1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::GenericMIPS: 69 case TargetCXXABI::GenericItanium: 70 case TargetCXXABI::WebAssembly: 71 return CreateItaniumCXXABI(CGM); 72 case TargetCXXABI::Microsoft: 73 return CreateMicrosoftCXXABI(CGM); 74 } 75 76 llvm_unreachable("invalid C++ ABI kind"); 77 } 78 79 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 80 const PreprocessorOptions &PPO, 81 const CodeGenOptions &CGO, llvm::Module &M, 82 DiagnosticsEngine &diags, 83 CoverageSourceInfo *CoverageInfo) 84 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 85 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 86 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 87 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 88 Types(*this), VTables(*this), ObjCRuntime(nullptr), 89 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 90 DebugInfo(nullptr), ARCData(nullptr), 91 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 92 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 93 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 94 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 95 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 96 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 97 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 IntAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 113 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 114 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 115 Int8PtrTy = Int8Ty->getPointerTo(0); 116 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 117 118 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 119 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 120 121 if (LangOpts.ObjC1) 122 createObjCRuntime(); 123 if (LangOpts.OpenCL) 124 createOpenCLRuntime(); 125 if (LangOpts.OpenMP) 126 createOpenMPRuntime(); 127 if (LangOpts.CUDA) 128 createCUDARuntime(); 129 130 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 131 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 132 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 133 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 134 getCXXABI().getMangleContext()); 135 136 // If debug info or coverage generation is enabled, create the CGDebugInfo 137 // object. 138 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 139 CodeGenOpts.EmitGcovArcs || 140 CodeGenOpts.EmitGcovNotes) 141 DebugInfo = new CGDebugInfo(*this); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjCAutoRefCount) 146 ARCData = new ARCEntrypoints(); 147 RRData = new RREntrypoints(); 148 149 if (!CodeGenOpts.InstrProfileInput.empty()) { 150 auto ReaderOrErr = 151 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 152 if (std::error_code EC = ReaderOrErr.getError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 156 << EC.message(); 157 } else 158 PGOReader = std::move(ReaderOrErr.get()); 159 } 160 161 // If coverage mapping generation is enabled, create the 162 // CoverageMappingModuleGen object. 163 if (CodeGenOpts.CoverageMapping) 164 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 165 } 166 167 CodeGenModule::~CodeGenModule() { 168 delete ObjCRuntime; 169 delete OpenCLRuntime; 170 delete OpenMPRuntime; 171 delete CUDARuntime; 172 delete TheTargetCodeGenInfo; 173 delete TBAA; 174 delete DebugInfo; 175 delete ARCData; 176 delete RRData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 ObjCRuntime = CreateMacObjCRuntime(*this); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime = new CGOpenCLRuntime(*this); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 OpenMPRuntime = new CGOpenMPRuntime(*this); 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime = CreateNVCUDARuntime(*this); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 239 } 240 OldF->eraseFromParent(); 241 } 242 } 243 244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 245 GlobalValReplacements.push_back(std::make_pair(GV, C)); 246 } 247 248 void CodeGenModule::applyGlobalValReplacements() { 249 for (auto &I : GlobalValReplacements) { 250 llvm::GlobalValue *GV = I.first; 251 llvm::Constant *C = I.second; 252 253 GV->replaceAllUsesWith(C); 254 GV->eraseFromParent(); 255 } 256 } 257 258 // This is only used in aliases that we created and we know they have a 259 // linear structure. 260 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 261 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 262 const llvm::Constant *C = &GA; 263 for (;;) { 264 C = C->stripPointerCasts(); 265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 266 return GO; 267 // stripPointerCasts will not walk over weak aliases. 268 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 269 if (!GA2) 270 return nullptr; 271 if (!Visited.insert(GA2).second) 272 return nullptr; 273 C = GA2->getAliasee(); 274 } 275 } 276 277 void CodeGenModule::checkAliases() { 278 // Check if the constructed aliases are well formed. It is really unfortunate 279 // that we have to do this in CodeGen, but we only construct mangled names 280 // and aliases during codegen. 281 bool Error = false; 282 DiagnosticsEngine &Diags = getDiags(); 283 for (const GlobalDecl &GD : Aliases) { 284 const auto *D = cast<ValueDecl>(GD.getDecl()); 285 const AliasAttr *AA = D->getAttr<AliasAttr>(); 286 StringRef MangledName = getMangledName(GD); 287 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 288 auto *Alias = cast<llvm::GlobalAlias>(Entry); 289 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 290 if (!GV) { 291 Error = true; 292 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 293 } else if (GV->isDeclaration()) { 294 Error = true; 295 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 296 } 297 298 llvm::Constant *Aliasee = Alias->getAliasee(); 299 llvm::GlobalValue *AliaseeGV; 300 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 301 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 302 else 303 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 304 305 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 306 StringRef AliasSection = SA->getName(); 307 if (AliasSection != AliaseeGV->getSection()) 308 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 309 << AliasSection; 310 } 311 312 // We have to handle alias to weak aliases in here. LLVM itself disallows 313 // this since the object semantics would not match the IL one. For 314 // compatibility with gcc we implement it by just pointing the alias 315 // to its aliasee's aliasee. We also warn, since the user is probably 316 // expecting the link to be weak. 317 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 318 if (GA->mayBeOverridden()) { 319 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 320 << GV->getName() << GA->getName(); 321 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 322 GA->getAliasee(), Alias->getType()); 323 Alias->setAliasee(Aliasee); 324 } 325 } 326 } 327 if (!Error) 328 return; 329 330 for (const GlobalDecl &GD : Aliases) { 331 StringRef MangledName = getMangledName(GD); 332 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 333 auto *Alias = cast<llvm::GlobalAlias>(Entry); 334 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 335 Alias->eraseFromParent(); 336 } 337 } 338 339 void CodeGenModule::clear() { 340 DeferredDeclsToEmit.clear(); 341 if (OpenMPRuntime) 342 OpenMPRuntime->clear(); 343 } 344 345 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 346 StringRef MainFile) { 347 if (!hasDiagnostics()) 348 return; 349 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 350 if (MainFile.empty()) 351 MainFile = "<stdin>"; 352 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 353 } else 354 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 355 << Mismatched; 356 } 357 358 void CodeGenModule::Release() { 359 EmitDeferred(); 360 applyGlobalValReplacements(); 361 applyReplacements(); 362 checkAliases(); 363 EmitCXXGlobalInitFunc(); 364 EmitCXXGlobalDtorFunc(); 365 EmitCXXThreadLocalInitFunc(); 366 if (ObjCRuntime) 367 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 368 AddGlobalCtor(ObjCInitFunction); 369 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 370 CUDARuntime) { 371 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 372 AddGlobalCtor(CudaCtorFunction); 373 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 374 AddGlobalDtor(CudaDtorFunction); 375 } 376 if (PGOReader && PGOStats.hasDiagnostics()) 377 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 378 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 379 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 380 EmitGlobalAnnotations(); 381 EmitStaticExternCAliases(); 382 EmitDeferredUnusedCoverageMappings(); 383 if (CoverageMapping) 384 CoverageMapping->emit(); 385 emitLLVMUsed(); 386 387 if (CodeGenOpts.Autolink && 388 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 389 EmitModuleLinkOptions(); 390 } 391 if (CodeGenOpts.DwarfVersion) { 392 // We actually want the latest version when there are conflicts. 393 // We can change from Warning to Latest if such mode is supported. 394 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 395 CodeGenOpts.DwarfVersion); 396 } 397 if (CodeGenOpts.EmitCodeView) { 398 // Indicate that we want CodeView in the metadata. 399 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 400 } 401 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 402 // We don't support LTO with 2 with different StrictVTablePointers 403 // FIXME: we could support it by stripping all the information introduced 404 // by StrictVTablePointers. 405 406 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 407 408 llvm::Metadata *Ops[2] = { 409 llvm::MDString::get(VMContext, "StrictVTablePointers"), 410 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 411 llvm::Type::getInt32Ty(VMContext), 1))}; 412 413 getModule().addModuleFlag(llvm::Module::Require, 414 "StrictVTablePointersRequirement", 415 llvm::MDNode::get(VMContext, Ops)); 416 } 417 if (DebugInfo) 418 // We support a single version in the linked module. The LLVM 419 // parser will drop debug info with a different version number 420 // (and warn about it, too). 421 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 422 llvm::DEBUG_METADATA_VERSION); 423 424 // We need to record the widths of enums and wchar_t, so that we can generate 425 // the correct build attributes in the ARM backend. 426 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 427 if ( Arch == llvm::Triple::arm 428 || Arch == llvm::Triple::armeb 429 || Arch == llvm::Triple::thumb 430 || Arch == llvm::Triple::thumbeb) { 431 // Width of wchar_t in bytes 432 uint64_t WCharWidth = 433 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 434 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 435 436 // The minimum width of an enum in bytes 437 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 438 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 439 } 440 441 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 442 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 443 switch (PLevel) { 444 case 0: break; 445 case 1: PL = llvm::PICLevel::Small; break; 446 case 2: PL = llvm::PICLevel::Large; break; 447 default: llvm_unreachable("Invalid PIC Level"); 448 } 449 450 getModule().setPICLevel(PL); 451 } 452 453 SimplifyPersonality(); 454 455 if (getCodeGenOpts().EmitDeclMetadata) 456 EmitDeclMetadata(); 457 458 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 459 EmitCoverageFile(); 460 461 if (DebugInfo) 462 DebugInfo->finalize(); 463 464 EmitVersionIdentMetadata(); 465 466 EmitTargetMetadata(); 467 } 468 469 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 470 // Make sure that this type is translated. 471 Types.UpdateCompletedType(TD); 472 } 473 474 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 475 if (!TBAA) 476 return nullptr; 477 return TBAA->getTBAAInfo(QTy); 478 } 479 480 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 481 if (!TBAA) 482 return nullptr; 483 return TBAA->getTBAAInfoForVTablePtr(); 484 } 485 486 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 487 if (!TBAA) 488 return nullptr; 489 return TBAA->getTBAAStructInfo(QTy); 490 } 491 492 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 493 if (!TBAA) 494 return nullptr; 495 return TBAA->getTBAAStructTypeInfo(QTy); 496 } 497 498 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 499 llvm::MDNode *AccessN, 500 uint64_t O) { 501 if (!TBAA) 502 return nullptr; 503 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 504 } 505 506 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 507 /// and struct-path aware TBAA, the tag has the same format: 508 /// base type, access type and offset. 509 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 510 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 511 llvm::MDNode *TBAAInfo, 512 bool ConvertTypeToTag) { 513 if (ConvertTypeToTag && TBAA) 514 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 515 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 516 else 517 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 518 } 519 520 void CodeGenModule::DecorateInstructionWithInvariantGroup( 521 llvm::Instruction *I, const CXXRecordDecl *RD) { 522 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 523 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 524 // Check if we have to wrap MDString in MDNode. 525 if (!MetaDataNode) 526 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 527 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 528 } 529 530 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 531 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 532 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 533 } 534 535 /// ErrorUnsupported - Print out an error that codegen doesn't support the 536 /// specified stmt yet. 537 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 538 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 539 "cannot compile this %0 yet"); 540 std::string Msg = Type; 541 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 542 << Msg << S->getSourceRange(); 543 } 544 545 /// ErrorUnsupported - Print out an error that codegen doesn't support the 546 /// specified decl yet. 547 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 548 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 549 "cannot compile this %0 yet"); 550 std::string Msg = Type; 551 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 552 } 553 554 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 555 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 556 } 557 558 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 559 const NamedDecl *D) const { 560 // Internal definitions always have default visibility. 561 if (GV->hasLocalLinkage()) { 562 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 563 return; 564 } 565 566 // Set visibility for definitions. 567 LinkageInfo LV = D->getLinkageAndVisibility(); 568 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 569 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 570 } 571 572 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 573 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 574 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 575 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 576 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 577 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 578 } 579 580 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 581 CodeGenOptions::TLSModel M) { 582 switch (M) { 583 case CodeGenOptions::GeneralDynamicTLSModel: 584 return llvm::GlobalVariable::GeneralDynamicTLSModel; 585 case CodeGenOptions::LocalDynamicTLSModel: 586 return llvm::GlobalVariable::LocalDynamicTLSModel; 587 case CodeGenOptions::InitialExecTLSModel: 588 return llvm::GlobalVariable::InitialExecTLSModel; 589 case CodeGenOptions::LocalExecTLSModel: 590 return llvm::GlobalVariable::LocalExecTLSModel; 591 } 592 llvm_unreachable("Invalid TLS model!"); 593 } 594 595 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 596 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 597 598 llvm::GlobalValue::ThreadLocalMode TLM; 599 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 600 601 // Override the TLS model if it is explicitly specified. 602 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 603 TLM = GetLLVMTLSModel(Attr->getModel()); 604 } 605 606 GV->setThreadLocalMode(TLM); 607 } 608 609 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 610 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 611 if (!FoundStr.empty()) 612 return FoundStr; 613 614 const auto *ND = cast<NamedDecl>(GD.getDecl()); 615 SmallString<256> Buffer; 616 StringRef Str; 617 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 618 llvm::raw_svector_ostream Out(Buffer); 619 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 620 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 621 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 622 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 623 else 624 getCXXABI().getMangleContext().mangleName(ND, Out); 625 Str = Out.str(); 626 } else { 627 IdentifierInfo *II = ND->getIdentifier(); 628 assert(II && "Attempt to mangle unnamed decl."); 629 Str = II->getName(); 630 } 631 632 // Keep the first result in the case of a mangling collision. 