xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision bef2663751fd1f9ad12ddcbea2da87f47f1f42c7)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallSite.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 
62 using namespace clang;
63 using namespace CodeGen;
64 
65 static llvm::cl::opt<bool> LimitedCoverage(
66     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
67     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
68     llvm::cl::init(false));
69 
70 static const char AnnotationSection[] = "llvm.metadata";
71 
72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
73   switch (CGM.getTarget().getCXXABI().getKind()) {
74   case TargetCXXABI::GenericAArch64:
75   case TargetCXXABI::GenericARM:
76   case TargetCXXABI::iOS:
77   case TargetCXXABI::iOS64:
78   case TargetCXXABI::WatchOS:
79   case TargetCXXABI::GenericMIPS:
80   case TargetCXXABI::GenericItanium:
81   case TargetCXXABI::WebAssembly:
82     return CreateItaniumCXXABI(CGM);
83   case TargetCXXABI::Microsoft:
84     return CreateMicrosoftCXXABI(CGM);
85   }
86 
87   llvm_unreachable("invalid C++ ABI kind");
88 }
89 
90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
91                              const PreprocessorOptions &PPO,
92                              const CodeGenOptions &CGO, llvm::Module &M,
93                              DiagnosticsEngine &diags,
94                              CoverageSourceInfo *CoverageInfo)
95     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
96       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
97       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
98       VMContext(M.getContext()), Types(*this), VTables(*this),
99       SanitizerMD(new SanitizerMetadata(*this)) {
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   HalfTy = llvm::Type::getHalfTy(LLVMContext);
109   FloatTy = llvm::Type::getFloatTy(LLVMContext);
110   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
111   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
112   PointerAlignInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
114   SizeSizeInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
116   IntAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
118   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
119   IntPtrTy = llvm::IntegerType::get(LLVMContext,
120     C.getTargetInfo().getMaxPointerWidth());
121   Int8PtrTy = Int8Ty->getPointerTo(0);
122   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
123   AllocaInt8PtrTy = Int8Ty->getPointerTo(
124       M.getDataLayout().getAllocaAddrSpace());
125   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
126 
127   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
128 
129   if (LangOpts.ObjC)
130     createObjCRuntime();
131   if (LangOpts.OpenCL)
132     createOpenCLRuntime();
133   if (LangOpts.OpenMP)
134     createOpenMPRuntime();
135   if (LangOpts.CUDA)
136     createCUDARuntime();
137 
138   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
139   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
140       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
141     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
142                                getCXXABI().getMangleContext()));
143 
144   // If debug info or coverage generation is enabled, create the CGDebugInfo
145   // object.
146   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
147       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
148     DebugInfo.reset(new CGDebugInfo(*this));
149 
150   Block.GlobalUniqueCount = 0;
151 
152   if (C.getLangOpts().ObjC)
153     ObjCData.reset(new ObjCEntrypoints());
154 
155   if (CodeGenOpts.hasProfileClangUse()) {
156     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
157         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
158     if (auto E = ReaderOrErr.takeError()) {
159       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
160                                               "Could not read profile %0: %1");
161       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
162         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
163                                   << EI.message();
164       });
165     } else
166       PGOReader = std::move(ReaderOrErr.get());
167   }
168 
169   // If coverage mapping generation is enabled, create the
170   // CoverageMappingModuleGen object.
171   if (CodeGenOpts.CoverageMapping)
172     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
173 }
174 
175 CodeGenModule::~CodeGenModule() {}
176 
177 void CodeGenModule::createObjCRuntime() {
178   // This is just isGNUFamily(), but we want to force implementors of
179   // new ABIs to decide how best to do this.
180   switch (LangOpts.ObjCRuntime.getKind()) {
181   case ObjCRuntime::GNUstep:
182   case ObjCRuntime::GCC:
183   case ObjCRuntime::ObjFW:
184     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
185     return;
186 
187   case ObjCRuntime::FragileMacOSX:
188   case ObjCRuntime::MacOSX:
189   case ObjCRuntime::iOS:
190   case ObjCRuntime::WatchOS:
191     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
192     return;
193   }
194   llvm_unreachable("bad runtime kind");
195 }
196 
197 void CodeGenModule::createOpenCLRuntime() {
198   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
199 }
200 
201 void CodeGenModule::createOpenMPRuntime() {
202   // Select a specialized code generation class based on the target, if any.
203   // If it does not exist use the default implementation.
204   switch (getTriple().getArch()) {
205   case llvm::Triple::nvptx:
206   case llvm::Triple::nvptx64:
207     assert(getLangOpts().OpenMPIsDevice &&
208            "OpenMP NVPTX is only prepared to deal with device code.");
209     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
210     break;
211   default:
212     if (LangOpts.OpenMPSimd)
213       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
214     else
215       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
216     break;
217   }
218 }
219 
220 void CodeGenModule::createCUDARuntime() {
221   CUDARuntime.reset(CreateNVCUDARuntime(*this));
222 }
223 
224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
225   Replacements[Name] = C;
226 }
227 
228 void CodeGenModule::applyReplacements() {
229   for (auto &I : Replacements) {
230     StringRef MangledName = I.first();
231     llvm::Constant *Replacement = I.second;
232     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
233     if (!Entry)
234       continue;
235     auto *OldF = cast<llvm::Function>(Entry);
236     auto *NewF = dyn_cast<llvm::Function>(Replacement);
237     if (!NewF) {
238       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
239         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
240       } else {
241         auto *CE = cast<llvm::ConstantExpr>(Replacement);
242         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
243                CE->getOpcode() == llvm::Instruction::GetElementPtr);
244         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
245       }
246     }
247 
248     // Replace old with new, but keep the old order.
249     OldF->replaceAllUsesWith(Replacement);
250     if (NewF) {
251       NewF->removeFromParent();
252       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
253                                                        NewF);
254     }
255     OldF->eraseFromParent();
256   }
257 }
258 
259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
260   GlobalValReplacements.push_back(std::make_pair(GV, C));
261 }
262 
263 void CodeGenModule::applyGlobalValReplacements() {
264   for (auto &I : GlobalValReplacements) {
265     llvm::GlobalValue *GV = I.first;
266     llvm::Constant *C = I.second;
267 
268     GV->replaceAllUsesWith(C);
269     GV->eraseFromParent();
270   }
271 }
272 
273 // This is only used in aliases that we created and we know they have a
274 // linear structure.
275 static const llvm::GlobalObject *getAliasedGlobal(
276     const llvm::GlobalIndirectSymbol &GIS) {
277   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
278   const llvm::Constant *C = &GIS;
279   for (;;) {
280     C = C->stripPointerCasts();
281     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
282       return GO;
283     // stripPointerCasts will not walk over weak aliases.
284     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
285     if (!GIS2)
286       return nullptr;
287     if (!Visited.insert(GIS2).second)
288       return nullptr;
289     C = GIS2->getIndirectSymbol();
290   }
291 }
292 
293 void CodeGenModule::checkAliases() {
294   // Check if the constructed aliases are well formed. It is really unfortunate
295   // that we have to do this in CodeGen, but we only construct mangled names
296   // and aliases during codegen.
297   bool Error = false;
298   DiagnosticsEngine &Diags = getDiags();
299   for (const GlobalDecl &GD : Aliases) {
300     const auto *D = cast<ValueDecl>(GD.getDecl());
301     SourceLocation Location;
302     bool IsIFunc = D->hasAttr<IFuncAttr>();
303     if (const Attr *A = D->getDefiningAttr())
304       Location = A->getLocation();
305     else
306       llvm_unreachable("Not an alias or ifunc?");
307     StringRef MangledName = getMangledName(GD);
308     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
309     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
310     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
311     if (!GV) {
312       Error = true;
313       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
314     } else if (GV->isDeclaration()) {
315       Error = true;
316       Diags.Report(Location, diag::err_alias_to_undefined)
317           << IsIFunc << IsIFunc;
318     } else if (IsIFunc) {
319       // Check resolver function type.
320       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
321           GV->getType()->getPointerElementType());
322       assert(FTy);
323       if (!FTy->getReturnType()->isPointerTy())
324         Diags.Report(Location, diag::err_ifunc_resolver_return);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.CodeViewGHash) {
462     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
463   }
464   if (CodeGenOpts.ControlFlowGuard) {
465     // We want function ID tables for Control Flow Guard.
466     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
467   }
468   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
469     // We don't support LTO with 2 with different StrictVTablePointers
470     // FIXME: we could support it by stripping all the information introduced
471     // by StrictVTablePointers.
472 
473     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
474 
475     llvm::Metadata *Ops[2] = {
476               llvm::MDString::get(VMContext, "StrictVTablePointers"),
477               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
478                   llvm::Type::getInt32Ty(VMContext), 1))};
479 
480     getModule().addModuleFlag(llvm::Module::Require,
481                               "StrictVTablePointersRequirement",
482                               llvm::MDNode::get(VMContext, Ops));
483   }
484   if (DebugInfo)
485     // We support a single version in the linked module. The LLVM
486     // parser will drop debug info with a different version number
487     // (and warn about it, too).
488     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
489                               llvm::DEBUG_METADATA_VERSION);
490 
491   // We need to record the widths of enums and wchar_t, so that we can generate
492   // the correct build attributes in the ARM backend. wchar_size is also used by
493   // TargetLibraryInfo.
494   uint64_t WCharWidth =
495       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
496   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
497 
498   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
499   if (   Arch == llvm::Triple::arm
500       || Arch == llvm::Triple::armeb
501       || Arch == llvm::Triple::thumb
502       || Arch == llvm::Triple::thumbeb) {
503     // The minimum width of an enum in bytes
504     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
505     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
506   }
507 
508   if (CodeGenOpts.SanitizeCfiCrossDso) {
509     // Indicate that we want cross-DSO control flow integrity checks.
510     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
511   }
512 
513   if (CodeGenOpts.CFProtectionReturn &&
514       Target.checkCFProtectionReturnSupported(getDiags())) {
515     // Indicate that we want to instrument return control flow protection.
516     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
517                               1);
518   }
519 
520   if (CodeGenOpts.CFProtectionBranch &&
521       Target.checkCFProtectionBranchSupported(getDiags())) {
522     // Indicate that we want to instrument branch control flow protection.
523     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
524                               1);
525   }
526 
527   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
528     // Indicate whether __nvvm_reflect should be configured to flush denormal
529     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
530     // property.)
531     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
532                               CodeGenOpts.FlushDenorm ? 1 : 0);
533   }
534 
535   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
536   if (LangOpts.OpenCL) {
537     EmitOpenCLMetadata();
538     // Emit SPIR version.
539     if (getTriple().getArch() == llvm::Triple::spir ||
540         getTriple().getArch() == llvm::Triple::spir64) {
541       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
542       // opencl.spir.version named metadata.
543       llvm::Metadata *SPIRVerElts[] = {
544           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
545               Int32Ty, LangOpts.OpenCLVersion / 100)),
546           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
547               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
548       llvm::NamedMDNode *SPIRVerMD =
549           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
550       llvm::LLVMContext &Ctx = TheModule.getContext();
551       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
552     }
553   }
554 
555   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
556     assert(PLevel < 3 && "Invalid PIC Level");
557     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
558     if (Context.getLangOpts().PIE)
559       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
560   }
561 
562   if (getCodeGenOpts().CodeModel.size() > 0) {
563     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
564                   .Case("tiny", llvm::CodeModel::Tiny)
565                   .Case("small", llvm::CodeModel::Small)
566                   .Case("kernel", llvm::CodeModel::Kernel)
567                   .Case("medium", llvm::CodeModel::Medium)
568                   .Case("large", llvm::CodeModel::Large)
569                   .Default(~0u);
570     if (CM != ~0u) {
571       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
572       getModule().setCodeModel(codeModel);
573     }
574   }
575 
576   if (CodeGenOpts.NoPLT)
577     getModule().setRtLibUseGOT();
578 
579   SimplifyPersonality();
580 
581   if (getCodeGenOpts().EmitDeclMetadata)
582     EmitDeclMetadata();
583 
584   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
585     EmitCoverageFile();
586 
587   if (DebugInfo)
588     DebugInfo->finalize();
589 
590   if (getCodeGenOpts().EmitVersionIdentMetadata)
591     EmitVersionIdentMetadata();
592 
593   if (!getCodeGenOpts().RecordCommandLine.empty())
594     EmitCommandLineMetadata();
595 
596   EmitTargetMetadata();
597 }
598 
599 void CodeGenModule::EmitOpenCLMetadata() {
600   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
601   // opencl.ocl.version named metadata node.
602   llvm::Metadata *OCLVerElts[] = {
603       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
604           Int32Ty, LangOpts.OpenCLVersion / 100)),
605       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
607   llvm::NamedMDNode *OCLVerMD =
608       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
609   llvm::LLVMContext &Ctx = TheModule.getContext();
610   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
611 }
612 
613 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
614   // Make sure that this type is translated.
615   Types.UpdateCompletedType(TD);
616 }
617 
618 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
619   // Make sure that this type is translated.
620   Types.RefreshTypeCacheForClass(RD);
621 }
622 
623 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
624   if (!TBAA)
625     return nullptr;
626   return TBAA->getTypeInfo(QTy);
627 }
628 
629 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
630   if (!TBAA)
631     return TBAAAccessInfo();
632   return TBAA->getAccessInfo(AccessType);
633 }
634 
635 TBAAAccessInfo
636 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
637   if (!TBAA)
638     return TBAAAccessInfo();
639   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
640 }
641 
642 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
643   if (!TBAA)
644     return nullptr;
645   return TBAA->getTBAAStructInfo(QTy);
646 }
647 
648 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
649   if (!TBAA)
650     return nullptr;
651   return TBAA->getBaseTypeInfo(QTy);
652 }
653 
654 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
655   if (!TBAA)
656     return nullptr;
657   return TBAA->getAccessTagInfo(Info);
658 }
659 
660 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
661                                                    TBAAAccessInfo TargetInfo) {
662   if (!TBAA)
663     return TBAAAccessInfo();
664   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
665 }
666 
667 TBAAAccessInfo
668 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
669                                                    TBAAAccessInfo InfoB) {
670   if (!TBAA)
671     return TBAAAccessInfo();
672   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
673 }
674 
675 TBAAAccessInfo
676 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
677                                               TBAAAccessInfo SrcInfo) {
678   if (!TBAA)
679     return TBAAAccessInfo();
680   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
681 }
682 
683 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
684                                                 TBAAAccessInfo TBAAInfo) {
685   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
686     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
687 }
688 
689 void CodeGenModule::DecorateInstructionWithInvariantGroup(
690     llvm::Instruction *I, const CXXRecordDecl *RD) {
691   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
692                  llvm::MDNode::get(getLLVMContext(), {}));
693 }
694 
695 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
696   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
697   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
698 }
699 
700 /// ErrorUnsupported - Print out an error that codegen doesn't support the
701 /// specified stmt yet.
702 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
703   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
704                                                "cannot compile this %0 yet");
705   std::string Msg = Type;
706   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
707       << Msg << S->getSourceRange();
708 }
709 
710 /// ErrorUnsupported - Print out an error that codegen doesn't support the
711 /// specified decl yet.
712 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
713   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
714                                                "cannot compile this %0 yet");
715   std::string Msg = Type;
716   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
717 }
718 
719 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
720   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
721 }
722 
723 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
724                                         const NamedDecl *D) const {
725   if (GV->hasDLLImportStorageClass())
726     return;
727   // Internal definitions always have default visibility.
728   if (GV->hasLocalLinkage()) {
729     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
730     return;
731   }
732   if (!D)
733     return;
734   // Set visibility for definitions, and for declarations if requested globally
735   // or set explicitly.
736   LinkageInfo LV = D->getLinkageAndVisibility();
737   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
738       !GV->isDeclarationForLinker())
739     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
740 }
741 
742 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
743                                  llvm::GlobalValue *GV) {
744   if (GV->hasLocalLinkage())
745     return true;
746 
747   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
748     return true;
749 
750   // DLLImport explicitly marks the GV as external.
751   if (GV->hasDLLImportStorageClass())
752     return false;
753 
754   const llvm::Triple &TT = CGM.getTriple();
755   if (TT.isWindowsGNUEnvironment()) {
756     // In MinGW, variables without DLLImport can still be automatically
757     // imported from a DLL by the linker; don't mark variables that
758     // potentially could come from another DLL as DSO local.
759     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
760         !GV->isThreadLocal())
761       return false;
762   }
763   // Every other GV is local on COFF.
764   // Make an exception for windows OS in the triple: Some firmware builds use
765   // *-win32-macho triples. This (accidentally?) produced windows relocations
766   // without GOT tables in older clang versions; Keep this behaviour.
767   // FIXME: even thread local variables?
768   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
769     return true;
770 
771   // Only handle COFF and ELF for now.
