xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c168e50722cae5a01618ef87284d107ededd932c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/Basic/Diagnostic.h"
33 #include "clang/Basic/SourceManager.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/Basic/ConvertUTF.h"
36 #include "llvm/CallingConv.h"
37 #include "llvm/Module.h"
38 #include "llvm/Intrinsics.h"
39 #include "llvm/LLVMContext.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/Target/Mangler.h"
42 #include "llvm/Target/TargetData.h"
43 #include "llvm/Support/CallSite.h"
44 #include "llvm/Support/ErrorHandling.h"
45 using namespace clang;
46 using namespace CodeGen;
47 
48 static const char AnnotationSection[] = "llvm.metadata";
49 
50 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
51   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
52   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
53   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
54   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
55   }
56 
57   llvm_unreachable("invalid C++ ABI kind");
58   return *CreateItaniumCXXABI(CGM);
59 }
60 
61 
62 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
63                              llvm::Module &M, const llvm::TargetData &TD,
64                              DiagnosticsEngine &diags)
65   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
66     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
67     ABI(createCXXABI(*this)),
68     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
69     TBAA(0),
70     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
71     DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0),
72     ConstantStringClassRef(0), NSConstantStringType(0),
73     VMContext(M.getContext()),
74     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
75     BlockObjectAssign(0), BlockObjectDispose(0),
76     BlockDescriptorType(0), GenericBlockLiteralType(0) {
77   if (Features.ObjC1)
78     createObjCRuntime();
79   if (Features.OpenCL)
80     createOpenCLRuntime();
81   if (Features.CUDA)
82     createCUDARuntime();
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info or coverage generation is enabled, create the CGDebugInfo
90   // object.
91   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
92       CodeGenOpts.EmitGcovNotes)
93     DebugInfo = new CGDebugInfo(*this);
94 
95   Block.GlobalUniqueCount = 0;
96 
97   if (C.getLangOptions().ObjCAutoRefCount)
98     ARCData = new ARCEntrypoints();
99   RRData = new RREntrypoints();
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
106   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
107   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
108   PointerAlignInBytes =
109     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
110   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
111   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
112   Int8PtrTy = Int8Ty->getPointerTo(0);
113   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
114 }
115 
116 CodeGenModule::~CodeGenModule() {
117   delete ObjCRuntime;
118   delete OpenCLRuntime;
119   delete CUDARuntime;
120   delete TheTargetCodeGenInfo;
121   delete &ABI;
122   delete TBAA;
123   delete DebugInfo;
124   delete ARCData;
125   delete RRData;
126 }
127 
128 void CodeGenModule::createObjCRuntime() {
129   if (!Features.NeXTRuntime)
130     ObjCRuntime = CreateGNUObjCRuntime(*this);
131   else
132     ObjCRuntime = CreateMacObjCRuntime(*this);
133 }
134 
135 void CodeGenModule::createOpenCLRuntime() {
136   OpenCLRuntime = new CGOpenCLRuntime(*this);
137 }
138 
139 void CodeGenModule::createCUDARuntime() {
140   CUDARuntime = CreateNVCUDARuntime(*this);
141 }
142 
143 void CodeGenModule::Release() {
144   EmitDeferred();
145   EmitCXXGlobalInitFunc();
146   EmitCXXGlobalDtorFunc();
147   if (ObjCRuntime)
148     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
149       AddGlobalCtor(ObjCInitFunction);
150   EmitCtorList(GlobalCtors, "llvm.global_ctors");
151   EmitCtorList(GlobalDtors, "llvm.global_dtors");
152   EmitGlobalAnnotations();
153   EmitLLVMUsed();
154 
155   SimplifyPersonality();
156 
157   if (getCodeGenOpts().EmitDeclMetadata)
158     EmitDeclMetadata();
159 
160   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
161     EmitCoverageFile();
162 
163   if (DebugInfo)
164     DebugInfo->finalize();
165 }
166 
167 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
168   // Make sure that this type is translated.
169   Types.UpdateCompletedType(TD);
170   if (DebugInfo)
171     DebugInfo->UpdateCompletedType(TD);
172 }
173 
174 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
175   if (!TBAA)
176     return 0;
177   return TBAA->getTBAAInfo(QTy);
178 }
179 
180 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
181                                         llvm::MDNode *TBAAInfo) {
182   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
183 }
184 
185 bool CodeGenModule::isTargetDarwin() const {
186   return getContext().getTargetInfo().getTriple().isOSDarwin();
187 }
188 
189 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
190   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
191   getDiags().Report(Context.getFullLoc(loc), diagID);
192 }
193 
194 /// ErrorUnsupported - Print out an error that codegen doesn't support the
195 /// specified stmt yet.
196 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
197                                      bool OmitOnError) {
198   if (OmitOnError && getDiags().hasErrorOccurred())
199     return;
200   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
201                                                "cannot compile this %0 yet");
202   std::string Msg = Type;
203   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
204     << Msg << S->getSourceRange();
205 }
206 
207 /// ErrorUnsupported - Print out an error that codegen doesn't support the
208 /// specified decl yet.
209 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
210                                      bool OmitOnError) {
211   if (OmitOnError && getDiags().hasErrorOccurred())
212     return;
213   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
214                                                "cannot compile this %0 yet");
215   std::string Msg = Type;
216   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
217 }
218 
219 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
220   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
221 }
222 
223 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
224                                         const NamedDecl *D) const {
225   // Internal definitions always have default visibility.
226   if (GV->hasLocalLinkage()) {
227     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
228     return;
229   }
230 
231   // Set visibility for definitions.
232   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
233   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
234     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
235 }
236 
237 /// Set the symbol visibility of type information (vtable and RTTI)
238 /// associated with the given type.
239 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
240                                       const CXXRecordDecl *RD,
241                                       TypeVisibilityKind TVK) const {
242   setGlobalVisibility(GV, RD);
243 
244   if (!CodeGenOpts.HiddenWeakVTables)
245     return;
246 
247   // We never want to drop the visibility for RTTI names.
248   if (TVK == TVK_ForRTTIName)
249     return;
250 
251   // We want to drop the visibility to hidden for weak type symbols.
252   // This isn't possible if there might be unresolved references
253   // elsewhere that rely on this symbol being visible.
254 
255   // This should be kept roughly in sync with setThunkVisibility
256   // in CGVTables.cpp.
257 
258   // Preconditions.
259   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
260       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
261     return;
262 
263   // Don't override an explicit visibility attribute.
264   if (RD->getExplicitVisibility())
265     return;
266 
267   switch (RD->getTemplateSpecializationKind()) {
268   // We have to disable the optimization if this is an EI definition
269   // because there might be EI declarations in other shared objects.
270   case TSK_ExplicitInstantiationDefinition:
271   case TSK_ExplicitInstantiationDeclaration:
272     return;
273 
274   // Every use of a non-template class's type information has to emit it.
275   case TSK_Undeclared:
276     break;
277 
278   // In theory, implicit instantiations can ignore the possibility of
279   // an explicit instantiation declaration because there necessarily
280   // must be an EI definition somewhere with default visibility.  In
281   // practice, it's possible to have an explicit instantiation for
282   // an arbitrary template class, and linkers aren't necessarily able
283   // to deal with mixed-visibility symbols.
284   case TSK_ExplicitSpecialization:
285   case TSK_ImplicitInstantiation:
286     if (!CodeGenOpts.HiddenWeakTemplateVTables)
287       return;
288     break;
289   }
290 
291   // If there's a key function, there may be translation units
292   // that don't have the key function's definition.  But ignore
293   // this if we're emitting RTTI under -fno-rtti.
294   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
295     if (Context.getKeyFunction(RD))
296       return;
297   }
298 
299   // Otherwise, drop the visibility to hidden.
300   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
301   GV->setUnnamedAddr(true);
302 }
303 
304 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
305   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
306 
307   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
308   if (!Str.empty())
309     return Str;
310 
311   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
312     IdentifierInfo *II = ND->getIdentifier();
313     assert(II && "Attempt to mangle unnamed decl.");
314 
315     Str = II->getName();
316     return Str;
317   }
318 
319   llvm::SmallString<256> Buffer;
320   llvm::raw_svector_ostream Out(Buffer);
321   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
322     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
323   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
324     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
325   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
326     getCXXABI().getMangleContext().mangleBlock(BD, Out);
327   else
328     getCXXABI().getMangleContext().mangleName(ND, Out);
329 
330   // Allocate space for the mangled name.
331   Out.flush();
332   size_t Length = Buffer.size();
333   char *Name = MangledNamesAllocator.Allocate<char>(Length);
334   std::copy(Buffer.begin(), Buffer.end(), Name);
335 
336   Str = StringRef(Name, Length);
337 
338   return Str;
339 }
340 
341 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
342                                         const BlockDecl *BD) {
343   MangleContext &MangleCtx = getCXXABI().getMangleContext();
344   const Decl *D = GD.getDecl();
345   llvm::raw_svector_ostream Out(Buffer.getBuffer());
346   if (D == 0)
347     MangleCtx.mangleGlobalBlock(BD, Out);
348   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
349     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
350   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
351     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
352   else
353     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
354 }
355 
356 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
357   return getModule().getNamedValue(Name);
358 }
359 
360 /// AddGlobalCtor - Add a function to the list that will be called before
361 /// main() runs.
362 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
363   // FIXME: Type coercion of void()* types.
364   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
365 }
366 
367 /// AddGlobalDtor - Add a function to the list that will be called
368 /// when the module is unloaded.
369 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
370   // FIXME: Type coercion of void()* types.
