xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c054d9813c9c7f8f2c95d78bc171bf761d2e73fc)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "TargetInfo.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/AST/CharUnits.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Mangle.h"
32 #include "clang/AST/RecordLayout.h"
33 #include "clang/AST/RecursiveASTVisitor.h"
34 #include "clang/Basic/Builtins.h"
35 #include "clang/Basic/CharInfo.h"
36 #include "clang/Basic/Diagnostic.h"
37 #include "clang/Basic/Module.h"
38 #include "clang/Basic/SourceManager.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Version.h"
41 #include "clang/Frontend/CodeGenOptions.h"
42 #include "clang/Sema/SemaDiagnostic.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/Triple.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/CallingConv.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/ProfileData/InstrProfReader.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ErrorHandling.h"
54 
55 using namespace clang;
56 using namespace CodeGen;
57 
58 static const char AnnotationSection[] = "llvm.metadata";
59 
60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
61   switch (CGM.getTarget().getCXXABI().getKind()) {
62   case TargetCXXABI::GenericAArch64:
63   case TargetCXXABI::GenericARM:
64   case TargetCXXABI::iOS:
65   case TargetCXXABI::iOS64:
66   case TargetCXXABI::GenericItanium:
67     return CreateItaniumCXXABI(CGM);
68   case TargetCXXABI::Microsoft:
69     return CreateMicrosoftCXXABI(CGM);
70   }
71 
72   llvm_unreachable("invalid C++ ABI kind");
73 }
74 
75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
76                              llvm::Module &M, const llvm::DataLayout &TD,
77                              DiagnosticsEngine &diags)
78     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
79       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
80       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
81       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
82       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
83       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
84       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
85       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
86       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
87       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
88       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
89       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
90       LifetimeEndFn(nullptr),
91       SanitizerBlacklist(
92           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
93       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
94                                           : LangOpts.Sanitize) {
95 
96   // Initialize the type cache.
97   llvm::LLVMContext &LLVMContext = M.getContext();
98   VoidTy = llvm::Type::getVoidTy(LLVMContext);
99   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
100   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
101   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
102   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
103   FloatTy = llvm::Type::getFloatTy(LLVMContext);
104   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
105   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
106   PointerAlignInBytes =
107   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
110   Int8PtrTy = Int8Ty->getPointerTo(0);
111   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
112 
113   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (SanOpts.Thread ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     if (llvm::error_code EC = llvm::IndexedInstrProfReader::create(
145             CodeGenOpts.InstrProfileInput, PGOReader)) {
146       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
147                                               "Could not read profile: %0");
148       getDiags().Report(DiagID) << EC.message();
149     }
150   }
151 }
152 
153 CodeGenModule::~CodeGenModule() {
154   delete ObjCRuntime;
155   delete OpenCLRuntime;
156   delete OpenMPRuntime;
157   delete CUDARuntime;
158   delete TheTargetCodeGenInfo;
159   delete TBAA;
160   delete DebugInfo;
161   delete ARCData;
162   delete RRData;
163 }
164 
165 void CodeGenModule::createObjCRuntime() {
166   // This is just isGNUFamily(), but we want to force implementors of
167   // new ABIs to decide how best to do this.
168   switch (LangOpts.ObjCRuntime.getKind()) {
169   case ObjCRuntime::GNUstep:
170   case ObjCRuntime::GCC:
171   case ObjCRuntime::ObjFW:
172     ObjCRuntime = CreateGNUObjCRuntime(*this);
173     return;
174 
175   case ObjCRuntime::FragileMacOSX:
176   case ObjCRuntime::MacOSX:
177   case ObjCRuntime::iOS:
178     ObjCRuntime = CreateMacObjCRuntime(*this);
179     return;
180   }
181   llvm_unreachable("bad runtime kind");
182 }
183 
184 void CodeGenModule::createOpenCLRuntime() {
185   OpenCLRuntime = new CGOpenCLRuntime(*this);
186 }
187 
188 void CodeGenModule::createOpenMPRuntime() {
189   OpenMPRuntime = new CGOpenMPRuntime(*this);
190 }
191 
192 void CodeGenModule::createCUDARuntime() {
193   CUDARuntime = CreateNVCUDARuntime(*this);
194 }
195 
196 void CodeGenModule::applyReplacements() {
197   for (ReplacementsTy::iterator I = Replacements.begin(),
198                                 E = Replacements.end();
199        I != E; ++I) {
200     StringRef MangledName = I->first();
201     llvm::Constant *Replacement = I->second;
202     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
203     if (!Entry)
204       continue;
205     auto *OldF = cast<llvm::Function>(Entry);
206     auto *NewF = dyn_cast<llvm::Function>(Replacement);
207     if (!NewF) {
208       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
209         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
210       } else {
211         auto *CE = cast<llvm::ConstantExpr>(Replacement);
212         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
213                CE->getOpcode() == llvm::Instruction::GetElementPtr);
214         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
215       }
216     }
217 
218     // Replace old with new, but keep the old order.
219     OldF->replaceAllUsesWith(Replacement);
220     if (NewF) {
221       NewF->removeFromParent();
222       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
223     }
224     OldF->eraseFromParent();
225   }
226 }
227 
228 void CodeGenModule::checkAliases() {
229   // Check if the constructed aliases are well formed. It is really unfortunate
230   // that we have to do this in CodeGen, but we only construct mangled names
231   // and aliases during codegen.
232   bool Error = false;
233   DiagnosticsEngine &Diags = getDiags();
234   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
235          E = Aliases.end(); I != E; ++I) {
236     const GlobalDecl &GD = *I;
237     const auto *D = cast<ValueDecl>(GD.getDecl());
238     const AliasAttr *AA = D->getAttr<AliasAttr>();
239     StringRef MangledName = getMangledName(GD);
240     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
241     auto *Alias = cast<llvm::GlobalAlias>(Entry);
242     llvm::GlobalValue *GV = Alias->getAliasee();
243     if (GV->isDeclaration()) {
244       Error = true;
245       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
246     }
247 
248     llvm::GlobalObject *Aliasee = Alias->getAliasee();
249     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
250       StringRef AliasSection = SA->getName();
251       if (AliasSection != Aliasee->getSection())
252         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
253             << AliasSection;
254     }
255   }
256   if (!Error)
257     return;
258 
259   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
260          E = Aliases.end(); I != E; ++I) {
261     const GlobalDecl &GD = *I;
262     StringRef MangledName = getMangledName(GD);
263     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
264     auto *Alias = cast<llvm::GlobalAlias>(Entry);
265     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
266     Alias->eraseFromParent();
267   }
268 }
269 
270 void CodeGenModule::clear() {
271   DeferredDeclsToEmit.clear();
272 }
273 
274 void CodeGenModule::Release() {
275   EmitDeferred();
276   applyReplacements();
277   checkAliases();
278   EmitCXXGlobalInitFunc();
279   EmitCXXGlobalDtorFunc();
280   EmitCXXThreadLocalInitFunc();
281   if (ObjCRuntime)
282     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
283       AddGlobalCtor(ObjCInitFunction);
284   if (getCodeGenOpts().ProfileInstrGenerate)
285     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
286       AddGlobalCtor(PGOInit, 0);
287   if (PGOReader && PGOStats.isOutOfDate())
288     getDiags().Report(diag::warn_profile_data_out_of_date)
289         << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched;
290   EmitCtorList(GlobalCtors, "llvm.global_ctors");
291   EmitCtorList(GlobalDtors, "llvm.global_dtors");
292   EmitGlobalAnnotations();
293   EmitStaticExternCAliases();
294   emitLLVMUsed();
295 
296   if (CodeGenOpts.Autolink &&
297       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
298     EmitModuleLinkOptions();
299   }
300   if (CodeGenOpts.DwarfVersion)
301     // We actually want the latest version when there are conflicts.
302     // We can change from Warning to Latest if such mode is supported.
303     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
304                               CodeGenOpts.DwarfVersion);
305   if (DebugInfo)
306     // We support a single version in the linked module. The LLVM
307     // parser will drop debug info with a different version number
308     // (and warn about it, too).
309     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
310                               llvm::DEBUG_METADATA_VERSION);
311 
312   SimplifyPersonality();
313 
314   if (getCodeGenOpts().EmitDeclMetadata)
315     EmitDeclMetadata();
316 
317   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
318     EmitCoverageFile();
319 
320   if (DebugInfo)
321     DebugInfo->finalize();
322 
323   EmitVersionIdentMetadata();
324 }
325 
326 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
327   // Make sure that this type is translated.
328   Types.UpdateCompletedType(TD);
329 }
330 
331 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
332   if (!TBAA)
333     return nullptr;
334   return TBAA->getTBAAInfo(QTy);
335 }
336 
337 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
338   if (!TBAA)
339     return nullptr;
340   return TBAA->getTBAAInfoForVTablePtr();
341 }
342 
343 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
344   if (!TBAA)
345     return nullptr;
346   return TBAA->getTBAAStructInfo(QTy);
347 }
348 
349 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
350   if (!TBAA)
351     return nullptr;
352   return TBAA->getTBAAStructTypeInfo(QTy);
353 }
354 
355 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
356                                                   llvm::MDNode *AccessN,
357                                                   uint64_t O) {
358   if (!TBAA)
359     return nullptr;
360   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
361 }
362 
363 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
364 /// and struct-path aware TBAA, the tag has the same format:
365 /// base type, access type and offset.
366 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
367 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
368                                         llvm::MDNode *TBAAInfo,
369                                         bool ConvertTypeToTag) {
370   if (ConvertTypeToTag && TBAA)
371     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
372                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
373   else
374     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
375 }
376 
377 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
378   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
379   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
380 }
381 
382 /// ErrorUnsupported - Print out an error that codegen doesn't support the
383 /// specified stmt yet.
384 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
385   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
386                                                "cannot compile this %0 yet");
387   std::string Msg = Type;
388   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
389     << Msg << S->getSourceRange();
390 }
391 
392 /// ErrorUnsupported - Print out an error that codegen doesn't support the
393 /// specified decl yet.
394 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
395   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
396                                                "cannot compile this %0 yet");
397   std::string Msg = Type;
398   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
399 }
400 
401 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
402   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
403 }
404 
405 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
406                                         const NamedDecl *D) const {
407   // Internal definitions always have default visibility.
408   if (GV->hasLocalLinkage()) {
409     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
410     return;
411   }
412 
413   // Set visibility for definitions.
414   LinkageInfo LV = D->getLinkageAndVisibility();
415   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
416     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
417 }
418 
419 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
420   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
421       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
422       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
423       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
424       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
425 }
426 
427 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
428     CodeGenOptions::TLSModel M) {
429   switch (M) {
430   case CodeGenOptions::GeneralDynamicTLSModel:
431     return llvm::GlobalVariable::GeneralDynamicTLSModel;
432   case CodeGenOptions::LocalDynamicTLSModel:
433     return llvm::GlobalVariable::LocalDynamicTLSModel;
434   case CodeGenOptions::InitialExecTLSModel:
435     return llvm::GlobalVariable::InitialExecTLSModel;
436   case CodeGenOptions::LocalExecTLSModel:
437     return llvm::GlobalVariable::LocalExecTLSModel;
438   }
439   llvm_unreachable("Invalid TLS model!");
440 }
441 
442 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
443                                const VarDecl &D) const {
444   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
445 
446   llvm::GlobalVariable::ThreadLocalMode TLM;
447   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
448 
449   // Override the TLS model if it is explicitly specified.
450   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
451     TLM = GetLLVMTLSModel(Attr->getModel());
452   }
453 
454   GV->setThreadLocalMode(TLM);
455 }
456 
457 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
458   const auto *ND = cast<NamedDecl>(GD.getDecl());
459 
460   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
461   if (!Str.empty())
462     return Str;
463 
464   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
465     IdentifierInfo *II = ND->getIdentifier();
466     assert(II && "Attempt to mangle unnamed decl.");
467 
468     Str = II->getName();
469     return Str;
470   }
471 
472   SmallString<256> Buffer;
473   llvm::raw_svector_ostream Out(Buffer);
474   if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
475     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
476   else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
477     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
478   else
479     getCXXABI().getMangleContext().mangleName(ND, Out);
480 
481   // Allocate space for the mangled name.
482   Out.flush();
483   size_t Length = Buffer.size();
484   char *Name = MangledNamesAllocator.Allocate<char>(Length);
485   std::copy(Buffer.begin(), Buffer.end(), Name);
486 
487   Str = StringRef(Name, Length);
488 
489   return Str;
490 }
491 
492 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
493                                         const BlockDecl *BD) {
494   MangleContext &MangleCtx = getCXXABI().getMangleContext();
495   const Decl *D = GD.getDecl();
496   llvm::raw_svector_ostream Out(Buffer.getBuffer());
497   if (!D)
498     MangleCtx.mangleGlobalBlock(BD,
499       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
500   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
501     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
502   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
503     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
504   else
505     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
506 }
507 
508 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
509   return getModule().getNamedValue(Name);
510 }
511 
512 /// AddGlobalCtor - Add a function to the list that will be called before
513 /// main() runs.
