecificAttr *Attr,
945                                                  unsigned CPUIndex,
946                                                  raw_ostream &Out) {
947   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
948   // supported.
949   if (Attr)
950     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
951   else if (CGM.getTarget().supportsIFunc())
952     Out << ".resolver";
953 }
954 
955 static void AppendTargetMangling(const CodeGenModule &CGM,
956                                  const TargetAttr *Attr, raw_ostream &Out) {
957   if (Attr->isDefaultVersion())
958     return;
959 
960   Out << '.';
961   const TargetInfo &Target = CGM.getTarget();
962   TargetAttr::ParsedTargetAttr Info =
963       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
964         // Multiversioning doesn't allow "no-${feature}", so we can
965         // only have "+" prefixes here.
966         assert(LHS.startswith("+") && RHS.startswith("+") &&
967                "Features should always have a prefix.");
968         return Target.multiVersionSortPriority(LHS.substr(1)) >
969                Target.multiVersionSortPriority(RHS.substr(1));
970       });
971 
972   bool IsFirst = true;
973 
974   if (!Info.Architecture.empty()) {
975     IsFirst = false;
976     Out << "arch_" << Info.Architecture;
977   }
978 
979   for (StringRef Feat : Info.Features) {
980     if (!IsFirst)
981       Out << '_';
982     IsFirst = false;
983     Out << Feat.substr(1);
984   }
985 }
986 
987 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
988                                       const NamedDecl *ND,
989                                       bool OmitMultiVersionMangling = false) {
990   SmallString<256> Buffer;
991   llvm::raw_svector_ostream Out(Buffer);
992   MangleContext &MC = CGM.getCXXABI().getMangleContext();
993   if (MC.shouldMangleDeclName(ND)) {
994     llvm::raw_svector_ostream Out(Buffer);
995     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
996       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
997     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
998       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
999     else
1000       MC.mangleName(ND, Out);
1001   } else {
1002     IdentifierInfo *II = ND->getIdentifier();
1003     assert(II && "Attempt to mangle unnamed decl.");
1004     const auto *FD = dyn_cast<FunctionDecl>(ND);
1005 
1006     if (FD &&
1007         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1008       llvm::raw_svector_ostream Out(Buffer);
1009       Out << "__regcall3__" << II->getName();
1010     } else {
1011       Out << II->getName();
1012     }
1013   }
1014 
1015   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1016     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1017       switch (FD->getMultiVersionKind()) {
1018       case MultiVersionKind::CPUDispatch:
1019       case MultiVersionKind::CPUSpecific:
1020         AppendCPUSpecificCPUDispatchMangling(CGM,
1021                                              FD->getAttr<CPUSpecificAttr>(),
1022                                              GD.getMultiVersionIndex(), Out);
1023         break;
1024       case MultiVersionKind::Target:
1025         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1026         break;
1027       case MultiVersionKind::None:
1028         llvm_unreachable("None multiversion type isn't valid here");
1029       }
1030     }
1031 
1032   return Out.str();
1033 }
1034 
1035 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1036                                             const FunctionDecl *FD) {
1037   if (!FD->isMultiVersion())
1038     return;
1039 
1040   // Get the name of what this would be without the 'target' attribute.  This
1041   // allows us to lookup the version that was emitted when this wasn't a
1042   // multiversion function.
1043   std::string NonTargetName =
1044       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1045   GlobalDecl OtherGD;
1046   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1047     assert(OtherGD.getCanonicalDecl()
1048                .getDecl()
1049                ->getAsFunction()
1050                ->isMultiVersion() &&
1051            "Other GD should now be a multiversioned function");
1052     // OtherFD is the version of this function that was mangled BEFORE
1053     // becoming a MultiVersion function.  It potentially needs to be updated.
1054     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1055                                       .getDecl()
1056                                       ->getAsFunction()
1057                                       ->getMostRecentDecl();
1058     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1059     // This is so that if the initial version was already the 'default'
1060     // version, we don't try to update it.
1061     if (OtherName != NonTargetName) {
1062       // Remove instead of erase, since others may have stored the StringRef
1063       // to this.
1064       const auto ExistingRecord = Manglings.find(NonTargetName);
1065       if (ExistingRecord != std::end(Manglings))
1066         Manglings.remove(&(*ExistingRecord));
1067       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1068       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1069       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1070         Entry->setName(OtherName);
1071     }
1072   }
1073 }
1074 
1075 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1076   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1077 
1078   // Some ABIs don't have constructor variants.  Make sure that base and
1079   // complete constructors get mangled the same.
1080   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1081     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1082       CXXCtorType OrigCtorType = GD.getCtorType();
1083       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1084       if (OrigCtorType == Ctor_Base)
1085         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1086     }
1087   }
1088 
1089   auto FoundName = MangledDeclNames.find(CanonicalGD);
1090   if (FoundName != MangledDeclNames.end())
1091     return FoundName->second;
1092 
1093   // Keep the first result in the case of a mangling collision.
1094   const auto *ND = cast<NamedDecl>(GD.getDecl());
1095   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1096 
1097   // Adjust kernel stub mangling as we may need to be able to differentiate
1098   // them from the kernel itself (e.g., for HIP).
1099   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1100     if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1101       MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1102 
1103   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1104   return MangledDeclNames[CanonicalGD] = Result.first->first();
1105 }
1106 
1107 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1108                                              const BlockDecl *BD) {
1109   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1110   const Decl *D = GD.getDecl();
1111 
1112   SmallString<256> Buffer;
1113   llvm::raw_svector_ostream Out(Buffer);
1114   if (!D)
1115     MangleCtx.mangleGlobalBlock(BD,
1116       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1117   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1118     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1119   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1120     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1121   else
1122     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1123 
1124   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1125   return Result.first->first();
1126 }
1127 
1128 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1129   return getModule().getNamedValue(Name);
1130 }
1131 
1132 /// AddGlobalCtor - Add a function to the list that will be called before
1133 /// main() runs.
1134 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1135                                   llvm::Constant *AssociatedData) {
1136   // FIXME: Type coercion of void()* types.
1137   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1138 }
1139 
1140 /// AddGlobalDtor - Add a function to the list that will be called
1141 /// when the module is unloaded.
1142 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1143   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1144     DtorsUsingAtExit[Priority].push_back(Dtor);
1145     return;
1146   }
1147 
1148   // FIXME: Type coercion of void()* types.
1149   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1150 }
1151 
1152 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1153   if (Fns.empty()) return;
1154 
1155   // Ctor function type is void()*.
1156   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1157   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1158       TheModule.getDataLayout().getProgramAddressSpace());
1159 
1160   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1161   llvm::StructType *CtorStructTy = llvm::StructType::get(
1162       Int32Ty, CtorPFTy, VoidPtrTy);
1163 
1164   // Construct the constructor and destructor arrays.
1165   ConstantInitBuilder builder(*this);
1166   auto ctors = builder.beginArray(CtorStructTy);
1167   for (const auto &I : Fns) {
1168     auto ctor = ctors.beginStruct(CtorStructTy);
1169     ctor.addInt(Int32Ty, I.Priority);
1170     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1171     if (I.AssociatedData)
1172       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1173     else
1174       ctor.addNullPointer(VoidPtrTy);
1175     ctor.finishAndAddTo(ctors);
1176   }
1177 
1178   auto list =
1179     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1180                                 /*constant*/ false,
1181                                 llvm::GlobalValue::AppendingLinkage);
1182 
1183   // The LTO linker doesn't seem to like it when we set an alignment
1184   // on appending variables.  Take it off as a workaround.
1185   list->setAlignment(llvm::None);
1186 
1187   Fns.clear();
1188 }
1189 
1190 llvm::GlobalValue::LinkageTypes
1191 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1192   const auto *D = cast<FunctionDecl>(GD.getDecl());
1193 
1194   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1195 
1196   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1197     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1198 
1199   if (isa<CXXConstructorDecl>(D) &&
1200       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1201       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1202     // Our approach to inheriting constructors is fundamentally different from
1203     // that used by the MS ABI, so keep our inheriting constructor thunks
1204     // internal rather than trying to pick an unambiguous mangling for them.
1205     return llvm::GlobalValue::InternalLinkage;
1206   }
1207 
1208   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1209 }
1210 
1211 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1212   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1213   if (!MDS) return nullptr;
1214 
1215   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1216 }
1217 
1218 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1219                                               const CGFunctionInfo &Info,
1220                                               llvm::Function *F) {
1221   unsigned CallingConv;
1222   llvm::AttributeList PAL;
1223   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1224   F->setAttributes(PAL);
1225   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1226 }
1227 
1228 static void removeImageAccessQualifier(std::string& TyName) {
1229   std::string ReadOnlyQual("__read_only");
1230   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1231   if (ReadOnlyPos != std::string::npos)
1232     // "+ 1" for the space after access qualifier.
1233     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1234   else {
1235     std::string WriteOnlyQual("__write_only");
1236     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1237     if (WriteOnlyPos != std::string::npos)
1238       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1239     else {
1240       std::string ReadWriteQual("__read_write");
1241       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1242       if (ReadWritePos != std::string::npos)
1243         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1244     }
1245   }
1246 }
1247 
1248 // Returns the address space id that should be produced to the
1249 // kernel_arg_addr_space metadata. This is always fixed to the ids
1250 // as specified in the SPIR 2.0 specification in order to differentiate
1251 // for example in clGetKernelArgInfo() implementation between the address
1252 // spaces with targets without unique mapping to the OpenCL address spaces
1253 // (basically all single AS CPUs).
1254 static unsigned ArgInfoAddressSpace(LangAS AS) {
1255   switch (AS) {
1256   case LangAS::opencl_global:   return 1;
1257   case LangAS::opencl_constant: return 2;
1258   case LangAS::opencl_local:    return 3;
1259   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1260   default:
1261     return 0; // Assume private.
1262   }
1263 }
1264 
1265 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1266                                          const FunctionDecl *FD,
1267                                          CodeGenFunction *CGF) {
1268   assert(((FD && CGF) || (!FD && !CGF)) &&
1269          "Incorrect use - FD and CGF should either be both null or not!");
1270   // Create MDNodes that represent the kernel arg metadata.
1271   // Each MDNode is a list in the form of "key", N number of values which is
1272   // the same number of values as their are kernel arguments.
1273 
1274   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1275 
1276   // MDNode for the kernel argument address space qualifiers.
1277   SmallVector<llvm::Metadata *, 8> addressQuals;
1278 
1279   // MDNode for the kernel argument access qualifiers (images only).
1280   SmallVector<llvm::Metadata *, 8> accessQuals;
1281 
1282   // MDNode for the kernel argument type names.
1283   SmallVector<llvm::Metadata *, 8> argTypeNames;
1284 
1285   // MDNode for the kernel argument base type names.
1286   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1287 
1288   // MDNode for the kernel argument type qualifiers.
1289   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1290 
1291   // MDNode for the kernel argument names.
1292   SmallVector<llvm::Metadata *, 8> argNames;
1293 
1294   if (FD && CGF)
1295     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1296       const ParmVarDecl *parm = FD->getParamDecl(i);
1297       QualType ty = parm->getType();
1298       std::string typeQuals;
1299 
1300       if (ty->isPointerType()) {
1301         QualType pointeeTy = ty->getPointeeType();
1302 
1303         // Get address qualifier.
1304         addressQuals.push_back(
1305             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1306                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1307 
1308         // Get argument type name.
1309         std::string typeName =
1310             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1311 
1312         // Turn "unsigned type" to "utype"
1313         std::string::size_type pos = typeName.find("unsigned");
1314         if (pointeeTy.isCanonical() && pos != std::string::npos)
1315           typeName.erase(pos + 1, 8);
1316 
1317         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1318 
1319         std::string baseTypeName =
1320             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1321                 Policy) +
1322             "*";
1323 
1324         // Turn "unsigned type" to "utype"
1325         pos = baseTypeName.find("unsigned");
1326         if (pos != std::string::npos)
1327           baseTypeName.erase(pos + 1, 8);
1328 
1329         argBaseTypeNames.push_back(
1330             llvm::MDString::get(VMContext, baseTypeName));
1331 
1332         // Get argument type qualifiers:
1333         if (ty.isRestrictQualified())
1334           typeQuals = "restrict";
1335         if (pointeeTy.isConstQualified() ||
1336             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1337           typeQuals += typeQuals.empty() ? "const" : " const";
1338         if (pointeeTy.isVolatileQualified())
1339           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1340       } else {
1341         uint32_t AddrSpc = 0;
1342         bool isPipe = ty->isPipeType();
1343         if (ty->isImageType() || isPipe)
1344           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1345 
1346         addressQuals.push_back(
1347             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1348 
1349         // Get argument type name.
1350         std::string typeName;
1351         if (isPipe)
1352           typeName = ty.getCanonicalType()
1353                          ->getAs<PipeType>()
1354                          ->getElementType()
1355                          .getAsString(Policy);
1356         else
1357           typeName = ty.getUnqualifiedType().getAsString(Policy);
1358 
1359         // Turn "unsigned type" to "utype"
1360         std::string::size_type pos = typeName.find("unsigned");
1361         if (ty.isCanonical() && pos != std::string::npos)
1362           typeName.erase(pos + 1, 8);
1363 
1364         std::string baseTypeName;
1365         if (isPipe)
1366           baseTypeName = ty.getCanonicalType()
1367                              ->getAs<PipeType>()
1368                              ->getElementType()
1369                              .getCanonicalType()
1370                              .getAsString(Policy);
1371         else
1372           baseTypeName =
1373               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1374 
1375         // Remove access qualifiers on images
1376         // (as they are inseparable from type in clang implementation,
1377         // but OpenCL spec provides a special query to get access qualifier
1378         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1379         if (ty->isImageType()) {
1380           removeImageAccessQualifier(typeName);
1381           removeImageAccessQualifier(baseTypeName);
1382         }
1383 
1384         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1385 
1386         // Turn "unsigned type" to "utype"
1387         pos = baseTypeName.find("unsigned");
1388         if (pos != std::string::npos)
1389           baseTypeName.erase(pos + 1, 8);
1390 
1391         argBaseTypeNames.push_back(
1392             llvm::MDString::get(VMContext, baseTypeName));
1393 
1394         if (isPipe)
1395           typeQuals = "pipe";
1396       }
1397 
1398       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1399 
1400       // Get image and pipe access qualifier:
1401       if (ty->isImageType() || ty->isPipeType()) {
1402         const Decl *PDecl = parm;
1403         if (auto *TD = dyn_cast<TypedefType>(ty))
1404           PDecl = TD->getDecl();
1405         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1406         if (A && A->isWriteOnly())
1407           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1408         else if (A && A->isReadWrite())
1409           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1410         else
1411           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1412       } else
1413         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1414 
1415       // Get argument name.
1416       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1417     }
1418 
1419   Fn->setMetadata("kernel_arg_addr_space",
1420                   llvm::MDNode::get(VMContext, addressQuals));
1421   Fn->setMetadata("kernel_arg_access_qual",
1422                   llvm::MDNode::get(VMContext, accessQuals));
1423   Fn->setMetadata("kernel_arg_type",
1424                   llvm::MDNode::get(VMContext, argTypeNames));
1425   Fn->setMetadata("kernel_arg_base_type",
1426                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1427   Fn->setMetadata("kernel_arg_type_qual",
1428                   llvm::MDNode::get(VMContext, argTypeQuals));
1429   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1430     Fn->setMetadata("kernel_arg_name",
1431                     llvm::MDNode::get(VMContext, argNames));
1432 }
1433 
1434 /// Determines whether the language options require us to model
1435 /// unwind exceptions.  We treat -fexceptions as mandating this
1436 /// except under the fragile ObjC ABI with only ObjC exceptions
1437 /// enabled.  This means, for example, that C with -fexceptions
1438 /// enables this.
1439 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1440   // If exceptions are completely disabled, obviously this is false.
1441   if (!LangOpts.Exceptions) return false;
1442 
1443   // If C++ exceptions are enabled, this is true.
1444   if (LangOpts.CXXExceptions) return true;
1445 
1446   // If ObjC exceptions are enabled, this depends on the ABI.
1447   if (LangOpts.ObjCExceptions) {
1448     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1449   }
1450 
1451   return true;
1452 }
1453 
1454 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1455                                                       const CXXMethodDecl *MD) {
1456   // Check that the type metadata can ever actually be used by a call.
1457   if (!CGM.getCodeGenOpts().LTOUnit ||
1458       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1459     return false;
1460 
1461   // Only functions whose address can be taken with a member function pointer
1462   // need this sort of type metadata.
1463   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1464          !isa<CXXDestructorDecl>(MD);
1465 }
1466 
1467 std::vector<const CXXRecordDecl *>
1468 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1469   llvm::SetVector<const CXXRecordDecl *> MostBases;
1470 
1471   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1472   CollectMostBases = [&](const CXXRecordDecl *RD) {
1473     if (RD->getNumBases() == 0)
1474       MostBases.insert(RD);
1475     for (const CXXBaseSpecifier &B : RD->bases())
1476       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1477   };
1478   CollectMostBases(RD);
1479   return MostBases.takeVector();
1480 }
1481 
1482 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1483                                                            llvm::Function *F) {
1484   llvm::AttrBuilder B;
1485 
1486   if (CodeGenOpts.UnwindTables)
1487     B.addAttribute(llvm::Attribute::UWTable);
1488 
1489   if (!hasUnwindExceptions(LangOpts))
1490     B.addAttribute(llvm::Attribute::NoUnwind);
1491 
1492   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1493     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1494       B.addAttribute(llvm::Attribute::StackProtect);
1495     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1496       B.addAttribute(llvm::Attribute::StackProtectStrong);
1497     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1498       B.addAttribute(llvm::Attribute::StackProtectReq);
1499   }
1500 
1501   if (!D) {
1502     // If we don't have a declaration to control inlining, the function isn't
1503     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1504     // disabled, mark the function as noinline.
1505     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1506         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1507       B.addAttribute(llvm::Attribute::NoInline);
1508 
1509     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1510     return;
1511   }
1512 
1513   // Track whether we need to add the optnone LLVM attribute,
1514   // starting with the default for this optimization level.
1515   bool ShouldAddOptNone =
1516       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1517   // We can't add optnone in the following cases, it won't pass the verifier.
1518   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1519   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1520   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1521 
1522   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1523     B.addAttribute(llvm::Attribute::OptimizeNone);
1524 
1525     // OptimizeNone implies noinline; we should not be inlining such functions.
1526     B.addAttribute(llvm::Attribute::NoInline);
1527     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1528            "OptimizeNone and AlwaysInline on same function!");
1529 
1530     // We still need to handle naked functions even though optnone subsumes
1531     // much of their semantics.
1532     if (D->hasAttr<NakedAttr>())
1533       B.addAttribute(llvm::Attribute::Naked);
1534 
1535     // OptimizeNone wins over OptimizeForSize and MinSize.
1536     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1537     F->removeFnAttr(llvm::Attribute::MinSize);
1538   } else if (D->hasAttr<NakedAttr>()) {
1539     // Naked implies noinline: we should not be inlining such functions.
1540     B.addAttribute(llvm::Attribute::Naked);
1541     B.addAttribute(llvm::Attribute::NoInline);
1542   } else if (D->hasAttr<NoDuplicateAttr>()) {
1543     B.addAttribute(llvm::Attribute::NoDuplicate);
1544   } else if (D->hasAttr<NoInlineAttr>()) {
1545     B.addAttribute(llvm::Attribute::NoInline);
1546   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1547              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1548     // (noinline wins over always_inline, and we can't specify both in IR)
1549     B.addAttribute(llvm::Attribute::AlwaysInline);
1550   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1551     // If we're not inlining, then force everything that isn't always_inline to
1552     // carry an explicit noinline attribute.