633 auto Result = Manglings.insert(std::make_pair(Str, GD)); 634 return FoundStr = Result.first->first(); 635 } 636 637 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 638 const BlockDecl *BD) { 639 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 640 const Decl *D = GD.getDecl(); 641 642 SmallString<256> Buffer; 643 llvm::raw_svector_ostream Out(Buffer); 644 if (!D) 645 MangleCtx.mangleGlobalBlock(BD, 646 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 647 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 648 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 649 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 650 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 651 else 652 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 653 654 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 655 return Result.first->first(); 656 } 657 658 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 659 return getModule().getNamedValue(Name); 660 } 661 662 /// AddGlobalCtor - Add a function to the list that will be called before 663 /// main() runs. 664 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 665 llvm::Constant *AssociatedData) { 666 // FIXME: Type coercion of void()* types. 667 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 668 } 669 670 /// AddGlobalDtor - Add a function to the list that will be called 671 /// when the module is unloaded. 672 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 673 // FIXME: Type coercion of void()* types. 674 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 675 } 676 677 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 678 // Ctor function type is void()*. 679 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 680 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 681 682 // Get the type of a ctor entry, { i32, void ()*, i8* }. 683 llvm::StructType *CtorStructTy = llvm::StructType::get( 684 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 685 686 // Construct the constructor and destructor arrays. 687 SmallVector<llvm::Constant *, 8> Ctors; 688 for (const auto &I : Fns) { 689 llvm::Constant *S[] = { 690 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 691 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 692 (I.AssociatedData 693 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 694 : llvm::Constant::getNullValue(VoidPtrTy))}; 695 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 696 } 697 698 if (!Ctors.empty()) { 699 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 700 new llvm::GlobalVariable(TheModule, AT, false, 701 llvm::GlobalValue::AppendingLinkage, 702 llvm::ConstantArray::get(AT, Ctors), 703 GlobalName); 704 } 705 } 706 707 llvm::GlobalValue::LinkageTypes 708 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 709 const auto *D = cast<FunctionDecl>(GD.getDecl()); 710 711 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 712 713 if (isa<CXXDestructorDecl>(D) && 714 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 715 GD.getDtorType())) { 716 // Destructor variants in the Microsoft C++ ABI are always internal or 717 // linkonce_odr thunks emitted on an as-needed basis. 718 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 719 : llvm::GlobalValue::LinkOnceODRLinkage; 720 } 721 722 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 723 } 724 725 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 726 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 727 728 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 729 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 730 // Don't dllexport/import destructor thunks. 731 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 732 return; 733 } 734 } 735 736 if (FD->hasAttr<DLLImportAttr>()) 737 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 738 else if (FD->hasAttr<DLLExportAttr>()) 739 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 740 else 741 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 742 } 743 744 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 745 llvm::Function *F) { 746 setNonAliasAttributes(D, F); 747 } 748 749 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 750 const CGFunctionInfo &Info, 751 llvm::Function *F) { 752 unsigned CallingConv; 753 AttributeListType AttributeList; 754 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 755 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 756 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 757 } 758 759 /// Determines whether the language options require us to model 760 /// unwind exceptions. We treat -fexceptions as mandating this 761 /// except under the fragile ObjC ABI with only ObjC exceptions 762 /// enabled. This means, for example, that C with -fexceptions 763 /// enables this. 764 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 765 // If exceptions are completely disabled, obviously this is false. 766 if (!LangOpts.Exceptions) return false; 767 768 // If C++ exceptions are enabled, this is true. 769 if (LangOpts.CXXExceptions) return true; 770 771 // If ObjC exceptions are enabled, this depends on the ABI. 772 if (LangOpts.ObjCExceptions) { 773 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 774 } 775 776 return true; 777 } 778 779 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 780 llvm::Function *F) { 781 llvm::AttrBuilder B; 782 783 if (CodeGenOpts.UnwindTables) 784 B.addAttribute(llvm::Attribute::UWTable); 785 786 if (!hasUnwindExceptions(LangOpts)) 787 B.addAttribute(llvm::Attribute::NoUnwind); 788 789 if (D->hasAttr<NakedAttr>()) { 790 // Naked implies noinline: we should not be inlining such functions. 791 B.addAttribute(llvm::Attribute::Naked); 792 B.addAttribute(llvm::Attribute::NoInline); 793 } else if (D->hasAttr<NoDuplicateAttr>()) { 794 B.addAttribute(llvm::Attribute::NoDuplicate); 795 } else if (D->hasAttr<NoInlineAttr>()) { 796 B.addAttribute(llvm::Attribute::NoInline); 797 } else if (D->hasAttr<AlwaysInlineAttr>() && 798 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 799 llvm::Attribute::NoInline)) { 800 // (noinline wins over always_inline, and we can't specify both in IR) 801 B.addAttribute(llvm::Attribute::AlwaysInline); 802 } 803 804 if (D->hasAttr<ColdAttr>()) { 805 if (!D->hasAttr<OptimizeNoneAttr>()) 806 B.addAttribute(llvm::Attribute::OptimizeForSize); 807 B.addAttribute(llvm::Attribute::Cold); 808 } 809 810 if (D->hasAttr<MinSizeAttr>()) 811 B.addAttribute(llvm::Attribute::MinSize); 812 813 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 814 B.addAttribute(llvm::Attribute::StackProtect); 815 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 816 B.addAttribute(llvm::Attribute::StackProtectStrong); 817 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 818 B.addAttribute(llvm::Attribute::StackProtectReq); 819 820 F->addAttributes(llvm::AttributeSet::FunctionIndex, 821 llvm::AttributeSet::get( 822 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 823 824 if (D->hasAttr<OptimizeNoneAttr>()) { 825 // OptimizeNone implies noinline; we should not be inlining such functions. 826 F->addFnAttr(llvm::Attribute::OptimizeNone); 827 F->addFnAttr(llvm::Attribute::NoInline); 828 829 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 830 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 831 F->removeFnAttr(llvm::Attribute::MinSize); 832 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 833 "OptimizeNone and AlwaysInline on same function!"); 834 835 // Attribute 'inlinehint' has no effect on 'optnone' functions. 836 // Explicitly remove it from the set of function attributes. 837 F->removeFnAttr(llvm::Attribute::InlineHint); 838 } 839 840 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 841 F->setUnnamedAddr(true); 842 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 843 if (MD->isVirtual()) 844 F->setUnnamedAddr(true); 845 846 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 847 if (alignment) 848 F->setAlignment(alignment); 849 850 // Some C++ ABIs require 2-byte alignment for member functions, in order to 851 // reserve a bit for differentiating between virtual and non-virtual member 852 // functions. If the current target's C++ ABI requires this and this is a 853 // member function, set its alignment accordingly. 854 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 855 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 856 F->setAlignment(2); 857 } 858 } 859 860 void CodeGenModule::SetCommonAttributes(const Decl *D, 861 llvm::GlobalValue *GV) { 862 if (const auto *ND = dyn_cast<NamedDecl>(D)) 863 setGlobalVisibility(GV, ND); 864 else 865 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 866 867 if (D->hasAttr<UsedAttr>()) 868 addUsedGlobal(GV); 869 } 870 871 void CodeGenModule::setAliasAttributes(const Decl *D, 872 llvm::GlobalValue *GV) { 873 SetCommonAttributes(D, GV); 874 875 // Process the dllexport attribute based on whether the original definition 876 // (not necessarily the aliasee) was exported. 877 if (D->hasAttr<DLLExportAttr>()) 878 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 879 } 880 881 void CodeGenModule::setNonAliasAttributes(const Decl *D, 882 llvm::GlobalObject *GO) { 883 SetCommonAttributes(D, GO); 884 885 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 886 GO->setSection(SA->getName()); 887 888 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 889 } 890 891 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 892 llvm::Function *F, 893 const CGFunctionInfo &FI) { 894 SetLLVMFunctionAttributes(D, FI, F); 895 SetLLVMFunctionAttributesForDefinition(D, F); 896 897 F->setLinkage(llvm::Function::InternalLinkage); 898 899 setNonAliasAttributes(D, F); 900 } 901 902 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 903 const NamedDecl *ND) { 904 // Set linkage and visibility in case we never see a definition. 905 LinkageInfo LV = ND->getLinkageAndVisibility(); 906 if (LV.getLinkage() != ExternalLinkage) { 907 // Don't set internal linkage on declarations. 908 } else { 909 if (ND->hasAttr<DLLImportAttr>()) { 910 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 911 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 912 } else if (ND->hasAttr<DLLExportAttr>()) { 913 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 914 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 915 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 916 // "extern_weak" is overloaded in LLVM; we probably should have 917 // separate linkage types for this. 918 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 919 } 920 921 // Set visibility on a declaration only if it's explicit. 922 if (LV.isVisibilityExplicit()) 923 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 924 } 925 } 926 927 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 928 bool IsIncompleteFunction, 929 bool IsThunk) { 930 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 931 // If this is an intrinsic function, set the function's attributes 932 // to the intrinsic's attributes. 933 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 934 return; 935 } 936 937 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 938 939 if (!IsIncompleteFunction) 940 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 941 942 // Add the Returned attribute for "this", except for iOS 5 and earlier 943 // where substantial code, including the libstdc++ dylib, was compiled with 944 // GCC and does not actually return "this". 945 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 946 !(getTarget().getTriple().isiOS() && 947 getTarget().getTriple().isOSVersionLT(6))) { 948 assert(!F->arg_empty() && 949 F->arg_begin()->getType() 950 ->canLosslesslyBitCastTo(F->getReturnType()) && 951 "unexpected this return"); 952 F->addAttribute(1, llvm::Attribute::Returned); 953 } 954 955 // Only a few attributes are set on declarations; these may later be 956 // overridden by a definition. 957 958 setLinkageAndVisibilityForGV(F, FD); 959 960 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 961 F->setSection(SA->getName()); 962 963 // A replaceable global allocation function does not act like a builtin by 964 // default, only if it is invoked by a new-expression or delete-expression. 965 if (FD->isReplaceableGlobalAllocationFunction()) 966 F->addAttribute(llvm::AttributeSet::FunctionIndex, 967 llvm::Attribute::NoBuiltin); 968 969 // If we are checking indirect calls and this is not a non-static member 970 // function, emit a bit set entry for the function type. 971 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) && 972 !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) { 973 llvm::NamedMDNode *BitsetsMD = 974 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 975 976 llvm::Metadata *BitsetOps[] = { 977 CreateMetadataIdentifierForType(FD->getType()), 978 llvm::ConstantAsMetadata::get(F), 979 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 980 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 981 } 982 } 983 984 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 985 assert(!GV->isDeclaration() && 986 "Only globals with definition can force usage."); 987 LLVMUsed.emplace_back(GV); 988 } 989 990 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 991 assert(!GV->isDeclaration() && 992 "Only globals with definition can force usage."); 993 LLVMCompilerUsed.emplace_back(GV); 994 } 995 996 static void emitUsed(CodeGenModule &CGM, StringRef Name, 997 std::vector<llvm::WeakVH> &List) { 998 // Don't create llvm.used if there is no need. 999 if (List.empty()) 1000 return; 1001 1002 // Convert List to what ConstantArray needs. 1003 SmallVector<llvm::Constant*, 8> UsedArray; 1004 UsedArray.resize(List.size()); 1005 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1006 UsedArray[i] = 1007 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1008 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1009 } 1010 1011 if (UsedArray.empty()) 1012 return; 1013 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1014 1015 auto *GV = new llvm::GlobalVariable( 1016 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1017 llvm::ConstantArray::get(ATy, UsedArray), Name); 1018 1019 GV->setSection("llvm.metadata"); 1020 } 1021 1022 void CodeGenModule::emitLLVMUsed() { 1023 emitUsed(*this, "llvm.used", LLVMUsed); 1024 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1025 } 1026 1027 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1028 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1029 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1030 } 1031 1032 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1033 llvm::SmallString<32> Opt; 1034 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1035 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1036 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1037 } 1038 1039 void CodeGenModule::AddDependentLib(StringRef Lib) { 1040 llvm::SmallString<24> Opt; 1041 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1042 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1043 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1044 } 1045 1046 /// \brief Add link options implied by the given module, including modules 1047 /// it depends on, using a postorder walk. 1048 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1049 SmallVectorImpl<llvm::Metadata *> &Metadata, 1050 llvm::SmallPtrSet<Module *, 16> &Visited) { 1051 // Import this module's parent. 1052 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1053 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1054 } 1055 1056 // Import this module's dependencies. 1057 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1058 if (Visited.insert(Mod->Imports[I - 1]).second) 1059 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1060 } 1061 1062 // Add linker options to link against the libraries/frameworks 1063 // described by this module. 1064 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1065 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1066 // Link against a framework. Frameworks are currently Darwin only, so we 1067 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1068 if (Mod->LinkLibraries[I-1].IsFramework) { 1069 llvm::Metadata *Args[2] = { 1070 llvm::MDString::get(Context, "-framework"), 1071 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1072 1073 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1074 continue; 1075 } 1076 1077 // Link against a library. 