772   if (!TT.isOSBinFormatELF())
773     return false;
774 
775   // If this is not an executable, don't assume anything is local.
776   const auto &CGOpts = CGM.getCodeGenOpts();
777   llvm::Reloc::Model RM = CGOpts.RelocationModel;
778   const auto &LOpts = CGM.getLangOpts();
779   if (RM != llvm::Reloc::Static && !LOpts.PIE)
780     return false;
781 
782   // A definition cannot be preempted from an executable.
783   if (!GV->isDeclarationForLinker())
784     return true;
785 
786   // Most PIC code sequences that assume that a symbol is local cannot produce a
787   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
788   // depended, it seems worth it to handle it here.
789   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
790     return false;
791 
792   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
793   llvm::Triple::ArchType Arch = TT.getArch();
794   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
795       Arch == llvm::Triple::ppc64le)
796     return false;
797 
798   // If we can use copy relocations we can assume it is local.
799   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
800     if (!Var->isThreadLocal() &&
801         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
802       return true;
803 
804   // If we can use a plt entry as the symbol address we can assume it
805   // is local.
806   // FIXME: This should work for PIE, but the gold linker doesn't support it.
807   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
808     return true;
809 
810   // Otherwise don't assue it is local.
811   return false;
812 }
813 
814 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
815   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
816 }
817 
818 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
819                                           GlobalDecl GD) const {
820   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
821   // C++ destructors have a few C++ ABI specific special cases.
822   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
823     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
824     return;
825   }
826   setDLLImportDLLExport(GV, D);
827 }
828 
829 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
830                                           const NamedDecl *D) const {
831   if (D && D->isExternallyVisible()) {
832     if (D->hasAttr<DLLImportAttr>())
833       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
834     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
835       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
836   }
837 }
838 
839 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
840                                     GlobalDecl GD) const {
841   setDLLImportDLLExport(GV, GD);
842   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
843 }
844 
845 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
846                                     const NamedDecl *D) const {
847   setDLLImportDLLExport(GV, D);
848   setGlobalVisibilityAndLocal(GV, D);
849 }
850 
851 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
852                                                 const NamedDecl *D) const {
853   setGlobalVisibility(GV, D);
854   setDSOLocal(GV);
855 }
856 
857 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
858   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
859       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
860       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
861       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
862       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
863 }
864 
865 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
866     CodeGenOptions::TLSModel M) {
867   switch (M) {
868   case CodeGenOptions::GeneralDynamicTLSModel:
869     return llvm::GlobalVariable::GeneralDynamicTLSModel;
870   case CodeGenOptions::LocalDynamicTLSModel:
871     return llvm::GlobalVariable::LocalDynamicTLSModel;
872   case CodeGenOptions::InitialExecTLSModel:
873     return llvm::GlobalVariable::InitialExecTLSModel;
874   case CodeGenOptions::LocalExecTLSModel:
875     return llvm::GlobalVariable::LocalExecTLSModel;
876   }
877   llvm_unreachable("Invalid TLS model!");
878 }
879 
880 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
881   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
882 
883   llvm::GlobalValue::ThreadLocalMode TLM;
884   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
885 
886   // Override the TLS model if it is explicitly specified.
887   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
888     TLM = GetLLVMTLSModel(Attr->getModel());
889   }
890 
891   GV->setThreadLocalMode(TLM);
892 }
893 
894 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
895                                           StringRef Name) {
896   const TargetInfo &Target = CGM.getTarget();
897   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
898 }
899 
900 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
901                                                  const CPUSpecificAttr *Attr,
902                                                  unsigned CPUIndex,
903                                                  raw_ostream &Out) {
904   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
905   // supported.
906   if (Attr)
907     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
908   else if (CGM.getTarget().supportsIFunc())
909     Out << ".resolver";
910 }
911 
912 static void AppendTargetMangling(const CodeGenModule &CGM,
913                                  const TargetAttr *Attr, raw_ostream &Out) {
914   if (Attr->isDefaultVersion())
915     return;
916 
917   Out << '.';
918   const TargetInfo &Target = CGM.getTarget();
919   TargetAttr::ParsedTargetAttr Info =
920       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
921         // Multiversioning doesn't allow "no-${feature}", so we can
922         // only have "+" prefixes here.
923         assert(LHS.startswith("+") && RHS.startswith("+") &&
924                "Features should always have a prefix.");
925         return Target.multiVersionSortPriority(LHS.substr(1)) >
926                Target.multiVersionSortPriority(RHS.substr(1));
927       });
928 
929   bool IsFirst = true;
930 
931   if (!Info.Architecture.empty()) {
932     IsFirst = false;
933     Out << "arch_" << Info.Architecture;
934   }
935 
936   for (StringRef Feat : Info.Features) {
937     if (!IsFirst)
938       Out << '_';
939     IsFirst = false;
940     Out << Feat.substr(1);
941   }
942 }
943 
944 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
945                                       const NamedDecl *ND,
946                                       bool OmitMultiVersionMangling = false) {
947   SmallString<256> Buffer;
948   llvm::raw_svector_ostream Out(Buffer);
949   MangleContext &MC = CGM.getCXXABI().getMangleContext();
950   if (MC.shouldMangleDeclName(ND)) {
951     llvm::raw_svector_ostream Out(Buffer);
952     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
953       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
954     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
955       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
956     else
957       MC.mangleName(ND, Out);
958   } else {
959     IdentifierInfo *II = ND->getIdentifier();
960     assert(II && "Attempt to mangle unnamed decl.");
961     const auto *FD = dyn_cast<FunctionDecl>(ND);
962 
963     if (FD &&
964         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
965       llvm::raw_svector_ostream Out(Buffer);
966       Out << "__regcall3__" << II->getName();
967     } else {
968       Out << II->getName();
969     }
970   }
971 
972   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
973     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
974       switch (FD->getMultiVersionKind()) {
975       case MultiVersionKind::CPUDispatch:
976       case MultiVersionKind::CPUSpecific:
977         AppendCPUSpecificCPUDispatchMangling(CGM,
978                                              FD->getAttr<CPUSpecificAttr>(),
979                                              GD.getMultiVersionIndex(), Out);
980         break;
981       case MultiVersionKind::Target:
982         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
983         break;
984       case MultiVersionKind::None:
985         llvm_unreachable("None multiversion type isn't valid here");
986       }
987     }
988 
989   return Out.str();
990 }
991 
992 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
993                                             const FunctionDecl *FD) {
994   if (!FD->isMultiVersion())
995     return;
996 
997   // Get the name of what this would be without the 'target' attribute.  This
998   // allows us to lookup the version that was emitted when this wasn't a
999   // multiversion function.
1000   std::string NonTargetName =
1001       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1002   GlobalDecl OtherGD;
1003   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1004     assert(OtherGD.getCanonicalDecl()
1005                .getDecl()
1006                ->getAsFunction()
1007                ->isMultiVersion() &&
1008            "Other GD should now be a multiversioned function");
1009     // OtherFD is the version of this function that was mangled BEFORE
1010     // becoming a MultiVersion function.  It potentially needs to be updated.
1011     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1012                                       .getDecl()
1013                                       ->getAsFunction()
1014                                       ->getMostRecentDecl();
1015     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1016     // This is so that if the initial version was already the 'default'
1017     // version, we don't try to update it.
1018     if (OtherName != NonTargetName) {
1019       // Remove instead of erase, since others may have stored the StringRef
1020       // to this.
1021       const auto ExistingRecord = Manglings.find(NonTargetName);
1022       if (ExistingRecord != std::end(Manglings))
1023         Manglings.remove(&(*ExistingRecord));
1024       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1025       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1026       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1027         Entry->setName(OtherName);
1028     }
1029   }
1030 }
1031 
1032 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1033   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1034 
1035   // Some ABIs don't have constructor variants.  Make sure that base and
1036   // complete constructors get mangled the same.
1037   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1038     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1039       CXXCtorType OrigCtorType = GD.getCtorType();
1040       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1041       if (OrigCtorType == Ctor_Base)
1042         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1043     }
1044   }
1045 
1046   auto FoundName = MangledDeclNames.find(CanonicalGD);
1047   if (FoundName != MangledDeclNames.end())
1048     return FoundName->second;
1049 
1050   // Keep the first result in the case of a mangling collision.
1051   const auto *ND = cast<NamedDecl>(GD.getDecl());
1052   auto Result =
1053       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1054   return MangledDeclNames[CanonicalGD] = Result.first->first();
1055 }
1056 
1057 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1058                                              const BlockDecl *BD) {
1059   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1060   const Decl *D = GD.getDecl();
1061 
1062   SmallString<256> Buffer;
1063   llvm::raw_svector_ostream Out(Buffer);
1064   if (!D)
1065     MangleCtx.mangleGlobalBlock(BD,
1066       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1067   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1068     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1069   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1070     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1071   else
1072     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1073 
1074   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1075   return Result.first->first();
1076 }
1077 
1078 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1079   return getModule().getNamedValue(Name);
1080 }
1081 
1082 /// AddGlobalCtor - Add a function to the list that will be called before
1083 /// main() runs.
1084 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1085                                   llvm::Constant *AssociatedData) {
1086   // FIXME: Type coercion of void()* types.
1087   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1088 }
1089 
1090 /// AddGlobalDtor - Add a function to the list that will be called
1091 /// when the module is unloaded.
1092 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1093   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1094     DtorsUsingAtExit[Priority].push_back(Dtor);
1095     return;
1096   }
1097 
1098   // FIXME: Type coercion of void()* types.
1099   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1100 }
1101 
1102 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1103   if (Fns.empty()) return;
1104 
1105   // Ctor function type is void()*.
1106   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1107   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1108       TheModule.getDataLayout().getProgramAddressSpace());
1109 
1110   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1111   llvm::StructType *CtorStructTy = llvm::StructType::get(
1112       Int32Ty, CtorPFTy, VoidPtrTy);
1113 
1114   // Construct the constructor and destructor arrays.
1115   ConstantInitBuilder builder(*this);
1116   auto ctors = builder.beginArray(CtorStructTy);
1117   for (const auto &I : Fns) {
1118     auto ctor = ctors.beginStruct(CtorStructTy);
1119     ctor.addInt(Int32Ty, I.Priority);
1120     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1121     if (I.AssociatedData)
1122       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1123     else
1124       ctor.addNullPointer(VoidPtrTy);
1125     ctor.finishAndAddTo(ctors);
1126   }
1127 
1128   auto list =
1129     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1130                                 /*constant*/ false,
1131                                 llvm::GlobalValue::AppendingLinkage);
1132 
1133   // The LTO linker doesn't seem to like it when we set an alignment
1134   // on appending variables.  Take it off as a workaround.
1135   list->setAlignment(0);
1136 
1137   Fns.clear();
1138 }
1139 
1140 llvm::GlobalValue::LinkageTypes
1141 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1142   const auto *D = cast<FunctionDecl>(GD.getDecl());
1143 
1144   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1145 
1146   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1147     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1148 
1149   if (isa<CXXConstructorDecl>(D) &&
1150       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1151       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1152     // Our approach to inheriting constructors is fundamentally different from
1153     // that used by the MS ABI, so keep our inheriting constructor thunks
1154     // internal rather than trying to pick an unambiguous mangling for them.
1155     return llvm::GlobalValue::InternalLinkage;
1156   }
1157 
1158   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1159 }
1160 
1161 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1162   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1163   if (!MDS) return nullptr;
1164 
1165   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1166 }
1167 
1168 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1169                                               const CGFunctionInfo &Info,
1170                                               llvm::Function *F) {
1171   unsigned CallingConv;
1172   llvm::AttributeList PAL;
1173   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1174   F->setAttributes(PAL);
1175   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1176 }
1177 
1178 /// Determines whether the language options require us to model
1179 /// unwind exceptions.  We treat -fexceptions as mandating this
1180 /// except under the fragile ObjC ABI with only ObjC exceptions
1181 /// enabled.  This means, for example, that C with -fexceptions
1182 /// enables this.
1183 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1184   // If exceptions are completely disabled, obviously this is false.
1185   if (!LangOpts.Exceptions) return false;
1186 
1187   // If C++ exceptions are enabled, this is true.
1188   if (LangOpts.CXXExceptions) return true;
1189 
1190   // If ObjC exceptions are enabled, this depends on the ABI.
1191   if (LangOpts.ObjCExceptions) {
1192     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1193   }
1194 
1195   return true;
1196 }
1197 
1198 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1199                                                       const CXXMethodDecl *MD) {
1200   // Check that the type metadata can ever actually be used by a call.
1201   if (!CGM.getCodeGenOpts().LTOUnit ||
1202       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1203     return false;
1204 
1205   // Only functions whose address can be taken with a member function pointer
1206   // need this sort of type metadata.
1207   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1208          !isa<CXXDestructorDecl>(MD);
1209 }
1210 
1211 std::vector<const CXXRecordDecl *>
1212 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1213   llvm::SetVector<const CXXRecordDecl *> MostBases;
1214 
1215   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1216   CollectMostBases = [&](const CXXRecordDecl *RD) {
1217     if (RD->getNumBases() == 0)
1218       MostBases.insert(RD);
1219     for (const CXXBaseSpecifier &B : RD->bases())
1220       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1221   };
1222   CollectMostBases(RD);
1223   return MostBases.takeVector();
1224 }
1225 
1226 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1227                                                            llvm::Function *F) {
1228   llvm::AttrBuilder B;
1229 
1230   if (CodeGenOpts.UnwindTables)
1231     B.addAttribute(llvm::Attribute::UWTable);
1232 
1233   if (!hasUnwindExceptions(LangOpts))
1234     B.addAttribute(llvm::Attribute::NoUnwind);
1235 
1236   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1237     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1238       B.addAttribute(llvm::Attribute::StackProtect);
1239     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1240       B.addAttribute(llvm::Attribute::StackProtectStrong);
1241     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1242       B.addAttribute(llvm::Attribute::StackProtectReq);
1243   }
1244 
1245   if (!D) {
1246     // If we don't have a declaration to control inlining, the function isn't
1247     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1248     // disabled, mark the function as noinline.
1249     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1250         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1251       B.addAttribute(llvm::Attribute::NoInline);
1252 
1253     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1254     return;
1255   }
1256 
1257   // Track whether we need to add the optnone LLVM attribute,
1258   // starting with the default for this optimization level.
1259   bool ShouldAddOptNone =
1260       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1261   // We can't add optnone in the following cases, it won't pass the verifier.
1262   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1263   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1264   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1265 
1266   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1267     B.addAttribute(llvm::Attribute::OptimizeNone);
1268 
1269     // OptimizeNone implies noinline; we should not be inlining such functions.
1270     B.addAttribute(llvm::Attribute::NoInline);
1271     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1272            "OptimizeNone and AlwaysInline on same function!");
1273 
1274     // We still need to handle naked functions even though optnone subsumes
1275     // much of their semantics.
1276     if (D->hasAttr<NakedAttr>())
1277       B.addAttribute(llvm::Attribute::Naked);
1278 
1279     // OptimizeNone wins over OptimizeForSize and MinSize.
1280     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1281     F->removeFnAttr(llvm::Attribute::MinSize);
1282   } else if (D->hasAttr<NakedAttr>()) {
1283     // Naked implies noinline: we should not be inlining such functions.
1284     B.addAttribute(llvm::Attribute::Naked);
1285     B.addAttribute(llvm::Attribute::NoInline);
1286   } else if (D->hasAttr<NoDuplicateAttr>()) {
1287     B.addAttribute(llvm::Attribute::NoDuplicate);
1288   } else if (D->hasAttr<NoInlineAttr>()) {
1289     B.addAttribute(llvm::Attribute::NoInline);
1290   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1291              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1292     // (noinline wins over always_inline, and we can't specify both in IR)
1293     B.addAttribute(llvm::Attribute::AlwaysInline);
1294   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1295     // If we're not inlining, then force everything that isn't always_inline to
1296     // carry an explicit noinline attribute.
1297     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1298       B.addAttribute(llvm::Attribute::NoInline);
1299   } else {
1300     // Otherwise, propagate the inline hint attribute and potentially use its
1301     // absence to mark things as noinline.
1302     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1303       // Search function and template pattern redeclarations for inline.
1304       auto CheckForInline = [](const FunctionDecl *FD) {
1305         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1306           return Redecl->isInlineSpecified();
1307         };
1308         if (any_of(FD->redecls(), CheckRedeclForInline))
1309           return true;
1310         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1311         if (!Pattern)
1312           return false;
1313         return any_of(Pattern->redecls(), CheckRedeclForInline);
1314       };
1315       if (CheckForInline(FD)) {
1316         B.addAttribute(llvm::Attribute::InlineHint);
1317       } else if (CodeGenOpts.getInlining() ==
1318                      CodeGenOptions::OnlyHintInlining &&
1319                  !FD->isInlined() &&
1320                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1321         B.addAttribute(llvm::Attribute::NoInline);
1322       }
1323     }
1324   }
1325 
1326   // Add other optimization related attributes if we are optimizing this
1327   // function.