1553     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1554       B.addAttribute(llvm::Attribute::NoInline);
1555   } else {
1556     // Otherwise, propagate the inline hint attribute and potentially use its
1557     // absence to mark things as noinline.
1558     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1559       // Search function and template pattern redeclarations for inline.
1560       auto CheckForInline = [](const FunctionDecl *FD) {
1561         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1562           return Redecl->isInlineSpecified();
1563         };
1564         if (any_of(FD->redecls(), CheckRedeclForInline))
1565           return true;
1566         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1567         if (!Pattern)
1568           return false;
1569         return any_of(Pattern->redecls(), CheckRedeclForInline);
1570       };
1571       if (CheckForInline(FD)) {
1572         B.addAttribute(llvm::Attribute::InlineHint);
1573       } else if (CodeGenOpts.getInlining() ==
1574                      CodeGenOptions::OnlyHintInlining &&
1575                  !FD->isInlined() &&
1576                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1577         B.addAttribute(llvm::Attribute::NoInline);
1578       }
1579     }
1580   }
1581 
1582   // Add other optimization related attributes if we are optimizing this
1583   // function.
1584   if (!D->hasAttr<OptimizeNoneAttr>()) {
1585     if (D->hasAttr<ColdAttr>()) {
1586       if (!ShouldAddOptNone)
1587         B.addAttribute(llvm::Attribute::OptimizeForSize);
1588       B.addAttribute(llvm::Attribute::Cold);
1589     }
1590 
1591     if (D->hasAttr<MinSizeAttr>())
1592       B.addAttribute(llvm::Attribute::MinSize);
1593   }
1594 
1595   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1596 
1597   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1598   if (alignment)
1599     F->setAlignment(llvm::Align(alignment));
1600 
1601   if (!D->hasAttr<AlignedAttr>())
1602     if (LangOpts.FunctionAlignment)
1603       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1604 
1605   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1606   // reserve a bit for differentiating between virtual and non-virtual member
1607   // functions. If the current target's C++ ABI requires this and this is a
1608   // member function, set its alignment accordingly.
1609   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1610     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1611       F->setAlignment(llvm::Align(2));
1612   }
1613 
1614   // In the cross-dso CFI mode with canonical jump tables, we want !type
1615   // attributes on definitions only.
1616   if (CodeGenOpts.SanitizeCfiCrossDso &&
1617       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1618     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1619       // Skip available_externally functions. They won't be codegen'ed in the
1620       // current module anyway.
1621       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1622         CreateFunctionTypeMetadataForIcall(FD, F);
1623     }
1624   }
1625 
1626   // Emit type metadata on member functions for member function pointer checks.
1627   // These are only ever necessary on definitions; we're guaranteed that the
1628   // definition will be present in the LTO unit as a result of LTO visibility.
1629   auto *MD = dyn_cast<CXXMethodDecl>(D);
1630   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1631     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1632       llvm::Metadata *Id =
1633           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1634               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1635       F->addTypeMetadata(0, Id);
1636     }
1637   }
1638 }
1639 
1640 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1641   const Decl *D = GD.getDecl();
1642   if (dyn_cast_or_null<NamedDecl>(D))
1643     setGVProperties(GV, GD);
1644   else
1645     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1646 
1647   if (D && D->hasAttr<UsedAttr>())
1648     addUsedGlobal(GV);
1649 
1650   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1651     const auto *VD = cast<VarDecl>(D);
1652     if (VD->getType().isConstQualified() &&
1653         VD->getStorageDuration() == SD_Static)
1654       addUsedGlobal(GV);
1655   }
1656 }
1657 
1658 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1659                                                 llvm::AttrBuilder &Attrs) {
1660   // Add target-cpu and target-features attributes to functions. If
1661   // we have a decl for the function and it has a target attribute then
1662   // parse that and add it to the feature set.
1663   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1664   std::vector<std::string> Features;
1665   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1666   FD = FD ? FD->getMostRecentDecl() : FD;
1667   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1668   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1669   bool AddedAttr = false;
1670   if (TD || SD) {
1671     llvm::StringMap<bool> FeatureMap;
1672     getFunctionFeatureMap(FeatureMap, GD);
1673 
1674     // Produce the canonical string for this set of features.
1675     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1676       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1677 
1678     // Now add the target-cpu and target-features to the function.
1679     // While we populated the feature map above, we still need to
1680     // get and parse the target attribute so we can get the cpu for
1681     // the function.
1682     if (TD) {
1683       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1684       if (ParsedAttr.Architecture != "" &&
1685           getTarget().isValidCPUName(ParsedAttr.Architecture))
1686         TargetCPU = ParsedAttr.Architecture;
1687     }
1688   } else {
1689     // Otherwise just add the existing target cpu and target features to the
1690     // function.
1691     Features = getTarget().getTargetOpts().Features;
1692   }
1693 
1694   if (TargetCPU != "") {
1695     Attrs.addAttribute("target-cpu", TargetCPU);
1696     AddedAttr = true;
1697   }
1698   if (!Features.empty()) {
1699     llvm::sort(Features);
1700     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1701     AddedAttr = true;
1702   }
1703 
1704   return AddedAttr;
1705 }
1706 
1707 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1708                                           llvm::GlobalObject *GO) {
1709   const Decl *D = GD.getDecl();
1710   SetCommonAttributes(GD, GO);
1711 
1712   if (D) {
1713     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1714       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1715         GV->addAttribute("bss-section", SA->getName());
1716       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1717         GV->addAttribute("data-section", SA->getName());
1718       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1719         GV->addAttribute("rodata-section", SA->getName());
1720     }
1721 
1722     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1723       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1724         if (!D->getAttr<SectionAttr>())
1725           F->addFnAttr("implicit-section-name", SA->getName());
1726 
1727       llvm::AttrBuilder Attrs;
1728       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1729         // We know that GetCPUAndFeaturesAttributes will always have the
1730         // newest set, since it has the newest possible FunctionDecl, so the
1731         // new ones should replace the old.
1732         F->removeFnAttr("target-cpu");
1733         F->removeFnAttr("target-features");
1734         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1735       }
1736     }
1737 
1738     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1739       GO->setSection(CSA->getName());
1740     else if (const auto *SA = D->getAttr<SectionAttr>())
1741       GO->setSection(SA->getName());
1742   }
1743 
1744   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1745 }
1746 
1747 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1748                                                   llvm::Function *F,
1749                                                   const CGFunctionInfo &FI) {
1750   const Decl *D = GD.getDecl();
1751   SetLLVMFunctionAttributes(GD, FI, F);
1752   SetLLVMFunctionAttributesForDefinition(D, F);
1753 
1754   F->setLinkage(llvm::Function::InternalLinkage);
1755 
1756   setNonAliasAttributes(GD, F);
1757 }
1758 
1759 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1760   // Set linkage and visibility in case we never see a definition.
1761   LinkageInfo LV = ND->getLinkageAndVisibility();
1762   // Don't set internal linkage on declarations.
1763   // "extern_weak" is overloaded in LLVM; we probably should have
1764   // separate linkage types for this.
1765   if (isExternallyVisible(LV.getLinkage()) &&
1766       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1767     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1768 }
1769 
1770 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1771                                                        llvm::Function *F) {
1772   // Only if we are checking indirect calls.
1773   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1774     return;
1775 
1776   // Non-static class methods are handled via vtable or member function pointer
1777   // checks elsewhere.
1778   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1779     return;
1780 
1781   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1782   F->addTypeMetadata(0, MD);
1783   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1784 
1785   // Emit a hash-based bit set entry for cross-DSO calls.
1786   if (CodeGenOpts.SanitizeCfiCrossDso)
1787     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1788       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1789 }
1790 
1791 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1792                                           bool IsIncompleteFunction,
1793                                           bool IsThunk) {
1794 
1795   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1796     // If this is an intrinsic function, set the function's attributes
1797     // to the intrinsic's attributes.
1798     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1799     return;
1800   }
1801 
1802   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1803 
1804   if (!IsIncompleteFunction)
1805     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1806 
1807   // Add the Returned attribute for "this", except for iOS 5 and earlier
1808   // where substantial code, including the libstdc++ dylib, was compiled with
1809   // GCC and does not actually return "this".
1810   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1811       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1812     assert(!F->arg_empty() &&
1813            F->arg_begin()->getType()
1814              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1815            "unexpected this return");
1816     F->addAttribute(1, llvm::Attribute::Returned);
1817   }
1818 
1819   // Only a few attributes are set on declarations; these may later be
1820   // overridden by a definition.
1821 
1822   setLinkageForGV(F, FD);
1823   setGVProperties(F, FD);
1824 
1825   // Setup target-specific attributes.
1826   if (!IsIncompleteFunction && F->isDeclaration())
1827     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1828 
1829   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1830     F->setSection(CSA->getName());
1831   else if (const auto *SA = FD->getAttr<SectionAttr>())
1832      F->setSection(SA->getName());
1833 
1834   if (FD->isReplaceableGlobalAllocationFunction()) {
1835     // A replaceable global allocation function does not act like a builtin by
1836     // default, only if it is invoked by a new-expression or delete-expression.
1837     F->addAttribute(llvm::AttributeList::FunctionIndex,
1838                     llvm::Attribute::NoBuiltin);
1839 
1840     // A sane operator new returns a non-aliasing pointer.
1841     // FIXME: Also add NonNull attribute to the return value
1842     // for the non-nothrow forms?
1843     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1844     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1845         (Kind == OO_New || Kind == OO_Array_New))
1846       F->addAttribute(llvm::AttributeList::ReturnIndex,
1847                       llvm::Attribute::NoAlias);
1848   }
1849 
1850   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1851     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1852   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1853     if (MD->isVirtual())
1854       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1855 
1856   // Don't emit entries for function declarations in the cross-DSO mode. This
1857   // is handled with better precision by the receiving DSO. But if jump tables
1858   // are non-canonical then we need type metadata in order to produce the local
1859   // jump table.
1860   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1861       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1862     CreateFunctionTypeMetadataForIcall(FD, F);
1863 
1864   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1865     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1866 
1867   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1868     // Annotate the callback behavior as metadata:
1869     //  - The callback callee (as argument number).
1870     //  - The callback payloads (as argument numbers).
1871     llvm::LLVMContext &Ctx = F->getContext();
1872     llvm::MDBuilder MDB(Ctx);
1873 
1874     // The payload indices are all but the first one in the encoding. The first
1875     // identifies the callback callee.
1876     int CalleeIdx = *CB->encoding_begin();
1877     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1878     F->addMetadata(llvm::LLVMContext::MD_callback,
1879                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1880                                                CalleeIdx, PayloadIndices,
1881                                                /* VarArgsArePassed */ false)}));
1882   }
1883 }
1884 
1885 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1886   assert(!GV->isDeclaration() &&
1887          "Only globals with definition can force usage.");
1888   LLVMUsed.emplace_back(GV);
1889 }
1890 
1891 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1892   assert(!GV->isDeclaration() &&
1893          "Only globals with definition can force usage.");
1894   LLVMCompilerUsed.emplace_back(GV);
1895 }
1896 
1897 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1898                      std::vector<llvm::WeakTrackingVH> &List) {
1899   // Don't create llvm.used if there is no need.
1900   if (List.empty())
1901     return;
1902 
1903   // Convert List to what ConstantArray needs.
1904   SmallVector<llvm::Constant*, 8> UsedArray;
1905   UsedArray.resize(List.size());
1906   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1907     UsedArray[i] =
1908         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1909             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1910   }
1911 
1912   if (UsedArray.empty())
1913     return;
1914   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1915 
1916   auto *GV = new llvm::GlobalVariable(
1917       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1918       llvm::ConstantArray::get(ATy, UsedArray), Name);
1919 
1920   GV->setSection("llvm.metadata");
1921 }
1922 
1923 void CodeGenModule::emitLLVMUsed() {
1924   emitUsed(*this, "llvm.used", LLVMUsed);
1925   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1926 }
1927 
1928 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1929   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1930   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1931 }
1932 
1933 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1934   llvm::SmallString<32> Opt;
1935   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1936   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1937   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1938 }
1939 
1940 void CodeGenModule::AddDependentLib(StringRef Lib) {
1941   auto &C = getLLVMContext();
1942   if (getTarget().getTriple().isOSBinFormatELF()) {
1943       ELFDependentLibraries.push_back(
1944         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1945     return;
1946   }
1947 
1948   llvm::SmallString<24> Opt;
1949   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1950   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1951   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1952 }
1953 
1954 /// Add link options implied by the given module, including modules
1955 /// it depends on, using a postorder walk.
1956 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1957                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1958                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1959   // Import this module's parent.
1960   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1961     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1962   }
1963 
1964   // Import this module's dependencies.
1965   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1966     if (Visited.insert(Mod->Imports[I - 1]).second)
1967       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1968   }
1969 
1970   // Add linker options to link against the libraries/frameworks
1971   // described by this module.
1972   llvm::LLVMContext &Context = CGM.getLLVMContext();
1973   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1974 
1975   // For modules that use export_as for linking, use that module
1976   // name instead.
1977   if (Mod->UseExportAsModuleLinkName)
1978     return;
1979 
1980   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1981     // Link against a framework.  Frameworks are currently Darwin only, so we
1982     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1983     if (Mod->LinkLibraries[I-1].IsFramework) {
1984       llvm::Metadata *Args[2] = {
1985           llvm::MDString::get(Context, "-framework"),
1986           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1987 
1988       Metadata.push_back(llvm::MDNode::get(Context, Args));
1989       continue;
1990     }
1991 
1992     // Link against a library.
1993     if (IsELF) {
1994       llvm::Metadata *Args[2] = {
1995           llvm::MDString::get(Context, "lib"),
1996           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1997       };
1998       Metadata.push_back(llvm::MDNode::get(Context, Args));
1999     } else {
2000       llvm::SmallString<24> Opt;
2001       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2002           Mod->LinkLibraries[I - 1].Library, Opt);
2003       auto *OptString = llvm::MDString::get(Context, Opt);
2004       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2005     }
2006   }
2007 }
2008 
2009 void CodeGenModule::EmitModuleLinkOptions() {
2010   // Collect the set of all of the modules we want to visit to emit link
2011   // options, which is essentially the imported modules and all of their
2012   // non-explicit child modules.
2013   llvm::SetVector<clang::Module *> LinkModules;
2014   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2015   SmallVector<clang::Module *, 16> Stack;
2016 
2017   // Seed the stack with imported modules.
2018   for (Module *M : ImportedModules) {
2019     // Do not add any link flags when an implementation TU of a module imports
2020     // a header of that same module.
2021     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2022         !getLangOpts().isCompilingModule())
2023       continue;
2024     if (Visited.insert(M).second)
2025       Stack.push_back(M);
2026   }
2027 
2028   // Find all of the modules to import, making a little effort to prune
2029   // non-leaf modules.
2030   while (!Stack.empty()) {
2031     clang::Module *Mod = Stack.pop_back_val();
2032 
2033     bool AnyChildren = false;
2034 
2035     // Visit the submodules of this module.
2036     for (const auto &SM : Mod->submodules()) {
2037       // Skip explicit children; they need to be explicitly imported to be
2038       // linked against.
2039       if (SM->IsExplicit)
2040         continue;
2041 
2042       if (Visited.insert(SM).second) {
2043         Stack.push_back(SM);
2044         AnyChildren = true;
2045       }
2046     }
2047 
2048     // We didn't find any children, so add this module to the list of
2049     // modules to link against.
2050     if (!AnyChildren) {
2051       LinkModules.insert(Mod);
2052     }
2053   }
2054 
2055   // Add link options for all of the imported modules in reverse topological
2056   // order.  We don't do anything to try to order import link flags with respect
2057   // to linker options inserted by things like #pragma comment().
2058   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2059   Visited.clear();
2060   for (Module *M : LinkModules)
2061     if (Visited.insert(M).second)
2062       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2063   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2064   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2065 
2066   // Add the linker options metadata flag.
2067   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2068   for (auto *MD : LinkerOptionsMetadata)
2069     NMD->addOperand(MD);
2070 }
2071 
2072 void CodeGenModule::EmitDeferred() {
2073   // Emit deferred declare target declarations.
2074   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2075     getOpenMPRuntime().emitDeferredTargetDecls();
2076 
2077   // Emit code for any potentially referenced deferred decls.  Since a
2078   // previously unused static decl may become used during the generation of code
2079   // for a static function, iterate until no changes are made.
2080 
2081   if (!DeferredVTables.empty()) {
2082     EmitDeferredVTables();
2083 
2084     // Emitting a vtable doesn't directly cause more vtables to
2085     // become deferred, although it can cause functions to be
2086     // emitted that then need those vtables.
2087     assert(DeferredVTables.empty());
2088   }
2089 
2090   // Stop if we're out of both deferred vtables and deferred declarations.
2091   if (DeferredDeclsToEmit.empty())
2092     return;
2093 
2094   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2095   // work, it will not interfere with this.
2096   std::vector<GlobalDecl> CurDeclsToEmit;
2097   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2098 
2099   for (GlobalDecl &D : CurDeclsToEmit) {
2100     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2101     // to get GlobalValue with exactly the type we need, not something that
2102     // might had been created for another decl with the same mangled name but
2103     // different type.
2104     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2105         GetAddrOfGlobal(D, ForDefinition));
2106 
2107     // In case of different address spaces, we may still get a cast, even with
2108     // IsForDefinition equal to true. Query mangled names table to get
2109     // GlobalValue.
2110     if (!GV)
2111       GV = GetGlobalValue(getMangledName(D));
2112 
2113     // Make sure GetGlobalValue returned non-null.
2114     assert(GV);
2115 
2116     // Check to see if we've already emitted this.  This is necessary
2117     // for a couple of reasons: first, decls can end up in the
2118     // deferred-decls queue multiple times, and second, decls can end
2119     // up with definitions in unusual ways (e.g. by an extern inline
2120     // function acquiring a strong function redefinition).  Just
2121     // ignore these cases.
2122     if (!GV->isDeclaration())
2123       continue;
2124 
2125     // If this is OpenMP, check if it is legal to emit this global normally.
2126     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2127       continue;
2128 
2129     // Otherwise, emit the definition and move on to the next one.
2130     EmitGlobalDefinition(D, GV);
2131 
2132     // If we found out that we need to emit more decls, do that recursively.
2133     // This has the advantage that the decls are emitted in a DFS and related
2134     // ones are close together, which is convenient for testing.
2135     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2136       EmitDeferred();
2137       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2138     }
2139   }
2140 }
2141 
2142 void CodeGenModule::EmitVTablesOpportunistically() {
2143   // Try to emit external vtables as available_externally if they have emitted
2144   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2145   // is not allowed to create new references to things that need to be emitted
2146   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2147 
2148   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2149          && "Only emit opportunistic vtables with optimizations");
2150 
2151   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2152     assert(getVTables().isVTableExternal(RD) &&
2153            "This queue should only contain external vtables");
2154     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2155       VTables.GenerateClassData(RD);
2156   }
2157   OpportunisticVTables.clear();
2158 }
2159 
2160 void CodeGenModule::EmitGlobalAnnotations() {
2161   if (Annotations.empty())
2162     return;
2163 
2164   // Create a new global variable for the ConstantStruct in the Module.