514 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
515                                   llvm::Constant *AssociatedData) {
516   // FIXME: Type coercion of void()* types.
517   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
518 }
519 
520 /// AddGlobalDtor - Add a function to the list that will be called
521 /// when the module is unloaded.
522 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
523   // FIXME: Type coercion of void()* types.
524   GlobalDtors.push_back(Structor(Priority, Dtor, 0));
525 }
526 
527 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
528   // Ctor function type is void()*.
529   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
530   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
531 
532   // Get the type of a ctor entry, { i32, void ()*, i8* }.
533   llvm::StructType *CtorStructTy = llvm::StructType::get(
534       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
535 
536   // Construct the constructor and destructor arrays.
537   SmallVector<llvm::Constant*, 8> Ctors;
538   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
539     llvm::Constant *S[] = {
540       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
541       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
542       (I->AssociatedData
543            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
544            : llvm::Constant::getNullValue(VoidPtrTy))
545     };
546     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
547   }
548 
549   if (!Ctors.empty()) {
550     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
551     new llvm::GlobalVariable(TheModule, AT, false,
552                              llvm::GlobalValue::AppendingLinkage,
553                              llvm::ConstantArray::get(AT, Ctors),
554                              GlobalName);
555   }
556 }
557 
558 llvm::GlobalValue::LinkageTypes
559 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
560   const auto *D = cast<FunctionDecl>(GD.getDecl());
561 
562   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
563 
564   if (isa<CXXDestructorDecl>(D) &&
565       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
566                                          GD.getDtorType())) {
567     // Destructor variants in the Microsoft C++ ABI are always internal or
568     // linkonce_odr thunks emitted on an as-needed basis.
569     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
570                                    : llvm::GlobalValue::LinkOnceODRLinkage;
571   }
572 
573   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
574 }
575 
576 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
577                                                     llvm::Function *F) {
578   setNonAliasAttributes(D, F);
579 }
580 
581 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
582                                               const CGFunctionInfo &Info,
583                                               llvm::Function *F) {
584   unsigned CallingConv;
585   AttributeListType AttributeList;
586   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
587   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
588   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
589 }
590 
591 /// Determines whether the language options require us to model
592 /// unwind exceptions.  We treat -fexceptions as mandating this
593 /// except under the fragile ObjC ABI with only ObjC exceptions
594 /// enabled.  This means, for example, that C with -fexceptions
595 /// enables this.
596 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
597   // If exceptions are completely disabled, obviously this is false.
598   if (!LangOpts.Exceptions) return false;
599 
600   // If C++ exceptions are enabled, this is true.
601   if (LangOpts.CXXExceptions) return true;
602 
603   // If ObjC exceptions are enabled, this depends on the ABI.
604   if (LangOpts.ObjCExceptions) {
605     return LangOpts.ObjCRuntime.hasUnwindExceptions();
606   }
607 
608   return true;
609 }
610 
611 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
612                                                            llvm::Function *F) {
613   llvm::AttrBuilder B;
614 
615   if (CodeGenOpts.UnwindTables)
616     B.addAttribute(llvm::Attribute::UWTable);
617 
618   if (!hasUnwindExceptions(LangOpts))
619     B.addAttribute(llvm::Attribute::NoUnwind);
620 
621   if (D->hasAttr<NakedAttr>()) {
622     // Naked implies noinline: we should not be inlining such functions.
623     B.addAttribute(llvm::Attribute::Naked);
624     B.addAttribute(llvm::Attribute::NoInline);
625   } else if (D->hasAttr<OptimizeNoneAttr>()) {
626     // OptimizeNone implies noinline; we should not be inlining such functions.
627     B.addAttribute(llvm::Attribute::OptimizeNone);
628     B.addAttribute(llvm::Attribute::NoInline);
629   } else if (D->hasAttr<NoDuplicateAttr>()) {
630     B.addAttribute(llvm::Attribute::NoDuplicate);
631   } else if (D->hasAttr<NoInlineAttr>()) {
632     B.addAttribute(llvm::Attribute::NoInline);
633   } else if (D->hasAttr<AlwaysInlineAttr>() &&
634              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
635                                               llvm::Attribute::NoInline)) {
636     // (noinline wins over always_inline, and we can't specify both in IR)
637     B.addAttribute(llvm::Attribute::AlwaysInline);
638   }
639 
640   if (D->hasAttr<ColdAttr>()) {
641     B.addAttribute(llvm::Attribute::OptimizeForSize);
642     B.addAttribute(llvm::Attribute::Cold);
643   }
644 
645   if (D->hasAttr<MinSizeAttr>())
646     B.addAttribute(llvm::Attribute::MinSize);
647 
648   if (D->hasAttr<OptimizeNoneAttr>()) {
649     // OptimizeNone wins over OptimizeForSize and MinSize.
650     B.removeAttribute(llvm::Attribute::OptimizeForSize);
651     B.removeAttribute(llvm::Attribute::MinSize);
652   }
653 
654   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
655     B.addAttribute(llvm::Attribute::StackProtect);
656   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
657     B.addAttribute(llvm::Attribute::StackProtectStrong);
658   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
659     B.addAttribute(llvm::Attribute::StackProtectReq);
660 
661   // Add sanitizer attributes if function is not blacklisted.
662   if (!SanitizerBlacklist->isIn(*F)) {
663     // When AddressSanitizer is enabled, set SanitizeAddress attribute
664     // unless __attribute__((no_sanitize_address)) is used.
665     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
666       B.addAttribute(llvm::Attribute::SanitizeAddress);
667     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
668     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
669       B.addAttribute(llvm::Attribute::SanitizeThread);
670     }
671     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
672     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
673       B.addAttribute(llvm::Attribute::SanitizeMemory);
674   }
675 
676   F->addAttributes(llvm::AttributeSet::FunctionIndex,
677                    llvm::AttributeSet::get(
678                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
679 
680   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
681     F->setUnnamedAddr(true);
682   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
683     if (MD->isVirtual())
684       F->setUnnamedAddr(true);
685 
686   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
687   if (alignment)
688     F->setAlignment(alignment);
689 
690   // C++ ABI requires 2-byte alignment for member functions.
691   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
692     F->setAlignment(2);
693 }
694 
695 void CodeGenModule::SetCommonAttributes(const Decl *D,
696                                         llvm::GlobalValue *GV) {
697   if (const auto *ND = dyn_cast<NamedDecl>(D))
698     setGlobalVisibility(GV, ND);
699   else
700     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
701 
702   if (D->hasAttr<UsedAttr>())
703     addUsedGlobal(GV);
704 }
705 
706 void CodeGenModule::setNonAliasAttributes(const Decl *D,
707                                           llvm::GlobalObject *GO) {
708   SetCommonAttributes(D, GO);
709 
710   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
711     GO->setSection(SA->getName());
712 
713   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
714 }
715 
716 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
717                                                   llvm::Function *F,
718                                                   const CGFunctionInfo &FI) {
719   SetLLVMFunctionAttributes(D, FI, F);
720   SetLLVMFunctionAttributesForDefinition(D, F);
721 
722   F->setLinkage(llvm::Function::InternalLinkage);
723 
724   setNonAliasAttributes(D, F);
725 }
726 
727 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
728                                          const NamedDecl *ND) {
729   // Set linkage and visibility in case we never see a definition.
730   LinkageInfo LV = ND->getLinkageAndVisibility();
731   if (LV.getLinkage() != ExternalLinkage) {
732     // Don't set internal linkage on declarations.
733   } else {
734     if (ND->hasAttr<DLLImportAttr>()) {
735       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
736       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
737     } else if (ND->hasAttr<DLLExportAttr>()) {
738       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
739       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
740     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
741       // "extern_weak" is overloaded in LLVM; we probably should have
742       // separate linkage types for this.
743       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
744     }
745 
746     // Set visibility on a declaration only if it's explicit.
747     if (LV.isVisibilityExplicit())
748       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
749   }
750 }
751 
752 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
753                                           llvm::Function *F,
754                                           bool IsIncompleteFunction) {
755   if (unsigned IID = F->getIntrinsicID()) {
756     // If this is an intrinsic function, set the function's attributes
757     // to the intrinsic's attributes.
758     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
759                                                     (llvm::Intrinsic::ID)IID));
760     return;
761   }
762 
763   const auto *FD = cast<FunctionDecl>(GD.getDecl());
764 
765   if (!IsIncompleteFunction)
766     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
767 
768   // Add the Returned attribute for "this", except for iOS 5 and earlier
769   // where substantial code, including the libstdc++ dylib, was compiled with
770   // GCC and does not actually return "this".
771   if (getCXXABI().HasThisReturn(GD) &&
772       !(getTarget().getTriple().isiOS() &&
773         getTarget().getTriple().isOSVersionLT(6))) {
774     assert(!F->arg_empty() &&
775            F->arg_begin()->getType()
776              ->canLosslesslyBitCastTo(F->getReturnType()) &&
777            "unexpected this return");
778     F->addAttribute(1, llvm::Attribute::Returned);
779   }
780 
781   // Only a few attributes are set on declarations; these may later be
782   // overridden by a definition.
783 
784   setLinkageAndVisibilityForGV(F, FD);
785 
786   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
787     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
788       // Don't dllexport/import destructor thunks.
789       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
790     }
791   }
792 
793   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
794     F->setSection(SA->getName());
795 
796   // A replaceable global allocation function does not act like a builtin by
797   // default, only if it is invoked by a new-expression or delete-expression.
798   if (FD->isReplaceableGlobalAllocationFunction())
799     F->addAttribute(llvm::AttributeSet::FunctionIndex,
800                     llvm::Attribute::NoBuiltin);
801 }
802 
803 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
804   assert(!GV->isDeclaration() &&
805          "Only globals with definition can force usage.");
806   LLVMUsed.push_back(GV);
807 }
808 
809 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
810   assert(!GV->isDeclaration() &&
811          "Only globals with definition can force usage.");
812   LLVMCompilerUsed.push_back(GV);
813 }
814 
815 static void emitUsed(CodeGenModule &CGM, StringRef Name,
816                      std::vector<llvm::WeakVH> &List) {
817   // Don't create llvm.used if there is no need.
818   if (List.empty())
819     return;
820 
821   // Convert List to what ConstantArray needs.
822   SmallVector<llvm::Constant*, 8> UsedArray;
823   UsedArray.resize(List.size());
824   for (unsigned i = 0, e = List.size(); i != e; ++i) {
825     UsedArray[i] =
826      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
827                                     CGM.Int8PtrTy);
828   }
829 
830   if (UsedArray.empty())
831     return;
832   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
833 
834   auto *GV = new llvm::GlobalVariable(
835       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
836       llvm::ConstantArray::get(ATy, UsedArray), Name);
837 
838   GV->setSection("llvm.metadata");
839 }
840 
841 void CodeGenModule::emitLLVMUsed() {
842   emitUsed(*this, "llvm.used", LLVMUsed);
843   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
844 }
845 
846 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
847   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
848   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
849 }
850 
851 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
852   llvm::SmallString<32> Opt;
853   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
854   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
855   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
856 }
857 
858 void CodeGenModule::AddDependentLib(StringRef Lib) {
859   llvm::SmallString<24> Opt;
860   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
861   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
862   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
863 }
864 
865 /// \brief Add link options implied by the given module, including modules
866 /// it depends on, using a postorder walk.
867 static void addLinkOptionsPostorder(CodeGenModule &CGM,
868                                     Module *Mod,
869                                     SmallVectorImpl<llvm::Value *> &Metadata,
870                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
871   // Import this module's parent.
872   if (Mod->Parent && Visited.insert(Mod->Parent)) {
873     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
874   }
875 
876   // Import this module's dependencies.
877   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
878     if (Visited.insert(Mod->Imports[I-1]))
879       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
880   }
881 
882   // Add linker options to link against the libraries/frameworks
883   // described by this module.
884   llvm::LLVMContext &Context = CGM.getLLVMContext();
885   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
886     // Link against a framework.  Frameworks are currently Darwin only, so we
887     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
888     if (Mod->LinkLibraries[I-1].IsFramework) {
889       llvm::Value *Args[2] = {
890         llvm::MDString::get(Context, "-framework"),
891         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
892       };
893 
894       Metadata.push_back(llvm::MDNode::get(Context, Args));
895       continue;
896     }
897 
898     // Link against a library.
899     llvm::SmallString<24> Opt;
900     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
901       Mod->LinkLibraries[I-1].Library, Opt);
902     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
903     Metadata.push_back(llvm::MDNode::get(Context, OptString));
904   }
905 }
906 
907 void CodeGenModule::EmitModuleLinkOptions() {
908   // Collect the set of all of the modules we want to visit to emit link
909   // options, which is essentially the imported modules and all of their
910   // non-explicit child modules.