1328   if (!D->hasAttr<OptimizeNoneAttr>()) {
1329     if (D->hasAttr<ColdAttr>()) {
1330       if (!ShouldAddOptNone)
1331         B.addAttribute(llvm::Attribute::OptimizeForSize);
1332       B.addAttribute(llvm::Attribute::Cold);
1333     }
1334 
1335     if (D->hasAttr<MinSizeAttr>())
1336       B.addAttribute(llvm::Attribute::MinSize);
1337   }
1338 
1339   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1340 
1341   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1342   if (alignment)
1343     F->setAlignment(alignment);
1344 
1345   if (!D->hasAttr<AlignedAttr>())
1346     if (LangOpts.FunctionAlignment)
1347       F->setAlignment(1 << LangOpts.FunctionAlignment);
1348 
1349   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1350   // reserve a bit for differentiating between virtual and non-virtual member
1351   // functions. If the current target's C++ ABI requires this and this is a
1352   // member function, set its alignment accordingly.
1353   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1354     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1355       F->setAlignment(2);
1356   }
1357 
1358   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1359   if (CodeGenOpts.SanitizeCfiCrossDso)
1360     if (auto *FD = dyn_cast<FunctionDecl>(D))
1361       CreateFunctionTypeMetadataForIcall(FD, F);
1362 
1363   // Emit type metadata on member functions for member function pointer checks.
1364   // These are only ever necessary on definitions; we're guaranteed that the
1365   // definition will be present in the LTO unit as a result of LTO visibility.
1366   auto *MD = dyn_cast<CXXMethodDecl>(D);
1367   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1368     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1369       llvm::Metadata *Id =
1370           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1371               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1372       F->addTypeMetadata(0, Id);
1373     }
1374   }
1375 }
1376 
1377 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1378   const Decl *D = GD.getDecl();
1379   if (dyn_cast_or_null<NamedDecl>(D))
1380     setGVProperties(GV, GD);
1381   else
1382     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1383 
1384   if (D && D->hasAttr<UsedAttr>())
1385     addUsedGlobal(GV);
1386 
1387   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1388     const auto *VD = cast<VarDecl>(D);
1389     if (VD->getType().isConstQualified() &&
1390         VD->getStorageDuration() == SD_Static)
1391       addUsedGlobal(GV);
1392   }
1393 }
1394 
1395 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1396                                                 llvm::AttrBuilder &Attrs) {
1397   // Add target-cpu and target-features attributes to functions. If
1398   // we have a decl for the function and it has a target attribute then
1399   // parse that and add it to the feature set.
1400   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1401   std::vector<std::string> Features;
1402   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1403   FD = FD ? FD->getMostRecentDecl() : FD;
1404   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1405   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1406   bool AddedAttr = false;
1407   if (TD || SD) {
1408     llvm::StringMap<bool> FeatureMap;
1409     getFunctionFeatureMap(FeatureMap, GD);
1410 
1411     // Produce the canonical string for this set of features.
1412     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1413       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1414 
1415     // Now add the target-cpu and target-features to the function.
1416     // While we populated the feature map above, we still need to
1417     // get and parse the target attribute so we can get the cpu for
1418     // the function.
1419     if (TD) {
1420       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1421       if (ParsedAttr.Architecture != "" &&
1422           getTarget().isValidCPUName(ParsedAttr.Architecture))
1423         TargetCPU = ParsedAttr.Architecture;
1424     }
1425   } else {
1426     // Otherwise just add the existing target cpu and target features to the
1427     // function.
1428     Features = getTarget().getTargetOpts().Features;
1429   }
1430 
1431   if (TargetCPU != "") {
1432     Attrs.addAttribute("target-cpu", TargetCPU);
1433     AddedAttr = true;
1434   }
1435   if (!Features.empty()) {
1436     llvm::sort(Features);
1437     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1438     AddedAttr = true;
1439   }
1440 
1441   return AddedAttr;
1442 }
1443 
1444 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1445                                           llvm::GlobalObject *GO) {
1446   const Decl *D = GD.getDecl();
1447   SetCommonAttributes(GD, GO);
1448 
1449   if (D) {
1450     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1451       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1452         GV->addAttribute("bss-section", SA->getName());
1453       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1454         GV->addAttribute("data-section", SA->getName());
1455       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1456         GV->addAttribute("rodata-section", SA->getName());
1457     }
1458 
1459     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1460       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1461         if (!D->getAttr<SectionAttr>())
1462           F->addFnAttr("implicit-section-name", SA->getName());
1463 
1464       llvm::AttrBuilder Attrs;
1465       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1466         // We know that GetCPUAndFeaturesAttributes will always have the
1467         // newest set, since it has the newest possible FunctionDecl, so the
1468         // new ones should replace the old.
1469         F->removeFnAttr("target-cpu");
1470         F->removeFnAttr("target-features");
1471         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1472       }
1473     }
1474 
1475     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1476       GO->setSection(CSA->getName());
1477     else if (const auto *SA = D->getAttr<SectionAttr>())
1478       GO->setSection(SA->getName());
1479   }
1480 
1481   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1482 }
1483 
1484 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1485                                                   llvm::Function *F,
1486                                                   const CGFunctionInfo &FI) {
1487   const Decl *D = GD.getDecl();
1488   SetLLVMFunctionAttributes(GD, FI, F);
1489   SetLLVMFunctionAttributesForDefinition(D, F);
1490 
1491   F->setLinkage(llvm::Function::InternalLinkage);
1492 
1493   setNonAliasAttributes(GD, F);
1494 }
1495 
1496 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1497   // Set linkage and visibility in case we never see a definition.
1498   LinkageInfo LV = ND->getLinkageAndVisibility();
1499   // Don't set internal linkage on declarations.
1500   // "extern_weak" is overloaded in LLVM; we probably should have
1501   // separate linkage types for this.
1502   if (isExternallyVisible(LV.getLinkage()) &&
1503       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1504     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1505 }
1506 
1507 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1508                                                        llvm::Function *F) {
1509   // Only if we are checking indirect calls.
1510   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1511     return;
1512 
1513   // Non-static class methods are handled via vtable or member function pointer
1514   // checks elsewhere.
1515   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1516     return;
1517 
1518   // Additionally, if building with cross-DSO support...
1519   if (CodeGenOpts.SanitizeCfiCrossDso) {
1520     // Skip available_externally functions. They won't be codegen'ed in the
1521     // current module anyway.
1522     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1523       return;
1524   }
1525 
1526   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1527   F->addTypeMetadata(0, MD);
1528   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1529 
1530   // Emit a hash-based bit set entry for cross-DSO calls.
1531   if (CodeGenOpts.SanitizeCfiCrossDso)
1532     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1533       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1534 }
1535 
1536 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1537                                           bool IsIncompleteFunction,
1538                                           bool IsThunk) {
1539 
1540   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1541     // If this is an intrinsic function, set the function's attributes
1542     // to the intrinsic's attributes.
1543     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1544     return;
1545   }
1546 
1547   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1548 
1549   if (!IsIncompleteFunction) {
1550     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1551     // Setup target-specific attributes.
1552     if (F->isDeclaration())
1553       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1554   }
1555 
1556   // Add the Returned attribute for "this", except for iOS 5 and earlier
1557   // where substantial code, including the libstdc++ dylib, was compiled with
1558   // GCC and does not actually return "this".
1559   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1560       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1561     assert(!F->arg_empty() &&
1562            F->arg_begin()->getType()
1563              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1564            "unexpected this return");
1565     F->addAttribute(1, llvm::Attribute::Returned);
1566   }
1567 
1568   // Only a few attributes are set on declarations; these may later be
1569   // overridden by a definition.
1570 
1571   setLinkageForGV(F, FD);
1572   setGVProperties(F, FD);
1573 
1574   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1575     F->setSection(CSA->getName());
1576   else if (const auto *SA = FD->getAttr<SectionAttr>())
1577      F->setSection(SA->getName());
1578 
1579   if (FD->isReplaceableGlobalAllocationFunction()) {
1580     // A replaceable global allocation function does not act like a builtin by
1581     // default, only if it is invoked by a new-expression or delete-expression.
1582     F->addAttribute(llvm::AttributeList::FunctionIndex,
1583                     llvm::Attribute::NoBuiltin);
1584 
1585     // A sane operator new returns a non-aliasing pointer.
1586     // FIXME: Also add NonNull attribute to the return value
1587     // for the non-nothrow forms?
1588     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1589     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1590         (Kind == OO_New || Kind == OO_Array_New))
1591       F->addAttribute(llvm::AttributeList::ReturnIndex,
1592                       llvm::Attribute::NoAlias);
1593   }
1594 
1595   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1596     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1597   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1598     if (MD->isVirtual())
1599       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1600 
1601   // Don't emit entries for function declarations in the cross-DSO mode. This
1602   // is handled with better precision by the receiving DSO.
1603   if (!CodeGenOpts.SanitizeCfiCrossDso)
1604     CreateFunctionTypeMetadataForIcall(FD, F);
1605 
1606   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1607     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1608 
1609   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1610     // Annotate the callback behavior as metadata:
1611     //  - The callback callee (as argument number).
1612     //  - The callback payloads (as argument numbers).
1613     llvm::LLVMContext &Ctx = F->getContext();
1614     llvm::MDBuilder MDB(Ctx);
1615 
1616     // The payload indices are all but the first one in the encoding. The first
1617     // identifies the callback callee.
1618     int CalleeIdx = *CB->encoding_begin();
1619     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1620     F->addMetadata(llvm::LLVMContext::MD_callback,
1621                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1622                                                CalleeIdx, PayloadIndices,
1623                                                /* VarArgsArePassed */ false)}));
1624   }
1625 }
1626 
1627 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1628   assert(!GV->isDeclaration() &&
1629          "Only globals with definition can force usage.");
1630   LLVMUsed.emplace_back(GV);
1631 }
1632 
1633 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1634   assert(!GV->isDeclaration() &&
1635          "Only globals with definition can force usage.");
1636   LLVMCompilerUsed.emplace_back(GV);
1637 }
1638 
1639 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1640                      std::vector<llvm::WeakTrackingVH> &List) {
1641   // Don't create llvm.used if there is no need.
1642   if (List.empty())
1643     return;
1644 
1645   // Convert List to what ConstantArray needs.
1646   SmallVector<llvm::Constant*, 8> UsedArray;
1647   UsedArray.resize(List.size());
1648   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1649     UsedArray[i] =
1650         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1651             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1652   }
1653 
1654   if (UsedArray.empty())
1655     return;
1656   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1657 
1658   auto *GV = new llvm::GlobalVariable(
1659       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1660       llvm::ConstantArray::get(ATy, UsedArray), Name);
1661 
1662   GV->setSection("llvm.metadata");
1663 }
1664 
1665 void CodeGenModule::emitLLVMUsed() {
1666   emitUsed(*this, "llvm.used", LLVMUsed);
1667   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1668 }
1669 
1670 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1671   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1672   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1673 }
1674 
1675 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1676   llvm::SmallString<32> Opt;
1677   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1678   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1679   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1680 }
1681 
1682 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1683   auto &C = getLLVMContext();
1684   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1685       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1686 }
1687 
1688 void CodeGenModule::AddDependentLib(StringRef Lib) {
1689   llvm::SmallString<24> Opt;
1690   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1691   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1692   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1693 }
1694 
1695 /// Add link options implied by the given module, including modules
1696 /// it depends on, using a postorder walk.
1697 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1698                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1699                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1700   // Import this module's parent.
1701   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1702     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1703   }
1704 
1705   // Import this module's dependencies.
1706   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1707     if (Visited.insert(Mod->Imports[I - 1]).second)
1708       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1709   }
1710 
1711   // Add linker options to link against the libraries/frameworks
1712   // described by this module.
1713   llvm::LLVMContext &Context = CGM.getLLVMContext();
1714   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1715   bool IsPS4 = CGM.getTarget().getTriple().isPS4();
1716 
1717   // For modules that use export_as for linking, use that module
1718   // name instead.
1719   if (Mod->UseExportAsModuleLinkName)
1720     return;
1721 
1722   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1723     // Link against a framework.  Frameworks are currently Darwin only, so we
1724     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1725     if (Mod->LinkLibraries[I-1].IsFramework) {
1726       llvm::Metadata *Args[2] = {
1727           llvm::MDString::get(Context, "-framework"),
1728           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1729 
1730       Metadata.push_back(llvm::MDNode::get(Context, Args));
1731       continue;
1732     }
1733 
1734     // Link against a library.
1735     if (IsELF && !IsPS4) {
1736       llvm::Metadata *Args[2] = {
1737           llvm::MDString::get(Context, "lib"),
1738           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1739       };
1740       Metadata.push_back(llvm::MDNode::get(Context, Args));
1741     } else {
1742       llvm::SmallString<24> Opt;
1743       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1744           Mod->LinkLibraries[I - 1].Library, Opt);
1745       auto *OptString = llvm::MDString::get(Context, Opt);
1746       Metadata.push_back(llvm::MDNode::get(Context, OptString));
1747     }
1748   }
1749 }
1750 
1751 void CodeGenModule::EmitModuleLinkOptions() {
1752   // Collect the set of all of the modules we want to visit to emit link
1753   // options, which is essentially the imported modules and all of their
1754   // non-explicit child modules.
1755   llvm::SetVector<clang::Module *> LinkModules;
1756   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1757   SmallVector<clang::Module *, 16> Stack;
1758 
1759   // Seed the stack with imported modules.
1760   for (Module *M : ImportedModules) {
1761     // Do not add any link flags when an implementation TU of a module imports
1762     // a header of that same module.
1763     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1764         !getLangOpts().isCompilingModule())
1765       continue;
1766     if (Visited.insert(M).second)
1767       Stack.push_back(M);
1768   }
1769 
1770   // Find all of the modules to import, making a little effort to prune
1771   // non-leaf modules.
1772   while (!Stack.empty()) {
1773     clang::Module *Mod = Stack.pop_back_val();
1774 
1775     bool AnyChildren = false;
1776 
1777     // Visit the submodules of this module.
1778     for (const auto &SM : Mod->submodules()) {
1779       // Skip explicit children; they need to be explicitly imported to be
1780       // linked against.
1781       if (SM->IsExplicit)
1782         continue;
1783 
1784       if (Visited.insert(SM).second) {
1785         Stack.push_back(SM);
1786         AnyChildren = true;
1787       }
1788     }
1789 
1790     // We didn't find any children, so add this module to the list of
1791     // modules to link against.
1792     if (!AnyChildren) {
1793       LinkModules.insert(Mod);
1794     }
1795   }
1796 
1797   // Add link options for all of the imported modules in reverse topological
1798   // order.  We don't do anything to try to order import link flags with respect
1799   // to linker options inserted by things like #pragma comment().
1800   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1801   Visited.clear();
1802   for (Module *M : LinkModules)
1803     if (Visited.insert(M).second)
1804       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1805   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1806   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1807 
1808   // Add the linker options metadata flag.
1809   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1810   for (auto *MD : LinkerOptionsMetadata)
1811     NMD->addOperand(MD);
1812 }
1813 
1814 void CodeGenModule::EmitDeferred() {
1815   // Emit deferred declare target declarations.
1816   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1817     getOpenMPRuntime().emitDeferredTargetDecls();
1818 
1819   // Emit code for any potentially referenced deferred decls.  Since a
1820   // previously unused static decl may become used during the generation of code
1821   // for a static function, iterate until no changes are made.
1822 
1823   if (!DeferredVTables.empty()) {
1824     EmitDeferredVTables();
1825 
1826     // Emitting a vtable doesn't directly cause more vtables to
1827     // become deferred, although it can cause functions to be
1828     // emitted that then need those vtables.
1829     assert(DeferredVTables.empty());
1830   }
1831 
1832   // Stop if we're out of both deferred vtables and deferred declarations.
1833   if (DeferredDeclsToEmit.empty())
1834     return;
1835 
1836   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1837   // work, it will not interfere with this.
1838   std::vector<GlobalDecl> CurDeclsToEmit;
1839   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1840 
1841   for (GlobalDecl &D : CurDeclsToEmit) {
1842     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1843     // to get GlobalValue with exactly the type we need, not something that
1844     // might had been created for another decl with the same mangled name but
1845     // different type.
1846     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1847         GetAddrOfGlobal(D, ForDefinition));
1848 
1849     // In case of different address spaces, we may still get a cast, even with
1850     // IsForDefinition equal to true. Query mangled names table to get
1851     // GlobalValue.
1852     if (!GV)
1853       GV = GetGlobalValue(getMangledName(D));
1854 
1855     // Make sure GetGlobalValue returned non-null.