1078 llvm::SmallString<24> Opt; 1079 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1080 Mod->LinkLibraries[I-1].Library, Opt); 1081 auto *OptString = llvm::MDString::get(Context, Opt); 1082 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1083 } 1084 } 1085 1086 void CodeGenModule::EmitModuleLinkOptions() { 1087 // Collect the set of all of the modules we want to visit to emit link 1088 // options, which is essentially the imported modules and all of their 1089 // non-explicit child modules. 1090 llvm::SetVector<clang::Module *> LinkModules; 1091 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1092 SmallVector<clang::Module *, 16> Stack; 1093 1094 // Seed the stack with imported modules. 1095 for (Module *M : ImportedModules) 1096 if (Visited.insert(M).second) 1097 Stack.push_back(M); 1098 1099 // Find all of the modules to import, making a little effort to prune 1100 // non-leaf modules. 1101 while (!Stack.empty()) { 1102 clang::Module *Mod = Stack.pop_back_val(); 1103 1104 bool AnyChildren = false; 1105 1106 // Visit the submodules of this module. 1107 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1108 SubEnd = Mod->submodule_end(); 1109 Sub != SubEnd; ++Sub) { 1110 // Skip explicit children; they need to be explicitly imported to be 1111 // linked against. 1112 if ((*Sub)->IsExplicit) 1113 continue; 1114 1115 if (Visited.insert(*Sub).second) { 1116 Stack.push_back(*Sub); 1117 AnyChildren = true; 1118 } 1119 } 1120 1121 // We didn't find any children, so add this module to the list of 1122 // modules to link against. 1123 if (!AnyChildren) { 1124 LinkModules.insert(Mod); 1125 } 1126 } 1127 1128 // Add link options for all of the imported modules in reverse topological 1129 // order. We don't do anything to try to order import link flags with respect 1130 // to linker options inserted by things like #pragma comment(). 1131 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1132 Visited.clear(); 1133 for (Module *M : LinkModules) 1134 if (Visited.insert(M).second) 1135 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1136 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1137 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1138 1139 // Add the linker options metadata flag. 1140 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1141 llvm::MDNode::get(getLLVMContext(), 1142 LinkerOptionsMetadata)); 1143 } 1144 1145 void CodeGenModule::EmitDeferred() { 1146 // Emit code for any potentially referenced deferred decls. Since a 1147 // previously unused static decl may become used during the generation of code 1148 // for a static function, iterate until no changes are made. 1149 1150 if (!DeferredVTables.empty()) { 1151 EmitDeferredVTables(); 1152 1153 // Emitting a v-table doesn't directly cause more v-tables to 1154 // become deferred, although it can cause functions to be 1155 // emitted that then need those v-tables. 1156 assert(DeferredVTables.empty()); 1157 } 1158 1159 // Stop if we're out of both deferred v-tables and deferred declarations. 1160 if (DeferredDeclsToEmit.empty()) 1161 return; 1162 1163 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1164 // work, it will not interfere with this. 1165 std::vector<DeferredGlobal> CurDeclsToEmit; 1166 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1167 1168 for (DeferredGlobal &G : CurDeclsToEmit) { 1169 GlobalDecl D = G.GD; 1170 llvm::GlobalValue *GV = G.GV; 1171 G.GV = nullptr; 1172 1173 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1174 // to get GlobalValue with exactly the type we need, not something that 1175 // might had been created for another decl with the same mangled name but 1176 // different type. 1177 // FIXME: Support for variables is not implemented yet. 1178 if (isa<FunctionDecl>(D.getDecl())) 1179 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1180 else 1181 if (!GV) 1182 GV = GetGlobalValue(getMangledName(D)); 1183 1184 // Check to see if we've already emitted this. This is necessary 1185 // for a couple of reasons: first, decls can end up in the 1186 // deferred-decls queue multiple times, and second, decls can end 1187 // up with definitions in unusual ways (e.g. by an extern inline 1188 // function acquiring a strong function redefinition). Just 1189 // ignore these cases. 1190 if (GV && !GV->isDeclaration()) 1191 continue; 1192 1193 // Otherwise, emit the definition and move on to the next one. 1194 EmitGlobalDefinition(D, GV); 1195 1196 // If we found out that we need to emit more decls, do that recursively. 1197 // This has the advantage that the decls are emitted in a DFS and related 1198 // ones are close together, which is convenient for testing. 1199 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1200 EmitDeferred(); 1201 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1202 } 1203 } 1204 } 1205 1206 void CodeGenModule::EmitGlobalAnnotations() { 1207 if (Annotations.empty()) 1208 return; 1209 1210 // Create a new global variable for the ConstantStruct in the Module. 1211 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1212 Annotations[0]->getType(), Annotations.size()), Annotations); 1213 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1214 llvm::GlobalValue::AppendingLinkage, 1215 Array, "llvm.global.annotations"); 1216 gv->setSection(AnnotationSection); 1217 } 1218 1219 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1220 llvm::Constant *&AStr = AnnotationStrings[Str]; 1221 if (AStr) 1222 return AStr; 1223 1224 // Not found yet, create a new global. 1225 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1226 auto *gv = 1227 new llvm::GlobalVariable(getModule(), s->getType(), true, 1228 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1229 gv->setSection(AnnotationSection); 1230 gv->setUnnamedAddr(true); 1231 AStr = gv; 1232 return gv; 1233 } 1234 1235 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1236 SourceManager &SM = getContext().getSourceManager(); 1237 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1238 if (PLoc.isValid()) 1239 return EmitAnnotationString(PLoc.getFilename()); 1240 return EmitAnnotationString(SM.getBufferName(Loc)); 1241 } 1242 1243 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1244 SourceManager &SM = getContext().getSourceManager(); 1245 PresumedLoc PLoc = SM.getPresumedLoc(L); 1246 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1247 SM.getExpansionLineNumber(L); 1248 return llvm::ConstantInt::get(Int32Ty, LineNo); 1249 } 1250 1251 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1252 const AnnotateAttr *AA, 1253 SourceLocation L) { 1254 // Get the globals for file name, annotation, and the line number. 1255 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1256 *UnitGV = EmitAnnotationUnit(L), 1257 *LineNoCst = EmitAnnotationLineNo(L); 1258 1259 // Create the ConstantStruct for the global annotation. 1260 llvm::Constant *Fields[4] = { 1261 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1262 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1263 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1264 LineNoCst 1265 }; 1266 return llvm::ConstantStruct::getAnon(Fields); 1267 } 1268 1269 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1270 llvm::GlobalValue *GV) { 1271 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1272 // Get the struct elements for these annotations. 1273 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1274 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1275 } 1276 1277 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1278 SourceLocation Loc) const { 1279 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1280 // Blacklist by function name. 1281 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1282 return true; 1283 // Blacklist by location. 1284 if (!Loc.isInvalid()) 1285 return SanitizerBL.isBlacklistedLocation(Loc); 1286 // If location is unknown, this may be a compiler-generated function. Assume 1287 // it's located in the main file. 1288 auto &SM = Context.getSourceManager(); 1289 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1290 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1291 } 1292 return false; 1293 } 1294 1295 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1296 SourceLocation Loc, QualType Ty, 1297 StringRef Category) const { 1298 // For now globals can be blacklisted only in ASan and KASan. 1299 if (!LangOpts.Sanitize.hasOneOf( 1300 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1301 return false; 1302 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1303 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1304 return true; 1305 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1306 return true; 1307 // Check global type. 1308 if (!Ty.isNull()) { 1309 // Drill down the array types: if global variable of a fixed type is 1310 // blacklisted, we also don't instrument arrays of them. 1311 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1312 Ty = AT->getElementType(); 1313 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1314 // We allow to blacklist only record types (classes, structs etc.) 1315 if (Ty->isRecordType()) { 1316 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1317 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1318 return true; 1319 } 1320 } 1321 return false; 1322 } 1323 1324 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1325 // Never defer when EmitAllDecls is specified. 1326 if (LangOpts.EmitAllDecls) 1327 return true; 1328 1329 return getContext().DeclMustBeEmitted(Global); 1330 } 1331 1332 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1333 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1334 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1335 // Implicit template instantiations may change linkage if they are later 1336 // explicitly instantiated, so they should not be emitted eagerly. 1337 return false; 1338 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1339 // codegen for global variables, because they may be marked as threadprivate. 1340 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1341 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1342 return false; 1343 1344 return true; 1345 } 1346 1347 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1348 const CXXUuidofExpr* E) { 1349 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1350 // well-formed. 1351 StringRef Uuid = E->getUuidAsStringRef(Context); 1352 std::string Name = "_GUID_" + Uuid.lower(); 1353 std::replace(Name.begin(), Name.end(), '-', '_'); 1354 1355 // Contains a 32-bit field. 1356 CharUnits Alignment = CharUnits::fromQuantity(4); 1357 1358 // Look for an existing global. 1359 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1360 return ConstantAddress(GV, Alignment); 1361 1362 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1363 assert(Init && "failed to initialize as constant"); 1364 1365 auto *GV = new llvm::GlobalVariable( 1366 getModule(), Init->getType(), 1367 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1368 if (supportsCOMDAT()) 1369 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1370 return ConstantAddress(GV, Alignment); 1371 } 1372 1373 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1374 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1375 assert(AA && "No alias?"); 1376 1377 CharUnits Alignment = getContext().getDeclAlign(VD); 1378 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1379 1380 // See if there is already something with the target's name in the module. 1381 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1382 if (Entry) { 1383 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1384 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1385 return ConstantAddress(Ptr, Alignment); 1386 } 1387 1388 llvm::Constant *Aliasee; 1389 if (isa<llvm::FunctionType>(DeclTy)) 1390 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1391 GlobalDecl(cast<FunctionDecl>(VD)), 1392 /*ForVTable=*/false); 1393 else 1394 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1395 llvm::PointerType::getUnqual(DeclTy), 1396 nullptr); 1397 1398 auto *F = cast<llvm::GlobalValue>(Aliasee); 1399 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1400 WeakRefReferences.insert(F); 1401 1402 return ConstantAddress(Aliasee, Alignment); 1403 } 1404 1405 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1406 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1407 1408 // Weak references don't produce any output by themselves. 1409 if (Global->hasAttr<WeakRefAttr>()) 1410 return; 1411 1412 // If this is an alias definition (which otherwise looks like a declaration) 1413 // emit it now. 1414 if (Global->hasAttr<AliasAttr>()) 1415 return EmitAliasDefinition(GD); 1416 1417 // If this is CUDA, be selective about which declarations we emit. 1418 if (LangOpts.CUDA) { 1419 if (LangOpts.CUDAIsDevice) { 1420 if (!Global->hasAttr<CUDADeviceAttr>() && 1421 !Global->hasAttr<CUDAGlobalAttr>() && 1422 !Global->hasAttr<CUDAConstantAttr>() && 1423 !Global->hasAttr<CUDASharedAttr>()) 1424 return; 1425 } else { 1426 if (!Global->hasAttr<CUDAHostAttr>() && ( 1427 Global->hasAttr<CUDADeviceAttr>() || 1428 Global->hasAttr<CUDAConstantAttr>() || 1429 Global->hasAttr<CUDASharedAttr>())) 1430 return; 1431 } 1432 } 1433 1434 // Ignore declarations, they will be emitted on their first use. 1435 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1436 // Forward declarations are emitted lazily on first use. 1437 if (!FD->doesThisDeclarationHaveABody()) { 1438 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1439 return; 1440 1441 StringRef MangledName = getMangledName(GD); 1442 1443 // Compute the function info and LLVM type. 1444 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1445 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1446 1447 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1448 /*DontDefer=*/false); 1449 return; 1450 } 1451 } else { 1452 const auto *VD = cast<VarDecl>(Global); 1453 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1454 1455 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1456 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1457 return; 1458 } 1459 1460 // Defer code generation to first use when possible, e.g. if this is an inline 1461 // function. If the global must always be emitted, do it eagerly if possible 1462 // to benefit from cache locality. 1463 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1464 // Emit the definition if it can't be deferred. 1465 EmitGlobalDefinition(GD); 1466 return; 1467 } 1468 1469 // If we're deferring emission of a C++ variable with an 1470 // initializer, remember the order in which it appeared in the file. 1471 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1472 cast<VarDecl>(Global)->hasInit()) { 1473 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1474 CXXGlobalInits.push_back(nullptr); 1475 } 1476 1477 StringRef MangledName = getMangledName(GD); 1478 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1479 // The value has already been used and should therefore be emitted. 1480 addDeferredDeclToEmit(GV, GD); 1481 } else if (MustBeEmitted(Global)) { 1482 // The value must be emitted, but cannot be emitted eagerly. 1483 assert(!MayBeEmittedEagerly(Global)); 1484 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1485 } else { 1486 // Otherwise, remember that we saw a deferred decl with this name. The 1487 // first use of the mangled name will cause it to move into 1488 // DeferredDeclsToEmit. 1489 DeferredDecls[MangledName] = GD; 1490 } 1491 } 1492 1493 namespace { 1494 struct FunctionIsDirectlyRecursive : 1495 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1496 const StringRef Name; 1497 const Builtin::Context &BI; 1498 bool Result; 1499 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1500 Name(N), BI(C), Result(false) { 1501 } 1502 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1503 1504 bool TraverseCallExpr(CallExpr *E) { 1505 const FunctionDecl *FD = E->getDirectCallee(); 1506 if (!FD) 1507 return true; 1508 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1509 if (Attr && Name == Attr->getLabel()) { 1510 Result = true; 1511 return false; 1512 } 1513 unsigned BuiltinID = FD->getBuiltinID(); 1514 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1515 return true; 1516 StringRef BuiltinName = BI.getName(BuiltinID); 1517 if (BuiltinName.startswith("__builtin_") && 1518 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1519 Result = true; 1520 return false; 1521 } 1522 return true; 1523 } 1524 }; 1525 1526 struct DLLImportFunctionVisitor 1527 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1528 bool SafeToInline = true; 1529 1530 bool VisitVarDecl(VarDecl *VD) { 1531 // A thread-local variable cannot be imported. 1532 SafeToInline = !VD->getTLSKind(); 1533 return SafeToInline; 1534 } 1535 1536 // Make sure we're not referencing non-imported vars or functions. 