xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision bf5c17ed0f402f603782d28264dab1157994c43d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/ADT/Triple.h"
54 #include "llvm/Analysis/TargetLibraryInfo.h"
55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/X86TargetParser.h"
71 #include "llvm/Support/xxhash.h"
72 
73 using namespace clang;
74 using namespace CodeGen;
75 
76 static llvm::cl::opt<bool> LimitedCoverage(
77     "limited-coverage-experimental", llvm::cl::Hidden,
78     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
79 
80 static const char AnnotationSection[] = "llvm.metadata";
81 
82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
83   switch (CGM.getContext().getCXXABIKind()) {
84   case TargetCXXABI::AppleARM64:
85   case TargetCXXABI::Fuchsia:
86   case TargetCXXABI::GenericAArch64:
87   case TargetCXXABI::GenericARM:
88   case TargetCXXABI::iOS:
89   case TargetCXXABI::WatchOS:
90   case TargetCXXABI::GenericMIPS:
91   case TargetCXXABI::GenericItanium:
92   case TargetCXXABI::WebAssembly:
93   case TargetCXXABI::XL:
94     return CreateItaniumCXXABI(CGM);
95   case TargetCXXABI::Microsoft:
96     return CreateMicrosoftCXXABI(CGM);
97   }
98 
99   llvm_unreachable("invalid C++ ABI kind");
100 }
101 
102 CodeGenModule::CodeGenModule(ASTContext &C,
103                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
104                              const HeaderSearchOptions &HSO,
105                              const PreprocessorOptions &PPO,
106                              const CodeGenOptions &CGO, llvm::Module &M,
107                              DiagnosticsEngine &diags,
108                              CoverageSourceInfo *CoverageInfo)
109     : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
110       HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
111       TheModule(M), Diags(diags), Target(C.getTargetInfo()),
112       ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
113       VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
114 
115   // Initialize the type cache.
116   llvm::LLVMContext &LLVMContext = M.getContext();
117   VoidTy = llvm::Type::getVoidTy(LLVMContext);
118   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
119   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
120   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
121   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
122   HalfTy = llvm::Type::getHalfTy(LLVMContext);
123   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
124   FloatTy = llvm::Type::getFloatTy(LLVMContext);
125   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
126   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
127   PointerAlignInBytes =
128       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
129           .getQuantity();
130   SizeSizeInBytes =
131     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
132   IntAlignInBytes =
133     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
134   CharTy =
135     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
136   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
137   IntPtrTy = llvm::IntegerType::get(LLVMContext,
138     C.getTargetInfo().getMaxPointerWidth());
139   Int8PtrTy = Int8Ty->getPointerTo(0);
140   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
141   const llvm::DataLayout &DL = M.getDataLayout();
142   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
143   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
144   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
145       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
146   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
147 
148   // Build C++20 Module initializers.
149   // TODO: Add Microsoft here once we know the mangling required for the
150   // initializers.
151   CXX20ModuleInits =
152       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
153                                        ItaniumMangleContext::MK_Itanium;
154 
155   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
156 
157   if (LangOpts.ObjC)
158     createObjCRuntime();
159   if (LangOpts.OpenCL)
160     createOpenCLRuntime();
161   if (LangOpts.OpenMP)
162     createOpenMPRuntime();
163   if (LangOpts.CUDA)
164     createCUDARuntime();
165   if (LangOpts.HLSL)
166     createHLSLRuntime();
167 
168   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
169   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
170       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
171     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
172                                getCXXABI().getMangleContext()));
173 
174   // If debug info or coverage generation is enabled, create the CGDebugInfo
175   // object.
176   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
177       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
178     DebugInfo.reset(new CGDebugInfo(*this));
179 
180   Block.GlobalUniqueCount = 0;
181 
182   if (C.getLangOpts().ObjC)
183     ObjCData.reset(new ObjCEntrypoints());
184 
185   if (CodeGenOpts.hasProfileClangUse()) {
186     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
187         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
188     // We're checking for profile read errors in CompilerInvocation, so if
189     // there was an error it should've already been caught. If it hasn't been
190     // somehow, trip an assertion.
191     assert(ReaderOrErr);
192     PGOReader = std::move(ReaderOrErr.get());
193   }
194 
195   // If coverage mapping generation is enabled, create the
196   // CoverageMappingModuleGen object.
197   if (CodeGenOpts.CoverageMapping)
198     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
199 
200   // Generate the module name hash here if needed.
201   if (CodeGenOpts.UniqueInternalLinkageNames &&
202       !getModule().getSourceFileName().empty()) {
203     std::string Path = getModule().getSourceFileName();
204     // Check if a path substitution is needed from the MacroPrefixMap.
205     for (const auto &Entry : LangOpts.MacroPrefixMap)
206       if (Path.rfind(Entry.first, 0) != std::string::npos) {
207         Path = Entry.second + Path.substr(Entry.first.size());
208         break;
209       }
210     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
211   }
212 }
213 
214 CodeGenModule::~CodeGenModule() {}
215 
216 void CodeGenModule::createObjCRuntime() {
217   // This is just isGNUFamily(), but we want to force implementors of
218   // new ABIs to decide how best to do this.
219   switch (LangOpts.ObjCRuntime.getKind()) {
220   case ObjCRuntime::GNUstep:
221   case ObjCRuntime::GCC:
222   case ObjCRuntime::ObjFW:
223     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
224     return;
225 
226   case ObjCRuntime::FragileMacOSX:
227   case ObjCRuntime::MacOSX:
228   case ObjCRuntime::iOS:
229   case ObjCRuntime::WatchOS:
230     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
231     return;
232   }
233   llvm_unreachable("bad runtime kind");
234 }
235 
236 void CodeGenModule::createOpenCLRuntime() {
237   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
238 }
239 
240 void CodeGenModule::createOpenMPRuntime() {
241   // Select a specialized code generation class based on the target, if any.
242   // If it does not exist use the default implementation.
243   switch (getTriple().getArch()) {
244   case llvm::Triple::nvptx:
245   case llvm::Triple::nvptx64:
246   case llvm::Triple::amdgcn:
247     assert(getLangOpts().OpenMPIsDevice &&
248            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
249     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
250     break;
251   default:
252     if (LangOpts.OpenMPSimd)
253       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
254     else
255       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
256     break;
257   }
258 }
259 
260 void CodeGenModule::createCUDARuntime() {
261   CUDARuntime.reset(CreateNVCUDARuntime(*this));
262 }
263 
264 void CodeGenModule::createHLSLRuntime() {
265   HLSLRuntime.reset(new CGHLSLRuntime(*this));
266 }
267 
268 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
269   Replacements[Name] = C;
270 }
271 
272 void CodeGenModule::applyReplacements() {
273   for (auto &I : Replacements) {
274     StringRef MangledName = I.first();
275     llvm::Constant *Replacement = I.second;
276     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
277     if (!Entry)
278       continue;
279     auto *OldF = cast<llvm::Function>(Entry);
280     auto *NewF = dyn_cast<llvm::Function>(Replacement);
281     if (!NewF) {
282       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
283         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
284       } else {
285         auto *CE = cast<llvm::ConstantExpr>(Replacement);
286         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
287                CE->getOpcode() == llvm::Instruction::GetElementPtr);
288         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
289       }
290     }
291 
292     // Replace old with new, but keep the old order.
293     OldF->replaceAllUsesWith(Replacement);
294     if (NewF) {
295       NewF->removeFromParent();
296       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
297                                                        NewF);
298     }
299     OldF->eraseFromParent();
300   }
301 }
302 
303 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
304   GlobalValReplacements.push_back(std::make_pair(GV, C));
305 }
306 
307 void CodeGenModule::applyGlobalValReplacements() {
308   for (auto &I : GlobalValReplacements) {
309     llvm::GlobalValue *GV = I.first;
310     llvm::Constant *C = I.second;
311 
312     GV->replaceAllUsesWith(C);
313     GV->eraseFromParent();
314   }
315 }
316 
317 // This is only used in aliases that we created and we know they have a
318 // linear structure.
319 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
320   const llvm::Constant *C;
321   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
322     C = GA->getAliasee();
323   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
324     C = GI->getResolver();
325   else
326     return GV;
327 
328   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
329   if (!AliaseeGV)
330     return nullptr;
331 
332   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
333   if (FinalGV == GV)
334     return nullptr;
335 
336   return FinalGV;
337 }
338 
339 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
340                                SourceLocation Location, bool IsIFunc,
341                                const llvm::GlobalValue *Alias,
342                                const llvm::GlobalValue *&GV) {
343   GV = getAliasedGlobal(Alias);
344   if (!GV) {
345     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
346     return false;
347   }
348 
349   if (GV->isDeclaration()) {
350     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
351     return false;
352   }
353 
354   if (IsIFunc) {
355     // Check resolver function type.
356     const auto *F = dyn_cast<llvm::Function>(GV);
357     if (!F) {
358       Diags.Report(Location, diag::err_alias_to_undefined)
359           << IsIFunc << IsIFunc;
360       return false;
361     }
362 
363     llvm::FunctionType *FTy = F->getFunctionType();
364     if (!FTy->getReturnType()->isPointerTy()) {
365       Diags.Report(Location, diag::err_ifunc_resolver_return);
366       return false;
367     }
368   }
369 
370   return true;
371 }
372 
373 void CodeGenModule::checkAliases() {
374   // Check if the constructed aliases are well formed. It is really unfortunate
375   // that we have to do this in CodeGen, but we only construct mangled names
376   // and aliases during codegen.
377   bool Error = false;
378   DiagnosticsEngine &Diags = getDiags();
379   for (const GlobalDecl &GD : Aliases) {
380     const auto *D = cast<ValueDecl>(GD.getDecl());
381     SourceLocation Location;
382     bool IsIFunc = D->hasAttr<IFuncAttr>();
383     if (const Attr *A = D->getDefiningAttr())
384       Location = A->getLocation();
385     else
386       llvm_unreachable("Not an alias or ifunc?");
387 
388     StringRef MangledName = getMangledName(GD);
389     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
390     const llvm::GlobalValue *GV = nullptr;
391     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
392       Error = true;
393       continue;
394     }
395 
396     llvm::Constant *Aliasee =
397         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
398                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
399 
400     llvm::GlobalValue *AliaseeGV;
401     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
402       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
403     else
404       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
405 
406     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
407       StringRef AliasSection = SA->getName();
408       if (AliasSection != AliaseeGV->getSection())
409         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
410             << AliasSection << IsIFunc << IsIFunc;
411     }
412 
413     // We have to handle alias to weak aliases in here. LLVM itself disallows
414     // this since the object semantics would not match the IL one. For
415     // compatibility with gcc we implement it by just pointing the alias
416     // to its aliasee's aliasee. We also warn, since the user is probably
417     // expecting the link to be weak.
418     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
419       if (GA->isInterposable()) {
420         Diags.Report(Location, diag::warn_alias_to_weak_alias)
421             << GV->getName() << GA->getName() << IsIFunc;
422         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
423             GA->getAliasee(), Alias->getType());
424 
425         if (IsIFunc)
426           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
427         else
428           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
429       }
430     }
431   }
432   if (!Error)
433     return;
434 
435   for (const GlobalDecl &GD : Aliases) {
436     StringRef MangledName = getMangledName(GD);
437     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
438     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
439     Alias->eraseFromParent();
440   }
441 }
442 
443 void CodeGenModule::clear() {
444   DeferredDeclsToEmit.clear();
445   EmittedDeferredDecls.clear();
446   if (OpenMPRuntime)
447     OpenMPRuntime->clear();
448 }
449 
450 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
451                                        StringRef MainFile) {
452   if (!hasDiagnostics())
453     return;
454   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
455     if (MainFile.empty())
456       MainFile = "<stdin>";
457     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
458   } else {
459     if (Mismatched > 0)
460       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
461 
462     if (Missing > 0)
463       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
464   }
465 }
466 
467 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
468                                              llvm::Module &M) {
469   if (!LO.VisibilityFromDLLStorageClass)
470     return;
471 
472   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
473       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
474   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
475       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
476   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
477       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
478   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
479       CodeGenModule::GetLLVMVisibility(
480           LO.getExternDeclNoDLLStorageClassVisibility());
481 
482   for (llvm::GlobalValue &GV : M.global_values()) {
483     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
484       continue;
485 
486     // Reset DSO locality before setting the visibility. This removes
487     // any effects that visibility options and annotations may have
488     // had on the DSO locality. Setting the visibility will implicitly set
489     // appropriate globals to DSO Local; however, this will be pessimistic
490     // w.r.t. to the normal compiler IRGen.
491     GV.setDSOLocal(false);
492 
493     if (GV.isDeclarationForLinker()) {
494       GV.setVisibility(GV.getDLLStorageClass() ==
495                                llvm::GlobalValue::DLLImportStorageClass
496                            ? ExternDeclDLLImportVisibility
497                            : ExternDeclNoDLLStorageClassVisibility);
498     } else {
499       GV.setVisibility(GV.getDLLStorageClass() ==
500                                llvm::GlobalValue::DLLExportStorageClass
501                            ? DLLExportVisibility
502                            : NoDLLStorageClassVisibility);
503     }
504 
505     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
506   }
507 }
508 
509 void CodeGenModule::Release() {
510   Module *Primary = getContext().getModuleForCodeGen();
511   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
512     EmitModuleInitializers(Primary);
513   EmitDeferred();
514   DeferredDecls.insert(EmittedDeferredDecls.begin(),
515                        EmittedDeferredDecls.end());
516   EmittedDeferredDecls.clear();
517   EmitVTablesOpportunistically();
518   applyGlobalValReplacements();
519   applyReplacements();
520   emitMultiVersionFunctions();
521 
522   if (Context.getLangOpts().IncrementalExtensions &&
523       GlobalTopLevelStmtBlockInFlight.first) {
524     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
525     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
526     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
527   }
528 
529   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
530     EmitCXXModuleInitFunc(Primary);
531   else
532     EmitCXXGlobalInitFunc();
533   EmitCXXGlobalCleanUpFunc();
534   registerGlobalDtorsWithAtExit();
535   EmitCXXThreadLocalInitFunc();
536   if (ObjCRuntime)
537     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
538       AddGlobalCtor(ObjCInitFunction);
539   if (Context.getLangOpts().CUDA && CUDARuntime) {
540     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
541       AddGlobalCtor(CudaCtorFunction);
542   }
543   if (OpenMPRuntime) {
544     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
545             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
546       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
547     }
548     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
549     OpenMPRuntime->clear();
550   }
551   if (PGOReader) {
552     getModule().setProfileSummary(
553         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
554         llvm::ProfileSummary::PSK_Instr);
555     if (PGOStats.hasDiagnostics())
556       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
557   }
558   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
559     return L.LexOrder < R.LexOrder;
560   });
561   EmitCtorList(GlobalCtors, "llvm.global_ctors");
562   EmitCtorList(GlobalDtors, "llvm.global_dtors");
563   EmitGlobalAnnotations();
564   EmitStaticExternCAliases();
565   checkAliases();
566   EmitDeferredUnusedCoverageMappings();
567   CodeGenPGO(*this).setValueProfilingFlag(getModule());
568   if (CoverageMapping)
569     CoverageMapping->emit();
570   if (CodeGenOpts.SanitizeCfiCrossDso) {
571     CodeGenFunction(*this).EmitCfiCheckFail();
572     CodeGenFunction(*this).EmitCfiCheckStub();
573   }
574   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
575     finalizeKCFITypes();
576   emitAtAvailableLinkGuard();
577   if (Context.getTargetInfo().getTriple().isWasm())
578     EmitMainVoidAlias();
579 
580   if (getTriple().isAMDGPU()) {
581     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
582     // preserve ASAN functions in bitcode libraries.
583     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
584       auto *FT = llvm::FunctionType::get(VoidTy, {});
585       auto *F = llvm::Function::Create(
586           FT, llvm::GlobalValue::ExternalLinkage,
587           "__amdgpu_device_library_preserve_asan_functions", &getModule());
588       auto *Var = new llvm::GlobalVariable(
589           getModule(), FT->getPointerTo(),
590           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
591           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
592           llvm::GlobalVariable::NotThreadLocal);
593       addCompilerUsedGlobal(Var);
594     }
595     // Emit amdgpu_code_object_version module flag, which is code object version
596     // times 100.
597     if (getTarget().getTargetOpts().CodeObjectVersion !=
598         TargetOptions::COV_None) {
599       getModule().addModuleFlag(llvm::Module::Error,
600                                 "amdgpu_code_object_version",
601                                 getTarget().getTargetOpts().CodeObjectVersion);
602     }
603   }
604 
605   // Emit a global array containing all external kernels or device variables
606   // used by host functions and mark it as used for CUDA/HIP. This is necessary
607   // to get kernels or device variables in archives linked in even if these
608   // kernels or device variables are only used in host functions.
609   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
610     SmallVector<llvm::Constant *, 8> UsedArray;
611     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
612       GlobalDecl GD;
613       if (auto *FD = dyn_cast<FunctionDecl>(D))
614         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
615       else
616         GD = GlobalDecl(D);
617       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
618           GetAddrOfGlobal(GD), Int8PtrTy));
619     }
620 
621     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
622 
623     auto *GV = new llvm::GlobalVariable(
624         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
625         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
626     addCompilerUsedGlobal(GV);
627   }
628 
629   emitLLVMUsed();
630   if (SanStats)
631     SanStats->finish();
632 
633   if (CodeGenOpts.Autolink &&
634       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
635     EmitModuleLinkOptions();
636   }
637 
638   // On ELF we pass the dependent library specifiers directly to the linker
639   // without manipulating them. This is in contrast to other platforms where
640   // they are mapped to a specific linker option by the compiler. This
641   // difference is a result of the greater variety of ELF linkers and the fact
642   // that ELF linkers tend to handle libraries in a more complicated fashion
643   // than on other platforms. This forces us to defer handling the dependent
644   // libs to the linker.
645   //
646   // CUDA/HIP device and host libraries are different. Currently there is no
647   // way to differentiate dependent libraries for host or device. Existing
648   // usage of #pragma comment(lib, *) is intended for host libraries on
649   // Windows. Therefore emit llvm.dependent-libraries only for host.
650   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
651     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
652     for (auto *MD : ELFDependentLibraries)
653       NMD->addOperand(MD);
654   }
655 
656   // Record mregparm value now so it is visible through rest of codegen.
657   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
658     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
659                               CodeGenOpts.NumRegisterParameters);
660 
661   if (CodeGenOpts.DwarfVersion) {
662     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
663                               CodeGenOpts.DwarfVersion);
664   }
665 
666   if (CodeGenOpts.Dwarf64)
667     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
668 
669   if (Context.getLangOpts().SemanticInterposition)
670     // Require various optimization to respect semantic interposition.
671     getModule().setSemanticInterposition(true);
672 
673   if (CodeGenOpts.EmitCodeView) {
674     // Indicate that we want CodeView in the metadata.
675     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
676   }
677   if (CodeGenOpts.CodeViewGHash) {
678     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
679   }
680   if (CodeGenOpts.ControlFlowGuard) {
681     // Function ID tables and checks for Control Flow Guard (cfguard=2).
682     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
683   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
684     // Function ID tables for Control Flow Guard (cfguard=1).
685     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
686   }
687   if (CodeGenOpts.EHContGuard) {
688     // Function ID tables for EH Continuation Guard.
689     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
690   }
691   if (Context.getLangOpts().Kernel) {
692     // Note if we are compiling with /kernel.
693     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
694   }
695   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
696     // We don't support LTO with 2 with different StrictVTablePointers
697     // FIXME: we could support it by stripping all the information introduced
698     // by StrictVTablePointers.
699 
700     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
701 
702     llvm::Metadata *Ops[2] = {
703               llvm::MDString::get(VMContext, "StrictVTablePointers"),
704               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
705                   llvm::Type::getInt32Ty(VMContext), 1))};
706 
707     getModule().addModuleFlag(llvm::Module::Require,
708                               "StrictVTablePointersRequirement",
709                               llvm::MDNode::get(VMContext, Ops));
710   }
711   if (getModuleDebugInfo())
712     // We support a single version in the linked module. The LLVM
713     // parser will drop debug info with a different version number
714     // (and warn about it, too).
715     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
716                               llvm::DEBUG_METADATA_VERSION);
717 
718   // We need to record the widths of enums and wchar_t, so that we can generate
719   // the correct build attributes in the ARM backend. wchar_size is also used by
720   // TargetLibraryInfo.
721   uint64_t WCharWidth =
722       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
723   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
724 
725   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
726   if (   Arch == llvm::Triple::arm
727       || Arch == llvm::Triple::armeb
728       || Arch == llvm::Triple::thumb
729       || Arch == llvm::Triple::thumbeb) {
730     // The minimum width of an enum in bytes
731     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
732     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
733   }
734 
735   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
736     StringRef ABIStr = Target.getABI();
737     llvm::LLVMContext &Ctx = TheModule.getContext();
738     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
739                               llvm::MDString::get(Ctx, ABIStr));
740   }
741 
742   if (CodeGenOpts.SanitizeCfiCrossDso) {
743     // Indicate that we want cross-DSO control flow integrity checks.
744     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
745   }
746 
747   if (CodeGenOpts.WholeProgramVTables) {
748     // Indicate whether VFE was enabled for this module, so that the
749     // vcall_visibility metadata added under whole program vtables is handled
750     // appropriately in the optimizer.
751     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
752                               CodeGenOpts.VirtualFunctionElimination);
753   }
754 
755   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
756     getModule().addModuleFlag(llvm::Module::Override,
757                               "CFI Canonical Jump Tables",
758                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
759   }
760 
761   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
762     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
763     // KCFI assumes patchable-function-prefix is the same for all indirectly
764     // called functions. Store the expected offset for code generation.
765     if (CodeGenOpts.PatchableFunctionEntryOffset)
766       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
767                                 CodeGenOpts.PatchableFunctionEntryOffset);
768   }
769 
770   if (CodeGenOpts.CFProtectionReturn &&
771       Target.checkCFProtectionReturnSupported(getDiags())) {
772     // Indicate that we want to instrument return control flow protection.
773     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
774                               1);
775   }
776 
777   if (CodeGenOpts.CFProtectionBranch &&
778       Target.checkCFProtectionBranchSupported(getDiags())) {
779     // Indicate that we want to instrument branch control flow protection.
780     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
781                               1);
782   }
783 
784   if (CodeGenOpts.FunctionReturnThunks)
785     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
786 
787   if (CodeGenOpts.IndirectBranchCSPrefix)
788     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
789 
790   // Add module metadata for return address signing (ignoring
791   // non-leaf/all) and stack tagging. These are actually turned on by function
792   // attributes, but we use module metadata to emit build attributes. This is
793   // needed for LTO, where the function attributes are inside bitcode
794   // serialised into a global variable by the time build attributes are
795   // emitted, so we can't access them. LTO objects could be compiled with
796   // different flags therefore module flags are set to "Min" behavior to achieve
797   // the same end result of the normal build where e.g BTI is off if any object
798   // doesn't support it.
799   if (Context.getTargetInfo().hasFeature("ptrauth") &&
800       LangOpts.getSignReturnAddressScope() !=
801           LangOptions::SignReturnAddressScopeKind::None)
802     getModule().addModuleFlag(llvm::Module::Override,
803                               "sign-return-address-buildattr", 1);
804   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
805     getModule().addModuleFlag(llvm::Module::Override,
806                               "tag-stack-memory-buildattr", 1);
807 
808   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
809       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
810       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
811       Arch == llvm::Triple::aarch64_be) {
812     if (LangOpts.BranchTargetEnforcement)
813       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
814                                 1);
815     if (LangOpts.hasSignReturnAddress())
816       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
817     if (LangOpts.isSignReturnAddressScopeAll())
818       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
819                                 1);
820     if (!LangOpts.isSignReturnAddressWithAKey())
821       getModule().addModuleFlag(llvm::Module::Min,
822                                 "sign-return-address-with-bkey", 1);
823   }
824 
825   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
826     llvm::LLVMContext &Ctx = TheModule.getContext();
827     getModule().addModuleFlag(
828         llvm::Module::Error, "MemProfProfileFilename",
829         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
830   }
831 
832   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
833     // Indicate whether __nvvm_reflect should be configured to flush denormal
834     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
835     // property.)
836     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
837                               CodeGenOpts.FP32DenormalMode.Output !=
838                                   llvm::DenormalMode::IEEE);
839   }
840 
841   if (LangOpts.EHAsynch)
842     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
843 
844   // Indicate whether this Module was compiled with -fopenmp
845   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
846     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
847   if (getLangOpts().OpenMPIsDevice)
848     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
849                               LangOpts.OpenMP);
850 
851   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
852   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
853     EmitOpenCLMetadata();
854     // Emit SPIR version.
855     if (getTriple().isSPIR()) {
856       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
857       // opencl.spir.version named metadata.
858       // C++ for OpenCL has a distinct mapping for version compatibility with
859       // OpenCL.
860       auto Version = LangOpts.getOpenCLCompatibleVersion();
861       llvm::Metadata *SPIRVerElts[] = {
862           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
863               Int32Ty, Version / 100)),
864           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
865               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
866       llvm::NamedMDNode *SPIRVerMD =
867           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
868       llvm::LLVMContext &Ctx = TheModule.getContext();
869       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
870     }
871   }
872 
873   // HLSL related end of code gen work items.
874   if (LangOpts.HLSL)
875     getHLSLRuntime().finishCodeGen();
876 
877   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
878     assert(PLevel < 3 && "Invalid PIC Level");
879     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
880     if (Context.getLangOpts().PIE)
881       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
882   }
883 
884   if (getCodeGenOpts().CodeModel.size() > 0) {
885     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
886                   .Case("tiny", llvm::CodeModel::Tiny)
887                   .Case("small", llvm::CodeModel::Small)
888                   .Case("kernel", llvm::CodeModel::Kernel)
889                   .Case("medium", llvm::CodeModel::Medium)
890                   .Case("large", llvm::CodeModel::Large)
891                   .Default(~0u);
892     if (CM != ~0u) {
893       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
894       getModule().setCodeModel(codeModel);
895     }
896   }
897 
898   if (CodeGenOpts.NoPLT)
899     getModule().setRtLibUseGOT();
900   if (CodeGenOpts.UnwindTables)
901     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
902 
903   switch (CodeGenOpts.getFramePointer()) {
904   case CodeGenOptions::FramePointerKind::None:
905     // 0 ("none") is the default.
906     break;
907   case CodeGenOptions::FramePointerKind::NonLeaf:
908     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
909     break;
910   case CodeGenOptions::FramePointerKind::All:
911     getModule().setFramePointer(llvm::FramePointerKind::All);
912     break;
913   }
914 
915   SimplifyPersonality();
916 
917   if (getCodeGenOpts().EmitDeclMetadata)
918     EmitDeclMetadata();
919 
920   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
921     EmitCoverageFile();
922 
923   if (CGDebugInfo *DI = getModuleDebugInfo())
924     DI->finalize();
925 
926   if (getCodeGenOpts().EmitVersionIdentMetadata)
927     EmitVersionIdentMetadata();
928 
929   if (!getCodeGenOpts().RecordCommandLine.empty())
930     EmitCommandLineMetadata();
931 
932   if (!getCodeGenOpts().StackProtectorGuard.empty())
933     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
934   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
935     getModule().setStackProtectorGuardReg(
936         getCodeGenOpts().StackProtectorGuardReg);
937   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
938     getModule().setStackProtectorGuardSymbol(
939         getCodeGenOpts().StackProtectorGuardSymbol);
940   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
941     getModule().setStackProtectorGuardOffset(
942         getCodeGenOpts().StackProtectorGuardOffset);
943   if (getCodeGenOpts().StackAlignment)
944     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
945   if (getCodeGenOpts().SkipRaxSetup)
946     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
947 
948   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
949 
950   EmitBackendOptionsMetadata(getCodeGenOpts());
951 
952   // If there is device offloading code embed it in the host now.