2165   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2166     Annotations[0]->getType(), Annotations.size()), Annotations);
2167   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2168                                       llvm::GlobalValue::AppendingLinkage,
2169                                       Array, "llvm.global.annotations");
2170   gv->setSection(AnnotationSection);
2171 }
2172 
2173 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2174   llvm::Constant *&AStr = AnnotationStrings[Str];
2175   if (AStr)
2176     return AStr;
2177 
2178   // Not found yet, create a new global.
2179   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2180   auto *gv =
2181       new llvm::GlobalVariable(getModule(), s->getType(), true,
2182                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2183   gv->setSection(AnnotationSection);
2184   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2185   AStr = gv;
2186   return gv;
2187 }
2188 
2189 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2190   SourceManager &SM = getContext().getSourceManager();
2191   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2192   if (PLoc.isValid())
2193     return EmitAnnotationString(PLoc.getFilename());
2194   return EmitAnnotationString(SM.getBufferName(Loc));
2195 }
2196 
2197 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2198   SourceManager &SM = getContext().getSourceManager();
2199   PresumedLoc PLoc = SM.getPresumedLoc(L);
2200   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2201     SM.getExpansionLineNumber(L);
2202   return llvm::ConstantInt::get(Int32Ty, LineNo);
2203 }
2204 
2205 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2206                                                 const AnnotateAttr *AA,
2207                                                 SourceLocation L) {
2208   // Get the globals for file name, annotation, and the line number.
2209   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2210                  *UnitGV = EmitAnnotationUnit(L),
2211                  *LineNoCst = EmitAnnotationLineNo(L);
2212 
2213   // Create the ConstantStruct for the global annotation.
2214   llvm::Constant *Fields[4] = {
2215     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2216     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2217     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2218     LineNoCst
2219   };
2220   return llvm::ConstantStruct::getAnon(Fields);
2221 }
2222 
2223 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2224                                          llvm::GlobalValue *GV) {
2225   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2226   // Get the struct elements for these annotations.
2227   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2228     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2229 }
2230 
2231 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2232                                            llvm::Function *Fn,
2233                                            SourceLocation Loc) const {
2234   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2235   // Blacklist by function name.
2236   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2237     return true;
2238   // Blacklist by location.
2239   if (Loc.isValid())
2240     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2241   // If location is unknown, this may be a compiler-generated function. Assume
2242   // it's located in the main file.
2243   auto &SM = Context.getSourceManager();
2244   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2245     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2246   }
2247   return false;
2248 }
2249 
2250 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2251                                            SourceLocation Loc, QualType Ty,
2252                                            StringRef Category) const {
2253   // For now globals can be blacklisted only in ASan and KASan.
2254   const SanitizerMask EnabledAsanMask =
2255       LangOpts.Sanitize.Mask &
2256       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2257        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2258        SanitizerKind::MemTag);
2259   if (!EnabledAsanMask)
2260     return false;
2261   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2262   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2263     return true;
2264   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2265     return true;
2266   // Check global type.
2267   if (!Ty.isNull()) {
2268     // Drill down the array types: if global variable of a fixed type is
2269     // blacklisted, we also don't instrument arrays of them.
2270     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2271       Ty = AT->getElementType();
2272     Ty = Ty.getCanonicalType().getUnqualifiedType();
2273     // We allow to blacklist only record types (classes, structs etc.)
2274     if (Ty->isRecordType()) {
2275       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2276       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2277         return true;
2278     }
2279   }
2280   return false;
2281 }
2282 
2283 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2284                                    StringRef Category) const {
2285   const auto &XRayFilter = getContext().getXRayFilter();
2286   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2287   auto Attr = ImbueAttr::NONE;
2288   if (Loc.isValid())
2289     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2290   if (Attr == ImbueAttr::NONE)
2291     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2292   switch (Attr) {
2293   case ImbueAttr::NONE:
2294     return false;
2295   case ImbueAttr::ALWAYS:
2296     Fn->addFnAttr("function-instrument", "xray-always");
2297     break;
2298   case ImbueAttr::ALWAYS_ARG1:
2299     Fn->addFnAttr("function-instrument", "xray-always");
2300     Fn->addFnAttr("xray-log-args", "1");
2301     break;
2302   case ImbueAttr::NEVER:
2303     Fn->addFnAttr("function-instrument", "xray-never");
2304     break;
2305   }
2306   return true;
2307 }
2308 
2309 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2310   // Never defer when EmitAllDecls is specified.
2311   if (LangOpts.EmitAllDecls)
2312     return true;
2313 
2314   if (CodeGenOpts.KeepStaticConsts) {
2315     const auto *VD = dyn_cast<VarDecl>(Global);
2316     if (VD && VD->getType().isConstQualified() &&
2317         VD->getStorageDuration() == SD_Static)
2318       return true;
2319   }
2320 
2321   return getContext().DeclMustBeEmitted(Global);
2322 }
2323 
2324 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2325   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2326     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2327       // Implicit template instantiations may change linkage if they are later
2328       // explicitly instantiated, so they should not be emitted eagerly.
2329       return false;
2330     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2331     // not emit them eagerly unless we sure that the function must be emitted on
2332     // the host.
2333     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2334         !LangOpts.OpenMPIsDevice &&
2335         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2336         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2337       return false;
2338   }
2339   if (const auto *VD = dyn_cast<VarDecl>(Global))
2340     if (Context.getInlineVariableDefinitionKind(VD) ==
2341         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2342       // A definition of an inline constexpr static data member may change
2343       // linkage later if it's redeclared outside the class.
2344       return false;
2345   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2346   // codegen for global variables, because they may be marked as threadprivate.
2347   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2348       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2349       !isTypeConstant(Global->getType(), false) &&
2350       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2351     return false;
2352 
2353   return true;
2354 }
2355 
2356 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2357     const CXXUuidofExpr* E) {
2358   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2359   // well-formed.
2360   StringRef Uuid = E->getUuidStr();
2361   std::string Name = "_GUID_" + Uuid.lower();
2362   std::replace(Name.begin(), Name.end(), '-', '_');
2363 
2364   // The UUID descriptor should be pointer aligned.
2365   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2366 
2367   // Look for an existing global.
2368   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2369     return ConstantAddress(GV, Alignment);
2370 
2371   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2372   assert(Init && "failed to initialize as constant");
2373 
2374   auto *GV = new llvm::GlobalVariable(
2375       getModule(), Init->getType(),
2376       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2377   if (supportsCOMDAT())
2378     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2379   setDSOLocal(GV);
2380   return ConstantAddress(GV, Alignment);
2381 }
2382 
2383 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2384   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2385   assert(AA && "No alias?");
2386 
2387   CharUnits Alignment = getContext().getDeclAlign(VD);
2388   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2389 
2390   // See if there is already something with the target's name in the module.
2391   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2392   if (Entry) {
2393     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2394     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2395     return ConstantAddress(Ptr, Alignment);
2396   }
2397 
2398   llvm::Constant *Aliasee;
2399   if (isa<llvm::FunctionType>(DeclTy))
2400     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2401                                       GlobalDecl(cast<FunctionDecl>(VD)),
2402                                       /*ForVTable=*/false);
2403   else
2404     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2405                                     llvm::PointerType::getUnqual(DeclTy),
2406                                     nullptr);
2407 
2408   auto *F = cast<llvm::GlobalValue>(Aliasee);
2409   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2410   WeakRefReferences.insert(F);
2411 
2412   return ConstantAddress(Aliasee, Alignment);
2413 }
2414 
2415 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2416   const auto *Global = cast<ValueDecl>(GD.getDecl());
2417 
2418   // Weak references don't produce any output by themselves.
2419   if (Global->hasAttr<WeakRefAttr>())
2420     return;
2421 
2422   // If this is an alias definition (which otherwise looks like a declaration)
2423   // emit it now.
2424   if (Global->hasAttr<AliasAttr>())
2425     return EmitAliasDefinition(GD);
2426 
2427   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2428   if (Global->hasAttr<IFuncAttr>())
2429     return emitIFuncDefinition(GD);
2430 
2431   // If this is a cpu_dispatch multiversion function, emit the resolver.
2432   if (Global->hasAttr<CPUDispatchAttr>())
2433     return emitCPUDispatchDefinition(GD);
2434 
2435   // If this is CUDA, be selective about which declarations we emit.
2436   if (LangOpts.CUDA) {
2437     if (LangOpts.CUDAIsDevice) {
2438       if (!Global->hasAttr<CUDADeviceAttr>() &&
2439           !Global->hasAttr<CUDAGlobalAttr>() &&
2440           !Global->hasAttr<CUDAConstantAttr>() &&
2441           !Global->hasAttr<CUDASharedAttr>() &&
2442           !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2443         return;
2444     } else {
2445       // We need to emit host-side 'shadows' for all global
2446       // device-side variables because the CUDA runtime needs their
2447       // size and host-side address in order to provide access to
2448       // their device-side incarnations.
2449 
2450       // So device-only functions are the only things we skip.
2451       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2452           Global->hasAttr<CUDADeviceAttr>())
2453         return;
2454 
2455       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2456              "Expected Variable or Function");
2457     }
2458   }
2459 
2460   if (LangOpts.OpenMP) {
2461     // If this is OpenMP, check if it is legal to emit this global normally.
2462     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2463       return;
2464     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2465       if (MustBeEmitted(Global))
2466         EmitOMPDeclareReduction(DRD);
2467       return;
2468     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2469       if (MustBeEmitted(Global))
2470         EmitOMPDeclareMapper(DMD);
2471       return;
2472     }
2473   }
2474 
2475   // Ignore declarations, they will be emitted on their first use.
2476   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2477     // Forward declarations are emitted lazily on first use.
2478     if (!FD->doesThisDeclarationHaveABody()) {
2479       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2480         return;
2481 
2482       StringRef MangledName = getMangledName(GD);
2483 
2484       // Compute the function info and LLVM type.
2485       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2486       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2487 
2488       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2489                               /*DontDefer=*/false);
2490       return;
2491     }
2492   } else {
2493     const auto *VD = cast<VarDecl>(Global);
2494     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2495     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2496         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2497       if (LangOpts.OpenMP) {
2498         // Emit declaration of the must-be-emitted declare target variable.
2499         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2500                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2501           bool UnifiedMemoryEnabled =
2502               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2503           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2504               !UnifiedMemoryEnabled) {
2505             (void)GetAddrOfGlobalVar(VD);
2506           } else {
2507             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2508                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2509                      UnifiedMemoryEnabled)) &&
2510                    "Link clause or to clause with unified memory expected.");
2511             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2512           }
2513 
2514           return;
2515         }
2516       }
2517       // If this declaration may have caused an inline variable definition to
2518       // change linkage, make sure that it's emitted.
2519       if (Context.getInlineVariableDefinitionKind(VD) ==
2520           ASTContext::InlineVariableDefinitionKind::Strong)
2521         GetAddrOfGlobalVar(VD);
2522       return;
2523     }
2524   }
2525 
2526   // Defer code generation to first use when possible, e.g. if this is an inline
2527   // function. If the global must always be emitted, do it eagerly if possible
2528   // to benefit from cache locality.
2529   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2530     // Emit the definition if it can't be deferred.
2531     EmitGlobalDefinition(GD);
2532     return;
2533   }
2534 
2535     // Check if this must be emitted as declare variant.
2536   if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2537       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2538     return;
2539 
2540   // If we're deferring emission of a C++ variable with an
2541   // initializer, remember the order in which it appeared in the file.
2542   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2543       cast<VarDecl>(Global)->hasInit()) {
2544     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2545     CXXGlobalInits.push_back(nullptr);
2546   }
2547 
2548   StringRef MangledName = getMangledName(GD);
2549   if (GetGlobalValue(MangledName) != nullptr) {
2550     // The value has already been used and should therefore be emitted.
2551     addDeferredDeclToEmit(GD);
2552   } else if (MustBeEmitted(Global)) {
2553     // The value must be emitted, but cannot be emitted eagerly.
2554     assert(!MayBeEmittedEagerly(Global));
2555     addDeferredDeclToEmit(GD);
2556   } else {
2557     // Otherwise, remember that we saw a deferred decl with this name.  The
2558     // first use of the mangled name will cause it to move into
2559     // DeferredDeclsToEmit.
2560     DeferredDecls[MangledName] = GD;
2561   }
2562 }
2563 
2564 // Check if T is a class type with a destructor that's not dllimport.
2565 static bool HasNonDllImportDtor(QualType T) {
2566   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2567     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2568       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2569         return true;
2570 
2571   return false;
2572 }
2573 
2574 namespace {
2575   struct FunctionIsDirectlyRecursive
2576       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2577     const StringRef Name;
2578     const Builtin::Context &BI;
2579     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2580         : Name(N), BI(C) {}
2581 
2582     bool VisitCallExpr(const CallExpr *E) {
2583       const FunctionDecl *FD = E->getDirectCallee();
2584       if (!FD)
2585         return false;
2586       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2587       if (Attr && Name == Attr->getLabel())
2588         return true;
2589       unsigned BuiltinID = FD->getBuiltinID();
2590       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2591         return false;
2592       StringRef BuiltinName = BI.getName(BuiltinID);
2593       if (BuiltinName.startswith("__builtin_") &&
2594           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2595         return true;
2596       }
2597       return false;
2598     }
2599 
2600     bool VisitStmt(const Stmt *S) {
2601       for (const Stmt *Child : S->children())
2602         if (Child && this->Visit(Child))
2603           return true;
2604       return false;
2605     }
2606   };
2607 
2608   // Make sure we're not referencing non-imported vars or functions.
2609   struct DLLImportFunctionVisitor
2610       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2611     bool SafeToInline = true;
2612 
2613     bool shouldVisitImplicitCode() const { return true; }
2614 
2615     bool VisitVarDecl(VarDecl *VD) {
2616       if (VD->getTLSKind()) {
2617         // A thread-local variable cannot be imported.
2618         SafeToInline = false;
2619         return SafeToInline;
2620       }
2621 
2622       // A variable definition might imply a destructor call.
2623       if (VD->isThisDeclarationADefinition())
2624         SafeToInline = !HasNonDllImportDtor(VD->getType());
2625 
2626       return SafeToInline;
2627     }
2628 
2629     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2630       if (const auto *D = E->getTemporary()->getDestructor())
2631         SafeToInline = D->hasAttr<DLLImportAttr>();
2632       return SafeToInline;
2633     }
2634 
2635     bool VisitDeclRefExpr(DeclRefExpr *E) {
2636       ValueDecl *VD = E->getDecl();
2637       if (isa<FunctionDecl>(VD))
2638         SafeToInline = VD->hasAttr<DLLImportAttr>();
2639       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2640         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2641       return SafeToInline;
2642     }
2643 
2644     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2645       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2646       return SafeToInline;
2647     }
2648 
2649     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2650       CXXMethodDecl *M = E->getMethodDecl();
2651       if (!M) {
2652         // Call through a pointer to member function. This is safe to inline.
2653         SafeToInline = true;
2654       } else {
2655         SafeToInline = M->hasAttr<DLLImportAttr>();
2656       }
2657       return SafeToInline;
2658     }
2659 
2660     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2661       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2662       return SafeToInline;
2663     }
2664 
2665     bool VisitCXXNewExpr(CXXNewExpr *E) {
2666       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2667       return SafeToInline;
2668     }
2669   };
2670 }
2671 
2672 // isTriviallyRecursive - Check if this function calls another
2673 // decl that, because of the asm attribute or the other decl being a builtin,
2674 // ends up pointing to itself.
2675 bool
2676 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2677   StringRef Name;
2678   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2679     // asm labels are a special kind of mangling we have to support.
2680     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2681     if (!Attr)
2682       return false;
2683     Name = Attr->getLabel();
2684   } else {
2685     Name = FD->getName();
2686   }
2687 
2688   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2689   const Stmt *Body = FD->getBody();
2690   return Body ? Walker.Visit(Body) : false;
2691 }
2692 
2693 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2694   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2695     return true;
2696   const auto *F = cast<FunctionDecl>(GD.getDecl());
2697   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2698     return false;
2699 
2700   if (F->hasAttr<DLLImportAttr>()) {
2701     // Check whether it would be safe to inline this dllimport function.
2702     DLLImportFunctionVisitor Visitor;
2703     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2704     if (!Visitor.SafeToInline)
2705       return false;
2706 
2707     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2708       // Implicit destructor invocations aren't captured in the AST, so the
2709       // check above can't see them. Check for them manually here.
2710       for (const Decl *Member : Dtor->getParent()->decls())
2711         if (isa<FieldDecl>(Member))
2712           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2713             return false;
2714       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2715         if (HasNonDllImportDtor(B.getType()))
2716           return false;
2717     }
2718   }
2719 
2720   // PR9614. Avoid cases where the source code is lying to us. An available
2721   // externally function should have an equivalent function somewhere else,
2722   // but a function that calls itself is clearly not equivalent to the real
2723   // implementation.
2724   // This happens in glibc's btowc and in some configure checks.
2725   return !isTriviallyRecursive(F);
2726 }
2727 
2728 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2729   return CodeGenOpts.OptimizationLevel > 0;
2730 }
2731 
2732 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2733                                                        llvm::GlobalValue *GV) {
2734   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2735 
2736   if (FD->isCPUSpecificMultiVersion()) {
2737     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2738     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2739       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2740     // Requires multiple emits.
2741   } else
2742     EmitGlobalFunctionDefinition(GD, GV);
2743 }
2744 
2745 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2746     GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2747   assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2748          OpenMPRuntime && "Expected OpenMP device mode.");
2749   const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2750 
2751   // Compute the function info and LLVM type.
2752   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2753   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2754 
2755   // Get or create the prototype for the function.
2756   if (!GV || (GV->getType()->getElementType() != Ty)) {
2757     GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2758         getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2759         /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2760         ForDefinition));
2761     SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2762                           /*IsIncompleteFunction=*/false,
2763                           /*IsThunk=*/false);
2764   }
2765   // We need to set linkage and visibility on the function before
2766   // generating code for it because various parts of IR generation
2767   // want to propagate this information down (e.g. to local static
2768   // declarations).
2769   auto *Fn = cast<llvm::Function>(GV);
2770   setFunctionLinkage(OldGD, Fn);
2771 
2772   // FIXME: this is redundant with part of
2773   // setFunctionDefinitionAttributes
2774   setGVProperties(Fn, OldGD);
2775 
2776   MaybeHandleStaticInExternC(D, Fn);
2777 
2778   maybeSetTrivialComdat(*D, *Fn);
2779 
2780   CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2781 
2782   setNonAliasAttributes(OldGD, Fn);
2783   SetLLVMFunctionAttributesForDefinition(D, Fn);
2784 
2785   if (D->hasAttr<AnnotateAttr>())
2786     AddGlobalAnnotations(D, Fn);
2787 }
2788 
2789 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2790   const auto *D = cast<ValueDecl>(GD.getDecl());
2791 
2792   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2793                                  Context.getSourceManager(),
2794                                  "Generating code for declaration");
2795 
2796   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2797     // At -O0, don't generate IR for functions with available_externally
2798     // linkage.
2799     if (!shouldEmitFunction(GD))
2800       return;
2801 
2802     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2803       std::string Name;
2804       llvm::raw_string_ostream OS(Name);
2805       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2806                                /*Qualified=*/true);
2807       return Name;
2808     });
2809 
2810     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2811       // Make sure to emit the definition(s) before we emit the thunks.
2812       // This is necessary for the generation of certain thunks.