1537 bool VisitDeclRefExpr(DeclRefExpr *E) { 1538 ValueDecl *VD = E->getDecl(); 1539 if (isa<FunctionDecl>(VD)) 1540 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1541 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1542 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1543 return SafeToInline; 1544 } 1545 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1546 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1547 return SafeToInline; 1548 } 1549 bool VisitCXXNewExpr(CXXNewExpr *E) { 1550 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1551 return SafeToInline; 1552 } 1553 }; 1554 } 1555 1556 // isTriviallyRecursive - Check if this function calls another 1557 // decl that, because of the asm attribute or the other decl being a builtin, 1558 // ends up pointing to itself. 1559 bool 1560 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1561 StringRef Name; 1562 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1563 // asm labels are a special kind of mangling we have to support. 1564 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1565 if (!Attr) 1566 return false; 1567 Name = Attr->getLabel(); 1568 } else { 1569 Name = FD->getName(); 1570 } 1571 1572 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1573 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1574 return Walker.Result; 1575 } 1576 1577 bool 1578 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1579 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1580 return true; 1581 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1582 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1583 return false; 1584 1585 if (F->hasAttr<DLLImportAttr>()) { 1586 // Check whether it would be safe to inline this dllimport function. 1587 DLLImportFunctionVisitor Visitor; 1588 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1589 if (!Visitor.SafeToInline) 1590 return false; 1591 } 1592 1593 // PR9614. Avoid cases where the source code is lying to us. An available 1594 // externally function should have an equivalent function somewhere else, 1595 // but a function that calls itself is clearly not equivalent to the real 1596 // implementation. 1597 // This happens in glibc's btowc and in some configure checks. 1598 return !isTriviallyRecursive(F); 1599 } 1600 1601 /// If the type for the method's class was generated by 1602 /// CGDebugInfo::createContextChain(), the cache contains only a 1603 /// limited DIType without any declarations. Since EmitFunctionStart() 1604 /// needs to find the canonical declaration for each method, we need 1605 /// to construct the complete type prior to emitting the method. 1606 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1607 if (!D->isInstance()) 1608 return; 1609 1610 if (CGDebugInfo *DI = getModuleDebugInfo()) 1611 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1612 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1613 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1614 } 1615 } 1616 1617 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1618 const auto *D = cast<ValueDecl>(GD.getDecl()); 1619 1620 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1621 Context.getSourceManager(), 1622 "Generating code for declaration"); 1623 1624 if (isa<FunctionDecl>(D)) { 1625 // At -O0, don't generate IR for functions with available_externally 1626 // linkage. 1627 if (!shouldEmitFunction(GD)) 1628 return; 1629 1630 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1631 CompleteDIClassType(Method); 1632 // Make sure to emit the definition(s) before we emit the thunks. 1633 // This is necessary for the generation of certain thunks. 1634 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1635 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1636 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1637 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1638 else 1639 EmitGlobalFunctionDefinition(GD, GV); 1640 1641 if (Method->isVirtual()) 1642 getVTables().EmitThunks(GD); 1643 1644 return; 1645 } 1646 1647 return EmitGlobalFunctionDefinition(GD, GV); 1648 } 1649 1650 if (const auto *VD = dyn_cast<VarDecl>(D)) 1651 return EmitGlobalVarDefinition(VD); 1652 1653 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1654 } 1655 1656 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1657 llvm::Function *NewFn); 1658 1659 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1660 /// module, create and return an llvm Function with the specified type. If there 1661 /// is something in the module with the specified name, return it potentially 1662 /// bitcasted to the right type. 1663 /// 1664 /// If D is non-null, it specifies a decl that correspond to this. This is used 1665 /// to set the attributes on the function when it is first created. 1666 llvm::Constant * 1667 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1668 llvm::Type *Ty, 1669 GlobalDecl GD, bool ForVTable, 1670 bool DontDefer, bool IsThunk, 1671 llvm::AttributeSet ExtraAttrs, 1672 bool IsForDefinition) { 1673 const Decl *D = GD.getDecl(); 1674 1675 // Lookup the entry, lazily creating it if necessary. 1676 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1677 if (Entry) { 1678 if (WeakRefReferences.erase(Entry)) { 1679 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1680 if (FD && !FD->hasAttr<WeakAttr>()) 1681 Entry->setLinkage(llvm::Function::ExternalLinkage); 1682 } 1683 1684 // Handle dropped DLL attributes. 1685 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1686 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1687 1688 // If there are two attempts to define the same mangled name, issue an 1689 // error. 1690 if (IsForDefinition && !Entry->isDeclaration()) { 1691 GlobalDecl OtherGD; 1692 // Check that GD is not yet in ExplicitDefinitions is required to make 1693 // sure that we issue an error only once. 1694 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1695 (GD.getCanonicalDecl().getDecl() != 1696 OtherGD.getCanonicalDecl().getDecl()) && 1697 DiagnosedConflictingDefinitions.insert(GD).second) { 1698 getDiags().Report(D->getLocation(), 1699 diag::err_duplicate_mangled_name); 1700 getDiags().Report(OtherGD.getDecl()->getLocation(), 1701 diag::note_previous_definition); 1702 } 1703 } 1704 1705 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1706 (Entry->getType()->getElementType() == Ty)) { 1707 return Entry; 1708 } 1709 1710 // Make sure the result is of the correct type. 1711 // (If function is requested for a definition, we always need to create a new 1712 // function, not just return a bitcast.) 1713 if (!IsForDefinition) 1714 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1715 } 1716 1717 // This function doesn't have a complete type (for example, the return 1718 // type is an incomplete struct). Use a fake type instead, and make 1719 // sure not to try to set attributes. 1720 bool IsIncompleteFunction = false; 1721 1722 llvm::FunctionType *FTy; 1723 if (isa<llvm::FunctionType>(Ty)) { 1724 FTy = cast<llvm::FunctionType>(Ty); 1725 } else { 1726 FTy = llvm::FunctionType::get(VoidTy, false); 1727 IsIncompleteFunction = true; 1728 } 1729 1730 llvm::Function *F = 1731 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1732 Entry ? StringRef() : MangledName, &getModule()); 1733 1734 // If we already created a function with the same mangled name (but different 1735 // type) before, take its name and add it to the list of functions to be 1736 // replaced with F at the end of CodeGen. 1737 // 1738 // This happens if there is a prototype for a function (e.g. "int f()") and 1739 // then a definition of a different type (e.g. "int f(int x)"). 1740 if (Entry) { 1741 F->takeName(Entry); 1742 1743 // This might be an implementation of a function without a prototype, in 1744 // which case, try to do special replacement of calls which match the new 1745 // prototype. The really key thing here is that we also potentially drop 1746 // arguments from the call site so as to make a direct call, which makes the 1747 // inliner happier and suppresses a number of optimizer warnings (!) about 1748 // dropping arguments. 1749 if (!Entry->use_empty()) { 1750 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1751 Entry->removeDeadConstantUsers(); 1752 } 1753 1754 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1755 F, Entry->getType()->getElementType()->getPointerTo()); 1756 addGlobalValReplacement(Entry, BC); 1757 } 1758 1759 assert(F->getName() == MangledName && "name was uniqued!"); 1760 if (D) 1761 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1762 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1763 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1764 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1765 llvm::AttributeSet::get(VMContext, 1766 llvm::AttributeSet::FunctionIndex, 1767 B)); 1768 } 1769 1770 if (!DontDefer) { 1771 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1772 // each other bottoming out with the base dtor. Therefore we emit non-base 1773 // dtors on usage, even if there is no dtor definition in the TU. 1774 if (D && isa<CXXDestructorDecl>(D) && 1775 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1776 GD.getDtorType())) 1777 addDeferredDeclToEmit(F, GD); 1778 1779 // This is the first use or definition of a mangled name. If there is a 1780 // deferred decl with this name, remember that we need to emit it at the end 1781 // of the file. 1782 auto DDI = DeferredDecls.find(MangledName); 1783 if (DDI != DeferredDecls.end()) { 1784 // Move the potentially referenced deferred decl to the 1785 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1786 // don't need it anymore). 1787 addDeferredDeclToEmit(F, DDI->second); 1788 DeferredDecls.erase(DDI); 1789 1790 // Otherwise, there are cases we have to worry about where we're 1791 // using a declaration for which we must emit a definition but where 1792 // we might not find a top-level definition: 1793 // - member functions defined inline in their classes 1794 // - friend functions defined inline in some class 1795 // - special member functions with implicit definitions 1796 // If we ever change our AST traversal to walk into class methods, 1797 // this will be unnecessary. 1798 // 1799 // We also don't emit a definition for a function if it's going to be an 1800 // entry in a vtable, unless it's already marked as used. 1801 } else if (getLangOpts().CPlusPlus && D) { 1802 // Look for a declaration that's lexically in a record. 1803 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1804 FD = FD->getPreviousDecl()) { 1805 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1806 if (FD->doesThisDeclarationHaveABody()) { 1807 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1808 break; 1809 } 1810 } 1811 } 1812 } 1813 } 1814 1815 // Make sure the result is of the requested type. 1816 if (!IsIncompleteFunction) { 1817 assert(F->getType()->getElementType() == Ty); 1818 return F; 1819 } 1820 1821 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1822 return llvm::ConstantExpr::getBitCast(F, PTy); 1823 } 1824 1825 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1826 /// non-null, then this function will use the specified type if it has to 1827 /// create it (this occurs when we see a definition of the function). 1828 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1829 llvm::Type *Ty, 1830 bool ForVTable, 1831 bool DontDefer, 1832 bool IsForDefinition) { 1833 // If there was no specific requested type, just convert it now. 1834 if (!Ty) 1835 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1836 1837 StringRef MangledName = getMangledName(GD); 1838 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1839 /*IsThunk=*/false, llvm::AttributeSet(), 1840 IsForDefinition); 1841 } 1842 1843 /// CreateRuntimeFunction - Create a new runtime function with the specified 1844 /// type and name. 1845 llvm::Constant * 1846 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1847 StringRef Name, 1848 llvm::AttributeSet ExtraAttrs) { 1849 llvm::Constant *C = 1850 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1851 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1852 if (auto *F = dyn_cast<llvm::Function>(C)) 1853 if (F->empty()) 1854 F->setCallingConv(getRuntimeCC()); 1855 return C; 1856 } 1857 1858 /// CreateBuiltinFunction - Create a new builtin function with the specified 1859 /// type and name. 1860 llvm::Constant * 1861 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1862 StringRef Name, 1863 llvm::AttributeSet ExtraAttrs) { 1864 llvm::Constant *C = 1865 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1866 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1867 if (auto *F = dyn_cast<llvm::Function>(C)) 1868 if (F->empty()) 1869 F->setCallingConv(getBuiltinCC()); 1870 return C; 1871 } 1872 1873 /// isTypeConstant - Determine whether an object of this type can be emitted 1874 /// as a constant. 1875 /// 1876 /// If ExcludeCtor is true, the duration when the object's constructor runs 1877 /// will not be considered. The caller will need to verify that the object is 1878 /// not written to during its construction. 1879 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1880 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1881 return false; 1882 1883 if (Context.getLangOpts().CPlusPlus) { 1884 if (const CXXRecordDecl *Record 1885 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1886 return ExcludeCtor && !Record->hasMutableFields() && 1887 Record->hasTrivialDestructor(); 1888 } 1889 1890 return true; 1891 } 1892 1893 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1894 /// create and return an llvm GlobalVariable with the specified type. If there 1895 /// is something in the module with the specified name, return it potentially 1896 /// bitcasted to the right type. 1897 /// 1898 /// If D is non-null, it specifies a decl that correspond to this. This is used 1899 /// to set the attributes on the global when it is first created. 1900 llvm::Constant * 1901 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1902 llvm::PointerType *Ty, 1903 const VarDecl *D) { 1904 // Lookup the entry, lazily creating it if necessary. 1905 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1906 if (Entry) { 1907 if (WeakRefReferences.erase(Entry)) { 1908 if (D && !D->hasAttr<WeakAttr>()) 1909 Entry->setLinkage(llvm::Function::ExternalLinkage); 1910 } 1911 1912 // Handle dropped DLL attributes. 1913 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1914 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1915 1916 if (Entry->getType() == Ty) 1917 return Entry; 1918 1919 // Make sure the result is of the correct type. 1920 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1921 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1922 1923 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1924 } 1925 1926 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1927 auto *GV = new llvm::GlobalVariable( 1928 getModule(), Ty->getElementType(), false, 1929 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1930 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1931 1932 // This is the first use or definition of a mangled name. If there is a 1933 // deferred decl with this name, remember that we need to emit it at the end 1934 // of the file. 1935 auto DDI = DeferredDecls.find(MangledName); 1936 if (DDI != DeferredDecls.end()) { 1937 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1938 // list, and remove it from DeferredDecls (since we don't need it anymore). 1939 addDeferredDeclToEmit(GV, DDI->second); 1940 DeferredDecls.erase(DDI); 1941 } 1942 1943 // Handle things which are present even on external declarations. 1944 if (D) { 1945 // FIXME: This code is overly simple and should be merged with other global 1946 // handling. 1947 GV->setConstant(isTypeConstant(D->getType(), false)); 1948 1949 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1950 1951 setLinkageAndVisibilityForGV(GV, D); 1952 1953 if (D->getTLSKind()) { 1954 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1955 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1956 setTLSMode(GV, *D); 1957 } 1958 1959 // If required by the ABI, treat declarations of static data members with 1960 // inline initializers as definitions. 1961 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1962 EmitGlobalVarDefinition(D); 1963 } 1964 1965 // Handle XCore specific ABI requirements. 