1856     assert(GV);
1857 
1858     // Check to see if we've already emitted this.  This is necessary
1859     // for a couple of reasons: first, decls can end up in the
1860     // deferred-decls queue multiple times, and second, decls can end
1861     // up with definitions in unusual ways (e.g. by an extern inline
1862     // function acquiring a strong function redefinition).  Just
1863     // ignore these cases.
1864     if (!GV->isDeclaration())
1865       continue;
1866 
1867     // Otherwise, emit the definition and move on to the next one.
1868     EmitGlobalDefinition(D, GV);
1869 
1870     // If we found out that we need to emit more decls, do that recursively.
1871     // This has the advantage that the decls are emitted in a DFS and related
1872     // ones are close together, which is convenient for testing.
1873     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1874       EmitDeferred();
1875       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1876     }
1877   }
1878 }
1879 
1880 void CodeGenModule::EmitVTablesOpportunistically() {
1881   // Try to emit external vtables as available_externally if they have emitted
1882   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1883   // is not allowed to create new references to things that need to be emitted
1884   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1885 
1886   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1887          && "Only emit opportunistic vtables with optimizations");
1888 
1889   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1890     assert(getVTables().isVTableExternal(RD) &&
1891            "This queue should only contain external vtables");
1892     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1893       VTables.GenerateClassData(RD);
1894   }
1895   OpportunisticVTables.clear();
1896 }
1897 
1898 void CodeGenModule::EmitGlobalAnnotations() {
1899   if (Annotations.empty())
1900     return;
1901 
1902   // Create a new global variable for the ConstantStruct in the Module.
1903   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1904     Annotations[0]->getType(), Annotations.size()), Annotations);
1905   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1906                                       llvm::GlobalValue::AppendingLinkage,
1907                                       Array, "llvm.global.annotations");
1908   gv->setSection(AnnotationSection);
1909 }
1910 
1911 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1912   llvm::Constant *&AStr = AnnotationStrings[Str];
1913   if (AStr)
1914     return AStr;
1915 
1916   // Not found yet, create a new global.
1917   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1918   auto *gv =
1919       new llvm::GlobalVariable(getModule(), s->getType(), true,
1920                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1921   gv->setSection(AnnotationSection);
1922   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1923   AStr = gv;
1924   return gv;
1925 }
1926 
1927 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1928   SourceManager &SM = getContext().getSourceManager();
1929   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1930   if (PLoc.isValid())
1931     return EmitAnnotationString(PLoc.getFilename());
1932   return EmitAnnotationString(SM.getBufferName(Loc));
1933 }
1934 
1935 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1936   SourceManager &SM = getContext().getSourceManager();
1937   PresumedLoc PLoc = SM.getPresumedLoc(L);
1938   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1939     SM.getExpansionLineNumber(L);
1940   return llvm::ConstantInt::get(Int32Ty, LineNo);
1941 }
1942 
1943 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1944                                                 const AnnotateAttr *AA,
1945                                                 SourceLocation L) {
1946   // Get the globals for file name, annotation, and the line number.
1947   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1948                  *UnitGV = EmitAnnotationUnit(L),
1949                  *LineNoCst = EmitAnnotationLineNo(L);
1950 
1951   // Create the ConstantStruct for the global annotation.
1952   llvm::Constant *Fields[4] = {
1953     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1954     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1955     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1956     LineNoCst
1957   };
1958   return llvm::ConstantStruct::getAnon(Fields);
1959 }
1960 
1961 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1962                                          llvm::GlobalValue *GV) {
1963   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1964   // Get the struct elements for these annotations.
1965   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1966     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1967 }
1968 
1969 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1970                                            llvm::Function *Fn,
1971                                            SourceLocation Loc) const {
1972   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1973   // Blacklist by function name.
1974   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1975     return true;
1976   // Blacklist by location.
1977   if (Loc.isValid())
1978     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1979   // If location is unknown, this may be a compiler-generated function. Assume
1980   // it's located in the main file.
1981   auto &SM = Context.getSourceManager();
1982   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1983     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1984   }
1985   return false;
1986 }
1987 
1988 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1989                                            SourceLocation Loc, QualType Ty,
1990                                            StringRef Category) const {
1991   // For now globals can be blacklisted only in ASan and KASan.
1992   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1993       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1994        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1995   if (!EnabledAsanMask)
1996     return false;
1997   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1998   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1999     return true;
2000   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2001     return true;
2002   // Check global type.
2003   if (!Ty.isNull()) {
2004     // Drill down the array types: if global variable of a fixed type is
2005     // blacklisted, we also don't instrument arrays of them.
2006     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2007       Ty = AT->getElementType();
2008     Ty = Ty.getCanonicalType().getUnqualifiedType();
2009     // We allow to blacklist only record types (classes, structs etc.)
2010     if (Ty->isRecordType()) {
2011       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2012       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2013         return true;
2014     }
2015   }
2016   return false;
2017 }
2018 
2019 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2020                                    StringRef Category) const {
2021   const auto &XRayFilter = getContext().getXRayFilter();
2022   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2023   auto Attr = ImbueAttr::NONE;
2024   if (Loc.isValid())
2025     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2026   if (Attr == ImbueAttr::NONE)
2027     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2028   switch (Attr) {
2029   case ImbueAttr::NONE:
2030     return false;
2031   case ImbueAttr::ALWAYS:
2032     Fn->addFnAttr("function-instrument", "xray-always");
2033     break;
2034   case ImbueAttr::ALWAYS_ARG1:
2035     Fn->addFnAttr("function-instrument", "xray-always");
2036     Fn->addFnAttr("xray-log-args", "1");
2037     break;
2038   case ImbueAttr::NEVER:
2039     Fn->addFnAttr("function-instrument", "xray-never");
2040     break;
2041   }
2042   return true;
2043 }
2044 
2045 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2046   // Never defer when EmitAllDecls is specified.
2047   if (LangOpts.EmitAllDecls)
2048     return true;
2049 
2050   if (CodeGenOpts.KeepStaticConsts) {
2051     const auto *VD = dyn_cast<VarDecl>(Global);
2052     if (VD && VD->getType().isConstQualified() &&
2053         VD->getStorageDuration() == SD_Static)
2054       return true;
2055   }
2056 
2057   return getContext().DeclMustBeEmitted(Global);
2058 }
2059 
2060 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2061   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2062     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2063       // Implicit template instantiations may change linkage if they are later
2064       // explicitly instantiated, so they should not be emitted eagerly.
2065       return false;
2066   if (const auto *VD = dyn_cast<VarDecl>(Global))
2067     if (Context.getInlineVariableDefinitionKind(VD) ==
2068         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2069       // A definition of an inline constexpr static data member may change
2070       // linkage later if it's redeclared outside the class.
2071       return false;
2072   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2073   // codegen for global variables, because they may be marked as threadprivate.
2074   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2075       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2076       !isTypeConstant(Global->getType(), false) &&
2077       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2078     return false;
2079 
2080   return true;
2081 }
2082 
2083 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2084     const CXXUuidofExpr* E) {
2085   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2086   // well-formed.
2087   StringRef Uuid = E->getUuidStr();
2088   std::string Name = "_GUID_" + Uuid.lower();
2089   std::replace(Name.begin(), Name.end(), '-', '_');
2090 
2091   // The UUID descriptor should be pointer aligned.
2092   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2093 
2094   // Look for an existing global.
2095   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2096     return ConstantAddress(GV, Alignment);
2097 
2098   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2099   assert(Init && "failed to initialize as constant");
2100 
2101   auto *GV = new llvm::GlobalVariable(
2102       getModule(), Init->getType(),
2103       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2104   if (supportsCOMDAT())
2105     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2106   setDSOLocal(GV);
2107   return ConstantAddress(GV, Alignment);
2108 }
2109 
2110 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2111   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2112   assert(AA && "No alias?");
2113 
2114   CharUnits Alignment = getContext().getDeclAlign(VD);
2115   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2116 
2117   // See if there is already something with the target's name in the module.
2118   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2119   if (Entry) {
2120     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2121     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2122     return ConstantAddress(Ptr, Alignment);
2123   }
2124 
2125   llvm::Constant *Aliasee;
2126   if (isa<llvm::FunctionType>(DeclTy))
2127     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2128                                       GlobalDecl(cast<FunctionDecl>(VD)),
2129                                       /*ForVTable=*/false);
2130   else
2131     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2132                                     llvm::PointerType::getUnqual(DeclTy),
2133                                     nullptr);
2134 
2135   auto *F = cast<llvm::GlobalValue>(Aliasee);
2136   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2137   WeakRefReferences.insert(F);
2138 
2139   return ConstantAddress(Aliasee, Alignment);
2140 }
2141 
2142 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2143   const auto *Global = cast<ValueDecl>(GD.getDecl());
2144 
2145   // Weak references don't produce any output by themselves.
2146   if (Global->hasAttr<WeakRefAttr>())
2147     return;
2148 
2149   // If this is an alias definition (which otherwise looks like a declaration)
2150   // emit it now.
2151   if (Global->hasAttr<AliasAttr>())
2152     return EmitAliasDefinition(GD);
2153 
2154   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2155   if (Global->hasAttr<IFuncAttr>())
2156     return emitIFuncDefinition(GD);
2157 
2158   // If this is a cpu_dispatch multiversion function, emit the resolver.
2159   if (Global->hasAttr<CPUDispatchAttr>())
2160     return emitCPUDispatchDefinition(GD);
2161 
2162   // If this is CUDA, be selective about which declarations we emit.
2163   if (LangOpts.CUDA) {
2164     if (LangOpts.CUDAIsDevice) {
2165       if (!Global->hasAttr<CUDADeviceAttr>() &&
2166           !Global->hasAttr<CUDAGlobalAttr>() &&
2167           !Global->hasAttr<CUDAConstantAttr>() &&
2168           !Global->hasAttr<CUDASharedAttr>())
2169         return;
2170     } else {
2171       // We need to emit host-side 'shadows' for all global
2172       // device-side variables because the CUDA runtime needs their
2173       // size and host-side address in order to provide access to
2174       // their device-side incarnations.
2175 
2176       // So device-only functions are the only things we skip.
2177       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2178           Global->hasAttr<CUDADeviceAttr>())
2179         return;
2180 
2181       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2182              "Expected Variable or Function");
2183     }
2184   }
2185 
2186   if (LangOpts.OpenMP) {
2187     // If this is OpenMP device, check if it is legal to emit this global
2188     // normally.
2189     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2190       return;
2191     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2192       if (MustBeEmitted(Global))
2193         EmitOMPDeclareReduction(DRD);
2194       return;
2195     }
2196   }
2197 
2198   // Ignore declarations, they will be emitted on their first use.
2199   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2200     // Forward declarations are emitted lazily on first use.
2201     if (!FD->doesThisDeclarationHaveABody()) {
2202       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2203         return;
2204 
2205       StringRef MangledName = getMangledName(GD);
2206 
2207       // Compute the function info and LLVM type.
2208       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2209       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2210 
2211       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2212                               /*DontDefer=*/false);
2213       return;
2214     }
2215   } else {
2216     const auto *VD = cast<VarDecl>(Global);
2217     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2218     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2219         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2220       if (LangOpts.OpenMP) {
2221         // Emit declaration of the must-be-emitted declare target variable.
2222         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2223                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2224           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2225             (void)GetAddrOfGlobalVar(VD);
2226           } else {
2227             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2228                    "link claue expected.");
2229             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2230           }
2231           return;
2232         }
2233       }
2234       // If this declaration may have caused an inline variable definition to
2235       // change linkage, make sure that it's emitted.
2236       if (Context.getInlineVariableDefinitionKind(VD) ==
2237           ASTContext::InlineVariableDefinitionKind::Strong)
2238         GetAddrOfGlobalVar(VD);
2239       return;
2240     }
2241   }
2242 
2243   // Defer code generation to first use when possible, e.g. if this is an inline
2244   // function. If the global must always be emitted, do it eagerly if possible
2245   // to benefit from cache locality.
2246   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2247     // Emit the definition if it can't be deferred.
2248     EmitGlobalDefinition(GD);
2249     return;
2250   }
2251 
2252   // If we're deferring emission of a C++ variable with an
2253   // initializer, remember the order in which it appeared in the file.
2254   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2255       cast<VarDecl>(Global)->hasInit()) {
2256     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2257     CXXGlobalInits.push_back(nullptr);
2258   }
2259 
2260   StringRef MangledName = getMangledName(GD);
2261   if (GetGlobalValue(MangledName) != nullptr) {
2262     // The value has already been used and should therefore be emitted.
2263     addDeferredDeclToEmit(GD);
2264   } else if (MustBeEmitted(Global)) {
2265     // The value must be emitted, but cannot be emitted eagerly.
2266     assert(!MayBeEmittedEagerly(Global));
2267     addDeferredDeclToEmit(GD);
2268   } else {
2269     // Otherwise, remember that we saw a deferred decl with this name.  The
2270     // first use of the mangled name will cause it to move into
2271     // DeferredDeclsToEmit.
2272     DeferredDecls[MangledName] = GD;
2273   }
2274 }
2275 
2276 // Check if T is a class type with a destructor that's not dllimport.
2277 static bool HasNonDllImportDtor(QualType T) {
2278   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2279     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2280       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2281         return true;
2282 
2283   return false;
2284 }
2285 
2286 namespace {
2287   struct FunctionIsDirectlyRecursive
2288       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2289     const StringRef Name;
2290     const Builtin::Context &BI;
2291     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2292         : Name(N), BI(C) {}
2293 
2294     bool VisitCallExpr(const CallExpr *E) {
2295       const FunctionDecl *FD = E->getDirectCallee();
2296       if (!FD)
2297         return false;
2298       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2299       if (Attr && Name == Attr->getLabel())
2300         return true;
2301       unsigned BuiltinID = FD->getBuiltinID();
2302       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2303         return false;
2304       StringRef BuiltinName = BI.getName(BuiltinID);
2305       if (BuiltinName.startswith("__builtin_") &&
2306           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2307         return true;
2308       }
2309       return false;
2310     }
2311 
2312     bool VisitStmt(const Stmt *S) {
2313       for (const Stmt *Child : S->children())
2314         if (Child && this->Visit(Child))
2315           return true;
2316       return false;
2317     }
2318   };
2319 
2320   // Make sure we're not referencing non-imported vars or functions.
2321   struct DLLImportFunctionVisitor
2322       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2323     bool SafeToInline = true;
2324 
2325     bool shouldVisitImplicitCode() const { return true; }
2326 
2327     bool VisitVarDecl(VarDecl *VD) {
2328       if (VD->getTLSKind()) {
2329         // A thread-local variable cannot be imported.
2330         SafeToInline = false;
2331         return SafeToInline;
2332       }
2333 
2334       // A variable definition might imply a destructor call.
2335       if (VD->isThisDeclarationADefinition())
2336         SafeToInline = !HasNonDllImportDtor(VD->getType());
2337 
2338       return SafeToInline;
2339     }
2340 
2341     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2342       if (const auto *D = E->getTemporary()->getDestructor())
2343         SafeToInline = D->hasAttr<DLLImportAttr>();
2344       return SafeToInline;
2345     }
2346 
2347     bool VisitDeclRefExpr(DeclRefExpr *E) {
2348       ValueDecl *VD = E->getDecl();
2349       if (isa<FunctionDecl>(VD))
2350         SafeToInline = VD->hasAttr<DLLImportAttr>();
2351       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2352         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2353       return SafeToInline;
2354     }
2355 
2356     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2357       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2358       return SafeToInline;
2359     }
2360 
2361     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2362       CXXMethodDecl *M = E->getMethodDecl();
2363       if (!M) {
2364         // Call through a pointer to member function. This is safe to inline.
2365         SafeToInline = true;
2366       } else {
2367         SafeToInline = M->hasAttr<DLLImportAttr>();
2368       }
2369       return SafeToInline;
2370     }
2371 
2372     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2373       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2374       return SafeToInline;
2375     }
2376 
2377     bool VisitCXXNewExpr(CXXNewExpr *E) {
2378       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2379       return SafeToInline;
2380     }
2381   };
2382 }
2383 
2384 // isTriviallyRecursive - Check if this function calls another
2385 // decl that, because of the asm attribute or the other decl being a builtin,
2386 // ends up pointing to itself.
2387 bool
2388 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2389   StringRef Name;
2390   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2391     // asm labels are a special kind of mangling we have to support.
2392     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2393     if (!Attr)
2394       return false;
2395     Name = Attr->getLabel();
2396   } else {
2397     Name = FD->getName();
2398   }
2399 
2400   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2401   const Stmt *Body = FD->getBody();
2402   return Body ? Walker.Visit(Body) : false;
2403 }
2404 
2405 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2406   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2407     return true;
2408   const auto *F = cast<FunctionDecl>(GD.getDecl());
2409   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2410     return false;
2411 
2412   if (F->hasAttr<DLLImportAttr>()) {
2413     // Check whether it would be safe to inline this dllimport function.