911   llvm::SetVector<clang::Module *> LinkModules;
912   llvm::SmallPtrSet<clang::Module *, 16> Visited;
913   SmallVector<clang::Module *, 16> Stack;
914 
915   // Seed the stack with imported modules.
916   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
917                                                MEnd = ImportedModules.end();
918        M != MEnd; ++M) {
919     if (Visited.insert(*M))
920       Stack.push_back(*M);
921   }
922 
923   // Find all of the modules to import, making a little effort to prune
924   // non-leaf modules.
925   while (!Stack.empty()) {
926     clang::Module *Mod = Stack.pop_back_val();
927 
928     bool AnyChildren = false;
929 
930     // Visit the submodules of this module.
931     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
932                                         SubEnd = Mod->submodule_end();
933          Sub != SubEnd; ++Sub) {
934       // Skip explicit children; they need to be explicitly imported to be
935       // linked against.
936       if ((*Sub)->IsExplicit)
937         continue;
938 
939       if (Visited.insert(*Sub)) {
940         Stack.push_back(*Sub);
941         AnyChildren = true;
942       }
943     }
944 
945     // We didn't find any children, so add this module to the list of
946     // modules to link against.
947     if (!AnyChildren) {
948       LinkModules.insert(Mod);
949     }
950   }
951 
952   // Add link options for all of the imported modules in reverse topological
953   // order.  We don't do anything to try to order import link flags with respect
954   // to linker options inserted by things like #pragma comment().
955   SmallVector<llvm::Value *, 16> MetadataArgs;
956   Visited.clear();
957   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
958                                                MEnd = LinkModules.end();
959        M != MEnd; ++M) {
960     if (Visited.insert(*M))
961       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
962   }
963   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
964   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
965 
966   // Add the linker options metadata flag.
967   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
968                             llvm::MDNode::get(getLLVMContext(),
969                                               LinkerOptionsMetadata));
970 }
971 
972 void CodeGenModule::EmitDeferred() {
973   // Emit code for any potentially referenced deferred decls.  Since a
974   // previously unused static decl may become used during the generation of code
975   // for a static function, iterate until no changes are made.
976 
977   while (true) {
978     if (!DeferredVTables.empty()) {
979       EmitDeferredVTables();
980 
981       // Emitting a v-table doesn't directly cause more v-tables to
982       // become deferred, although it can cause functions to be
983       // emitted that then need those v-tables.
984       assert(DeferredVTables.empty());
985     }
986 
987     // Stop if we're out of both deferred v-tables and deferred declarations.
988     if (DeferredDeclsToEmit.empty()) break;
989 
990     DeferredGlobal &G = DeferredDeclsToEmit.back();
991     GlobalDecl D = G.GD;
992     llvm::GlobalValue *GV = G.GV;
993     DeferredDeclsToEmit.pop_back();
994 
995     assert(GV == GetGlobalValue(getMangledName(D)));
996     // Check to see if we've already emitted this.  This is necessary
997     // for a couple of reasons: first, decls can end up in the
998     // deferred-decls queue multiple times, and second, decls can end
999     // up with definitions in unusual ways (e.g. by an extern inline
1000     // function acquiring a strong function redefinition).  Just
1001     // ignore these cases.
1002     if(!GV->isDeclaration())
1003       continue;
1004 
1005     // Otherwise, emit the definition and move on to the next one.
1006     EmitGlobalDefinition(D, GV);
1007   }
1008 }
1009 
1010 void CodeGenModule::EmitGlobalAnnotations() {
1011   if (Annotations.empty())
1012     return;
1013 
1014   // Create a new global variable for the ConstantStruct in the Module.
1015   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1016     Annotations[0]->getType(), Annotations.size()), Annotations);
1017   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1018                                       llvm::GlobalValue::AppendingLinkage,
1019                                       Array, "llvm.global.annotations");
1020   gv->setSection(AnnotationSection);
1021 }
1022 
1023 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1024   llvm::Constant *&AStr = AnnotationStrings[Str];
1025   if (AStr)
1026     return AStr;
1027 
1028   // Not found yet, create a new global.
1029   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1030   auto *gv =
1031       new llvm::GlobalVariable(getModule(), s->getType(), true,
1032                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1033   gv->setSection(AnnotationSection);
1034   gv->setUnnamedAddr(true);
1035   AStr = gv;
1036   return gv;
1037 }
1038 
1039 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1040   SourceManager &SM = getContext().getSourceManager();
1041   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1042   if (PLoc.isValid())
1043     return EmitAnnotationString(PLoc.getFilename());
1044   return EmitAnnotationString(SM.getBufferName(Loc));
1045 }
1046 
1047 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1048   SourceManager &SM = getContext().getSourceManager();
1049   PresumedLoc PLoc = SM.getPresumedLoc(L);
1050   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1051     SM.getExpansionLineNumber(L);
1052   return llvm::ConstantInt::get(Int32Ty, LineNo);
1053 }
1054 
1055 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1056                                                 const AnnotateAttr *AA,
1057                                                 SourceLocation L) {
1058   // Get the globals for file name, annotation, and the line number.
1059   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1060                  *UnitGV = EmitAnnotationUnit(L),
1061                  *LineNoCst = EmitAnnotationLineNo(L);
1062 
1063   // Create the ConstantStruct for the global annotation.
1064   llvm::Constant *Fields[4] = {
1065     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1066     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1067     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1068     LineNoCst
1069   };
1070   return llvm::ConstantStruct::getAnon(Fields);
1071 }
1072 
1073 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1074                                          llvm::GlobalValue *GV) {
1075   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1076   // Get the struct elements for these annotations.
1077   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1078     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1079 }
1080 
1081 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1082   // Never defer when EmitAllDecls is specified.
1083   if (LangOpts.EmitAllDecls)
1084     return false;
1085 
1086   return !getContext().DeclMustBeEmitted(Global);
1087 }
1088 
1089 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1090     const CXXUuidofExpr* E) {
1091   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1092   // well-formed.
1093   StringRef Uuid = E->getUuidAsStringRef(Context);
1094   std::string Name = "_GUID_" + Uuid.lower();
1095   std::replace(Name.begin(), Name.end(), '-', '_');
1096 
1097   // Look for an existing global.
1098   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1099     return GV;
1100 
1101   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1102   assert(Init && "failed to initialize as constant");
1103 
1104   auto *GV = new llvm::GlobalVariable(
1105       getModule(), Init->getType(),
1106       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1107   return GV;
1108 }
1109 
1110 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1111   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1112   assert(AA && "No alias?");
1113 
1114   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1115 
1116   // See if there is already something with the target's name in the module.
1117   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1118   if (Entry) {
1119     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1120     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1121   }
1122 
1123   llvm::Constant *Aliasee;
1124   if (isa<llvm::FunctionType>(DeclTy))
1125     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1126                                       GlobalDecl(cast<FunctionDecl>(VD)),
1127                                       /*ForVTable=*/false);
1128   else
1129     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1130                                     llvm::PointerType::getUnqual(DeclTy),
1131                                     nullptr);
1132 
1133   auto *F = cast<llvm::GlobalValue>(Aliasee);
1134   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1135   WeakRefReferences.insert(F);
1136 
1137   return Aliasee;
1138 }
1139 
1140 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1141   const auto *Global = cast<ValueDecl>(GD.getDecl());
1142 
1143   // Weak references don't produce any output by themselves.
1144   if (Global->hasAttr<WeakRefAttr>())
1145     return;
1146 
1147   // If this is an alias definition (which otherwise looks like a declaration)
1148   // emit it now.
1149   if (Global->hasAttr<AliasAttr>())
1150     return EmitAliasDefinition(GD);
1151 
1152   // If this is CUDA, be selective about which declarations we emit.
1153   if (LangOpts.CUDA) {
1154     if (CodeGenOpts.CUDAIsDevice) {
1155       if (!Global->hasAttr<CUDADeviceAttr>() &&
1156           !Global->hasAttr<CUDAGlobalAttr>() &&
1157           !Global->hasAttr<CUDAConstantAttr>() &&
1158           !Global->hasAttr<CUDASharedAttr>())
1159         return;
1160     } else {
1161       if (!Global->hasAttr<CUDAHostAttr>() && (
1162             Global->hasAttr<CUDADeviceAttr>() ||
1163             Global->hasAttr<CUDAConstantAttr>() ||
1164             Global->hasAttr<CUDASharedAttr>()))
1165         return;
1166     }
1167   }
1168 
1169   // Ignore declarations, they will be emitted on their first use.
1170   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1171     // Forward declarations are emitted lazily on first use.
1172     if (!FD->doesThisDeclarationHaveABody()) {
1173       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1174         return;
1175 
1176       StringRef MangledName = getMangledName(GD);
1177 
1178       // Compute the function info and LLVM type.
1179       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1180       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1181 
1182       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1183                               /*DontDefer=*/false);
1184       return;
1185     }
1186   } else {
1187     const auto *VD = cast<VarDecl>(Global);
1188     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1189 
1190     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1191       return;
1192   }
1193 
1194   // Defer code generation when possible if this is a static definition, inline
1195   // function etc.  These we only want to emit if they are used.
1196   if (!MayDeferGeneration(Global)) {
1197     // Emit the definition if it can't be deferred.
1198     EmitGlobalDefinition(GD);
1199     return;
1200   }
1201 
1202   // If we're deferring emission of a C++ variable with an
1203   // initializer, remember the order in which it appeared in the file.
1204   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1205       cast<VarDecl>(Global)->hasInit()) {
1206     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1207     CXXGlobalInits.push_back(nullptr);
1208   }
1209 
1210   // If the value has already been used, add it directly to the
1211   // DeferredDeclsToEmit list.
1212   StringRef MangledName = getMangledName(GD);
1213   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1214     addDeferredDeclToEmit(GV, GD);
1215   else {
1216     // Otherwise, remember that we saw a deferred decl with this name.  The
1217     // first use of the mangled name will cause it to move into
1218     // DeferredDeclsToEmit.
1219     DeferredDecls[MangledName] = GD;
1220   }
1221 }
1222 
1223 namespace {
1224   struct FunctionIsDirectlyRecursive :
1225     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1226     const StringRef Name;
1227     const Builtin::Context &BI;
1228     bool Result;
1229     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1230       Name(N), BI(C), Result(false) {
1231     }
1232     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1233 
1234     bool TraverseCallExpr(CallExpr *E) {
1235       const FunctionDecl *FD = E->getDirectCallee();
1236       if (!FD)
1237         return true;
1238       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1239       if (Attr && Name == Attr->getLabel()) {
1240         Result = true;
1241         return false;
1242       }
1243       unsigned BuiltinID = FD->getBuiltinID();
1244       if (!BuiltinID)
1245         return true;
1246       StringRef BuiltinName = BI.GetName(BuiltinID);
1247       if (BuiltinName.startswith("__builtin_") &&
1248           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1249         Result = true;
1250         return false;
1251       }
1252       return true;
1253     }
1254   };
1255 }
1256 
1257 // isTriviallyRecursive - Check if this function calls another
1258 // decl that, because of the asm attribute or the other decl being a builtin,
1259 // ends up pointing to itself.
1260 bool
1261 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1262   StringRef Name;
1263   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1264     // asm labels are a special kind of mangling we have to support.
1265     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1266     if (!Attr)
1267       return false;
1268     Name = Attr->getLabel();
1269   } else {
1270     Name = FD->getName();
1271   }
1272 
1273   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1274   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1275   return Walker.Result;
1276 }
1277 
1278 bool
1279 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1280   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1281     return true;
1282   const auto *F = cast<FunctionDecl>(GD.getDecl());
1283   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1284     return false;
1285   // PR9614. Avoid cases where the source code is lying to us. An available
1286   // externally function should have an equivalent function somewhere else,
1287   // but a function that calls itself is clearly not equivalent to the real
1288   // implementation.
1289   // This happens in glibc's btowc and in some configure checks.
1290   return !isTriviallyRecursive(F);
1291 }
1292 
1293 /// If the type for the method's class was generated by
1294 /// CGDebugInfo::createContextChain(), the cache contains only a
1295 /// limited DIType without any declarations. Since EmitFunctionStart()
1296 /// needs to find the canonical declaration for each method, we need
1297 /// to construct the complete type prior to emitting the method.
1298 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1299   if (!D->isInstance())
1300     return;
1301 
1302   if (CGDebugInfo *DI = getModuleDebugInfo())
1303     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1304       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1305       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1306     }
1307 }
1308 
1309 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1310   const auto *D = cast<ValueDecl>(GD.getDecl());
1311 
1312   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1313                                  Context.getSourceManager(),
1314                                  "Generating code for declaration");
1315 
1316   if (isa<FunctionDecl>(D)) {
1317     // At -O0, don't generate IR for functions with available_externally
1318     // linkage.
1319     if (!shouldEmitFunction(GD))
1320       return;
1321 
1322     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1323       CompleteDIClassType(Method);
1324       // Make sure to emit the definition(s) before we emit the thunks.