1966 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1967 D->getLanguageLinkage() == CLanguageLinkage && 1968 D->getType().isConstant(Context) && 1969 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1970 GV->setSection(".cp.rodata"); 1971 } 1972 1973 if (AddrSpace != Ty->getAddressSpace()) 1974 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1975 1976 return GV; 1977 } 1978 1979 llvm::Constant * 1980 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 1981 bool IsForDefinition) { 1982 if (isa<CXXConstructorDecl>(GD.getDecl())) 1983 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 1984 getFromCtorType(GD.getCtorType()), 1985 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1986 /*DontDefer=*/false, IsForDefinition); 1987 else if (isa<CXXDestructorDecl>(GD.getDecl())) 1988 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 1989 getFromDtorType(GD.getDtorType()), 1990 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1991 /*DontDefer=*/false, IsForDefinition); 1992 else if (isa<CXXMethodDecl>(GD.getDecl())) { 1993 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 1994 cast<CXXMethodDecl>(GD.getDecl())); 1995 auto Ty = getTypes().GetFunctionType(*FInfo); 1996 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 1997 IsForDefinition); 1998 } else if (isa<FunctionDecl>(GD.getDecl())) { 1999 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2000 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2001 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2002 IsForDefinition); 2003 } else 2004 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 2005 } 2006 2007 llvm::GlobalVariable * 2008 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2009 llvm::Type *Ty, 2010 llvm::GlobalValue::LinkageTypes Linkage) { 2011 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2012 llvm::GlobalVariable *OldGV = nullptr; 2013 2014 if (GV) { 2015 // Check if the variable has the right type. 2016 if (GV->getType()->getElementType() == Ty) 2017 return GV; 2018 2019 // Because C++ name mangling, the only way we can end up with an already 2020 // existing global with the same name is if it has been declared extern "C". 2021 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2022 OldGV = GV; 2023 } 2024 2025 // Create a new variable. 2026 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2027 Linkage, nullptr, Name); 2028 2029 if (OldGV) { 2030 // Replace occurrences of the old variable if needed. 2031 GV->takeName(OldGV); 2032 2033 if (!OldGV->use_empty()) { 2034 llvm::Constant *NewPtrForOldDecl = 2035 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2036 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2037 } 2038 2039 OldGV->eraseFromParent(); 2040 } 2041 2042 if (supportsCOMDAT() && GV->isWeakForLinker() && 2043 !GV->hasAvailableExternallyLinkage()) 2044 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2045 2046 return GV; 2047 } 2048 2049 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2050 /// given global variable. If Ty is non-null and if the global doesn't exist, 2051 /// then it will be created with the specified type instead of whatever the 2052 /// normal requested type would be. 2053 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2054 llvm::Type *Ty) { 2055 assert(D->hasGlobalStorage() && "Not a global variable"); 2056 QualType ASTTy = D->getType(); 2057 if (!Ty) 2058 Ty = getTypes().ConvertTypeForMem(ASTTy); 2059 2060 llvm::PointerType *PTy = 2061 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2062 2063 StringRef MangledName = getMangledName(D); 2064 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2065 } 2066 2067 /// CreateRuntimeVariable - Create a new runtime global variable with the 2068 /// specified type and name. 2069 llvm::Constant * 2070 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2071 StringRef Name) { 2072 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2073 } 2074 2075 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2076 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2077 2078 if (!MustBeEmitted(D)) { 2079 // If we have not seen a reference to this variable yet, place it 2080 // into the deferred declarations table to be emitted if needed 2081 // later. 2082 StringRef MangledName = getMangledName(D); 2083 if (!GetGlobalValue(MangledName)) { 2084 DeferredDecls[MangledName] = D; 2085 return; 2086 } 2087 } 2088 2089 // The tentative definition is the only definition. 2090 EmitGlobalVarDefinition(D); 2091 } 2092 2093 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2094 return Context.toCharUnitsFromBits( 2095 getDataLayout().getTypeStoreSizeInBits(Ty)); 2096 } 2097 2098 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2099 unsigned AddrSpace) { 2100 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2101 if (D->hasAttr<CUDAConstantAttr>()) 2102 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2103 else if (D->hasAttr<CUDASharedAttr>()) 2104 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2105 else 2106 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2107 } 2108 2109 return AddrSpace; 2110 } 2111 2112 template<typename SomeDecl> 2113 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2114 llvm::GlobalValue *GV) { 2115 if (!getLangOpts().CPlusPlus) 2116 return; 2117 2118 // Must have 'used' attribute, or else inline assembly can't rely on 2119 // the name existing. 2120 if (!D->template hasAttr<UsedAttr>()) 2121 return; 2122 2123 // Must have internal linkage and an ordinary name. 2124 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2125 return; 2126 2127 // Must be in an extern "C" context. Entities declared directly within 2128 // a record are not extern "C" even if the record is in such a context. 2129 const SomeDecl *First = D->getFirstDecl(); 2130 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2131 return; 2132 2133 // OK, this is an internal linkage entity inside an extern "C" linkage 2134 // specification. Make a note of that so we can give it the "expected" 2135 // mangled name if nothing else is using that name. 2136 std::pair<StaticExternCMap::iterator, bool> R = 2137 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2138 2139 // If we have multiple internal linkage entities with the same name 2140 // in extern "C" regions, none of them gets that name. 2141 if (!R.second) 2142 R.first->second = nullptr; 2143 } 2144 2145 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2146 if (!CGM.supportsCOMDAT()) 2147 return false; 2148 2149 if (D.hasAttr<SelectAnyAttr>()) 2150 return true; 2151 2152 GVALinkage Linkage; 2153 if (auto *VD = dyn_cast<VarDecl>(&D)) 2154 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2155 else 2156 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2157 2158 switch (Linkage) { 2159 case GVA_Internal: 2160 case GVA_AvailableExternally: 2161 case GVA_StrongExternal: 2162 return false; 2163 case GVA_DiscardableODR: 2164 case GVA_StrongODR: 2165 return true; 2166 } 2167 llvm_unreachable("No such linkage"); 2168 } 2169 2170 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2171 llvm::GlobalObject &GO) { 2172 if (!shouldBeInCOMDAT(*this, D)) 2173 return; 2174 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2175 } 2176 2177 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2178 llvm::Constant *Init = nullptr; 2179 QualType ASTTy = D->getType(); 2180 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2181 bool NeedsGlobalCtor = false; 2182 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2183 2184 const VarDecl *InitDecl; 2185 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2186 2187 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2188 // of their declaration." 2189 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2190 && D->hasAttr<CUDASharedAttr>()) { 2191 if (InitExpr) { 2192 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2193 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2194 Error(D->getLocation(), 2195 "__shared__ variable cannot have an initialization."); 2196 } 2197 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2198 } else if (!InitExpr) { 2199 // This is a tentative definition; tentative definitions are 2200 // implicitly initialized with { 0 }. 2201 // 2202 // Note that tentative definitions are only emitted at the end of 2203 // a translation unit, so they should never have incomplete 2204 // type. In addition, EmitTentativeDefinition makes sure that we 2205 // never attempt to emit a tentative definition if a real one 2206 // exists. A use may still exists, however, so we still may need 2207 // to do a RAUW. 2208 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2209 Init = EmitNullConstant(D->getType()); 2210 } else { 2211 initializedGlobalDecl = GlobalDecl(D); 2212 Init = EmitConstantInit(*InitDecl); 2213 2214 if (!Init) { 2215 QualType T = InitExpr->getType(); 2216 if (D->getType()->isReferenceType()) 2217 T = D->getType(); 2218 2219 if (getLangOpts().CPlusPlus) { 2220 Init = EmitNullConstant(T); 2221 NeedsGlobalCtor = true; 2222 } else { 2223 ErrorUnsupported(D, "static initializer"); 2224 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2225 } 2226 } else { 2227 // We don't need an initializer, so remove the entry for the delayed 2228 // initializer position (just in case this entry was delayed) if we 2229 // also don't need to register a destructor. 2230 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2231 DelayedCXXInitPosition.erase(D); 2232 } 2233 } 2234 2235 llvm::Type* InitType = Init->getType(); 2236 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2237 2238 // Strip off a bitcast if we got one back. 2239 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2241 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2242 // All zero index gep. 2243 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2244 Entry = CE->getOperand(0); 2245 } 2246 2247 // Entry is now either a Function or GlobalVariable. 2248 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2249 2250 // We have a definition after a declaration with the wrong type. 2251 // We must make a new GlobalVariable* and update everything that used OldGV 2252 // (a declaration or tentative definition) with the new GlobalVariable* 2253 // (which will be a definition). 2254 // 2255 // This happens if there is a prototype for a global (e.g. 2256 // "extern int x[];") and then a definition of a different type (e.g. 2257 // "int x[10];"). This also happens when an initializer has a different type 2258 // from the type of the global (this happens with unions). 2259 if (!GV || 2260 GV->getType()->getElementType() != InitType || 2261 GV->getType()->getAddressSpace() != 2262 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2263 2264 // Move the old entry aside so that we'll create a new one. 2265 Entry->setName(StringRef()); 2266 2267 // Make a new global with the correct type, this is now guaranteed to work. 2268 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2269 2270 // Replace all uses of the old global with the new global 2271 llvm::Constant *NewPtrForOldDecl = 2272 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2273 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2274 2275 // Erase the old global, since it is no longer used. 2276 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2277 } 2278 2279 MaybeHandleStaticInExternC(D, GV); 2280 2281 if (D->hasAttr<AnnotateAttr>()) 2282 AddGlobalAnnotations(D, GV); 2283 2284 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2285 // the device. [...]" 2286 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2287 // __device__, declares a variable that: [...] 2288 // Is accessible from all the threads within the grid and from the host 2289 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2290 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2291 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2292 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2293 GV->setExternallyInitialized(true); 2294 } 2295 GV->setInitializer(Init); 2296 2297 // If it is safe to mark the global 'constant', do so now. 2298 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2299 isTypeConstant(D->getType(), true)); 2300 2301 // If it is in a read-only section, mark it 'constant'. 2302 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2303 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2304 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2305 GV->setConstant(true); 2306 } 2307 2308 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2309 2310 // Set the llvm linkage type as appropriate. 2311 llvm::GlobalValue::LinkageTypes Linkage = 2312 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2313 2314 // On Darwin, the backing variable for a C++11 thread_local variable always 2315 // has internal linkage; all accesses should just be calls to the 2316 // Itanium-specified entry point, which has the normal linkage of the 2317 // variable. 2318 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2319 Context.getTargetInfo().getTriple().isMacOSX()) 2320 Linkage = llvm::GlobalValue::InternalLinkage; 2321 2322 GV->setLinkage(Linkage); 2323 if (D->hasAttr<DLLImportAttr>()) 2324 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2325 else if (D->hasAttr<DLLExportAttr>()) 2326 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2327 else 2328 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2329 2330 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2331 // common vars aren't constant even if declared const. 2332 GV->setConstant(false); 2333 2334 setNonAliasAttributes(D, GV); 2335 2336 if (D->getTLSKind() && !GV->isThreadLocal()) { 2337 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2338 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2339 setTLSMode(GV, *D); 2340 } 2341 2342 maybeSetTrivialComdat(*D, *GV); 2343 2344 // Emit the initializer function if necessary. 2345 if (NeedsGlobalCtor || NeedsGlobalDtor) 2346 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2347 2348 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2349 2350 // Emit global variable debug information. 2351 if (CGDebugInfo *DI = getModuleDebugInfo()) 2352 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2353 DI->EmitGlobalVariable(GV, D); 2354 } 2355 2356 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2357 CodeGenModule &CGM, const VarDecl *D, 2358 bool NoCommon) { 2359 // Don't give variables common linkage if -fno-common was specified unless it 2360 // was overridden by a NoCommon attribute. 2361 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2362 return true; 2363 2364 // C11 6.9.2/2: 2365 // A declaration of an identifier for an object that has file scope without 2366 // an initializer, and without a storage-class specifier or with the 2367 // storage-class specifier static, constitutes a tentative definition. 2368 if (D->getInit() || D->hasExternalStorage()) 2369 return true; 2370 2371 // A variable cannot be both common and exist in a section. 2372 if (D->hasAttr<SectionAttr>()) 2373 return true; 2374 2375 // Thread local vars aren't considered common linkage. 2376 if (D->getTLSKind()) 2377 return true; 2378 2379 // Tentative definitions marked with WeakImportAttr are true definitions. 2380 if (D->hasAttr<WeakImportAttr>()) 2381 return true; 2382 2383 // A variable cannot be both common and exist in a comdat. 2384 if (shouldBeInCOMDAT(CGM, *D)) 2385 return true; 2386 2387 // Declarations with a required alignment do not have common linakge in MSVC 2388 // mode. 2389 if (Context.getLangOpts().MSVCCompat) { 2390 if (D->hasAttr<AlignedAttr>()) 2391 return true; 2392 QualType VarType = D->getType(); 2393 if (Context.isAlignmentRequired(VarType)) 2394 return true; 2395 2396 if (const auto *RT = VarType->getAs<RecordType>()) { 2397 const RecordDecl *RD = RT->getDecl(); 2398 for (const FieldDecl *FD : RD->fields()) { 2399 if (FD->isBitField()) 2400 continue; 2401 if (FD->hasAttr<AlignedAttr>()) 2402 return true; 2403 if (Context.isAlignmentRequired(FD->getType())) 2404 return true; 2405 } 2406 } 2407 } 2408 2409 return false; 2410 } 2411 2412 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2413 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2414 if (Linkage == GVA_Internal) 2415 return llvm::Function::InternalLinkage; 2416 2417 if (D->hasAttr<WeakAttr>()) { 2418 if (IsConstantVariable) 2419 return llvm::GlobalVariable::WeakODRLinkage; 2420 else 2421 return llvm::GlobalVariable::WeakAnyLinkage; 2422 } 2423 2424 // We are guaranteed to have a strong definition somewhere else, 2425 // so we can use available_externally linkage. 2426 if (Linkage == GVA_AvailableExternally) 2427 return llvm::Function::AvailableExternallyLinkage; 2428 2429 // Note that Apple's kernel linker doesn't support symbol 2430 // coalescing, so we need to avoid linkonce and weak linkages there. 2431 // Normally, this means we just map to internal, but for explicit 2432 // instantiations we'll map to external. 2433 2434 // In C++, the compiler has to emit a definition in every translation unit 2435 // that references the function. We should use linkonce_odr because 2436 // a) if all references in this translation unit are optimized away, we 2437 // don't need to codegen it. b) if the function persists, it needs to be 2438 // merged with other definitions. c) C++ has the ODR, so we know the 2439 // definition is dependable. 2440 if (Linkage == GVA_DiscardableODR) 2441 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2442 : llvm::Function::InternalLinkage; 2443 2444 // An explicit instantiation of a template has weak linkage, since 2445 // explicit instantiations can occur in multiple translation units 2446 // and must all be equivalent. However, we are not allowed to 2447 // throw away these explicit instantiations. 