371   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
372 }
373 
374 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
375   // Ctor function type is void()*.
376   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
377   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
378 
379   // Get the type of a ctor entry, { i32, void ()* }.
380   llvm::StructType *CtorStructTy =
381     llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
382                           llvm::PointerType::getUnqual(CtorFTy), NULL);
383 
384   // Construct the constructor and destructor arrays.
385   std::vector<llvm::Constant*> Ctors;
386   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
387     std::vector<llvm::Constant*> S;
388     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
389                 I->second, false));
390     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
391     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
392   }
393 
394   if (!Ctors.empty()) {
395     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
396     new llvm::GlobalVariable(TheModule, AT, false,
397                              llvm::GlobalValue::AppendingLinkage,
398                              llvm::ConstantArray::get(AT, Ctors),
399                              GlobalName);
400   }
401 }
402 
403 llvm::GlobalValue::LinkageTypes
404 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
405   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
406 
407   if (Linkage == GVA_Internal)
408     return llvm::Function::InternalLinkage;
409 
410   if (D->hasAttr<DLLExportAttr>())
411     return llvm::Function::DLLExportLinkage;
412 
413   if (D->hasAttr<WeakAttr>())
414     return llvm::Function::WeakAnyLinkage;
415 
416   // In C99 mode, 'inline' functions are guaranteed to have a strong
417   // definition somewhere else, so we can use available_externally linkage.
418   if (Linkage == GVA_C99Inline)
419     return llvm::Function::AvailableExternallyLinkage;
420 
421   // Note that Apple's kernel linker doesn't support symbol
422   // coalescing, so we need to avoid linkonce and weak linkages there.
423   // Normally, this means we just map to internal, but for explicit
424   // instantiations we'll map to external.
425 
426   // In C++, the compiler has to emit a definition in every translation unit
427   // that references the function.  We should use linkonce_odr because
428   // a) if all references in this translation unit are optimized away, we
429   // don't need to codegen it.  b) if the function persists, it needs to be
430   // merged with other definitions. c) C++ has the ODR, so we know the
431   // definition is dependable.
432   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
433     return !Context.getLangOptions().AppleKext
434              ? llvm::Function::LinkOnceODRLinkage
435              : llvm::Function::InternalLinkage;
436 
437   // An explicit instantiation of a template has weak linkage, since
438   // explicit instantiations can occur in multiple translation units
439   // and must all be equivalent. However, we are not allowed to
440   // throw away these explicit instantiations.
441   if (Linkage == GVA_ExplicitTemplateInstantiation)
442     return !Context.getLangOptions().AppleKext
443              ? llvm::Function::WeakODRLinkage
444              : llvm::Function::ExternalLinkage;
445 
446   // Otherwise, we have strong external linkage.
447   assert(Linkage == GVA_StrongExternal);
448   return llvm::Function::ExternalLinkage;
449 }
450 
451 
452 /// SetFunctionDefinitionAttributes - Set attributes for a global.
453 ///
454 /// FIXME: This is currently only done for aliases and functions, but not for
455 /// variables (these details are set in EmitGlobalVarDefinition for variables).
456 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
457                                                     llvm::GlobalValue *GV) {
458   SetCommonAttributes(D, GV);
459 }
460 
461 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
462                                               const CGFunctionInfo &Info,
463                                               llvm::Function *F) {
464   unsigned CallingConv;
465   AttributeListType AttributeList;
466   ConstructAttributeList(Info, D, AttributeList, CallingConv);
467   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
468                                           AttributeList.size()));
469   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
470 }
471 
472 /// Determines whether the language options require us to model
473 /// unwind exceptions.  We treat -fexceptions as mandating this
474 /// except under the fragile ObjC ABI with only ObjC exceptions
475 /// enabled.  This means, for example, that C with -fexceptions
476 /// enables this.
477 static bool hasUnwindExceptions(const LangOptions &Features) {
478   // If exceptions are completely disabled, obviously this is false.
479   if (!Features.Exceptions) return false;
480 
481   // If C++ exceptions are enabled, this is true.
482   if (Features.CXXExceptions) return true;
483 
484   // If ObjC exceptions are enabled, this depends on the ABI.
485   if (Features.ObjCExceptions) {
486     if (!Features.ObjCNonFragileABI) return false;
487   }
488 
489   return true;
490 }
491 
492 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
493                                                            llvm::Function *F) {
494   if (CodeGenOpts.UnwindTables)
495     F->setHasUWTable();
496 
497   if (!hasUnwindExceptions(Features))
498     F->addFnAttr(llvm::Attribute::NoUnwind);
499 
500   if (D->hasAttr<NakedAttr>()) {
501     // Naked implies noinline: we should not be inlining such functions.
502     F->addFnAttr(llvm::Attribute::Naked);
503     F->addFnAttr(llvm::Attribute::NoInline);
504   }
505 
506   if (D->hasAttr<NoInlineAttr>())
507     F->addFnAttr(llvm::Attribute::NoInline);
508 
509   // (noinline wins over always_inline, and we can't specify both in IR)
510   if (D->hasAttr<AlwaysInlineAttr>() &&
511       !F->hasFnAttr(llvm::Attribute::NoInline))
512     F->addFnAttr(llvm::Attribute::AlwaysInline);
513 
514   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
515     F->setUnnamedAddr(true);
516 
517   if (Features.getStackProtector() == LangOptions::SSPOn)
518     F->addFnAttr(llvm::Attribute::StackProtect);
519   else if (Features.getStackProtector() == LangOptions::SSPReq)
520     F->addFnAttr(llvm::Attribute::StackProtectReq);
521 
522   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
523   if (alignment)
524     F->setAlignment(alignment);
525 
526   // C++ ABI requires 2-byte alignment for member functions.
527   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
528     F->setAlignment(2);
529 }
530 
531 void CodeGenModule::SetCommonAttributes(const Decl *D,
532                                         llvm::GlobalValue *GV) {
533   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
534     setGlobalVisibility(GV, ND);
535   else
536     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
537 
538   if (D->hasAttr<UsedAttr>())
539     AddUsedGlobal(GV);
540 
541   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
542     GV->setSection(SA->getName());
543 
544   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
545 }
546 
547 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
548                                                   llvm::Function *F,
549                                                   const CGFunctionInfo &FI) {
550   SetLLVMFunctionAttributes(D, FI, F);
551   SetLLVMFunctionAttributesForDefinition(D, F);
552 
553   F->setLinkage(llvm::Function::InternalLinkage);
554 
555   SetCommonAttributes(D, F);
556 }
557 
558 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
559                                           llvm::Function *F,
560                                           bool IsIncompleteFunction) {
561   if (unsigned IID = F->getIntrinsicID()) {
562     // If this is an intrinsic function, set the function's attributes
563     // to the intrinsic's attributes.
564     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
565     return;
566   }
567 
568   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
569 
570   if (!IsIncompleteFunction)
571     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
572 
573   // Only a few attributes are set on declarations; these may later be
574   // overridden by a definition.
575 
576   if (FD->hasAttr<DLLImportAttr>()) {
577     F->setLinkage(llvm::Function::DLLImportLinkage);
578   } else if (FD->hasAttr<WeakAttr>() ||
579              FD->isWeakImported()) {
580     // "extern_weak" is overloaded in LLVM; we probably should have
581     // separate linkage types for this.
582     F->setLinkage(llvm::Function::ExternalWeakLinkage);
583   } else {
584     F->setLinkage(llvm::Function::ExternalLinkage);
585 
586     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
587     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
588       F->setVisibility(GetLLVMVisibility(LV.visibility()));
589     }
590   }
591 
592   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
593     F->setSection(SA->getName());
594 }
595 
596 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
597   assert(!GV->isDeclaration() &&
598          "Only globals with definition can force usage.");
599   LLVMUsed.push_back(GV);
600 }
601 
602 void CodeGenModule::EmitLLVMUsed() {
603   // Don't create llvm.used if there is no need.
604   if (LLVMUsed.empty())
605     return;
606 
607   llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
608 
609   // Convert LLVMUsed to what ConstantArray needs.
610   std::vector<llvm::Constant*> UsedArray;
611   UsedArray.resize(LLVMUsed.size());
612   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
613     UsedArray[i] =
614      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
615                                       i8PTy);
616   }
617 
618   if (UsedArray.empty())
619     return;
620   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
621 
622   llvm::GlobalVariable *GV =
623     new llvm::GlobalVariable(getModule(), ATy, false,
624                              llvm::GlobalValue::AppendingLinkage,
625                              llvm::ConstantArray::get(ATy, UsedArray),
626                              "llvm.used");
627 
628   GV->setSection("llvm.metadata");
629 }
630 
631 void CodeGenModule::EmitDeferred() {
632   // Emit code for any potentially referenced deferred decls.  Since a
633   // previously unused static decl may become used during the generation of code
634   // for a static function, iterate until no changes are made.
635 
636   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
637     if (!DeferredVTables.empty()) {
638       const CXXRecordDecl *RD = DeferredVTables.back();
639       DeferredVTables.pop_back();
640       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
641       continue;
642     }
643 
644     GlobalDecl D = DeferredDeclsToEmit.back();
645     DeferredDeclsToEmit.pop_back();
646 
647     // Check to see if we've already emitted this.  This is necessary
648     // for a couple of reasons: first, decls can end up in the
649     // deferred-decls queue multiple times, and second, decls can end
650     // up with definitions in unusual ways (e.g. by an extern inline
651     // function acquiring a strong function redefinition).  Just
652     // ignore these cases.