2414     DLLImportFunctionVisitor Visitor;
2415     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2416     if (!Visitor.SafeToInline)
2417       return false;
2418 
2419     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2420       // Implicit destructor invocations aren't captured in the AST, so the
2421       // check above can't see them. Check for them manually here.
2422       for (const Decl *Member : Dtor->getParent()->decls())
2423         if (isa<FieldDecl>(Member))
2424           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2425             return false;
2426       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2427         if (HasNonDllImportDtor(B.getType()))
2428           return false;
2429     }
2430   }
2431 
2432   // PR9614. Avoid cases where the source code is lying to us. An available
2433   // externally function should have an equivalent function somewhere else,
2434   // but a function that calls itself is clearly not equivalent to the real
2435   // implementation.
2436   // This happens in glibc's btowc and in some configure checks.
2437   return !isTriviallyRecursive(F);
2438 }
2439 
2440 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2441   return CodeGenOpts.OptimizationLevel > 0;
2442 }
2443 
2444 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2445                                                        llvm::GlobalValue *GV) {
2446   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2447 
2448   if (FD->isCPUSpecificMultiVersion()) {
2449     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2450     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2451       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2452     // Requires multiple emits.
2453   } else
2454     EmitGlobalFunctionDefinition(GD, GV);
2455 }
2456 
2457 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2458   const auto *D = cast<ValueDecl>(GD.getDecl());
2459 
2460   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2461                                  Context.getSourceManager(),
2462                                  "Generating code for declaration");
2463 
2464   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2465     // At -O0, don't generate IR for functions with available_externally
2466     // linkage.
2467     if (!shouldEmitFunction(GD))
2468       return;
2469 
2470     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2471       // Make sure to emit the definition(s) before we emit the thunks.
2472       // This is necessary for the generation of certain thunks.
2473       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2474         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2475       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2476         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2477       else if (FD->isMultiVersion())
2478         EmitMultiVersionFunctionDefinition(GD, GV);
2479       else
2480         EmitGlobalFunctionDefinition(GD, GV);
2481 
2482       if (Method->isVirtual())
2483         getVTables().EmitThunks(GD);
2484 
2485       return;
2486     }
2487 
2488     if (FD->isMultiVersion())
2489       return EmitMultiVersionFunctionDefinition(GD, GV);
2490     return EmitGlobalFunctionDefinition(GD, GV);
2491   }
2492 
2493   if (const auto *VD = dyn_cast<VarDecl>(D))
2494     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2495 
2496   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2497 }
2498 
2499 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2500                                                       llvm::Function *NewFn);
2501 
2502 static unsigned
2503 TargetMVPriority(const TargetInfo &TI,
2504                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2505   unsigned Priority = 0;
2506   for (StringRef Feat : RO.Conditions.Features)
2507     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2508 
2509   if (!RO.Conditions.Architecture.empty())
2510     Priority = std::max(
2511         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2512   return Priority;
2513 }
2514 
2515 void CodeGenModule::emitMultiVersionFunctions() {
2516   for (GlobalDecl GD : MultiVersionFuncs) {
2517     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2518     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2519     getContext().forEachMultiversionedFunctionVersion(
2520         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2521           GlobalDecl CurGD{
2522               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2523           StringRef MangledName = getMangledName(CurGD);
2524           llvm::Constant *Func = GetGlobalValue(MangledName);
2525           if (!Func) {
2526             if (CurFD->isDefined()) {
2527               EmitGlobalFunctionDefinition(CurGD, nullptr);
2528               Func = GetGlobalValue(MangledName);
2529             } else {
2530               const CGFunctionInfo &FI =
2531                   getTypes().arrangeGlobalDeclaration(GD);
2532               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2533               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2534                                        /*DontDefer=*/false, ForDefinition);
2535             }
2536             assert(Func && "This should have just been created");
2537           }
2538 
2539           const auto *TA = CurFD->getAttr<TargetAttr>();
2540           llvm::SmallVector<StringRef, 8> Feats;
2541           TA->getAddedFeatures(Feats);
2542 
2543           Options.emplace_back(cast<llvm::Function>(Func),
2544                                TA->getArchitecture(), Feats);
2545         });
2546 
2547     llvm::Function *ResolverFunc;
2548     const TargetInfo &TI = getTarget();
2549 
2550     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2551       ResolverFunc = cast<llvm::Function>(
2552           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2553     else
2554       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2555 
2556     if (supportsCOMDAT())
2557       ResolverFunc->setComdat(
2558           getModule().getOrInsertComdat(ResolverFunc->getName()));
2559 
2560     std::stable_sort(
2561         Options.begin(), Options.end(),
2562         [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2563               const CodeGenFunction::MultiVersionResolverOption &RHS) {
2564           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2565         });
2566     CodeGenFunction CGF(*this);
2567     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2568   }
2569 }
2570 
2571 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2572   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2573   assert(FD && "Not a FunctionDecl?");
2574   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2575   assert(DD && "Not a cpu_dispatch Function?");
2576   QualType CanonTy = Context.getCanonicalType(FD->getType());
2577   llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD);
2578 
2579   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2580     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2581     DeclTy = getTypes().GetFunctionType(FInfo);
2582   }
2583 
2584   StringRef ResolverName = getMangledName(GD);
2585 
2586   llvm::Type *ResolverType;
2587   GlobalDecl ResolverGD;
2588   if (getTarget().supportsIFunc())
2589     ResolverType = llvm::FunctionType::get(
2590         llvm::PointerType::get(DeclTy,
2591                                Context.getTargetAddressSpace(FD->getType())),
2592         false);
2593   else {
2594     ResolverType = DeclTy;
2595     ResolverGD = GD;
2596   }
2597 
2598   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2599       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2600 
2601   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2602   const TargetInfo &Target = getTarget();
2603   unsigned Index = 0;
2604   for (const IdentifierInfo *II : DD->cpus()) {
2605     // Get the name of the target function so we can look it up/create it.
2606     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2607                               getCPUSpecificMangling(*this, II->getName());
2608 
2609     llvm::Constant *Func = GetGlobalValue(MangledName);
2610 
2611     if (!Func) {
2612       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2613       if (ExistingDecl.getDecl() &&
2614           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2615         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2616         Func = GetGlobalValue(MangledName);
2617       } else {
2618         if (!ExistingDecl.getDecl())
2619           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2620 
2621       Func = GetOrCreateLLVMFunction(
2622           MangledName, DeclTy, ExistingDecl,
2623           /*ForVTable=*/false, /*DontDefer=*/true,
2624           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2625       }
2626     }
2627 
2628     llvm::SmallVector<StringRef, 32> Features;
2629     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2630     llvm::transform(Features, Features.begin(),
2631                     [](StringRef Str) { return Str.substr(1); });
2632     Features.erase(std::remove_if(
2633         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2634           return !Target.validateCpuSupports(Feat);
2635         }), Features.end());
2636     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2637     ++Index;
2638   }
2639 
2640   llvm::sort(
2641       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2642                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2643         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2644                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2645       });
2646 
2647   // If the list contains multiple 'default' versions, such as when it contains
2648   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2649   // always run on at least a 'pentium'). We do this by deleting the 'least
2650   // advanced' (read, lowest mangling letter).
2651   while (Options.size() > 1 &&
2652          CodeGenFunction::GetX86CpuSupportsMask(
2653              (Options.end() - 2)->Conditions.Features) == 0) {
2654     StringRef LHSName = (Options.end() - 2)->Function->getName();
2655     StringRef RHSName = (Options.end() - 1)->Function->getName();
2656     if (LHSName.compare(RHSName) < 0)
2657       Options.erase(Options.end() - 2);
2658     else
2659       Options.erase(Options.end() - 1);
2660   }
2661 
2662   CodeGenFunction CGF(*this);
2663   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2664 }
2665 
2666 /// If a dispatcher for the specified mangled name is not in the module, create
2667 /// and return an llvm Function with the specified type.
2668 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2669     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2670   std::string MangledName =
2671       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2672 
2673   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2674   // a separate resolver).
2675   std::string ResolverName = MangledName;
2676   if (getTarget().supportsIFunc())
2677     ResolverName += ".ifunc";
2678   else if (FD->isTargetMultiVersion())
2679     ResolverName += ".resolver";
2680 
2681   // If this already exists, just return that one.
2682   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2683     return ResolverGV;
2684 
2685   // Since this is the first time we've created this IFunc, make sure
2686   // that we put this multiversioned function into the list to be
2687   // replaced later if necessary (target multiversioning only).
2688   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2689     MultiVersionFuncs.push_back(GD);
2690 
2691   if (getTarget().supportsIFunc()) {
2692     llvm::Type *ResolverType = llvm::FunctionType::get(
2693         llvm::PointerType::get(
2694             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2695         false);
2696     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2697         MangledName + ".resolver", ResolverType, GlobalDecl{},
2698         /*ForVTable=*/false);
2699     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2700         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2701     GIF->setName(ResolverName);
2702     SetCommonAttributes(FD, GIF);
2703 
2704     return GIF;
2705   }
2706 
2707   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2708       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2709   assert(isa<llvm::GlobalValue>(Resolver) &&
2710          "Resolver should be created for the first time");
2711   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2712   return Resolver;
2713 }
2714 
2715 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2716 /// module, create and return an llvm Function with the specified type. If there
2717 /// is something in the module with the specified name, return it potentially
2718 /// bitcasted to the right type.
2719 ///
2720 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2721 /// to set the attributes on the function when it is first created.
2722 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2723     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2724     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2725     ForDefinition_t IsForDefinition) {
2726   const Decl *D = GD.getDecl();
2727 
2728   // Any attempts to use a MultiVersion function should result in retrieving
2729   // the iFunc instead. Name Mangling will handle the rest of the changes.
2730   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2731     // For the device mark the function as one that should be emitted.
2732     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2733         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2734         !DontDefer && !IsForDefinition) {
2735       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2736         GlobalDecl GDDef;
2737         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2738           GDDef = GlobalDecl(CD, GD.getCtorType());
2739         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2740           GDDef = GlobalDecl(DD, GD.getDtorType());
2741         else
2742           GDDef = GlobalDecl(FDDef);
2743         EmitGlobal(GDDef);
2744       }
2745     }
2746 
2747     if (FD->isMultiVersion()) {
2748       const auto *TA = FD->getAttr<TargetAttr>();
2749       if (TA && TA->isDefaultVersion())
2750         UpdateMultiVersionNames(GD, FD);
2751       if (!IsForDefinition)
2752         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
2753     }
2754   }
2755 
2756   // Lookup the entry, lazily creating it if necessary.
2757   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2758   if (Entry) {
2759     if (WeakRefReferences.erase(Entry)) {
2760       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2761       if (FD && !FD->hasAttr<WeakAttr>())
2762         Entry->setLinkage(llvm::Function::ExternalLinkage);
2763     }
2764 
2765     // Handle dropped DLL attributes.
2766     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2767       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2768       setDSOLocal(Entry);
2769     }
2770 
2771     // If there are two attempts to define the same mangled name, issue an
2772     // error.
2773     if (IsForDefinition && !Entry->isDeclaration()) {
2774       GlobalDecl OtherGD;
2775       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2776       // to make sure that we issue an error only once.
2777       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2778           (GD.getCanonicalDecl().getDecl() !=
2779            OtherGD.getCanonicalDecl().getDecl()) &&
2780           DiagnosedConflictingDefinitions.insert(GD).second) {
2781         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2782             << MangledName;
2783         getDiags().Report(OtherGD.getDecl()->getLocation(),
2784                           diag::note_previous_definition);
2785       }
2786     }
2787 
2788     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2789         (Entry->getType()->getElementType() == Ty)) {
2790       return Entry;
2791     }
2792 
2793     // Make sure the result is of the correct type.
2794     // (If function is requested for a definition, we always need to create a new
2795     // function, not just return a bitcast.)
2796     if (!IsForDefinition)
2797       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2798   }
2799 
2800   // This function doesn't have a complete type (for example, the return
2801   // type is an incomplete struct). Use a fake type instead, and make
2802   // sure not to try to set attributes.
2803   bool IsIncompleteFunction = false;
2804 
2805   llvm::FunctionType *FTy;
2806   if (isa<llvm::FunctionType>(Ty)) {
2807     FTy = cast<llvm::FunctionType>(Ty);
2808   } else {
2809     FTy = llvm::FunctionType::get(VoidTy, false);
2810     IsIncompleteFunction = true;
2811   }
2812 
2813   llvm::Function *F =
2814       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2815                              Entry ? StringRef() : MangledName, &getModule());
2816 
2817   // If we already created a function with the same mangled name (but different
2818   // type) before, take its name and add it to the list of functions to be
2819   // replaced with F at the end of CodeGen.
2820   //
2821   // This happens if there is a prototype for a function (e.g. "int f()") and
2822   // then a definition of a different type (e.g. "int f(int x)").
2823   if (Entry) {
2824     F->takeName(Entry);
2825 
2826     // This might be an implementation of a function without a prototype, in
2827     // which case, try to do special replacement of calls which match the new
2828     // prototype.  The really key thing here is that we also potentially drop
2829     // arguments from the call site so as to make a direct call, which makes the
2830     // inliner happier and suppresses a number of optimizer warnings (!) about
2831     // dropping arguments.
2832     if (!Entry->use_empty()) {
2833       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2834       Entry->removeDeadConstantUsers();
2835     }
2836 
2837     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2838         F, Entry->getType()->getElementType()->getPointerTo());
2839     addGlobalValReplacement(Entry, BC);
2840   }
2841 
2842   assert(F->getName() == MangledName && "name was uniqued!");
2843   if (D)
2844     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2845   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2846     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2847     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2848   }
2849 
2850   if (!DontDefer) {
2851     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2852     // each other bottoming out with the base dtor.  Therefore we emit non-base
2853     // dtors on usage, even if there is no dtor definition in the TU.
2854     if (D && isa<CXXDestructorDecl>(D) &&
2855         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2856                                            GD.getDtorType()))
2857       addDeferredDeclToEmit(GD);
2858 
2859     // This is the first use or definition of a mangled name.  If there is a
2860     // deferred decl with this name, remember that we need to emit it at the end
2861     // of the file.
2862     auto DDI = DeferredDecls.find(MangledName);
2863     if (DDI != DeferredDecls.end()) {
2864       // Move the potentially referenced deferred decl to the
2865       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2866       // don't need it anymore).
2867       addDeferredDeclToEmit(DDI->second);
2868       DeferredDecls.erase(DDI);
2869 
2870       // Otherwise, there are cases we have to worry about where we're
2871       // using a declaration for which we must emit a definition but where
2872       // we might not find a top-level definition:
2873       //   - member functions defined inline in their classes
2874       //   - friend functions defined inline in some class
2875       //   - special member functions with implicit definitions
2876       // If we ever change our AST traversal to walk into class methods,
2877       // this will be unnecessary.
2878       //
2879       // We also don't emit a definition for a function if it's going to be an
2880       // entry in a vtable, unless it's already marked as used.
2881     } else if (getLangOpts().CPlusPlus && D) {
2882       // Look for a declaration that's lexically in a record.
2883       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2884            FD = FD->getPreviousDecl()) {
2885         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2886           if (FD->doesThisDeclarationHaveABody()) {
2887             addDeferredDeclToEmit(GD.getWithDecl(FD));
2888             break;
2889           }
2890         }
2891       }
2892     }
2893   }
2894 
2895   // Make sure the result is of the requested type.
2896   if (!IsIncompleteFunction) {
2897     assert(F->getType()->getElementType() == Ty);
2898     return F;
2899   }
2900 
2901   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2902   return llvm::ConstantExpr::getBitCast(F, PTy);
2903 }
2904 
2905 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2906 /// non-null, then this function will use the specified type if it has to
2907 /// create it (this occurs when we see a definition of the function).
2908 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2909                                                  llvm::Type *Ty,
2910                                                  bool ForVTable,
2911                                                  bool DontDefer,
2912                                               ForDefinition_t IsForDefinition) {
2913   // If there was no specific requested type, just convert it now.
2914   if (!Ty) {
2915     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2916     auto CanonTy = Context.getCanonicalType(FD->getType());
2917     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2918   }
2919 
2920   // Devirtualized destructor calls may come through here instead of via
2921   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2922   // of the complete destructor when necessary.