2813       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2814         ABI->emitCXXStructor(GD);
2815       else if (FD->isMultiVersion())
2816         EmitMultiVersionFunctionDefinition(GD, GV);
2817       else
2818         EmitGlobalFunctionDefinition(GD, GV);
2819 
2820       if (Method->isVirtual())
2821         getVTables().EmitThunks(GD);
2822 
2823       return;
2824     }
2825 
2826     if (FD->isMultiVersion())
2827       return EmitMultiVersionFunctionDefinition(GD, GV);
2828     return EmitGlobalFunctionDefinition(GD, GV);
2829   }
2830 
2831   if (const auto *VD = dyn_cast<VarDecl>(D))
2832     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2833 
2834   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2835 }
2836 
2837 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2838                                                       llvm::Function *NewFn);
2839 
2840 static unsigned
2841 TargetMVPriority(const TargetInfo &TI,
2842                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2843   unsigned Priority = 0;
2844   for (StringRef Feat : RO.Conditions.Features)
2845     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2846 
2847   if (!RO.Conditions.Architecture.empty())
2848     Priority = std::max(
2849         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2850   return Priority;
2851 }
2852 
2853 void CodeGenModule::emitMultiVersionFunctions() {
2854   for (GlobalDecl GD : MultiVersionFuncs) {
2855     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2856     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2857     getContext().forEachMultiversionedFunctionVersion(
2858         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2859           GlobalDecl CurGD{
2860               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2861           StringRef MangledName = getMangledName(CurGD);
2862           llvm::Constant *Func = GetGlobalValue(MangledName);
2863           if (!Func) {
2864             if (CurFD->isDefined()) {
2865               EmitGlobalFunctionDefinition(CurGD, nullptr);
2866               Func = GetGlobalValue(MangledName);
2867             } else {
2868               const CGFunctionInfo &FI =
2869                   getTypes().arrangeGlobalDeclaration(GD);
2870               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2871               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2872                                        /*DontDefer=*/false, ForDefinition);
2873             }
2874             assert(Func && "This should have just been created");
2875           }
2876 
2877           const auto *TA = CurFD->getAttr<TargetAttr>();
2878           llvm::SmallVector<StringRef, 8> Feats;
2879           TA->getAddedFeatures(Feats);
2880 
2881           Options.emplace_back(cast<llvm::Function>(Func),
2882                                TA->getArchitecture(), Feats);
2883         });
2884 
2885     llvm::Function *ResolverFunc;
2886     const TargetInfo &TI = getTarget();
2887 
2888     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2889       ResolverFunc = cast<llvm::Function>(
2890           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2891       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2892     } else {
2893       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2894     }
2895 
2896     if (supportsCOMDAT())
2897       ResolverFunc->setComdat(
2898           getModule().getOrInsertComdat(ResolverFunc->getName()));
2899 
2900     llvm::stable_sort(
2901         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2902                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2903           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2904         });
2905     CodeGenFunction CGF(*this);
2906     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2907   }
2908 }
2909 
2910 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2911   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2912   assert(FD && "Not a FunctionDecl?");
2913   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2914   assert(DD && "Not a cpu_dispatch Function?");
2915   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2916 
2917   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2918     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2919     DeclTy = getTypes().GetFunctionType(FInfo);
2920   }
2921 
2922   StringRef ResolverName = getMangledName(GD);
2923 
2924   llvm::Type *ResolverType;
2925   GlobalDecl ResolverGD;
2926   if (getTarget().supportsIFunc())
2927     ResolverType = llvm::FunctionType::get(
2928         llvm::PointerType::get(DeclTy,
2929                                Context.getTargetAddressSpace(FD->getType())),
2930         false);
2931   else {
2932     ResolverType = DeclTy;
2933     ResolverGD = GD;
2934   }
2935 
2936   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2937       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2938   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2939   if (supportsCOMDAT())
2940     ResolverFunc->setComdat(
2941         getModule().getOrInsertComdat(ResolverFunc->getName()));
2942 
2943   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2944   const TargetInfo &Target = getTarget();
2945   unsigned Index = 0;
2946   for (const IdentifierInfo *II : DD->cpus()) {
2947     // Get the name of the target function so we can look it up/create it.
2948     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2949                               getCPUSpecificMangling(*this, II->getName());
2950 
2951     llvm::Constant *Func = GetGlobalValue(MangledName);
2952 
2953     if (!Func) {
2954       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2955       if (ExistingDecl.getDecl() &&
2956           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2957         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2958         Func = GetGlobalValue(MangledName);
2959       } else {
2960         if (!ExistingDecl.getDecl())
2961           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2962 
2963       Func = GetOrCreateLLVMFunction(
2964           MangledName, DeclTy, ExistingDecl,
2965           /*ForVTable=*/false, /*DontDefer=*/true,
2966           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2967       }
2968     }
2969 
2970     llvm::SmallVector<StringRef, 32> Features;
2971     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2972     llvm::transform(Features, Features.begin(),
2973                     [](StringRef Str) { return Str.substr(1); });
2974     Features.erase(std::remove_if(
2975         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2976           return !Target.validateCpuSupports(Feat);
2977         }), Features.end());
2978     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2979     ++Index;
2980   }
2981 
2982   llvm::sort(
2983       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2984                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2985         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2986                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2987       });
2988 
2989   // If the list contains multiple 'default' versions, such as when it contains
2990   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2991   // always run on at least a 'pentium'). We do this by deleting the 'least
2992   // advanced' (read, lowest mangling letter).
2993   while (Options.size() > 1 &&
2994          CodeGenFunction::GetX86CpuSupportsMask(
2995              (Options.end() - 2)->Conditions.Features) == 0) {
2996     StringRef LHSName = (Options.end() - 2)->Function->getName();
2997     StringRef RHSName = (Options.end() - 1)->Function->getName();
2998     if (LHSName.compare(RHSName) < 0)
2999       Options.erase(Options.end() - 2);
3000     else
3001       Options.erase(Options.end() - 1);
3002   }
3003 
3004   CodeGenFunction CGF(*this);
3005   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3006 
3007   if (getTarget().supportsIFunc()) {
3008     std::string AliasName = getMangledNameImpl(
3009         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3010     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3011     if (!AliasFunc) {
3012       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3013           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3014           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3015       auto *GA = llvm::GlobalAlias::create(
3016          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3017       GA->setLinkage(llvm::Function::WeakODRLinkage);
3018       SetCommonAttributes(GD, GA);
3019     }
3020   }
3021 }
3022 
3023 /// If a dispatcher for the specified mangled name is not in the module, create
3024 /// and return an llvm Function with the specified type.
3025 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3026     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3027   std::string MangledName =
3028       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3029 
3030   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3031   // a separate resolver).
3032   std::string ResolverName = MangledName;
3033   if (getTarget().supportsIFunc())
3034     ResolverName += ".ifunc";
3035   else if (FD->isTargetMultiVersion())
3036     ResolverName += ".resolver";
3037 
3038   // If this already exists, just return that one.
3039   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3040     return ResolverGV;
3041 
3042   // Since this is the first time we've created this IFunc, make sure
3043   // that we put this multiversioned function into the list to be
3044   // replaced later if necessary (target multiversioning only).
3045   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3046     MultiVersionFuncs.push_back(GD);
3047 
3048   if (getTarget().supportsIFunc()) {
3049     llvm::Type *ResolverType = llvm::FunctionType::get(
3050         llvm::PointerType::get(
3051             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3052         false);
3053     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3054         MangledName + ".resolver", ResolverType, GlobalDecl{},
3055         /*ForVTable=*/false);
3056     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3057         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3058     GIF->setName(ResolverName);
3059     SetCommonAttributes(FD, GIF);
3060 
3061     return GIF;
3062   }
3063 
3064   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3065       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3066   assert(isa<llvm::GlobalValue>(Resolver) &&
3067          "Resolver should be created for the first time");
3068   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3069   return Resolver;
3070 }
3071 
3072 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3073 /// module, create and return an llvm Function with the specified type. If there
3074 /// is something in the module with the specified name, return it potentially
3075 /// bitcasted to the right type.
3076 ///
3077 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3078 /// to set the attributes on the function when it is first created.
3079 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3080     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3081     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3082     ForDefinition_t IsForDefinition) {
3083   const Decl *D = GD.getDecl();
3084 
3085   // Any attempts to use a MultiVersion function should result in retrieving
3086   // the iFunc instead. Name Mangling will handle the rest of the changes.
3087   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3088     // For the device mark the function as one that should be emitted.
3089     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3090         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3091         !DontDefer && !IsForDefinition) {
3092       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3093         GlobalDecl GDDef;
3094         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3095           GDDef = GlobalDecl(CD, GD.getCtorType());
3096         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3097           GDDef = GlobalDecl(DD, GD.getDtorType());
3098         else
3099           GDDef = GlobalDecl(FDDef);
3100         EmitGlobal(GDDef);
3101       }
3102     }
3103     // Check if this must be emitted as declare variant and emit reference to
3104     // the the declare variant function.
3105     if (LangOpts.OpenMP && OpenMPRuntime)
3106       (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3107 
3108     if (FD->isMultiVersion()) {
3109       const auto *TA = FD->getAttr<TargetAttr>();
3110       if (TA && TA->isDefaultVersion())
3111         UpdateMultiVersionNames(GD, FD);
3112       if (!IsForDefinition)
3113         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3114     }
3115   }
3116 
3117   // Lookup the entry, lazily creating it if necessary.
3118   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3119   if (Entry) {
3120     if (WeakRefReferences.erase(Entry)) {
3121       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3122       if (FD && !FD->hasAttr<WeakAttr>())
3123         Entry->setLinkage(llvm::Function::ExternalLinkage);
3124     }
3125 
3126     // Handle dropped DLL attributes.
3127     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3128       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3129       setDSOLocal(Entry);
3130     }
3131 
3132     // If there are two attempts to define the same mangled name, issue an
3133     // error.
3134     if (IsForDefinition && !Entry->isDeclaration()) {
3135       GlobalDecl OtherGD;
3136       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3137       // to make sure that we issue an error only once.
3138       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3139           (GD.getCanonicalDecl().getDecl() !=
3140            OtherGD.getCanonicalDecl().getDecl()) &&
3141           DiagnosedConflictingDefinitions.insert(GD).second) {
3142         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3143             << MangledName;
3144         getDiags().Report(OtherGD.getDecl()->getLocation(),
3145                           diag::note_previous_definition);
3146       }
3147     }
3148 
3149     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3150         (Entry->getType()->getElementType() == Ty)) {
3151       return Entry;
3152     }
3153 
3154     // Make sure the result is of the correct type.
3155     // (If function is requested for a definition, we always need to create a new
3156     // function, not just return a bitcast.)
3157     if (!IsForDefinition)
3158       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3159   }
3160 
3161   // This function doesn't have a complete type (for example, the return
3162   // type is an incomplete struct). Use a fake type instead, and make
3163   // sure not to try to set attributes.
3164   bool IsIncompleteFunction = false;
3165 
3166   llvm::FunctionType *FTy;
3167   if (isa<llvm::FunctionType>(Ty)) {
3168     FTy = cast<llvm::FunctionType>(Ty);
3169   } else {
3170     FTy = llvm::FunctionType::get(VoidTy, false);
3171     IsIncompleteFunction = true;
3172   }
3173 
3174   llvm::Function *F =
3175       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3176                              Entry ? StringRef() : MangledName, &getModule());
3177 
3178   // If we already created a function with the same mangled name (but different
3179   // type) before, take its name and add it to the list of functions to be
3180   // replaced with F at the end of CodeGen.
3181   //
3182   // This happens if there is a prototype for a function (e.g. "int f()") and
3183   // then a definition of a different type (e.g. "int f(int x)").
3184   if (Entry) {
3185     F->takeName(Entry);
3186 
3187     // This might be an implementation of a function without a prototype, in
3188     // which case, try to do special replacement of calls which match the new
3189     // prototype.  The really key thing here is that we also potentially drop
3190     // arguments from the call site so as to make a direct call, which makes the
3191     // inliner happier and suppresses a number of optimizer warnings (!) about
3192     // dropping arguments.
3193     if (!Entry->use_empty()) {
3194       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3195       Entry->removeDeadConstantUsers();
3196     }
3197 
3198     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3199         F, Entry->getType()->getElementType()->getPointerTo());
3200     addGlobalValReplacement(Entry, BC);
3201   }
3202 
3203   assert(F->getName() == MangledName && "name was uniqued!");
3204   if (D)
3205     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3206   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3207     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3208     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3209   }
3210 
3211   if (!DontDefer) {
3212     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3213     // each other bottoming out with the base dtor.  Therefore we emit non-base
3214     // dtors on usage, even if there is no dtor definition in the TU.
3215     if (D && isa<CXXDestructorDecl>(D) &&
3216         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3217                                            GD.getDtorType()))
3218       addDeferredDeclToEmit(GD);
3219 
3220     // This is the first use or definition of a mangled name.  If there is a
3221     // deferred decl with this name, remember that we need to emit it at the end
3222     // of the file.
3223     auto DDI = DeferredDecls.find(MangledName);
3224     if (DDI != DeferredDecls.end()) {
3225       // Move the potentially referenced deferred decl to the
3226       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3227       // don't need it anymore).
3228       addDeferredDeclToEmit(DDI->second);
3229       DeferredDecls.erase(DDI);
3230 
3231       // Otherwise, there are cases we have to worry about where we're
3232       // using a declaration for which we must emit a definition but where
3233       // we might not find a top-level definition:
3234       //   - member functions defined inline in their classes
3235       //   - friend functions defined inline in some class
3236       //   - special member functions with implicit definitions
3237       // If we ever change our AST traversal to walk into class methods,
3238       // this will be unnecessary.
3239       //
3240       // We also don't emit a definition for a function if it's going to be an
3241       // entry in a vtable, unless it's already marked as used.
3242     } else if (getLangOpts().CPlusPlus && D) {
3243       // Look for a declaration that's lexically in a record.
3244       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3245            FD = FD->getPreviousDecl()) {
3246         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3247           if (FD->doesThisDeclarationHaveABody()) {
3248             addDeferredDeclToEmit(GD.getWithDecl(FD));
3249             break;
3250           }
3251         }
3252       }
3253     }
3254   }
3255 
3256   // Make sure the result is of the requested type.
3257   if (!IsIncompleteFunction) {
3258     assert(F->getType()->getElementType() == Ty);
3259     return F;
3260   }
3261 
3262   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3263   return llvm::ConstantExpr::getBitCast(F, PTy);
3264 }
3265 
3266 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3267 /// non-null, then this function will use the specified type if it has to
3268 /// create it (this occurs when we see a definition of the function).
3269 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3270                                                  llvm::Type *Ty,
3271                                                  bool ForVTable,
3272                                                  bool DontDefer,
3273                                               ForDefinition_t IsForDefinition) {
3274   // If there was no specific requested type, just convert it now.
3275   if (!Ty) {
3276     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3277     Ty = getTypes().ConvertType(FD->getType());
3278   }
3279 
3280   // Devirtualized destructor calls may come through here instead of via
3281   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3282   // of the complete destructor when necessary.
3283   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3284     if (getTarget().getCXXABI().isMicrosoft() &&
3285         GD.getDtorType() == Dtor_Complete &&
3286         DD->getParent()->getNumVBases() == 0)
3287       GD = GlobalDecl(DD, Dtor_Base);
3288   }
3289 
3290   StringRef MangledName = getMangledName(GD);
3291   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3292                                  /*IsThunk=*/false, llvm::AttributeList(),
3293                                  IsForDefinition);
3294 }
3295 
3296 static const FunctionDecl *
3297 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3298   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3299   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3300 
3301   IdentifierInfo &CII = C.Idents.get(Name);
3302   for (const auto &Result : DC->lookup(&CII))
3303     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3304       return FD;
3305 
3306   if (!C.getLangOpts().CPlusPlus)
3307     return nullptr;
3308 
3309   // Demangle the premangled name from getTerminateFn()
3310   IdentifierInfo &CXXII =
3311       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3312           ? C.Idents.get("terminate")
3313           : C.Idents.get(Name);
3314 
3315   for (const auto &N : {"__cxxabiv1", "std"}) {
3316     IdentifierInfo &NS = C.Idents.get(N);
3317     for (const auto &Result : DC->lookup(&NS)) {
3318       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3319       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3320         for (const auto &Result : LSD->lookup(&NS))
3321           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3322             break;
3323 
3324       if (ND)
3325         for (const auto &Result : ND->lookup(&CXXII))
3326           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3327             return FD;
3328     }
3329   }
3330 
3331   return nullptr;
3332 }
3333 
3334 /// CreateRuntimeFunction - Create a new runtime function with the specified
3335 /// type and name.
3336 llvm::FunctionCallee
3337 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3338                                      llvm::AttributeList ExtraAttrs,
3339                                      bool Local) {
3340   llvm::Constant *C =
3341       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3342                               /*DontDefer=*/false, /*IsThunk=*/false,
3343                               ExtraAttrs);
3344 
3345   if (auto *F = dyn_cast<llvm::Function>(C)) {
3346     if (F->empty()) {
3347       F->setCallingConv(getRuntimeCC());
3348 
3349       // In Windows Itanium environments, try to mark runtime functions
3350       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3351       // will link their standard library statically or dynamically. Marking
3352       // functions imported when they are not imported can cause linker errors
3353       // and warnings.
3354       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3355           !getCodeGenOpts().LTOVisibilityPublicStd) {
3356         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3357         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3358           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3359           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3360         }
3361       }
3362       setDSOLocal(F);
3363     }
3364   }
3365 
3366   return {FTy, C};
3367 }
3368 
3369 /// isTypeConstant - Determine whether an object of this type can be emitted
3370 /// as a constant.
3371 ///
3372 /// If ExcludeCtor is true, the duration when the object's constructor runs
3373 /// will not be considered. The caller will need to verify that the object is
3374 /// not written to during its construction.
3375 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3376   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3377     return false;
3378 
3379   if (Context.getLangOpts().CPlusPlus) {
3380     if (const CXXRecordDecl *Record
3381           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3382       return ExcludeCtor && !Record->hasMutableFields() &&
3383              Record->hasTrivialDestructor();
3384   }
3385 
3386   return true;
3387 }
3388 
3389 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3390 /// create and return an llvm GlobalVariable with the specified type.  If there
3391 /// is something in the module with the specified name, return it potentially
3392 /// bitcasted to the right type.
3393 ///
3394 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3395 /// to set the attributes on the global when it is first created.
3396 ///
3397 /// If IsForDefinition is true, it is guaranteed that an actual global with
3398 /// type Ty will be returned, not conversion of a variable with the same
3399 /// mangled name but some other type.
3400 llvm::Constant *
3401 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3402                                      llvm::PointerType *Ty,
3403                                      const VarDecl *D,
3404                                      ForDefinition_t IsForDefinition) {
3405   // Lookup the entry, lazily creating it if necessary.
3406   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3407   if (Entry) {
3408     if (WeakRefReferences.erase(Entry)) {
3409       if (D && !D->hasAttr<WeakAttr>())
3410         Entry->setLinkage(llvm::Function::ExternalLinkage);
3411     }
3412 
3413     // Handle dropped DLL attributes.
3414     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3415       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3416 
3417     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3418       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3419 
3420     if (Entry->getType() == Ty)
3421       return Entry;
3422 
3423     // If there are two attempts to define the same mangled name, issue an
3424     // error.
3425     if (IsForDefinition && !Entry->isDeclaration()) {
3426       GlobalDecl OtherGD;
3427       const VarDecl *OtherD;
3428 
3429       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3430       // to make sure that we issue an error only once.
3431       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3432           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3433           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3434           OtherD->hasInit() &&
3435           DiagnosedConflictingDefinitions.insert(D).second) {
3436         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3437             << MangledName;
3438         getDiags().Report(OtherGD.getDecl()->getLocation(),
3439                           diag::note_previous_definition);
3440       }
3441     }
3442 
3443     // Make sure the result is of the correct type.