653     //
654     // TODO: That said, looking this up multiple times is very wasteful.
655     StringRef Name = getMangledName(D);
656     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
657     assert(CGRef && "Deferred decl wasn't referenced?");
658 
659     if (!CGRef->isDeclaration())
660       continue;
661 
662     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
663     // purposes an alias counts as a definition.
664     if (isa<llvm::GlobalAlias>(CGRef))
665       continue;
666 
667     // Otherwise, emit the definition and move on to the next one.
668     EmitGlobalDefinition(D);
669   }
670 }
671 
672 void CodeGenModule::EmitGlobalAnnotations() {
673   if (Annotations.empty())
674     return;
675 
676   // Create a new global variable for the ConstantStruct in the Module.
677   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
678     Annotations[0]->getType(), Annotations.size()), Annotations);
679   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
680     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
681     "llvm.global.annotations");
682   gv->setSection(AnnotationSection);
683 }
684 
685 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
686   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
687   if (i != AnnotationStrings.end())
688     return i->second;
689 
690   // Not found yet, create a new global.
691   llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true);
692   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
693     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
694   gv->setSection(AnnotationSection);
695   gv->setUnnamedAddr(true);
696   AnnotationStrings[Str] = gv;
697   return gv;
698 }
699 
700 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
701   SourceManager &SM = getContext().getSourceManager();
702   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
703   if (PLoc.isValid())
704     return EmitAnnotationString(PLoc.getFilename());
705   return EmitAnnotationString(SM.getBufferName(Loc));
706 }
707 
708 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
709   SourceManager &SM = getContext().getSourceManager();
710   PresumedLoc PLoc = SM.getPresumedLoc(L);
711   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
712     SM.getExpansionLineNumber(L);
713   return llvm::ConstantInt::get(Int32Ty, LineNo);
714 }
715 
716 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
717                                                 const AnnotateAttr *AA,
718                                                 SourceLocation L) {
719   // Get the globals for file name, annotation, and the line number.
720   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
721                  *UnitGV = EmitAnnotationUnit(L),
722                  *LineNoCst = EmitAnnotationLineNo(L);
723 
724   // Create the ConstantStruct for the global annotation.
725   llvm::Constant *Fields[4] = {
726     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
727     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
728     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
729     LineNoCst
730   };
731   return llvm::ConstantStruct::getAnon(Fields);
732 }
733 
734 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
735                                          llvm::GlobalValue *GV) {
736   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
737   // Get the struct elements for these annotations.
738   for (specific_attr_iterator<AnnotateAttr>
739        ai = D->specific_attr_begin<AnnotateAttr>(),
740        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
741     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
742 }
743 
744 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
745   // Never defer when EmitAllDecls is specified.
746   if (Features.EmitAllDecls)
747     return false;
748 
749   return !getContext().DeclMustBeEmitted(Global);
750 }
751 
752 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
753   const AliasAttr *AA = VD->getAttr<AliasAttr>();
754   assert(AA && "No alias?");
755 
756   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
757 
758   // See if there is already something with the target's name in the module.
759   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
760 
761   llvm::Constant *Aliasee;
762   if (isa<llvm::FunctionType>(DeclTy))
763     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
764                                       /*ForVTable=*/false);
765   else
766     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
767                                     llvm::PointerType::getUnqual(DeclTy), 0);
768   if (!Entry) {
769     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
770     F->setLinkage(llvm::Function::ExternalWeakLinkage);
771     WeakRefReferences.insert(F);
772   }
773 
774   return Aliasee;
775 }
776 
777 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
778   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
779 
780   // Weak references don't produce any output by themselves.
781   if (Global->hasAttr<WeakRefAttr>())
782     return;
783 
784   // If this is an alias definition (which otherwise looks like a declaration)
785   // emit it now.
786   if (Global->hasAttr<AliasAttr>())
787     return EmitAliasDefinition(GD);
788 
789   // If this is CUDA, be selective about which declarations we emit.
790   if (Features.CUDA) {
791     if (CodeGenOpts.CUDAIsDevice) {
792       if (!Global->hasAttr<CUDADeviceAttr>() &&
793           !Global->hasAttr<CUDAGlobalAttr>() &&
794           !Global->hasAttr<CUDAConstantAttr>() &&
795           !Global->hasAttr<CUDASharedAttr>())
796         return;
797     } else {
798       if (!Global->hasAttr<CUDAHostAttr>() && (
799             Global->hasAttr<CUDADeviceAttr>() ||
800             Global->hasAttr<CUDAConstantAttr>() ||
801             Global->hasAttr<CUDASharedAttr>()))
802         return;
803     }
804   }
805 
806   // Ignore declarations, they will be emitted on their first use.
807   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
808     // Forward declarations are emitted lazily on first use.
809     if (!FD->doesThisDeclarationHaveABody()) {
810       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
811         return;
812 
813       const FunctionDecl *InlineDefinition = 0;
814       FD->getBody(InlineDefinition);
815 
816       StringRef MangledName = getMangledName(GD);
817       llvm::StringMap<GlobalDecl>::iterator DDI =
818           DeferredDecls.find(MangledName);
819       if (DDI != DeferredDecls.end())
820         DeferredDecls.erase(DDI);
821       EmitGlobalDefinition(InlineDefinition);
822       return;
823     }
824   } else {
825     const VarDecl *VD = cast<VarDecl>(Global);
826     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
827 
828     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
829       return;
830   }
831 
832   // Defer code generation when possible if this is a static definition, inline
833   // function etc.  These we only want to emit if they are used.
834   if (!MayDeferGeneration(Global)) {
835     // Emit the definition if it can't be deferred.
836     EmitGlobalDefinition(GD);
837     return;
838   }
839 
840   // If we're deferring emission of a C++ variable with an
841   // initializer, remember the order in which it appeared in the file.
842   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
843       cast<VarDecl>(Global)->hasInit()) {
844     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
845     CXXGlobalInits.push_back(0);
846   }
847 
848   // If the value has already been used, add it directly to the
849   // DeferredDeclsToEmit list.
850   StringRef MangledName = getMangledName(GD);
851   if (GetGlobalValue(MangledName))
852     DeferredDeclsToEmit.push_back(GD);
853   else {
854     // Otherwise, remember that we saw a deferred decl with this name.  The
855     // first use of the mangled name will cause it to move into
856     // DeferredDeclsToEmit.
857     DeferredDecls[MangledName] = GD;
858   }
859 }
860 
861 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
862   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
863 
864   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
865                                  Context.getSourceManager(),
866                                  "Generating code for declaration");
867 
868   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
869     // At -O0, don't generate IR for functions with available_externally
870     // linkage.
871     if (CodeGenOpts.OptimizationLevel == 0 &&
872         !Function->hasAttr<AlwaysInlineAttr>() &&
873         getFunctionLinkage(Function)
874                                   == llvm::Function::AvailableExternallyLinkage)
875       return;
876 
877     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
878       // Make sure to emit the definition(s) before we emit the thunks.
879       // This is necessary for the generation of certain thunks.
880       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
881         EmitCXXConstructor(CD, GD.getCtorType());
882       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
883         EmitCXXDestructor(DD, GD.getDtorType());
884       else
885         EmitGlobalFunctionDefinition(GD);
886 
887       if (Method->isVirtual())
888         getVTables().EmitThunks(GD);
889 
890       return;
891     }
892 
893     return EmitGlobalFunctionDefinition(GD);
894   }
895 
896   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
897     return EmitGlobalVarDefinition(VD);
898 
899   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
900 }
901 
902 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
903 /// module, create and return an llvm Function with the specified type. If there
904 /// is something in the module with the specified name, return it potentially
905 /// bitcasted to the right type.
906 ///
907 /// If D is non-null, it specifies a decl that correspond to this.  This is used
908 /// to set the attributes on the function when it is first created.
909 llvm::Constant *
910 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
911                                        llvm::Type *Ty,
912                                        GlobalDecl D, bool ForVTable,
913                                        llvm::Attributes ExtraAttrs) {
914   // Lookup the entry, lazily creating it if necessary.
915   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
916   if (Entry) {
917     if (WeakRefReferences.count(Entry)) {
918       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
919       if (FD && !FD->hasAttr<WeakAttr>())
920         Entry->setLinkage(llvm::Function::ExternalLinkage);
921 
922       WeakRefReferences.erase(Entry);
923     }
924 
925     if (Entry->getType()->getElementType() == Ty)
926       return Entry;
927 
928     // Make sure the result is of the correct type.
929     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
930   }
931 
932   // This function doesn't have a complete type (for example, the return
933   // type is an incomplete struct). Use a fake type instead, and make
934   // sure not to try to set attributes.
935   bool IsIncompleteFunction = false;
936 
937   llvm::FunctionType *FTy;
938   if (isa<llvm::FunctionType>(Ty)) {
939     FTy = cast<llvm::FunctionType>(Ty);
940   } else {
941     FTy = llvm::FunctionType::get(VoidTy, false);
942     IsIncompleteFunction = true;
943   }
944 
945   llvm::Function *F = llvm::Function::Create(FTy,
946                                              llvm::Function::ExternalLinkage,
947                                              MangledName, &getModule());
948   assert(F->getName() == MangledName && "name was uniqued!");
949   if (D.getDecl())
950     SetFunctionAttributes(D, F, IsIncompleteFunction);
951   if (ExtraAttrs != llvm::Attribute::None)
952     F->addFnAttr(ExtraAttrs);
953 
954   // This is the first use or definition of a mangled name.  If there is a
955   // deferred decl with this name, remember that we need to emit it at the end
956   // of the file.