2448 if (Linkage == GVA_StrongODR) 2449 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2450 : llvm::Function::ExternalLinkage; 2451 2452 // C++ doesn't have tentative definitions and thus cannot have common 2453 // linkage. 2454 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2455 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2456 CodeGenOpts.NoCommon)) 2457 return llvm::GlobalVariable::CommonLinkage; 2458 2459 // selectany symbols are externally visible, so use weak instead of 2460 // linkonce. MSVC optimizes away references to const selectany globals, so 2461 // all definitions should be the same and ODR linkage should be used. 2462 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2463 if (D->hasAttr<SelectAnyAttr>()) 2464 return llvm::GlobalVariable::WeakODRLinkage; 2465 2466 // Otherwise, we have strong external linkage. 2467 assert(Linkage == GVA_StrongExternal); 2468 return llvm::GlobalVariable::ExternalLinkage; 2469 } 2470 2471 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2472 const VarDecl *VD, bool IsConstant) { 2473 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2474 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2475 } 2476 2477 /// Replace the uses of a function that was declared with a non-proto type. 2478 /// We want to silently drop extra arguments from call sites 2479 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2480 llvm::Function *newFn) { 2481 // Fast path. 2482 if (old->use_empty()) return; 2483 2484 llvm::Type *newRetTy = newFn->getReturnType(); 2485 SmallVector<llvm::Value*, 4> newArgs; 2486 2487 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2488 ui != ue; ) { 2489 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2490 llvm::User *user = use->getUser(); 2491 2492 // Recognize and replace uses of bitcasts. Most calls to 2493 // unprototyped functions will use bitcasts. 2494 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2495 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2496 replaceUsesOfNonProtoConstant(bitcast, newFn); 2497 continue; 2498 } 2499 2500 // Recognize calls to the function. 2501 llvm::CallSite callSite(user); 2502 if (!callSite) continue; 2503 if (!callSite.isCallee(&*use)) continue; 2504 2505 // If the return types don't match exactly, then we can't 2506 // transform this call unless it's dead. 2507 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2508 continue; 2509 2510 // Get the call site's attribute list. 2511 SmallVector<llvm::AttributeSet, 8> newAttrs; 2512 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2513 2514 // Collect any return attributes from the call. 2515 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2516 newAttrs.push_back( 2517 llvm::AttributeSet::get(newFn->getContext(), 2518 oldAttrs.getRetAttributes())); 2519 2520 // If the function was passed too few arguments, don't transform. 2521 unsigned newNumArgs = newFn->arg_size(); 2522 if (callSite.arg_size() < newNumArgs) continue; 2523 2524 // If extra arguments were passed, we silently drop them. 2525 // If any of the types mismatch, we don't transform. 2526 unsigned argNo = 0; 2527 bool dontTransform = false; 2528 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2529 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2530 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2531 dontTransform = true; 2532 break; 2533 } 2534 2535 // Add any parameter attributes. 2536 if (oldAttrs.hasAttributes(argNo + 1)) 2537 newAttrs. 2538 push_back(llvm:: 2539 AttributeSet::get(newFn->getContext(), 2540 oldAttrs.getParamAttributes(argNo + 1))); 2541 } 2542 if (dontTransform) 2543 continue; 2544 2545 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2546 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2547 oldAttrs.getFnAttributes())); 2548 2549 // Okay, we can transform this. Create the new call instruction and copy 2550 // over the required information. 2551 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2552 2553 llvm::CallSite newCall; 2554 if (callSite.isCall()) { 2555 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2556 callSite.getInstruction()); 2557 } else { 2558 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2559 newCall = llvm::InvokeInst::Create(newFn, 2560 oldInvoke->getNormalDest(), 2561 oldInvoke->getUnwindDest(), 2562 newArgs, "", 2563 callSite.getInstruction()); 2564 } 2565 newArgs.clear(); // for the next iteration 2566 2567 if (!newCall->getType()->isVoidTy()) 2568 newCall->takeName(callSite.getInstruction()); 2569 newCall.setAttributes( 2570 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2571 newCall.setCallingConv(callSite.getCallingConv()); 2572 2573 // Finally, remove the old call, replacing any uses with the new one. 2574 if (!callSite->use_empty()) 2575 callSite->replaceAllUsesWith(newCall.getInstruction()); 2576 2577 // Copy debug location attached to CI. 2578 if (callSite->getDebugLoc()) 2579 newCall->setDebugLoc(callSite->getDebugLoc()); 2580 callSite->eraseFromParent(); 2581 } 2582 } 2583 2584 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2585 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2586 /// existing call uses of the old function in the module, this adjusts them to 2587 /// call the new function directly. 2588 /// 2589 /// This is not just a cleanup: the always_inline pass requires direct calls to 2590 /// functions to be able to inline them. If there is a bitcast in the way, it 2591 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2592 /// run at -O0. 2593 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2594 llvm::Function *NewFn) { 2595 // If we're redefining a global as a function, don't transform it. 2596 if (!isa<llvm::Function>(Old)) return; 2597 2598 replaceUsesOfNonProtoConstant(Old, NewFn); 2599 } 2600 2601 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2602 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2603 // If we have a definition, this might be a deferred decl. If the 2604 // instantiation is explicit, make sure we emit it at the end. 2605 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2606 GetAddrOfGlobalVar(VD); 2607 2608 EmitTopLevelDecl(VD); 2609 } 2610 2611 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2612 llvm::GlobalValue *GV) { 2613 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2614 2615 // Compute the function info and LLVM type. 2616 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2617 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2618 2619 // Get or create the prototype for the function. 2620 if (!GV || (GV->getType()->getElementType() != Ty)) 2621 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2622 /*DontDefer=*/true, 2623 /*IsForDefinition=*/true)); 2624 2625 // Already emitted. 2626 if (!GV->isDeclaration()) 2627 return; 2628 2629 // We need to set linkage and visibility on the function before 2630 // generating code for it because various parts of IR generation 2631 // want to propagate this information down (e.g. to local static 2632 // declarations). 2633 auto *Fn = cast<llvm::Function>(GV); 2634 setFunctionLinkage(GD, Fn); 2635 setFunctionDLLStorageClass(GD, Fn); 2636 2637 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2638 setGlobalVisibility(Fn, D); 2639 2640 MaybeHandleStaticInExternC(D, Fn); 2641 2642 maybeSetTrivialComdat(*D, *Fn); 2643 2644 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2645 2646 setFunctionDefinitionAttributes(D, Fn); 2647 SetLLVMFunctionAttributesForDefinition(D, Fn); 2648 2649 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2650 AddGlobalCtor(Fn, CA->getPriority()); 2651 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2652 AddGlobalDtor(Fn, DA->getPriority()); 2653 if (D->hasAttr<AnnotateAttr>()) 2654 AddGlobalAnnotations(D, Fn); 2655 } 2656 2657 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2658 const auto *D = cast<ValueDecl>(GD.getDecl()); 2659 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2660 assert(AA && "Not an alias?"); 2661 2662 StringRef MangledName = getMangledName(GD); 2663 2664 if (AA->getAliasee() == MangledName) { 2665 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2666 return; 2667 } 2668 2669 // If there is a definition in the module, then it wins over the alias. 2670 // This is dubious, but allow it to be safe. Just ignore the alias. 2671 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2672 if (Entry && !Entry->isDeclaration()) 2673 return; 2674 2675 Aliases.push_back(GD); 2676 2677 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2678 2679 // Create a reference to the named value. This ensures that it is emitted 2680 // if a deferred decl. 2681 llvm::Constant *Aliasee; 2682 if (isa<llvm::FunctionType>(DeclTy)) 2683 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2684 /*ForVTable=*/false); 2685 else 2686 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2687 llvm::PointerType::getUnqual(DeclTy), 2688 /*D=*/nullptr); 2689 2690 // Create the new alias itself, but don't set a name yet. 2691 auto *GA = llvm::GlobalAlias::create( 2692 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2693 2694 if (Entry) { 2695 if (GA->getAliasee() == Entry) { 2696 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2697 return; 2698 } 2699 2700 assert(Entry->isDeclaration()); 2701 2702 // If there is a declaration in the module, then we had an extern followed 2703 // by the alias, as in: 2704 // extern int test6(); 2705 // ... 2706 // int test6() __attribute__((alias("test7"))); 2707 // 2708 // Remove it and replace uses of it with the alias. 2709 GA->takeName(Entry); 2710 2711 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2712 Entry->getType())); 2713 Entry->eraseFromParent(); 2714 } else { 2715 GA->setName(MangledName); 2716 } 2717 2718 // Set attributes which are particular to an alias; this is a 2719 // specialization of the attributes which may be set on a global 2720 // variable/function. 2721 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2722 D->isWeakImported()) { 2723 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2724 } 2725 2726 if (const auto *VD = dyn_cast<VarDecl>(D)) 2727 if (VD->getTLSKind()) 2728 setTLSMode(GA, *VD); 2729 2730 setAliasAttributes(D, GA); 2731 } 2732 2733 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2734 ArrayRef<llvm::Type*> Tys) { 2735 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2736 Tys); 2737 } 2738 2739 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2740 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2741 const StringLiteral *Literal, bool TargetIsLSB, 2742 bool &IsUTF16, unsigned &StringLength) { 2743 StringRef String = Literal->getString(); 2744 unsigned NumBytes = String.size(); 2745 2746 // Check for simple case. 2747 if (!Literal->containsNonAsciiOrNull()) { 2748 StringLength = NumBytes; 2749 return *Map.insert(std::make_pair(String, nullptr)).first; 2750 } 2751 2752 // Otherwise, convert the UTF8 literals into a string of shorts. 2753 IsUTF16 = true; 2754 2755 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2756 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2757 UTF16 *ToPtr = &ToBuf[0]; 2758 2759 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2760 &ToPtr, ToPtr + NumBytes, 2761 strictConversion); 2762 2763 // ConvertUTF8toUTF16 returns the length in ToPtr. 2764 StringLength = ToPtr - &ToBuf[0]; 2765 2766 // Add an explicit null. 2767 *ToPtr = 0; 2768 return *Map.insert(std::make_pair( 2769 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2770 (StringLength + 1) * 2), 2771 nullptr)).first; 2772 } 2773 2774 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2775 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2776 const StringLiteral *Literal, unsigned &StringLength) { 2777 StringRef String = Literal->getString(); 2778 StringLength = String.size(); 2779 return *Map.insert(std::make_pair(String, nullptr)).first; 2780 } 2781 2782 ConstantAddress 2783 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2784 unsigned StringLength = 0; 2785 bool isUTF16 = false; 2786 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2787 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2788 getDataLayout().isLittleEndian(), isUTF16, 2789 StringLength); 2790 2791 if (auto *C = Entry.second) 2792 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2793 2794 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2795 llvm::Constant *Zeros[] = { Zero, Zero }; 2796 llvm::Value *V; 2797 2798 // If we don't already have it, get __CFConstantStringClassReference. 2799 if (!CFConstantStringClassRef) { 2800 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2801 Ty = llvm::ArrayType::get(Ty, 0); 2802 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2803 "__CFConstantStringClassReference"); 2804 // Decay array -> ptr 2805 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2806 CFConstantStringClassRef = V; 2807 } 2808 else 2809 V = CFConstantStringClassRef; 2810 2811 QualType CFTy = getContext().getCFConstantStringType(); 2812 2813 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2814 2815 llvm::Constant *Fields[4]; 2816 2817 // Class pointer. 2818 Fields[0] = cast<llvm::ConstantExpr>(V); 2819 2820 // Flags. 2821 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2822 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2823 llvm::ConstantInt::get(Ty, 0x07C8); 2824 2825 // String pointer. 2826 llvm::Constant *C = nullptr; 2827 if (isUTF16) { 2828 auto Arr = llvm::makeArrayRef( 2829 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2830 Entry.first().size() / 2); 2831 C = llvm::ConstantDataArray::get(VMContext, Arr); 2832 } else { 2833 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2834 } 2835 2836 // Note: -fwritable-strings doesn't make the backing store strings of 2837 // CFStrings writable. (See <rdar://problem/10657500>) 2838 auto *GV = 2839 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2840 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2841 GV->setUnnamedAddr(true); 2842 // Don't enforce the target's minimum global alignment, since the only use 2843 // of the string is via this class initializer. 2844 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2845 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2846 // that changes the section it ends in, which surprises ld64. 2847 if (isUTF16) { 2848 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2849 GV->setAlignment(Align.getQuantity()); 2850 GV->setSection("__TEXT,__ustring"); 2851 } else { 2852 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2853 GV->setAlignment(Align.getQuantity()); 2854 GV->setSection("__TEXT,__cstring,cstring_literals"); 2855 } 2856 2857 // String. 2858 Fields[2] = 2859 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2860 2861 if (isUTF16) 2862 // Cast the UTF16 string to the correct type. 2863 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2864 2865 // String length. 2866 Ty = getTypes().ConvertType(getContext().LongTy); 2867 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2868 2869 CharUnits Alignment = getPointerAlign(); 2870 2871 // The struct. 2872 C = llvm::ConstantStruct::get(STy, Fields); 2873 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2874 llvm::GlobalVariable::PrivateLinkage, C, 2875 "_unnamed_cfstring_"); 2876 GV->setSection("__DATA,__cfstring"); 2877 GV->setAlignment(Alignment.getQuantity()); 2878 Entry.second = GV; 2879 2880 return ConstantAddress(GV, Alignment); 2881 } 2882 2883 ConstantAddress 2884 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2885 unsigned StringLength = 0; 2886 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2887 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2888 2889 if (auto *C = Entry.second) 2890 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2891 2892 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2893 llvm::Constant *Zeros[] = { Zero, Zero }; 2894 llvm::Value *V; 2895 // If we don't already have it, get _NSConstantStringClassReference. 2896 if (!ConstantStringClassRef) { 2897 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2898 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2899 llvm::Constant *GV; 2900 if (LangOpts.ObjCRuntime.isNonFragile()) { 2901 std::string str = 2902 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2903 : "OBJC_CLASS_$_" + StringClass; 2904 GV = getObjCRuntime().GetClassGlobal(str); 2905 // Make sure the result is of the correct type. 2906 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2907 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2908 ConstantStringClassRef = V; 2909 } else { 2910 std::string str = 2911 StringClass.empty() ? "_NSConstantStringClassReference" 2912 : "_" + StringClass + "ClassReference"; 2913 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2914 GV = CreateRuntimeVariable(PTy, str); 2915 // Decay array -> ptr 2916 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2917 ConstantStringClassRef = V; 2918 } 2919 } else 2920 V = ConstantStringClassRef; 2921 2922 if (!NSConstantStringType) { 2923 // Construct the type for a constant NSString. 