1325       // This is necessary for the generation of certain thunks.
1326       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1327         EmitCXXConstructor(CD, GD.getCtorType());
1328       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1329         EmitCXXDestructor(DD, GD.getDtorType());
1330       else
1331         EmitGlobalFunctionDefinition(GD, GV);
1332 
1333       if (Method->isVirtual())
1334         getVTables().EmitThunks(GD);
1335 
1336       return;
1337     }
1338 
1339     return EmitGlobalFunctionDefinition(GD, GV);
1340   }
1341 
1342   if (const auto *VD = dyn_cast<VarDecl>(D))
1343     return EmitGlobalVarDefinition(VD);
1344 
1345   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1346 }
1347 
1348 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1349 /// module, create and return an llvm Function with the specified type. If there
1350 /// is something in the module with the specified name, return it potentially
1351 /// bitcasted to the right type.
1352 ///
1353 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1354 /// to set the attributes on the function when it is first created.
1355 llvm::Constant *
1356 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1357                                        llvm::Type *Ty,
1358                                        GlobalDecl GD, bool ForVTable,
1359                                        bool DontDefer,
1360                                        llvm::AttributeSet ExtraAttrs) {
1361   const Decl *D = GD.getDecl();
1362 
1363   // Lookup the entry, lazily creating it if necessary.
1364   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1365   if (Entry) {
1366     if (WeakRefReferences.erase(Entry)) {
1367       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1368       if (FD && !FD->hasAttr<WeakAttr>())
1369         Entry->setLinkage(llvm::Function::ExternalLinkage);
1370     }
1371 
1372     if (Entry->getType()->getElementType() == Ty)
1373       return Entry;
1374 
1375     // Make sure the result is of the correct type.
1376     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1377   }
1378 
1379   // This function doesn't have a complete type (for example, the return
1380   // type is an incomplete struct). Use a fake type instead, and make
1381   // sure not to try to set attributes.
1382   bool IsIncompleteFunction = false;
1383 
1384   llvm::FunctionType *FTy;
1385   if (isa<llvm::FunctionType>(Ty)) {
1386     FTy = cast<llvm::FunctionType>(Ty);
1387   } else {
1388     FTy = llvm::FunctionType::get(VoidTy, false);
1389     IsIncompleteFunction = true;
1390   }
1391 
1392   llvm::Function *F = llvm::Function::Create(FTy,
1393                                              llvm::Function::ExternalLinkage,
1394                                              MangledName, &getModule());
1395   assert(F->getName() == MangledName && "name was uniqued!");
1396   if (D)
1397     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1398   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1399     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1400     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1401                      llvm::AttributeSet::get(VMContext,
1402                                              llvm::AttributeSet::FunctionIndex,
1403                                              B));
1404   }
1405 
1406   if (!DontDefer) {
1407     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1408     // each other bottoming out with the base dtor.  Therefore we emit non-base
1409     // dtors on usage, even if there is no dtor definition in the TU.
1410     if (D && isa<CXXDestructorDecl>(D) &&
1411         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1412                                            GD.getDtorType()))
1413       addDeferredDeclToEmit(F, GD);
1414 
1415     // This is the first use or definition of a mangled name.  If there is a
1416     // deferred decl with this name, remember that we need to emit it at the end
1417     // of the file.
1418     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1419     if (DDI != DeferredDecls.end()) {
1420       // Move the potentially referenced deferred decl to the
1421       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1422       // don't need it anymore).
1423       addDeferredDeclToEmit(F, DDI->second);
1424       DeferredDecls.erase(DDI);
1425 
1426       // Otherwise, if this is a sized deallocation function, emit a weak
1427       // definition
1428       // for it at the end of the translation unit.
1429     } else if (D && cast<FunctionDecl>(D)
1430                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1431       addDeferredDeclToEmit(F, GD);
1432 
1433       // Otherwise, there are cases we have to worry about where we're
1434       // using a declaration for which we must emit a definition but where
1435       // we might not find a top-level definition:
1436       //   - member functions defined inline in their classes
1437       //   - friend functions defined inline in some class
1438       //   - special member functions with implicit definitions
1439       // If we ever change our AST traversal to walk into class methods,
1440       // this will be unnecessary.
1441       //
1442       // We also don't emit a definition for a function if it's going to be an
1443       // entry
1444       // in a vtable, unless it's already marked as used.
1445     } else if (getLangOpts().CPlusPlus && D) {
1446       // Look for a declaration that's lexically in a record.
1447       const auto *FD = cast<FunctionDecl>(D);
1448       FD = FD->getMostRecentDecl();
1449       do {
1450         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1451           if (FD->isImplicit() && !ForVTable) {
1452             assert(FD->isUsed() &&
1453                    "Sema didn't mark implicit function as used!");
1454             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1455             break;
1456           } else if (FD->doesThisDeclarationHaveABody()) {
1457             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1458             break;
1459           }
1460         }
1461         FD = FD->getPreviousDecl();
1462       } while (FD);
1463     }
1464   }
1465 
1466   getTargetCodeGenInfo().emitTargetMD(D, F, *this);
1467 
1468   // Make sure the result is of the requested type.
1469   if (!IsIncompleteFunction) {
1470     assert(F->getType()->getElementType() == Ty);
1471     return F;
1472   }
1473 
1474   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1475   return llvm::ConstantExpr::getBitCast(F, PTy);
1476 }
1477 
1478 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1479 /// non-null, then this function will use the specified type if it has to
1480 /// create it (this occurs when we see a definition of the function).
1481 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1482                                                  llvm::Type *Ty,
1483                                                  bool ForVTable,
1484                                                  bool DontDefer) {
1485   // If there was no specific requested type, just convert it now.
1486   if (!Ty)
1487     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1488 
1489   StringRef MangledName = getMangledName(GD);
1490   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1491 }
1492 
1493 /// CreateRuntimeFunction - Create a new runtime function with the specified
1494 /// type and name.
1495 llvm::Constant *
1496 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1497                                      StringRef Name,
1498                                      llvm::AttributeSet ExtraAttrs) {
1499   llvm::Constant *C =
1500       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1501                               /*DontDefer=*/false, ExtraAttrs);
1502   if (auto *F = dyn_cast<llvm::Function>(C))
1503     if (F->empty())
1504       F->setCallingConv(getRuntimeCC());
1505   return C;
1506 }
1507 
1508 /// isTypeConstant - Determine whether an object of this type can be emitted
1509 /// as a constant.
1510 ///
1511 /// If ExcludeCtor is true, the duration when the object's constructor runs
1512 /// will not be considered. The caller will need to verify that the object is
1513 /// not written to during its construction.
1514 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1515   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1516     return false;
1517 
1518   if (Context.getLangOpts().CPlusPlus) {
1519     if (const CXXRecordDecl *Record
1520           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1521       return ExcludeCtor && !Record->hasMutableFields() &&
1522              Record->hasTrivialDestructor();
1523   }
1524 
1525   return true;
1526 }
1527 
1528 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) {
1529   if (!VD->isStaticDataMember())
1530     return false;
1531   const VarDecl *InitDecl;
1532   const Expr *InitExpr = VD->getAnyInitializer(InitDecl);
1533   if (!InitExpr)
1534     return false;
1535   if (InitDecl->isThisDeclarationADefinition())
1536     return false;
1537   return true;
1538 }
1539 
1540 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1541 /// create and return an llvm GlobalVariable with the specified type.  If there
1542 /// is something in the module with the specified name, return it potentially
1543 /// bitcasted to the right type.
1544 ///
1545 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1546 /// to set the attributes on the global when it is first created.
1547 llvm::Constant *
1548 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1549                                      llvm::PointerType *Ty,
1550                                      const VarDecl *D) {
1551   // Lookup the entry, lazily creating it if necessary.
1552   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1553   if (Entry) {
1554     if (WeakRefReferences.erase(Entry)) {
1555       if (D && !D->hasAttr<WeakAttr>())
1556         Entry->setLinkage(llvm::Function::ExternalLinkage);
1557     }
1558 
1559     if (Entry->getType() == Ty)
1560       return Entry;
1561 
1562     // Make sure the result is of the correct type.
1563     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1564       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1565 
1566     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1567   }
1568 
1569   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1570   auto *GV = new llvm::GlobalVariable(
1571       getModule(), Ty->getElementType(), false,
1572       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1573       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1574 
1575   // This is the first use or definition of a mangled name.  If there is a
1576   // deferred decl with this name, remember that we need to emit it at the end
1577   // of the file.
1578   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1579   if (DDI != DeferredDecls.end()) {
1580     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1581     // list, and remove it from DeferredDecls (since we don't need it anymore).
1582     addDeferredDeclToEmit(GV, DDI->second);
1583     DeferredDecls.erase(DDI);
1584   }
1585 
1586   // Handle things which are present even on external declarations.
1587   if (D) {
1588     // FIXME: This code is overly simple and should be merged with other global
1589     // handling.
1590     GV->setConstant(isTypeConstant(D->getType(), false));
1591 
1592     setLinkageAndVisibilityForGV(GV, D);
1593 
1594     if (D->getTLSKind()) {
1595       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1596         CXXThreadLocals.push_back(std::make_pair(D, GV));
1597       setTLSMode(GV, *D);
1598     }
1599 
1600     // If required by the ABI, treat declarations of static data members with
1601     // inline initializers as definitions.
1602     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1603         isVarDeclInlineInitializedStaticDataMember(D))
1604       EmitGlobalVarDefinition(D);
1605 
1606     // Handle XCore specific ABI requirements.
1607     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1608         D->getLanguageLinkage() == CLanguageLinkage &&
1609         D->getType().isConstant(Context) &&
1610         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1611       GV->setSection(".cp.rodata");
1612   }
1613 
1614   if (AddrSpace != Ty->getAddressSpace())
1615     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1616 
1617   getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
1618 
1619   return GV;
1620 }
1621 
1622 
1623 llvm::GlobalVariable *
1624 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1625                                       llvm::Type *Ty,
1626                                       llvm::GlobalValue::LinkageTypes Linkage) {
1627   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1628   llvm::GlobalVariable *OldGV = nullptr;
1629 
1630   if (GV) {
1631     // Check if the variable has the right type.
1632     if (GV->getType()->getElementType() == Ty)
1633       return GV;
1634 
1635     // Because C++ name mangling, the only way we can end up with an already
1636     // existing global with the same name is if it has been declared extern "C".
1637     assert(GV->isDeclaration() && "Declaration has wrong type!");
1638     OldGV = GV;
1639   }
1640 
1641   // Create a new variable.
1642   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1643                                 Linkage, nullptr, Name);
1644 
1645   if (OldGV) {
1646     // Replace occurrences of the old variable if needed.
1647     GV->takeName(OldGV);
1648 
1649     if (!OldGV->use_empty()) {
1650       llvm::Constant *NewPtrForOldDecl =
1651       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1652       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1653     }
1654 
1655     OldGV->eraseFromParent();
1656   }
1657 
1658   return GV;
1659 }
1660 
1661 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1662 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1663 /// then it will be created with the specified type instead of whatever the
1664 /// normal requested type would be.
1665 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1666                                                   llvm::Type *Ty) {
1667   assert(D->hasGlobalStorage() && "Not a global variable");
1668   QualType ASTTy = D->getType();
1669   if (!Ty)
1670     Ty = getTypes().ConvertTypeForMem(ASTTy);
1671 
1672   llvm::PointerType *PTy =
1673     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1674 
1675   StringRef MangledName = getMangledName(D);
1676   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1677 }
1678 
1679 /// CreateRuntimeVariable - Create a new runtime global variable with the
1680 /// specified type and name.
1681 llvm::Constant *
1682 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1683                                      StringRef Name) {
1684   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1685 }
1686 
1687 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1688   assert(!D->getInit() && "Cannot emit definite definitions here!");
1689 
1690   if (MayDeferGeneration(D)) {
1691     // If we have not seen a reference to this variable yet, place it
1692     // into the deferred declarations table to be emitted if needed
1693     // later.
1694     StringRef MangledName = getMangledName(D);
1695     if (!GetGlobalValue(MangledName)) {
1696       DeferredDecls[MangledName] = D;
1697       return;
1698     }
1699   }
1700 
1701   // The tentative definition is the only definition.
1702   EmitGlobalVarDefinition(D);
1703 }
1704 
1705 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1706     return Context.toCharUnitsFromBits(
1707       TheDataLayout.getTypeStoreSizeInBits(Ty));
1708 }
1709 
1710 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1711                                                  unsigned AddrSpace) {
1712   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1713     if (D->hasAttr<CUDAConstantAttr>())
1714       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1715     else if (D->hasAttr<CUDASharedAttr>())
1716       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1717     else
1718       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1719   }
1720 
1721   return AddrSpace;
1722 }
1723 
1724 template<typename SomeDecl>
1725 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1726                                                llvm::GlobalValue *GV) {
1727   if (!getLangOpts().CPlusPlus)
1728     return;
1729 
1730   // Must have 'used' attribute, or else inline assembly can't rely on
1731   // the name existing.