957   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
958   if (DDI != DeferredDecls.end()) {
959     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
960     // list, and remove it from DeferredDecls (since we don't need it anymore).
961     DeferredDeclsToEmit.push_back(DDI->second);
962     DeferredDecls.erase(DDI);
963 
964   // Otherwise, there are cases we have to worry about where we're
965   // using a declaration for which we must emit a definition but where
966   // we might not find a top-level definition:
967   //   - member functions defined inline in their classes
968   //   - friend functions defined inline in some class
969   //   - special member functions with implicit definitions
970   // If we ever change our AST traversal to walk into class methods,
971   // this will be unnecessary.
972   //
973   // We also don't emit a definition for a function if it's going to be an entry
974   // in a vtable, unless it's already marked as used.
975   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
976     // Look for a declaration that's lexically in a record.
977     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
978     do {
979       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
980         if (FD->isImplicit() && !ForVTable) {
981           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
982           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
983           break;
984         } else if (FD->doesThisDeclarationHaveABody()) {
985           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
986           break;
987         }
988       }
989       FD = FD->getPreviousDeclaration();
990     } while (FD);
991   }
992 
993   // Make sure the result is of the requested type.
994   if (!IsIncompleteFunction) {
995     assert(F->getType()->getElementType() == Ty);
996     return F;
997   }
998 
999   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1000   return llvm::ConstantExpr::getBitCast(F, PTy);
1001 }
1002 
1003 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1004 /// non-null, then this function will use the specified type if it has to
1005 /// create it (this occurs when we see a definition of the function).
1006 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1007                                                  llvm::Type *Ty,
1008                                                  bool ForVTable) {
1009   // If there was no specific requested type, just convert it now.
1010   if (!Ty)
1011     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1012 
1013   StringRef MangledName = getMangledName(GD);
1014   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1015 }
1016 
1017 /// CreateRuntimeFunction - Create a new runtime function with the specified
1018 /// type and name.
1019 llvm::Constant *
1020 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1021                                      StringRef Name,
1022                                      llvm::Attributes ExtraAttrs) {
1023   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1024                                  ExtraAttrs);
1025 }
1026 
1027 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
1028                                  bool ConstantInit) {
1029   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
1030     return false;
1031 
1032   if (Context.getLangOptions().CPlusPlus) {
1033     if (const RecordType *Record
1034           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
1035       return ConstantInit &&
1036              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
1037              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
1038   }
1039 
1040   return true;
1041 }
1042 
1043 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1044 /// create and return an llvm GlobalVariable with the specified type.  If there
1045 /// is something in the module with the specified name, return it potentially
1046 /// bitcasted to the right type.
1047 ///
1048 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1049 /// to set the attributes on the global when it is first created.
1050 llvm::Constant *
1051 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1052                                      llvm::PointerType *Ty,
1053                                      const VarDecl *D,
1054                                      bool UnnamedAddr) {
1055   // Lookup the entry, lazily creating it if necessary.
1056   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1057   if (Entry) {
1058     if (WeakRefReferences.count(Entry)) {
1059       if (D && !D->hasAttr<WeakAttr>())
1060         Entry->setLinkage(llvm::Function::ExternalLinkage);
1061 
1062       WeakRefReferences.erase(Entry);
1063     }
1064 
1065     if (UnnamedAddr)
1066       Entry->setUnnamedAddr(true);
1067 
1068     if (Entry->getType() == Ty)
1069       return Entry;
1070 
1071     // Make sure the result is of the correct type.
1072     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1073   }
1074 
1075   // This is the first use or definition of a mangled name.  If there is a
1076   // deferred decl with this name, remember that we need to emit it at the end
1077   // of the file.
1078   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1079   if (DDI != DeferredDecls.end()) {
1080     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1081     // list, and remove it from DeferredDecls (since we don't need it anymore).
1082     DeferredDeclsToEmit.push_back(DDI->second);
1083     DeferredDecls.erase(DDI);
1084   }
1085 
1086   llvm::GlobalVariable *GV =
1087     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1088                              llvm::GlobalValue::ExternalLinkage,
1089                              0, MangledName, 0,
1090                              false, Ty->getAddressSpace());
1091 
1092   // Handle things which are present even on external declarations.
1093   if (D) {
1094     // FIXME: This code is overly simple and should be merged with other global
1095     // handling.
1096     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1097 
1098     // Set linkage and visibility in case we never see a definition.
1099     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1100     if (LV.linkage() != ExternalLinkage) {
1101       // Don't set internal linkage on declarations.
1102     } else {
1103       if (D->hasAttr<DLLImportAttr>())
1104         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1105       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1106         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1107 
1108       // Set visibility on a declaration only if it's explicit.
1109       if (LV.visibilityExplicit())
1110         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1111     }
1112 
1113     GV->setThreadLocal(D->isThreadSpecified());
1114   }
1115 
1116   return GV;
1117 }
1118 
1119 
1120 llvm::GlobalVariable *
1121 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1122                                       llvm::Type *Ty,
1123                                       llvm::GlobalValue::LinkageTypes Linkage) {
1124   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1125   llvm::GlobalVariable *OldGV = 0;
1126 
1127 
1128   if (GV) {
1129     // Check if the variable has the right type.
1130     if (GV->getType()->getElementType() == Ty)
1131       return GV;
1132 
1133     // Because C++ name mangling, the only way we can end up with an already
1134     // existing global with the same name is if it has been declared extern "C".
1135       assert(GV->isDeclaration() && "Declaration has wrong type!");
1136     OldGV = GV;
1137   }
1138 
1139   // Create a new variable.
1140   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1141                                 Linkage, 0, Name);
1142 
1143   if (OldGV) {
1144     // Replace occurrences of the old variable if needed.
1145     GV->takeName(OldGV);
1146 
1147     if (!OldGV->use_empty()) {
1148       llvm::Constant *NewPtrForOldDecl =
1149       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1150       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1151     }
1152 
1153     OldGV->eraseFromParent();
1154   }
1155 
1156   return GV;
1157 }
1158 
1159 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1160 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1161 /// then it will be greated with the specified type instead of whatever the
1162 /// normal requested type would be.
1163 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1164                                                   llvm::Type *Ty) {
1165   assert(D->hasGlobalStorage() && "Not a global variable");
1166   QualType ASTTy = D->getType();
1167   if (Ty == 0)
1168     Ty = getTypes().ConvertTypeForMem(ASTTy);
1169 
1170   llvm::PointerType *PTy =
1171     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1172 
1173   StringRef MangledName = getMangledName(D);
1174   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1175 }
1176 
1177 /// CreateRuntimeVariable - Create a new runtime global variable with the
1178 /// specified type and name.
1179 llvm::Constant *
1180 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1181                                      StringRef Name) {
1182   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1183                                true);
1184 }
1185 
1186 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1187   assert(!D->getInit() && "Cannot emit definite definitions here!");
1188 
1189   if (MayDeferGeneration(D)) {
1190     // If we have not seen a reference to this variable yet, place it
1191     // into the deferred declarations table to be emitted if needed
1192     // later.
1193     StringRef MangledName = getMangledName(D);
1194     if (!GetGlobalValue(MangledName)) {
1195       DeferredDecls[MangledName] = D;
1196       return;
1197     }
1198   }
1199 
1200   // The tentative definition is the only definition.
1201   EmitGlobalVarDefinition(D);
1202 }
1203 
1204 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1205   if (DefinitionRequired)
1206     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1207 }
1208 
1209 llvm::GlobalVariable::LinkageTypes
1210 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1211   if (RD->getLinkage() != ExternalLinkage)
1212     return llvm::GlobalVariable::InternalLinkage;
1213 
1214   if (const CXXMethodDecl *KeyFunction
1215                                     = RD->getASTContext().getKeyFunction(RD)) {
1216     // If this class has a key function, use that to determine the linkage of
1217     // the vtable.
1218     const FunctionDecl *Def = 0;
1219     if (KeyFunction->hasBody(Def))
1220       KeyFunction = cast<CXXMethodDecl>(Def);
1221 
1222     switch (KeyFunction->getTemplateSpecializationKind()) {
1223       case TSK_Undeclared:
1224       case TSK_ExplicitSpecialization:
1225         // When compiling with optimizations turned on, we emit all vtables,
1226         // even if the key function is not defined in the current translation
1227         // unit. If this is the case, use available_externally linkage.
1228         if (!Def && CodeGenOpts.OptimizationLevel)
1229           return llvm::GlobalVariable::AvailableExternallyLinkage;
1230 
1231         if (KeyFunction->isInlined())
1232           return !Context.getLangOptions().AppleKext ?
1233                    llvm::GlobalVariable::LinkOnceODRLinkage :
1234                    llvm::Function::InternalLinkage;
1235 
1236         return llvm::GlobalVariable::ExternalLinkage;
1237 
1238       case TSK_ImplicitInstantiation:
1239         return !Context.getLangOptions().AppleKext ?
1240                  llvm::GlobalVariable::LinkOnceODRLinkage :
1241                  llvm::Function::InternalLinkage;
1242 
1243       case TSK_ExplicitInstantiationDefinition:
1244         return !Context.getLangOptions().AppleKext ?
1245                  llvm::GlobalVariable::WeakODRLinkage :
1246                  llvm::Function::InternalLinkage;
1247 
1248       case TSK_ExplicitInstantiationDeclaration:
1249         // FIXME: Use available_externally linkage. However, this currently
1250         // breaks LLVM's build due to undefined symbols.