2923   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2924     if (getTarget().getCXXABI().isMicrosoft() &&
2925         GD.getDtorType() == Dtor_Complete &&
2926         DD->getParent()->getNumVBases() == 0)
2927       GD = GlobalDecl(DD, Dtor_Base);
2928   }
2929 
2930   StringRef MangledName = getMangledName(GD);
2931   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2932                                  /*IsThunk=*/false, llvm::AttributeList(),
2933                                  IsForDefinition);
2934 }
2935 
2936 static const FunctionDecl *
2937 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2938   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2939   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2940 
2941   IdentifierInfo &CII = C.Idents.get(Name);
2942   for (const auto &Result : DC->lookup(&CII))
2943     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2944       return FD;
2945 
2946   if (!C.getLangOpts().CPlusPlus)
2947     return nullptr;
2948 
2949   // Demangle the premangled name from getTerminateFn()
2950   IdentifierInfo &CXXII =
2951       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2952           ? C.Idents.get("terminate")
2953           : C.Idents.get(Name);
2954 
2955   for (const auto &N : {"__cxxabiv1", "std"}) {
2956     IdentifierInfo &NS = C.Idents.get(N);
2957     for (const auto &Result : DC->lookup(&NS)) {
2958       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2959       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2960         for (const auto &Result : LSD->lookup(&NS))
2961           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2962             break;
2963 
2964       if (ND)
2965         for (const auto &Result : ND->lookup(&CXXII))
2966           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2967             return FD;
2968     }
2969   }
2970 
2971   return nullptr;
2972 }
2973 
2974 /// CreateRuntimeFunction - Create a new runtime function with the specified
2975 /// type and name.
2976 llvm::Constant *
2977 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2978                                      llvm::AttributeList ExtraAttrs,
2979                                      bool Local) {
2980   llvm::Constant *C =
2981       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2982                               /*DontDefer=*/false, /*IsThunk=*/false,
2983                               ExtraAttrs);
2984 
2985   if (auto *F = dyn_cast<llvm::Function>(C)) {
2986     if (F->empty()) {
2987       F->setCallingConv(getRuntimeCC());
2988 
2989       if (!Local && getTriple().isOSBinFormatCOFF() &&
2990           !getCodeGenOpts().LTOVisibilityPublicStd &&
2991           !getTriple().isWindowsGNUEnvironment()) {
2992         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2993         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2994           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2995           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2996         }
2997       }
2998       setDSOLocal(F);
2999     }
3000   }
3001 
3002   return C;
3003 }
3004 
3005 /// CreateBuiltinFunction - Create a new builtin function with the specified
3006 /// type and name.
3007 llvm::Constant *
3008 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
3009                                      llvm::AttributeList ExtraAttrs) {
3010   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
3011 }
3012 
3013 /// isTypeConstant - Determine whether an object of this type can be emitted
3014 /// as a constant.
3015 ///
3016 /// If ExcludeCtor is true, the duration when the object's constructor runs
3017 /// will not be considered. The caller will need to verify that the object is
3018 /// not written to during its construction.
3019 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3020   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3021     return false;
3022 
3023   if (Context.getLangOpts().CPlusPlus) {
3024     if (const CXXRecordDecl *Record
3025           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3026       return ExcludeCtor && !Record->hasMutableFields() &&
3027              Record->hasTrivialDestructor();
3028   }
3029 
3030   return true;
3031 }
3032 
3033 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3034 /// create and return an llvm GlobalVariable with the specified type.  If there
3035 /// is something in the module with the specified name, return it potentially
3036 /// bitcasted to the right type.
3037 ///
3038 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3039 /// to set the attributes on the global when it is first created.
3040 ///
3041 /// If IsForDefinition is true, it is guaranteed that an actual global with
3042 /// type Ty will be returned, not conversion of a variable with the same
3043 /// mangled name but some other type.
3044 llvm::Constant *
3045 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3046                                      llvm::PointerType *Ty,
3047                                      const VarDecl *D,
3048                                      ForDefinition_t IsForDefinition) {
3049   // Lookup the entry, lazily creating it if necessary.
3050   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3051   if (Entry) {
3052     if (WeakRefReferences.erase(Entry)) {
3053       if (D && !D->hasAttr<WeakAttr>())
3054         Entry->setLinkage(llvm::Function::ExternalLinkage);
3055     }
3056 
3057     // Handle dropped DLL attributes.
3058     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3059       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3060 
3061     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3062       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3063 
3064     if (Entry->getType() == Ty)
3065       return Entry;
3066 
3067     // If there are two attempts to define the same mangled name, issue an
3068     // error.
3069     if (IsForDefinition && !Entry->isDeclaration()) {
3070       GlobalDecl OtherGD;
3071       const VarDecl *OtherD;
3072 
3073       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3074       // to make sure that we issue an error only once.
3075       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3076           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3077           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3078           OtherD->hasInit() &&
3079           DiagnosedConflictingDefinitions.insert(D).second) {
3080         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3081             << MangledName;
3082         getDiags().Report(OtherGD.getDecl()->getLocation(),
3083                           diag::note_previous_definition);
3084       }
3085     }
3086 
3087     // Make sure the result is of the correct type.
3088     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3089       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3090 
3091     // (If global is requested for a definition, we always need to create a new
3092     // global, not just return a bitcast.)
3093     if (!IsForDefinition)
3094       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3095   }
3096 
3097   auto AddrSpace = GetGlobalVarAddressSpace(D);
3098   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3099 
3100   auto *GV = new llvm::GlobalVariable(
3101       getModule(), Ty->getElementType(), false,
3102       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3103       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3104 
3105   // If we already created a global with the same mangled name (but different
3106   // type) before, take its name and remove it from its parent.
3107   if (Entry) {
3108     GV->takeName(Entry);
3109 
3110     if (!Entry->use_empty()) {
3111       llvm::Constant *NewPtrForOldDecl =
3112           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3113       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3114     }
3115 
3116     Entry->eraseFromParent();
3117   }
3118 
3119   // This is the first use or definition of a mangled name.  If there is a
3120   // deferred decl with this name, remember that we need to emit it at the end
3121   // of the file.
3122   auto DDI = DeferredDecls.find(MangledName);
3123   if (DDI != DeferredDecls.end()) {
3124     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3125     // list, and remove it from DeferredDecls (since we don't need it anymore).
3126     addDeferredDeclToEmit(DDI->second);
3127     DeferredDecls.erase(DDI);
3128   }
3129 
3130   // Handle things which are present even on external declarations.
3131   if (D) {
3132     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3133       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3134 
3135     // FIXME: This code is overly simple and should be merged with other global
3136     // handling.
3137     GV->setConstant(isTypeConstant(D->getType(), false));
3138 
3139     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3140 
3141     setLinkageForGV(GV, D);
3142 
3143     if (D->getTLSKind()) {
3144       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3145         CXXThreadLocals.push_back(D);
3146       setTLSMode(GV, *D);
3147     }
3148 
3149     setGVProperties(GV, D);
3150 
3151     // If required by the ABI, treat declarations of static data members with
3152     // inline initializers as definitions.
3153     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3154       EmitGlobalVarDefinition(D);
3155     }
3156 
3157     // Emit section information for extern variables.
3158     if (D->hasExternalStorage()) {
3159       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3160         GV->setSection(SA->getName());
3161     }
3162 
3163     // Handle XCore specific ABI requirements.
3164     if (getTriple().getArch() == llvm::Triple::xcore &&
3165         D->getLanguageLinkage() == CLanguageLinkage &&
3166         D->getType().isConstant(Context) &&
3167         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3168       GV->setSection(".cp.rodata");
3169 
3170     // Check if we a have a const declaration with an initializer, we may be
3171     // able to emit it as available_externally to expose it's value to the
3172     // optimizer.
3173     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3174         D->getType().isConstQualified() && !GV->hasInitializer() &&
3175         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3176       const auto *Record =
3177           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3178       bool HasMutableFields = Record && Record->hasMutableFields();
3179       if (!HasMutableFields) {
3180         const VarDecl *InitDecl;
3181         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3182         if (InitExpr) {
3183           ConstantEmitter emitter(*this);
3184           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3185           if (Init) {
3186             auto *InitType = Init->getType();
3187             if (GV->getType()->getElementType() != InitType) {
3188               // The type of the initializer does not match the definition.
3189               // This happens when an initializer has a different type from
3190               // the type of the global (because of padding at the end of a
3191               // structure for instance).
3192               GV->setName(StringRef());
3193               // Make a new global with the correct type, this is now guaranteed
3194               // to work.
3195               auto *NewGV = cast<llvm::GlobalVariable>(
3196                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3197 
3198               // Erase the old global, since it is no longer used.
3199               GV->eraseFromParent();
3200               GV = NewGV;
3201             } else {
3202               GV->setInitializer(Init);
3203               GV->setConstant(true);
3204               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3205             }
3206             emitter.finalize(GV);
3207           }
3208         }
3209       }
3210     }
3211   }
3212 
3213   LangAS ExpectedAS =
3214       D ? D->getType().getAddressSpace()
3215         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3216   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3217          Ty->getPointerAddressSpace());
3218   if (AddrSpace != ExpectedAS)
3219     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3220                                                        ExpectedAS, Ty);
3221 
3222   return GV;
3223 }
3224 
3225 llvm::Constant *
3226 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3227                                ForDefinition_t IsForDefinition) {
3228   const Decl *D = GD.getDecl();
3229   if (isa<CXXConstructorDecl>(D))
3230     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3231                                 getFromCtorType(GD.getCtorType()),
3232                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3233                                 /*DontDefer=*/false, IsForDefinition);
3234   else if (isa<CXXDestructorDecl>(D))
3235     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3236                                 getFromDtorType(GD.getDtorType()),
3237                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3238                                 /*DontDefer=*/false, IsForDefinition);
3239   else if (isa<CXXMethodDecl>(D)) {
3240     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3241         cast<CXXMethodDecl>(D));
3242     auto Ty = getTypes().GetFunctionType(*FInfo);
3243     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3244                              IsForDefinition);
3245   } else if (isa<FunctionDecl>(D)) {
3246     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3247     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3248     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3249                              IsForDefinition);
3250   } else
3251     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3252                               IsForDefinition);
3253 }
3254 
3255 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3256     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3257     unsigned Alignment) {
3258   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3259   llvm::GlobalVariable *OldGV = nullptr;
3260 
3261   if (GV) {
3262     // Check if the variable has the right type.
3263     if (GV->getType()->getElementType() == Ty)
3264       return GV;
3265 
3266     // Because C++ name mangling, the only way we can end up with an already
3267     // existing global with the same name is if it has been declared extern "C".
3268     assert(GV->isDeclaration() && "Declaration has wrong type!");
3269     OldGV = GV;
3270   }
3271 
3272   // Create a new variable.
3273   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3274                                 Linkage, nullptr, Name);
3275 
3276   if (OldGV) {
3277     // Replace occurrences of the old variable if needed.
3278     GV->takeName(OldGV);
3279 
3280     if (!OldGV->use_empty()) {
3281       llvm::Constant *NewPtrForOldDecl =
3282       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3283       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3284     }
3285 
3286     OldGV->eraseFromParent();
3287   }
3288 
3289   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3290       !GV->hasAvailableExternallyLinkage())
3291     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3292 
3293   GV->setAlignment(Alignment);
3294 
3295   return GV;
3296 }
3297 
3298 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3299 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3300 /// then it will be created with the specified type instead of whatever the
3301 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3302 /// that an actual global with type Ty will be returned, not conversion of a
3303 /// variable with the same mangled name but some other type.
3304 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3305                                                   llvm::Type *Ty,
3306                                            ForDefinition_t IsForDefinition) {
3307   assert(D->hasGlobalStorage() && "Not a global variable");
3308   QualType ASTTy = D->getType();
3309   if (!Ty)
3310     Ty = getTypes().ConvertTypeForMem(ASTTy);
3311 
3312   llvm::PointerType *PTy =
3313     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3314 
3315   StringRef MangledName = getMangledName(D);
3316   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3317 }
3318 
3319 /// CreateRuntimeVariable - Create a new runtime global variable with the
3320 /// specified type and name.
3321 llvm::Constant *
3322 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3323                                      StringRef Name) {
3324   auto *Ret =
3325       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3326   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3327   return Ret;
3328 }
3329 
3330 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3331   assert(!D->getInit() && "Cannot emit definite definitions here!");
3332 
3333   StringRef MangledName = getMangledName(D);
3334   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3335 
3336   // We already have a definition, not declaration, with the same mangled name.
3337   // Emitting of declaration is not required (and actually overwrites emitted
3338   // definition).
3339   if (GV && !GV->isDeclaration())
3340     return;
3341 
3342   // If we have not seen a reference to this variable yet, place it into the
3343   // deferred declarations table to be emitted if needed later.
3344   if (!MustBeEmitted(D) && !GV) {
3345       DeferredDecls[MangledName] = D;
3346       return;
3347   }
3348 
3349   // The tentative definition is the only definition.
3350   EmitGlobalVarDefinition(D);
3351 }
3352 
3353 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3354   return Context.toCharUnitsFromBits(
3355       getDataLayout().getTypeStoreSizeInBits(Ty));
3356 }
3357 
3358 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3359   LangAS AddrSpace = LangAS::Default;
3360   if (LangOpts.OpenCL) {
3361     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3362     assert(AddrSpace == LangAS::opencl_global ||
3363            AddrSpace == LangAS::opencl_constant ||
3364            AddrSpace == LangAS::opencl_local ||
3365            AddrSpace >= LangAS::FirstTargetAddressSpace);
3366     return AddrSpace;
3367   }
3368 
3369   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3370     if (D && D->hasAttr<CUDAConstantAttr>())
3371       return LangAS::cuda_constant;
3372     else if (D && D->hasAttr<CUDASharedAttr>())
3373       return LangAS::cuda_shared;
3374     else if (D && D->hasAttr<CUDADeviceAttr>())
3375       return LangAS::cuda_device;
3376     else if (D && D->getType().isConstQualified())
3377       return LangAS::cuda_constant;
3378     else
3379       return LangAS::cuda_device;
3380   }
3381 
3382   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3383 }
3384 
3385 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3386   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3387   if (LangOpts.OpenCL)
3388     return LangAS::opencl_constant;
3389   if (auto AS = getTarget().getConstantAddressSpace())
3390     return AS.getValue();
3391   return LangAS::Default;
3392 }
3393 
3394 // In address space agnostic languages, string literals are in default address
3395 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3396 // emitted in constant address space in LLVM IR. To be consistent with other
3397 // parts of AST, string literal global variables in constant address space
3398 // need to be casted to default address space before being put into address
3399 // map and referenced by other part of CodeGen.
3400 // In OpenCL, string literals are in constant address space in AST, therefore
3401 // they should not be casted to default address space.
3402 static llvm::Constant *
3403 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3404                                        llvm::GlobalVariable *GV) {
3405   llvm::Constant *Cast = GV;
3406   if (!CGM.getLangOpts().OpenCL) {
3407     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3408       if (AS != LangAS::Default)
3409         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3410             CGM, GV, AS.getValue(), LangAS::Default,
3411             GV->getValueType()->getPointerTo(
3412                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3413     }
3414   }
3415   return Cast;
3416 }
3417 
3418 template<typename SomeDecl>
3419 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3420                                                llvm::GlobalValue *GV) {
3421   if (!getLangOpts().CPlusPlus)
3422     return;
3423 
3424   // Must have 'used' attribute, or else inline assembly can't rely on
3425   // the name existing.
3426   if (!D->template hasAttr<UsedAttr>())
3427     return;
3428 
3429   // Must have internal linkage and an ordinary name.
3430   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3431     return;
3432 
3433   // Must be in an extern "C" context. Entities declared directly within
3434   // a record are not extern "C" even if the record is in such a context.
3435   const SomeDecl *First = D->getFirstDecl();
3436   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3437     return;
3438 
3439   // OK, this is an internal linkage entity inside an extern "C" linkage
3440   // specification. Make a note of that so we can give it the "expected"
3441   // mangled name if nothing else is using that name.
3442   std::pair<StaticExternCMap::iterator, bool> R =
3443       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3444 
3445   // If we have multiple internal linkage entities with the same name
3446   // in extern "C" regions, none of them gets that name.
3447   if (!R.second)
3448     R.first->second = nullptr;
3449 }
3450 
3451 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3452   if (!CGM.supportsCOMDAT())
3453     return false;
3454 
3455   if (D.hasAttr<SelectAnyAttr>())
3456     return true;
3457 
3458   GVALinkage Linkage;
3459   if (auto *VD = dyn_cast<VarDecl>(&D))
3460     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3461   else
3462     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3463 
3464   switch (Linkage) {
3465   case GVA_Internal:
3466   case GVA_AvailableExternally:
3467   case GVA_StrongExternal:
3468     return false;
3469   case GVA_DiscardableODR:
3470   case GVA_StrongODR:
3471     return true;
3472   }
3473   llvm_unreachable("No such linkage");
3474 }
3475 
3476 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3477                                           llvm::GlobalObject &GO) {
3478   if (!shouldBeInCOMDAT(*this, D))
3479     return;
3480   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3481 }
3482 
3483 /// Pass IsTentative as true if you want to create a tentative definition.
