1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/Diagnostic.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/ConvertUTF.h" 32 #include "llvm/CallingConv.h" 33 #include "llvm/Module.h" 34 #include "llvm/Intrinsics.h" 35 #include "llvm/LLVMContext.h" 36 #include "llvm/ADT/Triple.h" 37 #include "llvm/Target/TargetData.h" 38 #include "llvm/Support/CallSite.h" 39 #include "llvm/Support/ErrorHandling.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 44 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 45 llvm::Module &M, const llvm::TargetData &TD, 46 Diagnostic &diags) 47 : BlockModule(C, M, TD, Types, *this), Context(C), 48 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 49 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 50 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 51 VTables(*this), Runtime(0), ABI(0), 52 CFConstantStringClassRef(0), 53 NSConstantStringClassRef(0), 54 VMContext(M.getContext()) { 55 56 if (!Features.ObjC1) 57 Runtime = 0; 58 else if (!Features.NeXTRuntime) 59 Runtime = CreateGNUObjCRuntime(*this); 60 else if (Features.ObjCNonFragileABI) 61 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 62 else 63 Runtime = CreateMacObjCRuntime(*this); 64 65 if (!Features.CPlusPlus) 66 ABI = 0; 67 else createCXXABI(); 68 69 // If debug info generation is enabled, create the CGDebugInfo object. 70 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 71 } 72 73 CodeGenModule::~CodeGenModule() { 74 delete Runtime; 75 delete ABI; 76 delete DebugInfo; 77 } 78 79 void CodeGenModule::createObjCRuntime() { 80 if (!Features.NeXTRuntime) 81 Runtime = CreateGNUObjCRuntime(*this); 82 else if (Features.ObjCNonFragileABI) 83 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 84 else 85 Runtime = CreateMacObjCRuntime(*this); 86 } 87 88 void CodeGenModule::createCXXABI() { 89 // For now, just create an Itanium ABI. 90 ABI = CreateItaniumCXXABI(*this); 91 } 92 93 void CodeGenModule::Release() { 94 EmitDeferred(); 95 EmitCXXGlobalInitFunc(); 96 EmitCXXGlobalDtorFunc(); 97 if (Runtime) 98 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 99 AddGlobalCtor(ObjCInitFunction); 100 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 101 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 102 EmitAnnotations(); 103 EmitLLVMUsed(); 104 } 105 106 bool CodeGenModule::isTargetDarwin() const { 107 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 108 } 109 110 /// ErrorUnsupported - Print out an error that codegen doesn't support the 111 /// specified stmt yet. 112 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 113 bool OmitOnError) { 114 if (OmitOnError && getDiags().hasErrorOccurred()) 115 return; 116 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 117 "cannot compile this %0 yet"); 118 std::string Msg = Type; 119 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 120 << Msg << S->getSourceRange(); 121 } 122 123 /// ErrorUnsupported - Print out an error that codegen doesn't support the 124 /// specified decl yet. 125 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 126 bool OmitOnError) { 127 if (OmitOnError && getDiags().hasErrorOccurred()) 128 return; 129 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 130 "cannot compile this %0 yet"); 131 std::string Msg = Type; 132 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 133 } 134 135 LangOptions::VisibilityMode 136 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 137 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 138 if (VD->getStorageClass() == VarDecl::PrivateExtern) 139 return LangOptions::Hidden; 140 141 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 142 switch (attr->getVisibility()) { 143 default: assert(0 && "Unknown visibility!"); 144 case VisibilityAttr::DefaultVisibility: 145 return LangOptions::Default; 146 case VisibilityAttr::HiddenVisibility: 147 return LangOptions::Hidden; 148 case VisibilityAttr::ProtectedVisibility: 149 return LangOptions::Protected; 150 } 151 } 152 153 // This decl should have the same visibility as its parent. 154 if (const DeclContext *DC = D->getDeclContext()) 155 return getDeclVisibilityMode(cast<Decl>(DC)); 156 157 return getLangOptions().getVisibilityMode(); 158 } 159 160 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 161 const Decl *D) const { 162 // Internal definitions always have default visibility. 163 if (GV->hasLocalLinkage()) { 164 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 165 return; 166 } 167 168 switch (getDeclVisibilityMode(D)) { 169 default: assert(0 && "Unknown visibility!"); 170 case LangOptions::Default: 171 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 172 case LangOptions::Hidden: 173 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 174 case LangOptions::Protected: 175 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 176 } 177 } 178 179 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) { 180 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 181 182 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 183 return getMangledCXXCtorName(Buffer, D, GD.getCtorType()); 184 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 185 return getMangledCXXDtorName(Buffer, D, GD.getDtorType()); 186 187 return getMangledName(Buffer, ND); 188 } 189 190 /// \brief Retrieves the mangled name for the given declaration. 191 /// 192 /// If the given declaration requires a mangled name, returns an 193 /// const char* containing the mangled name. Otherwise, returns 194 /// the unmangled name. 195 /// 196 void CodeGenModule::getMangledName(MangleBuffer &Buffer, 197 const NamedDecl *ND) { 198 if (!getMangleContext().shouldMangleDeclName(ND)) { 199 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 200 Buffer.setString(ND->getNameAsCString()); 201 return; 202 } 203 204 getMangleContext().mangleName(ND, Buffer.getBuffer()); 205 } 206 207 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 208 return getModule().getNamedValue(Name); 209 } 210 211 /// AddGlobalCtor - Add a function to the list that will be called before 212 /// main() runs. 213 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 214 // FIXME: Type coercion of void()* types. 215 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 216 } 217 218 /// AddGlobalDtor - Add a function to the list that will be called 219 /// when the module is unloaded. 220 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 221 // FIXME: Type coercion of void()* types. 222 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 223 } 224 225 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 226 // Ctor function type is void()*. 227 llvm::FunctionType* CtorFTy = 228 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 229 std::vector<const llvm::Type*>(), 230 false); 231 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 232 233 // Get the type of a ctor entry, { i32, void ()* }. 234 llvm::StructType* CtorStructTy = 235 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 236 llvm::PointerType::getUnqual(CtorFTy), NULL); 237 238 // Construct the constructor and destructor arrays. 239 std::vector<llvm::Constant*> Ctors; 240 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 241 std::vector<llvm::Constant*> S; 242 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 243 I->second, false)); 244 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 245 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 246 } 247 248 if (!Ctors.empty()) { 249 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 250 new llvm::GlobalVariable(TheModule, AT, false, 251 llvm::GlobalValue::AppendingLinkage, 252 llvm::ConstantArray::get(AT, Ctors), 253 GlobalName); 254 } 255 } 256 257 void CodeGenModule::EmitAnnotations() { 258 if (Annotations.empty()) 259 return; 260 261 // Create a new global variable for the ConstantStruct in the Module. 262 llvm::Constant *Array = 263 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 264 Annotations.size()), 265 Annotations); 266 llvm::GlobalValue *gv = 267 new llvm::GlobalVariable(TheModule, Array->getType(), false, 268 llvm::GlobalValue::AppendingLinkage, Array, 269 "llvm.global.annotations"); 270 gv->setSection("llvm.metadata"); 271 } 272 273 static CodeGenModule::GVALinkage 274 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 275 const LangOptions &Features) { 276 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 277 278 Linkage L = FD->getLinkage(); 279 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 280 FD->getType()->getLinkage() == UniqueExternalLinkage) 281 L = UniqueExternalLinkage; 282 283 switch (L) { 284 case NoLinkage: 285 case InternalLinkage: 286 case UniqueExternalLinkage: 287 return CodeGenModule::GVA_Internal; 288 289 case ExternalLinkage: 290 switch (FD->getTemplateSpecializationKind()) { 291 case TSK_Undeclared: 292 case TSK_ExplicitSpecialization: 293 External = CodeGenModule::GVA_StrongExternal; 294 break; 295 296 case TSK_ExplicitInstantiationDefinition: 297 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 298 299 case TSK_ExplicitInstantiationDeclaration: 300 case TSK_ImplicitInstantiation: 301 External = CodeGenModule::GVA_TemplateInstantiation; 302 break; 303 } 304 } 305 306 if (!FD->isInlined()) 307 return External; 308 309 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 310 // GNU or C99 inline semantics. Determine whether this symbol should be 311 // externally visible. 