1251         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1252         return !Context.getLangOptions().AppleKext ?
1253                  llvm::GlobalVariable::LinkOnceODRLinkage :
1254                  llvm::Function::InternalLinkage;
1255     }
1256   }
1257 
1258   if (Context.getLangOptions().AppleKext)
1259     return llvm::Function::InternalLinkage;
1260 
1261   switch (RD->getTemplateSpecializationKind()) {
1262   case TSK_Undeclared:
1263   case TSK_ExplicitSpecialization:
1264   case TSK_ImplicitInstantiation:
1265     // FIXME: Use available_externally linkage. However, this currently
1266     // breaks LLVM's build due to undefined symbols.
1267     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1268   case TSK_ExplicitInstantiationDeclaration:
1269     return llvm::GlobalVariable::LinkOnceODRLinkage;
1270 
1271   case TSK_ExplicitInstantiationDefinition:
1272       return llvm::GlobalVariable::WeakODRLinkage;
1273   }
1274 
1275   // Silence GCC warning.
1276   return llvm::GlobalVariable::LinkOnceODRLinkage;
1277 }
1278 
1279 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1280     return Context.toCharUnitsFromBits(
1281       TheTargetData.getTypeStoreSizeInBits(Ty));
1282 }
1283 
1284 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1285   llvm::Constant *Init = 0;
1286   QualType ASTTy = D->getType();
1287   bool NonConstInit = false;
1288 
1289   const Expr *InitExpr = D->getAnyInitializer();
1290 
1291   if (!InitExpr) {
1292     // This is a tentative definition; tentative definitions are
1293     // implicitly initialized with { 0 }.
1294     //
1295     // Note that tentative definitions are only emitted at the end of
1296     // a translation unit, so they should never have incomplete
1297     // type. In addition, EmitTentativeDefinition makes sure that we
1298     // never attempt to emit a tentative definition if a real one
1299     // exists. A use may still exists, however, so we still may need
1300     // to do a RAUW.
1301     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1302     Init = EmitNullConstant(D->getType());
1303   } else {
1304     Init = EmitConstantExpr(InitExpr, D->getType());
1305     if (!Init) {
1306       QualType T = InitExpr->getType();
1307       if (D->getType()->isReferenceType())
1308         T = D->getType();
1309 
1310       if (getLangOptions().CPlusPlus) {
1311         Init = EmitNullConstant(T);
1312         NonConstInit = true;
1313       } else {
1314         ErrorUnsupported(D, "static initializer");
1315         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1316       }
1317     } else {
1318       // We don't need an initializer, so remove the entry for the delayed
1319       // initializer position (just in case this entry was delayed).
1320       if (getLangOptions().CPlusPlus)
1321         DelayedCXXInitPosition.erase(D);
1322     }
1323   }
1324 
1325   llvm::Type* InitType = Init->getType();
1326   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1327 
1328   // Strip off a bitcast if we got one back.
1329   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1330     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1331            // all zero index gep.
1332            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1333     Entry = CE->getOperand(0);
1334   }
1335 
1336   // Entry is now either a Function or GlobalVariable.
1337   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1338 
1339   // We have a definition after a declaration with the wrong type.
1340   // We must make a new GlobalVariable* and update everything that used OldGV
1341   // (a declaration or tentative definition) with the new GlobalVariable*
1342   // (which will be a definition).
1343   //
1344   // This happens if there is a prototype for a global (e.g.
1345   // "extern int x[];") and then a definition of a different type (e.g.
1346   // "int x[10];"). This also happens when an initializer has a different type
1347   // from the type of the global (this happens with unions).
1348   if (GV == 0 ||
1349       GV->getType()->getElementType() != InitType ||
1350       GV->getType()->getAddressSpace() !=
1351         getContext().getTargetAddressSpace(ASTTy)) {
1352 
1353     // Move the old entry aside so that we'll create a new one.
1354     Entry->setName(StringRef());
1355 
1356     // Make a new global with the correct type, this is now guaranteed to work.
1357     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1358 
1359     // Replace all uses of the old global with the new global
1360     llvm::Constant *NewPtrForOldDecl =
1361         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1362     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1363 
1364     // Erase the old global, since it is no longer used.
1365     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1366   }
1367 
1368   if (D->hasAttr<AnnotateAttr>())
1369     AddGlobalAnnotations(D, GV);
1370 
1371   GV->setInitializer(Init);
1372 
1373   // If it is safe to mark the global 'constant', do so now.
1374   GV->setConstant(false);
1375   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1376     GV->setConstant(true);
1377 
1378   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1379 
1380   // Set the llvm linkage type as appropriate.
1381   llvm::GlobalValue::LinkageTypes Linkage =
1382     GetLLVMLinkageVarDefinition(D, GV);
1383   GV->setLinkage(Linkage);
1384   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1385     // common vars aren't constant even if declared const.
1386     GV->setConstant(false);
1387 
1388   SetCommonAttributes(D, GV);
1389 
1390   // Emit the initializer function if necessary.
1391   if (NonConstInit)
1392     EmitCXXGlobalVarDeclInitFunc(D, GV);
1393 
1394   // Emit global variable debug information.
1395   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1396     DI->setLocation(D->getLocation());
1397     DI->EmitGlobalVariable(GV, D);
1398   }
1399 }
1400 
1401 llvm::GlobalValue::LinkageTypes
1402 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1403                                            llvm::GlobalVariable *GV) {
1404   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1405   if (Linkage == GVA_Internal)
1406     return llvm::Function::InternalLinkage;
1407   else if (D->hasAttr<DLLImportAttr>())
1408     return llvm::Function::DLLImportLinkage;
1409   else if (D->hasAttr<DLLExportAttr>())
1410     return llvm::Function::DLLExportLinkage;
1411   else if (D->hasAttr<WeakAttr>()) {
1412     if (GV->isConstant())
1413       return llvm::GlobalVariable::WeakODRLinkage;
1414     else
1415       return llvm::GlobalVariable::WeakAnyLinkage;
1416   } else if (Linkage == GVA_TemplateInstantiation ||
1417              Linkage == GVA_ExplicitTemplateInstantiation)
1418     return llvm::GlobalVariable::WeakODRLinkage;
1419   else if (!getLangOptions().CPlusPlus &&
1420            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1421              D->getAttr<CommonAttr>()) &&
1422            !D->hasExternalStorage() && !D->getInit() &&
1423            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1424            !D->getAttr<WeakImportAttr>()) {
1425     // Thread local vars aren't considered common linkage.
1426     return llvm::GlobalVariable::CommonLinkage;
1427   }
1428   return llvm::GlobalVariable::ExternalLinkage;
1429 }
1430 
1431 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1432 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1433 /// existing call uses of the old function in the module, this adjusts them to
1434 /// call the new function directly.
1435 ///
1436 /// This is not just a cleanup: the always_inline pass requires direct calls to
1437 /// functions to be able to inline them.  If there is a bitcast in the way, it
1438 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1439 /// run at -O0.
1440 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1441                                                       llvm::Function *NewFn) {
1442   // If we're redefining a global as a function, don't transform it.
1443   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1444   if (OldFn == 0) return;
1445 
1446   llvm::Type *NewRetTy = NewFn->getReturnType();
1447   SmallVector<llvm::Value*, 4> ArgList;
1448 
1449   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1450        UI != E; ) {
1451     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1452     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1453     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1454     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1455     llvm::CallSite CS(CI);
1456     if (!CI || !CS.isCallee(I)) continue;
1457 
1458     // If the return types don't match exactly, and if the call isn't dead, then
1459     // we can't transform this call.
1460     if (CI->getType() != NewRetTy && !CI->use_empty())
1461       continue;
1462 
1463     // Get the attribute list.
1464     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1465     llvm::AttrListPtr AttrList = CI->getAttributes();
1466 
1467     // Get any return attributes.
1468     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1469 
1470     // Add the return attributes.
1471     if (RAttrs)
1472       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1473 
1474     // If the function was passed too few arguments, don't transform.  If extra
1475     // arguments were passed, we silently drop them.  If any of the types
1476     // mismatch, we don't transform.
1477     unsigned ArgNo = 0;
1478     bool DontTransform = false;
1479     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1480          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1481       if (CS.arg_size() == ArgNo ||
1482           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1483         DontTransform = true;
1484         break;
1485       }
1486 
1487       // Add any parameter attributes.
1488       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1489         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1490     }
1491     if (DontTransform)
1492       continue;
1493 
1494     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1495       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1496 
1497     // Okay, we can transform this.  Create the new call instruction and copy
1498     // over the required information.
1499     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1500     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1501     ArgList.clear();
1502     if (!NewCall->getType()->isVoidTy())
1503       NewCall->takeName(CI);
1504     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1505                                                   AttrVec.end()));
1506     NewCall->setCallingConv(CI->getCallingConv());
1507 
1508     // Finally, remove the old call, replacing any uses with the new one.
1509     if (!CI->use_empty())
1510       CI->replaceAllUsesWith(NewCall);
1511 
1512     // Copy debug location attached to CI.
1513     if (!CI->getDebugLoc().isUnknown())
1514       NewCall->setDebugLoc(CI->getDebugLoc());
1515     CI->eraseFromParent();
1516   }
1517 }
1518 
1519 
1520 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1521   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1522 
1523   // Compute the function info and LLVM type.
1524   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1525   bool variadic = false;
1526   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1527     variadic = fpt->isVariadic();
1528   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
1529 
1530   // Get or create the prototype for the function.
1531   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1532 
1533   // Strip off a bitcast if we got one back.