953   EmbedObject(&getModule(), CodeGenOpts, getDiags());
954 
955   // Set visibility from DLL storage class
956   // We do this at the end of LLVM IR generation; after any operation
957   // that might affect the DLL storage class or the visibility, and
958   // before anything that might act on these.
959   setVisibilityFromDLLStorageClass(LangOpts, getModule());
960 }
961 
962 void CodeGenModule::EmitOpenCLMetadata() {
963   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
964   // opencl.ocl.version named metadata node.
965   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
966   auto Version = LangOpts.getOpenCLCompatibleVersion();
967   llvm::Metadata *OCLVerElts[] = {
968       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
969           Int32Ty, Version / 100)),
970       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
971           Int32Ty, (Version % 100) / 10))};
972   llvm::NamedMDNode *OCLVerMD =
973       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
974   llvm::LLVMContext &Ctx = TheModule.getContext();
975   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
976 }
977 
978 void CodeGenModule::EmitBackendOptionsMetadata(
979     const CodeGenOptions CodeGenOpts) {
980   if (getTriple().isRISCV()) {
981     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
982                               CodeGenOpts.SmallDataLimit);
983   }
984 }
985 
986 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
987   // Make sure that this type is translated.
988   Types.UpdateCompletedType(TD);
989 }
990 
991 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
992   // Make sure that this type is translated.
993   Types.RefreshTypeCacheForClass(RD);
994 }
995 
996 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
997   if (!TBAA)
998     return nullptr;
999   return TBAA->getTypeInfo(QTy);
1000 }
1001 
1002 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1003   if (!TBAA)
1004     return TBAAAccessInfo();
1005   if (getLangOpts().CUDAIsDevice) {
1006     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1007     // access info.
1008     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1009       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1010           nullptr)
1011         return TBAAAccessInfo();
1012     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1013       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1014           nullptr)
1015         return TBAAAccessInfo();
1016     }
1017   }
1018   return TBAA->getAccessInfo(AccessType);
1019 }
1020 
1021 TBAAAccessInfo
1022 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1023   if (!TBAA)
1024     return TBAAAccessInfo();
1025   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1026 }
1027 
1028 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1029   if (!TBAA)
1030     return nullptr;
1031   return TBAA->getTBAAStructInfo(QTy);
1032 }
1033 
1034 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1035   if (!TBAA)
1036     return nullptr;
1037   return TBAA->getBaseTypeInfo(QTy);
1038 }
1039 
1040 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1041   if (!TBAA)
1042     return nullptr;
1043   return TBAA->getAccessTagInfo(Info);
1044 }
1045 
1046 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1047                                                    TBAAAccessInfo TargetInfo) {
1048   if (!TBAA)
1049     return TBAAAccessInfo();
1050   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1051 }
1052 
1053 TBAAAccessInfo
1054 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1055                                                    TBAAAccessInfo InfoB) {
1056   if (!TBAA)
1057     return TBAAAccessInfo();
1058   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1059 }
1060 
1061 TBAAAccessInfo
1062 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1063                                               TBAAAccessInfo SrcInfo) {
1064   if (!TBAA)
1065     return TBAAAccessInfo();
1066   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1067 }
1068 
1069 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1070                                                 TBAAAccessInfo TBAAInfo) {
1071   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1072     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1073 }
1074 
1075 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1076     llvm::Instruction *I, const CXXRecordDecl *RD) {
1077   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1078                  llvm::MDNode::get(getLLVMContext(), {}));
1079 }
1080 
1081 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1082   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1083   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1084 }
1085 
1086 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1087 /// specified stmt yet.
1088 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1089   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1090                                                "cannot compile this %0 yet");
1091   std::string Msg = Type;
1092   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1093       << Msg << S->getSourceRange();
1094 }
1095 
1096 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1097 /// specified decl yet.
1098 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1099   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1100                                                "cannot compile this %0 yet");
1101   std::string Msg = Type;
1102   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1103 }
1104 
1105 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1106   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1107 }
1108 
1109 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1110                                         const NamedDecl *D) const {
1111   // Internal definitions always have default visibility.
1112   if (GV->hasLocalLinkage()) {
1113     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1114     return;
1115   }
1116   if (!D)
1117     return;
1118   // Set visibility for definitions, and for declarations if requested globally
1119   // or set explicitly.
1120   LinkageInfo LV = D->getLinkageAndVisibility();
1121   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1122     // Reject incompatible dlllstorage and visibility annotations.
1123     if (!LV.isVisibilityExplicit())
1124       return;
1125     if (GV->hasDLLExportStorageClass()) {
1126       if (LV.getVisibility() == HiddenVisibility)
1127         getDiags().Report(D->getLocation(),
1128                           diag::err_hidden_visibility_dllexport);
1129     } else if (LV.getVisibility() != DefaultVisibility) {
1130       getDiags().Report(D->getLocation(),
1131                         diag::err_non_default_visibility_dllimport);
1132     }
1133     return;
1134   }
1135 
1136   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1137       !GV->isDeclarationForLinker())
1138     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1139 }
1140 
1141 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1142                                  llvm::GlobalValue *GV) {
1143   if (GV->hasLocalLinkage())
1144     return true;
1145 
1146   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1147     return true;
1148 
1149   // DLLImport explicitly marks the GV as external.
1150   if (GV->hasDLLImportStorageClass())
1151     return false;
1152 
1153   const llvm::Triple &TT = CGM.getTriple();
1154   if (TT.isWindowsGNUEnvironment()) {
1155     // In MinGW, variables without DLLImport can still be automatically
1156     // imported from a DLL by the linker; don't mark variables that
1157     // potentially could come from another DLL as DSO local.
1158 
1159     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1160     // (and this actually happens in the public interface of libstdc++), so
1161     // such variables can't be marked as DSO local. (Native TLS variables
1162     // can't be dllimported at all, though.)
1163     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1164         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1165       return false;
1166   }
1167 
1168   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1169   // remain unresolved in the link, they can be resolved to zero, which is
1170   // outside the current DSO.
1171   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1172     return false;
1173 
1174   // Every other GV is local on COFF.
1175   // Make an exception for windows OS in the triple: Some firmware builds use
1176   // *-win32-macho triples. This (accidentally?) produced windows relocations
1177   // without GOT tables in older clang versions; Keep this behaviour.
1178   // FIXME: even thread local variables?
1179   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1180     return true;
1181 
1182   // Only handle COFF and ELF for now.
1183   if (!TT.isOSBinFormatELF())
1184     return false;
1185 
1186   // If this is not an executable, don't assume anything is local.
1187   const auto &CGOpts = CGM.getCodeGenOpts();
1188   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1189   const auto &LOpts = CGM.getLangOpts();
1190   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1191     // On ELF, if -fno-semantic-interposition is specified and the target
1192     // supports local aliases, there will be neither CC1
1193     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1194     // dso_local on the function if using a local alias is preferable (can avoid
1195     // PLT indirection).
1196     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1197       return false;
1198     return !(CGM.getLangOpts().SemanticInterposition ||
1199              CGM.getLangOpts().HalfNoSemanticInterposition);
1200   }
1201 
1202   // A definition cannot be preempted from an executable.
1203   if (!GV->isDeclarationForLinker())
1204     return true;
1205 
1206   // Most PIC code sequences that assume that a symbol is local cannot produce a
1207   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1208   // depended, it seems worth it to handle it here.
1209   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1210     return false;
1211 
1212   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1213   if (TT.isPPC64())
1214     return false;
1215 
1216   if (CGOpts.DirectAccessExternalData) {
1217     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1218     // for non-thread-local variables. If the symbol is not defined in the
1219     // executable, a copy relocation will be needed at link time. dso_local is
1220     // excluded for thread-local variables because they generally don't support
1221     // copy relocations.
1222     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1223       if (!Var->isThreadLocal())
1224         return true;
1225 
1226     // -fno-pic sets dso_local on a function declaration to allow direct
1227     // accesses when taking its address (similar to a data symbol). If the
1228     // function is not defined in the executable, a canonical PLT entry will be
1229     // needed at link time. -fno-direct-access-external-data can avoid the
1230     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1231     // it could just cause trouble without providing perceptible benefits.
1232     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1233       return true;
1234   }
1235 
1236   // If we can use copy relocations we can assume it is local.
1237 
1238   // Otherwise don't assume it is local.
1239   return false;
1240 }
1241 
1242 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1243   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1244 }
1245 
1246 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1247                                           GlobalDecl GD) const {
1248   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1249   // C++ destructors have a few C++ ABI specific special cases.
1250   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1251     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1252     return;
1253   }
1254   setDLLImportDLLExport(GV, D);
1255 }
1256 
1257 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1258                                           const NamedDecl *D) const {
1259   if (D && D->isExternallyVisible()) {
1260     if (D->hasAttr<DLLImportAttr>())
1261       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1262     else if ((D->hasAttr<DLLExportAttr>() ||
1263               shouldMapVisibilityToDLLExport(D)) &&
1264              !GV->isDeclarationForLinker())
1265       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1266   }
1267 }
1268 
1269 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1270                                     GlobalDecl GD) const {
1271   setDLLImportDLLExport(GV, GD);
1272   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1273 }
1274 
1275 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1276                                     const NamedDecl *D) const {
1277   setDLLImportDLLExport(GV, D);
1278   setGVPropertiesAux(GV, D);
1279 }
1280 
1281 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1282                                        const NamedDecl *D) const {
1283   setGlobalVisibility(GV, D);
1284   setDSOLocal(GV);
1285   GV->setPartition(CodeGenOpts.SymbolPartition);
1286 }
1287 
1288 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1289   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1290       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1291       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1292       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1293       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1294 }
1295 
1296 llvm::GlobalVariable::ThreadLocalMode
1297 CodeGenModule::GetDefaultLLVMTLSModel() const {
1298   switch (CodeGenOpts.getDefaultTLSModel()) {
1299   case CodeGenOptions::GeneralDynamicTLSModel:
1300     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1301   case CodeGenOptions::LocalDynamicTLSModel:
1302     return llvm::GlobalVariable::LocalDynamicTLSModel;
1303   case CodeGenOptions::InitialExecTLSModel:
1304     return llvm::GlobalVariable::InitialExecTLSModel;
1305   case CodeGenOptions::LocalExecTLSModel:
1306     return llvm::GlobalVariable::LocalExecTLSModel;
1307   }
1308   llvm_unreachable("Invalid TLS model!");
1309 }
1310 
1311 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1312   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1313 
1314   llvm::GlobalValue::ThreadLocalMode TLM;
1315   TLM = GetDefaultLLVMTLSModel();
1316 
1317   // Override the TLS model if it is explicitly specified.
1318   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1319     TLM = GetLLVMTLSModel(Attr->getModel());
1320   }
1321 
1322   GV->setThreadLocalMode(TLM);
1323 }
1324 
1325 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1326                                           StringRef Name) {
1327   const TargetInfo &Target = CGM.getTarget();
1328   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1329 }
1330 
1331 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1332                                                  const CPUSpecificAttr *Attr,
1333                                                  unsigned CPUIndex,
1334                                                  raw_ostream &Out) {
1335   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1336   // supported.
1337   if (Attr)
1338     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1339   else if (CGM.getTarget().supportsIFunc())
1340     Out << ".resolver";
1341 }
1342 
1343 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1344                                         const TargetVersionAttr *Attr,
1345                                         raw_ostream &Out) {
1346   if (Attr->isDefaultVersion())
1347     return;
1348   Out << "._";
1349   llvm::SmallVector<StringRef, 8> Feats;
1350   Attr->getFeatures(Feats);
1351   for (const auto &Feat : Feats) {
1352     Out << 'M';
1353     Out << Feat;
1354   }
1355 }
1356 
1357 static void AppendTargetMangling(const CodeGenModule &CGM,
1358                                  const TargetAttr *Attr, raw_ostream &Out) {
1359   if (Attr->isDefaultVersion())
1360     return;
1361 
1362   Out << '.';
1363   const TargetInfo &Target = CGM.getTarget();
1364   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1365   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1366     // Multiversioning doesn't allow "no-${feature}", so we can
1367     // only have "+" prefixes here.
1368     assert(LHS.startswith("+") && RHS.startswith("+") &&
1369            "Features should always have a prefix.");
1370     return Target.multiVersionSortPriority(LHS.substr(1)) >
1371            Target.multiVersionSortPriority(RHS.substr(1));
1372   });
1373 
1374   bool IsFirst = true;
1375 
1376   if (!Info.CPU.empty()) {
1377     IsFirst = false;
1378     Out << "arch_" << Info.CPU;
1379   }
1380 
1381   for (StringRef Feat : Info.Features) {
1382     if (!IsFirst)
1383       Out << '_';
1384     IsFirst = false;
1385     Out << Feat.substr(1);
1386   }
1387 }
1388 
1389 // Returns true if GD is a function decl with internal linkage and
1390 // needs a unique suffix after the mangled name.
1391 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1392                                         CodeGenModule &CGM) {
1393   const Decl *D = GD.getDecl();
1394   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1395          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1396 }
1397 
1398 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1399                                        const TargetClonesAttr *Attr,
1400                                        unsigned VersionIndex,
1401                                        raw_ostream &Out) {
1402   if (CGM.getTarget().getTriple().isAArch64()) {
1403     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1404     if (FeatureStr == "default")
1405       return;
1406     Out << "._";
1407     SmallVector<StringRef, 8> Features;
1408     FeatureStr.split(Features, "+");
1409     for (auto &Feat : Features) {
1410       Out << 'M';
1411       Out << Feat;
1412     }
1413   } else {
1414     Out << '.';
1415     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1416     if (FeatureStr.startswith("arch="))
1417       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1418     else
1419       Out << FeatureStr;
1420 
1421     Out << '.' << Attr->getMangledIndex(VersionIndex);
1422   }
1423 }
1424 
1425 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1426                                       const NamedDecl *ND,
1427                                       bool OmitMultiVersionMangling = false) {
1428   SmallString<256> Buffer;
1429   llvm::raw_svector_ostream Out(Buffer);
1430   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1431   if (!CGM.getModuleNameHash().empty())
1432     MC.needsUniqueInternalLinkageNames();
1433   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1434   if (ShouldMangle)
1435     MC.mangleName(GD.getWithDecl(ND), Out);
1436   else {
1437     IdentifierInfo *II = ND->getIdentifier();
1438     assert(II && "Attempt to mangle unnamed decl.");
1439     const auto *FD = dyn_cast<FunctionDecl>(ND);
1440 
1441     if (FD &&
1442         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1443       Out << "__regcall3__" << II->getName();
1444     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1445                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1446       Out << "__device_stub__" << II->getName();
1447     } else {
1448       Out << II->getName();
1449     }
1450   }
1451 
1452   // Check if the module name hash should be appended for internal linkage
1453   // symbols.   This should come before multi-version target suffixes are
1454   // appended. This is to keep the name and module hash suffix of the
1455   // internal linkage function together.  The unique suffix should only be
1456   // added when name mangling is done to make sure that the final name can
1457   // be properly demangled.  For example, for C functions without prototypes,
1458   // name mangling is not done and the unique suffix should not be appeneded
1459   // then.
1460   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1461     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1462            "Hash computed when not explicitly requested");
1463     Out << CGM.getModuleNameHash();
1464   }
1465 
1466   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1467     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1468       switch (FD->getMultiVersionKind()) {
1469       case MultiVersionKind::CPUDispatch:
1470       case MultiVersionKind::CPUSpecific:
1471         AppendCPUSpecificCPUDispatchMangling(CGM,
1472                                              FD->getAttr<CPUSpecificAttr>(),
1473                                              GD.getMultiVersionIndex(), Out);
1474         break;
1475       case MultiVersionKind::Target:
1476         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1477         break;
1478       case MultiVersionKind::TargetVersion:
1479         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1480         break;
1481       case MultiVersionKind::TargetClones:
1482         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1483                                    GD.getMultiVersionIndex(), Out);
1484         break;
1485       case MultiVersionKind::None:
1486         llvm_unreachable("None multiversion type isn't valid here");
1487       }
1488     }
1489 
1490   // Make unique name for device side static file-scope variable for HIP.
1491   if (CGM.getContext().shouldExternalize(ND) &&
1492       CGM.getLangOpts().GPURelocatableDeviceCode &&
1493       CGM.getLangOpts().CUDAIsDevice)
1494     CGM.printPostfixForExternalizedDecl(Out, ND);
1495 
1496   return std::string(Out.str());
1497 }
1498 
1499 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1500                                             const FunctionDecl *FD,
1501                                             StringRef &CurName) {
1502   if (!FD->isMultiVersion())
1503     return;
1504 
1505   // Get the name of what this would be without the 'target' attribute.  This
1506   // allows us to lookup the version that was emitted when this wasn't a
1507   // multiversion function.
1508   std::string NonTargetName =
1509       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1510   GlobalDecl OtherGD;
1511   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1512     assert(OtherGD.getCanonicalDecl()
1513                .getDecl()
1514                ->getAsFunction()
1515                ->isMultiVersion() &&
1516            "Other GD should now be a multiversioned function");
1517     // OtherFD is the version of this function that was mangled BEFORE
1518     // becoming a MultiVersion function.  It potentially needs to be updated.
1519     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1520                                       .getDecl()
1521                                       ->getAsFunction()
1522                                       ->getMostRecentDecl();
1523     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1524     // This is so that if the initial version was already the 'default'
1525     // version, we don't try to update it.
1526     if (OtherName != NonTargetName) {
1527       // Remove instead of erase, since others may have stored the StringRef
1528       // to this.
1529       const auto ExistingRecord = Manglings.find(NonTargetName);
1530       if (ExistingRecord != std::end(Manglings))
1531         Manglings.remove(&(*ExistingRecord));
1532       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1533       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1534           Result.first->first();
1535       // If this is the current decl is being created, make sure we update the name.
1536       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1537         CurName = OtherNameRef;
1538       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1539         Entry->setName(OtherName);
1540     }
1541   }
1542 }
1543 
1544 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1545   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1546 
1547   // Some ABIs don't have constructor variants.  Make sure that base and
1548   // complete constructors get mangled the same.
1549   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1550     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1551       CXXCtorType OrigCtorType = GD.getCtorType();
1552       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1553       if (OrigCtorType == Ctor_Base)
1554         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1555     }
1556   }
1557 
1558   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1559   // static device variable depends on whether the variable is referenced by
1560   // a host or device host function. Therefore the mangled name cannot be
1561   // cached.
1562   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1563     auto FoundName = MangledDeclNames.find(CanonicalGD);
1564     if (FoundName != MangledDeclNames.end())
1565       return FoundName->second;
1566   }
1567 
1568   // Keep the first result in the case of a mangling collision.
1569   const auto *ND = cast<NamedDecl>(GD.getDecl());
1570   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1571 
1572   // Ensure either we have different ABIs between host and device compilations,
1573   // says host compilation following MSVC ABI but device compilation follows
1574   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1575   // mangling should be the same after name stubbing. The later checking is
1576   // very important as the device kernel name being mangled in host-compilation
1577   // is used to resolve the device binaries to be executed. Inconsistent naming
1578   // result in undefined behavior. Even though we cannot check that naming
1579   // directly between host- and device-compilations, the host- and
1580   // device-mangling in host compilation could help catching certain ones.
1581   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1582          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1583          (getContext().getAuxTargetInfo() &&
1584           (getContext().getAuxTargetInfo()->getCXXABI() !=
1585            getContext().getTargetInfo().getCXXABI())) ||
1586          getCUDARuntime().getDeviceSideName(ND) ==
1587              getMangledNameImpl(
1588                  *this,
1589                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1590                  ND));
1591 
1592   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1593   return MangledDeclNames[CanonicalGD] = Result.first->first();
1594 }
1595 
1596 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1597                                              const BlockDecl *BD) {
1598   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1599   const Decl *D = GD.getDecl();
1600 
1601   SmallString<256> Buffer;
1602   llvm::raw_svector_ostream Out(Buffer);
1603   if (!D)
1604     MangleCtx.mangleGlobalBlock(BD,
1605       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1606   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1607     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1608   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1609     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1610   else
1611     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1612 
1613   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1614   return Result.first->first();
1615 }
1616 
1617 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1618   auto it = MangledDeclNames.begin();
1619   while (it != MangledDeclNames.end()) {
1620     if (it->second == Name)
1621       return it->first;
1622     it++;
1623   }
1624   return GlobalDecl();
1625 }
1626 
1627 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1628   return getModule().getNamedValue(Name);
1629 }
1630 
1631 /// AddGlobalCtor - Add a function to the list that will be called before
1632 /// main() runs.
1633 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1634                                   unsigned LexOrder,
1635                                   llvm::Constant *AssociatedData) {
1636   // FIXME: Type coercion of void()* types.
1637   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1638 }
1639 
1640 /// AddGlobalDtor - Add a function to the list that will be called
1641 /// when the module is unloaded.
1642 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1643                                   bool IsDtorAttrFunc) {
1644   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1645       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1646     DtorsUsingAtExit[Priority].push_back(Dtor);
1647     return;
1648   }
1649 
1650   // FIXME: Type coercion of void()* types.
1651   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1652 }
1653 
1654 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1655   if (Fns.empty()) return;
1656 
1657   // Ctor function type is void()*.
1658   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1659   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1660       TheModule.getDataLayout().getProgramAddressSpace());
1661 
1662   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1663   llvm::StructType *CtorStructTy = llvm::StructType::get(
1664       Int32Ty, CtorPFTy, VoidPtrTy);
1665 
1666   // Construct the constructor and destructor arrays.
1667   ConstantInitBuilder builder(*this);
1668   auto ctors = builder.beginArray(CtorStructTy);
1669   for (const auto &I : Fns) {
1670     auto ctor = ctors.beginStruct(CtorStructTy);
1671     ctor.addInt(Int32Ty, I.Priority);
1672     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1673     if (I.AssociatedData)
1674       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1675     else
1676       ctor.addNullPointer(VoidPtrTy);
1677     ctor.finishAndAddTo(ctors);
1678   }
1679 
1680   auto list =
1681     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1682                                 /*constant*/ false,
1683                                 llvm::GlobalValue::AppendingLinkage);
1684 
1685   // The LTO linker doesn't seem to like it when we set an alignment
1686   // on appending variables.  Take it off as a workaround.
1687   list->setAlignment(std::nullopt);
1688 
1689   Fns.clear();
1690 }
1691 
1692 llvm::GlobalValue::LinkageTypes
1693 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1694   const auto *D = cast<FunctionDecl>(GD.getDecl());
1695 
1696   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1697 
1698   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1699     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1700 
1701   if (isa<CXXConstructorDecl>(D) &&
1702       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1703       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1704     // Our approach to inheriting constructors is fundamentally different from
1705     // that used by the MS ABI, so keep our inheriting constructor thunks
1706     // internal rather than trying to pick an unambiguous mangling for them.
1707     return llvm::GlobalValue::InternalLinkage;
1708   }
1709 
1710   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1711 }
1712 
1713 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1714   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1715   if (!MDS) return nullptr;
1716 
1717   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1718 }
1719 
1720 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1721   if (auto *FnType = T->getAs<FunctionProtoType>())
1722     T = getContext().getFunctionType(
1723         FnType->getReturnType(), FnType->getParamTypes(),
1724         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1725 
1726   std::string OutName;
1727   llvm::raw_string_ostream Out(OutName);
1728   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1729 
1730   return llvm::ConstantInt::get(Int32Ty,
1731                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1732 }
1733 
1734 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1735                                               const CGFunctionInfo &Info,
1736                                               llvm::Function *F, bool IsThunk) {
1737   unsigned CallingConv;
1738   llvm::AttributeList PAL;
1739   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1740                          /*AttrOnCallSite=*/false, IsThunk);
1741   F->setAttributes(PAL);
1742   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1743 }
1744 
1745 static void removeImageAccessQualifier(std::string& TyName) {
1746   std::string ReadOnlyQual("__read_only");
1747   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1748   if (ReadOnlyPos != std::string::npos)
1749     // "+ 1" for the space after access qualifier.
1750     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1751   else {
1752     std::string WriteOnlyQual("__write_only");
1753     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1754     if (WriteOnlyPos != std::string::npos)
1755       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1756     else {
1757       std::string ReadWriteQual("__read_write");
1758       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1759       if (ReadWritePos != std::string::npos)
1760         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1761     }
1762   }
1763 }
1764 
1765 // Returns the address space id that should be produced to the
1766 // kernel_arg_addr_space metadata. This is always fixed to the ids
1767 // as specified in the SPIR 2.0 specification in order to differentiate
1768 // for example in clGetKernelArgInfo() implementation between the address
1769 // spaces with targets without unique mapping to the OpenCL address spaces
1770 // (basically all single AS CPUs).
1771 static unsigned ArgInfoAddressSpace(LangAS AS) {
1772   switch (AS) {
1773   case LangAS::opencl_global:
1774     return 1;
1775   case LangAS::opencl_constant:
1776     return 2;
1777   case LangAS::opencl_local:
1778     return 3;
1779   case LangAS::opencl_generic:
1780     return 4; // Not in SPIR 2.0 specs.
1781   case LangAS::opencl_global_device:
1782     return 5;
1783   case LangAS::opencl_global_host:
1784     return 6;
1785   default:
1786     return 0; // Assume private.
1787   }
1788 }
1789 
1790 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1791                                          const FunctionDecl *FD,
1792                                          CodeGenFunction *CGF) {
1793   assert(((FD && CGF) || (!FD && !CGF)) &&
1794          "Incorrect use - FD and CGF should either be both null or not!");
1795   // Create MDNodes that represent the kernel arg metadata.
1796   // Each MDNode is a list in the form of "key", N number of values which is
1797   // the same number of values as their are kernel arguments.
1798 
1799   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1800 
1801   // MDNode for the kernel argument address space qualifiers.
1802   SmallVector<llvm::Metadata *, 8> addressQuals;
1803 
1804   // MDNode for the kernel argument access qualifiers (images only).
1805   SmallVector<llvm::Metadata *, 8> accessQuals;
1806 
1807   // MDNode for the kernel argument type names.
1808   SmallVector<llvm::Metadata *, 8> argTypeNames;
1809 
1810   // MDNode for the kernel argument base type names.
1811   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1812 
1813   // MDNode for the kernel argument type qualifiers.
1814   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1815 
1816   // MDNode for the kernel argument names.
1817   SmallVector<llvm::Metadata *, 8> argNames;
1818 
1819   if (FD && CGF)
1820     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1821       const ParmVarDecl *parm = FD->getParamDecl(i);
1822       // Get argument name.
1823       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1824 
1825       if (!getLangOpts().OpenCL)
1826         continue;
1827       QualType ty = parm->getType();
1828       std::string typeQuals;
1829 
1830       // Get image and pipe access qualifier:
1831       if (ty->isImageType() || ty->isPipeType()) {
1832         const Decl *PDecl = parm;
1833         if (const auto *TD = ty->getAs<TypedefType>())
1834           PDecl = TD->getDecl();
1835         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1836         if (A && A->isWriteOnly())
1837           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1838         else if (A && A->isReadWrite())
1839           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1840         else
1841           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1842       } else
1843         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1844 
1845       auto getTypeSpelling = [&](QualType Ty) {
1846         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1847 
1848         if (Ty.isCanonical()) {
1849           StringRef typeNameRef = typeName;
1850           // Turn "unsigned type" to "utype"
1851           if (typeNameRef.consume_front("unsigned "))
1852             return std::string("u") + typeNameRef.str();
1853           if (typeNameRef.consume_front("signed "))
1854             return typeNameRef.str();
1855         }
1856 
1857         return typeName;
1858       };
1859 
1860       if (ty->isPointerType()) {
1861         QualType pointeeTy = ty->getPointeeType();
1862 
1863         // Get address qualifier.
1864         addressQuals.push_back(
1865             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1866                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1867 
1868         // Get argument type name.