312 if (FD->isInlineDefinitionExternallyVisible()) 313 return External; 314 315 // C99 inline semantics, where the symbol is not externally visible. 316 return CodeGenModule::GVA_C99Inline; 317 } 318 319 // C++0x [temp.explicit]p9: 320 // [ Note: The intent is that an inline function that is the subject of 321 // an explicit instantiation declaration will still be implicitly 322 // instantiated when used so that the body can be considered for 323 // inlining, but that no out-of-line copy of the inline function would be 324 // generated in the translation unit. -- end note ] 325 if (FD->getTemplateSpecializationKind() 326 == TSK_ExplicitInstantiationDeclaration) 327 return CodeGenModule::GVA_C99Inline; 328 329 return CodeGenModule::GVA_CXXInline; 330 } 331 332 llvm::GlobalValue::LinkageTypes 333 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 334 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 335 336 if (Linkage == GVA_Internal) { 337 return llvm::Function::InternalLinkage; 338 } else if (D->hasAttr<DLLExportAttr>()) { 339 return llvm::Function::DLLExportLinkage; 340 } else if (D->hasAttr<WeakAttr>()) { 341 return llvm::Function::WeakAnyLinkage; 342 } else if (Linkage == GVA_C99Inline) { 343 // In C99 mode, 'inline' functions are guaranteed to have a strong 344 // definition somewhere else, so we can use available_externally linkage. 345 return llvm::Function::AvailableExternallyLinkage; 346 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 347 // In C++, the compiler has to emit a definition in every translation unit 348 // that references the function. We should use linkonce_odr because 349 // a) if all references in this translation unit are optimized away, we 350 // don't need to codegen it. b) if the function persists, it needs to be 351 // merged with other definitions. c) C++ has the ODR, so we know the 352 // definition is dependable. 353 return llvm::Function::LinkOnceODRLinkage; 354 } else if (Linkage == GVA_ExplicitTemplateInstantiation) { 355 // An explicit instantiation of a template has weak linkage, since 356 // explicit instantiations can occur in multiple translation units 357 // and must all be equivalent. However, we are not allowed to 358 // throw away these explicit instantiations. 359 return llvm::Function::WeakODRLinkage; 360 } else { 361 assert(Linkage == GVA_StrongExternal); 362 // Otherwise, we have strong external linkage. 363 return llvm::Function::ExternalLinkage; 364 } 365 } 366 367 368 /// SetFunctionDefinitionAttributes - Set attributes for a global. 369 /// 370 /// FIXME: This is currently only done for aliases and functions, but not for 371 /// variables (these details are set in EmitGlobalVarDefinition for variables). 372 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 373 llvm::GlobalValue *GV) { 374 SetCommonAttributes(D, GV); 375 } 376 377 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 378 const CGFunctionInfo &Info, 379 llvm::Function *F) { 380 unsigned CallingConv; 381 AttributeListType AttributeList; 382 ConstructAttributeList(Info, D, AttributeList, CallingConv); 383 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 384 AttributeList.size())); 385 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 386 } 387 388 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 389 llvm::Function *F) { 390 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 391 F->addFnAttr(llvm::Attribute::NoUnwind); 392 393 if (D->hasAttr<AlwaysInlineAttr>()) 394 F->addFnAttr(llvm::Attribute::AlwaysInline); 395 396 if (D->hasAttr<NoInlineAttr>()) 397 F->addFnAttr(llvm::Attribute::NoInline); 398 399 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 400 F->addFnAttr(llvm::Attribute::StackProtect); 401 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 402 F->addFnAttr(llvm::Attribute::StackProtectReq); 403 404 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 405 unsigned width = Context.Target.getCharWidth(); 406 F->setAlignment(AA->getAlignment() / width); 407 while ((AA = AA->getNext<AlignedAttr>())) 408 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 409 } 410 // C++ ABI requires 2-byte alignment for member functions. 411 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 412 F->setAlignment(2); 413 } 414 415 void CodeGenModule::SetCommonAttributes(const Decl *D, 416 llvm::GlobalValue *GV) { 417 setGlobalVisibility(GV, D); 418 419 if (D->hasAttr<UsedAttr>()) 420 AddUsedGlobal(GV); 421 422 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 423 GV->setSection(SA->getName()); 424 425 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 426 } 427 428 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 429 llvm::Function *F, 430 const CGFunctionInfo &FI) { 431 SetLLVMFunctionAttributes(D, FI, F); 432 SetLLVMFunctionAttributesForDefinition(D, F); 433 434 F->setLinkage(llvm::Function::InternalLinkage); 435 436 SetCommonAttributes(D, F); 437 } 438 439 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 440 llvm::Function *F, 441 bool IsIncompleteFunction) { 442 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 443 444 if (!IsIncompleteFunction) 445 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 446 447 // Only a few attributes are set on declarations; these may later be 448 // overridden by a definition. 449 450 if (FD->hasAttr<DLLImportAttr>()) { 451 F->setLinkage(llvm::Function::DLLImportLinkage); 452 } else if (FD->hasAttr<WeakAttr>() || 453 FD->hasAttr<WeakImportAttr>()) { 454 // "extern_weak" is overloaded in LLVM; we probably should have 455 // separate linkage types for this. 456 F->setLinkage(llvm::Function::ExternalWeakLinkage); 457 } else { 458 F->setLinkage(llvm::Function::ExternalLinkage); 459 } 460 461 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 462 F->setSection(SA->getName()); 463 } 464 465 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 466 assert(!GV->isDeclaration() && 467 "Only globals with definition can force usage."); 468 LLVMUsed.push_back(GV); 469 } 470 471 void CodeGenModule::EmitLLVMUsed() { 472 // Don't create llvm.used if there is no need. 473 if (LLVMUsed.empty()) 474 return; 475 476 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 477 478 // Convert LLVMUsed to what ConstantArray needs. 479 std::vector<llvm::Constant*> UsedArray; 480 UsedArray.resize(LLVMUsed.size()); 481 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 482 UsedArray[i] = 483 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 484 i8PTy); 485 } 486 487 if (UsedArray.empty()) 488 return; 489 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 490 491 llvm::GlobalVariable *GV = 492 new llvm::GlobalVariable(getModule(), ATy, false, 493 llvm::GlobalValue::AppendingLinkage, 494 llvm::ConstantArray::get(ATy, UsedArray), 495 "llvm.used"); 496 497 GV->setSection("llvm.metadata"); 498 } 499 500 void CodeGenModule::EmitDeferred() { 501 // Emit code for any potentially referenced deferred decls. Since a 502 // previously unused static decl may become used during the generation of code 503 // for a static function, iterate until no changes are made. 504 505 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 506 if (!DeferredVTables.empty()) { 507 const CXXRecordDecl *RD = DeferredVTables.back(); 508 DeferredVTables.pop_back(); 509 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 510 continue; 511 } 512 513 GlobalDecl D = DeferredDeclsToEmit.back(); 514 DeferredDeclsToEmit.pop_back(); 515 516 // Check to see if we've already emitted this. This is necessary 517 // for a couple of reasons: first, decls can end up in the 518 // deferred-decls queue multiple times, and second, decls can end 519 // up with definitions in unusual ways (e.g. by an extern inline 520 // function acquiring a strong function redefinition). Just 521 // ignore these cases. 522 // 523 // TODO: That said, looking this up multiple times is very wasteful. 524 MangleBuffer Name; 525 getMangledName(Name, D); 526 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 527 assert(CGRef && "Deferred decl wasn't referenced?"); 528 529 if (!CGRef->isDeclaration()) 530 continue; 531 532 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 533 // purposes an alias counts as a definition. 