1732   if (!D->template hasAttr<UsedAttr>())
1733     return;
1734 
1735   // Must have internal linkage and an ordinary name.
1736   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1737     return;
1738 
1739   // Must be in an extern "C" context. Entities declared directly within
1740   // a record are not extern "C" even if the record is in such a context.
1741   const SomeDecl *First = D->getFirstDecl();
1742   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1743     return;
1744 
1745   // OK, this is an internal linkage entity inside an extern "C" linkage
1746   // specification. Make a note of that so we can give it the "expected"
1747   // mangled name if nothing else is using that name.
1748   std::pair<StaticExternCMap::iterator, bool> R =
1749       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1750 
1751   // If we have multiple internal linkage entities with the same name
1752   // in extern "C" regions, none of them gets that name.
1753   if (!R.second)
1754     R.first->second = nullptr;
1755 }
1756 
1757 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1758   llvm::Constant *Init = nullptr;
1759   QualType ASTTy = D->getType();
1760   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1761   bool NeedsGlobalCtor = false;
1762   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1763 
1764   const VarDecl *InitDecl;
1765   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1766 
1767   if (!InitExpr) {
1768     // This is a tentative definition; tentative definitions are
1769     // implicitly initialized with { 0 }.
1770     //
1771     // Note that tentative definitions are only emitted at the end of
1772     // a translation unit, so they should never have incomplete
1773     // type. In addition, EmitTentativeDefinition makes sure that we
1774     // never attempt to emit a tentative definition if a real one
1775     // exists. A use may still exists, however, so we still may need
1776     // to do a RAUW.
1777     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1778     Init = EmitNullConstant(D->getType());
1779   } else {
1780     initializedGlobalDecl = GlobalDecl(D);
1781     Init = EmitConstantInit(*InitDecl);
1782 
1783     if (!Init) {
1784       QualType T = InitExpr->getType();
1785       if (D->getType()->isReferenceType())
1786         T = D->getType();
1787 
1788       if (getLangOpts().CPlusPlus) {
1789         Init = EmitNullConstant(T);
1790         NeedsGlobalCtor = true;
1791       } else {
1792         ErrorUnsupported(D, "static initializer");
1793         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1794       }
1795     } else {
1796       // We don't need an initializer, so remove the entry for the delayed
1797       // initializer position (just in case this entry was delayed) if we
1798       // also don't need to register a destructor.
1799       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1800         DelayedCXXInitPosition.erase(D);
1801     }
1802   }
1803 
1804   llvm::Type* InitType = Init->getType();
1805   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1806 
1807   // Strip off a bitcast if we got one back.
1808   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1809     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1810            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1811            // All zero index gep.
1812            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1813     Entry = CE->getOperand(0);
1814   }
1815 
1816   // Entry is now either a Function or GlobalVariable.
1817   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1818 
1819   // We have a definition after a declaration with the wrong type.
1820   // We must make a new GlobalVariable* and update everything that used OldGV
1821   // (a declaration or tentative definition) with the new GlobalVariable*
1822   // (which will be a definition).
1823   //
1824   // This happens if there is a prototype for a global (e.g.
1825   // "extern int x[];") and then a definition of a different type (e.g.
1826   // "int x[10];"). This also happens when an initializer has a different type
1827   // from the type of the global (this happens with unions).
1828   if (!GV ||
1829       GV->getType()->getElementType() != InitType ||
1830       GV->getType()->getAddressSpace() !=
1831        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1832 
1833     // Move the old entry aside so that we'll create a new one.
1834     Entry->setName(StringRef());
1835 
1836     // Make a new global with the correct type, this is now guaranteed to work.
1837     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1838 
1839     // Replace all uses of the old global with the new global
1840     llvm::Constant *NewPtrForOldDecl =
1841         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1842     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1843 
1844     // Erase the old global, since it is no longer used.
1845     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1846   }
1847 
1848   MaybeHandleStaticInExternC(D, GV);
1849 
1850   if (D->hasAttr<AnnotateAttr>())
1851     AddGlobalAnnotations(D, GV);
1852 
1853   GV->setInitializer(Init);
1854 
1855   // If it is safe to mark the global 'constant', do so now.
1856   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1857                   isTypeConstant(D->getType(), true));
1858 
1859   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1860 
1861   // Set the llvm linkage type as appropriate.
1862   llvm::GlobalValue::LinkageTypes Linkage =
1863       getLLVMLinkageVarDefinition(D, GV->isConstant());
1864   GV->setLinkage(Linkage);
1865   if (D->hasAttr<DLLImportAttr>())
1866     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1867   else if (D->hasAttr<DLLExportAttr>())
1868     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1869 
1870   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1871     // common vars aren't constant even if declared const.
1872     GV->setConstant(false);
1873 
1874   setNonAliasAttributes(D, GV);
1875 
1876   // Emit the initializer function if necessary.
1877   if (NeedsGlobalCtor || NeedsGlobalDtor)
1878     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1879 
1880   // If we are compiling with ASan, add metadata indicating dynamically
1881   // initialized (and not blacklisted) globals.
1882   if (SanOpts.Address && NeedsGlobalCtor &&
1883       !SanitizerBlacklist->isIn(*GV, "init")) {
1884     llvm::NamedMDNode *DynamicInitializers = TheModule.getOrInsertNamedMetadata(
1885         "llvm.asan.dynamically_initialized_globals");
1886     llvm::Value *GlobalToAdd[] = { GV };
1887     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1888     DynamicInitializers->addOperand(ThisGlobal);
1889   }
1890 
1891   // Emit global variable debug information.
1892   if (CGDebugInfo *DI = getModuleDebugInfo())
1893     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1894       DI->EmitGlobalVariable(GV, D);
1895 }
1896 
1897 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1898   // Don't give variables common linkage if -fno-common was specified unless it
1899   // was overridden by a NoCommon attribute.
1900   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1901     return true;
1902 
1903   // C11 6.9.2/2:
1904   //   A declaration of an identifier for an object that has file scope without
1905   //   an initializer, and without a storage-class specifier or with the
1906   //   storage-class specifier static, constitutes a tentative definition.
1907   if (D->getInit() || D->hasExternalStorage())
1908     return true;
1909 
1910   // A variable cannot be both common and exist in a section.
1911   if (D->hasAttr<SectionAttr>())
1912     return true;
1913 
1914   // Thread local vars aren't considered common linkage.
1915   if (D->getTLSKind())
1916     return true;
1917 
1918   // Tentative definitions marked with WeakImportAttr are true definitions.
1919   if (D->hasAttr<WeakImportAttr>())
1920     return true;
1921 
1922   return false;
1923 }
1924 
1925 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
1926     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
1927   if (Linkage == GVA_Internal)
1928     return llvm::Function::InternalLinkage;
1929 
1930   if (D->hasAttr<WeakAttr>()) {
1931     if (IsConstantVariable)
1932       return llvm::GlobalVariable::WeakODRLinkage;
1933     else
1934       return llvm::GlobalVariable::WeakAnyLinkage;
1935   }
1936 
1937   // We are guaranteed to have a strong definition somewhere else,
1938   // so we can use available_externally linkage.
1939   if (Linkage == GVA_AvailableExternally)
1940     return llvm::Function::AvailableExternallyLinkage;
1941 
1942   // Note that Apple's kernel linker doesn't support symbol
1943   // coalescing, so we need to avoid linkonce and weak linkages there.
1944   // Normally, this means we just map to internal, but for explicit
1945   // instantiations we'll map to external.
1946 
1947   // In C++, the compiler has to emit a definition in every translation unit
1948   // that references the function.  We should use linkonce_odr because
1949   // a) if all references in this translation unit are optimized away, we
1950   // don't need to codegen it.  b) if the function persists, it needs to be
1951   // merged with other definitions. c) C++ has the ODR, so we know the
1952   // definition is dependable.
1953   if (Linkage == GVA_DiscardableODR)
1954     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
1955                                             : llvm::Function::InternalLinkage;
1956 
1957   // An explicit instantiation of a template has weak linkage, since
1958   // explicit instantiations can occur in multiple translation units
1959   // and must all be equivalent. However, we are not allowed to
1960   // throw away these explicit instantiations.
1961   if (Linkage == GVA_StrongODR)
1962     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
1963                                             : llvm::Function::ExternalLinkage;
1964 
1965   // If required by the ABI, give definitions of static data members with inline
1966   // initializers at least linkonce_odr linkage.
1967   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1968       isa<VarDecl>(D) &&
1969       isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D)))
1970     return llvm::GlobalValue::LinkOnceODRLinkage;
1971 
1972   // C++ doesn't have tentative definitions and thus cannot have common
1973   // linkage.
1974   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
1975       !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon))
1976     return llvm::GlobalVariable::CommonLinkage;
1977 
1978   // selectany symbols are externally visible, so use weak instead of
1979   // linkonce.  MSVC optimizes away references to const selectany globals, so
1980   // all definitions should be the same and ODR linkage should be used.
1981   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1982   if (D->hasAttr<SelectAnyAttr>())
1983     return llvm::GlobalVariable::WeakODRLinkage;
1984 
1985   // Otherwise, we have strong external linkage.
1986   assert(Linkage == GVA_StrongExternal);
1987   return llvm::GlobalVariable::ExternalLinkage;
1988 }
1989 
1990 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
1991     const VarDecl *VD, bool IsConstant) {
1992   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
1993   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
1994 }
1995 
1996 /// Replace the uses of a function that was declared with a non-proto type.
1997 /// We want to silently drop extra arguments from call sites
1998 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1999                                           llvm::Function *newFn) {
2000   // Fast path.
2001   if (old->use_empty()) return;
2002 
2003   llvm::Type *newRetTy = newFn->getReturnType();
2004   SmallVector<llvm::Value*, 4> newArgs;
2005 
2006   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2007          ui != ue; ) {
2008     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2009     llvm::User *user = use->getUser();
2010 
2011     // Recognize and replace uses of bitcasts.  Most calls to
2012     // unprototyped functions will use bitcasts.
2013     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2014       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2015         replaceUsesOfNonProtoConstant(bitcast, newFn);
2016       continue;
2017     }
2018 
2019     // Recognize calls to the function.
2020     llvm::CallSite callSite(user);
2021     if (!callSite) continue;
2022     if (!callSite.isCallee(&*use)) continue;
2023 
2024     // If the return types don't match exactly, then we can't
2025     // transform this call unless it's dead.
2026     if (callSite->getType() != newRetTy && !callSite->use_empty())
2027       continue;
2028 
2029     // Get the call site's attribute list.
2030     SmallVector<llvm::AttributeSet, 8> newAttrs;
2031     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2032 
2033     // Collect any return attributes from the call.
2034     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2035       newAttrs.push_back(
2036         llvm::AttributeSet::get(newFn->getContext(),
2037                                 oldAttrs.getRetAttributes()));
2038 
2039     // If the function was passed too few arguments, don't transform.
2040     unsigned newNumArgs = newFn->arg_size();
2041     if (callSite.arg_size() < newNumArgs) continue;
2042 
2043     // If extra arguments were passed, we silently drop them.
2044     // If any of the types mismatch, we don't transform.
2045     unsigned argNo = 0;
2046     bool dontTransform = false;
2047     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2048            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2049       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2050         dontTransform = true;
2051         break;
2052       }
2053 
2054       // Add any parameter attributes.
2055       if (oldAttrs.hasAttributes(argNo + 1))
2056         newAttrs.
2057           push_back(llvm::
2058                     AttributeSet::get(newFn->getContext(),
2059                                       oldAttrs.getParamAttributes(argNo + 1)));
2060     }
2061     if (dontTransform)
2062       continue;
2063 
2064     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2065       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2066                                                  oldAttrs.getFnAttributes()));
2067 
2068     // Okay, we can transform this.  Create the new call instruction and copy
2069     // over the required information.
2070     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2071 
2072     llvm::CallSite newCall;
2073     if (callSite.isCall()) {
2074       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2075                                        callSite.getInstruction());
2076     } else {
2077       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2078       newCall = llvm::InvokeInst::Create(newFn,
2079                                          oldInvoke->getNormalDest(),
2080                                          oldInvoke->getUnwindDest(),
2081                                          newArgs, "",
2082                                          callSite.getInstruction());
2083     }
2084     newArgs.clear(); // for the next iteration
2085 
2086     if (!newCall->getType()->isVoidTy())
2087       newCall->takeName(callSite.getInstruction());
2088     newCall.setAttributes(
2089                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2090     newCall.setCallingConv(callSite.getCallingConv());
2091 
2092     // Finally, remove the old call, replacing any uses with the new one.
2093     if (!callSite->use_empty())
2094       callSite->replaceAllUsesWith(newCall.getInstruction());
2095 
2096     // Copy debug location attached to CI.