1869         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1870         std::string baseTypeName =
1871             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1872         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1873         argBaseTypeNames.push_back(
1874             llvm::MDString::get(VMContext, baseTypeName));
1875 
1876         // Get argument type qualifiers:
1877         if (ty.isRestrictQualified())
1878           typeQuals = "restrict";
1879         if (pointeeTy.isConstQualified() ||
1880             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1881           typeQuals += typeQuals.empty() ? "const" : " const";
1882         if (pointeeTy.isVolatileQualified())
1883           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1884       } else {
1885         uint32_t AddrSpc = 0;
1886         bool isPipe = ty->isPipeType();
1887         if (ty->isImageType() || isPipe)
1888           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1889 
1890         addressQuals.push_back(
1891             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1892 
1893         // Get argument type name.
1894         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1895         std::string typeName = getTypeSpelling(ty);
1896         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1897 
1898         // Remove access qualifiers on images
1899         // (as they are inseparable from type in clang implementation,
1900         // but OpenCL spec provides a special query to get access qualifier
1901         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1902         if (ty->isImageType()) {
1903           removeImageAccessQualifier(typeName);
1904           removeImageAccessQualifier(baseTypeName);
1905         }
1906 
1907         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1908         argBaseTypeNames.push_back(
1909             llvm::MDString::get(VMContext, baseTypeName));
1910 
1911         if (isPipe)
1912           typeQuals = "pipe";
1913       }
1914       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1915     }
1916 
1917   if (getLangOpts().OpenCL) {
1918     Fn->setMetadata("kernel_arg_addr_space",
1919                     llvm::MDNode::get(VMContext, addressQuals));
1920     Fn->setMetadata("kernel_arg_access_qual",
1921                     llvm::MDNode::get(VMContext, accessQuals));
1922     Fn->setMetadata("kernel_arg_type",
1923                     llvm::MDNode::get(VMContext, argTypeNames));
1924     Fn->setMetadata("kernel_arg_base_type",
1925                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1926     Fn->setMetadata("kernel_arg_type_qual",
1927                     llvm::MDNode::get(VMContext, argTypeQuals));
1928   }
1929   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1930       getCodeGenOpts().HIPSaveKernelArgName)
1931     Fn->setMetadata("kernel_arg_name",
1932                     llvm::MDNode::get(VMContext, argNames));
1933 }
1934 
1935 /// Determines whether the language options require us to model
1936 /// unwind exceptions.  We treat -fexceptions as mandating this
1937 /// except under the fragile ObjC ABI with only ObjC exceptions
1938 /// enabled.  This means, for example, that C with -fexceptions
1939 /// enables this.
1940 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1941   // If exceptions are completely disabled, obviously this is false.
1942   if (!LangOpts.Exceptions) return false;
1943 
1944   // If C++ exceptions are enabled, this is true.
1945   if (LangOpts.CXXExceptions) return true;
1946 
1947   // If ObjC exceptions are enabled, this depends on the ABI.
1948   if (LangOpts.ObjCExceptions) {
1949     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1950   }
1951 
1952   return true;
1953 }
1954 
1955 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1956                                                       const CXXMethodDecl *MD) {
1957   // Check that the type metadata can ever actually be used by a call.
1958   if (!CGM.getCodeGenOpts().LTOUnit ||
1959       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1960     return false;
1961 
1962   // Only functions whose address can be taken with a member function pointer
1963   // need this sort of type metadata.
1964   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1965          !isa<CXXDestructorDecl>(MD);
1966 }
1967 
1968 std::vector<const CXXRecordDecl *>
1969 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1970   llvm::SetVector<const CXXRecordDecl *> MostBases;
1971 
1972   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1973   CollectMostBases = [&](const CXXRecordDecl *RD) {
1974     if (RD->getNumBases() == 0)
1975       MostBases.insert(RD);
1976     for (const CXXBaseSpecifier &B : RD->bases())
1977       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1978   };
1979   CollectMostBases(RD);
1980   return MostBases.takeVector();
1981 }
1982 
1983 llvm::GlobalVariable *
1984 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1985   auto It = RTTIProxyMap.find(Addr);
1986   if (It != RTTIProxyMap.end())
1987     return It->second;
1988 
1989   auto *FTRTTIProxy = new llvm::GlobalVariable(
1990       TheModule, Addr->getType(),
1991       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1992       "__llvm_rtti_proxy");
1993   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1994 
1995   RTTIProxyMap[Addr] = FTRTTIProxy;
1996   return FTRTTIProxy;
1997 }
1998 
1999 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2000                                                            llvm::Function *F) {
2001   llvm::AttrBuilder B(F->getContext());
2002 
2003   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2004     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2005 
2006   if (CodeGenOpts.StackClashProtector)
2007     B.addAttribute("probe-stack", "inline-asm");
2008 
2009   if (!hasUnwindExceptions(LangOpts))
2010     B.addAttribute(llvm::Attribute::NoUnwind);
2011 
2012   if (D && D->hasAttr<NoStackProtectorAttr>())
2013     ; // Do nothing.
2014   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2015            LangOpts.getStackProtector() == LangOptions::SSPOn)
2016     B.addAttribute(llvm::Attribute::StackProtectStrong);
2017   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2018     B.addAttribute(llvm::Attribute::StackProtect);
2019   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2020     B.addAttribute(llvm::Attribute::StackProtectStrong);
2021   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2022     B.addAttribute(llvm::Attribute::StackProtectReq);
2023 
2024   if (!D) {
2025     // If we don't have a declaration to control inlining, the function isn't
2026     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2027     // disabled, mark the function as noinline.
2028     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2029         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2030       B.addAttribute(llvm::Attribute::NoInline);
2031 
2032     F->addFnAttrs(B);
2033     return;
2034   }
2035 
2036   // Track whether we need to add the optnone LLVM attribute,
2037   // starting with the default for this optimization level.
2038   bool ShouldAddOptNone =
2039       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2040   // We can't add optnone in the following cases, it won't pass the verifier.
2041   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2042   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2043 
2044   // Add optnone, but do so only if the function isn't always_inline.
2045   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2046       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2047     B.addAttribute(llvm::Attribute::OptimizeNone);
2048 
2049     // OptimizeNone implies noinline; we should not be inlining such functions.
2050     B.addAttribute(llvm::Attribute::NoInline);
2051 
2052     // We still need to handle naked functions even though optnone subsumes
2053     // much of their semantics.
2054     if (D->hasAttr<NakedAttr>())
2055       B.addAttribute(llvm::Attribute::Naked);
2056 
2057     // OptimizeNone wins over OptimizeForSize and MinSize.
2058     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2059     F->removeFnAttr(llvm::Attribute::MinSize);
2060   } else if (D->hasAttr<NakedAttr>()) {
2061     // Naked implies noinline: we should not be inlining such functions.
2062     B.addAttribute(llvm::Attribute::Naked);
2063     B.addAttribute(llvm::Attribute::NoInline);
2064   } else if (D->hasAttr<NoDuplicateAttr>()) {
2065     B.addAttribute(llvm::Attribute::NoDuplicate);
2066   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2067     // Add noinline if the function isn't always_inline.
2068     B.addAttribute(llvm::Attribute::NoInline);
2069   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2070              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2071     // (noinline wins over always_inline, and we can't specify both in IR)
2072     B.addAttribute(llvm::Attribute::AlwaysInline);
2073   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2074     // If we're not inlining, then force everything that isn't always_inline to
2075     // carry an explicit noinline attribute.
2076     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2077       B.addAttribute(llvm::Attribute::NoInline);
2078   } else {
2079     // Otherwise, propagate the inline hint attribute and potentially use its
2080     // absence to mark things as noinline.
2081     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2082       // Search function and template pattern redeclarations for inline.
2083       auto CheckForInline = [](const FunctionDecl *FD) {
2084         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2085           return Redecl->isInlineSpecified();
2086         };
2087         if (any_of(FD->redecls(), CheckRedeclForInline))
2088           return true;
2089         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2090         if (!Pattern)
2091           return false;
2092         return any_of(Pattern->redecls(), CheckRedeclForInline);
2093       };
2094       if (CheckForInline(FD)) {
2095         B.addAttribute(llvm::Attribute::InlineHint);
2096       } else if (CodeGenOpts.getInlining() ==
2097                      CodeGenOptions::OnlyHintInlining &&
2098                  !FD->isInlined() &&
2099                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2100         B.addAttribute(llvm::Attribute::NoInline);
2101       }
2102     }
2103   }
2104 
2105   // Add other optimization related attributes if we are optimizing this
2106   // function.
2107   if (!D->hasAttr<OptimizeNoneAttr>()) {
2108     if (D->hasAttr<ColdAttr>()) {
2109       if (!ShouldAddOptNone)
2110         B.addAttribute(llvm::Attribute::OptimizeForSize);
2111       B.addAttribute(llvm::Attribute::Cold);
2112     }
2113     if (D->hasAttr<HotAttr>())
2114       B.addAttribute(llvm::Attribute::Hot);
2115     if (D->hasAttr<MinSizeAttr>())
2116       B.addAttribute(llvm::Attribute::MinSize);
2117   }
2118 
2119   F->addFnAttrs(B);
2120 
2121   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2122   if (alignment)
2123     F->setAlignment(llvm::Align(alignment));
2124 
2125   if (!D->hasAttr<AlignedAttr>())
2126     if (LangOpts.FunctionAlignment)
2127       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2128 
2129   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2130   // reserve a bit for differentiating between virtual and non-virtual member
2131   // functions. If the current target's C++ ABI requires this and this is a
2132   // member function, set its alignment accordingly.
2133   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2134     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2135       F->setAlignment(llvm::Align(2));
2136   }
2137 
2138   // In the cross-dso CFI mode with canonical jump tables, we want !type
2139   // attributes on definitions only.
2140   if (CodeGenOpts.SanitizeCfiCrossDso &&
2141       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2142     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2143       // Skip available_externally functions. They won't be codegen'ed in the
2144       // current module anyway.
2145       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2146         CreateFunctionTypeMetadataForIcall(FD, F);
2147     }
2148   }
2149 
2150   // Emit type metadata on member functions for member function pointer checks.
2151   // These are only ever necessary on definitions; we're guaranteed that the
2152   // definition will be present in the LTO unit as a result of LTO visibility.
2153   auto *MD = dyn_cast<CXXMethodDecl>(D);
2154   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2155     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2156       llvm::Metadata *Id =
2157           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2158               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2159       F->addTypeMetadata(0, Id);
2160     }
2161   }
2162 }
2163 
2164 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2165                                                   llvm::Function *F) {
2166   if (D->hasAttr<StrictFPAttr>()) {
2167     llvm::AttrBuilder FuncAttrs(F->getContext());
2168     FuncAttrs.addAttribute("strictfp");
2169     F->addFnAttrs(FuncAttrs);
2170   }
2171 }
2172 
2173 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2174   const Decl *D = GD.getDecl();
2175   if (isa_and_nonnull<NamedDecl>(D))
2176     setGVProperties(GV, GD);
2177   else
2178     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2179 
2180   if (D && D->hasAttr<UsedAttr>())
2181     addUsedOrCompilerUsedGlobal(GV);
2182 
2183   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2184     const auto *VD = cast<VarDecl>(D);
2185     if (VD->getType().isConstQualified() &&
2186         VD->getStorageDuration() == SD_Static)
2187       addUsedOrCompilerUsedGlobal(GV);
2188   }
2189 }
2190 
2191 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2192                                                 llvm::AttrBuilder &Attrs) {
2193   // Add target-cpu and target-features attributes to functions. If
2194   // we have a decl for the function and it has a target attribute then
2195   // parse that and add it to the feature set.
2196   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2197   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2198   std::vector<std::string> Features;
2199   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2200   FD = FD ? FD->getMostRecentDecl() : FD;
2201   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2202   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2203   assert((!TD || !TV) && "both target_version and target specified");
2204   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2205   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2206   bool AddedAttr = false;
2207   if (TD || TV || SD || TC) {
2208     llvm::StringMap<bool> FeatureMap;
2209     getContext().getFunctionFeatureMap(FeatureMap, GD);
2210 
2211     // Produce the canonical string for this set of features.
2212     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2213       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2214 
2215     // Now add the target-cpu and target-features to the function.
2216     // While we populated the feature map above, we still need to
2217     // get and parse the target attribute so we can get the cpu for
2218     // the function.
2219     if (TD) {
2220       ParsedTargetAttr ParsedAttr =
2221           Target.parseTargetAttr(TD->getFeaturesStr());
2222       if (!ParsedAttr.CPU.empty() &&
2223           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2224         TargetCPU = ParsedAttr.CPU;
2225         TuneCPU = ""; // Clear the tune CPU.
2226       }
2227       if (!ParsedAttr.Tune.empty() &&
2228           getTarget().isValidCPUName(ParsedAttr.Tune))
2229         TuneCPU = ParsedAttr.Tune;
2230     }
2231 
2232     if (SD) {
2233       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2234       // favor this processor.
2235       TuneCPU = getTarget().getCPUSpecificTuneName(
2236           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2237     }
2238   } else {
2239     // Otherwise just add the existing target cpu and target features to the
2240     // function.
2241     Features = getTarget().getTargetOpts().Features;
2242   }
2243 
2244   if (!TargetCPU.empty()) {
2245     Attrs.addAttribute("target-cpu", TargetCPU);
2246     AddedAttr = true;
2247   }
2248   if (!TuneCPU.empty()) {
2249     Attrs.addAttribute("tune-cpu", TuneCPU);
2250     AddedAttr = true;
2251   }
2252   if (!Features.empty()) {
2253     llvm::sort(Features);
2254     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2255     AddedAttr = true;
2256   }
2257 
2258   return AddedAttr;
2259 }
2260 
2261 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2262                                           llvm::GlobalObject *GO) {
2263   const Decl *D = GD.getDecl();
2264   SetCommonAttributes(GD, GO);
2265 
2266   if (D) {
2267     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2268       if (D->hasAttr<RetainAttr>())
2269         addUsedGlobal(GV);
2270       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2271         GV->addAttribute("bss-section", SA->getName());
2272       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2273         GV->addAttribute("data-section", SA->getName());
2274       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2275         GV->addAttribute("rodata-section", SA->getName());
2276       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2277         GV->addAttribute("relro-section", SA->getName());
2278     }
2279 
2280     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2281       if (D->hasAttr<RetainAttr>())
2282         addUsedGlobal(F);
2283       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2284         if (!D->getAttr<SectionAttr>())
2285           F->addFnAttr("implicit-section-name", SA->getName());
2286 
2287       llvm::AttrBuilder Attrs(F->getContext());
2288       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2289         // We know that GetCPUAndFeaturesAttributes will always have the
2290         // newest set, since it has the newest possible FunctionDecl, so the
2291         // new ones should replace the old.
2292         llvm::AttributeMask RemoveAttrs;
2293         RemoveAttrs.addAttribute("target-cpu");
2294         RemoveAttrs.addAttribute("target-features");
2295         RemoveAttrs.addAttribute("tune-cpu");
2296         F->removeFnAttrs(RemoveAttrs);
2297         F->addFnAttrs(Attrs);
2298       }
2299     }
2300 
2301     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2302       GO->setSection(CSA->getName());
2303     else if (const auto *SA = D->getAttr<SectionAttr>())
2304       GO->setSection(SA->getName());
2305   }
2306 
2307   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2308 }
2309 
2310 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2311                                                   llvm::Function *F,
2312                                                   const CGFunctionInfo &FI) {
2313   const Decl *D = GD.getDecl();
2314   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2315   SetLLVMFunctionAttributesForDefinition(D, F);
2316 
2317   F->setLinkage(llvm::Function::InternalLinkage);
2318 
2319   setNonAliasAttributes(GD, F);
2320 }
2321 
2322 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2323   // Set linkage and visibility in case we never see a definition.
2324   LinkageInfo LV = ND->getLinkageAndVisibility();
2325   // Don't set internal linkage on declarations.
2326   // "extern_weak" is overloaded in LLVM; we probably should have
2327   // separate linkage types for this.
2328   if (isExternallyVisible(LV.getLinkage()) &&
2329       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2330     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2331 }
2332 
2333 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2334                                                        llvm::Function *F) {
2335   // Only if we are checking indirect calls.
2336   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2337     return;
2338 
2339   // Non-static class methods are handled via vtable or member function pointer
2340   // checks elsewhere.
2341   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2342     return;
2343 
2344   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2345   F->addTypeMetadata(0, MD);
2346   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2347 
2348   // Emit a hash-based bit set entry for cross-DSO calls.
2349   if (CodeGenOpts.SanitizeCfiCrossDso)
2350     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2351       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2352 }
2353 
2354 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2355   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2356     return;
2357 
2358   llvm::LLVMContext &Ctx = F->getContext();
2359   llvm::MDBuilder MDB(Ctx);
2360   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2361                  llvm::MDNode::get(
2362                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2363 }
2364 
2365 static bool allowKCFIIdentifier(StringRef Name) {
2366   // KCFI type identifier constants are only necessary for external assembly
2367   // functions, which means it's safe to skip unusual names. Subset of
2368   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2369   return llvm::all_of(Name, [](const char &C) {
2370     return llvm::isAlnum(C) || C == '_' || C == '.';
2371   });
2372 }
2373 
2374 void CodeGenModule::finalizeKCFITypes() {
2375   llvm::Module &M = getModule();
2376   for (auto &F : M.functions()) {
2377     // Remove KCFI type metadata from non-address-taken local functions.
2378     bool AddressTaken = F.hasAddressTaken();
2379     if (!AddressTaken && F.hasLocalLinkage())
2380       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2381 
2382     // Generate a constant with the expected KCFI type identifier for all
2383     // address-taken function declarations to support annotating indirectly
2384     // called assembly functions.
2385     if (!AddressTaken || !F.isDeclaration())
2386       continue;
2387 
2388     const llvm::ConstantInt *Type;
2389     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2390       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2391     else
2392       continue;
2393 
2394     StringRef Name = F.getName();
2395     if (!allowKCFIIdentifier(Name))
2396       continue;
2397 
2398     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2399                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2400                           .str();
2401     M.appendModuleInlineAsm(Asm);
2402   }
2403 }
2404 
2405 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2406                                           bool IsIncompleteFunction,
2407                                           bool IsThunk) {
2408 
2409   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2410     // If this is an intrinsic function, set the function's attributes
2411     // to the intrinsic's attributes.
2412     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2413     return;
2414   }
2415 
2416   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2417 
2418   if (!IsIncompleteFunction)
2419     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2420                               IsThunk);
2421 
2422   // Add the Returned attribute for "this", except for iOS 5 and earlier
2423   // where substantial code, including the libstdc++ dylib, was compiled with
2424   // GCC and does not actually return "this".
2425   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2426       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2427     assert(!F->arg_empty() &&
2428            F->arg_begin()->getType()
2429              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2430            "unexpected this return");
2431     F->addParamAttr(0, llvm::Attribute::Returned);
2432   }
2433 
2434   // Only a few attributes are set on declarations; these may later be
2435   // overridden by a definition.
2436 
2437   setLinkageForGV(F, FD);
2438   setGVProperties(F, FD);
2439 
2440   // Setup target-specific attributes.
2441   if (!IsIncompleteFunction && F->isDeclaration())
2442     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2443 
2444   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2445     F->setSection(CSA->getName());
2446   else if (const auto *SA = FD->getAttr<SectionAttr>())
2447      F->setSection(SA->getName());
2448 
2449   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2450     if (EA->isError())
2451       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2452     else if (EA->isWarning())
2453       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2454   }
2455 
2456   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2457   if (FD->isInlineBuiltinDeclaration()) {
2458     const FunctionDecl *FDBody;
2459     bool HasBody = FD->hasBody(FDBody);
2460     (void)HasBody;
2461     assert(HasBody && "Inline builtin declarations should always have an "
2462                       "available body!");
2463     if (shouldEmitFunction(FDBody))
2464       F->addFnAttr(llvm::Attribute::NoBuiltin);
2465   }
2466 
2467   if (FD->isReplaceableGlobalAllocationFunction()) {
2468     // A replaceable global allocation function does not act like a builtin by
2469     // default, only if it is invoked by a new-expression or delete-expression.
2470     F->addFnAttr(llvm::Attribute::NoBuiltin);
2471   }
2472 
2473   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2474     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2475   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2476     if (MD->isVirtual())
2477       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2478 
2479   // Don't emit entries for function declarations in the cross-DSO mode. This
2480   // is handled with better precision by the receiving DSO. But if jump tables
2481   // are non-canonical then we need type metadata in order to produce the local
2482   // jump table.
2483   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2484       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2485     CreateFunctionTypeMetadataForIcall(FD, F);
2486 
2487   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2488     setKCFIType(FD, F);
2489 
2490   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2491     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2492 
2493   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2494     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2495 
2496   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2497     // Annotate the callback behavior as metadata:
2498     //  - The callback callee (as argument number).
2499     //  - The callback payloads (as argument numbers).
2500     llvm::LLVMContext &Ctx = F->getContext();
2501     llvm::MDBuilder MDB(Ctx);
2502 
2503     // The payload indices are all but the first one in the encoding. The first
2504     // identifies the callback callee.
2505     int CalleeIdx = *CB->encoding_begin();
2506     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2507     F->addMetadata(llvm::LLVMContext::MD_callback,
2508                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2509                                                CalleeIdx, PayloadIndices,
2510                                                /* VarArgsArePassed */ false)}));
2511   }
2512 }
2513 
2514 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2515   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2516          "Only globals with definition can force usage.");
2517   LLVMUsed.emplace_back(GV);
2518 }
2519 
2520 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2521   assert(!GV->isDeclaration() &&
2522          "Only globals with definition can force usage.");
2523   LLVMCompilerUsed.emplace_back(GV);
2524 }
2525 
2526 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2527   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2528          "Only globals with definition can force usage.");
2529   if (getTriple().isOSBinFormatELF())
2530     LLVMCompilerUsed.emplace_back(GV);
2531   else
2532     LLVMUsed.emplace_back(GV);
2533 }
2534 
2535 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2536                      std::vector<llvm::WeakTrackingVH> &List) {
2537   // Don't create llvm.used if there is no need.
2538   if (List.empty())
2539     return;
2540 
2541   // Convert List to what ConstantArray needs.
2542   SmallVector<llvm::Constant*, 8> UsedArray;
2543   UsedArray.resize(List.size());
2544   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2545     UsedArray[i] =
2546         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2547             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2548   }
2549 
2550   if (UsedArray.empty())
2551     return;
2552   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2553 
2554   auto *GV = new llvm::GlobalVariable(
2555       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2556       llvm::ConstantArray::get(ATy, UsedArray), Name);
2557 
2558   GV->setSection("llvm.metadata");
2559 }
2560 
2561 void CodeGenModule::emitLLVMUsed() {
2562   emitUsed(*this, "llvm.used", LLVMUsed);
2563   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2564 }
2565 
2566 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2567   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2568   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2569 }
2570 
2571 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2572   llvm::SmallString<32> Opt;
2573   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2574   if (Opt.empty())
2575     return;
2576   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2577   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2578 }
2579 
2580 void CodeGenModule::AddDependentLib(StringRef Lib) {
2581   auto &C = getLLVMContext();
2582   if (getTarget().getTriple().isOSBinFormatELF()) {
2583       ELFDependentLibraries.push_back(
2584         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2585     return;
2586   }
2587 
2588   llvm::SmallString<24> Opt;
2589   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2590   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2591   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2592 }
2593 
2594 /// Add link options implied by the given module, including modules
2595 /// it depends on, using a postorder walk.
2596 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2597                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2598                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2599   // Import this module's parent.
2600   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2601     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2602   }
2603 
2604   // Import this module's dependencies.
2605   for (Module *Import : llvm::reverse(Mod->Imports)) {
2606     if (Visited.insert(Import).second)
2607       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2608   }
2609 
2610   // Add linker options to link against the libraries/frameworks
2611   // described by this module.
2612   llvm::LLVMContext &Context = CGM.getLLVMContext();
2613   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2614 
2615   // For modules that use export_as for linking, use that module
2616   // name instead.
2617   if (Mod->UseExportAsModuleLinkName)
2618     return;
2619 
2620   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2621     // Link against a framework.  Frameworks are currently Darwin only, so we
2622     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2623     if (LL.IsFramework) {
2624       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2625                                  llvm::MDString::get(Context, LL.Library)};
2626 
2627       Metadata.push_back(llvm::MDNode::get(Context, Args));
2628       continue;
2629     }
2630 
2631     // Link against a library.
2632     if (IsELF) {
2633       llvm::Metadata *Args[2] = {
2634           llvm::MDString::get(Context, "lib"),
2635           llvm::MDString::get(Context, LL.Library),
2636       };
2637       Metadata.push_back(llvm::MDNode::get(Context, Args));
2638     } else {
2639       llvm::SmallString<24> Opt;
2640       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2641       auto *OptString = llvm::MDString::get(Context, Opt);
2642       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2643     }
2644   }
2645 }
2646 
2647 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2648   // Emit the initializers in the order that sub-modules appear in the
2649   // source, first Global Module Fragments, if present.
2650   if (auto GMF = Primary->getGlobalModuleFragment()) {
2651     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2652       if (isa<ImportDecl>(D))
2653         continue;
2654       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2655       EmitTopLevelDecl(D);
2656     }
2657   }
2658   // Second any associated with the module, itself.
2659   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2660     // Skip import decls, the inits for those are called explicitly.
2661     if (isa<ImportDecl>(D))
2662       continue;
2663     EmitTopLevelDecl(D);
2664   }
2665   // Third any associated with the Privat eMOdule Fragment, if present.
2666   if (auto PMF = Primary->getPrivateModuleFragment()) {
2667     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2668       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2669       EmitTopLevelDecl(D);
2670     }
2671   }
2672 }
2673 
2674 void CodeGenModule::EmitModuleLinkOptions() {
2675   // Collect the set of all of the modules we want to visit to emit link
2676   // options, which is essentially the imported modules and all of their
2677   // non-explicit child modules.
2678   llvm::SetVector<clang::Module *> LinkModules;
2679   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2680   SmallVector<clang::Module *, 16> Stack;
2681 
2682   // Seed the stack with imported modules.
2683   for (Module *M : ImportedModules) {
2684     // Do not add any link flags when an implementation TU of a module imports
2685     // a header of that same module.
2686     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2687         !getLangOpts().isCompilingModule())
2688       continue;
2689     if (Visited.insert(M).second)
2690       Stack.push_back(M);
2691   }
2692 
2693   // Find all of the modules to import, making a little effort to prune
2694   // non-leaf modules.
2695   while (!Stack.empty()) {
2696     clang::Module *Mod = Stack.pop_back_val();
2697 
2698     bool AnyChildren = false;
2699 
2700     // Visit the submodules of this module.
2701     for (const auto &SM : Mod->submodules()) {
2702       // Skip explicit children; they need to be explicitly imported to be
2703       // linked against.
2704       if (SM->IsExplicit)
2705         continue;
2706 
2707       if (Visited.insert(SM).second) {
2708         Stack.push_back(SM);
2709         AnyChildren = true;
2710       }
2711     }
2712 
2713     // We didn't find any children, so add this module to the list of
2714     // modules to link against.
2715     if (!AnyChildren) {
2716       LinkModules.insert(Mod);
2717     }
2718   }
2719 
2720   // Add link options for all of the imported modules in reverse topological
2721   // order.  We don't do anything to try to order import link flags with respect
2722   // to linker options inserted by things like #pragma comment().
2723   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2724   Visited.clear();
2725   for (Module *M : LinkModules)
2726     if (Visited.insert(M).second)
2727       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2728   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2729   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2730 
2731   // Add the linker options metadata flag.
2732   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2733   for (auto *MD : LinkerOptionsMetadata)
2734     NMD->addOperand(MD);
2735 }
2736 
2737 void CodeGenModule::EmitDeferred() {
2738   // Emit deferred declare target declarations.
2739   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2740     getOpenMPRuntime().emitDeferredTargetDecls();
2741 
2742   // Emit code for any potentially referenced deferred decls.  Since a
2743   // previously unused static decl may become used during the generation of code
2744   // for a static function, iterate until no changes are made.