534 if (isa<llvm::GlobalAlias>(CGRef)) 535 continue; 536 537 // Otherwise, emit the definition and move on to the next one. 538 EmitGlobalDefinition(D); 539 } 540 } 541 542 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 543 /// annotation information for a given GlobalValue. The annotation struct is 544 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 545 /// GlobalValue being annotated. The second field is the constant string 546 /// created from the AnnotateAttr's annotation. The third field is a constant 547 /// string containing the name of the translation unit. The fourth field is 548 /// the line number in the file of the annotated value declaration. 549 /// 550 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 551 /// appears to. 552 /// 553 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 554 const AnnotateAttr *AA, 555 unsigned LineNo) { 556 llvm::Module *M = &getModule(); 557 558 // get [N x i8] constants for the annotation string, and the filename string 559 // which are the 2nd and 3rd elements of the global annotation structure. 560 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 561 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 562 AA->getAnnotation(), true); 563 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 564 M->getModuleIdentifier(), 565 true); 566 567 // Get the two global values corresponding to the ConstantArrays we just 568 // created to hold the bytes of the strings. 569 llvm::GlobalValue *annoGV = 570 new llvm::GlobalVariable(*M, anno->getType(), false, 571 llvm::GlobalValue::PrivateLinkage, anno, 572 GV->getName()); 573 // translation unit name string, emitted into the llvm.metadata section. 574 llvm::GlobalValue *unitGV = 575 new llvm::GlobalVariable(*M, unit->getType(), false, 576 llvm::GlobalValue::PrivateLinkage, unit, 577 ".str"); 578 579 // Create the ConstantStruct for the global annotation. 580 llvm::Constant *Fields[4] = { 581 llvm::ConstantExpr::getBitCast(GV, SBP), 582 llvm::ConstantExpr::getBitCast(annoGV, SBP), 583 llvm::ConstantExpr::getBitCast(unitGV, SBP), 584 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 585 }; 586 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 587 } 588 589 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 590 // Never defer when EmitAllDecls is specified or the decl has 591 // attribute used. 592 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 593 return false; 594 595 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 596 // Constructors and destructors should never be deferred. 597 if (FD->hasAttr<ConstructorAttr>() || 598 FD->hasAttr<DestructorAttr>()) 599 return false; 600 601 // The key function for a class must never be deferred. 602 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 603 const CXXRecordDecl *RD = MD->getParent(); 604 if (MD->isOutOfLine() && RD->isDynamicClass()) { 605 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 606 if (KeyFunction && 607 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 608 return false; 609 } 610 } 611 612 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 613 614 // static, static inline, always_inline, and extern inline functions can 615 // always be deferred. Normal inline functions can be deferred in C99/C++. 616 // Implicit template instantiations can also be deferred in C++. 617 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 618 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 619 return true; 620 return false; 621 } 622 623 const VarDecl *VD = cast<VarDecl>(Global); 624 assert(VD->isFileVarDecl() && "Invalid decl"); 625 626 // We never want to defer structs that have non-trivial constructors or 627 // destructors. 628 629 // FIXME: Handle references. 630 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 631 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 632 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 633 return false; 634 } 635 } 636 637 // Static data may be deferred, but out-of-line static data members 638 // cannot be. 639 Linkage L = VD->getLinkage(); 640 if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus && 641 VD->getType()->getLinkage() == UniqueExternalLinkage) 642 L = UniqueExternalLinkage; 643 644 switch (L) { 645 case NoLinkage: 646 case InternalLinkage: 647 case UniqueExternalLinkage: 648 // Initializer has side effects? 649 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 650 return false; 651 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 652 653 case ExternalLinkage: 654 break; 655 } 656 657 return false; 658 } 659 660 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 661 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 662 assert(AA && "No alias?"); 663 664 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 665 666 // See if there is already something with the target's name in the module. 667 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 668 669 llvm::Constant *Aliasee; 670 if (isa<llvm::FunctionType>(DeclTy)) 671 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 672 else 673 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 674 llvm::PointerType::getUnqual(DeclTy), 0); 675 if (!Entry) { 676 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 677 F->setLinkage(llvm::Function::ExternalWeakLinkage); 678 WeakRefReferences.insert(F); 679 } 680 681 return Aliasee; 682 } 683 684 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 685 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 686 687 // Weak references don't produce any output by themselves. 688 if (Global->hasAttr<WeakRefAttr>()) 689 return; 690 691 // If this is an alias definition (which otherwise looks like a declaration) 692 // emit it now. 693 if (Global->hasAttr<AliasAttr>()) 694 return EmitAliasDefinition(GD); 695 696 // Ignore declarations, they will be emitted on their first use. 697 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 698 // Forward declarations are emitted lazily on first use. 699 if (!FD->isThisDeclarationADefinition()) 700 return; 701 } else { 702 const VarDecl *VD = cast<VarDecl>(Global); 703 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 704 705 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 706 return; 707 } 708 709 // Defer code generation when possible if this is a static definition, inline 710 // function etc. These we only want to emit if they are used. 711 if (!MayDeferGeneration(Global)) { 712 // Emit the definition if it can't be deferred. 713 EmitGlobalDefinition(GD); 714 return; 715 } 716 717 // If the value has already been used, add it directly to the 718 // DeferredDeclsToEmit list. 719 MangleBuffer MangledName; 720 getMangledName(MangledName, GD); 721 if (GetGlobalValue(MangledName)) 722 DeferredDeclsToEmit.push_back(GD); 723 else { 724 // Otherwise, remember that we saw a deferred decl with this name. The 725 // first use of the mangled name will cause it to move into 726 // DeferredDeclsToEmit. 727 DeferredDecls[MangledName] = GD; 728 } 729 } 730 731 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 732 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 733 734 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 735 Context.getSourceManager(), 736 "Generating code for declaration"); 737 738 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 739 if (Method->isVirtual()) 740 getVTables().EmitThunks(GD); 741 742 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 743 return EmitCXXConstructor(CD, GD.getCtorType()); 744 745 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 746 return EmitCXXDestructor(DD, GD.getDtorType()); 747 748 if (isa<FunctionDecl>(D)) 749 return EmitGlobalFunctionDefinition(GD); 750 751 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 752 return EmitGlobalVarDefinition(VD); 753 754 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 755 } 756 757 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 758 /// module, create and return an llvm Function with the specified type. If there 759 /// is something in the module with the specified name, return it potentially 760 /// bitcasted to the right type. 761 /// 762 /// If D is non-null, it specifies a decl that correspond to this. This is used 763 /// to set the attributes on the function when it is first created. 764 llvm::Constant * 765 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 766 const llvm::Type *Ty, 767 GlobalDecl D) { 768 // Lookup the entry, lazily creating it if necessary. 