3484 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3485                                             bool IsTentative) {
3486   // OpenCL global variables of sampler type are translated to function calls,
3487   // therefore no need to be translated.
3488   QualType ASTTy = D->getType();
3489   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3490     return;
3491 
3492   // If this is OpenMP device, check if it is legal to emit this global
3493   // normally.
3494   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3495       OpenMPRuntime->emitTargetGlobalVariable(D))
3496     return;
3497 
3498   llvm::Constant *Init = nullptr;
3499   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3500   bool NeedsGlobalCtor = false;
3501   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3502 
3503   const VarDecl *InitDecl;
3504   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3505 
3506   Optional<ConstantEmitter> emitter;
3507 
3508   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3509   // as part of their declaration."  Sema has already checked for
3510   // error cases, so we just need to set Init to UndefValue.
3511   bool IsCUDASharedVar =
3512       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3513   // Shadows of initialized device-side global variables are also left
3514   // undefined.
3515   bool IsCUDAShadowVar =
3516       !getLangOpts().CUDAIsDevice &&
3517       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3518        D->hasAttr<CUDASharedAttr>());
3519   if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3520     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3521   else if (!InitExpr) {
3522     // This is a tentative definition; tentative definitions are
3523     // implicitly initialized with { 0 }.
3524     //
3525     // Note that tentative definitions are only emitted at the end of
3526     // a translation unit, so they should never have incomplete
3527     // type. In addition, EmitTentativeDefinition makes sure that we
3528     // never attempt to emit a tentative definition if a real one
3529     // exists. A use may still exists, however, so we still may need
3530     // to do a RAUW.
3531     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3532     Init = EmitNullConstant(D->getType());
3533   } else {
3534     initializedGlobalDecl = GlobalDecl(D);
3535     emitter.emplace(*this);
3536     Init = emitter->tryEmitForInitializer(*InitDecl);
3537 
3538     if (!Init) {
3539       QualType T = InitExpr->getType();
3540       if (D->getType()->isReferenceType())
3541         T = D->getType();
3542 
3543       if (getLangOpts().CPlusPlus) {
3544         Init = EmitNullConstant(T);
3545         NeedsGlobalCtor = true;
3546       } else {
3547         ErrorUnsupported(D, "static initializer");
3548         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3549       }
3550     } else {
3551       // We don't need an initializer, so remove the entry for the delayed
3552       // initializer position (just in case this entry was delayed) if we
3553       // also don't need to register a destructor.
3554       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3555         DelayedCXXInitPosition.erase(D);
3556     }
3557   }
3558 
3559   llvm::Type* InitType = Init->getType();
3560   llvm::Constant *Entry =
3561       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3562 
3563   // Strip off a bitcast if we got one back.
3564   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3565     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3566            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3567            // All zero index gep.
3568            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3569     Entry = CE->getOperand(0);
3570   }
3571 
3572   // Entry is now either a Function or GlobalVariable.
3573   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3574 
3575   // We have a definition after a declaration with the wrong type.
3576   // We must make a new GlobalVariable* and update everything that used OldGV
3577   // (a declaration or tentative definition) with the new GlobalVariable*
3578   // (which will be a definition).
3579   //
3580   // This happens if there is a prototype for a global (e.g.
3581   // "extern int x[];") and then a definition of a different type (e.g.
3582   // "int x[10];"). This also happens when an initializer has a different type
3583   // from the type of the global (this happens with unions).
3584   if (!GV || GV->getType()->getElementType() != InitType ||
3585       GV->getType()->getAddressSpace() !=
3586           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3587 
3588     // Move the old entry aside so that we'll create a new one.
3589     Entry->setName(StringRef());
3590 
3591     // Make a new global with the correct type, this is now guaranteed to work.
3592     GV = cast<llvm::GlobalVariable>(
3593         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3594 
3595     // Replace all uses of the old global with the new global
3596     llvm::Constant *NewPtrForOldDecl =
3597         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3598     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3599 
3600     // Erase the old global, since it is no longer used.
3601     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3602   }
3603 
3604   MaybeHandleStaticInExternC(D, GV);
3605 
3606   if (D->hasAttr<AnnotateAttr>())
3607     AddGlobalAnnotations(D, GV);
3608 
3609   // Set the llvm linkage type as appropriate.
3610   llvm::GlobalValue::LinkageTypes Linkage =
3611       getLLVMLinkageVarDefinition(D, GV->isConstant());
3612 
3613   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3614   // the device. [...]"
3615   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3616   // __device__, declares a variable that: [...]
3617   // Is accessible from all the threads within the grid and from the host
3618   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3619   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3620   if (GV && LangOpts.CUDA) {
3621     if (LangOpts.CUDAIsDevice) {
3622       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3623         GV->setExternallyInitialized(true);
3624     } else {
3625       // Host-side shadows of external declarations of device-side
3626       // global variables become internal definitions. These have to
3627       // be internal in order to prevent name conflicts with global
3628       // host variables with the same name in a different TUs.
3629       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3630         Linkage = llvm::GlobalValue::InternalLinkage;
3631 
3632         // Shadow variables and their properties must be registered
3633         // with CUDA runtime.
3634         unsigned Flags = 0;
3635         if (!D->hasDefinition())
3636           Flags |= CGCUDARuntime::ExternDeviceVar;
3637         if (D->hasAttr<CUDAConstantAttr>())
3638           Flags |= CGCUDARuntime::ConstantDeviceVar;
3639         // Extern global variables will be registered in the TU where they are
3640         // defined.
3641         if (!D->hasExternalStorage())
3642           getCUDARuntime().registerDeviceVar(*GV, Flags);
3643       } else if (D->hasAttr<CUDASharedAttr>())
3644         // __shared__ variables are odd. Shadows do get created, but
3645         // they are not registered with the CUDA runtime, so they
3646         // can't really be used to access their device-side
3647         // counterparts. It's not clear yet whether it's nvcc's bug or
3648         // a feature, but we've got to do the same for compatibility.
3649         Linkage = llvm::GlobalValue::InternalLinkage;
3650     }
3651   }
3652 
3653   GV->setInitializer(Init);
3654   if (emitter) emitter->finalize(GV);
3655 
3656   // If it is safe to mark the global 'constant', do so now.
3657   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3658                   isTypeConstant(D->getType(), true));
3659 
3660   // If it is in a read-only section, mark it 'constant'.
3661   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3662     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3663     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3664       GV->setConstant(true);
3665   }
3666 
3667   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3668 
3669 
3670   // On Darwin, if the normal linkage of a C++ thread_local variable is
3671   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3672   // copies within a linkage unit; otherwise, the backing variable has
3673   // internal linkage and all accesses should just be calls to the
3674   // Itanium-specified entry point, which has the normal linkage of the
3675   // variable. This is to preserve the ability to change the implementation
3676   // behind the scenes.
3677   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3678       Context.getTargetInfo().getTriple().isOSDarwin() &&
3679       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3680       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3681     Linkage = llvm::GlobalValue::InternalLinkage;
3682 
3683   GV->setLinkage(Linkage);
3684   if (D->hasAttr<DLLImportAttr>())
3685     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3686   else if (D->hasAttr<DLLExportAttr>())
3687     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3688   else
3689     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3690 
3691   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3692     // common vars aren't constant even if declared const.
3693     GV->setConstant(false);
3694     // Tentative definition of global variables may be initialized with
3695     // non-zero null pointers. In this case they should have weak linkage
3696     // since common linkage must have zero initializer and must not have
3697     // explicit section therefore cannot have non-zero initial value.
3698     if (!GV->getInitializer()->isNullValue())
3699       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3700   }
3701 
3702   setNonAliasAttributes(D, GV);
3703 
3704   if (D->getTLSKind() && !GV->isThreadLocal()) {
3705     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3706       CXXThreadLocals.push_back(D);
3707     setTLSMode(GV, *D);
3708   }
3709 
3710   maybeSetTrivialComdat(*D, *GV);
3711 
3712   // Emit the initializer function if necessary.
3713   if (NeedsGlobalCtor || NeedsGlobalDtor)
3714     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3715 
3716   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3717 
3718   // Emit global variable debug information.
3719   if (CGDebugInfo *DI = getModuleDebugInfo())
3720     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3721       DI->EmitGlobalVariable(GV, D);
3722 }
3723 
3724 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3725                                       CodeGenModule &CGM, const VarDecl *D,
3726                                       bool NoCommon) {
3727   // Don't give variables common linkage if -fno-common was specified unless it
3728   // was overridden by a NoCommon attribute.
3729   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3730     return true;
3731 
3732   // C11 6.9.2/2:
3733   //   A declaration of an identifier for an object that has file scope without
3734   //   an initializer, and without a storage-class specifier or with the
3735   //   storage-class specifier static, constitutes a tentative definition.
3736   if (D->getInit() || D->hasExternalStorage())
3737     return true;
3738 
3739   // A variable cannot be both common and exist in a section.
3740   if (D->hasAttr<SectionAttr>())
3741     return true;
3742 
3743   // A variable cannot be both common and exist in a section.
3744   // We don't try to determine which is the right section in the front-end.
3745   // If no specialized section name is applicable, it will resort to default.
3746   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3747       D->hasAttr<PragmaClangDataSectionAttr>() ||
3748       D->hasAttr<PragmaClangRodataSectionAttr>())
3749     return true;
3750 
3751   // Thread local vars aren't considered common linkage.
3752   if (D->getTLSKind())
3753     return true;
3754 
3755   // Tentative definitions marked with WeakImportAttr are true definitions.
3756   if (D->hasAttr<WeakImportAttr>())
3757     return true;
3758 
3759   // A variable cannot be both common and exist in a comdat.
3760   if (shouldBeInCOMDAT(CGM, *D))
3761     return true;
3762 
3763   // Declarations with a required alignment do not have common linkage in MSVC
3764   // mode.
3765   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3766     if (D->hasAttr<AlignedAttr>())
3767       return true;
3768     QualType VarType = D->getType();
3769     if (Context.isAlignmentRequired(VarType))
3770       return true;
3771 
3772     if (const auto *RT = VarType->getAs<RecordType>()) {
3773       const RecordDecl *RD = RT->getDecl();
3774       for (const FieldDecl *FD : RD->fields()) {
3775         if (FD->isBitField())
3776           continue;
3777         if (FD->hasAttr<AlignedAttr>())
3778           return true;
3779         if (Context.isAlignmentRequired(FD->getType()))
3780           return true;
3781       }
3782     }
3783   }
3784 
3785   // Microsoft's link.exe doesn't support alignments greater than 32 for common
3786   // symbols, so symbols with greater alignment requirements cannot be common.
3787   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
3788   // alignments for common symbols via the aligncomm directive, so this
3789   // restriction only applies to MSVC environments.
3790   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
3791       Context.getTypeAlignIfKnown(D->getType()) > 32)
3792     return true;
3793 
3794   return false;
3795 }
3796 
3797 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3798     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3799   if (Linkage == GVA_Internal)
3800     return llvm::Function::InternalLinkage;
3801 
3802   if (D->hasAttr<WeakAttr>()) {
3803     if (IsConstantVariable)
3804       return llvm::GlobalVariable::WeakODRLinkage;
3805     else
3806       return llvm::GlobalVariable::WeakAnyLinkage;
3807   }
3808 
3809   if (const auto *FD = D->getAsFunction())
3810     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
3811       return llvm::GlobalVariable::LinkOnceAnyLinkage;
3812 
3813   // We are guaranteed to have a strong definition somewhere else,
3814   // so we can use available_externally linkage.
3815   if (Linkage == GVA_AvailableExternally)
3816     return llvm::GlobalValue::AvailableExternallyLinkage;
3817 
3818   // Note that Apple's kernel linker doesn't support symbol
3819   // coalescing, so we need to avoid linkonce and weak linkages there.
3820   // Normally, this means we just map to internal, but for explicit
3821   // instantiations we'll map to external.
3822 
3823   // In C++, the compiler has to emit a definition in every translation unit
3824   // that references the function.  We should use linkonce_odr because
3825   // a) if all references in this translation unit are optimized away, we
3826   // don't need to codegen it.  b) if the function persists, it needs to be
3827   // merged with other definitions. c) C++ has the ODR, so we know the
3828   // definition is dependable.
3829   if (Linkage == GVA_DiscardableODR)
3830     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3831                                             : llvm::Function::InternalLinkage;
3832 
3833   // An explicit instantiation of a template has weak linkage, since
3834   // explicit instantiations can occur in multiple translation units
3835   // and must all be equivalent. However, we are not allowed to
3836   // throw away these explicit instantiations.
3837   //
3838   // We don't currently support CUDA device code spread out across multiple TUs,
3839   // so say that CUDA templates are either external (for kernels) or internal.
3840   // This lets llvm perform aggressive inter-procedural optimizations.
3841   if (Linkage == GVA_StrongODR) {
3842     if (Context.getLangOpts().AppleKext)
3843       return llvm::Function::ExternalLinkage;
3844     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3845       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3846                                           : llvm::Function::InternalLinkage;
3847     return llvm::Function::WeakODRLinkage;
3848   }
3849 
3850   // C++ doesn't have tentative definitions and thus cannot have common
3851   // linkage.
3852   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3853       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3854                                  CodeGenOpts.NoCommon))
3855     return llvm::GlobalVariable::CommonLinkage;
3856 
3857   // selectany symbols are externally visible, so use weak instead of
3858   // linkonce.  MSVC optimizes away references to const selectany globals, so
3859   // all definitions should be the same and ODR linkage should be used.
3860   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3861   if (D->hasAttr<SelectAnyAttr>())
3862     return llvm::GlobalVariable::WeakODRLinkage;
3863 
3864   // Otherwise, we have strong external linkage.
3865   assert(Linkage == GVA_StrongExternal);
3866   return llvm::GlobalVariable::ExternalLinkage;
3867 }
3868 
3869 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3870     const VarDecl *VD, bool IsConstant) {
3871   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3872   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3873 }
3874 
3875 /// Replace the uses of a function that was declared with a non-proto type.
3876 /// We want to silently drop extra arguments from call sites
3877 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3878                                           llvm::Function *newFn) {
3879   // Fast path.
3880   if (old->use_empty()) return;
3881 
3882   llvm::Type *newRetTy = newFn->getReturnType();
3883   SmallVector<llvm::Value*, 4> newArgs;
3884   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3885 
3886   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3887          ui != ue; ) {
3888     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3889     llvm::User *user = use->getUser();
3890 
3891     // Recognize and replace uses of bitcasts.  Most calls to
3892     // unprototyped functions will use bitcasts.
3893     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3894       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3895         replaceUsesOfNonProtoConstant(bitcast, newFn);
3896       continue;
3897     }
3898 
3899     // Recognize calls to the function.
3900     llvm::CallSite callSite(user);
3901     if (!callSite) continue;
3902     if (!callSite.isCallee(&*use)) continue;
3903 
3904     // If the return types don't match exactly, then we can't
3905     // transform this call unless it's dead.
3906     if (callSite->getType() != newRetTy && !callSite->use_empty())
3907       continue;
3908 
3909     // Get the call site's attribute list.
3910     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3911     llvm::AttributeList oldAttrs = callSite.getAttributes();
3912 
3913     // If the function was passed too few arguments, don't transform.
3914     unsigned newNumArgs = newFn->arg_size();
3915     if (callSite.arg_size() < newNumArgs) continue;
3916 
3917     // If extra arguments were passed, we silently drop them.
3918     // If any of the types mismatch, we don't transform.
3919     unsigned argNo = 0;
3920     bool dontTransform = false;
3921     for (llvm::Argument &A : newFn->args()) {
3922       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3923         dontTransform = true;
3924         break;
3925       }
3926 
3927       // Add any parameter attributes.
3928       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3929       argNo++;
3930     }
3931     if (dontTransform)
3932       continue;
3933 
3934     // Okay, we can transform this.  Create the new call instruction and copy
3935     // over the required information.
3936     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3937 
3938     // Copy over any operand bundles.
3939     callSite.getOperandBundlesAsDefs(newBundles);
3940 
3941     llvm::CallSite newCall;
3942     if (callSite.isCall()) {
3943       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3944                                        callSite.getInstruction());
3945     } else {
3946       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3947       newCall = llvm::InvokeInst::Create(newFn,
3948                                          oldInvoke->getNormalDest(),
3949                                          oldInvoke->getUnwindDest(),
3950                                          newArgs, newBundles, "",
3951                                          callSite.getInstruction());
3952     }
3953     newArgs.clear(); // for the next iteration
3954 
3955     if (!newCall->getType()->isVoidTy())
3956       newCall->takeName(callSite.getInstruction());
3957     newCall.setAttributes(llvm::AttributeList::get(
3958         newFn->getContext(), oldAttrs.getFnAttributes(),
3959         oldAttrs.getRetAttributes(), newArgAttrs));
3960     newCall.setCallingConv(callSite.getCallingConv());
3961 
3962     // Finally, remove the old call, replacing any uses with the new one.