3444     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3445       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3446 
3447     // (If global is requested for a definition, we always need to create a new
3448     // global, not just return a bitcast.)
3449     if (!IsForDefinition)
3450       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3451   }
3452 
3453   auto AddrSpace = GetGlobalVarAddressSpace(D);
3454   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3455 
3456   auto *GV = new llvm::GlobalVariable(
3457       getModule(), Ty->getElementType(), false,
3458       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3459       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3460 
3461   // If we already created a global with the same mangled name (but different
3462   // type) before, take its name and remove it from its parent.
3463   if (Entry) {
3464     GV->takeName(Entry);
3465 
3466     if (!Entry->use_empty()) {
3467       llvm::Constant *NewPtrForOldDecl =
3468           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3469       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3470     }
3471 
3472     Entry->eraseFromParent();
3473   }
3474 
3475   // This is the first use or definition of a mangled name.  If there is a
3476   // deferred decl with this name, remember that we need to emit it at the end
3477   // of the file.
3478   auto DDI = DeferredDecls.find(MangledName);
3479   if (DDI != DeferredDecls.end()) {
3480     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3481     // list, and remove it from DeferredDecls (since we don't need it anymore).
3482     addDeferredDeclToEmit(DDI->second);
3483     DeferredDecls.erase(DDI);
3484   }
3485 
3486   // Handle things which are present even on external declarations.
3487   if (D) {
3488     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3489       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3490 
3491     // FIXME: This code is overly simple and should be merged with other global
3492     // handling.
3493     GV->setConstant(isTypeConstant(D->getType(), false));
3494 
3495     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3496 
3497     setLinkageForGV(GV, D);
3498 
3499     if (D->getTLSKind()) {
3500       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3501         CXXThreadLocals.push_back(D);
3502       setTLSMode(GV, *D);
3503     }
3504 
3505     setGVProperties(GV, D);
3506 
3507     // If required by the ABI, treat declarations of static data members with
3508     // inline initializers as definitions.
3509     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3510       EmitGlobalVarDefinition(D);
3511     }
3512 
3513     // Emit section information for extern variables.
3514     if (D->hasExternalStorage()) {
3515       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3516         GV->setSection(SA->getName());
3517     }
3518 
3519     // Handle XCore specific ABI requirements.
3520     if (getTriple().getArch() == llvm::Triple::xcore &&
3521         D->getLanguageLinkage() == CLanguageLinkage &&
3522         D->getType().isConstant(Context) &&
3523         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3524       GV->setSection(".cp.rodata");
3525 
3526     // Check if we a have a const declaration with an initializer, we may be
3527     // able to emit it as available_externally to expose it's value to the
3528     // optimizer.
3529     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3530         D->getType().isConstQualified() && !GV->hasInitializer() &&
3531         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3532       const auto *Record =
3533           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3534       bool HasMutableFields = Record && Record->hasMutableFields();
3535       if (!HasMutableFields) {
3536         const VarDecl *InitDecl;
3537         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3538         if (InitExpr) {
3539           ConstantEmitter emitter(*this);
3540           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3541           if (Init) {
3542             auto *InitType = Init->getType();
3543             if (GV->getType()->getElementType() != InitType) {
3544               // The type of the initializer does not match the definition.
3545               // This happens when an initializer has a different type from
3546               // the type of the global (because of padding at the end of a
3547               // structure for instance).
3548               GV->setName(StringRef());
3549               // Make a new global with the correct type, this is now guaranteed
3550               // to work.
3551               auto *NewGV = cast<llvm::GlobalVariable>(
3552                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3553 
3554               // Erase the old global, since it is no longer used.
3555               GV->eraseFromParent();
3556               GV = NewGV;
3557             } else {
3558               GV->setInitializer(Init);
3559               GV->setConstant(true);
3560               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3561             }
3562             emitter.finalize(GV);
3563           }
3564         }
3565       }
3566     }
3567   }
3568 
3569   LangAS ExpectedAS =
3570       D ? D->getType().getAddressSpace()
3571         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3572   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3573          Ty->getPointerAddressSpace());
3574   if (AddrSpace != ExpectedAS)
3575     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3576                                                        ExpectedAS, Ty);
3577 
3578   if (GV->isDeclaration())
3579     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3580 
3581   return GV;
3582 }
3583 
3584 llvm::Constant *
3585 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3586                                ForDefinition_t IsForDefinition) {
3587   const Decl *D = GD.getDecl();
3588   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3589     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3590                                 /*DontDefer=*/false, IsForDefinition);
3591   else if (isa<CXXMethodDecl>(D)) {
3592     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3593         cast<CXXMethodDecl>(D));
3594     auto Ty = getTypes().GetFunctionType(*FInfo);
3595     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3596                              IsForDefinition);
3597   } else if (isa<FunctionDecl>(D)) {
3598     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3599     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3600     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3601                              IsForDefinition);
3602   } else
3603     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3604                               IsForDefinition);
3605 }
3606 
3607 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3608     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3609     unsigned Alignment) {
3610   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3611   llvm::GlobalVariable *OldGV = nullptr;
3612 
3613   if (GV) {
3614     // Check if the variable has the right type.
3615     if (GV->getType()->getElementType() == Ty)
3616       return GV;
3617 
3618     // Because C++ name mangling, the only way we can end up with an already
3619     // existing global with the same name is if it has been declared extern "C".
3620     assert(GV->isDeclaration() && "Declaration has wrong type!");
3621     OldGV = GV;
3622   }
3623 
3624   // Create a new variable.
3625   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3626                                 Linkage, nullptr, Name);
3627 
3628   if (OldGV) {
3629     // Replace occurrences of the old variable if needed.
3630     GV->takeName(OldGV);
3631 
3632     if (!OldGV->use_empty()) {
3633       llvm::Constant *NewPtrForOldDecl =
3634       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3635       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3636     }
3637 
3638     OldGV->eraseFromParent();
3639   }
3640 
3641   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3642       !GV->hasAvailableExternallyLinkage())
3643     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3644 
3645   GV->setAlignment(llvm::MaybeAlign(Alignment));
3646 
3647   return GV;
3648 }
3649 
3650 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3651 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3652 /// then it will be created with the specified type instead of whatever the
3653 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3654 /// that an actual global with type Ty will be returned, not conversion of a
3655 /// variable with the same mangled name but some other type.
3656 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3657                                                   llvm::Type *Ty,
3658                                            ForDefinition_t IsForDefinition) {
3659   assert(D->hasGlobalStorage() && "Not a global variable");
3660   QualType ASTTy = D->getType();
3661   if (!Ty)
3662     Ty = getTypes().ConvertTypeForMem(ASTTy);
3663 
3664   llvm::PointerType *PTy =
3665     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3666 
3667   StringRef MangledName = getMangledName(D);
3668   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3669 }
3670 
3671 /// CreateRuntimeVariable - Create a new runtime global variable with the
3672 /// specified type and name.
3673 llvm::Constant *
3674 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3675                                      StringRef Name) {
3676   auto PtrTy =
3677       getContext().getLangOpts().OpenCL
3678           ? llvm::PointerType::get(
3679                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3680           : llvm::PointerType::getUnqual(Ty);
3681   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3682   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3683   return Ret;
3684 }
3685 
3686 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3687   assert(!D->getInit() && "Cannot emit definite definitions here!");
3688 
3689   StringRef MangledName = getMangledName(D);
3690   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3691 
3692   // We already have a definition, not declaration, with the same mangled name.
3693   // Emitting of declaration is not required (and actually overwrites emitted
3694   // definition).
3695   if (GV && !GV->isDeclaration())
3696     return;
3697 
3698   // If we have not seen a reference to this variable yet, place it into the
3699   // deferred declarations table to be emitted if needed later.
3700   if (!MustBeEmitted(D) && !GV) {
3701       DeferredDecls[MangledName] = D;
3702       return;
3703   }
3704 
3705   // The tentative definition is the only definition.
3706   EmitGlobalVarDefinition(D);
3707 }
3708 
3709 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3710   return Context.toCharUnitsFromBits(
3711       getDataLayout().getTypeStoreSizeInBits(Ty));
3712 }
3713 
3714 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3715   LangAS AddrSpace = LangAS::Default;
3716   if (LangOpts.OpenCL) {
3717     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3718     assert(AddrSpace == LangAS::opencl_global ||
3719            AddrSpace == LangAS::opencl_constant ||
3720            AddrSpace == LangAS::opencl_local ||
3721            AddrSpace >= LangAS::FirstTargetAddressSpace);
3722     return AddrSpace;
3723   }
3724 
3725   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3726     if (D && D->hasAttr<CUDAConstantAttr>())
3727       return LangAS::cuda_constant;
3728     else if (D && D->hasAttr<CUDASharedAttr>())
3729       return LangAS::cuda_shared;
3730     else if (D && D->hasAttr<CUDADeviceAttr>())
3731       return LangAS::cuda_device;
3732     else if (D && D->getType().isConstQualified())
3733       return LangAS::cuda_constant;
3734     else
3735       return LangAS::cuda_device;
3736   }
3737 
3738   if (LangOpts.OpenMP) {
3739     LangAS AS;
3740     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3741       return AS;
3742   }
3743   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3744 }
3745 
3746 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3747   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3748   if (LangOpts.OpenCL)
3749     return LangAS::opencl_constant;
3750   if (auto AS = getTarget().getConstantAddressSpace())
3751     return AS.getValue();
3752   return LangAS::Default;
3753 }
3754 
3755 // In address space agnostic languages, string literals are in default address
3756 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3757 // emitted in constant address space in LLVM IR. To be consistent with other
3758 // parts of AST, string literal global variables in constant address space
3759 // need to be casted to default address space before being put into address
3760 // map and referenced by other part of CodeGen.
3761 // In OpenCL, string literals are in constant address space in AST, therefore
3762 // they should not be casted to default address space.
3763 static llvm::Constant *
3764 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3765                                        llvm::GlobalVariable *GV) {
3766   llvm::Constant *Cast = GV;
3767   if (!CGM.getLangOpts().OpenCL) {
3768     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3769       if (AS != LangAS::Default)
3770         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3771             CGM, GV, AS.getValue(), LangAS::Default,
3772             GV->getValueType()->getPointerTo(
3773                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3774     }
3775   }
3776   return Cast;
3777 }
3778 
3779 template<typename SomeDecl>
3780 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3781                                                llvm::GlobalValue *GV) {
3782   if (!getLangOpts().CPlusPlus)
3783     return;
3784 
3785   // Must have 'used' attribute, or else inline assembly can't rely on
3786   // the name existing.
3787   if (!D->template hasAttr<UsedAttr>())
3788     return;
3789 
3790   // Must have internal linkage and an ordinary name.
3791   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3792     return;
3793 
3794   // Must be in an extern "C" context. Entities declared directly within
3795   // a record are not extern "C" even if the record is in such a context.
3796   const SomeDecl *First = D->getFirstDecl();
3797   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3798     return;
3799 
3800   // OK, this is an internal linkage entity inside an extern "C" linkage
3801   // specification. Make a note of that so we can give it the "expected"
3802   // mangled name if nothing else is using that name.
3803   std::pair<StaticExternCMap::iterator, bool> R =
3804       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3805 
3806   // If we have multiple internal linkage entities with the same name
3807   // in extern "C" regions, none of them gets that name.
3808   if (!R.second)
3809     R.first->second = nullptr;
3810 }
3811 
3812 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3813   if (!CGM.supportsCOMDAT())
3814     return false;
3815 
3816   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3817   // them being "merged" by the COMDAT Folding linker optimization.
3818   if (D.hasAttr<CUDAGlobalAttr>())
3819     return false;
3820 
3821   if (D.hasAttr<SelectAnyAttr>())
3822     return true;
3823 
3824   GVALinkage Linkage;
3825   if (auto *VD = dyn_cast<VarDecl>(&D))
3826     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3827   else
3828     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3829 
3830   switch (Linkage) {
3831   case GVA_Internal:
3832   case GVA_AvailableExternally:
3833   case GVA_StrongExternal:
3834     return false;
3835   case GVA_DiscardableODR:
3836   case GVA_StrongODR:
3837     return true;
3838   }
3839   llvm_unreachable("No such linkage");
3840 }
3841 
3842 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3843                                           llvm::GlobalObject &GO) {
3844   if (!shouldBeInCOMDAT(*this, D))
3845     return;
3846   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3847 }
3848 
3849 /// Pass IsTentative as true if you want to create a tentative definition.
3850 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3851                                             bool IsTentative) {
3852   // OpenCL global variables of sampler type are translated to function calls,
3853   // therefore no need to be translated.
3854   QualType ASTTy = D->getType();
3855   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3856     return;
3857 
3858   // If this is OpenMP device, check if it is legal to emit this global
3859   // normally.
3860   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3861       OpenMPRuntime->emitTargetGlobalVariable(D))
3862     return;
3863 
3864   llvm::Constant *Init = nullptr;
3865   bool NeedsGlobalCtor = false;
3866   bool NeedsGlobalDtor =
3867       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3868 
3869   const VarDecl *InitDecl;
3870   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3871 
3872   Optional<ConstantEmitter> emitter;
3873 
3874   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3875   // as part of their declaration."  Sema has already checked for
3876   // error cases, so we just need to set Init to UndefValue.
3877   bool IsCUDASharedVar =
3878       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3879   // Shadows of initialized device-side global variables are also left
3880   // undefined.
3881   bool IsCUDAShadowVar =
3882       !getLangOpts().CUDAIsDevice &&
3883       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3884        D->hasAttr<CUDASharedAttr>());
3885   // HIP pinned shadow of initialized host-side global variables are also
3886   // left undefined.
3887   bool IsHIPPinnedShadowVar =
3888       getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3889   if (getLangOpts().CUDA &&
3890       (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3891     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3892   else if (!InitExpr) {
3893     // This is a tentative definition; tentative definitions are
3894     // implicitly initialized with { 0 }.
3895     //
3896     // Note that tentative definitions are only emitted at the end of
3897     // a translation unit, so they should never have incomplete
3898     // type. In addition, EmitTentativeDefinition makes sure that we
3899     // never attempt to emit a tentative definition if a real one
3900     // exists. A use may still exists, however, so we still may need
3901     // to do a RAUW.
3902     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3903     Init = EmitNullConstant(D->getType());
3904   } else {
3905     initializedGlobalDecl = GlobalDecl(D);
3906     emitter.emplace(*this);
3907     Init = emitter->tryEmitForInitializer(*InitDecl);
3908 
3909     if (!Init) {
3910       QualType T = InitExpr->getType();
3911       if (D->getType()->isReferenceType())
3912         T = D->getType();
3913 
3914       if (getLangOpts().CPlusPlus) {
3915         Init = EmitNullConstant(T);
3916         NeedsGlobalCtor = true;
3917       } else {
3918         ErrorUnsupported(D, "static initializer");
3919         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3920       }
3921     } else {
3922       // We don't need an initializer, so remove the entry for the delayed
3923       // initializer position (just in case this entry was delayed) if we
3924       // also don't need to register a destructor.
3925       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3926         DelayedCXXInitPosition.erase(D);
3927     }
3928   }
3929 
3930   llvm::Type* InitType = Init->getType();
3931   llvm::Constant *Entry =
3932       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3933 
3934   // Strip off a bitcast if we got one back.
3935   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3936     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3937            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3938            // All zero index gep.
3939            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3940     Entry = CE->getOperand(0);
3941   }
3942 
3943   // Entry is now either a Function or GlobalVariable.
3944   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3945 
3946   // We have a definition after a declaration with the wrong type.
3947   // We must make a new GlobalVariable* and update everything that used OldGV
3948   // (a declaration or tentative definition) with the new GlobalVariable*
3949   // (which will be a definition).
3950   //
3951   // This happens if there is a prototype for a global (e.g.
3952   // "extern int x[];") and then a definition of a different type (e.g.
3953   // "int x[10];"). This also happens when an initializer has a different type
3954   // from the type of the global (this happens with unions).
3955   if (!GV || GV->getType()->getElementType() != InitType ||
3956       GV->getType()->getAddressSpace() !=
3957           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3958 
3959     // Move the old entry aside so that we'll create a new one.
3960     Entry->setName(StringRef());
3961 
3962     // Make a new global with the correct type, this is now guaranteed to work.
3963     GV = cast<llvm::GlobalVariable>(
3964         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3965 
3966     // Replace all uses of the old global with the new global
3967     llvm::Constant *NewPtrForOldDecl =
3968         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3969     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3970 
3971     // Erase the old global, since it is no longer used.
3972     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3973   }
3974 
3975   MaybeHandleStaticInExternC(D, GV);
3976 
3977   if (D->hasAttr<AnnotateAttr>())
3978     AddGlobalAnnotations(D, GV);
3979 
3980   // Set the llvm linkage type as appropriate.
3981   llvm::GlobalValue::LinkageTypes Linkage =
3982       getLLVMLinkageVarDefinition(D, GV->isConstant());
3983 
3984   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3985   // the device. [...]"
3986   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3987   // __device__, declares a variable that: [...]
3988   // Is accessible from all the threads within the grid and from the host
3989   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3990   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3991   if (GV && LangOpts.CUDA) {
3992     if (LangOpts.CUDAIsDevice) {
3993       if (Linkage != llvm::GlobalValue::InternalLinkage &&
3994           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
3995         GV->setExternallyInitialized(true);
3996     } else {
3997       // Host-side shadows of external declarations of device-side
3998       // global variables become internal definitions. These have to
3999       // be internal in order to prevent name conflicts with global
4000       // host variables with the same name in a different TUs.
4001       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4002           D->hasAttr<HIPPinnedShadowAttr>()) {
4003         Linkage = llvm::GlobalValue::InternalLinkage;
4004 
4005         // Shadow variables and their properties must be registered
4006         // with CUDA runtime.
4007         unsigned Flags = 0;
4008         if (!D->hasDefinition())
4009           Flags |= CGCUDARuntime::ExternDeviceVar;
4010         if (D->hasAttr<CUDAConstantAttr>())
4011           Flags |= CGCUDARuntime::ConstantDeviceVar;
4012         // Extern global variables will be registered in the TU where they are
4013         // defined.
4014         if (!D->hasExternalStorage())
4015           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4016       } else if (D->hasAttr<CUDASharedAttr>())
4017         // __shared__ variables are odd. Shadows do get created, but
4018         // they are not registered with the CUDA runtime, so they
4019         // can't really be used to access their device-side
4020         // counterparts. It's not clear yet whether it's nvcc's bug or
4021         // a feature, but we've got to do the same for compatibility.
4022         Linkage = llvm::GlobalValue::InternalLinkage;
4023     }
4024   }
4025 
4026   if (!IsHIPPinnedShadowVar)
4027     GV->setInitializer(Init);
4028   if (emitter) emitter->finalize(GV);
4029 
4030   // If it is safe to mark the global 'constant', do so now.
4031   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4032                   isTypeConstant(D->getType(), true));
4033 
4034   // If it is in a read-only section, mark it 'constant'.
4035   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4036     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4037     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4038       GV->setConstant(true);
4039   }
4040 
4041   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4042 
4043   // On Darwin, if the normal linkage of a C++ thread_local variable is
4044   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4045   // copies within a linkage unit; otherwise, the backing variable has
4046   // internal linkage and all accesses should just be calls to the
4047   // Itanium-specified entry point, which has the normal linkage of the
4048   // variable. This is to preserve the ability to change the implementation
4049   // behind the scenes.