769 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 770 if (Entry) { 771 if (WeakRefReferences.count(Entry)) { 772 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 773 if (FD && !FD->hasAttr<WeakAttr>()) 774 Entry->setLinkage(llvm::Function::ExternalLinkage); 775 776 WeakRefReferences.erase(Entry); 777 } 778 779 if (Entry->getType()->getElementType() == Ty) 780 return Entry; 781 782 // Make sure the result is of the correct type. 783 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 784 return llvm::ConstantExpr::getBitCast(Entry, PTy); 785 } 786 787 // This function doesn't have a complete type (for example, the return 788 // type is an incomplete struct). Use a fake type instead, and make 789 // sure not to try to set attributes. 790 bool IsIncompleteFunction = false; 791 792 const llvm::FunctionType *FTy; 793 if (isa<llvm::FunctionType>(Ty)) { 794 FTy = cast<llvm::FunctionType>(Ty); 795 } else { 796 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 797 std::vector<const llvm::Type*>(), false); 798 IsIncompleteFunction = true; 799 } 800 llvm::Function *F = llvm::Function::Create(FTy, 801 llvm::Function::ExternalLinkage, 802 MangledName, &getModule()); 803 assert(F->getName() == MangledName && "name was uniqued!"); 804 if (D.getDecl()) 805 SetFunctionAttributes(D, F, IsIncompleteFunction); 806 807 // This is the first use or definition of a mangled name. If there is a 808 // deferred decl with this name, remember that we need to emit it at the end 809 // of the file. 810 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 811 if (DDI != DeferredDecls.end()) { 812 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 813 // list, and remove it from DeferredDecls (since we don't need it anymore). 814 DeferredDeclsToEmit.push_back(DDI->second); 815 DeferredDecls.erase(DDI); 816 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 817 // If this the first reference to a C++ inline function in a class, queue up 818 // the deferred function body for emission. These are not seen as 819 // top-level declarations. 820 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 821 DeferredDeclsToEmit.push_back(D); 822 // A called constructor which has no definition or declaration need be 823 // synthesized. 824 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 825 if (CD->isImplicit()) { 826 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 827 DeferredDeclsToEmit.push_back(D); 828 } 829 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 830 if (DD->isImplicit()) { 831 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 832 DeferredDeclsToEmit.push_back(D); 833 } 834 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 835 if (MD->isCopyAssignment() && MD->isImplicit()) { 836 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 837 DeferredDeclsToEmit.push_back(D); 838 } 839 } 840 } 841 842 // Make sure the result is of the requested type. 843 if (!IsIncompleteFunction) { 844 assert(F->getType()->getElementType() == Ty); 845 return F; 846 } 847 848 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 849 return llvm::ConstantExpr::getBitCast(F, PTy); 850 } 851 852 /// GetAddrOfFunction - Return the address of the given function. If Ty is 853 /// non-null, then this function will use the specified type if it has to 854 /// create it (this occurs when we see a definition of the function). 855 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 856 const llvm::Type *Ty) { 857 // If there was no specific requested type, just convert it now. 858 if (!Ty) 859 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 860 MangleBuffer MangledName; 861 getMangledName(MangledName, GD); 862 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 863 } 864 865 /// CreateRuntimeFunction - Create a new runtime function with the specified 866 /// type and name. 867 llvm::Constant * 868 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 869 llvm::StringRef Name) { 870 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 871 } 872 873 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 874 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 875 return false; 876 if (Context.getLangOptions().CPlusPlus && 877 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 878 // FIXME: We should do something fancier here! 879 return false; 880 } 881 return true; 882 } 883 884 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 885 /// create and return an llvm GlobalVariable with the specified type. If there 886 /// is something in the module with the specified name, return it potentially 887 /// bitcasted to the right type. 888 /// 889 /// If D is non-null, it specifies a decl that correspond to this. This is used 890 /// to set the attributes on the global when it is first created. 891 llvm::Constant * 892 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 893 const llvm::PointerType *Ty, 894 const VarDecl *D) { 895 // Lookup the entry, lazily creating it if necessary. 896 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 897 if (Entry) { 898 if (WeakRefReferences.count(Entry)) { 899 if (D && !D->hasAttr<WeakAttr>()) 900 Entry->setLinkage(llvm::Function::ExternalLinkage); 901 902 WeakRefReferences.erase(Entry); 903 } 904 905 if (Entry->getType() == Ty) 906 return Entry; 907 908 // Make sure the result is of the correct type. 909 return llvm::ConstantExpr::getBitCast(Entry, Ty); 910 } 911 912 // This is the first use or definition of a mangled name. If there is a 913 // deferred decl with this name, remember that we need to emit it at the end 914 // of the file. 915 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 916 if (DDI != DeferredDecls.end()) { 917 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 918 // list, and remove it from DeferredDecls (since we don't need it anymore). 919 DeferredDeclsToEmit.push_back(DDI->second); 920 DeferredDecls.erase(DDI); 921 } 922 923 llvm::GlobalVariable *GV = 924 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 925 llvm::GlobalValue::ExternalLinkage, 926 0, MangledName, 0, 927 false, Ty->getAddressSpace()); 928 929 // Handle things which are present even on external declarations. 930 if (D) { 931 // FIXME: This code is overly simple and should be merged with other global 932 // handling. 933 GV->setConstant(DeclIsConstantGlobal(Context, D)); 934 935 // FIXME: Merge with other attribute handling code. 936 if (D->getStorageClass() == VarDecl::PrivateExtern) 937 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 938 939 if (D->hasAttr<WeakAttr>() || 940 D->hasAttr<WeakImportAttr>()) 941 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 942 943 GV->setThreadLocal(D->isThreadSpecified()); 944 } 945 946 return GV; 947 } 948 949 950 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 951 /// given global variable. If Ty is non-null and if the global doesn't exist, 952 /// then it will be greated with the specified type instead of whatever the 953 /// normal requested type would be. 954 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 955 const llvm::Type *Ty) { 956 assert(D->hasGlobalStorage() && "Not a global variable"); 957 QualType ASTTy = D->getType(); 958 if (Ty == 0) 959 Ty = getTypes().ConvertTypeForMem(ASTTy); 960 961 const llvm::PointerType *PTy = 962 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 963 964 MangleBuffer MangledName; 965 getMangledName(MangledName, D); 966 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 967 } 968 969 /// CreateRuntimeVariable - Create a new runtime global variable with the 970 /// specified type and name. 971 llvm::Constant * 972 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 973 llvm::StringRef Name) { 974 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 975 } 976 977 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 978 assert(!D->getInit() && "Cannot emit definite definitions here!"); 979 980 if (MayDeferGeneration(D)) { 981 // If we have not seen a reference to this variable yet, place it 982 // into the deferred declarations table to be emitted if needed 983 // later. 984 MangleBuffer MangledName; 985 getMangledName(MangledName, D); 986 if (!GetGlobalValue(MangledName)) { 987 DeferredDecls[MangledName] = D; 988 return; 989 } 990 } 991 992 // The tentative definition is the only definition. 993 EmitGlobalVarDefinition(D); 994 } 995 996 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 997 if (DefinitionRequired) 998 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 999 } 1000 1001 llvm::GlobalVariable::LinkageTypes 1002 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1003 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1004 return llvm::GlobalVariable::InternalLinkage; 1005 1006 if (const CXXMethodDecl *KeyFunction 1007 = RD->getASTContext().getKeyFunction(RD)) { 1008 // If this class has a key function, use that to determine the linkage of 1009 // the vtable. 