2924 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2925 D->startDefinition(); 2926 2927 QualType FieldTypes[3]; 2928 2929 // const int *isa; 2930 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2931 // const char *str; 2932 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2933 // unsigned int length; 2934 FieldTypes[2] = Context.UnsignedIntTy; 2935 2936 // Create fields 2937 for (unsigned i = 0; i < 3; ++i) { 2938 FieldDecl *Field = FieldDecl::Create(Context, D, 2939 SourceLocation(), 2940 SourceLocation(), nullptr, 2941 FieldTypes[i], /*TInfo=*/nullptr, 2942 /*BitWidth=*/nullptr, 2943 /*Mutable=*/false, 2944 ICIS_NoInit); 2945 Field->setAccess(AS_public); 2946 D->addDecl(Field); 2947 } 2948 2949 D->completeDefinition(); 2950 QualType NSTy = Context.getTagDeclType(D); 2951 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2952 } 2953 2954 llvm::Constant *Fields[3]; 2955 2956 // Class pointer. 2957 Fields[0] = cast<llvm::ConstantExpr>(V); 2958 2959 // String pointer. 2960 llvm::Constant *C = 2961 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2962 2963 llvm::GlobalValue::LinkageTypes Linkage; 2964 bool isConstant; 2965 Linkage = llvm::GlobalValue::PrivateLinkage; 2966 isConstant = !LangOpts.WritableStrings; 2967 2968 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2969 Linkage, C, ".str"); 2970 GV->setUnnamedAddr(true); 2971 // Don't enforce the target's minimum global alignment, since the only use 2972 // of the string is via this class initializer. 2973 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2974 GV->setAlignment(Align.getQuantity()); 2975 Fields[1] = 2976 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2977 2978 // String length. 2979 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2980 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2981 2982 // The struct. 2983 CharUnits Alignment = getPointerAlign(); 2984 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2985 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2986 llvm::GlobalVariable::PrivateLinkage, C, 2987 "_unnamed_nsstring_"); 2988 GV->setAlignment(Alignment.getQuantity()); 2989 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2990 const char *NSStringNonFragileABISection = 2991 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2992 // FIXME. Fix section. 2993 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2994 ? NSStringNonFragileABISection 2995 : NSStringSection); 2996 Entry.second = GV; 2997 2998 return ConstantAddress(GV, Alignment); 2999 } 3000 3001 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3002 if (ObjCFastEnumerationStateType.isNull()) { 3003 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3004 D->startDefinition(); 3005 3006 QualType FieldTypes[] = { 3007 Context.UnsignedLongTy, 3008 Context.getPointerType(Context.getObjCIdType()), 3009 Context.getPointerType(Context.UnsignedLongTy), 3010 Context.getConstantArrayType(Context.UnsignedLongTy, 3011 llvm::APInt(32, 5), ArrayType::Normal, 0) 3012 }; 3013 3014 for (size_t i = 0; i < 4; ++i) { 3015 FieldDecl *Field = FieldDecl::Create(Context, 3016 D, 3017 SourceLocation(), 3018 SourceLocation(), nullptr, 3019 FieldTypes[i], /*TInfo=*/nullptr, 3020 /*BitWidth=*/nullptr, 3021 /*Mutable=*/false, 3022 ICIS_NoInit); 3023 Field->setAccess(AS_public); 3024 D->addDecl(Field); 3025 } 3026 3027 D->completeDefinition(); 3028 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3029 } 3030 3031 return ObjCFastEnumerationStateType; 3032 } 3033 3034 llvm::Constant * 3035 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3036 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3037 3038 // Don't emit it as the address of the string, emit the string data itself 3039 // as an inline array. 3040 if (E->getCharByteWidth() == 1) { 3041 SmallString<64> Str(E->getString()); 3042 3043 // Resize the string to the right size, which is indicated by its type. 3044 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3045 Str.resize(CAT->getSize().getZExtValue()); 3046 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3047 } 3048 3049 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3050 llvm::Type *ElemTy = AType->getElementType(); 3051 unsigned NumElements = AType->getNumElements(); 3052 3053 // Wide strings have either 2-byte or 4-byte elements. 3054 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3055 SmallVector<uint16_t, 32> Elements; 3056 Elements.reserve(NumElements); 3057 3058 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3059 Elements.push_back(E->getCodeUnit(i)); 3060 Elements.resize(NumElements); 3061 return llvm::ConstantDataArray::get(VMContext, Elements); 3062 } 3063 3064 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3065 SmallVector<uint32_t, 32> Elements; 3066 Elements.reserve(NumElements); 3067 3068 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3069 Elements.push_back(E->getCodeUnit(i)); 3070 Elements.resize(NumElements); 3071 return llvm::ConstantDataArray::get(VMContext, Elements); 3072 } 3073 3074 static llvm::GlobalVariable * 3075 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3076 CodeGenModule &CGM, StringRef GlobalName, 3077 CharUnits Alignment) { 3078 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3079 unsigned AddrSpace = 0; 3080 if (CGM.getLangOpts().OpenCL) 3081 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3082 3083 llvm::Module &M = CGM.getModule(); 3084 // Create a global variable for this string 3085 auto *GV = new llvm::GlobalVariable( 3086 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3087 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3088 GV->setAlignment(Alignment.getQuantity()); 3089 GV->setUnnamedAddr(true); 3090 if (GV->isWeakForLinker()) { 3091 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3092 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3093 } 3094 3095 return GV; 3096 } 3097 3098 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3099 /// constant array for the given string literal. 3100 ConstantAddress 3101 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3102 StringRef Name) { 3103 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3104 3105 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3106 llvm::GlobalVariable **Entry = nullptr; 3107 if (!LangOpts.WritableStrings) { 3108 Entry = &ConstantStringMap[C]; 3109 if (auto GV = *Entry) { 3110 if (Alignment.getQuantity() > GV->getAlignment()) 3111 GV->setAlignment(Alignment.getQuantity()); 3112 return ConstantAddress(GV, Alignment); 3113 } 3114 } 3115 3116 SmallString<256> MangledNameBuffer; 3117 StringRef GlobalVariableName; 3118 llvm::GlobalValue::LinkageTypes LT; 3119 3120 // Mangle the string literal if the ABI allows for it. However, we cannot 3121 // do this if we are compiling with ASan or -fwritable-strings because they 3122 // rely on strings having normal linkage. 3123 if (!LangOpts.WritableStrings && 3124 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3125 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3126 llvm::raw_svector_ostream Out(MangledNameBuffer); 3127 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3128 3129 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3130 GlobalVariableName = MangledNameBuffer; 3131 } else { 3132 LT = llvm::GlobalValue::PrivateLinkage; 3133 GlobalVariableName = Name; 3134 } 3135 3136 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3137 if (Entry) 3138 *Entry = GV; 3139 3140 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3141 QualType()); 3142 return ConstantAddress(GV, Alignment); 3143 } 3144 3145 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3146 /// array for the given ObjCEncodeExpr node. 3147 ConstantAddress 3148 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3149 std::string Str; 3150 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3151 3152 return GetAddrOfConstantCString(Str); 3153 } 3154 3155 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3156 /// the literal and a terminating '\0' character. 3157 /// The result has pointer to array type. 3158 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3159 const std::string &Str, const char *GlobalName) { 3160 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3161 CharUnits Alignment = 3162 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3163 3164 llvm::Constant *C = 3165 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3166 3167 // Don't share any string literals if strings aren't constant. 3168 llvm::GlobalVariable **Entry = nullptr; 3169 if (!LangOpts.WritableStrings) { 3170 Entry = &ConstantStringMap[C]; 3171 if (auto GV = *Entry) { 3172 if (Alignment.getQuantity() > GV->getAlignment()) 3173 GV->setAlignment(Alignment.getQuantity()); 3174 return ConstantAddress(GV, Alignment); 3175 } 3176 } 3177 3178 // Get the default prefix if a name wasn't specified. 3179 if (!GlobalName) 3180 GlobalName = ".str"; 3181 // Create a global variable for this. 3182 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3183 GlobalName, Alignment); 3184 if (Entry) 3185 *Entry = GV; 3186 return ConstantAddress(GV, Alignment); 3187 } 3188 3189 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3190 const MaterializeTemporaryExpr *E, const Expr *Init) { 3191 assert((E->getStorageDuration() == SD_Static || 3192 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3193 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3194 3195 // If we're not materializing a subobject of the temporary, keep the 3196 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3197 QualType MaterializedType = Init->getType(); 3198 if (Init == E->GetTemporaryExpr()) 3199 MaterializedType = E->getType(); 3200 3201 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3202 3203 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3204 return ConstantAddress(Slot, Align); 3205 3206 // FIXME: If an externally-visible declaration extends multiple temporaries, 3207 // we need to give each temporary the same name in every translation unit (and 3208 // we also need to make the temporaries externally-visible). 3209 SmallString<256> Name; 3210 llvm::raw_svector_ostream Out(Name); 3211 getCXXABI().getMangleContext().mangleReferenceTemporary( 3212 VD, E->getManglingNumber(), Out); 3213 3214 APValue *Value = nullptr; 3215 if (E->getStorageDuration() == SD_Static) { 3216 // We might have a cached constant initializer for this temporary. Note 3217 // that this might have a different value from the value computed by 3218 // evaluating the initializer if the surrounding constant expression 3219 // modifies the temporary. 3220 Value = getContext().getMaterializedTemporaryValue(E, false); 3221 if (Value && Value->isUninit()) 3222 Value = nullptr; 3223 } 3224 3225 // Try evaluating it now, it might have a constant initializer. 3226 Expr::EvalResult EvalResult; 3227 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3228 !EvalResult.hasSideEffects()) 3229 Value = &EvalResult.Val; 3230 3231 llvm::Constant *InitialValue = nullptr; 3232 bool Constant = false; 3233 llvm::Type *Type; 3234 if (Value) { 3235 // The temporary has a constant initializer, use it. 3236 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3237 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3238 Type = InitialValue->getType(); 3239 } else { 3240 // No initializer, the initialization will be provided when we 3241 // initialize the declaration which performed lifetime extension. 3242 Type = getTypes().ConvertTypeForMem(MaterializedType); 3243 } 3244 3245 // Create a global variable for this lifetime-extended temporary. 3246 llvm::GlobalValue::LinkageTypes Linkage = 3247 getLLVMLinkageVarDefinition(VD, Constant); 3248 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3249 const VarDecl *InitVD; 3250 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3251 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3252 // Temporaries defined inside a class get linkonce_odr linkage because the 3253 // class can be defined in multipe translation units. 3254 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3255 } else { 3256 // There is no need for this temporary to have external linkage if the 3257 // VarDecl has external linkage. 3258 Linkage = llvm::GlobalVariable::InternalLinkage; 3259 } 3260 } 3261 unsigned AddrSpace = GetGlobalVarAddressSpace( 3262 VD, getContext().getTargetAddressSpace(MaterializedType)); 3263 auto *GV = new llvm::GlobalVariable( 3264 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3265 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3266 AddrSpace); 3267 setGlobalVisibility(GV, VD); 3268 GV->setAlignment(Align.getQuantity()); 3269 if (supportsCOMDAT() && GV->isWeakForLinker()) 3270 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3271 if (VD->getTLSKind()) 3272 setTLSMode(GV, *VD); 3273 MaterializedGlobalTemporaryMap[E] = GV; 3274 return ConstantAddress(GV, Align); 3275 } 3276 3277 /// EmitObjCPropertyImplementations - Emit information for synthesized 3278 /// properties for an implementation. 3279 void CodeGenModule::EmitObjCPropertyImplementations(const 3280 ObjCImplementationDecl *D) { 3281 for (const auto *PID : D->property_impls()) { 3282 // Dynamic is just for type-checking. 3283 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3284 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3285 3286 // Determine which methods need to be implemented, some may have 3287 // been overridden. Note that ::isPropertyAccessor is not the method 3288 // we want, that just indicates if the decl came from a 3289 // property. What we want to know is if the method is defined in 3290 // this implementation. 3291 if (!D->getInstanceMethod(PD->getGetterName())) 3292 CodeGenFunction(*this).GenerateObjCGetter( 3293 const_cast<ObjCImplementationDecl *>(D), PID); 3294 if (!PD->isReadOnly() && 3295 !D->getInstanceMethod(PD->getSetterName())) 3296 CodeGenFunction(*this).GenerateObjCSetter( 3297 const_cast<ObjCImplementationDecl *>(D), PID); 3298 } 3299 } 3300 } 3301 3302 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3303 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3304 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3305 ivar; ivar = ivar->getNextIvar()) 3306 if (ivar->getType().isDestructedType()) 3307 return true; 3308 3309 return false; 3310 } 3311 3312 static bool AllTrivialInitializers(CodeGenModule &CGM, 3313 ObjCImplementationDecl *D) { 3314 CodeGenFunction CGF(CGM); 3315 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3316 E = D->init_end(); B != E; ++B) { 3317 CXXCtorInitializer *CtorInitExp = *B; 3318 Expr *Init = CtorInitExp->getInit(); 3319 if (!CGF.isTrivialInitializer(Init)) 3320 return false; 3321 } 3322 return true; 3323 } 3324 3325 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3326 /// for an implementation. 3327 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3328 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3329 if (needsDestructMethod(D)) { 3330 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3331 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3332 ObjCMethodDecl *DTORMethod = 3333 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3334 cxxSelector, getContext().VoidTy, nullptr, D, 3335 /*isInstance=*/true, /*isVariadic=*/false, 3336 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3337 /*isDefined=*/false, ObjCMethodDecl::Required); 3338 D->addInstanceMethod(DTORMethod); 3339 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3340 D->setHasDestructors(true); 3341 } 3342 3343 // If the implementation doesn't have any ivar initializers, we don't need 3344 // a .cxx_construct. 3345 if (D->getNumIvarInitializers() == 0 || 3346 AllTrivialInitializers(*this, D)) 3347 return; 3348 3349 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3350 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3351 // The constructor returns 'self'. 3352 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3353 D->getLocation(), 3354 D->getLocation(), 3355 cxxSelector, 3356 getContext().getObjCIdType(), 3357 nullptr, D, /*isInstance=*/true, 3358 /*isVariadic=*/false, 3359 /*isPropertyAccessor=*/true, 3360 /*isImplicitlyDeclared=*/true, 3361 /*isDefined=*/false, 3362 ObjCMethodDecl::Required); 3363 D->addInstanceMethod(CTORMethod); 3364 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3365 D->setHasNonZeroConstructors(true); 3366 } 3367 3368 /// EmitNamespace - Emit all declarations in a namespace. 