1534   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1535     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1536     Entry = CE->getOperand(0);
1537   }
1538 
1539 
1540   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1541     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1542 
1543     // If the types mismatch then we have to rewrite the definition.
1544     assert(OldFn->isDeclaration() &&
1545            "Shouldn't replace non-declaration");
1546 
1547     // F is the Function* for the one with the wrong type, we must make a new
1548     // Function* and update everything that used F (a declaration) with the new
1549     // Function* (which will be a definition).
1550     //
1551     // This happens if there is a prototype for a function
1552     // (e.g. "int f()") and then a definition of a different type
1553     // (e.g. "int f(int x)").  Move the old function aside so that it
1554     // doesn't interfere with GetAddrOfFunction.
1555     OldFn->setName(StringRef());
1556     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1557 
1558     // If this is an implementation of a function without a prototype, try to
1559     // replace any existing uses of the function (which may be calls) with uses
1560     // of the new function
1561     if (D->getType()->isFunctionNoProtoType()) {
1562       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1563       OldFn->removeDeadConstantUsers();
1564     }
1565 
1566     // Replace uses of F with the Function we will endow with a body.
1567     if (!Entry->use_empty()) {
1568       llvm::Constant *NewPtrForOldDecl =
1569         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1570       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1571     }
1572 
1573     // Ok, delete the old function now, which is dead.
1574     OldFn->eraseFromParent();
1575 
1576     Entry = NewFn;
1577   }
1578 
1579   // We need to set linkage and visibility on the function before
1580   // generating code for it because various parts of IR generation
1581   // want to propagate this information down (e.g. to local static
1582   // declarations).
1583   llvm::Function *Fn = cast<llvm::Function>(Entry);
1584   setFunctionLinkage(D, Fn);
1585 
1586   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1587   setGlobalVisibility(Fn, D);
1588 
1589   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1590 
1591   SetFunctionDefinitionAttributes(D, Fn);
1592   SetLLVMFunctionAttributesForDefinition(D, Fn);
1593 
1594   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1595     AddGlobalCtor(Fn, CA->getPriority());
1596   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1597     AddGlobalDtor(Fn, DA->getPriority());
1598   if (D->hasAttr<AnnotateAttr>())
1599     AddGlobalAnnotations(D, Fn);
1600 }
1601 
1602 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1603   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1604   const AliasAttr *AA = D->getAttr<AliasAttr>();
1605   assert(AA && "Not an alias?");
1606 
1607   StringRef MangledName = getMangledName(GD);
1608 
1609   // If there is a definition in the module, then it wins over the alias.
1610   // This is dubious, but allow it to be safe.  Just ignore the alias.
1611   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1612   if (Entry && !Entry->isDeclaration())
1613     return;
1614 
1615   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1616 
1617   // Create a reference to the named value.  This ensures that it is emitted
1618   // if a deferred decl.
1619   llvm::Constant *Aliasee;
1620   if (isa<llvm::FunctionType>(DeclTy))
1621     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1622                                       /*ForVTable=*/false);
1623   else
1624     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1625                                     llvm::PointerType::getUnqual(DeclTy), 0);
1626 
1627   // Create the new alias itself, but don't set a name yet.
1628   llvm::GlobalValue *GA =
1629     new llvm::GlobalAlias(Aliasee->getType(),
1630                           llvm::Function::ExternalLinkage,
1631                           "", Aliasee, &getModule());
1632 
1633   if (Entry) {
1634     assert(Entry->isDeclaration());
1635 
1636     // If there is a declaration in the module, then we had an extern followed
1637     // by the alias, as in:
1638     //   extern int test6();
1639     //   ...
1640     //   int test6() __attribute__((alias("test7")));
1641     //
1642     // Remove it and replace uses of it with the alias.
1643     GA->takeName(Entry);
1644 
1645     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1646                                                           Entry->getType()));
1647     Entry->eraseFromParent();
1648   } else {
1649     GA->setName(MangledName);
1650   }
1651 
1652   // Set attributes which are particular to an alias; this is a
1653   // specialization of the attributes which may be set on a global
1654   // variable/function.
1655   if (D->hasAttr<DLLExportAttr>()) {
1656     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1657       // The dllexport attribute is ignored for undefined symbols.
1658       if (FD->hasBody())
1659         GA->setLinkage(llvm::Function::DLLExportLinkage);
1660     } else {
1661       GA->setLinkage(llvm::Function::DLLExportLinkage);
1662     }
1663   } else if (D->hasAttr<WeakAttr>() ||
1664              D->hasAttr<WeakRefAttr>() ||
1665              D->isWeakImported()) {
1666     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1667   }
1668 
1669   SetCommonAttributes(D, GA);
1670 }
1671 
1672 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1673                                             ArrayRef<llvm::Type*> Tys) {
1674   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1675                                          Tys);
1676 }
1677 
1678 static llvm::StringMapEntry<llvm::Constant*> &
1679 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1680                          const StringLiteral *Literal,
1681                          bool TargetIsLSB,
1682                          bool &IsUTF16,
1683                          unsigned &StringLength) {
1684   StringRef String = Literal->getString();
1685   unsigned NumBytes = String.size();
1686 
1687   // Check for simple case.
1688   if (!Literal->containsNonAsciiOrNull()) {
1689     StringLength = NumBytes;
1690     return Map.GetOrCreateValue(String);
1691   }
1692 
1693   // Otherwise, convert the UTF8 literals into a byte string.
1694   SmallVector<UTF16, 128> ToBuf(NumBytes);
1695   const UTF8 *FromPtr = (UTF8 *)String.data();
1696   UTF16 *ToPtr = &ToBuf[0];
1697 
1698   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1699                            &ToPtr, ToPtr + NumBytes,
1700                            strictConversion);
1701 
1702   // ConvertUTF8toUTF16 returns the length in ToPtr.
1703   StringLength = ToPtr - &ToBuf[0];
1704 
1705   // Render the UTF-16 string into a byte array and convert to the target byte
1706   // order.
1707   //
1708   // FIXME: This isn't something we should need to do here.
1709   llvm::SmallString<128> AsBytes;
1710   AsBytes.reserve(StringLength * 2);
1711   for (unsigned i = 0; i != StringLength; ++i) {
1712     unsigned short Val = ToBuf[i];
1713     if (TargetIsLSB) {
1714       AsBytes.push_back(Val & 0xFF);
1715       AsBytes.push_back(Val >> 8);
1716     } else {
1717       AsBytes.push_back(Val >> 8);
1718       AsBytes.push_back(Val & 0xFF);
1719     }
1720   }
1721   // Append one extra null character, the second is automatically added by our
1722   // caller.
1723   AsBytes.push_back(0);
1724 
1725   IsUTF16 = true;
1726   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1727 }
1728 
1729 static llvm::StringMapEntry<llvm::Constant*> &
1730 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1731 		       const StringLiteral *Literal,
1732 		       unsigned &StringLength)
1733 {
1734 	StringRef String = Literal->getString();
1735 	StringLength = String.size();
1736 	return Map.GetOrCreateValue(String);
1737 }
1738 
1739 llvm::Constant *
1740 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1741   unsigned StringLength = 0;
1742   bool isUTF16 = false;
1743   llvm::StringMapEntry<llvm::Constant*> &Entry =
1744     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1745                              getTargetData().isLittleEndian(),
1746                              isUTF16, StringLength);
1747 
1748   if (llvm::Constant *C = Entry.getValue())
1749     return C;
1750 
1751   llvm::Constant *Zero =
1752       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1753   llvm::Constant *Zeros[] = { Zero, Zero };
1754 
1755   // If we don't already have it, get __CFConstantStringClassReference.
1756   if (!CFConstantStringClassRef) {
1757     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1758     Ty = llvm::ArrayType::get(Ty, 0);
1759     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1760                                            "__CFConstantStringClassReference");
1761     // Decay array -> ptr
1762     CFConstantStringClassRef =
1763       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1764   }
1765 
1766   QualType CFTy = getContext().getCFConstantStringType();
1767 
1768   llvm::StructType *STy =
1769     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1770 
1771   std::vector<llvm::Constant*> Fields(4);
1772 
1773   // Class pointer.
1774   Fields[0] = CFConstantStringClassRef;
1775 
1776   // Flags.
1777   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1778   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1779     llvm::ConstantInt::get(Ty, 0x07C8);
1780 
1781   // String pointer.
1782   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1783 
1784   llvm::GlobalValue::LinkageTypes Linkage;
1785   bool isConstant;
1786   if (isUTF16) {
1787     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1788     Linkage = llvm::GlobalValue::InternalLinkage;
1789     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1790     // does make plain ascii ones writable.
1791     isConstant = true;
1792   } else {
1793     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1794     // when using private linkage. It is not clear if this is a bug in ld
1795     // or a reasonable new restriction.
1796     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1797     isConstant = !Features.WritableStrings;
1798   }
1799 
1800   llvm::GlobalVariable *GV =
1801     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1802                              ".str");
1803   GV->setUnnamedAddr(true);
1804   if (isUTF16) {
1805     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1806     GV->setAlignment(Align.getQuantity());
1807   } else {
1808     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1809     GV->setAlignment(Align.getQuantity());
1810   }
1811   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1812 
1813   // String length.
1814   Ty = getTypes().ConvertType(getContext().LongTy);
1815   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1816 
1817   // The struct.