4050   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4051       Context.getTargetInfo().getTriple().isOSDarwin() &&
4052       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4053       !llvm::GlobalVariable::isWeakLinkage(Linkage))
4054     Linkage = llvm::GlobalValue::InternalLinkage;
4055 
4056   GV->setLinkage(Linkage);
4057   if (D->hasAttr<DLLImportAttr>())
4058     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4059   else if (D->hasAttr<DLLExportAttr>())
4060     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4061   else
4062     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4063 
4064   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4065     // common vars aren't constant even if declared const.
4066     GV->setConstant(false);
4067     // Tentative definition of global variables may be initialized with
4068     // non-zero null pointers. In this case they should have weak linkage
4069     // since common linkage must have zero initializer and must not have
4070     // explicit section therefore cannot have non-zero initial value.
4071     if (!GV->getInitializer()->isNullValue())
4072       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4073   }
4074 
4075   setNonAliasAttributes(D, GV);
4076 
4077   if (D->getTLSKind() && !GV->isThreadLocal()) {
4078     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4079       CXXThreadLocals.push_back(D);
4080     setTLSMode(GV, *D);
4081   }
4082 
4083   maybeSetTrivialComdat(*D, *GV);
4084 
4085   // Emit the initializer function if necessary.
4086   if (NeedsGlobalCtor || NeedsGlobalDtor)
4087     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4088 
4089   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4090 
4091   // Emit global variable debug information.
4092   if (CGDebugInfo *DI = getModuleDebugInfo())
4093     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4094       DI->EmitGlobalVariable(GV, D);
4095 }
4096 
4097 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4098                                       CodeGenModule &CGM, const VarDecl *D,
4099                                       bool NoCommon) {
4100   // Don't give variables common linkage if -fno-common was specified unless it
4101   // was overridden by a NoCommon attribute.
4102   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4103     return true;
4104 
4105   // C11 6.9.2/2:
4106   //   A declaration of an identifier for an object that has file scope without
4107   //   an initializer, and without a storage-class specifier or with the
4108   //   storage-class specifier static, constitutes a tentative definition.
4109   if (D->getInit() || D->hasExternalStorage())
4110     return true;
4111 
4112   // A variable cannot be both common and exist in a section.
4113   if (D->hasAttr<SectionAttr>())
4114     return true;
4115 
4116   // A variable cannot be both common and exist in a section.
4117   // We don't try to determine which is the right section in the front-end.
4118   // If no specialized section name is applicable, it will resort to default.
4119   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4120       D->hasAttr<PragmaClangDataSectionAttr>() ||
4121       D->hasAttr<PragmaClangRodataSectionAttr>())
4122     return true;
4123 
4124   // Thread local vars aren't considered common linkage.
4125   if (D->getTLSKind())
4126     return true;
4127 
4128   // Tentative definitions marked with WeakImportAttr are true definitions.
4129   if (D->hasAttr<WeakImportAttr>())
4130     return true;
4131 
4132   // A variable cannot be both common and exist in a comdat.
4133   if (shouldBeInCOMDAT(CGM, *D))
4134     return true;
4135 
4136   // Declarations with a required alignment do not have common linkage in MSVC
4137   // mode.
4138   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4139     if (D->hasAttr<AlignedAttr>())
4140       return true;
4141     QualType VarType = D->getType();
4142     if (Context.isAlignmentRequired(VarType))
4143       return true;
4144 
4145     if (const auto *RT = VarType->getAs<RecordType>()) {
4146       const RecordDecl *RD = RT->getDecl();
4147       for (const FieldDecl *FD : RD->fields()) {
4148         if (FD->isBitField())
4149           continue;
4150         if (FD->hasAttr<AlignedAttr>())
4151           return true;
4152         if (Context.isAlignmentRequired(FD->getType()))
4153           return true;
4154       }
4155     }
4156   }
4157 
4158   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4159   // common symbols, so symbols with greater alignment requirements cannot be
4160   // common.
4161   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4162   // alignments for common symbols via the aligncomm directive, so this
4163   // restriction only applies to MSVC environments.
4164   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4165       Context.getTypeAlignIfKnown(D->getType()) >
4166           Context.toBits(CharUnits::fromQuantity(32)))
4167     return true;
4168 
4169   return false;
4170 }
4171 
4172 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4173     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4174   if (Linkage == GVA_Internal)
4175     return llvm::Function::InternalLinkage;
4176 
4177   if (D->hasAttr<WeakAttr>()) {
4178     if (IsConstantVariable)
4179       return llvm::GlobalVariable::WeakODRLinkage;
4180     else
4181       return llvm::GlobalVariable::WeakAnyLinkage;
4182   }
4183 
4184   if (const auto *FD = D->getAsFunction())
4185     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4186       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4187 
4188   // We are guaranteed to have a strong definition somewhere else,
4189   // so we can use available_externally linkage.
4190   if (Linkage == GVA_AvailableExternally)
4191     return llvm::GlobalValue::AvailableExternallyLinkage;
4192 
4193   // Note that Apple's kernel linker doesn't support symbol
4194   // coalescing, so we need to avoid linkonce and weak linkages there.
4195   // Normally, this means we just map to internal, but for explicit
4196   // instantiations we'll map to external.
4197 
4198   // In C++, the compiler has to emit a definition in every translation unit
4199   // that references the function.  We should use linkonce_odr because
4200   // a) if all references in this translation unit are optimized away, we
4201   // don't need to codegen it.  b) if the function persists, it needs to be
4202   // merged with other definitions. c) C++ has the ODR, so we know the
4203   // definition is dependable.
4204   if (Linkage == GVA_DiscardableODR)
4205     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4206                                             : llvm::Function::InternalLinkage;
4207 
4208   // An explicit instantiation of a template has weak linkage, since
4209   // explicit instantiations can occur in multiple translation units
4210   // and must all be equivalent. However, we are not allowed to
4211   // throw away these explicit instantiations.
4212   //
4213   // We don't currently support CUDA device code spread out across multiple TUs,
4214   // so say that CUDA templates are either external (for kernels) or internal.
4215   // This lets llvm perform aggressive inter-procedural optimizations.
4216   if (Linkage == GVA_StrongODR) {
4217     if (Context.getLangOpts().AppleKext)
4218       return llvm::Function::ExternalLinkage;
4219     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4220       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4221                                           : llvm::Function::InternalLinkage;
4222     return llvm::Function::WeakODRLinkage;
4223   }
4224 
4225   // C++ doesn't have tentative definitions and thus cannot have common
4226   // linkage.
4227   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4228       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4229                                  CodeGenOpts.NoCommon))
4230     return llvm::GlobalVariable::CommonLinkage;
4231 
4232   // selectany symbols are externally visible, so use weak instead of
4233   // linkonce.  MSVC optimizes away references to const selectany globals, so
4234   // all definitions should be the same and ODR linkage should be used.
4235   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4236   if (D->hasAttr<SelectAnyAttr>())
4237     return llvm::GlobalVariable::WeakODRLinkage;
4238 
4239   // Otherwise, we have strong external linkage.
4240   assert(Linkage == GVA_StrongExternal);
4241   return llvm::GlobalVariable::ExternalLinkage;
4242 }
4243 
4244 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4245     const VarDecl *VD, bool IsConstant) {
4246   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4247   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4248 }
4249 
4250 /// Replace the uses of a function that was declared with a non-proto type.
4251 /// We want to silently drop extra arguments from call sites
4252 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4253                                           llvm::Function *newFn) {
4254   // Fast path.
4255   if (old->use_empty()) return;
4256 
4257   llvm::Type *newRetTy = newFn->getReturnType();
4258   SmallVector<llvm::Value*, 4> newArgs;
4259   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4260 
4261   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4262          ui != ue; ) {
4263     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4264     llvm::User *user = use->getUser();
4265 
4266     // Recognize and replace uses of bitcasts.  Most calls to
4267     // unprototyped functions will use bitcasts.
4268     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4269       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4270         replaceUsesOfNonProtoConstant(bitcast, newFn);
4271       continue;
4272     }
4273 
4274     // Recognize calls to the function.
4275     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4276     if (!callSite) continue;
4277     if (!callSite->isCallee(&*use))
4278       continue;
4279 
4280     // If the return types don't match exactly, then we can't
4281     // transform this call unless it's dead.
4282     if (callSite->getType() != newRetTy && !callSite->use_empty())
4283       continue;
4284 
4285     // Get the call site's attribute list.
4286     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4287     llvm::AttributeList oldAttrs = callSite->getAttributes();
4288 
4289     // If the function was passed too few arguments, don't transform.
4290     unsigned newNumArgs = newFn->arg_size();
4291     if (callSite->arg_size() < newNumArgs)
4292       continue;
4293 
4294     // If extra arguments were passed, we silently drop them.
4295     // If any of the types mismatch, we don't transform.
4296     unsigned argNo = 0;
4297     bool dontTransform = false;
4298     for (llvm::Argument &A : newFn->args()) {
4299       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4300         dontTransform = true;
4301         break;
4302       }
4303 
4304       // Add any parameter attributes.
4305       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4306       argNo++;
4307     }
4308     if (dontTransform)
4309       continue;
4310 
4311     // Okay, we can transform this.  Create the new call instruction and copy
4312     // over the required information.
4313     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4314 
4315     // Copy over any operand bundles.
4316     callSite->getOperandBundlesAsDefs(newBundles);
4317 
4318     llvm::CallBase *newCall;
4319     if (dyn_cast<llvm::CallInst>(callSite)) {
4320       newCall =
4321           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4322     } else {
4323       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4324       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4325                                          oldInvoke->getUnwindDest(), newArgs,
4326                                          newBundles, "", callSite);
4327     }
4328     newArgs.clear(); // for the next iteration
4329 
4330     if (!newCall->getType()->isVoidTy())
4331       newCall->takeName(callSite);
4332     newCall->setAttributes(llvm::AttributeList::get(
4333         newFn->getContext(), oldAttrs.getFnAttributes(),
4334         oldAttrs.getRetAttributes(), newArgAttrs));
4335     newCall->setCallingConv(callSite->getCallingConv());
4336 
4337     // Finally, remove the old call, replacing any uses with the new one.
4338     if (!callSite->use_empty())
4339       callSite->replaceAllUsesWith(newCall);
4340 
4341     // Copy debug location attached to CI.
4342     if (callSite->getDebugLoc())
4343       newCall->setDebugLoc(callSite->getDebugLoc());
4344 
4345     callSite->eraseFromParent();
4346   }
4347 }
4348 
4349 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4350 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4351 /// existing call uses of the old function in the module, this adjusts them to
4352 /// call the new function directly.
4353 ///
4354 /// This is not just a cleanup: the always_inline pass requires direct calls to
4355 /// functions to be able to inline them.  If there is a bitcast in the way, it
4356 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4357 /// run at -O0.
4358 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4359                                                       llvm::Function *NewFn) {
4360   // If we're redefining a global as a function, don't transform it.
4361   if (!isa<llvm::Function>(Old)) return;
4362 
4363   replaceUsesOfNonProtoConstant(Old, NewFn);
4364 }
4365 
4366 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4367   auto DK = VD->isThisDeclarationADefinition();
4368   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4369     return;
4370 
4371   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4372   // If we have a definition, this might be a deferred decl. If the
4373   // instantiation is explicit, make sure we emit it at the end.
4374   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4375     GetAddrOfGlobalVar(VD);
4376 
4377   EmitTopLevelDecl(VD);
4378 }
4379 
4380 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4381                                                  llvm::GlobalValue *GV) {
4382   // Check if this must be emitted as declare variant.
4383   if (LangOpts.OpenMP && OpenMPRuntime &&
4384       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4385     return;
4386 
4387   const auto *D = cast<FunctionDecl>(GD.getDecl());
4388 
4389   // Compute the function info and LLVM type.
4390   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4391   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4392 
4393   // Get or create the prototype for the function.
4394   if (!GV || (GV->getType()->getElementType() != Ty))
4395     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4396                                                    /*DontDefer=*/true,
4397                                                    ForDefinition));
4398 
4399   // Already emitted.
4400   if (!GV->isDeclaration())
4401     return;
4402 
4403   // We need to set linkage and visibility on the function before
4404   // generating code for it because various parts of IR generation
4405   // want to propagate this information down (e.g. to local static
4406   // declarations).
4407   auto *Fn = cast<llvm::Function>(GV);
4408   setFunctionLinkage(GD, Fn);
4409 
4410   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4411   setGVProperties(Fn, GD);
4412 
4413   MaybeHandleStaticInExternC(D, Fn);
4414 
4415 
4416   maybeSetTrivialComdat(*D, *Fn);
4417 
4418   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4419 
4420   setNonAliasAttributes(GD, Fn);
4421   SetLLVMFunctionAttributesForDefinition(D, Fn);
4422 
4423   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4424     AddGlobalCtor(Fn, CA->getPriority());
4425   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4426     AddGlobalDtor(Fn, DA->getPriority());
4427   if (D->hasAttr<AnnotateAttr>())
4428     AddGlobalAnnotations(D, Fn);
4429 }
4430 
4431 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4432   const auto *D = cast<ValueDecl>(GD.getDecl());
4433   const AliasAttr *AA = D->getAttr<AliasAttr>();
4434   assert(AA && "Not an alias?");
4435 
4436   StringRef MangledName = getMangledName(GD);
4437 
4438   if (AA->getAliasee() == MangledName) {
4439     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4440     return;
4441   }
4442 
4443   // If there is a definition in the module, then it wins over the alias.
4444   // This is dubious, but allow it to be safe.  Just ignore the alias.
4445   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4446   if (Entry && !Entry->isDeclaration())
4447     return;
4448 
4449   Aliases.push_back(GD);
4450 
4451   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4452 
4453   // Create a reference to the named value.  This ensures that it is emitted
4454   // if a deferred decl.
4455   llvm::Constant *Aliasee;
4456   llvm::GlobalValue::LinkageTypes LT;
4457   if (isa<llvm::FunctionType>(DeclTy)) {
4458     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4459                                       /*ForVTable=*/false);
4460     LT = getFunctionLinkage(GD);
4461   } else {
4462     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4463                                     llvm::PointerType::getUnqual(DeclTy),
4464                                     /*D=*/nullptr);
4465     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4466                                      D->getType().isConstQualified());
4467   }
4468 
4469   // Create the new alias itself, but don't set a name yet.
4470   auto *GA =
4471       llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4472 
4473   if (Entry) {
4474     if (GA->getAliasee() == Entry) {
4475       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4476       return;
4477     }
4478 
4479     assert(Entry->isDeclaration());
4480 
4481     // If there is a declaration in the module, then we had an extern followed
4482     // by the alias, as in:
4483     //   extern int test6();
4484     //   ...
4485     //   int test6() __attribute__((alias("test7")));
4486     //
4487     // Remove it and replace uses of it with the alias.
4488     GA->takeName(Entry);
4489 
4490     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4491                                                           Entry->getType()));
4492     Entry->eraseFromParent();
4493   } else {
4494     GA->setName(MangledName);
4495   }
4496 
4497   // Set attributes which are particular to an alias; this is a
4498   // specialization of the attributes which may be set on a global
4499   // variable/function.
4500   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4501       D->isWeakImported()) {
4502     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4503   }
4504 
4505   if (const auto *VD = dyn_cast<VarDecl>(D))
4506     if (VD->getTLSKind())
4507       setTLSMode(GA, *VD);
4508 
4509   SetCommonAttributes(GD, GA);
4510 }
4511 
4512 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4513   const auto *D = cast<ValueDecl>(GD.getDecl());
4514   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4515   assert(IFA && "Not an ifunc?");
4516 
4517   StringRef MangledName = getMangledName(GD);
4518 
4519   if (IFA->getResolver() == MangledName) {
4520     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4521     return;
4522   }
4523 
4524   // Report an error if some definition overrides ifunc.
4525   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4526   if (Entry && !Entry->isDeclaration()) {
4527     GlobalDecl OtherGD;
4528     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4529         DiagnosedConflictingDefinitions.insert(GD).second) {
4530       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4531           << MangledName;
4532       Diags.Report(OtherGD.getDecl()->getLocation(),
4533                    diag::note_previous_definition);
4534     }
4535     return;
4536   }
4537 
4538   Aliases.push_back(GD);
4539 
4540   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4541   llvm::Constant *Resolver =
4542       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4543                               /*ForVTable=*/false);
4544   llvm::GlobalIFunc *GIF =
4545       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4546                                 "", Resolver, &getModule());
4547   if (Entry) {
4548     if (GIF->getResolver() == Entry) {
4549       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4550       return;
4551     }
4552     assert(Entry->isDeclaration());
4553 
4554     // If there is a declaration in the module, then we had an extern followed
4555     // by the ifunc, as in:
4556     //   extern int test();
4557     //   ...
4558     //   int test() __attribute__((ifunc("resolver")));
4559     //
4560     // Remove it and replace uses of it with the ifunc.
4561     GIF->takeName(Entry);
4562 
4563     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4564                                                           Entry->getType()));
4565     Entry->eraseFromParent();
4566   } else
4567     GIF->setName(MangledName);
4568 
4569   SetCommonAttributes(GD, GIF);
4570 }
4571 
4572 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4573                                             ArrayRef<llvm::Type*> Tys) {
4574   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4575                                          Tys);
4576 }
4577 
4578 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4579 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4580                          const StringLiteral *Literal, bool TargetIsLSB,
4581                          bool &IsUTF16, unsigned &StringLength) {
4582   StringRef String = Literal->getString();
4583   unsigned NumBytes = String.size();
4584 
4585   // Check for simple case.
4586   if (!Literal->containsNonAsciiOrNull()) {
4587     StringLength = NumBytes;
4588     return *Map.insert(std::make_pair(String, nullptr)).first;
4589   }
4590 
4591   // Otherwise, convert the UTF8 literals into a string of shorts.
4592   IsUTF16 = true;
4593 
4594   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4595   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4596   llvm::UTF16 *ToPtr = &ToBuf[0];
4597 
4598   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4599                                  ToPtr + NumBytes, llvm::strictConversion);
4600 
4601   // ConvertUTF8toUTF16 returns the length in ToPtr.
4602   StringLength = ToPtr - &ToBuf[0];
4603 
4604   // Add an explicit null.
4605   *ToPtr = 0;
4606   return *Map.insert(std::make_pair(
4607                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4608                                    (StringLength + 1) * 2),
4609                          nullptr)).first;
4610 }
4611 
4612 ConstantAddress
4613 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4614   unsigned StringLength = 0;
4615   bool isUTF16 = false;
4616   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4617       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4618                                getDataLayout().isLittleEndian(), isUTF16,
4619                                StringLength);
4620 
4621   if (auto *C = Entry.second)
4622     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4623 
4624   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4625   llvm::Constant *Zeros[] = { Zero, Zero };
4626 
4627   const ASTContext &Context = getContext();
4628   const llvm::Triple &Triple = getTriple();
4629 
4630   const auto CFRuntime = getLangOpts().CFRuntime;
4631   const bool IsSwiftABI =
4632       static_cast<unsigned>(CFRuntime) >=
4633       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4634   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4635 
4636   // If we don't already have it, get __CFConstantStringClassReference.