2745 
2746   if (!DeferredVTables.empty()) {
2747     EmitDeferredVTables();
2748 
2749     // Emitting a vtable doesn't directly cause more vtables to
2750     // become deferred, although it can cause functions to be
2751     // emitted that then need those vtables.
2752     assert(DeferredVTables.empty());
2753   }
2754 
2755   // Emit CUDA/HIP static device variables referenced by host code only.
2756   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2757   // needed for further handling.
2758   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2759     llvm::append_range(DeferredDeclsToEmit,
2760                        getContext().CUDADeviceVarODRUsedByHost);
2761 
2762   // Stop if we're out of both deferred vtables and deferred declarations.
2763   if (DeferredDeclsToEmit.empty())
2764     return;
2765 
2766   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2767   // work, it will not interfere with this.
2768   std::vector<GlobalDecl> CurDeclsToEmit;
2769   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2770 
2771   for (GlobalDecl &D : CurDeclsToEmit) {
2772     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2773     // to get GlobalValue with exactly the type we need, not something that
2774     // might had been created for another decl with the same mangled name but
2775     // different type.
2776     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2777         GetAddrOfGlobal(D, ForDefinition));
2778 
2779     // In case of different address spaces, we may still get a cast, even with
2780     // IsForDefinition equal to true. Query mangled names table to get
2781     // GlobalValue.
2782     if (!GV)
2783       GV = GetGlobalValue(getMangledName(D));
2784 
2785     // Make sure GetGlobalValue returned non-null.
2786     assert(GV);
2787 
2788     // Check to see if we've already emitted this.  This is necessary
2789     // for a couple of reasons: first, decls can end up in the
2790     // deferred-decls queue multiple times, and second, decls can end
2791     // up with definitions in unusual ways (e.g. by an extern inline
2792     // function acquiring a strong function redefinition).  Just
2793     // ignore these cases.
2794     if (!GV->isDeclaration())
2795       continue;
2796 
2797     // If this is OpenMP, check if it is legal to emit this global normally.
2798     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2799       continue;
2800 
2801     // Otherwise, emit the definition and move on to the next one.
2802     EmitGlobalDefinition(D, GV);
2803 
2804     // If we found out that we need to emit more decls, do that recursively.
2805     // This has the advantage that the decls are emitted in a DFS and related
2806     // ones are close together, which is convenient for testing.
2807     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2808       EmitDeferred();
2809       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2810     }
2811   }
2812 }
2813 
2814 void CodeGenModule::EmitVTablesOpportunistically() {
2815   // Try to emit external vtables as available_externally if they have emitted
2816   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2817   // is not allowed to create new references to things that need to be emitted
2818   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2819 
2820   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2821          && "Only emit opportunistic vtables with optimizations");
2822 
2823   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2824     assert(getVTables().isVTableExternal(RD) &&
2825            "This queue should only contain external vtables");
2826     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2827       VTables.GenerateClassData(RD);
2828   }
2829   OpportunisticVTables.clear();
2830 }
2831 
2832 void CodeGenModule::EmitGlobalAnnotations() {
2833   if (Annotations.empty())
2834     return;
2835 
2836   // Create a new global variable for the ConstantStruct in the Module.
2837   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2838     Annotations[0]->getType(), Annotations.size()), Annotations);
2839   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2840                                       llvm::GlobalValue::AppendingLinkage,
2841                                       Array, "llvm.global.annotations");
2842   gv->setSection(AnnotationSection);
2843 }
2844 
2845 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2846   llvm::Constant *&AStr = AnnotationStrings[Str];
2847   if (AStr)
2848     return AStr;
2849 
2850   // Not found yet, create a new global.
2851   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2852   auto *gv = new llvm::GlobalVariable(
2853       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
2854       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
2855       ConstGlobalsPtrTy->getAddressSpace());
2856   gv->setSection(AnnotationSection);
2857   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2858   AStr = gv;
2859   return gv;
2860 }
2861 
2862 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2863   SourceManager &SM = getContext().getSourceManager();
2864   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2865   if (PLoc.isValid())
2866     return EmitAnnotationString(PLoc.getFilename());
2867   return EmitAnnotationString(SM.getBufferName(Loc));
2868 }
2869 
2870 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2871   SourceManager &SM = getContext().getSourceManager();
2872   PresumedLoc PLoc = SM.getPresumedLoc(L);
2873   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2874     SM.getExpansionLineNumber(L);
2875   return llvm::ConstantInt::get(Int32Ty, LineNo);
2876 }
2877 
2878 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2879   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2880   if (Exprs.empty())
2881     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
2882 
2883   llvm::FoldingSetNodeID ID;
2884   for (Expr *E : Exprs) {
2885     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2886   }
2887   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2888   if (Lookup)
2889     return Lookup;
2890 
2891   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2892   LLVMArgs.reserve(Exprs.size());
2893   ConstantEmitter ConstEmiter(*this);
2894   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2895     const auto *CE = cast<clang::ConstantExpr>(E);
2896     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2897                                     CE->getType());
2898   });
2899   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2900   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2901                                       llvm::GlobalValue::PrivateLinkage, Struct,
2902                                       ".args");
2903   GV->setSection(AnnotationSection);
2904   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2905   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2906 
2907   Lookup = Bitcasted;
2908   return Bitcasted;
2909 }
2910 
2911 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2912                                                 const AnnotateAttr *AA,
2913                                                 SourceLocation L) {
2914   // Get the globals for file name, annotation, and the line number.
2915   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2916                  *UnitGV = EmitAnnotationUnit(L),
2917                  *LineNoCst = EmitAnnotationLineNo(L),
2918                  *Args = EmitAnnotationArgs(AA);
2919 
2920   llvm::Constant *GVInGlobalsAS = GV;
2921   if (GV->getAddressSpace() !=
2922       getDataLayout().getDefaultGlobalsAddressSpace()) {
2923     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2924         GV, GV->getValueType()->getPointerTo(
2925                 getDataLayout().getDefaultGlobalsAddressSpace()));
2926   }
2927 
2928   // Create the ConstantStruct for the global annotation.
2929   llvm::Constant *Fields[] = {
2930       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2931       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
2932       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
2933       LineNoCst,
2934       Args,
2935   };
2936   return llvm::ConstantStruct::getAnon(Fields);
2937 }
2938 
2939 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2940                                          llvm::GlobalValue *GV) {
2941   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2942   // Get the struct elements for these annotations.
2943   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2944     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2945 }
2946 
2947 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2948                                        SourceLocation Loc) const {
2949   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2950   // NoSanitize by function name.
2951   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2952     return true;
2953   // NoSanitize by location. Check "mainfile" prefix.
2954   auto &SM = Context.getSourceManager();
2955   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2956   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2957     return true;
2958 
2959   // Check "src" prefix.
2960   if (Loc.isValid())
2961     return NoSanitizeL.containsLocation(Kind, Loc);
2962   // If location is unknown, this may be a compiler-generated function. Assume
2963   // it's located in the main file.
2964   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2965 }
2966 
2967 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2968                                        llvm::GlobalVariable *GV,
2969                                        SourceLocation Loc, QualType Ty,
2970                                        StringRef Category) const {
2971   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2972   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2973     return true;
2974   auto &SM = Context.getSourceManager();
2975   if (NoSanitizeL.containsMainFile(
2976           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2977     return true;
2978   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2979     return true;
2980 
2981   // Check global type.
2982   if (!Ty.isNull()) {
2983     // Drill down the array types: if global variable of a fixed type is
2984     // not sanitized, we also don't instrument arrays of them.
2985     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2986       Ty = AT->getElementType();
2987     Ty = Ty.getCanonicalType().getUnqualifiedType();
2988     // Only record types (classes, structs etc.) are ignored.
2989     if (Ty->isRecordType()) {
2990       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2991       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2992         return true;
2993     }
2994   }
2995   return false;
2996 }
2997 
2998 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2999                                    StringRef Category) const {
3000   const auto &XRayFilter = getContext().getXRayFilter();
3001   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3002   auto Attr = ImbueAttr::NONE;
3003   if (Loc.isValid())
3004     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3005   if (Attr == ImbueAttr::NONE)
3006     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3007   switch (Attr) {
3008   case ImbueAttr::NONE:
3009     return false;
3010   case ImbueAttr::ALWAYS:
3011     Fn->addFnAttr("function-instrument", "xray-always");
3012     break;
3013   case ImbueAttr::ALWAYS_ARG1:
3014     Fn->addFnAttr("function-instrument", "xray-always");
3015     Fn->addFnAttr("xray-log-args", "1");
3016     break;
3017   case ImbueAttr::NEVER:
3018     Fn->addFnAttr("function-instrument", "xray-never");
3019     break;
3020   }
3021   return true;
3022 }
3023 
3024 ProfileList::ExclusionType
3025 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3026                                               SourceLocation Loc) const {
3027   const auto &ProfileList = getContext().getProfileList();
3028   // If the profile list is empty, then instrument everything.
3029   if (ProfileList.isEmpty())
3030     return ProfileList::Allow;
3031   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3032   // First, check the function name.
3033   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3034     return *V;
3035   // Next, check the source location.
3036   if (Loc.isValid())
3037     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3038       return *V;
3039   // If location is unknown, this may be a compiler-generated function. Assume
3040   // it's located in the main file.
3041   auto &SM = Context.getSourceManager();
3042   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3043     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3044       return *V;
3045   return ProfileList.getDefault(Kind);
3046 }
3047 
3048 ProfileList::ExclusionType
3049 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3050                                                  SourceLocation Loc) const {
3051   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3052   if (V != ProfileList::Allow)
3053     return V;
3054 
3055   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3056   if (NumGroups > 1) {
3057     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3058     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3059       return ProfileList::Skip;
3060   }
3061   return ProfileList::Allow;
3062 }
3063 
3064 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3065   // Never defer when EmitAllDecls is specified.
3066   if (LangOpts.EmitAllDecls)
3067     return true;
3068 
3069   if (CodeGenOpts.KeepStaticConsts) {
3070     const auto *VD = dyn_cast<VarDecl>(Global);
3071     if (VD && VD->getType().isConstQualified() &&
3072         VD->getStorageDuration() == SD_Static)
3073       return true;
3074   }
3075 
3076   return getContext().DeclMustBeEmitted(Global);
3077 }
3078 
3079 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3080   // In OpenMP 5.0 variables and function may be marked as
3081   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3082   // that they must be emitted on the host/device. To be sure we need to have
3083   // seen a declare target with an explicit mentioning of the function, we know
3084   // we have if the level of the declare target attribute is -1. Note that we
3085   // check somewhere else if we should emit this at all.
3086   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3087     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3088         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3089     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3090       return false;
3091   }
3092 
3093   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3094     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3095       // Implicit template instantiations may change linkage if they are later
3096       // explicitly instantiated, so they should not be emitted eagerly.
3097       return false;
3098   }
3099   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3100     if (Context.getInlineVariableDefinitionKind(VD) ==
3101         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3102       // A definition of an inline constexpr static data member may change
3103       // linkage later if it's redeclared outside the class.
3104       return false;
3105     if (CXX20ModuleInits && VD->getOwningModule() &&
3106         !VD->getOwningModule()->isModuleMapModule()) {
3107       // For CXX20, module-owned initializers need to be deferred, since it is
3108       // not known at this point if they will be run for the current module or
3109       // as part of the initializer for an imported one.
3110       return false;
3111     }
3112   }
3113   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3114   // codegen for global variables, because they may be marked as threadprivate.
3115   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3116       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3117       !isTypeConstant(Global->getType(), false) &&
3118       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3119     return false;
3120 
3121   return true;
3122 }
3123 
3124 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3125   StringRef Name = getMangledName(GD);
3126 
3127   // The UUID descriptor should be pointer aligned.
3128   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3129 
3130   // Look for an existing global.
3131   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3132     return ConstantAddress(GV, GV->getValueType(), Alignment);
3133 
3134   ConstantEmitter Emitter(*this);
3135   llvm::Constant *Init;
3136 
3137   APValue &V = GD->getAsAPValue();
3138   if (!V.isAbsent()) {
3139     // If possible, emit the APValue version of the initializer. In particular,
3140     // this gets the type of the constant right.
3141     Init = Emitter.emitForInitializer(
3142         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3143   } else {
3144     // As a fallback, directly construct the constant.
3145     // FIXME: This may get padding wrong under esoteric struct layout rules.
3146     // MSVC appears to create a complete type 'struct __s_GUID' that it
3147     // presumably uses to represent these constants.
3148     MSGuidDecl::Parts Parts = GD->getParts();
3149     llvm::Constant *Fields[4] = {
3150         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3151         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3152         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3153         llvm::ConstantDataArray::getRaw(
3154             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3155             Int8Ty)};
3156     Init = llvm::ConstantStruct::getAnon(Fields);
3157   }
3158 
3159   auto *GV = new llvm::GlobalVariable(
3160       getModule(), Init->getType(),
3161       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3162   if (supportsCOMDAT())
3163     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3164   setDSOLocal(GV);
3165 
3166   if (!V.isAbsent()) {
3167     Emitter.finalize(GV);
3168     return ConstantAddress(GV, GV->getValueType(), Alignment);
3169   }
3170 
3171   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3172   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3173       GV, Ty->getPointerTo(GV->getAddressSpace()));
3174   return ConstantAddress(Addr, Ty, Alignment);
3175 }
3176 
3177 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3178     const UnnamedGlobalConstantDecl *GCD) {
3179   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3180 
3181   llvm::GlobalVariable **Entry = nullptr;
3182   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3183   if (*Entry)
3184     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3185 
3186   ConstantEmitter Emitter(*this);
3187   llvm::Constant *Init;
3188 
3189   const APValue &V = GCD->getValue();
3190 
3191   assert(!V.isAbsent());
3192   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3193                                     GCD->getType());
3194 
3195   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3196                                       /*isConstant=*/true,
3197                                       llvm::GlobalValue::PrivateLinkage, Init,
3198                                       ".constant");
3199   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3200   GV->setAlignment(Alignment.getAsAlign());
3201 
3202   Emitter.finalize(GV);
3203 
3204   *Entry = GV;
3205   return ConstantAddress(GV, GV->getValueType(), Alignment);
3206 }
3207 
3208 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3209     const TemplateParamObjectDecl *TPO) {
3210   StringRef Name = getMangledName(TPO);
3211   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3212 
3213   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3214     return ConstantAddress(GV, GV->getValueType(), Alignment);
3215 
3216   ConstantEmitter Emitter(*this);
3217   llvm::Constant *Init = Emitter.emitForInitializer(
3218         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3219 
3220   if (!Init) {
3221     ErrorUnsupported(TPO, "template parameter object");
3222     return ConstantAddress::invalid();
3223   }
3224 
3225   auto *GV = new llvm::GlobalVariable(
3226       getModule(), Init->getType(),
3227       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3228   if (supportsCOMDAT())
3229     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3230   Emitter.finalize(GV);
3231 
3232   return ConstantAddress(GV, GV->getValueType(), Alignment);
3233 }
3234 
3235 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3236   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3237   assert(AA && "No alias?");
3238 
3239   CharUnits Alignment = getContext().getDeclAlign(VD);
3240   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3241 
3242   // See if there is already something with the target's name in the module.
3243   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3244   if (Entry) {
3245     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3246     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3247     return ConstantAddress(Ptr, DeclTy, Alignment);
3248   }
3249 
3250   llvm::Constant *Aliasee;
3251   if (isa<llvm::FunctionType>(DeclTy))
3252     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3253                                       GlobalDecl(cast<FunctionDecl>(VD)),
3254                                       /*ForVTable=*/false);
3255   else
3256     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3257                                     nullptr);
3258 
3259   auto *F = cast<llvm::GlobalValue>(Aliasee);
3260   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3261   WeakRefReferences.insert(F);
3262 
3263   return ConstantAddress(Aliasee, DeclTy, Alignment);
3264 }
3265 
3266 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3267   const auto *Global = cast<ValueDecl>(GD.getDecl());
3268 
3269   // Weak references don't produce any output by themselves.
3270   if (Global->hasAttr<WeakRefAttr>())
3271     return;
3272 
3273   // If this is an alias definition (which otherwise looks like a declaration)
3274   // emit it now.
3275   if (Global->hasAttr<AliasAttr>())
3276     return EmitAliasDefinition(GD);
3277 
3278   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3279   if (Global->hasAttr<IFuncAttr>())
3280     return emitIFuncDefinition(GD);
3281 
3282   // If this is a cpu_dispatch multiversion function, emit the resolver.
3283   if (Global->hasAttr<CPUDispatchAttr>())
3284     return emitCPUDispatchDefinition(GD);
3285 
3286   // If this is CUDA, be selective about which declarations we emit.
3287   if (LangOpts.CUDA) {
3288     if (LangOpts.CUDAIsDevice) {
3289       if (!Global->hasAttr<CUDADeviceAttr>() &&
3290           !Global->hasAttr<CUDAGlobalAttr>() &&
3291           !Global->hasAttr<CUDAConstantAttr>() &&
3292           !Global->hasAttr<CUDASharedAttr>() &&
3293           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3294           !Global->getType()->isCUDADeviceBuiltinTextureType())
3295         return;
3296     } else {
3297       // We need to emit host-side 'shadows' for all global
3298       // device-side variables because the CUDA runtime needs their
3299       // size and host-side address in order to provide access to
3300       // their device-side incarnations.
3301 
3302       // So device-only functions are the only things we skip.
3303       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3304           Global->hasAttr<CUDADeviceAttr>())
3305         return;
3306 
3307       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3308              "Expected Variable or Function");
3309     }
3310   }
3311 
3312   if (LangOpts.OpenMP) {
3313     // If this is OpenMP, check if it is legal to emit this global normally.
3314     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3315       return;
3316     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3317       if (MustBeEmitted(Global))
3318         EmitOMPDeclareReduction(DRD);
3319       return;
3320     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3321       if (MustBeEmitted(Global))
3322         EmitOMPDeclareMapper(DMD);
3323       return;
3324     }
3325   }
3326 
3327   // Ignore declarations, they will be emitted on their first use.
3328   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3329     // Forward declarations are emitted lazily on first use.
3330     if (!FD->doesThisDeclarationHaveABody()) {
3331       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3332         return;
3333 
3334       StringRef MangledName = getMangledName(GD);
3335 
3336       // Compute the function info and LLVM type.
3337       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3338       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3339 
3340       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3341                               /*DontDefer=*/false);
3342       return;
3343     }
3344   } else {
3345     const auto *VD = cast<VarDecl>(Global);
3346     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3347     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3348         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3349       if (LangOpts.OpenMP) {
3350         // Emit declaration of the must-be-emitted declare target variable.
3351         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3352                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3353           bool UnifiedMemoryEnabled =
3354               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3355           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3356                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3357               !UnifiedMemoryEnabled) {
3358             (void)GetAddrOfGlobalVar(VD);
3359           } else {
3360             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3361                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3362                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3363                      UnifiedMemoryEnabled)) &&
3364                    "Link clause or to clause with unified memory expected.");
3365             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3366           }
3367 
3368           return;
3369         }
3370       }
3371       // If this declaration may have caused an inline variable definition to
3372       // change linkage, make sure that it's emitted.
3373       if (Context.getInlineVariableDefinitionKind(VD) ==
3374           ASTContext::InlineVariableDefinitionKind::Strong)
3375         GetAddrOfGlobalVar(VD);
3376       return;
3377     }
3378   }
3379 
3380   // Defer code generation to first use when possible, e.g. if this is an inline
3381   // function. If the global must always be emitted, do it eagerly if possible
3382   // to benefit from cache locality.
3383   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3384     // Emit the definition if it can't be deferred.
3385     EmitGlobalDefinition(GD);
3386     return;
3387   }
3388 
3389   // If we're deferring emission of a C++ variable with an
3390   // initializer, remember the order in which it appeared in the file.
3391   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3392       cast<VarDecl>(Global)->hasInit()) {
3393     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3394     CXXGlobalInits.push_back(nullptr);
3395   }
3396 
3397   StringRef MangledName = getMangledName(GD);
3398   if (GetGlobalValue(MangledName) != nullptr) {
3399     // The value has already been used and should therefore be emitted.
3400     addDeferredDeclToEmit(GD);
3401   } else if (MustBeEmitted(Global)) {
3402     // The value must be emitted, but cannot be emitted eagerly.
3403     assert(!MayBeEmittedEagerly(Global));
3404     addDeferredDeclToEmit(GD);
3405     EmittedDeferredDecls[MangledName] = GD;
3406   } else {
3407     // Otherwise, remember that we saw a deferred decl with this name.  The
3408     // first use of the mangled name will cause it to move into
3409     // DeferredDeclsToEmit.
3410     DeferredDecls[MangledName] = GD;
3411   }
3412 }
3413 
3414 // Check if T is a class type with a destructor that's not dllimport.
3415 static bool HasNonDllImportDtor(QualType T) {
3416   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3417     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3418       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3419         return true;
3420 
3421   return false;
3422 }
3423 
3424 namespace {
3425   struct FunctionIsDirectlyRecursive
3426       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3427     const StringRef Name;
3428     const Builtin::Context &BI;
3429     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3430         : Name(N), BI(C) {}
3431 
3432     bool VisitCallExpr(const CallExpr *E) {
3433       const FunctionDecl *FD = E->getDirectCallee();
3434       if (!FD)
3435         return false;
3436       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3437       if (Attr && Name == Attr->getLabel())
3438         return true;
3439       unsigned BuiltinID = FD->getBuiltinID();
3440       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3441         return false;
3442       StringRef BuiltinName = BI.getName(BuiltinID);
3443       if (BuiltinName.startswith("__builtin_") &&
3444           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3445         return true;
3446       }
3447       return false;
3448     }
3449 
3450     bool VisitStmt(const Stmt *S) {
3451       for (const Stmt *Child : S->children())
3452         if (Child && this->Visit(Child))
3453           return true;
3454       return false;
3455     }
3456   };
3457 
3458   // Make sure we're not referencing non-imported vars or functions.
3459   struct DLLImportFunctionVisitor
3460       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3461     bool SafeToInline = true;
3462 
3463     bool shouldVisitImplicitCode() const { return true; }
3464 
3465     bool VisitVarDecl(VarDecl *VD) {
3466       if (VD->getTLSKind()) {
3467         // A thread-local variable cannot be imported.
3468         SafeToInline = false;
3469         return SafeToInline;
3470       }
3471 
3472       // A variable definition might imply a destructor call.
3473       if (VD->isThisDeclarationADefinition())
3474         SafeToInline = !HasNonDllImportDtor(VD->getType());
3475 
3476       return SafeToInline;
3477     }
3478 
3479     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3480       if (const auto *D = E->getTemporary()->getDestructor())
3481         SafeToInline = D->hasAttr<DLLImportAttr>();
3482       return SafeToInline;
3483     }
3484 
3485     bool VisitDeclRefExpr(DeclRefExpr *E) {
3486       ValueDecl *VD = E->getDecl();
3487       if (isa<FunctionDecl>(VD))
3488         SafeToInline = VD->hasAttr<DLLImportAttr>();
3489       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3490         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3491       return SafeToInline;
3492     }
3493 
3494     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3495       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3496       return SafeToInline;
3497     }
3498 
3499     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3500       CXXMethodDecl *M = E->getMethodDecl();
3501       if (!M) {
3502         // Call through a pointer to member function. This is safe to inline.
3503         SafeToInline = true;
3504       } else {
3505         SafeToInline = M->hasAttr<DLLImportAttr>();
3506       }
3507       return SafeToInline;
3508     }
3509 
3510     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3511       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3512       return SafeToInline;
3513     }
3514 
3515     bool VisitCXXNewExpr(CXXNewExpr *E) {
3516       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3517       return SafeToInline;
3518     }
3519   };
3520 }
3521 
3522 // isTriviallyRecursive - Check if this function calls another
3523 // decl that, because of the asm attribute or the other decl being a builtin,
3524 // ends up pointing to itself.
3525 bool
3526 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3527   StringRef Name;
3528   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3529     // asm labels are a special kind of mangling we have to support.
3530     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3531     if (!Attr)
3532       return false;
3533     Name = Attr->getLabel();
3534   } else {
3535     Name = FD->getName();
3536   }
3537 
3538   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3539   const Stmt *Body = FD->getBody();
3540   return Body ? Walker.Visit(Body) : false;
3541 }
3542 
3543 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3544   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3545     return true;
3546   const auto *F = cast<FunctionDecl>(GD.getDecl());
3547   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3548     return false;
3549 
3550   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3551     // Check whether it would be safe to inline this dllimport function.
3552     DLLImportFunctionVisitor Visitor;
3553     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3554     if (!Visitor.SafeToInline)
3555       return false;
3556 
3557     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3558       // Implicit destructor invocations aren't captured in the AST, so the
3559       // check above can't see them. Check for them manually here.
3560       for (const Decl *Member : Dtor->getParent()->decls())
3561         if (isa<FieldDecl>(Member))
3562           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3563             return false;
3564       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3565         if (HasNonDllImportDtor(B.getType()))
3566           return false;
3567     }
3568   }
3569 
3570   // Inline builtins declaration must be emitted. They often are fortified
3571   // functions.
3572   if (F->isInlineBuiltinDeclaration())
3573     return true;
3574 
3575   // PR9614. Avoid cases where the source code is lying to us. An available
3576   // externally function should have an equivalent function somewhere else,
3577   // but a function that calls itself through asm label/`__builtin_` trickery is
3578   // clearly not equivalent to the real implementation.
3579   // This happens in glibc's btowc and in some configure checks.
3580   return !isTriviallyRecursive(F);
3581 }
3582 
3583 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3584   return CodeGenOpts.OptimizationLevel > 0;
3585 }
3586 
3587 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3588                                                        llvm::GlobalValue *GV) {
3589   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3590 
3591   if (FD->isCPUSpecificMultiVersion()) {
3592     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3593     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3594       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3595   } else if (FD->isTargetClonesMultiVersion()) {
3596     auto *Clone = FD->getAttr<TargetClonesAttr>();
3597     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3598       if (Clone->isFirstOfVersion(I))
3599         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3600     // Ensure that the resolver function is also emitted.
3601     GetOrCreateMultiVersionResolver(GD);
3602   } else
3603     EmitGlobalFunctionDefinition(GD, GV);
3604 }
3605 
3606 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3607   const auto *D = cast<ValueDecl>(GD.getDecl());
3608 
3609   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3610                                  Context.getSourceManager(),
3611                                  "Generating code for declaration");
3612 
3613   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3614     // At -O0, don't generate IR for functions with available_externally
3615     // linkage.
3616     if (!shouldEmitFunction(GD))
3617       return;
3618 
3619     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3620       std::string Name;
3621       llvm::raw_string_ostream OS(Name);
3622       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3623                                /*Qualified=*/true);
3624       return Name;
3625     });
3626 
3627     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3628       // Make sure to emit the definition(s) before we emit the thunks.
3629       // This is necessary for the generation of certain thunks.
3630       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3631         ABI->emitCXXStructor(GD);
3632       else if (FD->isMultiVersion())
3633         EmitMultiVersionFunctionDefinition(GD, GV);
3634       else
3635         EmitGlobalFunctionDefinition(GD, GV);
3636 
3637       if (Method->isVirtual())
3638         getVTables().EmitThunks(GD);
3639 
3640       return;
3641     }
3642 
3643     if (FD->isMultiVersion())
3644       return EmitMultiVersionFunctionDefinition(GD, GV);
3645     return EmitGlobalFunctionDefinition(GD, GV);
3646   }
3647 
3648   if (const auto *VD = dyn_cast<VarDecl>(D))
3649     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3650 
3651   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3652 }
3653 
3654 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3655                                                       llvm::Function *NewFn);
3656 
3657 static unsigned
3658 TargetMVPriority(const TargetInfo &TI,
3659                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3660   unsigned Priority = 0;
3661   unsigned NumFeatures = 0;
3662   for (StringRef Feat : RO.Conditions.Features) {
3663     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3664     NumFeatures++;
3665   }
3666 
3667   if (!RO.Conditions.Architecture.empty())
3668     Priority = std::max(
3669         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3670 
3671   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3672 
3673   return Priority;
3674 }
3675 
3676 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3677 // TU can forward declare the function without causing problems.  Particularly
3678 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3679 // work with internal linkage functions, so that the same function name can be
3680 // used with internal linkage in multiple TUs.