1010 const FunctionDecl *Def = 0; 1011 if (KeyFunction->getBody(Def)) 1012 KeyFunction = cast<CXXMethodDecl>(Def); 1013 1014 switch (KeyFunction->getTemplateSpecializationKind()) { 1015 case TSK_Undeclared: 1016 case TSK_ExplicitSpecialization: 1017 if (KeyFunction->isInlined()) 1018 return llvm::GlobalVariable::WeakODRLinkage; 1019 1020 return llvm::GlobalVariable::ExternalLinkage; 1021 1022 case TSK_ImplicitInstantiation: 1023 case TSK_ExplicitInstantiationDefinition: 1024 return llvm::GlobalVariable::WeakODRLinkage; 1025 1026 case TSK_ExplicitInstantiationDeclaration: 1027 // FIXME: Use available_externally linkage. However, this currently 1028 // breaks LLVM's build due to undefined symbols. 1029 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1030 return llvm::GlobalVariable::WeakODRLinkage; 1031 } 1032 } 1033 1034 switch (RD->getTemplateSpecializationKind()) { 1035 case TSK_Undeclared: 1036 case TSK_ExplicitSpecialization: 1037 case TSK_ImplicitInstantiation: 1038 case TSK_ExplicitInstantiationDefinition: 1039 return llvm::GlobalVariable::WeakODRLinkage; 1040 1041 case TSK_ExplicitInstantiationDeclaration: 1042 // FIXME: Use available_externally linkage. However, this currently 1043 // breaks LLVM's build due to undefined symbols. 1044 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1045 return llvm::GlobalVariable::WeakODRLinkage; 1046 } 1047 1048 // Silence GCC warning. 1049 return llvm::GlobalVariable::WeakODRLinkage; 1050 } 1051 1052 static CodeGenModule::GVALinkage 1053 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 1054 // If this is a static data member, compute the kind of template 1055 // specialization. Otherwise, this variable is not part of a 1056 // template. 1057 TemplateSpecializationKind TSK = TSK_Undeclared; 1058 if (VD->isStaticDataMember()) 1059 TSK = VD->getTemplateSpecializationKind(); 1060 1061 Linkage L = VD->getLinkage(); 1062 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 1063 VD->getType()->getLinkage() == UniqueExternalLinkage) 1064 L = UniqueExternalLinkage; 1065 1066 switch (L) { 1067 case NoLinkage: 1068 case InternalLinkage: 1069 case UniqueExternalLinkage: 1070 return CodeGenModule::GVA_Internal; 1071 1072 case ExternalLinkage: 1073 switch (TSK) { 1074 case TSK_Undeclared: 1075 case TSK_ExplicitSpecialization: 1076 return CodeGenModule::GVA_StrongExternal; 1077 1078 case TSK_ExplicitInstantiationDeclaration: 1079 llvm_unreachable("Variable should not be instantiated"); 1080 // Fall through to treat this like any other instantiation. 1081 1082 case TSK_ExplicitInstantiationDefinition: 1083 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 1084 1085 case TSK_ImplicitInstantiation: 1086 return CodeGenModule::GVA_TemplateInstantiation; 1087 } 1088 } 1089 1090 return CodeGenModule::GVA_StrongExternal; 1091 } 1092 1093 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1094 return CharUnits::fromQuantity( 1095 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1096 } 1097 1098 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1099 llvm::Constant *Init = 0; 1100 QualType ASTTy = D->getType(); 1101 bool NonConstInit = false; 1102 1103 const Expr *InitExpr = D->getAnyInitializer(); 1104 1105 if (!InitExpr) { 1106 // This is a tentative definition; tentative definitions are 1107 // implicitly initialized with { 0 }. 1108 // 1109 // Note that tentative definitions are only emitted at the end of 1110 // a translation unit, so they should never have incomplete 1111 // type. In addition, EmitTentativeDefinition makes sure that we 1112 // never attempt to emit a tentative definition if a real one 1113 // exists. A use may still exists, however, so we still may need 1114 // to do a RAUW. 1115 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1116 Init = EmitNullConstant(D->getType()); 1117 } else { 1118 Init = EmitConstantExpr(InitExpr, D->getType()); 1119 if (!Init) { 1120 QualType T = InitExpr->getType(); 1121 if (D->getType()->isReferenceType()) 1122 T = D->getType(); 1123 1124 if (getLangOptions().CPlusPlus) { 1125 EmitCXXGlobalVarDeclInitFunc(D); 1126 Init = EmitNullConstant(T); 1127 NonConstInit = true; 1128 } else { 1129 ErrorUnsupported(D, "static initializer"); 1130 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1131 } 1132 } 1133 } 1134 1135 const llvm::Type* InitType = Init->getType(); 1136 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1137 1138 // Strip off a bitcast if we got one back. 1139 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1140 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1141 // all zero index gep. 1142 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1143 Entry = CE->getOperand(0); 1144 } 1145 1146 // Entry is now either a Function or GlobalVariable. 1147 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1148 1149 // We have a definition after a declaration with the wrong type. 1150 // We must make a new GlobalVariable* and update everything that used OldGV 1151 // (a declaration or tentative definition) with the new GlobalVariable* 1152 // (which will be a definition). 1153 // 1154 // This happens if there is a prototype for a global (e.g. 1155 // "extern int x[];") and then a definition of a different type (e.g. 1156 // "int x[10];"). This also happens when an initializer has a different type 1157 // from the type of the global (this happens with unions). 1158 if (GV == 0 || 1159 GV->getType()->getElementType() != InitType || 1160 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1161 1162 // Move the old entry aside so that we'll create a new one. 1163 Entry->setName(llvm::StringRef()); 1164 1165 // Make a new global with the correct type, this is now guaranteed to work. 1166 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1167 1168 // Replace all uses of the old global with the new global 1169 llvm::Constant *NewPtrForOldDecl = 1170 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1171 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1172 1173 // Erase the old global, since it is no longer used. 1174 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1175 } 1176 1177 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1178 SourceManager &SM = Context.getSourceManager(); 1179 AddAnnotation(EmitAnnotateAttr(GV, AA, 1180 SM.getInstantiationLineNumber(D->getLocation()))); 1181 } 1182 1183 GV->setInitializer(Init); 1184 1185 // If it is safe to mark the global 'constant', do so now. 1186 GV->setConstant(false); 1187 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1188 GV->setConstant(true); 1189 1190 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1191 1192 // Set the llvm linkage type as appropriate. 1193 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1194 if (Linkage == GVA_Internal) 1195 GV->setLinkage(llvm::Function::InternalLinkage); 1196 else if (D->hasAttr<DLLImportAttr>()) 1197 GV->setLinkage(llvm::Function::DLLImportLinkage); 1198 else if (D->hasAttr<DLLExportAttr>()) 1199 GV->setLinkage(llvm::Function::DLLExportLinkage); 1200 else if (D->hasAttr<WeakAttr>()) { 1201 if (GV->isConstant()) 1202 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1203 else 1204 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1205 } else if (Linkage == GVA_TemplateInstantiation || 1206 Linkage == GVA_ExplicitTemplateInstantiation) 1207 // FIXME: It seems like we can provide more specific linkage here 1208 // (LinkOnceODR, WeakODR). 1209 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1210 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1211 !D->hasExternalStorage() && !D->getInit() && 1212 !D->getAttr<SectionAttr>()) { 1213 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1214 // common vars aren't constant even if declared const. 1215 GV->setConstant(false); 1216 } else 1217 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1218 1219 SetCommonAttributes(D, GV); 1220 1221 // Emit global variable debug information. 1222 if (CGDebugInfo *DI = getDebugInfo()) { 1223 DI->setLocation(D->getLocation()); 1224 DI->EmitGlobalVariable(GV, D); 1225 } 1226 } 1227 1228 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1229 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1230 /// existing call uses of the old function in the module, this adjusts them to 1231 /// call the new function directly. 1232 /// 1233 /// This is not just a cleanup: the always_inline pass requires direct calls to 1234 /// functions to be able to inline them. If there is a bitcast in the way, it 1235 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1236 /// run at -O0. 