3369 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3370 for (auto *I : ND->decls()) { 3371 if (const auto *VD = dyn_cast<VarDecl>(I)) 3372 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3373 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3374 continue; 3375 EmitTopLevelDecl(I); 3376 } 3377 } 3378 3379 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3380 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3381 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3382 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3383 ErrorUnsupported(LSD, "linkage spec"); 3384 return; 3385 } 3386 3387 for (auto *I : LSD->decls()) { 3388 // Meta-data for ObjC class includes references to implemented methods. 3389 // Generate class's method definitions first. 3390 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3391 for (auto *M : OID->methods()) 3392 EmitTopLevelDecl(M); 3393 } 3394 EmitTopLevelDecl(I); 3395 } 3396 } 3397 3398 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3399 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3400 // Ignore dependent declarations. 3401 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3402 return; 3403 3404 switch (D->getKind()) { 3405 case Decl::CXXConversion: 3406 case Decl::CXXMethod: 3407 case Decl::Function: 3408 // Skip function templates 3409 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3410 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3411 return; 3412 3413 EmitGlobal(cast<FunctionDecl>(D)); 3414 // Always provide some coverage mapping 3415 // even for the functions that aren't emitted. 3416 AddDeferredUnusedCoverageMapping(D); 3417 break; 3418 3419 case Decl::Var: 3420 // Skip variable templates 3421 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3422 return; 3423 case Decl::VarTemplateSpecialization: 3424 EmitGlobal(cast<VarDecl>(D)); 3425 break; 3426 3427 // Indirect fields from global anonymous structs and unions can be 3428 // ignored; only the actual variable requires IR gen support. 3429 case Decl::IndirectField: 3430 break; 3431 3432 // C++ Decls 3433 case Decl::Namespace: 3434 EmitNamespace(cast<NamespaceDecl>(D)); 3435 break; 3436 // No code generation needed. 3437 case Decl::UsingShadow: 3438 case Decl::ClassTemplate: 3439 case Decl::VarTemplate: 3440 case Decl::VarTemplatePartialSpecialization: 3441 case Decl::FunctionTemplate: 3442 case Decl::TypeAliasTemplate: 3443 case Decl::Block: 3444 case Decl::Empty: 3445 break; 3446 case Decl::Using: // using X; [C++] 3447 if (CGDebugInfo *DI = getModuleDebugInfo()) 3448 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3449 return; 3450 case Decl::NamespaceAlias: 3451 if (CGDebugInfo *DI = getModuleDebugInfo()) 3452 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3453 return; 3454 case Decl::UsingDirective: // using namespace X; [C++] 3455 if (CGDebugInfo *DI = getModuleDebugInfo()) 3456 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3457 return; 3458 case Decl::CXXConstructor: 3459 // Skip function templates 3460 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3461 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3462 return; 3463 3464 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3465 break; 3466 case Decl::CXXDestructor: 3467 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3468 return; 3469 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3470 break; 3471 3472 case Decl::StaticAssert: 3473 // Nothing to do. 3474 break; 3475 3476 // Objective-C Decls 3477 3478 // Forward declarations, no (immediate) code generation. 3479 case Decl::ObjCInterface: 3480 case Decl::ObjCCategory: 3481 break; 3482 3483 case Decl::ObjCProtocol: { 3484 auto *Proto = cast<ObjCProtocolDecl>(D); 3485 if (Proto->isThisDeclarationADefinition()) 3486 ObjCRuntime->GenerateProtocol(Proto); 3487 break; 3488 } 3489 3490 case Decl::ObjCCategoryImpl: 3491 // Categories have properties but don't support synthesize so we 3492 // can ignore them here. 3493 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3494 break; 3495 3496 case Decl::ObjCImplementation: { 3497 auto *OMD = cast<ObjCImplementationDecl>(D); 3498 EmitObjCPropertyImplementations(OMD); 3499 EmitObjCIvarInitializations(OMD); 3500 ObjCRuntime->GenerateClass(OMD); 3501 // Emit global variable debug information. 3502 if (CGDebugInfo *DI = getModuleDebugInfo()) 3503 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3504 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3505 OMD->getClassInterface()), OMD->getLocation()); 3506 break; 3507 } 3508 case Decl::ObjCMethod: { 3509 auto *OMD = cast<ObjCMethodDecl>(D); 3510 // If this is not a prototype, emit the body. 3511 if (OMD->getBody()) 3512 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3513 break; 3514 } 3515 case Decl::ObjCCompatibleAlias: 3516 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3517 break; 3518 3519 case Decl::LinkageSpec: 3520 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3521 break; 3522 3523 case Decl::FileScopeAsm: { 3524 // File-scope asm is ignored during device-side CUDA compilation. 3525 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3526 break; 3527 auto *AD = cast<FileScopeAsmDecl>(D); 3528 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3529 break; 3530 } 3531 3532 case Decl::Import: { 3533 auto *Import = cast<ImportDecl>(D); 3534 3535 // Ignore import declarations that come from imported modules. 3536 if (Import->getImportedOwningModule()) 3537 break; 3538 if (CGDebugInfo *DI = getModuleDebugInfo()) 3539 DI->EmitImportDecl(*Import); 3540 3541 ImportedModules.insert(Import->getImportedModule()); 3542 break; 3543 } 3544 3545 case Decl::OMPThreadPrivate: 3546 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3547 break; 3548 3549 case Decl::ClassTemplateSpecialization: { 3550 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3551 if (DebugInfo && 3552 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3553 Spec->hasDefinition()) 3554 DebugInfo->completeTemplateDefinition(*Spec); 3555 break; 3556 } 3557 3558 default: 3559 // Make sure we handled everything we should, every other kind is a 3560 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3561 // function. Need to recode Decl::Kind to do that easily. 3562 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3563 break; 3564 } 3565 } 3566 3567 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3568 // Do we need to generate coverage mapping? 3569 if (!CodeGenOpts.CoverageMapping) 3570 return; 3571 switch (D->getKind()) { 3572 case Decl::CXXConversion: 3573 case Decl::CXXMethod: 3574 case Decl::Function: 3575 case Decl::ObjCMethod: 3576 case Decl::CXXConstructor: 3577 case Decl::CXXDestructor: { 3578 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3579 return; 3580 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3581 if (I == DeferredEmptyCoverageMappingDecls.end()) 3582 DeferredEmptyCoverageMappingDecls[D] = true; 3583 break; 3584 } 3585 default: 3586 break; 3587 }; 3588 } 3589 3590 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3591 // Do we need to generate coverage mapping? 3592 if (!CodeGenOpts.CoverageMapping) 3593 return; 3594 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3595 if (Fn->isTemplateInstantiation()) 3596 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3597 } 3598 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3599 if (I == DeferredEmptyCoverageMappingDecls.end()) 3600 DeferredEmptyCoverageMappingDecls[D] = false; 3601 else 3602 I->second = false; 3603 } 3604 3605 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3606 std::vector<const Decl *> DeferredDecls; 3607 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3608 if (!I.second) 3609 continue; 3610 DeferredDecls.push_back(I.first); 3611 } 3612 // Sort the declarations by their location to make sure that the tests get a 3613 // predictable order for the coverage mapping for the unused declarations. 3614 if (CodeGenOpts.DumpCoverageMapping) 3615 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3616 [] (const Decl *LHS, const Decl *RHS) { 3617 return LHS->getLocStart() < RHS->getLocStart(); 3618 }); 3619 for (const auto *D : DeferredDecls) { 3620 switch (D->getKind()) { 3621 case Decl::CXXConversion: 3622 case Decl::CXXMethod: 3623 case Decl::Function: 3624 case Decl::ObjCMethod: { 3625 CodeGenPGO PGO(*this); 3626 GlobalDecl GD(cast<FunctionDecl>(D)); 3627 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3628 getFunctionLinkage(GD)); 3629 break; 3630 } 3631 case Decl::CXXConstructor: { 3632 CodeGenPGO PGO(*this); 3633 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3634 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3635 getFunctionLinkage(GD)); 3636 break; 3637 } 3638 case Decl::CXXDestructor: { 3639 CodeGenPGO PGO(*this); 3640 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3641 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3642 getFunctionLinkage(GD)); 3643 break; 3644 } 3645 default: 3646 break; 3647 }; 3648 } 3649 } 3650 3651 /// Turns the given pointer into a constant. 3652 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3653 const void *Ptr) { 3654 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3655 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3656 return llvm::ConstantInt::get(i64, PtrInt); 3657 } 3658 3659 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3660 llvm::NamedMDNode *&GlobalMetadata, 3661 GlobalDecl D, 3662 llvm::GlobalValue *Addr) { 3663 if (!GlobalMetadata) 3664 GlobalMetadata = 3665 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3666 3667 // TODO: should we report variant information for ctors/dtors? 3668 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3669 llvm::ConstantAsMetadata::get(GetPointerConstant( 3670 CGM.getLLVMContext(), D.getDecl()))}; 3671 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3672 } 3673 3674 /// For each function which is declared within an extern "C" region and marked 3675 /// as 'used', but has internal linkage, create an alias from the unmangled 3676 /// name to the mangled name if possible. People expect to be able to refer 3677 /// to such functions with an unmangled name from inline assembly within the 3678 /// same translation unit. 3679 void CodeGenModule::EmitStaticExternCAliases() { 3680 for (auto &I : StaticExternCValues) { 3681 IdentifierInfo *Name = I.first; 3682 llvm::GlobalValue *Val = I.second; 3683 if (Val && !getModule().getNamedValue(Name->getName())) 3684 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3685 } 3686 } 3687 3688 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3689 GlobalDecl &Result) const { 3690 auto Res = Manglings.find(MangledName); 3691 if (Res == Manglings.end()) 3692 return false; 3693 Result = Res->getValue(); 3694 return true; 3695 } 3696 3697 /// Emits metadata nodes associating all the global values in the 3698 /// current module with the Decls they came from. This is useful for 3699 /// projects using IR gen as a subroutine. 3700 /// 3701 /// Since there's currently no way to associate an MDNode directly 3702 /// with an llvm::GlobalValue, we create a global named metadata 3703 /// with the name 'clang.global.decl.ptrs'. 3704 void CodeGenModule::EmitDeclMetadata() { 3705 llvm::NamedMDNode *GlobalMetadata = nullptr; 3706 3707 // StaticLocalDeclMap 3708 for (auto &I : MangledDeclNames) { 3709 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3710 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3711 } 3712 } 3713 3714 /// Emits metadata nodes for all the local variables in the current 3715 /// function. 3716 void CodeGenFunction::EmitDeclMetadata() { 3717 if (LocalDeclMap.empty()) return; 3718 3719 llvm::LLVMContext &Context = getLLVMContext(); 3720 3721 // Find the unique metadata ID for this name. 3722 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3723 3724 llvm::NamedMDNode *GlobalMetadata = nullptr; 3725 3726 for (auto &I : LocalDeclMap) { 3727 const Decl *D = I.first; 3728 llvm::Value *Addr = I.second.getPointer(); 3729 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3730 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3731 Alloca->setMetadata( 3732 DeclPtrKind, llvm::MDNode::get( 3733 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3734 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3735 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3736 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3737 } 3738 } 3739 } 3740 3741 void CodeGenModule::EmitVersionIdentMetadata() { 3742 llvm::NamedMDNode *IdentMetadata = 3743 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3744 std::string Version = getClangFullVersion(); 3745 llvm::LLVMContext &Ctx = TheModule.getContext(); 3746 3747 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3748 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3749 } 3750 3751 void CodeGenModule::EmitTargetMetadata() { 3752 // Warning, new MangledDeclNames may be appended within this loop. 3753 // We rely on MapVector insertions adding new elements to the end 3754 // of the container. 3755 // FIXME: Move this loop into the one target that needs it, and only 3756 // loop over those declarations for which we couldn't emit the target 3757 // metadata when we emitted the declaration. 3758 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3759 auto Val = *(MangledDeclNames.begin() + I); 3760 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3761 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3762 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3763 } 3764 } 3765 3766 void CodeGenModule::EmitCoverageFile() { 3767 if (!getCodeGenOpts().CoverageFile.empty()) { 3768 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3769 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3770 llvm::LLVMContext &Ctx = TheModule.getContext(); 3771 llvm::MDString *CoverageFile = 3772 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3773 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3774 llvm::MDNode *CU = CUNode->getOperand(i); 3775 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3776 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3777 } 3778 } 3779 } 3780 } 3781 3782 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3783 // Sema has checked that all uuid strings are of the form 3784 // "12345678-1234-1234-1234-1234567890ab". 3785 assert(Uuid.size() == 36); 3786 for (unsigned i = 0; i < 36; ++i) { 3787 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3788 else assert(isHexDigit(Uuid[i])); 3789 } 3790 3791 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3792 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3793 3794 llvm::Constant *Field3[8]; 3795 for (unsigned Idx = 0; Idx < 8; ++Idx) 3796 Field3[Idx] = llvm::ConstantInt::get( 3797 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3798 3799 llvm::Constant *Fields[4] = { 3800 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3801 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3802 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3803 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3804 }; 3805 3806 return llvm::ConstantStruct::getAnon(Fields); 3807 } 3808 3809 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3810 bool ForEH) { 3811 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3812 // FIXME: should we even be calling this method if RTTI is disabled 3813 // and it's not for EH? 3814 if (!ForEH && !getLangOpts().RTTI) 3815 return llvm::Constant::getNullValue(Int8PtrTy); 3816 3817 if (ForEH && Ty->isObjCObjectPointerType() && 3818 LangOpts.ObjCRuntime.isGNUFamily()) 3819 return ObjCRuntime->GetEHType(Ty); 3820 3821 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3822 } 3823 3824 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3825 for (auto RefExpr : D->varlists()) { 3826 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3827 bool PerformInit = 3828 VD->getAnyInitializer() && 3829 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3830 /*ForRef=*/false); 3831 3832 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3833 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3834 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3835 CXXGlobalInits.push_back(InitFunction); 3836 } 3837 } 3838 3839 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3840 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3841 if (InternalId) 3842 return InternalId; 3843 3844 if (isExternallyVisible(T->getLinkage())) { 3845 std::string OutName; 3846 llvm::raw_string_ostream Out(OutName); 3847 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3848 3849 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3850 } else { 3851 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3852 llvm::ArrayRef<llvm::Metadata *>()); 3853 } 3854 3855 return InternalId; 3856 } 3857 3858 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3859 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3860 llvm::Metadata *BitsetOps[] = { 3861 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)), 3862 llvm::ConstantAsMetadata::get(VTable), 3863 llvm::ConstantAsMetadata::get( 3864 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3865 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3866 } 3867