3681 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3682                                                        GlobalDecl GD) {
3683   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3684   if (FD->getFormalLinkage() == InternalLinkage)
3685     return llvm::GlobalValue::InternalLinkage;
3686   return llvm::GlobalValue::WeakODRLinkage;
3687 }
3688 
3689 void CodeGenModule::emitMultiVersionFunctions() {
3690   std::vector<GlobalDecl> MVFuncsToEmit;
3691   MultiVersionFuncs.swap(MVFuncsToEmit);
3692   for (GlobalDecl GD : MVFuncsToEmit) {
3693     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3694     assert(FD && "Expected a FunctionDecl");
3695 
3696     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3697     if (FD->isTargetMultiVersion()) {
3698       getContext().forEachMultiversionedFunctionVersion(
3699           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3700             GlobalDecl CurGD{
3701                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3702             StringRef MangledName = getMangledName(CurGD);
3703             llvm::Constant *Func = GetGlobalValue(MangledName);
3704             if (!Func) {
3705               if (CurFD->isDefined()) {
3706                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3707                 Func = GetGlobalValue(MangledName);
3708               } else {
3709                 const CGFunctionInfo &FI =
3710                     getTypes().arrangeGlobalDeclaration(GD);
3711                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3712                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3713                                          /*DontDefer=*/false, ForDefinition);
3714               }
3715               assert(Func && "This should have just been created");
3716             }
3717             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3718               const auto *TA = CurFD->getAttr<TargetAttr>();
3719               llvm::SmallVector<StringRef, 8> Feats;
3720               TA->getAddedFeatures(Feats);
3721               Options.emplace_back(cast<llvm::Function>(Func),
3722                                    TA->getArchitecture(), Feats);
3723             } else {
3724               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3725               llvm::SmallVector<StringRef, 8> Feats;
3726               TVA->getFeatures(Feats);
3727               Options.emplace_back(cast<llvm::Function>(Func),
3728                                    /*Architecture*/ "", Feats);
3729             }
3730           });
3731     } else if (FD->isTargetClonesMultiVersion()) {
3732       const auto *TC = FD->getAttr<TargetClonesAttr>();
3733       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3734            ++VersionIndex) {
3735         if (!TC->isFirstOfVersion(VersionIndex))
3736           continue;
3737         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3738                          VersionIndex};
3739         StringRef Version = TC->getFeatureStr(VersionIndex);
3740         StringRef MangledName = getMangledName(CurGD);
3741         llvm::Constant *Func = GetGlobalValue(MangledName);
3742         if (!Func) {
3743           if (FD->isDefined()) {
3744             EmitGlobalFunctionDefinition(CurGD, nullptr);
3745             Func = GetGlobalValue(MangledName);
3746           } else {
3747             const CGFunctionInfo &FI =
3748                 getTypes().arrangeGlobalDeclaration(CurGD);
3749             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3750             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3751                                      /*DontDefer=*/false, ForDefinition);
3752           }
3753           assert(Func && "This should have just been created");
3754         }
3755 
3756         StringRef Architecture;
3757         llvm::SmallVector<StringRef, 1> Feature;
3758 
3759         if (getTarget().getTriple().isAArch64()) {
3760           if (Version != "default") {
3761             llvm::SmallVector<StringRef, 8> VerFeats;
3762             Version.split(VerFeats, "+");
3763             for (auto &CurFeat : VerFeats)
3764               Feature.push_back(CurFeat.trim());
3765           }
3766         } else {
3767           if (Version.startswith("arch="))
3768             Architecture = Version.drop_front(sizeof("arch=") - 1);
3769           else if (Version != "default")
3770             Feature.push_back(Version);
3771         }
3772 
3773         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3774       }
3775     } else {
3776       assert(0 && "Expected a target or target_clones multiversion function");
3777       continue;
3778     }
3779 
3780     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3781     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3782       ResolverConstant = IFunc->getResolver();
3783     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3784 
3785     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3786 
3787     if (supportsCOMDAT())
3788       ResolverFunc->setComdat(
3789           getModule().getOrInsertComdat(ResolverFunc->getName()));
3790 
3791     const TargetInfo &TI = getTarget();
3792     llvm::stable_sort(
3793         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3794                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3795           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3796         });
3797     CodeGenFunction CGF(*this);
3798     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3799   }
3800 
3801   // Ensure that any additions to the deferred decls list caused by emitting a
3802   // variant are emitted.  This can happen when the variant itself is inline and
3803   // calls a function without linkage.
3804   if (!MVFuncsToEmit.empty())
3805     EmitDeferred();
3806 
3807   // Ensure that any additions to the multiversion funcs list from either the
3808   // deferred decls or the multiversion functions themselves are emitted.
3809   if (!MultiVersionFuncs.empty())
3810     emitMultiVersionFunctions();
3811 }
3812 
3813 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3814   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3815   assert(FD && "Not a FunctionDecl?");
3816   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3817   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3818   assert(DD && "Not a cpu_dispatch Function?");
3819 
3820   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3821   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3822 
3823   StringRef ResolverName = getMangledName(GD);
3824   UpdateMultiVersionNames(GD, FD, ResolverName);
3825 
3826   llvm::Type *ResolverType;
3827   GlobalDecl ResolverGD;
3828   if (getTarget().supportsIFunc()) {
3829     ResolverType = llvm::FunctionType::get(
3830         llvm::PointerType::get(DeclTy,
3831                                getTypes().getTargetAddressSpace(FD->getType())),
3832         false);
3833   }
3834   else {
3835     ResolverType = DeclTy;
3836     ResolverGD = GD;
3837   }
3838 
3839   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3840       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3841   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3842   if (supportsCOMDAT())
3843     ResolverFunc->setComdat(
3844         getModule().getOrInsertComdat(ResolverFunc->getName()));
3845 
3846   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3847   const TargetInfo &Target = getTarget();
3848   unsigned Index = 0;
3849   for (const IdentifierInfo *II : DD->cpus()) {
3850     // Get the name of the target function so we can look it up/create it.
3851     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3852                               getCPUSpecificMangling(*this, II->getName());
3853 
3854     llvm::Constant *Func = GetGlobalValue(MangledName);
3855 
3856     if (!Func) {
3857       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3858       if (ExistingDecl.getDecl() &&
3859           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3860         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3861         Func = GetGlobalValue(MangledName);
3862       } else {
3863         if (!ExistingDecl.getDecl())
3864           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3865 
3866       Func = GetOrCreateLLVMFunction(
3867           MangledName, DeclTy, ExistingDecl,
3868           /*ForVTable=*/false, /*DontDefer=*/true,
3869           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3870       }
3871     }
3872 
3873     llvm::SmallVector<StringRef, 32> Features;
3874     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3875     llvm::transform(Features, Features.begin(),
3876                     [](StringRef Str) { return Str.substr(1); });
3877     llvm::erase_if(Features, [&Target](StringRef Feat) {
3878       return !Target.validateCpuSupports(Feat);
3879     });
3880     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3881     ++Index;
3882   }
3883 
3884   llvm::stable_sort(
3885       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3886                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3887         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3888                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3889       });
3890 
3891   // If the list contains multiple 'default' versions, such as when it contains
3892   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3893   // always run on at least a 'pentium'). We do this by deleting the 'least
3894   // advanced' (read, lowest mangling letter).
3895   while (Options.size() > 1 &&
3896          llvm::X86::getCpuSupportsMask(
3897              (Options.end() - 2)->Conditions.Features) == 0) {
3898     StringRef LHSName = (Options.end() - 2)->Function->getName();
3899     StringRef RHSName = (Options.end() - 1)->Function->getName();
3900     if (LHSName.compare(RHSName) < 0)
3901       Options.erase(Options.end() - 2);
3902     else
3903       Options.erase(Options.end() - 1);
3904   }
3905 
3906   CodeGenFunction CGF(*this);
3907   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3908 
3909   if (getTarget().supportsIFunc()) {
3910     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3911     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3912 
3913     // Fix up function declarations that were created for cpu_specific before
3914     // cpu_dispatch was known
3915     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3916       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3917       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3918                                            &getModule());
3919       GI->takeName(IFunc);
3920       IFunc->replaceAllUsesWith(GI);
3921       IFunc->eraseFromParent();
3922       IFunc = GI;
3923     }
3924 
3925     std::string AliasName = getMangledNameImpl(
3926         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3927     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3928     if (!AliasFunc) {
3929       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3930                                            &getModule());
3931       SetCommonAttributes(GD, GA);
3932     }
3933   }
3934 }
3935 
3936 /// If a dispatcher for the specified mangled name is not in the module, create
3937 /// and return an llvm Function with the specified type.
3938 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3939   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3940   assert(FD && "Not a FunctionDecl?");
3941 
3942   std::string MangledName =
3943       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3944 
3945   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3946   // a separate resolver).
3947   std::string ResolverName = MangledName;
3948   if (getTarget().supportsIFunc())
3949     ResolverName += ".ifunc";
3950   else if (FD->isTargetMultiVersion())
3951     ResolverName += ".resolver";
3952 
3953   // If the resolver has already been created, just return it.
3954   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3955     return ResolverGV;
3956 
3957   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3958   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3959 
3960   // The resolver needs to be created. For target and target_clones, defer
3961   // creation until the end of the TU.
3962   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3963     MultiVersionFuncs.push_back(GD);
3964 
3965   // For cpu_specific, don't create an ifunc yet because we don't know if the
3966   // cpu_dispatch will be emitted in this translation unit.
3967   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3968     llvm::Type *ResolverType = llvm::FunctionType::get(
3969         llvm::PointerType::get(DeclTy,
3970                                getTypes().getTargetAddressSpace(FD->getType())),
3971         false);
3972     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3973         MangledName + ".resolver", ResolverType, GlobalDecl{},
3974         /*ForVTable=*/false);
3975     llvm::GlobalIFunc *GIF =
3976         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3977                                   "", Resolver, &getModule());
3978     GIF->setName(ResolverName);
3979     SetCommonAttributes(FD, GIF);
3980 
3981     return GIF;
3982   }
3983 
3984   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3985       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3986   assert(isa<llvm::GlobalValue>(Resolver) &&
3987          "Resolver should be created for the first time");
3988   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3989   return Resolver;
3990 }
3991 
3992 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3993 /// module, create and return an llvm Function with the specified type. If there
3994 /// is something in the module with the specified name, return it potentially
3995 /// bitcasted to the right type.
3996 ///
3997 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3998 /// to set the attributes on the function when it is first created.
3999 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4000     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4001     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4002     ForDefinition_t IsForDefinition) {
4003   const Decl *D = GD.getDecl();
4004 
4005   // Any attempts to use a MultiVersion function should result in retrieving
4006   // the iFunc instead. Name Mangling will handle the rest of the changes.
4007   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4008     // For the device mark the function as one that should be emitted.
4009     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
4010         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4011         !DontDefer && !IsForDefinition) {
4012       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4013         GlobalDecl GDDef;
4014         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4015           GDDef = GlobalDecl(CD, GD.getCtorType());
4016         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4017           GDDef = GlobalDecl(DD, GD.getDtorType());
4018         else
4019           GDDef = GlobalDecl(FDDef);
4020         EmitGlobal(GDDef);
4021       }
4022     }
4023 
4024     if (FD->isMultiVersion()) {
4025       UpdateMultiVersionNames(GD, FD, MangledName);
4026       if (!IsForDefinition)
4027         return GetOrCreateMultiVersionResolver(GD);
4028     }
4029   }
4030 
4031   // Lookup the entry, lazily creating it if necessary.
4032   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4033   if (Entry) {
4034     if (WeakRefReferences.erase(Entry)) {
4035       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4036       if (FD && !FD->hasAttr<WeakAttr>())
4037         Entry->setLinkage(llvm::Function::ExternalLinkage);
4038     }
4039 
4040     // Handle dropped DLL attributes.
4041     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4042         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4043       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4044       setDSOLocal(Entry);
4045     }
4046 
4047     // If there are two attempts to define the same mangled name, issue an
4048     // error.
4049     if (IsForDefinition && !Entry->isDeclaration()) {
4050       GlobalDecl OtherGD;
4051       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4052       // to make sure that we issue an error only once.
4053       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4054           (GD.getCanonicalDecl().getDecl() !=
4055            OtherGD.getCanonicalDecl().getDecl()) &&
4056           DiagnosedConflictingDefinitions.insert(GD).second) {
4057         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4058             << MangledName;
4059         getDiags().Report(OtherGD.getDecl()->getLocation(),
4060                           diag::note_previous_definition);
4061       }
4062     }
4063 
4064     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4065         (Entry->getValueType() == Ty)) {
4066       return Entry;
4067     }
4068 
4069     // Make sure the result is of the correct type.
4070     // (If function is requested for a definition, we always need to create a new
4071     // function, not just return a bitcast.)
4072     if (!IsForDefinition)
4073       return llvm::ConstantExpr::getBitCast(
4074           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4075   }
4076 
4077   // This function doesn't have a complete type (for example, the return
4078   // type is an incomplete struct). Use a fake type instead, and make
4079   // sure not to try to set attributes.
4080   bool IsIncompleteFunction = false;
4081 
4082   llvm::FunctionType *FTy;
4083   if (isa<llvm::FunctionType>(Ty)) {
4084     FTy = cast<llvm::FunctionType>(Ty);
4085   } else {
4086     FTy = llvm::FunctionType::get(VoidTy, false);
4087     IsIncompleteFunction = true;
4088   }
4089 
4090   llvm::Function *F =
4091       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4092                              Entry ? StringRef() : MangledName, &getModule());
4093 
4094   // If we already created a function with the same mangled name (but different
4095   // type) before, take its name and add it to the list of functions to be
4096   // replaced with F at the end of CodeGen.
4097   //
4098   // This happens if there is a prototype for a function (e.g. "int f()") and
4099   // then a definition of a different type (e.g. "int f(int x)").
4100   if (Entry) {
4101     F->takeName(Entry);
4102 
4103     // This might be an implementation of a function without a prototype, in
4104     // which case, try to do special replacement of calls which match the new
4105     // prototype.  The really key thing here is that we also potentially drop
4106     // arguments from the call site so as to make a direct call, which makes the
4107     // inliner happier and suppresses a number of optimizer warnings (!) about
4108     // dropping arguments.
4109     if (!Entry->use_empty()) {
4110       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4111       Entry->removeDeadConstantUsers();
4112     }
4113 
4114     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4115         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4116     addGlobalValReplacement(Entry, BC);
4117   }
4118 
4119   assert(F->getName() == MangledName && "name was uniqued!");
4120   if (D)
4121     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4122   if (ExtraAttrs.hasFnAttrs()) {
4123     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4124     F->addFnAttrs(B);
4125   }
4126 
4127   if (!DontDefer) {
4128     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4129     // each other bottoming out with the base dtor.  Therefore we emit non-base
4130     // dtors on usage, even if there is no dtor definition in the TU.
4131     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4132         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4133                                            GD.getDtorType()))
4134       addDeferredDeclToEmit(GD);
4135 
4136     // This is the first use or definition of a mangled name.  If there is a
4137     // deferred decl with this name, remember that we need to emit it at the end
4138     // of the file.
4139     auto DDI = DeferredDecls.find(MangledName);
4140     if (DDI != DeferredDecls.end()) {
4141       // Move the potentially referenced deferred decl to the
4142       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4143       // don't need it anymore).
4144       addDeferredDeclToEmit(DDI->second);
4145       EmittedDeferredDecls[DDI->first] = DDI->second;
4146       DeferredDecls.erase(DDI);
4147 
4148       // Otherwise, there are cases we have to worry about where we're
4149       // using a declaration for which we must emit a definition but where
4150       // we might not find a top-level definition:
4151       //   - member functions defined inline in their classes
4152       //   - friend functions defined inline in some class
4153       //   - special member functions with implicit definitions
4154       // If we ever change our AST traversal to walk into class methods,
4155       // this will be unnecessary.
4156       //
4157       // We also don't emit a definition for a function if it's going to be an
4158       // entry in a vtable, unless it's already marked as used.
4159     } else if (getLangOpts().CPlusPlus && D) {
4160       // Look for a declaration that's lexically in a record.
4161       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4162            FD = FD->getPreviousDecl()) {
4163         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4164           if (FD->doesThisDeclarationHaveABody()) {
4165             addDeferredDeclToEmit(GD.getWithDecl(FD));
4166             break;
4167           }
4168         }
4169       }
4170     }
4171   }
4172 
4173   // Make sure the result is of the requested type.
4174   if (!IsIncompleteFunction) {
4175     assert(F->getFunctionType() == Ty);
4176     return F;
4177   }
4178 
4179   return llvm::ConstantExpr::getBitCast(F,
4180                                         Ty->getPointerTo(F->getAddressSpace()));
4181 }
4182 
4183 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4184 /// non-null, then this function will use the specified type if it has to
4185 /// create it (this occurs when we see a definition of the function).
4186 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4187                                                  llvm::Type *Ty,
4188                                                  bool ForVTable,
4189                                                  bool DontDefer,
4190                                               ForDefinition_t IsForDefinition) {
4191   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4192          "consteval function should never be emitted");
4193   // If there was no specific requested type, just convert it now.
4194   if (!Ty) {
4195     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4196     Ty = getTypes().ConvertType(FD->getType());
4197   }
4198 
4199   // Devirtualized destructor calls may come through here instead of via
4200   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4201   // of the complete destructor when necessary.
4202   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4203     if (getTarget().getCXXABI().isMicrosoft() &&
4204         GD.getDtorType() == Dtor_Complete &&
4205         DD->getParent()->getNumVBases() == 0)
4206       GD = GlobalDecl(DD, Dtor_Base);
4207   }
4208 
4209   StringRef MangledName = getMangledName(GD);
4210   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4211                                     /*IsThunk=*/false, llvm::AttributeList(),
4212                                     IsForDefinition);
4213   // Returns kernel handle for HIP kernel stub function.
4214   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4215       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4216     auto *Handle = getCUDARuntime().getKernelHandle(
4217         cast<llvm::Function>(F->stripPointerCasts()), GD);
4218     if (IsForDefinition)
4219       return F;
4220     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4221   }
4222   return F;
4223 }
4224 
4225 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4226   llvm::GlobalValue *F =
4227       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4228 
4229   return llvm::ConstantExpr::getBitCast(
4230       llvm::NoCFIValue::get(F),
4231       llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
4232 }
4233 
4234 static const FunctionDecl *
4235 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4236   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4237   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4238 
4239   IdentifierInfo &CII = C.Idents.get(Name);
4240   for (const auto *Result : DC->lookup(&CII))
4241     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4242       return FD;
4243 
4244   if (!C.getLangOpts().CPlusPlus)
4245     return nullptr;
4246 
4247   // Demangle the premangled name from getTerminateFn()
4248   IdentifierInfo &CXXII =
4249       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4250           ? C.Idents.get("terminate")
4251           : C.Idents.get(Name);
4252 
4253   for (const auto &N : {"__cxxabiv1", "std"}) {
4254     IdentifierInfo &NS = C.Idents.get(N);
4255     for (const auto *Result : DC->lookup(&NS)) {
4256       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4257       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4258         for (const auto *Result : LSD->lookup(&NS))
4259           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4260             break;
4261 
4262       if (ND)
4263         for (const auto *Result : ND->lookup(&CXXII))
4264           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4265             return FD;
4266     }
4267   }
4268 
4269   return nullptr;
4270 }
4271 
4272 /// CreateRuntimeFunction - Create a new runtime function with the specified
4273 /// type and name.
4274 llvm::FunctionCallee
4275 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4276                                      llvm::AttributeList ExtraAttrs, bool Local,
4277                                      bool AssumeConvergent) {
4278   if (AssumeConvergent) {
4279     ExtraAttrs =
4280         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4281   }
4282 
4283   llvm::Constant *C =
4284       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4285                               /*DontDefer=*/false, /*IsThunk=*/false,
4286                               ExtraAttrs);
4287 
4288   if (auto *F = dyn_cast<llvm::Function>(C)) {
4289     if (F->empty()) {
4290       F->setCallingConv(getRuntimeCC());
4291 
4292       // In Windows Itanium environments, try to mark runtime functions
4293       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4294       // will link their standard library statically or dynamically. Marking
4295       // functions imported when they are not imported can cause linker errors
4296       // and warnings.
4297       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4298           !getCodeGenOpts().LTOVisibilityPublicStd) {
4299         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4300         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4301           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4302           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4303         }
4304       }
4305       setDSOLocal(F);
4306     }
4307   }
4308 
4309   return {FTy, C};
4310 }
4311 
4312 /// isTypeConstant - Determine whether an object of this type can be emitted
4313 /// as a constant.
4314 ///
4315 /// If ExcludeCtor is true, the duration when the object's constructor runs
4316 /// will not be considered. The caller will need to verify that the object is
4317 /// not written to during its construction.
4318 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4319   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4320     return false;
4321 
4322   if (Context.getLangOpts().CPlusPlus) {
4323     if (const CXXRecordDecl *Record
4324           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4325       return ExcludeCtor && !Record->hasMutableFields() &&
4326              Record->hasTrivialDestructor();
4327   }
4328 
4329   return true;
4330 }
4331 
4332 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4333 /// create and return an llvm GlobalVariable with the specified type and address
4334 /// space. If there is something in the module with the specified name, return
4335 /// it potentially bitcasted to the right type.
4336 ///
4337 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4338 /// to set the attributes on the global when it is first created.
4339 ///
4340 /// If IsForDefinition is true, it is guaranteed that an actual global with
4341 /// type Ty will be returned, not conversion of a variable with the same
4342 /// mangled name but some other type.
4343 llvm::Constant *
4344 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4345                                      LangAS AddrSpace, const VarDecl *D,
4346                                      ForDefinition_t IsForDefinition) {
4347   // Lookup the entry, lazily creating it if necessary.
4348   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4349   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4350   if (Entry) {
4351     if (WeakRefReferences.erase(Entry)) {
4352       if (D && !D->hasAttr<WeakAttr>())
4353         Entry->setLinkage(llvm::Function::ExternalLinkage);
4354     }
4355 
4356     // Handle dropped DLL attributes.
4357     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4358         !shouldMapVisibilityToDLLExport(D))
4359       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4360 
4361     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4362       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4363 
4364     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4365       return Entry;
4366 
4367     // If there are two attempts to define the same mangled name, issue an
4368     // error.
4369     if (IsForDefinition && !Entry->isDeclaration()) {
4370       GlobalDecl OtherGD;
4371       const VarDecl *OtherD;
4372 
4373       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4374       // to make sure that we issue an error only once.
4375       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4376           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4377           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4378           OtherD->hasInit() &&
4379           DiagnosedConflictingDefinitions.insert(D).second) {
4380         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4381             << MangledName;
4382         getDiags().Report(OtherGD.getDecl()->getLocation(),
4383                           diag::note_previous_definition);
4384       }
4385     }
4386 
4387     // Make sure the result is of the correct type.
4388     if (Entry->getType()->getAddressSpace() != TargetAS) {
4389       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4390                                                   Ty->getPointerTo(TargetAS));
4391     }
4392 
4393     // (If global is requested for a definition, we always need to create a new
4394     // global, not just return a bitcast.)
4395     if (!IsForDefinition)
4396       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4397   }
4398 
4399   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4400 
4401   auto *GV = new llvm::GlobalVariable(
4402       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4403       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4404       getContext().getTargetAddressSpace(DAddrSpace));
4405 
4406   // If we already created a global with the same mangled name (but different
4407   // type) before, take its name and remove it from its parent.
4408   if (Entry) {
4409     GV->takeName(Entry);
4410 
4411     if (!Entry->use_empty()) {
4412       llvm::Constant *NewPtrForOldDecl =
4413           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4414       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4415     }
4416 
4417     Entry->eraseFromParent();
4418   }
4419 
4420   // This is the first use or definition of a mangled name.  If there is a
4421   // deferred decl with this name, remember that we need to emit it at the end
4422   // of the file.
4423   auto DDI = DeferredDecls.find(MangledName);
4424   if (DDI != DeferredDecls.end()) {
4425     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4426     // list, and remove it from DeferredDecls (since we don't need it anymore).
4427     addDeferredDeclToEmit(DDI->second);
4428     EmittedDeferredDecls[DDI->first] = DDI->second;
4429     DeferredDecls.erase(DDI);
4430   }
4431 
4432   // Handle things which are present even on external declarations.
4433   if (D) {
4434     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4435       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4436 
4437     // FIXME: This code is overly simple and should be merged with other global
4438     // handling.
4439     GV->setConstant(isTypeConstant(D->getType(), false));
4440 
4441     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4442 
4443     setLinkageForGV(GV, D);
4444 
4445     if (D->getTLSKind()) {
4446       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4447         CXXThreadLocals.push_back(D);
4448       setTLSMode(GV, *D);
4449     }
4450 
4451     setGVProperties(GV, D);
4452 
4453     // If required by the ABI, treat declarations of static data members with
4454     // inline initializers as definitions.
4455     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4456       EmitGlobalVarDefinition(D);
4457     }
4458 
4459     // Emit section information for extern variables.
4460     if (D->hasExternalStorage()) {
4461       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4462         GV->setSection(SA->getName());
4463     }
4464 
4465     // Handle XCore specific ABI requirements.
4466     if (getTriple().getArch() == llvm::Triple::xcore &&
4467         D->getLanguageLinkage() == CLanguageLinkage &&
4468         D->getType().isConstant(Context) &&
4469         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4470       GV->setSection(".cp.rodata");
4471 
4472     // Check if we a have a const declaration with an initializer, we may be
4473     // able to emit it as available_externally to expose it's value to the
4474     // optimizer.
4475     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4476         D->getType().isConstQualified() && !GV->hasInitializer() &&
4477         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4478       const auto *Record =
4479           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4480       bool HasMutableFields = Record && Record->hasMutableFields();
4481       if (!HasMutableFields) {
4482         const VarDecl *InitDecl;
4483         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4484         if (InitExpr) {
4485           ConstantEmitter emitter(*this);
4486           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4487           if (Init) {
4488             auto *InitType = Init->getType();
4489             if (GV->getValueType() != InitType) {
4490               // The type of the initializer does not match the definition.
4491               // This happens when an initializer has a different type from
4492               // the type of the global (because of padding at the end of a
4493               // structure for instance).
4494               GV->setName(StringRef());
4495               // Make a new global with the correct type, this is now guaranteed
4496               // to work.
4497               auto *NewGV = cast<llvm::GlobalVariable>(
4498                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4499                       ->stripPointerCasts());
4500 
4501               // Erase the old global, since it is no longer used.
4502               GV->eraseFromParent();
4503               GV = NewGV;
4504             } else {
4505               GV->setInitializer(Init);
4506               GV->setConstant(true);
4507               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4508             }
4509             emitter.finalize(GV);
4510           }
4511         }
4512       }
4513     }
4514   }
4515 
4516   if (GV->isDeclaration()) {
4517     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4518     // External HIP managed variables needed to be recorded for transformation
4519     // in both device and host compilations.