2097     if (!callSite->getDebugLoc().isUnknown())
2098       newCall->setDebugLoc(callSite->getDebugLoc());
2099     callSite->eraseFromParent();
2100   }
2101 }
2102 
2103 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2104 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2105 /// existing call uses of the old function in the module, this adjusts them to
2106 /// call the new function directly.
2107 ///
2108 /// This is not just a cleanup: the always_inline pass requires direct calls to
2109 /// functions to be able to inline them.  If there is a bitcast in the way, it
2110 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2111 /// run at -O0.
2112 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2113                                                       llvm::Function *NewFn) {
2114   // If we're redefining a global as a function, don't transform it.
2115   if (!isa<llvm::Function>(Old)) return;
2116 
2117   replaceUsesOfNonProtoConstant(Old, NewFn);
2118 }
2119 
2120 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2121   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2122   // If we have a definition, this might be a deferred decl. If the
2123   // instantiation is explicit, make sure we emit it at the end.
2124   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2125     GetAddrOfGlobalVar(VD);
2126 
2127   EmitTopLevelDecl(VD);
2128 }
2129 
2130 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2131                                                  llvm::GlobalValue *GV) {
2132   const auto *D = cast<FunctionDecl>(GD.getDecl());
2133 
2134   // Compute the function info and LLVM type.
2135   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2136   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2137 
2138   // Get or create the prototype for the function.
2139   if (!GV) {
2140     llvm::Constant *C =
2141         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2142 
2143     // Strip off a bitcast if we got one back.
2144     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2145       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2146       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2147     } else {
2148       GV = cast<llvm::GlobalValue>(C);
2149     }
2150   }
2151 
2152   if (!GV->isDeclaration()) {
2153     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2154     return;
2155   }
2156 
2157   if (GV->getType()->getElementType() != Ty) {
2158     // If the types mismatch then we have to rewrite the definition.
2159     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2160 
2161     // F is the Function* for the one with the wrong type, we must make a new
2162     // Function* and update everything that used F (a declaration) with the new
2163     // Function* (which will be a definition).
2164     //
2165     // This happens if there is a prototype for a function
2166     // (e.g. "int f()") and then a definition of a different type
2167     // (e.g. "int f(int x)").  Move the old function aside so that it
2168     // doesn't interfere with GetAddrOfFunction.
2169     GV->setName(StringRef());
2170     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2171 
2172     // This might be an implementation of a function without a
2173     // prototype, in which case, try to do special replacement of
2174     // calls which match the new prototype.  The really key thing here
2175     // is that we also potentially drop arguments from the call site
2176     // so as to make a direct call, which makes the inliner happier
2177     // and suppresses a number of optimizer warnings (!) about
2178     // dropping arguments.
2179     if (!GV->use_empty()) {
2180       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2181       GV->removeDeadConstantUsers();
2182     }
2183 
2184     // Replace uses of F with the Function we will endow with a body.
2185     if (!GV->use_empty()) {
2186       llvm::Constant *NewPtrForOldDecl =
2187           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2188       GV->replaceAllUsesWith(NewPtrForOldDecl);
2189     }
2190 
2191     // Ok, delete the old function now, which is dead.
2192     GV->eraseFromParent();
2193 
2194     GV = NewFn;
2195   }
2196 
2197   // We need to set linkage and visibility on the function before
2198   // generating code for it because various parts of IR generation
2199   // want to propagate this information down (e.g. to local static
2200   // declarations).
2201   auto *Fn = cast<llvm::Function>(GV);
2202   setFunctionLinkage(GD, Fn);
2203 
2204   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2205   setGlobalVisibility(Fn, D);
2206 
2207   MaybeHandleStaticInExternC(D, Fn);
2208 
2209   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2210 
2211   setFunctionDefinitionAttributes(D, Fn);
2212   SetLLVMFunctionAttributesForDefinition(D, Fn);
2213 
2214   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2215     AddGlobalCtor(Fn, CA->getPriority());
2216   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2217     AddGlobalDtor(Fn, DA->getPriority());
2218   if (D->hasAttr<AnnotateAttr>())
2219     AddGlobalAnnotations(D, Fn);
2220 }
2221 
2222 static llvm::GlobalObject &getGlobalObjectInExpr(DiagnosticsEngine &Diags,
2223                                                  const AliasAttr *AA,
2224                                                  llvm::Constant *C) {
2225   if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
2226     return *GO;
2227 
2228   auto *GA = dyn_cast<llvm::GlobalAlias>(C);
2229   if (GA) {
2230     if (GA->mayBeOverridden()) {
2231       Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
2232           << GA->getAliasee()->getName() << GA->getName();
2233     }
2234 
2235     return *GA->getAliasee();
2236   }
2237 
2238   auto *CE = cast<llvm::ConstantExpr>(C);
2239   assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2240          CE->getOpcode() == llvm::Instruction::GetElementPtr ||
2241          CE->getOpcode() == llvm::Instruction::AddrSpaceCast);
2242   return *cast<llvm::GlobalObject>(CE->getOperand(0));
2243 }
2244 
2245 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2246   const auto *D = cast<ValueDecl>(GD.getDecl());
2247   const AliasAttr *AA = D->getAttr<AliasAttr>();
2248   assert(AA && "Not an alias?");
2249 
2250   StringRef MangledName = getMangledName(GD);
2251 
2252   // If there is a definition in the module, then it wins over the alias.
2253   // This is dubious, but allow it to be safe.  Just ignore the alias.
2254   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2255   if (Entry && !Entry->isDeclaration())
2256     return;
2257 
2258   Aliases.push_back(GD);
2259 
2260   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2261 
2262   // Create a reference to the named value.  This ensures that it is emitted
2263   // if a deferred decl.
2264   llvm::Constant *Aliasee;
2265   if (isa<llvm::FunctionType>(DeclTy))
2266     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2267                                       /*ForVTable=*/false);
2268   else
2269     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2270                                     llvm::PointerType::getUnqual(DeclTy),
2271                                     nullptr);
2272 
2273   // Create the new alias itself, but don't set a name yet.
2274   auto *GA = llvm::GlobalAlias::create(
2275       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2276       llvm::Function::ExternalLinkage, "",
2277       &getGlobalObjectInExpr(Diags, AA, Aliasee));
2278 
2279   if (Entry) {
2280     if (GA->getAliasee() == Entry) {
2281       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2282       return;
2283     }
2284 
2285     assert(Entry->isDeclaration());
2286 
2287     // If there is a declaration in the module, then we had an extern followed
2288     // by the alias, as in:
2289     //   extern int test6();
2290     //   ...
2291     //   int test6() __attribute__((alias("test7")));
2292     //
2293     // Remove it and replace uses of it with the alias.
2294     GA->takeName(Entry);
2295 
2296     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2297                                                           Entry->getType()));
2298     Entry->eraseFromParent();
2299   } else {
2300     GA->setName(MangledName);
2301   }
2302 
2303   // Set attributes which are particular to an alias; this is a
2304   // specialization of the attributes which may be set on a global
2305   // variable/function.
2306   if (D->hasAttr<DLLExportAttr>()) {
2307     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2308       // The dllexport attribute is ignored for undefined symbols.
2309       if (FD->hasBody())
2310         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2311     } else {
2312       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2313     }
2314   } else if (D->hasAttr<WeakAttr>() ||
2315              D->hasAttr<WeakRefAttr>() ||
2316              D->isWeakImported()) {
2317     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2318   }
2319 
2320   SetCommonAttributes(D, GA);
2321 }
2322 
2323 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2324                                             ArrayRef<llvm::Type*> Tys) {
2325   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2326                                          Tys);
2327 }
2328 
2329 static llvm::StringMapEntry<llvm::Constant*> &
2330 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2331                          const StringLiteral *Literal,
2332                          bool TargetIsLSB,
2333                          bool &IsUTF16,
2334                          unsigned &StringLength) {
2335   StringRef String = Literal->getString();
2336   unsigned NumBytes = String.size();
2337 
2338   // Check for simple case.
2339   if (!Literal->containsNonAsciiOrNull()) {
2340     StringLength = NumBytes;
2341     return Map.GetOrCreateValue(String);
2342   }
2343 
2344   // Otherwise, convert the UTF8 literals into a string of shorts.
2345   IsUTF16 = true;
2346 
2347   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2348   const UTF8 *FromPtr = (const UTF8 *)String.data();
2349   UTF16 *ToPtr = &ToBuf[0];
2350 
2351   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2352                            &ToPtr, ToPtr + NumBytes,
2353                            strictConversion);
2354 
2355   // ConvertUTF8toUTF16 returns the length in ToPtr.
2356   StringLength = ToPtr - &ToBuf[0];
2357 
2358   // Add an explicit null.
2359   *ToPtr = 0;
2360   return Map.
2361     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2362                                (StringLength + 1) * 2));
2363 }
2364 
2365 static llvm::StringMapEntry<llvm::Constant*> &
2366 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2367                        const StringLiteral *Literal,
2368                        unsigned &StringLength) {
2369   StringRef String = Literal->getString();
2370   StringLength = String.size();
2371   return Map.GetOrCreateValue(String);
2372 }
2373 
2374 llvm::Constant *
2375 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2376   unsigned StringLength = 0;
2377   bool isUTF16 = false;
2378   llvm::StringMapEntry<llvm::Constant*> &Entry =
2379     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2380                              getDataLayout().isLittleEndian(),
2381                              isUTF16, StringLength);
2382 
2383   if (llvm::Constant *C = Entry.getValue())
2384     return C;
2385 
2386   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2387   llvm::Constant *Zeros[] = { Zero, Zero };
2388   llvm::Value *V;
2389 
2390   // If we don't already have it, get __CFConstantStringClassReference.
2391   if (!CFConstantStringClassRef) {
2392     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2393     Ty = llvm::ArrayType::get(Ty, 0);
2394     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2395                                            "__CFConstantStringClassReference");
2396     // Decay array -> ptr
2397     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2398     CFConstantStringClassRef = V;
2399   }
2400   else
2401     V = CFConstantStringClassRef;
2402 
2403   QualType CFTy = getContext().getCFConstantStringType();
2404 
2405   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2406 
2407   llvm::Constant *Fields[4];
2408 
2409   // Class pointer.
2410   Fields[0] = cast<llvm::ConstantExpr>(V);
2411 
2412   // Flags.
2413   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2414   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2415     llvm::ConstantInt::get(Ty, 0x07C8);
2416 
2417   // String pointer.
2418   llvm::Constant *C = nullptr;
2419   if (isUTF16) {
2420     ArrayRef<uint16_t> Arr =
2421       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2422                                      const_cast<char *>(Entry.getKey().data())),
2423                                    Entry.getKey().size() / 2);
2424     C = llvm::ConstantDataArray::get(VMContext, Arr);
2425   } else {
2426     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2427   }
2428 
2429   // Note: -fwritable-strings doesn't make the backing store strings of
2430   // CFStrings writable. (See <rdar://problem/10657500>)
2431   auto *GV =
2432       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2433                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2434   GV->setUnnamedAddr(true);
2435   // Don't enforce the target's minimum global alignment, since the only use
2436   // of the string is via this class initializer.
2437   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2438   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2439   // that changes the section it ends in, which surprises ld64.
2440   if (isUTF16) {
2441     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2442     GV->setAlignment(Align.getQuantity());
2443     GV->setSection("__TEXT,__ustring");
2444   } else {
2445     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2446     GV->setAlignment(Align.getQuantity());
2447     GV->setSection("__TEXT,__cstring,cstring_literals");
2448   }
2449 
2450   // String.
2451   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2452 
2453   if (isUTF16)
2454     // Cast the UTF16 string to the correct type.
2455     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2456 
2457   // String length.
2458   Ty = getTypes().ConvertType(getContext().LongTy);
2459   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2460 
2461   // The struct.
2462   C = llvm::ConstantStruct::get(STy, Fields);
2463   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2464                                 llvm::GlobalVariable::PrivateLinkage, C,
2465                                 "_unnamed_cfstring_");
2466   GV->setSection("__DATA,__cfstring");
2467   Entry.setValue(GV);
2468 
2469   return GV;
2470 }
2471 
2472 llvm::Constant *
2473 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2474   unsigned StringLength = 0;
2475   llvm::StringMapEntry<llvm::Constant*> &Entry =
2476     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2477 
2478   if (llvm::Constant *C = Entry.getValue())
2479     return C;
2480 
2481   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2482   llvm::Constant *Zeros[] = { Zero, Zero };
2483   llvm::Value *V;
2484   // If we don't already have it, get _NSConstantStringClassReference.
2485   if (!ConstantStringClassRef) {
2486     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2487     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2488     llvm::Constant *GV;
2489     if (LangOpts.ObjCRuntime.isNonFragile()) {
2490       std::string str =
2491         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2492                             : "OBJC_CLASS_$_" + StringClass;
2493       GV = getObjCRuntime().GetClassGlobal(str);
2494       // Make sure the result is of the correct type.