1818   C = llvm::ConstantStruct::get(STy, Fields);
1819   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1820                                 llvm::GlobalVariable::PrivateLinkage, C,
1821                                 "_unnamed_cfstring_");
1822   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1823     GV->setSection(Sect);
1824   Entry.setValue(GV);
1825 
1826   return GV;
1827 }
1828 
1829 static RecordDecl *
1830 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1831                  DeclContext *DC, IdentifierInfo *Id) {
1832   SourceLocation Loc;
1833   if (Ctx.getLangOptions().CPlusPlus)
1834     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1835   else
1836     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1837 }
1838 
1839 llvm::Constant *
1840 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1841   unsigned StringLength = 0;
1842   llvm::StringMapEntry<llvm::Constant*> &Entry =
1843     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1844 
1845   if (llvm::Constant *C = Entry.getValue())
1846     return C;
1847 
1848   llvm::Constant *Zero =
1849   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1850   llvm::Constant *Zeros[] = { Zero, Zero };
1851 
1852   // If we don't already have it, get _NSConstantStringClassReference.
1853   if (!ConstantStringClassRef) {
1854     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1855     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1856     llvm::Constant *GV;
1857     if (Features.ObjCNonFragileABI) {
1858       std::string str =
1859         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1860                             : "OBJC_CLASS_$_" + StringClass;
1861       GV = getObjCRuntime().GetClassGlobal(str);
1862       // Make sure the result is of the correct type.
1863       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1864       ConstantStringClassRef =
1865         llvm::ConstantExpr::getBitCast(GV, PTy);
1866     } else {
1867       std::string str =
1868         StringClass.empty() ? "_NSConstantStringClassReference"
1869                             : "_" + StringClass + "ClassReference";
1870       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1871       GV = CreateRuntimeVariable(PTy, str);
1872       // Decay array -> ptr
1873       ConstantStringClassRef =
1874         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1875     }
1876   }
1877 
1878   if (!NSConstantStringType) {
1879     // Construct the type for a constant NSString.
1880     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1881                                      Context.getTranslationUnitDecl(),
1882                                    &Context.Idents.get("__builtin_NSString"));
1883     D->startDefinition();
1884 
1885     QualType FieldTypes[3];
1886 
1887     // const int *isa;
1888     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1889     // const char *str;
1890     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1891     // unsigned int length;
1892     FieldTypes[2] = Context.UnsignedIntTy;
1893 
1894     // Create fields
1895     for (unsigned i = 0; i < 3; ++i) {
1896       FieldDecl *Field = FieldDecl::Create(Context, D,
1897                                            SourceLocation(),
1898                                            SourceLocation(), 0,
1899                                            FieldTypes[i], /*TInfo=*/0,
1900                                            /*BitWidth=*/0,
1901                                            /*Mutable=*/false,
1902                                            /*HasInit=*/false);
1903       Field->setAccess(AS_public);
1904       D->addDecl(Field);
1905     }
1906 
1907     D->completeDefinition();
1908     QualType NSTy = Context.getTagDeclType(D);
1909     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1910   }
1911 
1912   std::vector<llvm::Constant*> Fields(3);
1913 
1914   // Class pointer.
1915   Fields[0] = ConstantStringClassRef;
1916 
1917   // String pointer.
1918   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1919 
1920   llvm::GlobalValue::LinkageTypes Linkage;
1921   bool isConstant;
1922   Linkage = llvm::GlobalValue::PrivateLinkage;
1923   isConstant = !Features.WritableStrings;
1924 
1925   llvm::GlobalVariable *GV =
1926   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1927                            ".str");
1928   GV->setUnnamedAddr(true);
1929   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1930   GV->setAlignment(Align.getQuantity());
1931   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1932 
1933   // String length.
1934   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1935   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1936 
1937   // The struct.
1938   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
1939   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1940                                 llvm::GlobalVariable::PrivateLinkage, C,
1941                                 "_unnamed_nsstring_");
1942   // FIXME. Fix section.
1943   if (const char *Sect =
1944         Features.ObjCNonFragileABI
1945           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
1946           : getContext().getTargetInfo().getNSStringSection())
1947     GV->setSection(Sect);
1948   Entry.setValue(GV);
1949 
1950   return GV;
1951 }
1952 
1953 QualType CodeGenModule::getObjCFastEnumerationStateType() {
1954   if (ObjCFastEnumerationStateType.isNull()) {
1955     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1956                                      Context.getTranslationUnitDecl(),
1957                       &Context.Idents.get("__objcFastEnumerationState"));
1958     D->startDefinition();
1959 
1960     QualType FieldTypes[] = {
1961       Context.UnsignedLongTy,
1962       Context.getPointerType(Context.getObjCIdType()),
1963       Context.getPointerType(Context.UnsignedLongTy),
1964       Context.getConstantArrayType(Context.UnsignedLongTy,
1965                            llvm::APInt(32, 5), ArrayType::Normal, 0)
1966     };
1967 
1968     for (size_t i = 0; i < 4; ++i) {
1969       FieldDecl *Field = FieldDecl::Create(Context,
1970                                            D,
1971                                            SourceLocation(),
1972                                            SourceLocation(), 0,
1973                                            FieldTypes[i], /*TInfo=*/0,
1974                                            /*BitWidth=*/0,
1975                                            /*Mutable=*/false,
1976                                            /*HasInit=*/false);
1977       Field->setAccess(AS_public);
1978       D->addDecl(Field);
1979     }
1980 
1981     D->completeDefinition();
1982     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
1983   }
1984 
1985   return ObjCFastEnumerationStateType;
1986 }
1987 
1988 /// GetStringForStringLiteral - Return the appropriate bytes for a
1989 /// string literal, properly padded to match the literal type.
1990 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1991   const ASTContext &Context = getContext();
1992   const ConstantArrayType *CAT =
1993     Context.getAsConstantArrayType(E->getType());
1994   assert(CAT && "String isn't pointer or array!");
1995 
1996   // Resize the string to the right size.
1997   uint64_t RealLen = CAT->getSize().getZExtValue();
1998 
1999   switch (E->getKind()) {
2000   case StringLiteral::Ascii:
2001   case StringLiteral::UTF8:
2002     break;
2003   case StringLiteral::Wide:
2004     RealLen *= Context.getTargetInfo().getWCharWidth() / Context.getCharWidth();
2005     break;
2006   case StringLiteral::UTF16:
2007     RealLen *= Context.getTargetInfo().getChar16Width() / Context.getCharWidth();
2008     break;
2009   case StringLiteral::UTF32:
2010     RealLen *= Context.getTargetInfo().getChar32Width() / Context.getCharWidth();
2011     break;
2012   }
2013 
2014   std::string Str = E->getString().str();
2015   Str.resize(RealLen, '\0');
2016 
2017   return Str;
2018 }
2019 
2020 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2021 /// constant array for the given string literal.
2022 llvm::Constant *
2023 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2024   // FIXME: This can be more efficient.
2025   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
2026   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2027   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S),
2028                                               /* GlobalName */ 0,
2029                                               Align.getQuantity());
2030   if (S->isWide() || S->isUTF16() || S->isUTF32()) {
2031     llvm::Type *DestTy =
2032         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
2033     C = llvm::ConstantExpr::getBitCast(C, DestTy);
2034   }
2035   return C;
2036 }
2037 
2038 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2039 /// array for the given ObjCEncodeExpr node.
2040 llvm::Constant *
2041 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2042   std::string Str;
2043   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2044 
2045   return GetAddrOfConstantCString(Str);
2046 }
2047 
2048 
2049 /// GenerateWritableString -- Creates storage for a string literal.
2050 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2051                                              bool constant,
2052                                              CodeGenModule &CGM,
2053                                              const char *GlobalName,
2054                                              unsigned Alignment) {
2055   // Create Constant for this string literal. Don't add a '\0'.
2056   llvm::Constant *C =
2057       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
2058 
2059   // Create a global variable for this string
2060   llvm::GlobalVariable *GV =
2061     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2062                              llvm::GlobalValue::PrivateLinkage,
2063                              C, GlobalName);
2064   GV->setAlignment(Alignment);
2065   GV->setUnnamedAddr(true);
2066   return GV;
2067 }
2068 
2069 /// GetAddrOfConstantString - Returns a pointer to a character array
2070 /// containing the literal. This contents are exactly that of the
2071 /// given string, i.e. it will not be null terminated automatically;
2072 /// see GetAddrOfConstantCString. Note that whether the result is
2073 /// actually a pointer to an LLVM constant depends on
2074 /// Feature.WriteableStrings.
2075 ///
2076 /// The result has pointer to array type.
2077 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2078                                                        const char *GlobalName,
2079                                                        unsigned Alignment) {
2080   bool IsConstant = !Features.WritableStrings;
2081 
2082   // Get the default prefix if a name wasn't specified.
2083   if (!GlobalName)
2084     GlobalName = ".str";
2085 
2086   // Don't share any string literals if strings aren't constant.
2087   if (!IsConstant)
2088     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2089 
2090   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2091     ConstantStringMap.GetOrCreateValue(Str);
2092 
2093   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2094     if (Alignment > GV->getAlignment()) {
2095       GV->setAlignment(Alignment);
2096     }
2097     return GV;
2098   }
2099 
2100   // Create a global variable for this.
2101   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment);
2102   Entry.setValue(GV);
2103   return GV;
2104 }
2105 
2106 /// GetAddrOfConstantCString - Returns a pointer to a character
2107 /// array containing the literal and a terminating '\0'
2108 /// character. The result has pointer to array type.
2109 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2110                                                         const char *GlobalName,
2111                                                         unsigned Alignment) {
2112   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2113   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2114 }
2115 
2116 /// EmitObjCPropertyImplementations - Emit information for synthesized
2117 /// properties for an implementation.