4520     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4521         D->hasExternalStorage())
4522       getCUDARuntime().handleVarRegistration(D, *GV);
4523   }
4524 
4525   if (D)
4526     SanitizerMD->reportGlobal(GV, *D);
4527 
4528   LangAS ExpectedAS =
4529       D ? D->getType().getAddressSpace()
4530         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4531   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4532   if (DAddrSpace != ExpectedAS) {
4533     return getTargetCodeGenInfo().performAddrSpaceCast(
4534         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4535   }
4536 
4537   return GV;
4538 }
4539 
4540 llvm::Constant *
4541 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4542   const Decl *D = GD.getDecl();
4543 
4544   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4545     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4546                                 /*DontDefer=*/false, IsForDefinition);
4547 
4548   if (isa<CXXMethodDecl>(D)) {
4549     auto FInfo =
4550         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4551     auto Ty = getTypes().GetFunctionType(*FInfo);
4552     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4553                              IsForDefinition);
4554   }
4555 
4556   if (isa<FunctionDecl>(D)) {
4557     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4558     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4559     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4560                              IsForDefinition);
4561   }
4562 
4563   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4564 }
4565 
4566 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4567     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4568     llvm::Align Alignment) {
4569   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4570   llvm::GlobalVariable *OldGV = nullptr;
4571 
4572   if (GV) {
4573     // Check if the variable has the right type.
4574     if (GV->getValueType() == Ty)
4575       return GV;
4576 
4577     // Because C++ name mangling, the only way we can end up with an already
4578     // existing global with the same name is if it has been declared extern "C".
4579     assert(GV->isDeclaration() && "Declaration has wrong type!");
4580     OldGV = GV;
4581   }
4582 
4583   // Create a new variable.
4584   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4585                                 Linkage, nullptr, Name);
4586 
4587   if (OldGV) {
4588     // Replace occurrences of the old variable if needed.
4589     GV->takeName(OldGV);
4590 
4591     if (!OldGV->use_empty()) {
4592       llvm::Constant *NewPtrForOldDecl =
4593       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4594       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4595     }
4596 
4597     OldGV->eraseFromParent();
4598   }
4599 
4600   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4601       !GV->hasAvailableExternallyLinkage())
4602     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4603 
4604   GV->setAlignment(Alignment);
4605 
4606   return GV;
4607 }
4608 
4609 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4610 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4611 /// then it will be created with the specified type instead of whatever the
4612 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4613 /// that an actual global with type Ty will be returned, not conversion of a
4614 /// variable with the same mangled name but some other type.
4615 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4616                                                   llvm::Type *Ty,
4617                                            ForDefinition_t IsForDefinition) {
4618   assert(D->hasGlobalStorage() && "Not a global variable");
4619   QualType ASTTy = D->getType();
4620   if (!Ty)
4621     Ty = getTypes().ConvertTypeForMem(ASTTy);
4622 
4623   StringRef MangledName = getMangledName(D);
4624   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4625                                IsForDefinition);
4626 }
4627 
4628 /// CreateRuntimeVariable - Create a new runtime global variable with the
4629 /// specified type and name.
4630 llvm::Constant *
4631 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4632                                      StringRef Name) {
4633   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4634                                                        : LangAS::Default;
4635   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4636   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4637   return Ret;
4638 }
4639 
4640 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4641   assert(!D->getInit() && "Cannot emit definite definitions here!");
4642 
4643   StringRef MangledName = getMangledName(D);
4644   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4645 
4646   // We already have a definition, not declaration, with the same mangled name.
4647   // Emitting of declaration is not required (and actually overwrites emitted
4648   // definition).
4649   if (GV && !GV->isDeclaration())
4650     return;
4651 
4652   // If we have not seen a reference to this variable yet, place it into the
4653   // deferred declarations table to be emitted if needed later.
4654   if (!MustBeEmitted(D) && !GV) {
4655       DeferredDecls[MangledName] = D;
4656       return;
4657   }
4658 
4659   // The tentative definition is the only definition.
4660   EmitGlobalVarDefinition(D);
4661 }
4662 
4663 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4664   EmitExternalVarDeclaration(D);
4665 }
4666 
4667 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4668   return Context.toCharUnitsFromBits(
4669       getDataLayout().getTypeStoreSizeInBits(Ty));
4670 }
4671 
4672 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4673   if (LangOpts.OpenCL) {
4674     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4675     assert(AS == LangAS::opencl_global ||
4676            AS == LangAS::opencl_global_device ||
4677            AS == LangAS::opencl_global_host ||
4678            AS == LangAS::opencl_constant ||
4679            AS == LangAS::opencl_local ||
4680            AS >= LangAS::FirstTargetAddressSpace);
4681     return AS;
4682   }
4683 
4684   if (LangOpts.SYCLIsDevice &&
4685       (!D || D->getType().getAddressSpace() == LangAS::Default))
4686     return LangAS::sycl_global;
4687 
4688   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4689     if (D && D->hasAttr<CUDAConstantAttr>())
4690       return LangAS::cuda_constant;
4691     else if (D && D->hasAttr<CUDASharedAttr>())
4692       return LangAS::cuda_shared;
4693     else if (D && D->hasAttr<CUDADeviceAttr>())
4694       return LangAS::cuda_device;
4695     else if (D && D->getType().isConstQualified())
4696       return LangAS::cuda_constant;
4697     else
4698       return LangAS::cuda_device;
4699   }
4700 
4701   if (LangOpts.OpenMP) {
4702     LangAS AS;
4703     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4704       return AS;
4705   }
4706   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4707 }
4708 
4709 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4710   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4711   if (LangOpts.OpenCL)
4712     return LangAS::opencl_constant;
4713   if (LangOpts.SYCLIsDevice)
4714     return LangAS::sycl_global;
4715   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4716     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4717     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4718     // with OpVariable instructions with Generic storage class which is not
4719     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4720     // UniformConstant storage class is not viable as pointers to it may not be
4721     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4722     return LangAS::cuda_device;
4723   if (auto AS = getTarget().getConstantAddressSpace())
4724     return *AS;
4725   return LangAS::Default;
4726 }
4727 
4728 // In address space agnostic languages, string literals are in default address
4729 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4730 // emitted in constant address space in LLVM IR. To be consistent with other
4731 // parts of AST, string literal global variables in constant address space
4732 // need to be casted to default address space before being put into address
4733 // map and referenced by other part of CodeGen.
4734 // In OpenCL, string literals are in constant address space in AST, therefore
4735 // they should not be casted to default address space.
4736 static llvm::Constant *
4737 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4738                                        llvm::GlobalVariable *GV) {
4739   llvm::Constant *Cast = GV;
4740   if (!CGM.getLangOpts().OpenCL) {
4741     auto AS = CGM.GetGlobalConstantAddressSpace();
4742     if (AS != LangAS::Default)
4743       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4744           CGM, GV, AS, LangAS::Default,
4745           GV->getValueType()->getPointerTo(
4746               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4747   }
4748   return Cast;
4749 }
4750 
4751 template<typename SomeDecl>
4752 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4753                                                llvm::GlobalValue *GV) {
4754   if (!getLangOpts().CPlusPlus)
4755     return;
4756 
4757   // Must have 'used' attribute, or else inline assembly can't rely on
4758   // the name existing.
4759   if (!D->template hasAttr<UsedAttr>())
4760     return;
4761 
4762   // Must have internal linkage and an ordinary name.
4763   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4764     return;
4765 
4766   // Must be in an extern "C" context. Entities declared directly within
4767   // a record are not extern "C" even if the record is in such a context.
4768   const SomeDecl *First = D->getFirstDecl();
4769   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4770     return;
4771 
4772   // OK, this is an internal linkage entity inside an extern "C" linkage
4773   // specification. Make a note of that so we can give it the "expected"
4774   // mangled name if nothing else is using that name.
4775   std::pair<StaticExternCMap::iterator, bool> R =
4776       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4777 
4778   // If we have multiple internal linkage entities with the same name
4779   // in extern "C" regions, none of them gets that name.
4780   if (!R.second)
4781     R.first->second = nullptr;
4782 }
4783 
4784 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4785   if (!CGM.supportsCOMDAT())
4786     return false;
4787 
4788   if (D.hasAttr<SelectAnyAttr>())
4789     return true;
4790 
4791   GVALinkage Linkage;
4792   if (auto *VD = dyn_cast<VarDecl>(&D))
4793     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4794   else
4795     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4796 
4797   switch (Linkage) {
4798   case GVA_Internal:
4799   case GVA_AvailableExternally:
4800   case GVA_StrongExternal:
4801     return false;
4802   case GVA_DiscardableODR:
4803   case GVA_StrongODR:
4804     return true;
4805   }
4806   llvm_unreachable("No such linkage");
4807 }
4808 
4809 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4810                                           llvm::GlobalObject &GO) {
4811   if (!shouldBeInCOMDAT(*this, D))
4812     return;
4813   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4814 }
4815 
4816 /// Pass IsTentative as true if you want to create a tentative definition.
4817 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4818                                             bool IsTentative) {
4819   // OpenCL global variables of sampler type are translated to function calls,
4820   // therefore no need to be translated.
4821   QualType ASTTy = D->getType();
4822   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4823     return;
4824 
4825   // If this is OpenMP device, check if it is legal to emit this global
4826   // normally.
4827   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4828       OpenMPRuntime->emitTargetGlobalVariable(D))
4829     return;
4830 
4831   llvm::TrackingVH<llvm::Constant> Init;
4832   bool NeedsGlobalCtor = false;
4833   // Whether the definition of the variable is available externally.
4834   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
4835   // since this is the job for its original source.
4836   bool IsDefinitionAvailableExternally =
4837       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
4838   bool NeedsGlobalDtor =
4839       !IsDefinitionAvailableExternally &&
4840       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4841 
4842   const VarDecl *InitDecl;
4843   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4844 
4845   Optional<ConstantEmitter> emitter;
4846 
4847   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4848   // as part of their declaration."  Sema has already checked for
4849   // error cases, so we just need to set Init to UndefValue.
4850   bool IsCUDASharedVar =
4851       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4852   // Shadows of initialized device-side global variables are also left
4853   // undefined.
4854   // Managed Variables should be initialized on both host side and device side.
4855   bool IsCUDAShadowVar =
4856       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4857       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4858        D->hasAttr<CUDASharedAttr>());
4859   bool IsCUDADeviceShadowVar =
4860       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4861       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4862        D->getType()->isCUDADeviceBuiltinTextureType());
4863   if (getLangOpts().CUDA &&
4864       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4865     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4866   else if (D->hasAttr<LoaderUninitializedAttr>())
4867     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4868   else if (!InitExpr) {
4869     // This is a tentative definition; tentative definitions are
4870     // implicitly initialized with { 0 }.
4871     //
4872     // Note that tentative definitions are only emitted at the end of
4873     // a translation unit, so they should never have incomplete
4874     // type. In addition, EmitTentativeDefinition makes sure that we
4875     // never attempt to emit a tentative definition if a real one
4876     // exists. A use may still exists, however, so we still may need
4877     // to do a RAUW.
4878     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4879     Init = EmitNullConstant(D->getType());
4880   } else {
4881     initializedGlobalDecl = GlobalDecl(D);
4882     emitter.emplace(*this);
4883     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4884     if (!Initializer) {
4885       QualType T = InitExpr->getType();
4886       if (D->getType()->isReferenceType())
4887         T = D->getType();
4888 
4889       if (getLangOpts().CPlusPlus) {
4890         if (InitDecl->hasFlexibleArrayInit(getContext()))
4891           ErrorUnsupported(D, "flexible array initializer");
4892         Init = EmitNullConstant(T);
4893 
4894         if (!IsDefinitionAvailableExternally)
4895           NeedsGlobalCtor = true;
4896       } else {
4897         ErrorUnsupported(D, "static initializer");
4898         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4899       }
4900     } else {
4901       Init = Initializer;
4902       // We don't need an initializer, so remove the entry for the delayed
4903       // initializer position (just in case this entry was delayed) if we
4904       // also don't need to register a destructor.
4905       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4906         DelayedCXXInitPosition.erase(D);
4907 
4908 #ifndef NDEBUG
4909       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4910                           InitDecl->getFlexibleArrayInitChars(getContext());
4911       CharUnits CstSize = CharUnits::fromQuantity(
4912           getDataLayout().getTypeAllocSize(Init->getType()));
4913       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4914 #endif
4915     }
4916   }
4917 
4918   llvm::Type* InitType = Init->getType();
4919   llvm::Constant *Entry =
4920       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4921 
4922   // Strip off pointer casts if we got them.
4923   Entry = Entry->stripPointerCasts();
4924 
4925   // Entry is now either a Function or GlobalVariable.
4926   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4927 
4928   // We have a definition after a declaration with the wrong type.
4929   // We must make a new GlobalVariable* and update everything that used OldGV
4930   // (a declaration or tentative definition) with the new GlobalVariable*
4931   // (which will be a definition).
4932   //
4933   // This happens if there is a prototype for a global (e.g.
4934   // "extern int x[];") and then a definition of a different type (e.g.
4935   // "int x[10];"). This also happens when an initializer has a different type
4936   // from the type of the global (this happens with unions).
4937   if (!GV || GV->getValueType() != InitType ||
4938       GV->getType()->getAddressSpace() !=
4939           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4940 
4941     // Move the old entry aside so that we'll create a new one.
4942     Entry->setName(StringRef());
4943 
4944     // Make a new global with the correct type, this is now guaranteed to work.
4945     GV = cast<llvm::GlobalVariable>(
4946         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4947             ->stripPointerCasts());
4948 
4949     // Replace all uses of the old global with the new global
4950     llvm::Constant *NewPtrForOldDecl =
4951         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4952                                                              Entry->getType());
4953     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4954 
4955     // Erase the old global, since it is no longer used.
4956     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4957   }
4958 
4959   MaybeHandleStaticInExternC(D, GV);
4960 
4961   if (D->hasAttr<AnnotateAttr>())
4962     AddGlobalAnnotations(D, GV);
4963 
4964   // Set the llvm linkage type as appropriate.
4965   llvm::GlobalValue::LinkageTypes Linkage =
4966       getLLVMLinkageVarDefinition(D, GV->isConstant());
4967 
4968   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4969   // the device. [...]"
4970   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4971   // __device__, declares a variable that: [...]
4972   // Is accessible from all the threads within the grid and from the host
4973   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4974   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4975   if (GV && LangOpts.CUDA) {
4976     if (LangOpts.CUDAIsDevice) {
4977       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4978           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4979            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4980            D->getType()->isCUDADeviceBuiltinTextureType()))
4981         GV->setExternallyInitialized(true);
4982     } else {
4983       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4984     }
4985     getCUDARuntime().handleVarRegistration(D, *GV);
4986   }
4987 
4988   GV->setInitializer(Init);
4989   if (emitter)
4990     emitter->finalize(GV);
4991 
4992   // If it is safe to mark the global 'constant', do so now.
4993   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4994                   isTypeConstant(D->getType(), true));
4995 
4996   // If it is in a read-only section, mark it 'constant'.
4997   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4998     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4999     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5000       GV->setConstant(true);
5001   }
5002 
5003   CharUnits AlignVal = getContext().getDeclAlign(D);
5004   // Check for alignment specifed in an 'omp allocate' directive.
5005   if (llvm::Optional<CharUnits> AlignValFromAllocate =
5006           getOMPAllocateAlignment(D))
5007     AlignVal = *AlignValFromAllocate;
5008   GV->setAlignment(AlignVal.getAsAlign());
5009 
5010   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5011   // function is only defined alongside the variable, not also alongside
5012   // callers. Normally, all accesses to a thread_local go through the
5013   // thread-wrapper in order to ensure initialization has occurred, underlying
5014   // variable will never be used other than the thread-wrapper, so it can be
5015   // converted to internal linkage.
5016   //
5017   // However, if the variable has the 'constinit' attribute, it _can_ be
5018   // referenced directly, without calling the thread-wrapper, so the linkage
5019   // must not be changed.
5020   //
5021   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5022   // weak or linkonce, the de-duplication semantics are important to preserve,
5023   // so we don't change the linkage.
5024   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5025       Linkage == llvm::GlobalValue::ExternalLinkage &&
5026       Context.getTargetInfo().getTriple().isOSDarwin() &&
5027       !D->hasAttr<ConstInitAttr>())
5028     Linkage = llvm::GlobalValue::InternalLinkage;
5029 
5030   GV->setLinkage(Linkage);
5031   if (D->hasAttr<DLLImportAttr>())
5032     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5033   else if (D->hasAttr<DLLExportAttr>())
5034     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5035   else
5036     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5037 
5038   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5039     // common vars aren't constant even if declared const.
5040     GV->setConstant(false);
5041     // Tentative definition of global variables may be initialized with
5042     // non-zero null pointers. In this case they should have weak linkage
5043     // since common linkage must have zero initializer and must not have
5044     // explicit section therefore cannot have non-zero initial value.
5045     if (!GV->getInitializer()->isNullValue())
5046       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5047   }
5048 
5049   setNonAliasAttributes(D, GV);
5050 
5051   if (D->getTLSKind() && !GV->isThreadLocal()) {
5052     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5053       CXXThreadLocals.push_back(D);
5054     setTLSMode(GV, *D);
5055   }
5056 
5057   maybeSetTrivialComdat(*D, *GV);
5058 
5059   // Emit the initializer function if necessary.
5060   if (NeedsGlobalCtor || NeedsGlobalDtor)
5061     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5062 
5063   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5064 
5065   // Emit global variable debug information.
5066   if (CGDebugInfo *DI = getModuleDebugInfo())
5067     if (getCodeGenOpts().hasReducedDebugInfo())
5068       DI->EmitGlobalVariable(GV, D);
5069 }
5070 
5071 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5072   if (CGDebugInfo *DI = getModuleDebugInfo())
5073     if (getCodeGenOpts().hasReducedDebugInfo()) {
5074       QualType ASTTy = D->getType();
5075       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5076       llvm::Constant *GV =
5077           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5078       DI->EmitExternalVariable(
5079           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5080     }
5081 }
5082 
5083 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5084                                       CodeGenModule &CGM, const VarDecl *D,
5085                                       bool NoCommon) {
5086   // Don't give variables common linkage if -fno-common was specified unless it
5087   // was overridden by a NoCommon attribute.
5088   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5089     return true;
5090 
5091   // C11 6.9.2/2:
5092   //   A declaration of an identifier for an object that has file scope without
5093   //   an initializer, and without a storage-class specifier or with the
5094   //   storage-class specifier static, constitutes a tentative definition.
5095   if (D->getInit() || D->hasExternalStorage())
5096     return true;
5097 
5098   // A variable cannot be both common and exist in a section.
5099   if (D->hasAttr<SectionAttr>())
5100     return true;
5101 
5102   // A variable cannot be both common and exist in a section.
5103   // We don't try to determine which is the right section in the front-end.
5104   // If no specialized section name is applicable, it will resort to default.
5105   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5106       D->hasAttr<PragmaClangDataSectionAttr>() ||
5107       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5108       D->hasAttr<PragmaClangRodataSectionAttr>())
5109     return true;
5110 
5111   // Thread local vars aren't considered common linkage.
5112   if (D->getTLSKind())
5113     return true;
5114 
5115   // Tentative definitions marked with WeakImportAttr are true definitions.
5116   if (D->hasAttr<WeakImportAttr>())
5117     return true;
5118 
5119   // A variable cannot be both common and exist in a comdat.
5120   if (shouldBeInCOMDAT(CGM, *D))
5121     return true;
5122 
5123   // Declarations with a required alignment do not have common linkage in MSVC
5124   // mode.
5125   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5126     if (D->hasAttr<AlignedAttr>())
5127       return true;
5128     QualType VarType = D->getType();
5129     if (Context.isAlignmentRequired(VarType))
5130       return true;
5131 
5132     if (const auto *RT = VarType->getAs<RecordType>()) {
5133       const RecordDecl *RD = RT->getDecl();
5134       for (const FieldDecl *FD : RD->fields()) {
5135         if (FD->isBitField())
5136           continue;
5137         if (FD->hasAttr<AlignedAttr>())
5138           return true;
5139         if (Context.isAlignmentRequired(FD->getType()))
5140           return true;
5141       }
5142     }
5143   }
5144 
5145   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5146   // common symbols, so symbols with greater alignment requirements cannot be
5147   // common.
5148   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5149   // alignments for common symbols via the aligncomm directive, so this
5150   // restriction only applies to MSVC environments.
5151   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5152       Context.getTypeAlignIfKnown(D->getType()) >
5153           Context.toBits(CharUnits::fromQuantity(32)))
5154     return true;
5155 
5156   return false;
5157 }
5158 
5159 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5160     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5161   if (Linkage == GVA_Internal)
5162     return llvm::Function::InternalLinkage;
5163 
5164   if (D->hasAttr<WeakAttr>())
5165     return llvm::GlobalVariable::WeakAnyLinkage;
5166 
5167   if (const auto *FD = D->getAsFunction())
5168     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5169       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5170 
5171   // We are guaranteed to have a strong definition somewhere else,
5172   // so we can use available_externally linkage.
5173   if (Linkage == GVA_AvailableExternally)
5174     return llvm::GlobalValue::AvailableExternallyLinkage;
5175 
5176   // Note that Apple's kernel linker doesn't support symbol
5177   // coalescing, so we need to avoid linkonce and weak linkages there.
5178   // Normally, this means we just map to internal, but for explicit
5179   // instantiations we'll map to external.
5180 
5181   // In C++, the compiler has to emit a definition in every translation unit
5182   // that references the function.  We should use linkonce_odr because
5183   // a) if all references in this translation unit are optimized away, we
5184   // don't need to codegen it.  b) if the function persists, it needs to be
5185   // merged with other definitions. c) C++ has the ODR, so we know the
5186   // definition is dependable.
5187   if (Linkage == GVA_DiscardableODR)
5188     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5189                                             : llvm::Function::InternalLinkage;
5190 
5191   // An explicit instantiation of a template has weak linkage, since
5192   // explicit instantiations can occur in multiple translation units
5193   // and must all be equivalent. However, we are not allowed to
5194   // throw away these explicit instantiations.
5195   //
5196   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5197   // so say that CUDA templates are either external (for kernels) or internal.
5198   // This lets llvm perform aggressive inter-procedural optimizations. For
5199   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5200   // therefore we need to follow the normal linkage paradigm.
5201   if (Linkage == GVA_StrongODR) {
5202     if (getLangOpts().AppleKext)
5203       return llvm::Function::ExternalLinkage;
5204     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5205         !getLangOpts().GPURelocatableDeviceCode)
5206       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5207                                           : llvm::Function::InternalLinkage;
5208     return llvm::Function::WeakODRLinkage;
5209   }
5210 
5211   // C++ doesn't have tentative definitions and thus cannot have common
5212   // linkage.
5213   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5214       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5215                                  CodeGenOpts.NoCommon))
5216     return llvm::GlobalVariable::CommonLinkage;
5217 
5218   // selectany symbols are externally visible, so use weak instead of
5219   // linkonce.  MSVC optimizes away references to const selectany globals, so
5220   // all definitions should be the same and ODR linkage should be used.
5221   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5222   if (D->hasAttr<SelectAnyAttr>())
5223     return llvm::GlobalVariable::WeakODRLinkage;
5224 
5225   // Otherwise, we have strong external linkage.
5226   assert(Linkage == GVA_StrongExternal);
5227   return llvm::GlobalVariable::ExternalLinkage;
5228 }
5229 
5230 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5231     const VarDecl *VD, bool IsConstant) {
5232   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5233   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5234 }
5235 
5236 /// Replace the uses of a function that was declared with a non-proto type.
5237 /// We want to silently drop extra arguments from call sites
5238 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5239                                           llvm::Function *newFn) {
5240   // Fast path.
5241   if (old->use_empty()) return;
5242 
5243   llvm::Type *newRetTy = newFn->getReturnType();
5244   SmallVector<llvm::Value*, 4> newArgs;
5245 
5246   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5247          ui != ue; ) {
5248     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5249     llvm::User *user = use->getUser();
5250 
5251     // Recognize and replace uses of bitcasts.  Most calls to
5252     // unprototyped functions will use bitcasts.
5253     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5254       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5255         replaceUsesOfNonProtoConstant(bitcast, newFn);
5256       continue;
5257     }
5258 
5259     // Recognize calls to the function.
5260     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5261     if (!callSite) continue;
5262     if (!callSite->isCallee(&*use))
5263       continue;
5264 
5265     // If the return types don't match exactly, then we can't
5266     // transform this call unless it's dead.
5267     if (callSite->getType() != newRetTy && !callSite->use_empty())
5268       continue;
5269 
5270     // Get the call site's attribute list.
5271     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5272     llvm::AttributeList oldAttrs = callSite->getAttributes();
5273 
5274     // If the function was passed too few arguments, don't transform.
5275     unsigned newNumArgs = newFn->arg_size();
5276     if (callSite->arg_size() < newNumArgs)
5277       continue;
5278 
5279     // If extra arguments were passed, we silently drop them.
5280     // If any of the types mismatch, we don't transform.
5281     unsigned argNo = 0;
5282     bool dontTransform = false;
5283     for (llvm::Argument &A : newFn->args()) {
5284       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5285         dontTransform = true;
5286         break;
5287       }
5288 
5289       // Add any parameter attributes.
5290       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5291       argNo++;
5292     }
5293     if (dontTransform)
5294       continue;
5295 
5296     // Okay, we can transform this.  Create the new call instruction and copy
5297     // over the required information.
5298     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5299 
5300     // Copy over any operand bundles.
5301     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5302     callSite->getOperandBundlesAsDefs(newBundles);
5303 
5304     llvm::CallBase *newCall;
5305     if (isa<llvm::CallInst>(callSite)) {
5306       newCall =
5307           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5308     } else {
5309       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5310       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5311                                          oldInvoke->getUnwindDest(), newArgs,
5312                                          newBundles, "", callSite);
5313     }
5314     newArgs.clear(); // for the next iteration
5315 
5316     if (!newCall->getType()->isVoidTy())
5317       newCall->takeName(callSite);
5318     newCall->setAttributes(
5319         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5320                                  oldAttrs.getRetAttrs(), newArgAttrs));
5321     newCall->setCallingConv(callSite->getCallingConv());
5322 
5323     // Finally, remove the old call, replacing any uses with the new one.
5324     if (!callSite->use_empty())
5325       callSite->replaceAllUsesWith(newCall);
5326 
5327     // Copy debug location attached to CI.
5328     if (callSite->getDebugLoc())
5329       newCall->setDebugLoc(callSite->getDebugLoc());
5330 
5331     callSite->eraseFromParent();
5332   }
5333 }
5334 
5335 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5336 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5337 /// existing call uses of the old function in the module, this adjusts them to
5338 /// call the new function directly.
5339 ///
5340 /// This is not just a cleanup: the always_inline pass requires direct calls to
5341 /// functions to be able to inline them.  If there is a bitcast in the way, it
5342 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5343 /// run at -O0.
5344 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5345                                                       llvm::Function *NewFn) {
5346   // If we're redefining a global as a function, don't transform it.
5347   if (!isa<llvm::Function>(Old)) return;
5348 
5349   replaceUsesOfNonProtoConstant(Old, NewFn);
5350 }
5351 
5352 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5353   auto DK = VD->isThisDeclarationADefinition();
5354   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5355     return;
5356 
5357   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5358   // If we have a definition, this might be a deferred decl. If the
5359   // instantiation is explicit, make sure we emit it at the end.
5360   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5361     GetAddrOfGlobalVar(VD);
5362 
5363   EmitTopLevelDecl(VD);
5364 }
5365 
5366 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5367                                                  llvm::GlobalValue *GV) {
5368   const auto *D = cast<FunctionDecl>(GD.getDecl());
5369 
5370   // Compute the function info and LLVM type.
5371   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5372   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5373 
5374   // Get or create the prototype for the function.
5375   if (!GV || (GV->getValueType() != Ty))
5376     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5377                                                    /*DontDefer=*/true,
5378                                                    ForDefinition));
5379 
5380   // Already emitted.
5381   if (!GV->isDeclaration())
5382     return;
5383 
5384   // We need to set linkage and visibility on the function before
5385   // generating code for it because various parts of IR generation
5386   // want to propagate this information down (e.g. to local static
5387   // declarations).