2495       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2496       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2497       ConstantStringClassRef = V;
2498     } else {
2499       std::string str =
2500         StringClass.empty() ? "_NSConstantStringClassReference"
2501                             : "_" + StringClass + "ClassReference";
2502       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2503       GV = CreateRuntimeVariable(PTy, str);
2504       // Decay array -> ptr
2505       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2506       ConstantStringClassRef = V;
2507     }
2508   }
2509   else
2510     V = ConstantStringClassRef;
2511 
2512   if (!NSConstantStringType) {
2513     // Construct the type for a constant NSString.
2514     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2515     D->startDefinition();
2516 
2517     QualType FieldTypes[3];
2518 
2519     // const int *isa;
2520     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2521     // const char *str;
2522     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2523     // unsigned int length;
2524     FieldTypes[2] = Context.UnsignedIntTy;
2525 
2526     // Create fields
2527     for (unsigned i = 0; i < 3; ++i) {
2528       FieldDecl *Field = FieldDecl::Create(Context, D,
2529                                            SourceLocation(),
2530                                            SourceLocation(), nullptr,
2531                                            FieldTypes[i], /*TInfo=*/nullptr,
2532                                            /*BitWidth=*/nullptr,
2533                                            /*Mutable=*/false,
2534                                            ICIS_NoInit);
2535       Field->setAccess(AS_public);
2536       D->addDecl(Field);
2537     }
2538 
2539     D->completeDefinition();
2540     QualType NSTy = Context.getTagDeclType(D);
2541     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2542   }
2543 
2544   llvm::Constant *Fields[3];
2545 
2546   // Class pointer.
2547   Fields[0] = cast<llvm::ConstantExpr>(V);
2548 
2549   // String pointer.
2550   llvm::Constant *C =
2551     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2552 
2553   llvm::GlobalValue::LinkageTypes Linkage;
2554   bool isConstant;
2555   Linkage = llvm::GlobalValue::PrivateLinkage;
2556   isConstant = !LangOpts.WritableStrings;
2557 
2558   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2559                                       Linkage, C, ".str");
2560   GV->setUnnamedAddr(true);
2561   // Don't enforce the target's minimum global alignment, since the only use
2562   // of the string is via this class initializer.
2563   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2564   GV->setAlignment(Align.getQuantity());
2565   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2566 
2567   // String length.
2568   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2569   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2570 
2571   // The struct.
2572   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2573   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2574                                 llvm::GlobalVariable::PrivateLinkage, C,
2575                                 "_unnamed_nsstring_");
2576   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2577   const char *NSStringNonFragileABISection =
2578       "__DATA,__objc_stringobj,regular,no_dead_strip";
2579   // FIXME. Fix section.
2580   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2581                      ? NSStringNonFragileABISection
2582                      : NSStringSection);
2583   Entry.setValue(GV);
2584 
2585   return GV;
2586 }
2587 
2588 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2589   if (ObjCFastEnumerationStateType.isNull()) {
2590     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2591     D->startDefinition();
2592 
2593     QualType FieldTypes[] = {
2594       Context.UnsignedLongTy,
2595       Context.getPointerType(Context.getObjCIdType()),
2596       Context.getPointerType(Context.UnsignedLongTy),
2597       Context.getConstantArrayType(Context.UnsignedLongTy,
2598                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2599     };
2600 
2601     for (size_t i = 0; i < 4; ++i) {
2602       FieldDecl *Field = FieldDecl::Create(Context,
2603                                            D,
2604                                            SourceLocation(),
2605                                            SourceLocation(), nullptr,
2606                                            FieldTypes[i], /*TInfo=*/nullptr,
2607                                            /*BitWidth=*/nullptr,
2608                                            /*Mutable=*/false,
2609                                            ICIS_NoInit);
2610       Field->setAccess(AS_public);
2611       D->addDecl(Field);
2612     }
2613 
2614     D->completeDefinition();
2615     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2616   }
2617 
2618   return ObjCFastEnumerationStateType;
2619 }
2620 
2621 llvm::Constant *
2622 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2623   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2624 
2625   // Don't emit it as the address of the string, emit the string data itself
2626   // as an inline array.
2627   if (E->getCharByteWidth() == 1) {
2628     SmallString<64> Str(E->getString());
2629 
2630     // Resize the string to the right size, which is indicated by its type.
2631     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2632     Str.resize(CAT->getSize().getZExtValue());
2633     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2634   }
2635 
2636   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2637   llvm::Type *ElemTy = AType->getElementType();
2638   unsigned NumElements = AType->getNumElements();
2639 
2640   // Wide strings have either 2-byte or 4-byte elements.
2641   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2642     SmallVector<uint16_t, 32> Elements;
2643     Elements.reserve(NumElements);
2644 
2645     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2646       Elements.push_back(E->getCodeUnit(i));
2647     Elements.resize(NumElements);
2648     return llvm::ConstantDataArray::get(VMContext, Elements);
2649   }
2650 
2651   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2652   SmallVector<uint32_t, 32> Elements;
2653   Elements.reserve(NumElements);
2654 
2655   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2656     Elements.push_back(E->getCodeUnit(i));
2657   Elements.resize(NumElements);
2658   return llvm::ConstantDataArray::get(VMContext, Elements);
2659 }
2660 
2661 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2662 /// constant array for the given string literal.
2663 llvm::Constant *
2664 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2665   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2666 
2667   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2668   llvm::GlobalVariable *GV = nullptr;
2669   if (!LangOpts.WritableStrings) {
2670     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2671     switch (S->getCharByteWidth()) {
2672     case 1:
2673       ConstantStringMap = &Constant1ByteStringMap;
2674       break;
2675     case 2:
2676       ConstantStringMap = &Constant2ByteStringMap;
2677       break;
2678     case 4:
2679       ConstantStringMap = &Constant4ByteStringMap;
2680       break;
2681     default:
2682       llvm_unreachable("unhandled byte width!");
2683     }
2684     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2685     GV = Entry->getValue();
2686   }
2687 
2688   if (!GV) {
2689     SmallString<256> MangledNameBuffer;
2690     StringRef GlobalVariableName;
2691     llvm::GlobalValue::LinkageTypes LT;
2692 
2693     // Mangle the string literal if the ABI allows for it.  However, we cannot
2694     // do this if  we are compiling with ASan or -fwritable-strings because they
2695     // rely on strings having normal linkage.
2696     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2697         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2698       llvm::raw_svector_ostream Out(MangledNameBuffer);
2699       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2700       Out.flush();
2701 
2702       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2703       GlobalVariableName = MangledNameBuffer;
2704     } else {
2705       LT = llvm::GlobalValue::PrivateLinkage;
2706       GlobalVariableName = ".str";
2707     }
2708 
2709     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2710     unsigned AddrSpace = 0;
2711     if (getLangOpts().OpenCL)
2712       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2713 
2714     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2715     GV = new llvm::GlobalVariable(
2716         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2717         GlobalVariableName, /*InsertBefore=*/nullptr,
2718         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2719     GV->setUnnamedAddr(true);
2720     if (Entry)
2721       Entry->setValue(GV);
2722   }
2723 
2724   if (Align.getQuantity() > GV->getAlignment())
2725     GV->setAlignment(Align.getQuantity());
2726 
2727   return GV;
2728 }
2729 
2730 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2731 /// array for the given ObjCEncodeExpr node.
2732 llvm::Constant *
2733 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2734   std::string Str;
2735   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2736 
2737   return GetAddrOfConstantCString(Str);
2738 }
2739 
2740 
2741 /// GenerateWritableString -- Creates storage for a string literal.
2742 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2743                                              bool constant,
2744                                              CodeGenModule &CGM,
2745                                              const char *GlobalName,
2746                                              unsigned Alignment) {
2747   // Create Constant for this string literal. Don't add a '\0'.
2748   llvm::Constant *C =
2749       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2750 
2751   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2752   unsigned AddrSpace = 0;
2753   if (CGM.getLangOpts().OpenCL)
2754     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2755 
2756   // Create a global variable for this string
2757   auto *GV = new llvm::GlobalVariable(
2758       CGM.getModule(), C->getType(), constant,
2759       llvm::GlobalValue::PrivateLinkage, C, GlobalName, nullptr,
2760       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2761   GV->setAlignment(Alignment);
2762   GV->setUnnamedAddr(true);
2763   return GV;
2764 }
2765 
2766 /// GetAddrOfConstantString - Returns a pointer to a character array
2767 /// containing the literal. This contents are exactly that of the
2768 /// given string, i.e. it will not be null terminated automatically;
2769 /// see GetAddrOfConstantCString. Note that whether the result is
2770 /// actually a pointer to an LLVM constant depends on
2771 /// Feature.WriteableStrings.
2772 ///
2773 /// The result has pointer to array type.
2774 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2775                                                        const char *GlobalName,
2776                                                        unsigned Alignment) {
2777   // Get the default prefix if a name wasn't specified.
2778   if (!GlobalName)
2779     GlobalName = ".str";
2780 
2781   if (Alignment == 0)
2782     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2783       .getQuantity();
2784 
2785   // Don't share any string literals if strings aren't constant.
2786   if (LangOpts.WritableStrings)
2787     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2788 
2789   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2790     Constant1ByteStringMap.GetOrCreateValue(Str);
2791 
2792   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2793     if (Alignment > GV->getAlignment()) {
2794       GV->setAlignment(Alignment);
2795     }
2796     return GV;
2797   }
2798 
2799   // Create a global variable for this.
2800   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2801                                                    Alignment);
2802   Entry.setValue(GV);
2803   return GV;
2804 }
2805 
2806 /// GetAddrOfConstantCString - Returns a pointer to a character
2807 /// array containing the literal and a terminating '\0'
2808 /// character. The result has pointer to array type.
2809 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2810                                                         const char *GlobalName,
2811                                                         unsigned Alignment) {
2812   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2813   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2814 }
2815 
2816 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2817     const MaterializeTemporaryExpr *E, const Expr *Init) {
2818   assert((E->getStorageDuration() == SD_Static ||
2819           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2820   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2821 
2822   // If we're not materializing a subobject of the temporary, keep the
2823   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2824   QualType MaterializedType = Init->getType();
2825   if (Init == E->GetTemporaryExpr())
2826     MaterializedType = E->getType();
2827 
2828   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2829   if (Slot)
2830     return Slot;
2831 
2832   // FIXME: If an externally-visible declaration extends multiple temporaries,
2833   // we need to give each temporary the same name in every translation unit (and
2834   // we also need to make the temporaries externally-visible).
2835   SmallString<256> Name;
2836   llvm::raw_svector_ostream Out(Name);
2837   getCXXABI().getMangleContext().mangleReferenceTemporary(
2838       VD, E->getManglingNumber(), Out);
2839   Out.flush();
2840 
2841   APValue *Value = nullptr;
2842   if (E->getStorageDuration() == SD_Static) {
2843     // We might have a cached constant initializer for this temporary. Note
2844     // that this might have a different value from the value computed by
2845     // evaluating the initializer if the surrounding constant expression
2846     // modifies the temporary.
2847     Value = getContext().getMaterializedTemporaryValue(E, false);
2848     if (Value && Value->isUninit())
2849       Value = nullptr;
2850   }
2851 
2852   // Try evaluating it now, it might have a constant initializer.
2853   Expr::EvalResult EvalResult;
2854   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2855       !EvalResult.hasSideEffects())
2856     Value = &EvalResult.Val;
2857 
2858   llvm::Constant *InitialValue = nullptr;
2859   bool Constant = false;
2860   llvm::Type *Type;
2861   if (Value) {
2862     // The temporary has a constant initializer, use it.
2863     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2864     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2865     Type = InitialValue->getType();
2866   } else {
2867     // No initializer, the initialization will be provided when we
2868     // initialize the declaration which performed lifetime extension.
2869     Type = getTypes().ConvertTypeForMem(MaterializedType);
2870   }
2871 
2872   // Create a global variable for this lifetime-extended temporary.
2873   llvm::GlobalValue::LinkageTypes Linkage =
2874       getLLVMLinkageVarDefinition(VD, Constant);
2875   // There is no need for this temporary to have global linkage if the global
2876   // variable has external linkage.
2877   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2878     Linkage = llvm::GlobalVariable::PrivateLinkage;
2879   unsigned AddrSpace = GetGlobalVarAddressSpace(
2880       VD, getContext().getTargetAddressSpace(MaterializedType));
2881   auto *GV = new llvm::GlobalVariable(
2882       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2883       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2884       AddrSpace);
2885   setGlobalVisibility(GV, VD);
2886   GV->setAlignment(
2887       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2888   if (VD->getTLSKind())
2889     setTLSMode(GV, *VD);
2890   Slot = GV;
2891   return GV;
2892 }
2893 
2894 /// EmitObjCPropertyImplementations - Emit information for synthesized
2895 /// properties for an implementation.