4637   if (!CFConstantStringClassRef) {
4638     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4639     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4640     Ty = llvm::ArrayType::get(Ty, 0);
4641 
4642     switch (CFRuntime) {
4643     default: break;
4644     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4645     case LangOptions::CoreFoundationABI::Swift5_0:
4646       CFConstantStringClassName =
4647           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4648                               : "$s10Foundation19_NSCFConstantStringCN";
4649       Ty = IntPtrTy;
4650       break;
4651     case LangOptions::CoreFoundationABI::Swift4_2:
4652       CFConstantStringClassName =
4653           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4654                               : "$S10Foundation19_NSCFConstantStringCN";
4655       Ty = IntPtrTy;
4656       break;
4657     case LangOptions::CoreFoundationABI::Swift4_1:
4658       CFConstantStringClassName =
4659           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4660                               : "__T010Foundation19_NSCFConstantStringCN";
4661       Ty = IntPtrTy;
4662       break;
4663     }
4664 
4665     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4666 
4667     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4668       llvm::GlobalValue *GV = nullptr;
4669 
4670       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4671         IdentifierInfo &II = Context.Idents.get(GV->getName());
4672         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4673         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4674 
4675         const VarDecl *VD = nullptr;
4676         for (const auto &Result : DC->lookup(&II))
4677           if ((VD = dyn_cast<VarDecl>(Result)))
4678             break;
4679 
4680         if (Triple.isOSBinFormatELF()) {
4681           if (!VD)
4682             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4683         } else {
4684           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4685           if (!VD || !VD->hasAttr<DLLExportAttr>())
4686             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4687           else
4688             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4689         }
4690 
4691         setDSOLocal(GV);
4692       }
4693     }
4694 
4695     // Decay array -> ptr
4696     CFConstantStringClassRef =
4697         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4698                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4699   }
4700 
4701   QualType CFTy = Context.getCFConstantStringType();
4702 
4703   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4704 
4705   ConstantInitBuilder Builder(*this);
4706   auto Fields = Builder.beginStruct(STy);
4707 
4708   // Class pointer.
4709   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4710 
4711   // Flags.
4712   if (IsSwiftABI) {
4713     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4714     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4715   } else {
4716     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4717   }
4718 
4719   // String pointer.
4720   llvm::Constant *C = nullptr;
4721   if (isUTF16) {
4722     auto Arr = llvm::makeArrayRef(
4723         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4724         Entry.first().size() / 2);
4725     C = llvm::ConstantDataArray::get(VMContext, Arr);
4726   } else {
4727     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4728   }
4729 
4730   // Note: -fwritable-strings doesn't make the backing store strings of
4731   // CFStrings writable. (See <rdar://problem/10657500>)
4732   auto *GV =
4733       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4734                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4735   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4736   // Don't enforce the target's minimum global alignment, since the only use
4737   // of the string is via this class initializer.
4738   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4739                             : Context.getTypeAlignInChars(Context.CharTy);
4740   GV->setAlignment(Align.getAsAlign());
4741 
4742   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4743   // Without it LLVM can merge the string with a non unnamed_addr one during
4744   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4745   if (Triple.isOSBinFormatMachO())
4746     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4747                            : "__TEXT,__cstring,cstring_literals");
4748   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4749   // the static linker to adjust permissions to read-only later on.
4750   else if (Triple.isOSBinFormatELF())
4751     GV->setSection(".rodata");
4752 
4753   // String.
4754   llvm::Constant *Str =
4755       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4756 
4757   if (isUTF16)
4758     // Cast the UTF16 string to the correct type.
4759     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4760   Fields.add(Str);
4761 
4762   // String length.
4763   llvm::IntegerType *LengthTy =
4764       llvm::IntegerType::get(getModule().getContext(),
4765                              Context.getTargetInfo().getLongWidth());
4766   if (IsSwiftABI) {
4767     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4768         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4769       LengthTy = Int32Ty;
4770     else
4771       LengthTy = IntPtrTy;
4772   }
4773   Fields.addInt(LengthTy, StringLength);
4774 
4775   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4776   // properly aligned on 32-bit platforms.
4777   CharUnits Alignment =
4778       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4779 
4780   // The struct.
4781   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4782                                     /*isConstant=*/false,
4783                                     llvm::GlobalVariable::PrivateLinkage);
4784   GV->addAttribute("objc_arc_inert");
4785   switch (Triple.getObjectFormat()) {
4786   case llvm::Triple::UnknownObjectFormat:
4787     llvm_unreachable("unknown file format");
4788   case llvm::Triple::XCOFF:
4789     llvm_unreachable("XCOFF is not yet implemented");
4790   case llvm::Triple::COFF:
4791   case llvm::Triple::ELF:
4792   case llvm::Triple::Wasm:
4793     GV->setSection("cfstring");
4794     break;
4795   case llvm::Triple::MachO:
4796     GV->setSection("__DATA,__cfstring");
4797     break;
4798   }
4799   Entry.second = GV;
4800 
4801   return ConstantAddress(GV, Alignment);
4802 }
4803 
4804 bool CodeGenModule::getExpressionLocationsEnabled() const {
4805   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4806 }
4807 
4808 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4809   if (ObjCFastEnumerationStateType.isNull()) {
4810     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4811     D->startDefinition();
4812 
4813     QualType FieldTypes[] = {
4814       Context.UnsignedLongTy,
4815       Context.getPointerType(Context.getObjCIdType()),
4816       Context.getPointerType(Context.UnsignedLongTy),
4817       Context.getConstantArrayType(Context.UnsignedLongTy,
4818                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4819     };
4820 
4821     for (size_t i = 0; i < 4; ++i) {
4822       FieldDecl *Field = FieldDecl::Create(Context,
4823                                            D,
4824                                            SourceLocation(),
4825                                            SourceLocation(), nullptr,
4826                                            FieldTypes[i], /*TInfo=*/nullptr,
4827                                            /*BitWidth=*/nullptr,
4828                                            /*Mutable=*/false,
4829                                            ICIS_NoInit);
4830       Field->setAccess(AS_public);
4831       D->addDecl(Field);
4832     }
4833 
4834     D->completeDefinition();
4835     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4836   }
4837 
4838   return ObjCFastEnumerationStateType;
4839 }
4840 
4841 llvm::Constant *
4842 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4843   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4844 
4845   // Don't emit it as the address of the string, emit the string data itself
4846   // as an inline array.
4847   if (E->getCharByteWidth() == 1) {
4848     SmallString<64> Str(E->getString());
4849 
4850     // Resize the string to the right size, which is indicated by its type.
4851     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4852     Str.resize(CAT->getSize().getZExtValue());
4853     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4854   }
4855 
4856   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4857   llvm::Type *ElemTy = AType->getElementType();
4858   unsigned NumElements = AType->getNumElements();
4859 
4860   // Wide strings have either 2-byte or 4-byte elements.
4861   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4862     SmallVector<uint16_t, 32> Elements;
4863     Elements.reserve(NumElements);
4864 
4865     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4866       Elements.push_back(E->getCodeUnit(i));
4867     Elements.resize(NumElements);
4868     return llvm::ConstantDataArray::get(VMContext, Elements);
4869   }
4870 
4871   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4872   SmallVector<uint32_t, 32> Elements;
4873   Elements.reserve(NumElements);
4874 
4875   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4876     Elements.push_back(E->getCodeUnit(i));
4877   Elements.resize(NumElements);
4878   return llvm::ConstantDataArray::get(VMContext, Elements);
4879 }
4880 
4881 static llvm::GlobalVariable *
4882 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4883                       CodeGenModule &CGM, StringRef GlobalName,
4884                       CharUnits Alignment) {
4885   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4886       CGM.getStringLiteralAddressSpace());
4887 
4888   llvm::Module &M = CGM.getModule();
4889   // Create a global variable for this string
4890   auto *GV = new llvm::GlobalVariable(
4891       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4892       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4893   GV->setAlignment(Alignment.getAsAlign());
4894   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4895   if (GV->isWeakForLinker()) {
4896     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4897     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4898   }
4899   CGM.setDSOLocal(GV);
4900 
4901   return GV;
4902 }
4903 
4904 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4905 /// constant array for the given string literal.
4906 ConstantAddress
4907 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4908                                                   StringRef Name) {
4909   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4910 
4911   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4912   llvm::GlobalVariable **Entry = nullptr;
4913   if (!LangOpts.WritableStrings) {
4914     Entry = &ConstantStringMap[C];
4915     if (auto GV = *Entry) {
4916       if (Alignment.getQuantity() > GV->getAlignment())
4917         GV->setAlignment(Alignment.getAsAlign());
4918       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4919                              Alignment);
4920     }
4921   }
4922 
4923   SmallString<256> MangledNameBuffer;
4924   StringRef GlobalVariableName;
4925   llvm::GlobalValue::LinkageTypes LT;
4926 
4927   // Mangle the string literal if that's how the ABI merges duplicate strings.
4928   // Don't do it if they are writable, since we don't want writes in one TU to
4929   // affect strings in another.
4930   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4931       !LangOpts.WritableStrings) {
4932     llvm::raw_svector_ostream Out(MangledNameBuffer);
4933     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4934     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4935     GlobalVariableName = MangledNameBuffer;
4936   } else {
4937     LT = llvm::GlobalValue::PrivateLinkage;
4938     GlobalVariableName = Name;
4939   }
4940 
4941   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4942   if (Entry)
4943     *Entry = GV;
4944 
4945   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4946                                   QualType());
4947 
4948   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4949                          Alignment);
4950 }
4951 
4952 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4953 /// array for the given ObjCEncodeExpr node.
4954 ConstantAddress
4955 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4956   std::string Str;
4957   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4958 
4959   return GetAddrOfConstantCString(Str);
4960 }
4961 
4962 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4963 /// the literal and a terminating '\0' character.
4964 /// The result has pointer to array type.
4965 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4966     const std::string &Str, const char *GlobalName) {
4967   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4968   CharUnits Alignment =
4969     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4970 
4971   llvm::Constant *C =
4972       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4973 
4974   // Don't share any string literals if strings aren't constant.
4975   llvm::GlobalVariable **Entry = nullptr;
4976   if (!LangOpts.WritableStrings) {
4977     Entry = &ConstantStringMap[C];
4978     if (auto GV = *Entry) {
4979       if (Alignment.getQuantity() > GV->getAlignment())
4980         GV->setAlignment(Alignment.getAsAlign());
4981       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4982                              Alignment);
4983     }
4984   }
4985 
4986   // Get the default prefix if a name wasn't specified.
4987   if (!GlobalName)
4988     GlobalName = ".str";
4989   // Create a global variable for this.
4990   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4991                                   GlobalName, Alignment);
4992   if (Entry)
4993     *Entry = GV;
4994 
4995   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4996                          Alignment);
4997 }
4998 
4999 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5000     const MaterializeTemporaryExpr *E, const Expr *Init) {
5001   assert((E->getStorageDuration() == SD_Static ||
5002           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5003   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5004 
5005   // If we're not materializing a subobject of the temporary, keep the
5006   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5007   QualType MaterializedType = Init->getType();
5008   if (Init == E->GetTemporaryExpr())
5009     MaterializedType = E->getType();
5010 
5011   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5012 
5013   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5014     return ConstantAddress(Slot, Align);
5015 
5016   // FIXME: If an externally-visible declaration extends multiple temporaries,
5017   // we need to give each temporary the same name in every translation unit (and
5018   // we also need to make the temporaries externally-visible).
5019   SmallString<256> Name;
5020   llvm::raw_svector_ostream Out(Name);
5021   getCXXABI().getMangleContext().mangleReferenceTemporary(
5022       VD, E->getManglingNumber(), Out);
5023 
5024   APValue *Value = nullptr;
5025   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5026     // If the initializer of the extending declaration is a constant
5027     // initializer, we should have a cached constant initializer for this
5028     // temporary. Note that this might have a different value from the value
5029     // computed by evaluating the initializer if the surrounding constant
5030     // expression modifies the temporary.
5031     Value = getContext().getMaterializedTemporaryValue(E, false);
5032   }
5033 
5034   // Try evaluating it now, it might have a constant initializer.
5035   Expr::EvalResult EvalResult;
5036   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5037       !EvalResult.hasSideEffects())
5038     Value = &EvalResult.Val;
5039 
5040   LangAS AddrSpace =
5041       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5042 
5043   Optional<ConstantEmitter> emitter;
5044   llvm::Constant *InitialValue = nullptr;
5045   bool Constant = false;
5046   llvm::Type *Type;
5047   if (Value) {
5048     // The temporary has a constant initializer, use it.
5049     emitter.emplace(*this);
5050     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5051                                                MaterializedType);
5052     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5053     Type = InitialValue->getType();
5054   } else {
5055     // No initializer, the initialization will be provided when we
5056     // initialize the declaration which performed lifetime extension.
5057     Type = getTypes().ConvertTypeForMem(MaterializedType);
5058   }
5059 
5060   // Create a global variable for this lifetime-extended temporary.
5061   llvm::GlobalValue::LinkageTypes Linkage =
5062       getLLVMLinkageVarDefinition(VD, Constant);
5063   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5064     const VarDecl *InitVD;
5065     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5066         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5067       // Temporaries defined inside a class get linkonce_odr linkage because the
5068       // class can be defined in multiple translation units.
5069       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5070     } else {
5071       // There is no need for this temporary to have external linkage if the
5072       // VarDecl has external linkage.
5073       Linkage = llvm::GlobalVariable::InternalLinkage;
5074     }
5075   }
5076   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5077   auto *GV = new llvm::GlobalVariable(
5078       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5079       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5080   if (emitter) emitter->finalize(GV);
5081   setGVProperties(GV, VD);
5082   GV->setAlignment(Align.getAsAlign());
5083   if (supportsCOMDAT() && GV->isWeakForLinker())
5084     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5085   if (VD->getTLSKind())
5086     setTLSMode(GV, *VD);
5087   llvm::Constant *CV = GV;
5088   if (AddrSpace != LangAS::Default)
5089     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5090         *this, GV, AddrSpace, LangAS::Default,
5091         Type->getPointerTo(
5092             getContext().getTargetAddressSpace(LangAS::Default)));
5093   MaterializedGlobalTemporaryMap[E] = CV;
5094   return ConstantAddress(CV, Align);
5095 }
5096 
5097 /// EmitObjCPropertyImplementations - Emit information for synthesized
5098 /// properties for an implementation.
5099 void CodeGenModule::EmitObjCPropertyImplementations(const
5100                                                     ObjCImplementationDecl *D) {
5101   for (const auto *PID : D->property_impls()) {
5102     // Dynamic is just for type-checking.
5103     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5104       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5105 
5106       // Determine which methods need to be implemented, some may have
5107       // been overridden. Note that ::isPropertyAccessor is not the method
5108       // we want, that just indicates if the decl came from a
5109       // property. What we want to know is if the method is defined in
5110       // this implementation.
5111       if (!D->getInstanceMethod(PD->getGetterName()))
5112         CodeGenFunction(*this).GenerateObjCGetter(
5113                                  const_cast<ObjCImplementationDecl *>(D), PID);
5114       if (!PD->isReadOnly() &&
5115           !D->getInstanceMethod(PD->getSetterName()))
5116         CodeGenFunction(*this).GenerateObjCSetter(
5117                                  const_cast<ObjCImplementationDecl *>(D), PID);
5118     }
5119   }
5120 }
5121 
5122 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5123   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5124   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5125        ivar; ivar = ivar->getNextIvar())
5126     if (ivar->getType().isDestructedType())
5127       return true;
5128 
5129   return false;
5130 }
5131 
5132 static bool AllTrivialInitializers(CodeGenModule &CGM,
5133                                    ObjCImplementationDecl *D) {
5134   CodeGenFunction CGF(CGM);
5135   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5136        E = D->init_end(); B != E; ++B) {
5137     CXXCtorInitializer *CtorInitExp = *B;
5138     Expr *Init = CtorInitExp->getInit();
5139     if (!CGF.isTrivialInitializer(Init))
5140       return false;
5141   }
5142   return true;
5143 }
5144 
5145 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5146 /// for an implementation.
5147 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5148   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5149   if (needsDestructMethod(D)) {
5150     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5151     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5152     ObjCMethodDecl *DTORMethod =
5153       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
5154                              cxxSelector, getContext().VoidTy, nullptr, D,
5155                              /*isInstance=*/true, /*isVariadic=*/false,
5156                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
5157                              /*isDefined=*/false, ObjCMethodDecl::Required);
5158     D->addInstanceMethod(DTORMethod);
5159     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5160     D->setHasDestructors(true);
5161   }
5162 
5163   // If the implementation doesn't have any ivar initializers, we don't need
5164   // a .cxx_construct.
5165   if (D->getNumIvarInitializers() == 0 ||
5166       AllTrivialInitializers(*this, D))
5167     return;
5168 
5169   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5170   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5171   // The constructor returns 'self'.
5172   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
5173                                                 D->getLocation(),
5174                                                 D->getLocation(),
5175                                                 cxxSelector,
5176                                                 getContext().getObjCIdType(),
5177                                                 nullptr, D, /*isInstance=*/true,
5178                                                 /*isVariadic=*/false,
5179                                                 /*isPropertyAccessor=*/true,
5180                                                 /*isImplicitlyDeclared=*/true,
5181                                                 /*isDefined=*/false,
5182                                                 ObjCMethodDecl::Required);
5183   D->addInstanceMethod(CTORMethod);
5184   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5185   D->setHasNonZeroConstructors(true);
5186 }
5187 
5188 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5189 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5190   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5191       LSD->getLanguage() != LinkageSpecDecl::lang_cxx &&
5192       LSD->getLanguage() != LinkageSpecDecl::lang_cxx_11 &&
5193       LSD->getLanguage() != LinkageSpecDecl::lang_cxx_14) {
5194     ErrorUnsupported(LSD, "linkage spec");
5195     return;
5196   }
5197 
5198   EmitDeclContext(LSD);
5199 }
5200 
5201 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5202   for (auto *I : DC->decls()) {
5203     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5204     // are themselves considered "top-level", so EmitTopLevelDecl on an
5205     // ObjCImplDecl does not recursively visit them. We need to do that in
5206     // case they're nested inside another construct (LinkageSpecDecl /
5207     // ExportDecl) that does stop them from being considered "top-level".
5208     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5209       for (auto *M : OID->methods())
5210         EmitTopLevelDecl(M);
5211     }
5212 
5213     EmitTopLevelDecl(I);
5214   }
5215 }
5216 
5217 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5218 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5219   // Ignore dependent declarations.
5220   if (D->isTemplated())
5221     return;
5222 
5223   switch (D->getKind()) {
5224   case Decl::CXXConversion:
5225   case Decl::CXXMethod:
5226   case Decl::Function:
5227     EmitGlobal(cast<FunctionDecl>(D));
5228     // Always provide some coverage mapping
5229     // even for the functions that aren't emitted.
5230     AddDeferredUnusedCoverageMapping(D);
5231     break;
5232 
5233   case Decl::CXXDeductionGuide:
5234     // Function-like, but does not result in code emission.
5235     break;
5236 
5237   case Decl::Var:
5238   case Decl::Decomposition:
5239   case Decl::VarTemplateSpecialization:
5240     EmitGlobal(cast<VarDecl>(D));
5241     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5242       for (auto *B : DD->bindings())
5243         if (auto *HD = B->getHoldingVar())
5244           EmitGlobal(HD);
5245     break;
5246 
5247   // Indirect fields from global anonymous structs and unions can be
5248   // ignored; only the actual variable requires IR gen support.
5249   case Decl::IndirectField:
5250     break;
5251 
5252   // C++ Decls
5253   case Decl::Namespace:
5254     EmitDeclContext(cast<NamespaceDecl>(D));
5255     break;
5256   case Decl::ClassTemplateSpecialization: {
5257     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5258     if (DebugInfo &&
5259         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5260         Spec->hasDefinition())
5261       DebugInfo->completeTemplateDefinition(*Spec);
5262   } LLVM_FALLTHROUGH;
5263   case Decl::CXXRecord:
5264     if (DebugInfo) {
5265       if (auto *ES = D->getASTContext().getExternalSource())
5266         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5267           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5268     }
5269     // Emit any static data members, they may be definitions.