2118 void CodeGenModule::EmitObjCPropertyImplementations(const
2119                                                     ObjCImplementationDecl *D) {
2120   for (ObjCImplementationDecl::propimpl_iterator
2121          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2122     ObjCPropertyImplDecl *PID = *i;
2123 
2124     // Dynamic is just for type-checking.
2125     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2126       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2127 
2128       // Determine which methods need to be implemented, some may have
2129       // been overridden. Note that ::isSynthesized is not the method
2130       // we want, that just indicates if the decl came from a
2131       // property. What we want to know is if the method is defined in
2132       // this implementation.
2133       if (!D->getInstanceMethod(PD->getGetterName()))
2134         CodeGenFunction(*this).GenerateObjCGetter(
2135                                  const_cast<ObjCImplementationDecl *>(D), PID);
2136       if (!PD->isReadOnly() &&
2137           !D->getInstanceMethod(PD->getSetterName()))
2138         CodeGenFunction(*this).GenerateObjCSetter(
2139                                  const_cast<ObjCImplementationDecl *>(D), PID);
2140     }
2141   }
2142 }
2143 
2144 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2145   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2146   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2147        ivar; ivar = ivar->getNextIvar())
2148     if (ivar->getType().isDestructedType())
2149       return true;
2150 
2151   return false;
2152 }
2153 
2154 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2155 /// for an implementation.
2156 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2157   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2158   if (needsDestructMethod(D)) {
2159     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2160     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2161     ObjCMethodDecl *DTORMethod =
2162       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2163                              cxxSelector, getContext().VoidTy, 0, D,
2164                              /*isInstance=*/true, /*isVariadic=*/false,
2165                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2166                              /*isDefined=*/false, ObjCMethodDecl::Required);
2167     D->addInstanceMethod(DTORMethod);
2168     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2169     D->setHasCXXStructors(true);
2170   }
2171 
2172   // If the implementation doesn't have any ivar initializers, we don't need
2173   // a .cxx_construct.
2174   if (D->getNumIvarInitializers() == 0)
2175     return;
2176 
2177   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2178   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2179   // The constructor returns 'self'.
2180   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2181                                                 D->getLocation(),
2182                                                 D->getLocation(),
2183                                                 cxxSelector,
2184                                                 getContext().getObjCIdType(), 0,
2185                                                 D, /*isInstance=*/true,
2186                                                 /*isVariadic=*/false,
2187                                                 /*isSynthesized=*/true,
2188                                                 /*isImplicitlyDeclared=*/true,
2189                                                 /*isDefined=*/false,
2190                                                 ObjCMethodDecl::Required);
2191   D->addInstanceMethod(CTORMethod);
2192   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2193   D->setHasCXXStructors(true);
2194 }
2195 
2196 /// EmitNamespace - Emit all declarations in a namespace.
2197 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2198   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2199        I != E; ++I)
2200     EmitTopLevelDecl(*I);
2201 }
2202 
2203 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2204 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2205   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2206       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2207     ErrorUnsupported(LSD, "linkage spec");
2208     return;
2209   }
2210 
2211   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2212        I != E; ++I)
2213     EmitTopLevelDecl(*I);
2214 }
2215 
2216 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2217 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2218   // If an error has occurred, stop code generation, but continue
2219   // parsing and semantic analysis (to ensure all warnings and errors
2220   // are emitted).
2221   if (Diags.hasErrorOccurred())
2222     return;
2223 
2224   // Ignore dependent declarations.
2225   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2226     return;
2227 
2228   switch (D->getKind()) {
2229   case Decl::CXXConversion:
2230   case Decl::CXXMethod:
2231   case Decl::Function:
2232     // Skip function templates
2233     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2234         cast<FunctionDecl>(D)->isLateTemplateParsed())
2235       return;
2236 
2237     EmitGlobal(cast<FunctionDecl>(D));
2238     break;
2239 
2240   case Decl::Var:
2241     EmitGlobal(cast<VarDecl>(D));
2242     break;
2243 
2244   // Indirect fields from global anonymous structs and unions can be
2245   // ignored; only the actual variable requires IR gen support.
2246   case Decl::IndirectField:
2247     break;
2248 
2249   // C++ Decls
2250   case Decl::Namespace:
2251     EmitNamespace(cast<NamespaceDecl>(D));
2252     break;
2253     // No code generation needed.
2254   case Decl::UsingShadow:
2255   case Decl::Using:
2256   case Decl::UsingDirective:
2257   case Decl::ClassTemplate:
2258   case Decl::FunctionTemplate:
2259   case Decl::TypeAliasTemplate:
2260   case Decl::NamespaceAlias:
2261   case Decl::Block:
2262     break;
2263   case Decl::CXXConstructor:
2264     // Skip function templates
2265     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2266         cast<FunctionDecl>(D)->isLateTemplateParsed())
2267       return;
2268 
2269     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2270     break;
2271   case Decl::CXXDestructor:
2272     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2273       return;
2274     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2275     break;
2276 
2277   case Decl::StaticAssert:
2278     // Nothing to do.
2279     break;
2280 
2281   // Objective-C Decls
2282 
2283   // Forward declarations, no (immediate) code generation.
2284   case Decl::ObjCClass:
2285   case Decl::ObjCForwardProtocol:
2286   case Decl::ObjCInterface:
2287     break;
2288 
2289   case Decl::ObjCCategory: {
2290     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2291     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2292       Context.ResetObjCLayout(CD->getClassInterface());
2293     break;
2294   }
2295 
2296   case Decl::ObjCProtocol:
2297     ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2298     break;
2299 
2300   case Decl::ObjCCategoryImpl:
2301     // Categories have properties but don't support synthesize so we
2302     // can ignore them here.
2303     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2304     break;
2305 
2306   case Decl::ObjCImplementation: {
2307     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2308     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2309       Context.ResetObjCLayout(OMD->getClassInterface());
2310     EmitObjCPropertyImplementations(OMD);
2311     EmitObjCIvarInitializations(OMD);
2312     ObjCRuntime->GenerateClass(OMD);
2313     break;
2314   }
2315   case Decl::ObjCMethod: {
2316     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2317     // If this is not a prototype, emit the body.
2318     if (OMD->getBody())
2319       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2320     break;
2321   }
2322   case Decl::ObjCCompatibleAlias:
2323     // compatibility-alias is a directive and has no code gen.
2324     break;
2325 
2326   case Decl::LinkageSpec:
2327     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2328     break;
2329 
2330   case Decl::FileScopeAsm: {
2331     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2332     StringRef AsmString = AD->getAsmString()->getString();
2333 
2334     const std::string &S = getModule().getModuleInlineAsm();
2335     if (S.empty())
2336       getModule().setModuleInlineAsm(AsmString);
2337     else if (*--S.end() == '\n')
2338       getModule().setModuleInlineAsm(S + AsmString.str());
2339     else
2340       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2341     break;
2342   }
2343 
2344   default:
2345     // Make sure we handled everything we should, every other kind is a
2346     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2347     // function. Need to recode Decl::Kind to do that easily.
2348     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2349   }
2350 }
2351 
2352 /// Turns the given pointer into a constant.
2353 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2354                                           const void *Ptr) {
2355   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2356   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2357   return llvm::ConstantInt::get(i64, PtrInt);
2358 }
2359 
2360 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2361                                    llvm::NamedMDNode *&GlobalMetadata,
2362                                    GlobalDecl D,
2363                                    llvm::GlobalValue *Addr) {
2364   if (!GlobalMetadata)
2365     GlobalMetadata =
2366       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2367 
2368   // TODO: should we report variant information for ctors/dtors?
2369   llvm::Value *Ops[] = {
2370     Addr,
2371     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2372   };
2373   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2374 }
2375 
2376 /// Emits metadata nodes associating all the global values in the
2377 /// current module with the Decls they came from.  This is useful for
2378 /// projects using IR gen as a subroutine.
2379 ///
2380 /// Since there's currently no way to associate an MDNode directly
2381 /// with an llvm::GlobalValue, we create a global named metadata
2382 /// with the name 'clang.global.decl.ptrs'.
2383 void CodeGenModule::EmitDeclMetadata() {
2384   llvm::NamedMDNode *GlobalMetadata = 0;
2385 
2386   // StaticLocalDeclMap
2387   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2388          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2389        I != E; ++I) {
2390     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2391     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2392   }
2393 }
2394 
2395 /// Emits metadata nodes for all the local variables in the current
2396 /// function.
2397 void CodeGenFunction::EmitDeclMetadata() {
2398   if (LocalDeclMap.empty()) return;
2399 
2400   llvm::LLVMContext &Context = getLLVMContext();
2401 
2402   // Find the unique metadata ID for this name.
2403   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2404 
2405   llvm::NamedMDNode *GlobalMetadata = 0;
2406 
2407   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2408          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2409     const Decl *D = I->first;
2410     llvm::Value *Addr = I->second;
2411 
2412     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2413       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2414       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2415     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2416       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2417       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2418     }
2419   }
2420 }
2421 
2422 void CodeGenModule::EmitCoverageFile() {
2423   if (!getCodeGenOpts().CoverageFile.empty()) {
2424     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2425       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2426       llvm::LLVMContext &Ctx = TheModule.getContext();
2427       llvm::MDString *CoverageFile =
2428           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2429       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2430         llvm::MDNode *CU = CUNode->getOperand(i);
2431         llvm::Value *node[] = { CoverageFile, CU };
2432         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2433         GCov->addOperand(N);
2434       }
2435     }
2436   }
2437 }
2438