1237 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1238 llvm::Function *NewFn) { 1239 // If we're redefining a global as a function, don't transform it. 1240 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1241 if (OldFn == 0) return; 1242 1243 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1244 llvm::SmallVector<llvm::Value*, 4> ArgList; 1245 1246 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1247 UI != E; ) { 1248 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1249 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1250 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1251 llvm::CallSite CS(CI); 1252 if (!CI || !CS.isCallee(I)) continue; 1253 1254 // If the return types don't match exactly, and if the call isn't dead, then 1255 // we can't transform this call. 1256 if (CI->getType() != NewRetTy && !CI->use_empty()) 1257 continue; 1258 1259 // If the function was passed too few arguments, don't transform. If extra 1260 // arguments were passed, we silently drop them. If any of the types 1261 // mismatch, we don't transform. 1262 unsigned ArgNo = 0; 1263 bool DontTransform = false; 1264 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1265 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1266 if (CS.arg_size() == ArgNo || 1267 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1268 DontTransform = true; 1269 break; 1270 } 1271 } 1272 if (DontTransform) 1273 continue; 1274 1275 // Okay, we can transform this. Create the new call instruction and copy 1276 // over the required information. 1277 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1278 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1279 ArgList.end(), "", CI); 1280 ArgList.clear(); 1281 if (!NewCall->getType()->isVoidTy()) 1282 NewCall->takeName(CI); 1283 NewCall->setAttributes(CI->getAttributes()); 1284 NewCall->setCallingConv(CI->getCallingConv()); 1285 1286 // Finally, remove the old call, replacing any uses with the new one. 1287 if (!CI->use_empty()) 1288 CI->replaceAllUsesWith(NewCall); 1289 1290 // Copy debug location attached to CI. 1291 if (!CI->getDebugLoc().isUnknown()) 1292 NewCall->setDebugLoc(CI->getDebugLoc()); 1293 CI->eraseFromParent(); 1294 } 1295 } 1296 1297 1298 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1299 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1300 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1301 getMangleContext().mangleInitDiscriminator(); 1302 // Get or create the prototype for the function. 1303 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1304 1305 // Strip off a bitcast if we got one back. 1306 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1307 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1308 Entry = CE->getOperand(0); 1309 } 1310 1311 1312 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1313 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1314 1315 // If the types mismatch then we have to rewrite the definition. 1316 assert(OldFn->isDeclaration() && 1317 "Shouldn't replace non-declaration"); 1318 1319 // F is the Function* for the one with the wrong type, we must make a new 1320 // Function* and update everything that used F (a declaration) with the new 1321 // Function* (which will be a definition). 1322 // 1323 // This happens if there is a prototype for a function 1324 // (e.g. "int f()") and then a definition of a different type 1325 // (e.g. "int f(int x)"). Move the old function aside so that it 1326 // doesn't interfere with GetAddrOfFunction. 1327 OldFn->setName(llvm::StringRef()); 1328 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1329 1330 // If this is an implementation of a function without a prototype, try to 1331 // replace any existing uses of the function (which may be calls) with uses 1332 // of the new function 1333 if (D->getType()->isFunctionNoProtoType()) { 1334 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1335 OldFn->removeDeadConstantUsers(); 1336 } 1337 1338 // Replace uses of F with the Function we will endow with a body. 1339 if (!Entry->use_empty()) { 1340 llvm::Constant *NewPtrForOldDecl = 1341 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1342 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1343 } 1344 1345 // Ok, delete the old function now, which is dead. 1346 OldFn->eraseFromParent(); 1347 1348 Entry = NewFn; 1349 } 1350 1351 llvm::Function *Fn = cast<llvm::Function>(Entry); 1352 setFunctionLinkage(D, Fn); 1353 1354 CodeGenFunction(*this).GenerateCode(D, Fn); 1355 1356 SetFunctionDefinitionAttributes(D, Fn); 1357 SetLLVMFunctionAttributesForDefinition(D, Fn); 1358 1359 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1360 AddGlobalCtor(Fn, CA->getPriority()); 1361 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1362 AddGlobalDtor(Fn, DA->getPriority()); 1363 } 1364 1365 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1366 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1367 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1368 assert(AA && "Not an alias?"); 1369 1370 MangleBuffer MangledName; 1371 getMangledName(MangledName, GD); 1372 1373 // If there is a definition in the module, then it wins over the alias. 1374 // This is dubious, but allow it to be safe. Just ignore the alias. 1375 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1376 if (Entry && !Entry->isDeclaration()) 1377 return; 1378 1379 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1380 1381 // Create a reference to the named value. This ensures that it is emitted 1382 // if a deferred decl. 1383 llvm::Constant *Aliasee; 1384 if (isa<llvm::FunctionType>(DeclTy)) 1385 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1386 else 1387 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1388 llvm::PointerType::getUnqual(DeclTy), 0); 1389 1390 // Create the new alias itself, but don't set a name yet. 1391 llvm::GlobalValue *GA = 1392 new llvm::GlobalAlias(Aliasee->getType(), 1393 llvm::Function::ExternalLinkage, 1394 "", Aliasee, &getModule()); 1395 1396 if (Entry) { 1397 assert(Entry->isDeclaration()); 1398 1399 // If there is a declaration in the module, then we had an extern followed 1400 // by the alias, as in: 1401 // extern int test6(); 1402 // ... 1403 // int test6() __attribute__((alias("test7"))); 1404 // 1405 // Remove it and replace uses of it with the alias. 1406 GA->takeName(Entry); 1407 1408 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1409 Entry->getType())); 1410 Entry->eraseFromParent(); 1411 } else { 1412 GA->setName(MangledName.getString()); 1413 } 1414 1415 // Set attributes which are particular to an alias; this is a 1416 // specialization of the attributes which may be set on a global 1417 // variable/function. 1418 if (D->hasAttr<DLLExportAttr>()) { 1419 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1420 // The dllexport attribute is ignored for undefined symbols. 1421 if (FD->getBody()) 1422 GA->setLinkage(llvm::Function::DLLExportLinkage); 1423 } else { 1424 GA->setLinkage(llvm::Function::DLLExportLinkage); 1425 } 1426 } else if (D->hasAttr<WeakAttr>() || 1427 D->hasAttr<WeakRefAttr>() || 1428 D->hasAttr<WeakImportAttr>()) { 1429 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1430 } 1431 1432 SetCommonAttributes(D, GA); 1433 } 1434 1435 /// getBuiltinLibFunction - Given a builtin id for a function like 1436 /// "__builtin_fabsf", return a Function* for "fabsf". 1437 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1438 unsigned BuiltinID) { 1439 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1440 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1441 "isn't a lib fn"); 1442 1443 // Get the name, skip over the __builtin_ prefix (if necessary). 1444 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1445 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1446 Name += 10; 1447 1448 const llvm::FunctionType *Ty = 1449 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1450 1451 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1452 } 1453 1454 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1455 unsigned NumTys) { 1456 return llvm::Intrinsic::getDeclaration(&getModule(), 1457 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1458 } 1459 1460 1461 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1462 const llvm::Type *SrcType, 1463 const llvm::Type *SizeType) { 1464 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1465 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1466 } 1467 1468 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1469 const llvm::Type *SrcType, 1470 const llvm::Type *SizeType) { 1471 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1472 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1473 } 1474 1475 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1476 const llvm::Type *SizeType) { 1477 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1478 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1479 } 1480 1481 static llvm::StringMapEntry<llvm::Constant*> & 1482 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1483 const StringLiteral *Literal, 1484 bool TargetIsLSB, 1485 bool &IsUTF16, 1486 unsigned &StringLength) { 1487 unsigned NumBytes = Literal->getByteLength(); 1488 1489 // Check for simple case. 1490 if (!Literal->containsNonAsciiOrNull()) { 1491 StringLength = NumBytes; 1492 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1493 StringLength)); 1494 } 1495 1496 // Otherwise, convert the UTF8 literals into a byte string. 