5388   auto *Fn = cast<llvm::Function>(GV);
5389   setFunctionLinkage(GD, Fn);
5390 
5391   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5392   setGVProperties(Fn, GD);
5393 
5394   MaybeHandleStaticInExternC(D, Fn);
5395 
5396   maybeSetTrivialComdat(*D, *Fn);
5397 
5398   // Set CodeGen attributes that represent floating point environment.
5399   setLLVMFunctionFEnvAttributes(D, Fn);
5400 
5401   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5402 
5403   setNonAliasAttributes(GD, Fn);
5404   SetLLVMFunctionAttributesForDefinition(D, Fn);
5405 
5406   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5407     AddGlobalCtor(Fn, CA->getPriority());
5408   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5409     AddGlobalDtor(Fn, DA->getPriority(), true);
5410   if (D->hasAttr<AnnotateAttr>())
5411     AddGlobalAnnotations(D, Fn);
5412 }
5413 
5414 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5415   const auto *D = cast<ValueDecl>(GD.getDecl());
5416   const AliasAttr *AA = D->getAttr<AliasAttr>();
5417   assert(AA && "Not an alias?");
5418 
5419   StringRef MangledName = getMangledName(GD);
5420 
5421   if (AA->getAliasee() == MangledName) {
5422     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5423     return;
5424   }
5425 
5426   // If there is a definition in the module, then it wins over the alias.
5427   // This is dubious, but allow it to be safe.  Just ignore the alias.
5428   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5429   if (Entry && !Entry->isDeclaration())
5430     return;
5431 
5432   Aliases.push_back(GD);
5433 
5434   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5435 
5436   // Create a reference to the named value.  This ensures that it is emitted
5437   // if a deferred decl.
5438   llvm::Constant *Aliasee;
5439   llvm::GlobalValue::LinkageTypes LT;
5440   if (isa<llvm::FunctionType>(DeclTy)) {
5441     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5442                                       /*ForVTable=*/false);
5443     LT = getFunctionLinkage(GD);
5444   } else {
5445     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5446                                     /*D=*/nullptr);
5447     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5448       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5449     else
5450       LT = getFunctionLinkage(GD);
5451   }
5452 
5453   // Create the new alias itself, but don't set a name yet.
5454   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5455   auto *GA =
5456       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5457 
5458   if (Entry) {
5459     if (GA->getAliasee() == Entry) {
5460       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5461       return;
5462     }
5463 
5464     assert(Entry->isDeclaration());
5465 
5466     // If there is a declaration in the module, then we had an extern followed
5467     // by the alias, as in:
5468     //   extern int test6();
5469     //   ...
5470     //   int test6() __attribute__((alias("test7")));
5471     //
5472     // Remove it and replace uses of it with the alias.
5473     GA->takeName(Entry);
5474 
5475     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5476                                                           Entry->getType()));
5477     Entry->eraseFromParent();
5478   } else {
5479     GA->setName(MangledName);
5480   }
5481 
5482   // Set attributes which are particular to an alias; this is a
5483   // specialization of the attributes which may be set on a global
5484   // variable/function.
5485   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5486       D->isWeakImported()) {
5487     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5488   }
5489 
5490   if (const auto *VD = dyn_cast<VarDecl>(D))
5491     if (VD->getTLSKind())
5492       setTLSMode(GA, *VD);
5493 
5494   SetCommonAttributes(GD, GA);
5495 
5496   // Emit global alias debug information.
5497   if (isa<VarDecl>(D))
5498     if (CGDebugInfo *DI = getModuleDebugInfo())
5499       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5500 }
5501 
5502 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5503   const auto *D = cast<ValueDecl>(GD.getDecl());
5504   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5505   assert(IFA && "Not an ifunc?");
5506 
5507   StringRef MangledName = getMangledName(GD);
5508 
5509   if (IFA->getResolver() == MangledName) {
5510     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5511     return;
5512   }
5513 
5514   // Report an error if some definition overrides ifunc.
5515   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5516   if (Entry && !Entry->isDeclaration()) {
5517     GlobalDecl OtherGD;
5518     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5519         DiagnosedConflictingDefinitions.insert(GD).second) {
5520       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5521           << MangledName;
5522       Diags.Report(OtherGD.getDecl()->getLocation(),
5523                    diag::note_previous_definition);
5524     }
5525     return;
5526   }
5527 
5528   Aliases.push_back(GD);
5529 
5530   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5531   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5532   llvm::Constant *Resolver =
5533       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5534                               /*ForVTable=*/false);
5535   llvm::GlobalIFunc *GIF =
5536       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5537                                 "", Resolver, &getModule());
5538   if (Entry) {
5539     if (GIF->getResolver() == Entry) {
5540       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5541       return;
5542     }
5543     assert(Entry->isDeclaration());
5544 
5545     // If there is a declaration in the module, then we had an extern followed
5546     // by the ifunc, as in:
5547     //   extern int test();
5548     //   ...
5549     //   int test() __attribute__((ifunc("resolver")));
5550     //
5551     // Remove it and replace uses of it with the ifunc.
5552     GIF->takeName(Entry);
5553 
5554     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5555                                                           Entry->getType()));
5556     Entry->eraseFromParent();
5557   } else
5558     GIF->setName(MangledName);
5559 
5560   SetCommonAttributes(GD, GIF);
5561 }
5562 
5563 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5564                                             ArrayRef<llvm::Type*> Tys) {
5565   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5566                                          Tys);
5567 }
5568 
5569 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5570 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5571                          const StringLiteral *Literal, bool TargetIsLSB,
5572                          bool &IsUTF16, unsigned &StringLength) {
5573   StringRef String = Literal->getString();
5574   unsigned NumBytes = String.size();
5575 
5576   // Check for simple case.
5577   if (!Literal->containsNonAsciiOrNull()) {
5578     StringLength = NumBytes;
5579     return *Map.insert(std::make_pair(String, nullptr)).first;
5580   }
5581 
5582   // Otherwise, convert the UTF8 literals into a string of shorts.
5583   IsUTF16 = true;
5584 
5585   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5586   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5587   llvm::UTF16 *ToPtr = &ToBuf[0];
5588 
5589   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5590                                  ToPtr + NumBytes, llvm::strictConversion);
5591 
5592   // ConvertUTF8toUTF16 returns the length in ToPtr.
5593   StringLength = ToPtr - &ToBuf[0];
5594 
5595   // Add an explicit null.
5596   *ToPtr = 0;
5597   return *Map.insert(std::make_pair(
5598                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5599                                    (StringLength + 1) * 2),
5600                          nullptr)).first;
5601 }
5602 
5603 ConstantAddress
5604 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5605   unsigned StringLength = 0;
5606   bool isUTF16 = false;
5607   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5608       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5609                                getDataLayout().isLittleEndian(), isUTF16,
5610                                StringLength);
5611 
5612   if (auto *C = Entry.second)
5613     return ConstantAddress(
5614         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5615 
5616   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5617   llvm::Constant *Zeros[] = { Zero, Zero };
5618 
5619   const ASTContext &Context = getContext();
5620   const llvm::Triple &Triple = getTriple();
5621 
5622   const auto CFRuntime = getLangOpts().CFRuntime;
5623   const bool IsSwiftABI =
5624       static_cast<unsigned>(CFRuntime) >=
5625       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5626   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5627 
5628   // If we don't already have it, get __CFConstantStringClassReference.
5629   if (!CFConstantStringClassRef) {
5630     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5631     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5632     Ty = llvm::ArrayType::get(Ty, 0);
5633 
5634     switch (CFRuntime) {
5635     default: break;
5636     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5637     case LangOptions::CoreFoundationABI::Swift5_0:
5638       CFConstantStringClassName =
5639           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5640                               : "$s10Foundation19_NSCFConstantStringCN";
5641       Ty = IntPtrTy;
5642       break;
5643     case LangOptions::CoreFoundationABI::Swift4_2:
5644       CFConstantStringClassName =
5645           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5646                               : "$S10Foundation19_NSCFConstantStringCN";
5647       Ty = IntPtrTy;
5648       break;
5649     case LangOptions::CoreFoundationABI::Swift4_1:
5650       CFConstantStringClassName =
5651           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5652                               : "__T010Foundation19_NSCFConstantStringCN";
5653       Ty = IntPtrTy;
5654       break;
5655     }
5656 
5657     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5658 
5659     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5660       llvm::GlobalValue *GV = nullptr;
5661 
5662       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5663         IdentifierInfo &II = Context.Idents.get(GV->getName());
5664         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5665         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5666 
5667         const VarDecl *VD = nullptr;
5668         for (const auto *Result : DC->lookup(&II))
5669           if ((VD = dyn_cast<VarDecl>(Result)))
5670             break;
5671 
5672         if (Triple.isOSBinFormatELF()) {
5673           if (!VD)
5674             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5675         } else {
5676           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5677           if (!VD || !VD->hasAttr<DLLExportAttr>())
5678             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5679           else
5680             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5681         }
5682 
5683         setDSOLocal(GV);
5684       }
5685     }
5686 
5687     // Decay array -> ptr
5688     CFConstantStringClassRef =
5689         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5690                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5691   }
5692 
5693   QualType CFTy = Context.getCFConstantStringType();
5694 
5695   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5696 
5697   ConstantInitBuilder Builder(*this);
5698   auto Fields = Builder.beginStruct(STy);
5699 
5700   // Class pointer.
5701   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5702 
5703   // Flags.
5704   if (IsSwiftABI) {
5705     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5706     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5707   } else {
5708     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5709   }
5710 
5711   // String pointer.
5712   llvm::Constant *C = nullptr;
5713   if (isUTF16) {
5714     auto Arr = llvm::ArrayRef(
5715         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5716         Entry.first().size() / 2);
5717     C = llvm::ConstantDataArray::get(VMContext, Arr);
5718   } else {
5719     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5720   }
5721 
5722   // Note: -fwritable-strings doesn't make the backing store strings of
5723   // CFStrings writable. (See <rdar://problem/10657500>)
5724   auto *GV =
5725       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5726                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5727   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5728   // Don't enforce the target's minimum global alignment, since the only use
5729   // of the string is via this class initializer.
5730   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5731                             : Context.getTypeAlignInChars(Context.CharTy);
5732   GV->setAlignment(Align.getAsAlign());
5733 
5734   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5735   // Without it LLVM can merge the string with a non unnamed_addr one during
5736   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5737   if (Triple.isOSBinFormatMachO())
5738     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5739                            : "__TEXT,__cstring,cstring_literals");
5740   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5741   // the static linker to adjust permissions to read-only later on.
5742   else if (Triple.isOSBinFormatELF())
5743     GV->setSection(".rodata");
5744 
5745   // String.
5746   llvm::Constant *Str =
5747       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5748 
5749   if (isUTF16)
5750     // Cast the UTF16 string to the correct type.
5751     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5752   Fields.add(Str);
5753 
5754   // String length.
5755   llvm::IntegerType *LengthTy =
5756       llvm::IntegerType::get(getModule().getContext(),
5757                              Context.getTargetInfo().getLongWidth());
5758   if (IsSwiftABI) {
5759     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5760         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5761       LengthTy = Int32Ty;
5762     else
5763       LengthTy = IntPtrTy;
5764   }
5765   Fields.addInt(LengthTy, StringLength);
5766 
5767   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5768   // properly aligned on 32-bit platforms.
5769   CharUnits Alignment =
5770       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5771 
5772   // The struct.
5773   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5774                                     /*isConstant=*/false,
5775                                     llvm::GlobalVariable::PrivateLinkage);
5776   GV->addAttribute("objc_arc_inert");
5777   switch (Triple.getObjectFormat()) {
5778   case llvm::Triple::UnknownObjectFormat:
5779     llvm_unreachable("unknown file format");
5780   case llvm::Triple::DXContainer:
5781   case llvm::Triple::GOFF:
5782   case llvm::Triple::SPIRV:
5783   case llvm::Triple::XCOFF:
5784     llvm_unreachable("unimplemented");
5785   case llvm::Triple::COFF:
5786   case llvm::Triple::ELF:
5787   case llvm::Triple::Wasm:
5788     GV->setSection("cfstring");
5789     break;
5790   case llvm::Triple::MachO:
5791     GV->setSection("__DATA,__cfstring");
5792     break;
5793   }
5794   Entry.second = GV;
5795 
5796   return ConstantAddress(GV, GV->getValueType(), Alignment);
5797 }
5798 
5799 bool CodeGenModule::getExpressionLocationsEnabled() const {
5800   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5801 }
5802 
5803 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5804   if (ObjCFastEnumerationStateType.isNull()) {
5805     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5806     D->startDefinition();
5807 
5808     QualType FieldTypes[] = {
5809       Context.UnsignedLongTy,
5810       Context.getPointerType(Context.getObjCIdType()),
5811       Context.getPointerType(Context.UnsignedLongTy),
5812       Context.getConstantArrayType(Context.UnsignedLongTy,
5813                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5814     };
5815 
5816     for (size_t i = 0; i < 4; ++i) {
5817       FieldDecl *Field = FieldDecl::Create(Context,
5818                                            D,
5819                                            SourceLocation(),
5820                                            SourceLocation(), nullptr,
5821                                            FieldTypes[i], /*TInfo=*/nullptr,
5822                                            /*BitWidth=*/nullptr,
5823                                            /*Mutable=*/false,
5824                                            ICIS_NoInit);
5825       Field->setAccess(AS_public);
5826       D->addDecl(Field);
5827     }
5828 
5829     D->completeDefinition();
5830     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5831   }
5832 
5833   return ObjCFastEnumerationStateType;
5834 }
5835 
5836 llvm::Constant *
5837 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5838   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5839 
5840   // Don't emit it as the address of the string, emit the string data itself
5841   // as an inline array.
5842   if (E->getCharByteWidth() == 1) {
5843     SmallString<64> Str(E->getString());
5844 
5845     // Resize the string to the right size, which is indicated by its type.
5846     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5847     Str.resize(CAT->getSize().getZExtValue());
5848     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5849   }
5850 
5851   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5852   llvm::Type *ElemTy = AType->getElementType();
5853   unsigned NumElements = AType->getNumElements();
5854 
5855   // Wide strings have either 2-byte or 4-byte elements.
5856   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5857     SmallVector<uint16_t, 32> Elements;
5858     Elements.reserve(NumElements);
5859 
5860     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5861       Elements.push_back(E->getCodeUnit(i));
5862     Elements.resize(NumElements);
5863     return llvm::ConstantDataArray::get(VMContext, Elements);
5864   }
5865 
5866   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5867   SmallVector<uint32_t, 32> Elements;
5868   Elements.reserve(NumElements);
5869 
5870   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5871     Elements.push_back(E->getCodeUnit(i));
5872   Elements.resize(NumElements);
5873   return llvm::ConstantDataArray::get(VMContext, Elements);
5874 }
5875 
5876 static llvm::GlobalVariable *
5877 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5878                       CodeGenModule &CGM, StringRef GlobalName,
5879                       CharUnits Alignment) {
5880   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5881       CGM.GetGlobalConstantAddressSpace());
5882 
5883   llvm::Module &M = CGM.getModule();
5884   // Create a global variable for this string
5885   auto *GV = new llvm::GlobalVariable(
5886       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5887       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5888   GV->setAlignment(Alignment.getAsAlign());
5889   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5890   if (GV->isWeakForLinker()) {
5891     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5892     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5893   }
5894   CGM.setDSOLocal(GV);
5895 
5896   return GV;
5897 }
5898 
5899 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5900 /// constant array for the given string literal.
5901 ConstantAddress
5902 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5903                                                   StringRef Name) {
5904   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5905 
5906   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5907   llvm::GlobalVariable **Entry = nullptr;
5908   if (!LangOpts.WritableStrings) {
5909     Entry = &ConstantStringMap[C];
5910     if (auto GV = *Entry) {
5911       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5912         GV->setAlignment(Alignment.getAsAlign());
5913       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5914                              GV->getValueType(), Alignment);
5915     }
5916   }
5917 
5918   SmallString<256> MangledNameBuffer;
5919   StringRef GlobalVariableName;
5920   llvm::GlobalValue::LinkageTypes LT;
5921 
5922   // Mangle the string literal if that's how the ABI merges duplicate strings.
5923   // Don't do it if they are writable, since we don't want writes in one TU to
5924   // affect strings in another.
5925   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5926       !LangOpts.WritableStrings) {
5927     llvm::raw_svector_ostream Out(MangledNameBuffer);
5928     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5929     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5930     GlobalVariableName = MangledNameBuffer;
5931   } else {
5932     LT = llvm::GlobalValue::PrivateLinkage;
5933     GlobalVariableName = Name;
5934   }
5935 
5936   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5937 
5938   CGDebugInfo *DI = getModuleDebugInfo();
5939   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5940     DI->AddStringLiteralDebugInfo(GV, S);
5941 
5942   if (Entry)
5943     *Entry = GV;
5944 
5945   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5946 
5947   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5948                          GV->getValueType(), Alignment);
5949 }
5950 
5951 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5952 /// array for the given ObjCEncodeExpr node.
5953 ConstantAddress
5954 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5955   std::string Str;
5956   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5957 
5958   return GetAddrOfConstantCString(Str);
5959 }
5960 
5961 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5962 /// the literal and a terminating '\0' character.
5963 /// The result has pointer to array type.
5964 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5965     const std::string &Str, const char *GlobalName) {
5966   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5967   CharUnits Alignment =
5968     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5969 
5970   llvm::Constant *C =
5971       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5972 
5973   // Don't share any string literals if strings aren't constant.
5974   llvm::GlobalVariable **Entry = nullptr;
5975   if (!LangOpts.WritableStrings) {
5976     Entry = &ConstantStringMap[C];
5977     if (auto GV = *Entry) {
5978       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5979         GV->setAlignment(Alignment.getAsAlign());
5980       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5981                              GV->getValueType(), Alignment);
5982     }
5983   }
5984 
5985   // Get the default prefix if a name wasn't specified.
5986   if (!GlobalName)
5987     GlobalName = ".str";
5988   // Create a global variable for this.
5989   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5990                                   GlobalName, Alignment);
5991   if (Entry)
5992     *Entry = GV;
5993 
5994   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5995                          GV->getValueType(), Alignment);
5996 }
5997 
5998 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5999     const MaterializeTemporaryExpr *E, const Expr *Init) {
6000   assert((E->getStorageDuration() == SD_Static ||
6001           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6002   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6003 
6004   // If we're not materializing a subobject of the temporary, keep the
6005   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6006   QualType MaterializedType = Init->getType();
6007   if (Init == E->getSubExpr())
6008     MaterializedType = E->getType();
6009 
6010   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6011 
6012   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6013   if (!InsertResult.second) {
6014     // We've seen this before: either we already created it or we're in the
6015     // process of doing so.
6016     if (!InsertResult.first->second) {
6017       // We recursively re-entered this function, probably during emission of
6018       // the initializer. Create a placeholder. We'll clean this up in the
6019       // outer call, at the end of this function.
6020       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6021       InsertResult.first->second = new llvm::GlobalVariable(
6022           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6023           nullptr);
6024     }
6025     return ConstantAddress(InsertResult.first->second,
6026                            llvm::cast<llvm::GlobalVariable>(
6027                                InsertResult.first->second->stripPointerCasts())
6028                                ->getValueType(),
6029                            Align);
6030   }
6031 
6032   // FIXME: If an externally-visible declaration extends multiple temporaries,
6033   // we need to give each temporary the same name in every translation unit (and
6034   // we also need to make the temporaries externally-visible).
6035   SmallString<256> Name;
6036   llvm::raw_svector_ostream Out(Name);
6037   getCXXABI().getMangleContext().mangleReferenceTemporary(
6038       VD, E->getManglingNumber(), Out);
6039 
6040   APValue *Value = nullptr;
6041   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6042     // If the initializer of the extending declaration is a constant
6043     // initializer, we should have a cached constant initializer for this
6044     // temporary. Note that this might have a different value from the value
6045     // computed by evaluating the initializer if the surrounding constant
6046     // expression modifies the temporary.
6047     Value = E->getOrCreateValue(false);
6048   }
6049 
6050   // Try evaluating it now, it might have a constant initializer.
6051   Expr::EvalResult EvalResult;
6052   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6053       !EvalResult.hasSideEffects())
6054     Value = &EvalResult.Val;
6055 
6056   LangAS AddrSpace =
6057       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6058 
6059   Optional<ConstantEmitter> emitter;
6060   llvm::Constant *InitialValue = nullptr;
6061   bool Constant = false;
6062   llvm::Type *Type;
6063   if (Value) {
6064     // The temporary has a constant initializer, use it.
6065     emitter.emplace(*this);
6066     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6067                                                MaterializedType);
6068     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
6069     Type = InitialValue->getType();
6070   } else {
6071     // No initializer, the initialization will be provided when we
6072     // initialize the declaration which performed lifetime extension.
6073     Type = getTypes().ConvertTypeForMem(MaterializedType);
6074   }
6075 
6076   // Create a global variable for this lifetime-extended temporary.
6077   llvm::GlobalValue::LinkageTypes Linkage =
6078       getLLVMLinkageVarDefinition(VD, Constant);
6079   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6080     const VarDecl *InitVD;
6081     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6082         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6083       // Temporaries defined inside a class get linkonce_odr linkage because the
6084       // class can be defined in multiple translation units.
6085       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6086     } else {
6087       // There is no need for this temporary to have external linkage if the
6088       // VarDecl has external linkage.
6089       Linkage = llvm::GlobalVariable::InternalLinkage;
6090     }
6091   }
6092   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6093   auto *GV = new llvm::GlobalVariable(
6094       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6095       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6096   if (emitter) emitter->finalize(GV);
6097   // Don't assign dllimport or dllexport to local linkage globals.
6098   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6099     setGVProperties(GV, VD);
6100     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6101       // The reference temporary should never be dllexport.
6102       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6103   }
6104   GV->setAlignment(Align.getAsAlign());
6105   if (supportsCOMDAT() && GV->isWeakForLinker())
6106     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6107   if (VD->getTLSKind())
6108     setTLSMode(GV, *VD);
6109   llvm::Constant *CV = GV;
6110   if (AddrSpace != LangAS::Default)
6111     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6112         *this, GV, AddrSpace, LangAS::Default,
6113         Type->getPointerTo(
6114             getContext().getTargetAddressSpace(LangAS::Default)));
6115 
6116   // Update the map with the new temporary. If we created a placeholder above,
6117   // replace it with the new global now.
6118   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6119   if (Entry) {
6120     Entry->replaceAllUsesWith(
6121         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6122     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6123   }
6124   Entry = CV;
6125 
6126   return ConstantAddress(CV, Type, Align);
6127 }
6128 
6129 /// EmitObjCPropertyImplementations - Emit information for synthesized
6130 /// properties for an implementation.
6131 void CodeGenModule::EmitObjCPropertyImplementations(const
6132                                                     ObjCImplementationDecl *D) {
6133   for (const auto *PID : D->property_impls()) {
6134     // Dynamic is just for type-checking.
6135     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6136       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6137 
6138       // Determine which methods need to be implemented, some may have
6139       // been overridden. Note that ::isPropertyAccessor is not the method
6140       // we want, that just indicates if the decl came from a
6141       // property. What we want to know is if the method is defined in
6142       // this implementation.
6143       auto *Getter = PID->getGetterMethodDecl();
6144       if (!Getter || Getter->isSynthesizedAccessorStub())
6145         CodeGenFunction(*this).GenerateObjCGetter(
6146             const_cast<ObjCImplementationDecl *>(D), PID);
6147       auto *Setter = PID->getSetterMethodDecl();
6148       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6149         CodeGenFunction(*this).GenerateObjCSetter(
6150                                  const_cast<ObjCImplementationDecl *>(D), PID);
6151     }
6152   }
6153 }
6154 
6155 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6156   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6157   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6158        ivar; ivar = ivar->getNextIvar())
6159     if (ivar->getType().isDestructedType())
6160       return true;
6161 
6162   return false;
6163 }
6164 
6165 static bool AllTrivialInitializers(CodeGenModule &CGM,
6166                                    ObjCImplementationDecl *D) {
6167   CodeGenFunction CGF(CGM);
6168   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6169        E = D->init_end(); B != E; ++B) {
6170     CXXCtorInitializer *CtorInitExp = *B;
6171     Expr *Init = CtorInitExp->getInit();
6172     if (!CGF.isTrivialInitializer(Init))
6173       return false;
6174   }
6175   return true;
6176 }
6177 
6178 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6179 /// for an implementation.
6180 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6181   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6182   if (needsDestructMethod(D)) {
6183     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6184     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6185     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6186         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6187         getContext().VoidTy, nullptr, D,
6188         /*isInstance=*/true, /*isVariadic=*/false,
6189         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6190         /*isImplicitlyDeclared=*/true,
6191         /*isDefined=*/false, ObjCMethodDecl::Required);
6192     D->addInstanceMethod(DTORMethod);
6193     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6194     D->setHasDestructors(true);
6195   }
6196 
6197   // If the implementation doesn't have any ivar initializers, we don't need
6198   // a .cxx_construct.
6199   if (D->getNumIvarInitializers() == 0 ||
6200       AllTrivialInitializers(*this, D))
6201     return;
6202 
6203   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6204   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6205   // The constructor returns 'self'.
6206   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6207       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6208       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6209       /*isVariadic=*/false,
6210       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6211       /*isImplicitlyDeclared=*/true,
6212       /*isDefined=*/false, ObjCMethodDecl::Required);
6213   D->addInstanceMethod(CTORMethod);
6214   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6215   D->setHasNonZeroConstructors(true);
6216 }
6217 
6218 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6219 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6220   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6221       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6222     ErrorUnsupported(LSD, "linkage spec");
6223     return;
6224   }
6225 
6226   EmitDeclContext(LSD);
6227 }
6228 
6229 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6230   std::unique_ptr<CodeGenFunction> &CurCGF =
6231       GlobalTopLevelStmtBlockInFlight.first;
6232 
6233   // We emitted a top-level stmt but after it there is initialization.
6234   // Stop squashing the top-level stmts into a single function.
6235   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6236     CurCGF->FinishFunction(D->getEndLoc());
6237     CurCGF = nullptr;
6238   }
6239 
6240   if (!CurCGF) {
6241     // void __stmts__N(void)
6242     // FIXME: Ask the ABI name mangler to pick a name.
6243     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6244     FunctionArgList Args;
6245     QualType RetTy = getContext().VoidTy;
6246     const CGFunctionInfo &FnInfo =
6247         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6248     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6249     llvm::Function *Fn = llvm::Function::Create(
6250         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6251 
6252     CurCGF.reset(new CodeGenFunction(*this));
6253     GlobalTopLevelStmtBlockInFlight.second = D;
6254     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6255                           D->getBeginLoc(), D->getBeginLoc());
6256     CXXGlobalInits.push_back(Fn);
6257   }
6258 
6259   CurCGF->EmitStmt(D->getStmt());
6260 }
6261 
6262 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6263   for (auto *I : DC->decls()) {
6264     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6265     // are themselves considered "top-level", so EmitTopLevelDecl on an
6266     // ObjCImplDecl does not recursively visit them. We need to do that in
6267     // case they're nested inside another construct (LinkageSpecDecl /
6268     // ExportDecl) that does stop them from being considered "top-level".
6269     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6270       for (auto *M : OID->methods())
6271         EmitTopLevelDecl(M);
6272     }
6273 
6274     EmitTopLevelDecl(I);
6275   }
6276 }
6277 
6278 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6279 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6280   // Ignore dependent declarations.
6281   if (D->isTemplated())
6282     return;
6283 
6284   // Consteval function shouldn't be emitted.
6285   if (auto *FD = dyn_cast<FunctionDecl>(D))
6286     if (FD->isConsteval())
6287       return;
6288 
6289   switch (D->getKind()) {
6290   case Decl::CXXConversion:
6291   case Decl::CXXMethod:
6292   case Decl::Function:
6293     EmitGlobal(cast<FunctionDecl>(D));
6294     // Always provide some coverage mapping
6295     // even for the functions that aren't emitted.