5270     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5271       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5272         EmitTopLevelDecl(I);
5273     break;
5274     // No code generation needed.
5275   case Decl::UsingShadow:
5276   case Decl::ClassTemplate:
5277   case Decl::VarTemplate:
5278   case Decl::Concept:
5279   case Decl::VarTemplatePartialSpecialization:
5280   case Decl::FunctionTemplate:
5281   case Decl::TypeAliasTemplate:
5282   case Decl::Block:
5283   case Decl::Empty:
5284   case Decl::Binding:
5285     break;
5286   case Decl::Using:          // using X; [C++]
5287     if (CGDebugInfo *DI = getModuleDebugInfo())
5288         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5289     return;
5290   case Decl::NamespaceAlias:
5291     if (CGDebugInfo *DI = getModuleDebugInfo())
5292         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5293     return;
5294   case Decl::UsingDirective: // using namespace X; [C++]
5295     if (CGDebugInfo *DI = getModuleDebugInfo())
5296       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5297     return;
5298   case Decl::CXXConstructor:
5299     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5300     break;
5301   case Decl::CXXDestructor:
5302     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5303     break;
5304 
5305   case Decl::StaticAssert:
5306     // Nothing to do.
5307     break;
5308 
5309   // Objective-C Decls
5310 
5311   // Forward declarations, no (immediate) code generation.
5312   case Decl::ObjCInterface:
5313   case Decl::ObjCCategory:
5314     break;
5315 
5316   case Decl::ObjCProtocol: {
5317     auto *Proto = cast<ObjCProtocolDecl>(D);
5318     if (Proto->isThisDeclarationADefinition())
5319       ObjCRuntime->GenerateProtocol(Proto);
5320     break;
5321   }
5322 
5323   case Decl::ObjCCategoryImpl:
5324     // Categories have properties but don't support synthesize so we
5325     // can ignore them here.
5326     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5327     break;
5328 
5329   case Decl::ObjCImplementation: {
5330     auto *OMD = cast<ObjCImplementationDecl>(D);
5331     EmitObjCPropertyImplementations(OMD);
5332     EmitObjCIvarInitializations(OMD);
5333     ObjCRuntime->GenerateClass(OMD);
5334     // Emit global variable debug information.
5335     if (CGDebugInfo *DI = getModuleDebugInfo())
5336       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5337         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5338             OMD->getClassInterface()), OMD->getLocation());
5339     break;
5340   }
5341   case Decl::ObjCMethod: {
5342     auto *OMD = cast<ObjCMethodDecl>(D);
5343     // If this is not a prototype, emit the body.
5344     if (OMD->getBody())
5345       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5346     break;
5347   }
5348   case Decl::ObjCCompatibleAlias:
5349     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5350     break;
5351 
5352   case Decl::PragmaComment: {
5353     const auto *PCD = cast<PragmaCommentDecl>(D);
5354     switch (PCD->getCommentKind()) {
5355     case PCK_Unknown:
5356       llvm_unreachable("unexpected pragma comment kind");
5357     case PCK_Linker:
5358       AppendLinkerOptions(PCD->getArg());
5359       break;
5360     case PCK_Lib:
5361         AddDependentLib(PCD->getArg());
5362       break;
5363     case PCK_Compiler:
5364     case PCK_ExeStr:
5365     case PCK_User:
5366       break; // We ignore all of these.
5367     }
5368     break;
5369   }
5370 
5371   case Decl::PragmaDetectMismatch: {
5372     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5373     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5374     break;
5375   }
5376 
5377   case Decl::LinkageSpec:
5378     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5379     break;
5380 
5381   case Decl::FileScopeAsm: {
5382     // File-scope asm is ignored during device-side CUDA compilation.
5383     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5384       break;
5385     // File-scope asm is ignored during device-side OpenMP compilation.
5386     if (LangOpts.OpenMPIsDevice)
5387       break;
5388     auto *AD = cast<FileScopeAsmDecl>(D);
5389     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5390     break;
5391   }
5392 
5393   case Decl::Import: {
5394     auto *Import = cast<ImportDecl>(D);
5395 
5396     // If we've already imported this module, we're done.
5397     if (!ImportedModules.insert(Import->getImportedModule()))
5398       break;
5399 
5400     // Emit debug information for direct imports.
5401     if (!Import->getImportedOwningModule()) {
5402       if (CGDebugInfo *DI = getModuleDebugInfo())
5403         DI->EmitImportDecl(*Import);
5404     }
5405 
5406     // Find all of the submodules and emit the module initializers.
5407     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5408     SmallVector<clang::Module *, 16> Stack;
5409     Visited.insert(Import->getImportedModule());
5410     Stack.push_back(Import->getImportedModule());
5411 
5412     while (!Stack.empty()) {
5413       clang::Module *Mod = Stack.pop_back_val();
5414       if (!EmittedModuleInitializers.insert(Mod).second)
5415         continue;
5416 
5417       for (auto *D : Context.getModuleInitializers(Mod))
5418         EmitTopLevelDecl(D);
5419 
5420       // Visit the submodules of this module.
5421       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5422                                              SubEnd = Mod->submodule_end();
5423            Sub != SubEnd; ++Sub) {
5424         // Skip explicit children; they need to be explicitly imported to emit
5425         // the initializers.
5426         if ((*Sub)->IsExplicit)
5427           continue;
5428 
5429         if (Visited.insert(*Sub).second)
5430           Stack.push_back(*Sub);
5431       }
5432     }
5433     break;
5434   }
5435 
5436   case Decl::Export:
5437     EmitDeclContext(cast<ExportDecl>(D));
5438     break;
5439 
5440   case Decl::OMPThreadPrivate:
5441     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5442     break;
5443 
5444   case Decl::OMPAllocate:
5445     break;
5446 
5447   case Decl::OMPDeclareReduction:
5448     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5449     break;
5450 
5451   case Decl::OMPDeclareMapper:
5452     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5453     break;
5454 
5455   case Decl::OMPRequires:
5456     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5457     break;
5458 
5459   default:
5460     // Make sure we handled everything we should, every other kind is a
5461     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5462     // function. Need to recode Decl::Kind to do that easily.
5463     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5464     break;
5465   }
5466 }
5467 
5468 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5469   // Do we need to generate coverage mapping?
5470   if (!CodeGenOpts.CoverageMapping)
5471     return;
5472   switch (D->getKind()) {
5473   case Decl::CXXConversion:
5474   case Decl::CXXMethod:
5475   case Decl::Function:
5476   case Decl::ObjCMethod:
5477   case Decl::CXXConstructor:
5478   case Decl::CXXDestructor: {
5479     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5480       return;
5481     SourceManager &SM = getContext().getSourceManager();
5482     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5483       return;
5484     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5485     if (I == DeferredEmptyCoverageMappingDecls.end())
5486       DeferredEmptyCoverageMappingDecls[D] = true;
5487     break;
5488   }
5489   default:
5490     break;
5491   };
5492 }
5493 
5494 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5495   // Do we need to generate coverage mapping?
5496   if (!CodeGenOpts.CoverageMapping)
5497     return;
5498   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5499     if (Fn->isTemplateInstantiation())
5500       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5501   }
5502   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5503   if (I == DeferredEmptyCoverageMappingDecls.end())
5504     DeferredEmptyCoverageMappingDecls[D] = false;
5505   else
5506     I->second = false;
5507 }
5508 
5509 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5510   // We call takeVector() here to avoid use-after-free.
5511   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5512   // we deserialize function bodies to emit coverage info for them, and that
5513   // deserializes more declarations. How should we handle that case?
5514   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5515     if (!Entry.second)
5516       continue;
5517     const Decl *D = Entry.first;
5518     switch (D->getKind()) {
5519     case Decl::CXXConversion:
5520     case Decl::CXXMethod:
5521     case Decl::Function:
5522     case Decl::ObjCMethod: {
5523       CodeGenPGO PGO(*this);
5524       GlobalDecl GD(cast<FunctionDecl>(D));
5525       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5526                                   getFunctionLinkage(GD));
5527       break;
5528     }
5529     case Decl::CXXConstructor: {
5530       CodeGenPGO PGO(*this);
5531       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5532       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5533                                   getFunctionLinkage(GD));
5534       break;
5535     }
5536     case Decl::CXXDestructor: {
5537       CodeGenPGO PGO(*this);
5538       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5539       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5540                                   getFunctionLinkage(GD));
5541       break;
5542     }
5543     default:
5544       break;
5545     };
5546   }
5547 }
5548 
5549 /// Turns the given pointer into a constant.
5550 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5551                                           const void *Ptr) {
5552   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5553   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5554   return llvm::ConstantInt::get(i64, PtrInt);
5555 }
5556 
5557 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5558                                    llvm::NamedMDNode *&GlobalMetadata,
5559                                    GlobalDecl D,
5560                                    llvm::GlobalValue *Addr) {
5561   if (!GlobalMetadata)
5562     GlobalMetadata =
5563       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5564 
5565   // TODO: should we report variant information for ctors/dtors?
5566   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5567                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5568                                CGM.getLLVMContext(), D.getDecl()))};
5569   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5570 }
5571 
5572 /// For each function which is declared within an extern "C" region and marked
5573 /// as 'used', but has internal linkage, create an alias from the unmangled
5574 /// name to the mangled name if possible. People expect to be able to refer
5575 /// to such functions with an unmangled name from inline assembly within the
5576 /// same translation unit.
5577 void CodeGenModule::EmitStaticExternCAliases() {
5578   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5579     return;
5580   for (auto &I : StaticExternCValues) {
5581     IdentifierInfo *Name = I.first;
5582     llvm::GlobalValue *Val = I.second;
5583     if (Val && !getModule().getNamedValue(Name->getName()))
5584       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5585   }
5586 }
5587 
5588 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5589                                              GlobalDecl &Result) const {
5590   auto Res = Manglings.find(MangledName);
5591   if (Res == Manglings.end())
5592     return false;
5593   Result = Res->getValue();
5594   return true;
5595 }
5596 
5597 /// Emits metadata nodes associating all the global values in the
5598 /// current module with the Decls they came from.  This is useful for
5599 /// projects using IR gen as a subroutine.
5600 ///
5601 /// Since there's currently no way to associate an MDNode directly
5602 /// with an llvm::GlobalValue, we create a global named metadata
5603 /// with the name 'clang.global.decl.ptrs'.
5604 void CodeGenModule::EmitDeclMetadata() {
5605   llvm::NamedMDNode *GlobalMetadata = nullptr;
5606 
5607   for (auto &I : MangledDeclNames) {
5608     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5609     // Some mangled names don't necessarily have an associated GlobalValue
5610     // in this module, e.g. if we mangled it for DebugInfo.
5611     if (Addr)
5612       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5613   }
5614 }
5615 
5616 /// Emits metadata nodes for all the local variables in the current
5617 /// function.
5618 void CodeGenFunction::EmitDeclMetadata() {
5619   if (LocalDeclMap.empty()) return;
5620 
5621   llvm::LLVMContext &Context = getLLVMContext();
5622 
5623   // Find the unique metadata ID for this name.
5624   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5625 
5626   llvm::NamedMDNode *GlobalMetadata = nullptr;
5627 
5628   for (auto &I : LocalDeclMap) {
5629     const Decl *D = I.first;
5630     llvm::Value *Addr = I.second.getPointer();
5631     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5632       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5633       Alloca->setMetadata(
5634           DeclPtrKind, llvm::MDNode::get(
5635                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5636     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5637       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5638       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5639     }
5640   }
5641 }
5642 
5643 void CodeGenModule::EmitVersionIdentMetadata() {
5644   llvm::NamedMDNode *IdentMetadata =
5645     TheModule.getOrInsertNamedMetadata("llvm.ident");
5646   std::string Version = getClangFullVersion();
5647   llvm::LLVMContext &Ctx = TheModule.getContext();
5648 
5649   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5650   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5651 }
5652 
5653 void CodeGenModule::EmitCommandLineMetadata() {
5654   llvm::NamedMDNode *CommandLineMetadata =
5655     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5656   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5657   llvm::LLVMContext &Ctx = TheModule.getContext();
5658 
5659   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5660   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5661 }
5662 
5663 void CodeGenModule::EmitTargetMetadata() {
5664   // Warning, new MangledDeclNames may be appended within this loop.
5665   // We rely on MapVector insertions adding new elements to the end
5666   // of the container.
5667   // FIXME: Move this loop into the one target that needs it, and only
5668   // loop over those declarations for which we couldn't emit the target
5669   // metadata when we emitted the declaration.
5670   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5671     auto Val = *(MangledDeclNames.begin() + I);
5672     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5673     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5674     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5675   }
5676 }
5677 
5678 void CodeGenModule::EmitCoverageFile() {
5679   if (getCodeGenOpts().CoverageDataFile.empty() &&
5680       getCodeGenOpts().CoverageNotesFile.empty())
5681     return;
5682 
5683   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5684   if (!CUNode)
5685     return;
5686 
5687   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5688   llvm::LLVMContext &Ctx = TheModule.getContext();
5689   auto *CoverageDataFile =
5690       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5691   auto *CoverageNotesFile =
5692       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5693   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5694     llvm::MDNode *CU = CUNode->getOperand(i);
5695     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5696     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5697   }
5698 }
5699 
5700 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5701   // Sema has checked that all uuid strings are of the form
5702   // "12345678-1234-1234-1234-1234567890ab".
5703   assert(Uuid.size() == 36);
5704   for (unsigned i = 0; i < 36; ++i) {
5705     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5706     else                                         assert(isHexDigit(Uuid[i]));
5707   }
5708 
5709   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5710   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5711 
5712   llvm::Constant *Field3[8];
5713   for (unsigned Idx = 0; Idx < 8; ++Idx)
5714     Field3[Idx] = llvm::ConstantInt::get(
5715         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5716 
5717   llvm::Constant *Fields[4] = {
5718     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5719     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5720     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5721     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5722   };
5723 
5724   return llvm::ConstantStruct::getAnon(Fields);
5725 }
5726 
5727 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5728                                                        bool ForEH) {
5729   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5730   // FIXME: should we even be calling this method if RTTI is disabled
5731   // and it's not for EH?
5732   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5733     return llvm::Constant::getNullValue(Int8PtrTy);
5734 
5735   if (ForEH && Ty->isObjCObjectPointerType() &&
5736       LangOpts.ObjCRuntime.isGNUFamily())
5737     return ObjCRuntime->GetEHType(Ty);
5738 
5739   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5740 }
5741 
5742 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5743   // Do not emit threadprivates in simd-only mode.
5744   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5745     return;
5746   for (auto RefExpr : D->varlists()) {
5747     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5748     bool PerformInit =
5749         VD->getAnyInitializer() &&
5750         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5751                                                         /*ForRef=*/false);
5752 
5753     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5754     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5755             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5756       CXXGlobalInits.push_back(InitFunction);
5757   }
5758 }
5759 
5760 llvm::Metadata *
5761 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5762                                             StringRef Suffix) {
5763   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5764   if (InternalId)
5765     return InternalId;
5766 
5767   if (isExternallyVisible(T->getLinkage())) {
5768     std::string OutName;
5769     llvm::raw_string_ostream Out(OutName);
5770     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5771     Out << Suffix;
5772 
5773     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5774   } else {
5775     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5776                                            llvm::ArrayRef<llvm::Metadata *>());
5777   }
5778 
5779   return InternalId;
5780 }
5781 
5782 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5783   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5784 }
5785 
5786 llvm::Metadata *
5787 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5788   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5789 }
5790 
5791 // Generalize pointer types to a void pointer with the qualifiers of the
5792 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5793 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5794 // 'void *'.
5795 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5796   if (!Ty->isPointerType())
5797     return Ty;
5798 
5799   return Ctx.getPointerType(
5800       QualType(Ctx.VoidTy).withCVRQualifiers(
5801           Ty->getPointeeType().getCVRQualifiers()));
5802 }
5803 
5804 // Apply type generalization to a FunctionType's return and argument types
5805 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5806   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5807     SmallVector<QualType, 8> GeneralizedParams;
5808     for (auto &Param : FnType->param_types())
5809       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5810 
5811     return Ctx.getFunctionType(
5812         GeneralizeType(Ctx, FnType->getReturnType()),
5813         GeneralizedParams, FnType->getExtProtoInfo());
5814   }
5815 
5816   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5817     return Ctx.getFunctionNoProtoType(
5818         GeneralizeType(Ctx, FnType->getReturnType()));
5819 
5820   llvm_unreachable("Encountered unknown FunctionType");
5821 }
5822 
5823 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5824   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5825                                       GeneralizedMetadataIdMap, ".generalized");
5826 }
5827 
5828 /// Returns whether this module needs the "all-vtables" type identifier.
5829 bool CodeGenModule::NeedAllVtablesTypeId() const {
5830   // Returns true if at least one of vtable-based CFI checkers is enabled and
5831   // is not in the trapping mode.
5832   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5833            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5834           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5835            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5836           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5837            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5838           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5839            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5840 }
5841 
5842 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5843                                           CharUnits Offset,
5844                                           const CXXRecordDecl *RD) {
5845   llvm::Metadata *MD =
5846       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5847   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5848 
5849   if (CodeGenOpts.SanitizeCfiCrossDso)
5850     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5851       VTable->addTypeMetadata(Offset.getQuantity(),
5852                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5853 
5854   if (NeedAllVtablesTypeId()) {
5855     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5856     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5857   }
5858 }
5859 
5860 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5861   assert(TD != nullptr);
5862   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5863 
5864   ParsedAttr.Features.erase(
5865       llvm::remove_if(ParsedAttr.Features,
5866                       [&](const std::string &Feat) {
5867                         return !Target.isValidFeatureName(
5868                             StringRef{Feat}.substr(1));
5869                       }),
5870       ParsedAttr.Features.end());
5871   return ParsedAttr;
5872 }
5873 
5874 
5875 // Fills in the supplied string map with the set of target features for the
5876 // passed in function.
5877 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5878                                           GlobalDecl GD) {
5879   StringRef TargetCPU = Target.getTargetOpts().CPU;
5880   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5881   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5882     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5883 
5884     // Make a copy of the features as passed on the command line into the
5885     // beginning of the additional features from the function to override.
5886     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5887                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5888                             Target.getTargetOpts().FeaturesAsWritten.end());
5889 
5890     if (ParsedAttr.Architecture != "" &&
5891         Target.isValidCPUName(ParsedAttr.Architecture))
5892       TargetCPU = ParsedAttr.Architecture;
5893 
5894     // Now populate the feature map, first with the TargetCPU which is either
5895     // the default or a new one from the target attribute string. Then we'll use
5896     // the passed in features (FeaturesAsWritten) along with the new ones from
5897     // the attribute.
5898     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5899                           ParsedAttr.Features);
5900   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5901     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5902     Target.getCPUSpecificCPUDispatchFeatures(
5903         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5904     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5905     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5906   } else {
5907     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5908                           Target.getTargetOpts().Features);
5909   }
5910 }
5911 
5912 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5913   if (!SanStats)
5914     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5915 
5916   return *SanStats;
5917 }
5918 llvm::Value *
5919 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5920                                                   CodeGenFunction &CGF) {
5921   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5922   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5923   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5924   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5925                                 "__translate_sampler_initializer"),
5926                                 {C});
5927 }
5928