1497 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1498 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1499 UTF16 *ToPtr = &ToBuf[0]; 1500 1501 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1502 &ToPtr, ToPtr + NumBytes, 1503 strictConversion); 1504 1505 // Check for conversion failure. 1506 if (Result != conversionOK) { 1507 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1508 // this duplicate code. 1509 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1510 StringLength = NumBytes; 1511 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1512 StringLength)); 1513 } 1514 1515 // ConvertUTF8toUTF16 returns the length in ToPtr. 1516 StringLength = ToPtr - &ToBuf[0]; 1517 1518 // Render the UTF-16 string into a byte array and convert to the target byte 1519 // order. 1520 // 1521 // FIXME: This isn't something we should need to do here. 1522 llvm::SmallString<128> AsBytes; 1523 AsBytes.reserve(StringLength * 2); 1524 for (unsigned i = 0; i != StringLength; ++i) { 1525 unsigned short Val = ToBuf[i]; 1526 if (TargetIsLSB) { 1527 AsBytes.push_back(Val & 0xFF); 1528 AsBytes.push_back(Val >> 8); 1529 } else { 1530 AsBytes.push_back(Val >> 8); 1531 AsBytes.push_back(Val & 0xFF); 1532 } 1533 } 1534 // Append one extra null character, the second is automatically added by our 1535 // caller. 1536 AsBytes.push_back(0); 1537 1538 IsUTF16 = true; 1539 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1540 } 1541 1542 llvm::Constant * 1543 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1544 unsigned StringLength = 0; 1545 bool isUTF16 = false; 1546 llvm::StringMapEntry<llvm::Constant*> &Entry = 1547 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1548 getTargetData().isLittleEndian(), 1549 isUTF16, StringLength); 1550 1551 if (llvm::Constant *C = Entry.getValue()) 1552 return C; 1553 1554 llvm::Constant *Zero = 1555 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1556 llvm::Constant *Zeros[] = { Zero, Zero }; 1557 1558 // If we don't already have it, get __CFConstantStringClassReference. 1559 if (!CFConstantStringClassRef) { 1560 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1561 Ty = llvm::ArrayType::get(Ty, 0); 1562 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1563 "__CFConstantStringClassReference"); 1564 // Decay array -> ptr 1565 CFConstantStringClassRef = 1566 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1567 } 1568 1569 QualType CFTy = getContext().getCFConstantStringType(); 1570 1571 const llvm::StructType *STy = 1572 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1573 1574 std::vector<llvm::Constant*> Fields(4); 1575 1576 // Class pointer. 1577 Fields[0] = CFConstantStringClassRef; 1578 1579 // Flags. 1580 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1581 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1582 llvm::ConstantInt::get(Ty, 0x07C8); 1583 1584 // String pointer. 1585 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1586 1587 llvm::GlobalValue::LinkageTypes Linkage; 1588 bool isConstant; 1589 if (isUTF16) { 1590 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1591 Linkage = llvm::GlobalValue::InternalLinkage; 1592 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1593 // does make plain ascii ones writable. 1594 isConstant = true; 1595 } else { 1596 Linkage = llvm::GlobalValue::PrivateLinkage; 1597 isConstant = !Features.WritableStrings; 1598 } 1599 1600 llvm::GlobalVariable *GV = 1601 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1602 ".str"); 1603 if (isUTF16) { 1604 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1605 GV->setAlignment(Align.getQuantity()); 1606 } 1607 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1608 1609 // String length. 1610 Ty = getTypes().ConvertType(getContext().LongTy); 1611 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1612 1613 // The struct. 1614 C = llvm::ConstantStruct::get(STy, Fields); 1615 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1616 llvm::GlobalVariable::PrivateLinkage, C, 1617 "_unnamed_cfstring_"); 1618 if (const char *Sect = getContext().Target.getCFStringSection()) 1619 GV->setSection(Sect); 1620 Entry.setValue(GV); 1621 1622 return GV; 1623 } 1624 1625 llvm::Constant * 1626 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1627 unsigned StringLength = 0; 1628 bool isUTF16 = false; 1629 llvm::StringMapEntry<llvm::Constant*> &Entry = 1630 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1631 getTargetData().isLittleEndian(), 1632 isUTF16, StringLength); 1633 1634 if (llvm::Constant *C = Entry.getValue()) 1635 return C; 1636 1637 llvm::Constant *Zero = 1638 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1639 llvm::Constant *Zeros[] = { Zero, Zero }; 1640 1641 // If we don't already have it, get _NSConstantStringClassReference. 1642 if (!NSConstantStringClassRef) { 1643 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1644 Ty = llvm::ArrayType::get(Ty, 0); 1645 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1646 Features.ObjCNonFragileABI ? 1647 "OBJC_CLASS_$_NSConstantString" : 1648 "_NSConstantStringClassReference"); 1649 // Decay array -> ptr 1650 NSConstantStringClassRef = 1651 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1652 } 1653 1654 QualType NSTy = getContext().getNSConstantStringType(); 1655 1656 const llvm::StructType *STy = 1657 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1658 1659 std::vector<llvm::Constant*> Fields(3); 1660 1661 // Class pointer. 1662 Fields[0] = NSConstantStringClassRef; 1663 1664 // String pointer. 1665 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1666 1667 llvm::GlobalValue::LinkageTypes Linkage; 1668 bool isConstant; 1669 if (isUTF16) { 1670 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1671 Linkage = llvm::GlobalValue::InternalLinkage; 1672 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1673 // does make plain ascii ones writable. 1674 isConstant = true; 1675 } else { 1676 Linkage = llvm::GlobalValue::PrivateLinkage; 1677 isConstant = !Features.WritableStrings; 1678 } 1679 1680 llvm::GlobalVariable *GV = 1681 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1682 ".str"); 1683 if (isUTF16) { 1684 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1685 GV->setAlignment(Align.getQuantity()); 1686 } 1687 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1688 1689 // String length. 1690 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1691 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1692 1693 // The struct. 1694 C = llvm::ConstantStruct::get(STy, Fields); 1695 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1696 llvm::GlobalVariable::PrivateLinkage, C, 1697 "_unnamed_nsstring_"); 1698 // FIXME. Fix section. 1699 if (const char *Sect = 1700 Features.ObjCNonFragileABI 1701 ? getContext().Target.getNSStringNonFragileABISection() 1702 : getContext().Target.getNSStringSection()) 1703 GV->setSection(Sect); 1704 Entry.setValue(GV); 1705 1706 return GV; 1707 } 1708 1709 /// GetStringForStringLiteral - Return the appropriate bytes for a 1710 /// string literal, properly padded to match the literal type. 1711 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1712 const char *StrData = E->getStrData(); 1713 unsigned Len = E->getByteLength(); 1714 1715 const ConstantArrayType *CAT = 1716 getContext().getAsConstantArrayType(E->getType()); 1717 assert(CAT && "String isn't pointer or array!"); 1718 1719 // Resize the string to the right size. 1720 std::string Str(StrData, StrData+Len); 1721 uint64_t RealLen = CAT->getSize().getZExtValue(); 1722 1723 if (E->isWide()) 1724 RealLen *= getContext().Target.getWCharWidth()/8; 1725 1726 Str.resize(RealLen, '\0'); 1727 1728 return Str; 1729 } 1730 1731 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1732 /// constant array for the given string literal. 1733 llvm::Constant * 1734 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1735 // FIXME: This can be more efficient. 1736 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1737 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1738 if (S->isWide()) { 1739 llvm::Type *DestTy = 1740 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1741 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1742 } 1743 return C; 1744 } 1745 1746 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1747 /// array for the given ObjCEncodeExpr node. 1748 llvm::Constant * 1749 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1750 std::string Str; 1751 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1752 1753 return GetAddrOfConstantCString(Str); 1754 } 1755 1756 1757 /// GenerateWritableString -- Creates storage for a string literal. 