6296     AddDeferredUnusedCoverageMapping(D);
6297     break;
6298 
6299   case Decl::CXXDeductionGuide:
6300     // Function-like, but does not result in code emission.
6301     break;
6302 
6303   case Decl::Var:
6304   case Decl::Decomposition:
6305   case Decl::VarTemplateSpecialization:
6306     EmitGlobal(cast<VarDecl>(D));
6307     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6308       for (auto *B : DD->bindings())
6309         if (auto *HD = B->getHoldingVar())
6310           EmitGlobal(HD);
6311     break;
6312 
6313   // Indirect fields from global anonymous structs and unions can be
6314   // ignored; only the actual variable requires IR gen support.
6315   case Decl::IndirectField:
6316     break;
6317 
6318   // C++ Decls
6319   case Decl::Namespace:
6320     EmitDeclContext(cast<NamespaceDecl>(D));
6321     break;
6322   case Decl::ClassTemplateSpecialization: {
6323     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6324     if (CGDebugInfo *DI = getModuleDebugInfo())
6325       if (Spec->getSpecializationKind() ==
6326               TSK_ExplicitInstantiationDefinition &&
6327           Spec->hasDefinition())
6328         DI->completeTemplateDefinition(*Spec);
6329   } [[fallthrough]];
6330   case Decl::CXXRecord: {
6331     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6332     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6333       if (CRD->hasDefinition())
6334         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6335       if (auto *ES = D->getASTContext().getExternalSource())
6336         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6337           DI->completeUnusedClass(*CRD);
6338     }
6339     // Emit any static data members, they may be definitions.
6340     for (auto *I : CRD->decls())
6341       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6342         EmitTopLevelDecl(I);
6343     break;
6344   }
6345     // No code generation needed.
6346   case Decl::UsingShadow:
6347   case Decl::ClassTemplate:
6348   case Decl::VarTemplate:
6349   case Decl::Concept:
6350   case Decl::VarTemplatePartialSpecialization:
6351   case Decl::FunctionTemplate:
6352   case Decl::TypeAliasTemplate:
6353   case Decl::Block:
6354   case Decl::Empty:
6355   case Decl::Binding:
6356     break;
6357   case Decl::Using:          // using X; [C++]
6358     if (CGDebugInfo *DI = getModuleDebugInfo())
6359         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6360     break;
6361   case Decl::UsingEnum: // using enum X; [C++]
6362     if (CGDebugInfo *DI = getModuleDebugInfo())
6363       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6364     break;
6365   case Decl::NamespaceAlias:
6366     if (CGDebugInfo *DI = getModuleDebugInfo())
6367         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6368     break;
6369   case Decl::UsingDirective: // using namespace X; [C++]
6370     if (CGDebugInfo *DI = getModuleDebugInfo())
6371       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6372     break;
6373   case Decl::CXXConstructor:
6374     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6375     break;
6376   case Decl::CXXDestructor:
6377     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6378     break;
6379 
6380   case Decl::StaticAssert:
6381     // Nothing to do.
6382     break;
6383 
6384   // Objective-C Decls
6385 
6386   // Forward declarations, no (immediate) code generation.
6387   case Decl::ObjCInterface:
6388   case Decl::ObjCCategory:
6389     break;
6390 
6391   case Decl::ObjCProtocol: {
6392     auto *Proto = cast<ObjCProtocolDecl>(D);
6393     if (Proto->isThisDeclarationADefinition())
6394       ObjCRuntime->GenerateProtocol(Proto);
6395     break;
6396   }
6397 
6398   case Decl::ObjCCategoryImpl:
6399     // Categories have properties but don't support synthesize so we
6400     // can ignore them here.
6401     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6402     break;
6403 
6404   case Decl::ObjCImplementation: {
6405     auto *OMD = cast<ObjCImplementationDecl>(D);
6406     EmitObjCPropertyImplementations(OMD);
6407     EmitObjCIvarInitializations(OMD);
6408     ObjCRuntime->GenerateClass(OMD);
6409     // Emit global variable debug information.
6410     if (CGDebugInfo *DI = getModuleDebugInfo())
6411       if (getCodeGenOpts().hasReducedDebugInfo())
6412         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6413             OMD->getClassInterface()), OMD->getLocation());
6414     break;
6415   }
6416   case Decl::ObjCMethod: {
6417     auto *OMD = cast<ObjCMethodDecl>(D);
6418     // If this is not a prototype, emit the body.
6419     if (OMD->getBody())
6420       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6421     break;
6422   }
6423   case Decl::ObjCCompatibleAlias:
6424     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6425     break;
6426 
6427   case Decl::PragmaComment: {
6428     const auto *PCD = cast<PragmaCommentDecl>(D);
6429     switch (PCD->getCommentKind()) {
6430     case PCK_Unknown:
6431       llvm_unreachable("unexpected pragma comment kind");
6432     case PCK_Linker:
6433       AppendLinkerOptions(PCD->getArg());
6434       break;
6435     case PCK_Lib:
6436         AddDependentLib(PCD->getArg());
6437       break;
6438     case PCK_Compiler:
6439     case PCK_ExeStr:
6440     case PCK_User:
6441       break; // We ignore all of these.
6442     }
6443     break;
6444   }
6445 
6446   case Decl::PragmaDetectMismatch: {
6447     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6448     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6449     break;
6450   }
6451 
6452   case Decl::LinkageSpec:
6453     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6454     break;
6455 
6456   case Decl::FileScopeAsm: {
6457     // File-scope asm is ignored during device-side CUDA compilation.
6458     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6459       break;
6460     // File-scope asm is ignored during device-side OpenMP compilation.
6461     if (LangOpts.OpenMPIsDevice)
6462       break;
6463     // File-scope asm is ignored during device-side SYCL compilation.
6464     if (LangOpts.SYCLIsDevice)
6465       break;
6466     auto *AD = cast<FileScopeAsmDecl>(D);
6467     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6468     break;
6469   }
6470 
6471   case Decl::TopLevelStmt:
6472     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6473     break;
6474 
6475   case Decl::Import: {
6476     auto *Import = cast<ImportDecl>(D);
6477 
6478     // If we've already imported this module, we're done.
6479     if (!ImportedModules.insert(Import->getImportedModule()))
6480       break;
6481 
6482     // Emit debug information for direct imports.
6483     if (!Import->getImportedOwningModule()) {
6484       if (CGDebugInfo *DI = getModuleDebugInfo())
6485         DI->EmitImportDecl(*Import);
6486     }
6487 
6488     // For C++ standard modules we are done - we will call the module
6489     // initializer for imported modules, and that will likewise call those for
6490     // any imports it has.
6491     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6492         !Import->getImportedOwningModule()->isModuleMapModule())
6493       break;
6494 
6495     // For clang C++ module map modules the initializers for sub-modules are
6496     // emitted here.
6497 
6498     // Find all of the submodules and emit the module initializers.
6499     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6500     SmallVector<clang::Module *, 16> Stack;
6501     Visited.insert(Import->getImportedModule());
6502     Stack.push_back(Import->getImportedModule());
6503 
6504     while (!Stack.empty()) {
6505       clang::Module *Mod = Stack.pop_back_val();
6506       if (!EmittedModuleInitializers.insert(Mod).second)
6507         continue;
6508 
6509       for (auto *D : Context.getModuleInitializers(Mod))
6510         EmitTopLevelDecl(D);
6511 
6512       // Visit the submodules of this module.
6513       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6514                                              SubEnd = Mod->submodule_end();
6515            Sub != SubEnd; ++Sub) {
6516         // Skip explicit children; they need to be explicitly imported to emit
6517         // the initializers.
6518         if ((*Sub)->IsExplicit)
6519           continue;
6520 
6521         if (Visited.insert(*Sub).second)
6522           Stack.push_back(*Sub);
6523       }
6524     }
6525     break;
6526   }
6527 
6528   case Decl::Export:
6529     EmitDeclContext(cast<ExportDecl>(D));
6530     break;
6531 
6532   case Decl::OMPThreadPrivate:
6533     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6534     break;
6535 
6536   case Decl::OMPAllocate:
6537     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6538     break;
6539 
6540   case Decl::OMPDeclareReduction:
6541     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6542     break;
6543 
6544   case Decl::OMPDeclareMapper:
6545     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6546     break;
6547 
6548   case Decl::OMPRequires:
6549     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6550     break;
6551 
6552   case Decl::Typedef:
6553   case Decl::TypeAlias: // using foo = bar; [C++11]
6554     if (CGDebugInfo *DI = getModuleDebugInfo())
6555       DI->EmitAndRetainType(
6556           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6557     break;
6558 
6559   case Decl::Record:
6560     if (CGDebugInfo *DI = getModuleDebugInfo())
6561       if (cast<RecordDecl>(D)->getDefinition())
6562         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6563     break;
6564 
6565   case Decl::Enum:
6566     if (CGDebugInfo *DI = getModuleDebugInfo())
6567       if (cast<EnumDecl>(D)->getDefinition())
6568         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6569     break;
6570 
6571   case Decl::HLSLBuffer:
6572     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6573     break;
6574 
6575   default:
6576     // Make sure we handled everything we should, every other kind is a
6577     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6578     // function. Need to recode Decl::Kind to do that easily.
6579     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6580     break;
6581   }
6582 }
6583 
6584 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6585   // Do we need to generate coverage mapping?
6586   if (!CodeGenOpts.CoverageMapping)
6587     return;
6588   switch (D->getKind()) {
6589   case Decl::CXXConversion:
6590   case Decl::CXXMethod:
6591   case Decl::Function:
6592   case Decl::ObjCMethod:
6593   case Decl::CXXConstructor:
6594   case Decl::CXXDestructor: {
6595     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6596       break;
6597     SourceManager &SM = getContext().getSourceManager();
6598     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6599       break;
6600     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6601     if (I == DeferredEmptyCoverageMappingDecls.end())
6602       DeferredEmptyCoverageMappingDecls[D] = true;
6603     break;
6604   }
6605   default:
6606     break;
6607   };
6608 }
6609 
6610 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6611   // Do we need to generate coverage mapping?
6612   if (!CodeGenOpts.CoverageMapping)
6613     return;
6614   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6615     if (Fn->isTemplateInstantiation())
6616       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6617   }
6618   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6619   if (I == DeferredEmptyCoverageMappingDecls.end())
6620     DeferredEmptyCoverageMappingDecls[D] = false;
6621   else
6622     I->second = false;
6623 }
6624 
6625 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6626   // We call takeVector() here to avoid use-after-free.
6627   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6628   // we deserialize function bodies to emit coverage info for them, and that
6629   // deserializes more declarations. How should we handle that case?
6630   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6631     if (!Entry.second)
6632       continue;
6633     const Decl *D = Entry.first;
6634     switch (D->getKind()) {
6635     case Decl::CXXConversion:
6636     case Decl::CXXMethod:
6637     case Decl::Function:
6638     case Decl::ObjCMethod: {
6639       CodeGenPGO PGO(*this);
6640       GlobalDecl GD(cast<FunctionDecl>(D));
6641       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6642                                   getFunctionLinkage(GD));
6643       break;
6644     }
6645     case Decl::CXXConstructor: {
6646       CodeGenPGO PGO(*this);
6647       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6648       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6649                                   getFunctionLinkage(GD));
6650       break;
6651     }
6652     case Decl::CXXDestructor: {
6653       CodeGenPGO PGO(*this);
6654       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6655       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6656                                   getFunctionLinkage(GD));
6657       break;
6658     }
6659     default:
6660       break;
6661     };
6662   }
6663 }
6664 
6665 void CodeGenModule::EmitMainVoidAlias() {
6666   // In order to transition away from "__original_main" gracefully, emit an
6667   // alias for "main" in the no-argument case so that libc can detect when
6668   // new-style no-argument main is in used.
6669   if (llvm::Function *F = getModule().getFunction("main")) {
6670     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6671         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6672       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6673       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6674     }
6675   }
6676 }
6677 
6678 /// Turns the given pointer into a constant.
6679 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6680                                           const void *Ptr) {
6681   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6682   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6683   return llvm::ConstantInt::get(i64, PtrInt);
6684 }
6685 
6686 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6687                                    llvm::NamedMDNode *&GlobalMetadata,
6688                                    GlobalDecl D,
6689                                    llvm::GlobalValue *Addr) {
6690   if (!GlobalMetadata)
6691     GlobalMetadata =
6692       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6693 
6694   // TODO: should we report variant information for ctors/dtors?
6695   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6696                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6697                                CGM.getLLVMContext(), D.getDecl()))};
6698   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6699 }
6700 
6701 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6702                                                  llvm::GlobalValue *CppFunc) {
6703   // Store the list of ifuncs we need to replace uses in.
6704   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6705   // List of ConstantExprs that we should be able to delete when we're done
6706   // here.
6707   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6708 
6709   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6710   if (Elem == CppFunc)
6711     return false;
6712 
6713   // First make sure that all users of this are ifuncs (or ifuncs via a
6714   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6715   // later.
6716   for (llvm::User *User : Elem->users()) {
6717     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6718     // ifunc directly. In any other case, just give up, as we don't know what we
6719     // could break by changing those.
6720     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6721       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6722         return false;
6723 
6724       for (llvm::User *CEUser : ConstExpr->users()) {
6725         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6726           IFuncs.push_back(IFunc);
6727         } else {
6728           return false;
6729         }
6730       }
6731       CEs.push_back(ConstExpr);
6732     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6733       IFuncs.push_back(IFunc);
6734     } else {
6735       // This user is one we don't know how to handle, so fail redirection. This
6736       // will result in an ifunc retaining a resolver name that will ultimately
6737       // fail to be resolved to a defined function.
6738       return false;
6739     }
6740   }
6741 
6742   // Now we know this is a valid case where we can do this alias replacement, we
6743   // need to remove all of the references to Elem (and the bitcasts!) so we can
6744   // delete it.
6745   for (llvm::GlobalIFunc *IFunc : IFuncs)
6746     IFunc->setResolver(nullptr);
6747   for (llvm::ConstantExpr *ConstExpr : CEs)
6748     ConstExpr->destroyConstant();
6749 
6750   // We should now be out of uses for the 'old' version of this function, so we
6751   // can erase it as well.
6752   Elem->eraseFromParent();
6753 
6754   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6755     // The type of the resolver is always just a function-type that returns the
6756     // type of the IFunc, so create that here. If the type of the actual
6757     // resolver doesn't match, it just gets bitcast to the right thing.
6758     auto *ResolverTy =
6759         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6760     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6761         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6762     IFunc->setResolver(Resolver);
6763   }
6764   return true;
6765 }
6766 
6767 /// For each function which is declared within an extern "C" region and marked
6768 /// as 'used', but has internal linkage, create an alias from the unmangled
6769 /// name to the mangled name if possible. People expect to be able to refer
6770 /// to such functions with an unmangled name from inline assembly within the
6771 /// same translation unit.
6772 void CodeGenModule::EmitStaticExternCAliases() {
6773   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6774     return;
6775   for (auto &I : StaticExternCValues) {
6776     IdentifierInfo *Name = I.first;
6777     llvm::GlobalValue *Val = I.second;
6778 
6779     // If Val is null, that implies there were multiple declarations that each
6780     // had a claim to the unmangled name. In this case, generation of the alias
6781     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6782     if (!Val)
6783       break;
6784 
6785     llvm::GlobalValue *ExistingElem =
6786         getModule().getNamedValue(Name->getName());
6787 
6788     // If there is either not something already by this name, or we were able to
6789     // replace all uses from IFuncs, create the alias.
6790     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6791       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6792   }
6793 }
6794 
6795 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6796                                              GlobalDecl &Result) const {
6797   auto Res = Manglings.find(MangledName);
6798   if (Res == Manglings.end())
6799     return false;
6800   Result = Res->getValue();
6801   return true;
6802 }
6803 
6804 /// Emits metadata nodes associating all the global values in the
6805 /// current module with the Decls they came from.  This is useful for
6806 /// projects using IR gen as a subroutine.
6807 ///
6808 /// Since there's currently no way to associate an MDNode directly
6809 /// with an llvm::GlobalValue, we create a global named metadata
6810 /// with the name 'clang.global.decl.ptrs'.
6811 void CodeGenModule::EmitDeclMetadata() {
6812   llvm::NamedMDNode *GlobalMetadata = nullptr;
6813 
6814   for (auto &I : MangledDeclNames) {
6815     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6816     // Some mangled names don't necessarily have an associated GlobalValue
6817     // in this module, e.g. if we mangled it for DebugInfo.
6818     if (Addr)
6819       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6820   }
6821 }
6822 
6823 /// Emits metadata nodes for all the local variables in the current
6824 /// function.
6825 void CodeGenFunction::EmitDeclMetadata() {
6826   if (LocalDeclMap.empty()) return;
6827 
6828   llvm::LLVMContext &Context = getLLVMContext();
6829 
6830   // Find the unique metadata ID for this name.
6831   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6832 
6833   llvm::NamedMDNode *GlobalMetadata = nullptr;
6834 
6835   for (auto &I : LocalDeclMap) {
6836     const Decl *D = I.first;
6837     llvm::Value *Addr = I.second.getPointer();
6838     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6839       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6840       Alloca->setMetadata(
6841           DeclPtrKind, llvm::MDNode::get(
6842                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6843     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6844       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6845       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6846     }
6847   }
6848 }
6849 
6850 void CodeGenModule::EmitVersionIdentMetadata() {
6851   llvm::NamedMDNode *IdentMetadata =
6852     TheModule.getOrInsertNamedMetadata("llvm.ident");
6853   std::string Version = getClangFullVersion();
6854   llvm::LLVMContext &Ctx = TheModule.getContext();
6855 
6856   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6857   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6858 }
6859 
6860 void CodeGenModule::EmitCommandLineMetadata() {
6861   llvm::NamedMDNode *CommandLineMetadata =
6862     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6863   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6864   llvm::LLVMContext &Ctx = TheModule.getContext();
6865 
6866   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6867   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6868 }
6869 
6870 void CodeGenModule::EmitCoverageFile() {
6871   if (getCodeGenOpts().CoverageDataFile.empty() &&
6872       getCodeGenOpts().CoverageNotesFile.empty())
6873     return;
6874 
6875   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6876   if (!CUNode)
6877     return;
6878 
6879   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6880   llvm::LLVMContext &Ctx = TheModule.getContext();
6881   auto *CoverageDataFile =
6882       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6883   auto *CoverageNotesFile =
6884       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6885   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6886     llvm::MDNode *CU = CUNode->getOperand(i);
6887     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6888     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6889   }
6890 }
6891 
6892 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6893                                                        bool ForEH) {
6894   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6895   // FIXME: should we even be calling this method if RTTI is disabled
6896   // and it's not for EH?
6897   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6898       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6899        getTriple().isNVPTX()))
6900     return llvm::Constant::getNullValue(Int8PtrTy);
6901 
6902   if (ForEH && Ty->isObjCObjectPointerType() &&
6903       LangOpts.ObjCRuntime.isGNUFamily())
6904     return ObjCRuntime->GetEHType(Ty);
6905 
6906   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6907 }
6908 
6909 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6910   // Do not emit threadprivates in simd-only mode.
6911   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6912     return;
6913   for (auto RefExpr : D->varlists()) {
6914     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6915     bool PerformInit =
6916         VD->getAnyInitializer() &&
6917         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6918                                                         /*ForRef=*/false);
6919 
6920     Address Addr(GetAddrOfGlobalVar(VD),
6921                  getTypes().ConvertTypeForMem(VD->getType()),
6922                  getContext().getDeclAlign(VD));
6923     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6924             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6925       CXXGlobalInits.push_back(InitFunction);
6926   }
6927 }
6928 
6929 llvm::Metadata *
6930 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6931                                             StringRef Suffix) {
6932   if (auto *FnType = T->getAs<FunctionProtoType>())
6933     T = getContext().getFunctionType(
6934         FnType->getReturnType(), FnType->getParamTypes(),
6935         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6936 
6937   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6938   if (InternalId)
6939     return InternalId;
6940 
6941   if (isExternallyVisible(T->getLinkage())) {
6942     std::string OutName;
6943     llvm::raw_string_ostream Out(OutName);
6944     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6945     Out << Suffix;
6946 
6947     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6948   } else {
6949     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6950                                            llvm::ArrayRef<llvm::Metadata *>());
6951   }
6952 
6953   return InternalId;
6954 }
6955 
6956 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6957   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6958 }
6959 
6960 llvm::Metadata *
6961 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6962   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6963 }
6964 
6965 // Generalize pointer types to a void pointer with the qualifiers of the
6966 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6967 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6968 // 'void *'.
6969 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6970   if (!Ty->isPointerType())
6971     return Ty;
6972 
6973   return Ctx.getPointerType(
6974       QualType(Ctx.VoidTy).withCVRQualifiers(
6975           Ty->getPointeeType().getCVRQualifiers()));
6976 }
6977 
6978 // Apply type generalization to a FunctionType's return and argument types
6979 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6980   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6981     SmallVector<QualType, 8> GeneralizedParams;
6982     for (auto &Param : FnType->param_types())
6983       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6984 
6985     return Ctx.getFunctionType(
6986         GeneralizeType(Ctx, FnType->getReturnType()),
6987         GeneralizedParams, FnType->getExtProtoInfo());
6988   }
6989 
6990   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6991     return Ctx.getFunctionNoProtoType(
6992         GeneralizeType(Ctx, FnType->getReturnType()));
6993 
6994   llvm_unreachable("Encountered unknown FunctionType");
6995 }
6996 
6997 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6998   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6999                                       GeneralizedMetadataIdMap, ".generalized");
7000 }
7001 
7002 /// Returns whether this module needs the "all-vtables" type identifier.
7003 bool CodeGenModule::NeedAllVtablesTypeId() const {
7004   // Returns true if at least one of vtable-based CFI checkers is enabled and
7005   // is not in the trapping mode.
7006   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7007            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7008           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7009            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7010           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7011            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7012           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7013            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7014 }
7015 
7016 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7017                                           CharUnits Offset,
7018                                           const CXXRecordDecl *RD) {
7019   llvm::Metadata *MD =
7020       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7021   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7022 
7023   if (CodeGenOpts.SanitizeCfiCrossDso)
7024     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7025       VTable->addTypeMetadata(Offset.getQuantity(),
7026                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7027 
7028   if (NeedAllVtablesTypeId()) {
7029     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7030     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7031   }
7032 }
7033 
7034 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7035   if (!SanStats)
7036     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7037 
7038   return *SanStats;
7039 }
7040 
7041 llvm::Value *
7042 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7043                                                   CodeGenFunction &CGF) {
7044   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7045   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7046   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7047   auto *Call = CGF.EmitRuntimeCall(
7048       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7049   return Call;
7050 }
7051 
7052 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7053     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7054   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7055                                  /* forPointeeType= */ true);
7056 }
7057 
7058 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7059                                                  LValueBaseInfo *BaseInfo,
7060                                                  TBAAAccessInfo *TBAAInfo,
7061                                                  bool forPointeeType) {
7062   if (TBAAInfo)
7063     *TBAAInfo = getTBAAAccessInfo(T);
7064 
7065   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7066   // that doesn't return the information we need to compute BaseInfo.
7067 
7068   // Honor alignment typedef attributes even on incomplete types.
7069   // We also honor them straight for C++ class types, even as pointees;
7070   // there's an expressivity gap here.
7071   if (auto TT = T->getAs<TypedefType>()) {
7072     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7073       if (BaseInfo)
7074         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7075       return getContext().toCharUnitsFromBits(Align);
7076     }
7077   }
7078 
7079   bool AlignForArray = T->isArrayType();
7080 
7081   // Analyze the base element type, so we don't get confused by incomplete
7082   // array types.
7083   T = getContext().getBaseElementType(T);
7084 
7085   if (T->isIncompleteType()) {
7086     // We could try to replicate the logic from
7087     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7088     // type is incomplete, so it's impossible to test. We could try to reuse
7089     // getTypeAlignIfKnown, but that doesn't return the information we need
7090     // to set BaseInfo.  So just ignore the possibility that the alignment is
7091     // greater than one.
7092     if (BaseInfo)
7093       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7094     return CharUnits::One();
7095   }
7096 
7097   if (BaseInfo)
7098     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7099 
7100   CharUnits Alignment;
7101   const CXXRecordDecl *RD;
7102   if (T.getQualifiers().hasUnaligned()) {
7103     Alignment = CharUnits::One();
7104   } else if (forPointeeType && !AlignForArray &&
7105              (RD = T->getAsCXXRecordDecl())) {
7106     // For C++ class pointees, we don't know whether we're pointing at a
7107     // base or a complete object, so we generally need to use the
7108     // non-virtual alignment.
7109     Alignment = getClassPointerAlignment(RD);
7110   } else {
7111     Alignment = getContext().getTypeAlignInChars(T);
7112   }
7113 
7114   // Cap to the global maximum type alignment unless the alignment
7115   // was somehow explicit on the type.
7116   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7117     if (Alignment.getQuantity() > MaxAlign &&
7118         !getContext().isAlignmentRequired(T))
7119       Alignment = CharUnits::fromQuantity(MaxAlign);
7120   }
7121   return Alignment;
7122 }
7123 
7124 bool CodeGenModule::stopAutoInit() {
7125   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7126   if (StopAfter) {
7127     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7128     // used
7129     if (NumAutoVarInit >= StopAfter) {
7130       return true;
7131     }
7132     if (!NumAutoVarInit) {
7133       unsigned DiagID = getDiags().getCustomDiagID(
7134           DiagnosticsEngine::Warning,
7135           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7136           "number of times ftrivial-auto-var-init=%1 gets applied.");
7137       getDiags().Report(DiagID)
7138           << StopAfter
7139           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7140                       LangOptions::TrivialAutoVarInitKind::Zero
7141                   ? "zero"
7142                   : "pattern");
7143     }
7144     ++NumAutoVarInit;
7145   }
7146   return false;
7147 }
7148 
7149 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7150                                                     const Decl *D) const {
7151   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7152   // postfix beginning with '.' since the symbol name can be demangled.
7153   if (LangOpts.HIP)
7154     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7155   else
7156     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7157 
7158   // If the CUID is not specified we try to generate a unique postfix.
7159   if (getLangOpts().CUID.empty()) {
7160     SourceManager &SM = getContext().getSourceManager();
7161     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7162     assert(PLoc.isValid() && "Source location is expected to be valid.");
7163 
7164     // Get the hash of the user defined macros.
7165     llvm::MD5 Hash;
7166     llvm::MD5::MD5Result Result;
7167     for (const auto &Arg : PreprocessorOpts.Macros)
7168       Hash.update(Arg.first);
7169     Hash.final(Result);
7170 
7171     // Get the UniqueID for the file containing the decl.
7172     llvm::sys::fs::UniqueID ID;
7173     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7174       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7175       assert(PLoc.isValid() && "Source location is expected to be valid.");
7176       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7177         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7178             << PLoc.getFilename() << EC.message();
7179     }
7180     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7181        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7182   } else {
7183     OS << getContext().getCUIDHash();
7184   }
7185 }
7186 
7187 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7188   assert(DeferredDeclsToEmit.empty() &&
7189          "Should have emitted all decls deferred to emit.");
7190   assert(NewBuilder->DeferredDecls.empty() &&
7191          "Newly created module should not have deferred decls");
7192   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7193 
7194   assert(NewBuilder->DeferredVTables.empty() &&
7195          "Newly created module should not have deferred vtables");
7196   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7197 
7198   assert(NewBuilder->MangledDeclNames.empty() &&
7199          "Newly created module should not have mangled decl names");
7200   assert(NewBuilder->Manglings.empty() &&
7201          "Newly created module should not have manglings");
7202   NewBuilder->Manglings = std::move(Manglings);
7203 
7204   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7205   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7206 
7207   NewBuilder->TBAA = std::move(TBAA);
7208 
7209   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7210          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7211 
7212   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7213 
7214   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7215 }
7216