2896 void CodeGenModule::EmitObjCPropertyImplementations(const
2897                                                     ObjCImplementationDecl *D) {
2898   for (const auto *PID : D->property_impls()) {
2899     // Dynamic is just for type-checking.
2900     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2901       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2902 
2903       // Determine which methods need to be implemented, some may have
2904       // been overridden. Note that ::isPropertyAccessor is not the method
2905       // we want, that just indicates if the decl came from a
2906       // property. What we want to know is if the method is defined in
2907       // this implementation.
2908       if (!D->getInstanceMethod(PD->getGetterName()))
2909         CodeGenFunction(*this).GenerateObjCGetter(
2910                                  const_cast<ObjCImplementationDecl *>(D), PID);
2911       if (!PD->isReadOnly() &&
2912           !D->getInstanceMethod(PD->getSetterName()))
2913         CodeGenFunction(*this).GenerateObjCSetter(
2914                                  const_cast<ObjCImplementationDecl *>(D), PID);
2915     }
2916   }
2917 }
2918 
2919 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2920   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2921   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2922        ivar; ivar = ivar->getNextIvar())
2923     if (ivar->getType().isDestructedType())
2924       return true;
2925 
2926   return false;
2927 }
2928 
2929 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2930 /// for an implementation.
2931 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2932   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2933   if (needsDestructMethod(D)) {
2934     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2935     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2936     ObjCMethodDecl *DTORMethod =
2937       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2938                              cxxSelector, getContext().VoidTy, nullptr, D,
2939                              /*isInstance=*/true, /*isVariadic=*/false,
2940                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2941                              /*isDefined=*/false, ObjCMethodDecl::Required);
2942     D->addInstanceMethod(DTORMethod);
2943     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2944     D->setHasDestructors(true);
2945   }
2946 
2947   // If the implementation doesn't have any ivar initializers, we don't need
2948   // a .cxx_construct.
2949   if (D->getNumIvarInitializers() == 0)
2950     return;
2951 
2952   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2953   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2954   // The constructor returns 'self'.
2955   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2956                                                 D->getLocation(),
2957                                                 D->getLocation(),
2958                                                 cxxSelector,
2959                                                 getContext().getObjCIdType(),
2960                                                 nullptr, D, /*isInstance=*/true,
2961                                                 /*isVariadic=*/false,
2962                                                 /*isPropertyAccessor=*/true,
2963                                                 /*isImplicitlyDeclared=*/true,
2964                                                 /*isDefined=*/false,
2965                                                 ObjCMethodDecl::Required);
2966   D->addInstanceMethod(CTORMethod);
2967   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2968   D->setHasNonZeroConstructors(true);
2969 }
2970 
2971 /// EmitNamespace - Emit all declarations in a namespace.
2972 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2973   for (auto *I : ND->decls()) {
2974     if (const auto *VD = dyn_cast<VarDecl>(I))
2975       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2976           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2977         continue;
2978     EmitTopLevelDecl(I);
2979   }
2980 }
2981 
2982 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2983 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2984   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2985       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2986     ErrorUnsupported(LSD, "linkage spec");
2987     return;
2988   }
2989 
2990   for (auto *I : LSD->decls()) {
2991     // Meta-data for ObjC class includes references to implemented methods.
2992     // Generate class's method definitions first.
2993     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2994       for (auto *M : OID->methods())
2995         EmitTopLevelDecl(M);
2996     }
2997     EmitTopLevelDecl(I);
2998   }
2999 }
3000 
3001 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3002 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3003   // Ignore dependent declarations.
3004   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3005     return;
3006 
3007   switch (D->getKind()) {
3008   case Decl::CXXConversion:
3009   case Decl::CXXMethod:
3010   case Decl::Function:
3011     // Skip function templates
3012     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3013         cast<FunctionDecl>(D)->isLateTemplateParsed())
3014       return;
3015 
3016     EmitGlobal(cast<FunctionDecl>(D));
3017     break;
3018 
3019   case Decl::Var:
3020     // Skip variable templates
3021     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3022       return;
3023   case Decl::VarTemplateSpecialization:
3024     EmitGlobal(cast<VarDecl>(D));
3025     break;
3026 
3027   // Indirect fields from global anonymous structs and unions can be
3028   // ignored; only the actual variable requires IR gen support.
3029   case Decl::IndirectField:
3030     break;
3031 
3032   // C++ Decls
3033   case Decl::Namespace:
3034     EmitNamespace(cast<NamespaceDecl>(D));
3035     break;
3036     // No code generation needed.
3037   case Decl::UsingShadow:
3038   case Decl::ClassTemplate:
3039   case Decl::VarTemplate:
3040   case Decl::VarTemplatePartialSpecialization:
3041   case Decl::FunctionTemplate:
3042   case Decl::TypeAliasTemplate:
3043   case Decl::Block:
3044   case Decl::Empty:
3045     break;
3046   case Decl::Using:          // using X; [C++]
3047     if (CGDebugInfo *DI = getModuleDebugInfo())
3048         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3049     return;
3050   case Decl::NamespaceAlias:
3051     if (CGDebugInfo *DI = getModuleDebugInfo())
3052         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3053     return;
3054   case Decl::UsingDirective: // using namespace X; [C++]
3055     if (CGDebugInfo *DI = getModuleDebugInfo())
3056       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3057     return;
3058   case Decl::CXXConstructor:
3059     // Skip function templates
3060     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3061         cast<FunctionDecl>(D)->isLateTemplateParsed())
3062       return;
3063 
3064     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3065     break;
3066   case Decl::CXXDestructor:
3067     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3068       return;
3069     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3070     break;
3071 
3072   case Decl::StaticAssert:
3073     // Nothing to do.
3074     break;
3075 
3076   // Objective-C Decls
3077 
3078   // Forward declarations, no (immediate) code generation.
3079   case Decl::ObjCInterface:
3080   case Decl::ObjCCategory:
3081     break;
3082 
3083   case Decl::ObjCProtocol: {
3084     auto *Proto = cast<ObjCProtocolDecl>(D);
3085     if (Proto->isThisDeclarationADefinition())
3086       ObjCRuntime->GenerateProtocol(Proto);
3087     break;
3088   }
3089 
3090   case Decl::ObjCCategoryImpl:
3091     // Categories have properties but don't support synthesize so we
3092     // can ignore them here.
3093     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3094     break;
3095 
3096   case Decl::ObjCImplementation: {
3097     auto *OMD = cast<ObjCImplementationDecl>(D);
3098     EmitObjCPropertyImplementations(OMD);
3099     EmitObjCIvarInitializations(OMD);
3100     ObjCRuntime->GenerateClass(OMD);
3101     // Emit global variable debug information.
3102     if (CGDebugInfo *DI = getModuleDebugInfo())
3103       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3104         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3105             OMD->getClassInterface()), OMD->getLocation());
3106     break;
3107   }
3108   case Decl::ObjCMethod: {
3109     auto *OMD = cast<ObjCMethodDecl>(D);
3110     // If this is not a prototype, emit the body.
3111     if (OMD->getBody())
3112       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3113     break;
3114   }
3115   case Decl::ObjCCompatibleAlias:
3116     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3117     break;
3118 
3119   case Decl::LinkageSpec:
3120     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3121     break;
3122 
3123   case Decl::FileScopeAsm: {
3124     auto *AD = cast<FileScopeAsmDecl>(D);
3125     StringRef AsmString = AD->getAsmString()->getString();
3126 
3127     const std::string &S = getModule().getModuleInlineAsm();
3128     if (S.empty())
3129       getModule().setModuleInlineAsm(AsmString);
3130     else if (S.end()[-1] == '\n')
3131       getModule().setModuleInlineAsm(S + AsmString.str());
3132     else
3133       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3134     break;
3135   }
3136 
3137   case Decl::Import: {
3138     auto *Import = cast<ImportDecl>(D);
3139 
3140     // Ignore import declarations that come from imported modules.
3141     if (clang::Module *Owner = Import->getOwningModule()) {
3142       if (getLangOpts().CurrentModule.empty() ||
3143           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3144         break;
3145     }
3146 
3147     ImportedModules.insert(Import->getImportedModule());
3148     break;
3149   }
3150 
3151   case Decl::ClassTemplateSpecialization: {
3152     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3153     if (DebugInfo &&
3154         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3155       DebugInfo->completeTemplateDefinition(*Spec);
3156   }
3157 
3158   default:
3159     // Make sure we handled everything we should, every other kind is a
3160     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3161     // function. Need to recode Decl::Kind to do that easily.
3162     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3163   }
3164 }
3165 
3166 /// Turns the given pointer into a constant.
3167 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3168                                           const void *Ptr) {
3169   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3170   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3171   return llvm::ConstantInt::get(i64, PtrInt);
3172 }
3173 
3174 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3175                                    llvm::NamedMDNode *&GlobalMetadata,
3176                                    GlobalDecl D,
3177                                    llvm::GlobalValue *Addr) {
3178   if (!GlobalMetadata)
3179     GlobalMetadata =
3180       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3181 
3182   // TODO: should we report variant information for ctors/dtors?
3183   llvm::Value *Ops[] = {
3184     Addr,
3185     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3186   };
3187   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3188 }
3189 
3190 /// For each function which is declared within an extern "C" region and marked
3191 /// as 'used', but has internal linkage, create an alias from the unmangled
3192 /// name to the mangled name if possible. People expect to be able to refer
3193 /// to such functions with an unmangled name from inline assembly within the
3194 /// same translation unit.
3195 void CodeGenModule::EmitStaticExternCAliases() {
3196   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3197                                   E = StaticExternCValues.end();
3198        I != E; ++I) {
3199     IdentifierInfo *Name = I->first;
3200     llvm::GlobalValue *Val = I->second;
3201     if (Val && !getModule().getNamedValue(Name->getName()))
3202       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(),
3203                                               cast<llvm::GlobalObject>(Val)));
3204   }
3205 }
3206 
3207 /// Emits metadata nodes associating all the global values in the
3208 /// current module with the Decls they came from.  This is useful for
3209 /// projects using IR gen as a subroutine.
3210 ///
3211 /// Since there's currently no way to associate an MDNode directly
3212 /// with an llvm::GlobalValue, we create a global named metadata
3213 /// with the name 'clang.global.decl.ptrs'.
3214 void CodeGenModule::EmitDeclMetadata() {
3215   llvm::NamedMDNode *GlobalMetadata = nullptr;
3216 
3217   // StaticLocalDeclMap
3218   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3219          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3220        I != E; ++I) {
3221     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3222     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3223   }
3224 }
3225 
3226 /// Emits metadata nodes for all the local variables in the current
3227 /// function.
3228 void CodeGenFunction::EmitDeclMetadata() {
3229   if (LocalDeclMap.empty()) return;
3230 
3231   llvm::LLVMContext &Context = getLLVMContext();
3232 
3233   // Find the unique metadata ID for this name.
3234   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3235 
3236   llvm::NamedMDNode *GlobalMetadata = nullptr;
3237 
3238   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3239          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3240     const Decl *D = I->first;
3241     llvm::Value *Addr = I->second;
3242 
3243     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3244       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3245       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3246     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3247       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3248       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3249     }
3250   }
3251 }
3252 
3253 void CodeGenModule::EmitVersionIdentMetadata() {
3254   llvm::NamedMDNode *IdentMetadata =
3255     TheModule.getOrInsertNamedMetadata("llvm.ident");
3256   std::string Version = getClangFullVersion();
3257   llvm::LLVMContext &Ctx = TheModule.getContext();
3258 
3259   llvm::Value *IdentNode[] = {
3260     llvm::MDString::get(Ctx, Version)
3261   };
3262   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3263 }
3264 
3265 void CodeGenModule::EmitCoverageFile() {
3266   if (!getCodeGenOpts().CoverageFile.empty()) {
3267     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3268       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3269       llvm::LLVMContext &Ctx = TheModule.getContext();
3270       llvm::MDString *CoverageFile =
3271           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3272       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3273         llvm::MDNode *CU = CUNode->getOperand(i);
3274         llvm::Value *node[] = { CoverageFile, CU };
3275         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3276         GCov->addOperand(N);
3277       }
3278     }
3279   }
3280 }
3281 
3282 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3283                                                      QualType GuidType) {
3284   // Sema has checked that all uuid strings are of the form
3285   // "12345678-1234-1234-1234-1234567890ab".
3286   assert(Uuid.size() == 36);
3287   for (unsigned i = 0; i < 36; ++i) {
3288     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3289     else                                         assert(isHexDigit(Uuid[i]));
3290   }
3291 
3292   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3293 
3294   llvm::Constant *Field3[8];
3295   for (unsigned Idx = 0; Idx < 8; ++Idx)
3296     Field3[Idx] = llvm::ConstantInt::get(
3297         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3298 
3299   llvm::Constant *Fields[4] = {
3300     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3301     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3302     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3303     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3304   };
3305 
3306   return llvm::ConstantStruct::getAnon(Fields);
3307 }
3308