1758 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1759 bool constant, 1760 CodeGenModule &CGM, 1761 const char *GlobalName) { 1762 // Create Constant for this string literal. Don't add a '\0'. 1763 llvm::Constant *C = 1764 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1765 1766 // Create a global variable for this string 1767 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1768 llvm::GlobalValue::PrivateLinkage, 1769 C, GlobalName); 1770 } 1771 1772 /// GetAddrOfConstantString - Returns a pointer to a character array 1773 /// containing the literal. This contents are exactly that of the 1774 /// given string, i.e. it will not be null terminated automatically; 1775 /// see GetAddrOfConstantCString. Note that whether the result is 1776 /// actually a pointer to an LLVM constant depends on 1777 /// Feature.WriteableStrings. 1778 /// 1779 /// The result has pointer to array type. 1780 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1781 const char *GlobalName) { 1782 bool IsConstant = !Features.WritableStrings; 1783 1784 // Get the default prefix if a name wasn't specified. 1785 if (!GlobalName) 1786 GlobalName = ".str"; 1787 1788 // Don't share any string literals if strings aren't constant. 1789 if (!IsConstant) 1790 return GenerateStringLiteral(str, false, *this, GlobalName); 1791 1792 llvm::StringMapEntry<llvm::Constant *> &Entry = 1793 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1794 1795 if (Entry.getValue()) 1796 return Entry.getValue(); 1797 1798 // Create a global variable for this. 1799 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1800 Entry.setValue(C); 1801 return C; 1802 } 1803 1804 /// GetAddrOfConstantCString - Returns a pointer to a character 1805 /// array containing the literal and a terminating '\-' 1806 /// character. The result has pointer to array type. 1807 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1808 const char *GlobalName){ 1809 return GetAddrOfConstantString(str + '\0', GlobalName); 1810 } 1811 1812 /// EmitObjCPropertyImplementations - Emit information for synthesized 1813 /// properties for an implementation. 1814 void CodeGenModule::EmitObjCPropertyImplementations(const 1815 ObjCImplementationDecl *D) { 1816 for (ObjCImplementationDecl::propimpl_iterator 1817 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1818 ObjCPropertyImplDecl *PID = *i; 1819 1820 // Dynamic is just for type-checking. 1821 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1822 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1823 1824 // Determine which methods need to be implemented, some may have 1825 // been overridden. Note that ::isSynthesized is not the method 1826 // we want, that just indicates if the decl came from a 1827 // property. What we want to know is if the method is defined in 1828 // this implementation. 1829 if (!D->getInstanceMethod(PD->getGetterName())) 1830 CodeGenFunction(*this).GenerateObjCGetter( 1831 const_cast<ObjCImplementationDecl *>(D), PID); 1832 if (!PD->isReadOnly() && 1833 !D->getInstanceMethod(PD->getSetterName())) 1834 CodeGenFunction(*this).GenerateObjCSetter( 1835 const_cast<ObjCImplementationDecl *>(D), PID); 1836 } 1837 } 1838 } 1839 1840 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1841 /// for an implementation. 1842 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1843 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1844 return; 1845 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1846 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1847 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1848 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1849 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1850 D->getLocation(), 1851 D->getLocation(), cxxSelector, 1852 getContext().VoidTy, 0, 1853 DC, true, false, true, 1854 ObjCMethodDecl::Required); 1855 D->addInstanceMethod(DTORMethod); 1856 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1857 1858 II = &getContext().Idents.get(".cxx_construct"); 1859 cxxSelector = getContext().Selectors.getSelector(0, &II); 1860 // The constructor returns 'self'. 1861 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1862 D->getLocation(), 1863 D->getLocation(), cxxSelector, 1864 getContext().getObjCIdType(), 0, 1865 DC, true, false, true, 1866 ObjCMethodDecl::Required); 1867 D->addInstanceMethod(CTORMethod); 1868 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1869 1870 1871 } 1872 1873 /// EmitNamespace - Emit all declarations in a namespace. 1874 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1875 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1876 I != E; ++I) 1877 EmitTopLevelDecl(*I); 1878 } 1879 1880 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1881 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1882 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1883 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1884 ErrorUnsupported(LSD, "linkage spec"); 1885 return; 1886 } 1887 1888 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1889 I != E; ++I) 1890 EmitTopLevelDecl(*I); 1891 } 1892 1893 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1894 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1895 // If an error has occurred, stop code generation, but continue 1896 // parsing and semantic analysis (to ensure all warnings and errors 1897 // are emitted). 1898 if (Diags.hasErrorOccurred()) 1899 return; 1900 1901 // Ignore dependent declarations. 1902 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1903 return; 1904 1905 switch (D->getKind()) { 1906 case Decl::CXXConversion: 1907 case Decl::CXXMethod: 1908 case Decl::Function: 1909 // Skip function templates 1910 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1911 return; 1912 1913 EmitGlobal(cast<FunctionDecl>(D)); 1914 break; 1915 1916 case Decl::Var: 1917 EmitGlobal(cast<VarDecl>(D)); 1918 break; 1919 1920 // C++ Decls 1921 case Decl::Namespace: 1922 EmitNamespace(cast<NamespaceDecl>(D)); 1923 break; 1924 // No code generation needed. 1925 case Decl::UsingShadow: 1926 case Decl::Using: 1927 case Decl::UsingDirective: 1928 case Decl::ClassTemplate: 1929 case Decl::FunctionTemplate: 1930 case Decl::NamespaceAlias: 1931 break; 1932 case Decl::CXXConstructor: 1933 // Skip function templates 1934 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1935 return; 1936 1937 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1938 break; 1939 case Decl::CXXDestructor: 1940 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1941 break; 1942 1943 case Decl::StaticAssert: 1944 // Nothing to do. 1945 break; 1946 1947 // Objective-C Decls 1948 1949 // Forward declarations, no (immediate) code generation. 1950 case Decl::ObjCClass: 1951 case Decl::ObjCForwardProtocol: 1952 case Decl::ObjCCategory: 1953 case Decl::ObjCInterface: 1954 break; 1955 1956 case Decl::ObjCProtocol: 1957 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1958 break; 1959 1960 case Decl::ObjCCategoryImpl: 1961 // Categories have properties but don't support synthesize so we 1962 // can ignore them here. 1963 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1964 break; 1965 1966 case Decl::ObjCImplementation: { 1967 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1968 EmitObjCPropertyImplementations(OMD); 1969 EmitObjCIvarInitializations(OMD); 1970 Runtime->GenerateClass(OMD); 1971 break; 1972 } 1973 case Decl::ObjCMethod: { 1974 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1975 // If this is not a prototype, emit the body. 1976 if (OMD->getBody()) 1977 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1978 break; 1979 } 1980 case Decl::ObjCCompatibleAlias: 1981 // compatibility-alias is a directive and has no code gen. 1982 break; 1983 1984 case Decl::LinkageSpec: 1985 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1986 break; 1987 1988 case Decl::FileScopeAsm: { 1989 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1990 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1991 1992 const std::string &S = getModule().getModuleInlineAsm(); 1993 if (S.empty()) 1994 getModule().setModuleInlineAsm(AsmString); 1995 else 1996 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1997 break; 1998 } 1999 2000 default: 2001 // Make sure we handled everything we should, every other kind is a 2002 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2003 // function. Need to recode Decl::Kind to do that easily. 2004 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2005 } 2006 } 2007