3963     if (!callSite->use_empty())
3964       callSite->replaceAllUsesWith(newCall.getInstruction());
3965 
3966     // Copy debug location attached to CI.
3967     if (callSite->getDebugLoc())
3968       newCall->setDebugLoc(callSite->getDebugLoc());
3969 
3970     callSite->eraseFromParent();
3971   }
3972 }
3973 
3974 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3975 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3976 /// existing call uses of the old function in the module, this adjusts them to
3977 /// call the new function directly.
3978 ///
3979 /// This is not just a cleanup: the always_inline pass requires direct calls to
3980 /// functions to be able to inline them.  If there is a bitcast in the way, it
3981 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3982 /// run at -O0.
3983 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3984                                                       llvm::Function *NewFn) {
3985   // If we're redefining a global as a function, don't transform it.
3986   if (!isa<llvm::Function>(Old)) return;
3987 
3988   replaceUsesOfNonProtoConstant(Old, NewFn);
3989 }
3990 
3991 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3992   auto DK = VD->isThisDeclarationADefinition();
3993   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3994     return;
3995 
3996   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3997   // If we have a definition, this might be a deferred decl. If the
3998   // instantiation is explicit, make sure we emit it at the end.
3999   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4000     GetAddrOfGlobalVar(VD);
4001 
4002   EmitTopLevelDecl(VD);
4003 }
4004 
4005 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4006                                                  llvm::GlobalValue *GV) {
4007   const auto *D = cast<FunctionDecl>(GD.getDecl());
4008 
4009   // Compute the function info and LLVM type.
4010   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4011   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4012 
4013   // Get or create the prototype for the function.
4014   if (!GV || (GV->getType()->getElementType() != Ty))
4015     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4016                                                    /*DontDefer=*/true,
4017                                                    ForDefinition));
4018 
4019   // Already emitted.
4020   if (!GV->isDeclaration())
4021     return;
4022 
4023   // We need to set linkage and visibility on the function before
4024   // generating code for it because various parts of IR generation
4025   // want to propagate this information down (e.g. to local static
4026   // declarations).
4027   auto *Fn = cast<llvm::Function>(GV);
4028   setFunctionLinkage(GD, Fn);
4029 
4030   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4031   setGVProperties(Fn, GD);
4032 
4033   MaybeHandleStaticInExternC(D, Fn);
4034 
4035 
4036   maybeSetTrivialComdat(*D, *Fn);
4037 
4038   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4039 
4040   setNonAliasAttributes(GD, Fn);
4041   SetLLVMFunctionAttributesForDefinition(D, Fn);
4042 
4043   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4044     AddGlobalCtor(Fn, CA->getPriority());
4045   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4046     AddGlobalDtor(Fn, DA->getPriority());
4047   if (D->hasAttr<AnnotateAttr>())
4048     AddGlobalAnnotations(D, Fn);
4049 }
4050 
4051 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4052   const auto *D = cast<ValueDecl>(GD.getDecl());
4053   const AliasAttr *AA = D->getAttr<AliasAttr>();
4054   assert(AA && "Not an alias?");
4055 
4056   StringRef MangledName = getMangledName(GD);
4057 
4058   if (AA->getAliasee() == MangledName) {
4059     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4060     return;
4061   }
4062 
4063   // If there is a definition in the module, then it wins over the alias.
4064   // This is dubious, but allow it to be safe.  Just ignore the alias.
4065   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4066   if (Entry && !Entry->isDeclaration())
4067     return;
4068 
4069   Aliases.push_back(GD);
4070 
4071   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4072 
4073   // Create a reference to the named value.  This ensures that it is emitted
4074   // if a deferred decl.
4075   llvm::Constant *Aliasee;
4076   if (isa<llvm::FunctionType>(DeclTy))
4077     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4078                                       /*ForVTable=*/false);
4079   else
4080     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4081                                     llvm::PointerType::getUnqual(DeclTy),
4082                                     /*D=*/nullptr);
4083 
4084   // Create the new alias itself, but don't set a name yet.
4085   auto *GA = llvm::GlobalAlias::create(
4086       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4087 
4088   if (Entry) {
4089     if (GA->getAliasee() == Entry) {
4090       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4091       return;
4092     }
4093 
4094     assert(Entry->isDeclaration());
4095 
4096     // If there is a declaration in the module, then we had an extern followed
4097     // by the alias, as in:
4098     //   extern int test6();
4099     //   ...
4100     //   int test6() __attribute__((alias("test7")));
4101     //
4102     // Remove it and replace uses of it with the alias.
4103     GA->takeName(Entry);
4104 
4105     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4106                                                           Entry->getType()));
4107     Entry->eraseFromParent();
4108   } else {
4109     GA->setName(MangledName);
4110   }
4111 
4112   // Set attributes which are particular to an alias; this is a
4113   // specialization of the attributes which may be set on a global
4114   // variable/function.
4115   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4116       D->isWeakImported()) {
4117     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4118   }
4119 
4120   if (const auto *VD = dyn_cast<VarDecl>(D))
4121     if (VD->getTLSKind())
4122       setTLSMode(GA, *VD);
4123 
4124   SetCommonAttributes(GD, GA);
4125 }
4126 
4127 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4128   const auto *D = cast<ValueDecl>(GD.getDecl());
4129   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4130   assert(IFA && "Not an ifunc?");
4131 
4132   StringRef MangledName = getMangledName(GD);
4133 
4134   if (IFA->getResolver() == MangledName) {
4135     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4136     return;
4137   }
4138 
4139   // Report an error if some definition overrides ifunc.
4140   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4141   if (Entry && !Entry->isDeclaration()) {
4142     GlobalDecl OtherGD;
4143     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4144         DiagnosedConflictingDefinitions.insert(GD).second) {
4145       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4146           << MangledName;
4147       Diags.Report(OtherGD.getDecl()->getLocation(),
4148                    diag::note_previous_definition);
4149     }
4150     return;
4151   }
4152 
4153   Aliases.push_back(GD);
4154 
4155   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4156   llvm::Constant *Resolver =
4157       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4158                               /*ForVTable=*/false);
4159   llvm::GlobalIFunc *GIF =
4160       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4161                                 "", Resolver, &getModule());
4162   if (Entry) {
4163     if (GIF->getResolver() == Entry) {
4164       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4165       return;
4166     }
4167     assert(Entry->isDeclaration());
4168 
4169     // If there is a declaration in the module, then we had an extern followed
4170     // by the ifunc, as in:
4171     //   extern int test();
4172     //   ...
4173     //   int test() __attribute__((ifunc("resolver")));
4174     //
4175     // Remove it and replace uses of it with the ifunc.
4176     GIF->takeName(Entry);
4177 
4178     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4179                                                           Entry->getType()));
4180     Entry->eraseFromParent();
4181   } else
4182     GIF->setName(MangledName);
4183 
4184   SetCommonAttributes(GD, GIF);
4185 }
4186 
4187 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4188                                             ArrayRef<llvm::Type*> Tys) {
4189   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4190                                          Tys);
4191 }
4192 
4193 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4194 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4195                          const StringLiteral *Literal, bool TargetIsLSB,
4196                          bool &IsUTF16, unsigned &StringLength) {
4197   StringRef String = Literal->getString();
4198   unsigned NumBytes = String.size();
4199 
4200   // Check for simple case.
4201   if (!Literal->containsNonAsciiOrNull()) {
4202     StringLength = NumBytes;
4203     return *Map.insert(std::make_pair(String, nullptr)).first;
4204   }
4205 
4206   // Otherwise, convert the UTF8 literals into a string of shorts.
4207   IsUTF16 = true;
4208 
4209   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4210   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4211   llvm::UTF16 *ToPtr = &ToBuf[0];
4212 
4213   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4214                                  ToPtr + NumBytes, llvm::strictConversion);
4215 
4216   // ConvertUTF8toUTF16 returns the length in ToPtr.
4217   StringLength = ToPtr - &ToBuf[0];
4218 
4219   // Add an explicit null.
4220   *ToPtr = 0;
4221   return *Map.insert(std::make_pair(
4222                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4223                                    (StringLength + 1) * 2),
4224                          nullptr)).first;
4225 }
4226 
4227 ConstantAddress
4228 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4229   unsigned StringLength = 0;
4230   bool isUTF16 = false;
4231   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4232       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4233                                getDataLayout().isLittleEndian(), isUTF16,
4234                                StringLength);
4235 
4236   if (auto *C = Entry.second)
4237     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4238 
4239   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4240   llvm::Constant *Zeros[] = { Zero, Zero };
4241 
4242   const ASTContext &Context = getContext();
4243   const llvm::Triple &Triple = getTriple();
4244 
4245   const auto CFRuntime = getLangOpts().CFRuntime;
4246   const bool IsSwiftABI =
4247       static_cast<unsigned>(CFRuntime) >=
4248       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4249   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4250 
4251   // If we don't already have it, get __CFConstantStringClassReference.
4252   if (!CFConstantStringClassRef) {
4253     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4254     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4255     Ty = llvm::ArrayType::get(Ty, 0);
4256 
4257     switch (CFRuntime) {
4258     default: break;
4259     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4260     case LangOptions::CoreFoundationABI::Swift5_0:
4261       CFConstantStringClassName =
4262           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4263                               : "$s10Foundation19_NSCFConstantStringCN";
4264       Ty = IntPtrTy;
4265       break;
4266     case LangOptions::CoreFoundationABI::Swift4_2:
4267       CFConstantStringClassName =
4268           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4269                               : "$S10Foundation19_NSCFConstantStringCN";
4270       Ty = IntPtrTy;
4271       break;
4272     case LangOptions::CoreFoundationABI::Swift4_1:
4273       CFConstantStringClassName =
4274           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4275                               : "__T010Foundation19_NSCFConstantStringCN";
4276       Ty = IntPtrTy;
4277       break;
4278     }
4279 
4280     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4281 
4282     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4283       llvm::GlobalValue *GV = nullptr;
4284 
4285       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4286         IdentifierInfo &II = Context.Idents.get(GV->getName());
4287         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4288         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4289 
4290         const VarDecl *VD = nullptr;
4291         for (const auto &Result : DC->lookup(&II))
4292           if ((VD = dyn_cast<VarDecl>(Result)))
4293             break;
4294 
4295         if (Triple.isOSBinFormatELF()) {
4296           if (!VD)
4297             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4298         } else {
4299           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4300           if (!VD || !VD->hasAttr<DLLExportAttr>())
4301             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4302           else
4303             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4304         }
4305 
4306         setDSOLocal(GV);
4307       }
4308     }
4309 
4310     // Decay array -> ptr
4311     CFConstantStringClassRef =
4312         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4313                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4314   }
4315 
4316   QualType CFTy = Context.getCFConstantStringType();
4317 
4318   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4319 
4320   ConstantInitBuilder Builder(*this);
4321   auto Fields = Builder.beginStruct(STy);
4322 
4323   // Class pointer.
4324   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4325 
4326   // Flags.
4327   if (IsSwiftABI) {
4328     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4329     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4330   } else {
4331     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4332   }
4333 
4334   // String pointer.
4335   llvm::Constant *C = nullptr;
4336   if (isUTF16) {
4337     auto Arr = llvm::makeArrayRef(
4338         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4339         Entry.first().size() / 2);
4340     C = llvm::ConstantDataArray::get(VMContext, Arr);
4341   } else {
4342     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4343   }
4344 
4345   // Note: -fwritable-strings doesn't make the backing store strings of
4346   // CFStrings writable. (See <rdar://problem/10657500>)
4347   auto *GV =
4348       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4349                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4350   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4351   // Don't enforce the target's minimum global alignment, since the only use
4352   // of the string is via this class initializer.
4353   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4354                             : Context.getTypeAlignInChars(Context.CharTy);
4355   GV->setAlignment(Align.getQuantity());
4356 
4357   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4358   // Without it LLVM can merge the string with a non unnamed_addr one during
4359   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4360   if (Triple.isOSBinFormatMachO())
4361     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4362                            : "__TEXT,__cstring,cstring_literals");
4363   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4364   // the static linker to adjust permissions to read-only later on.
4365   else if (Triple.isOSBinFormatELF())
4366     GV->setSection(".rodata");
4367 
4368   // String.
4369   llvm::Constant *Str =
4370       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4371 
4372   if (isUTF16)
4373     // Cast the UTF16 string to the correct type.
4374     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4375   Fields.add(Str);
4376 
4377   // String length.
4378   llvm::IntegerType *LengthTy =
4379       llvm::IntegerType::get(getModule().getContext(),
4380                              Context.getTargetInfo().getLongWidth());
4381   if (IsSwiftABI) {
4382     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4383         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4384       LengthTy = Int32Ty;
4385     else
4386       LengthTy = IntPtrTy;
4387   }
4388   Fields.addInt(LengthTy, StringLength);
4389 
4390   CharUnits Alignment = getPointerAlign();
4391 
4392   // The struct.
4393   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4394                                     /*isConstant=*/false,
4395                                     llvm::GlobalVariable::PrivateLinkage);
4396   switch (Triple.getObjectFormat()) {
4397   case llvm::Triple::UnknownObjectFormat:
4398     llvm_unreachable("unknown file format");
4399   case llvm::Triple::COFF:
4400   case llvm::Triple::ELF:
4401   case llvm::Triple::Wasm:
4402     GV->setSection("cfstring");
4403     break;
4404   case llvm::Triple::MachO:
4405     GV->setSection("__DATA,__cfstring");
4406     break;
4407   }
4408   Entry.second = GV;
4409 
4410   return ConstantAddress(GV, Alignment);
4411 }
4412 
4413 bool CodeGenModule::getExpressionLocationsEnabled() const {
4414   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4415 }
4416 
4417 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4418   if (ObjCFastEnumerationStateType.isNull()) {
4419     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4420     D->startDefinition();
4421 
4422     QualType FieldTypes[] = {
4423       Context.UnsignedLongTy,
4424       Context.getPointerType(Context.getObjCIdType()),
4425       Context.getPointerType(Context.UnsignedLongTy),
4426       Context.getConstantArrayType(Context.UnsignedLongTy,
4427                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4428     };
4429 
4430     for (size_t i = 0; i < 4; ++i) {
4431       FieldDecl *Field = FieldDecl::Create(Context,
4432                                            D,
4433                                            SourceLocation(),
4434                                            SourceLocation(), nullptr,
4435                                            FieldTypes[i], /*TInfo=*/nullptr,
4436                                            /*BitWidth=*/nullptr,
4437                                            /*Mutable=*/false,
4438                                            ICIS_NoInit);
4439       Field->setAccess(AS_public);
4440       D->addDecl(Field);
4441     }
4442 
4443     D->completeDefinition();
4444     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4445   }
4446 
4447   return ObjCFastEnumerationStateType;
4448 }
4449 
4450 llvm::Constant *
4451 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4452   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4453 
4454   // Don't emit it as the address of the string, emit the string data itself
4455   // as an inline array.
4456   if (E->getCharByteWidth() == 1) {
4457     SmallString<64> Str(E->getString());
4458 
4459     // Resize the string to the right size, which is indicated by its type.
4460     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4461     Str.resize(CAT->getSize().getZExtValue());
4462     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4463   }
4464 
4465   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4466   llvm::Type *ElemTy = AType->getElementType();
4467   unsigned NumElements = AType->getNumElements();
4468 
4469   // Wide strings have either 2-byte or 4-byte elements.
4470   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4471     SmallVector<uint16_t, 32> Elements;
4472     Elements.reserve(NumElements);
4473 
4474     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4475       Elements.push_back(E->getCodeUnit(i));
4476     Elements.resize(NumElements);
4477     return llvm::ConstantDataArray::get(VMContext, Elements);
4478   }
4479 
4480   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4481   SmallVector<uint32_t, 32> Elements;
4482   Elements.reserve(NumElements);
4483 
4484   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4485     Elements.push_back(E->getCodeUnit(i));
4486   Elements.resize(NumElements);
4487   return llvm::ConstantDataArray::get(VMContext, Elements);
4488 }
4489 
4490 static llvm::GlobalVariable *
4491 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4492                       CodeGenModule &CGM, StringRef GlobalName,
4493                       CharUnits Alignment) {
4494   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4495       CGM.getStringLiteralAddressSpace());
4496 
4497   llvm::Module &M = CGM.getModule();
4498   // Create a global variable for this string
4499   auto *GV = new llvm::GlobalVariable(
4500       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4501       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4502   GV->setAlignment(Alignment.getQuantity());
4503   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4504   if (GV->isWeakForLinker()) {
4505     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4506     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4507   }
4508   CGM.setDSOLocal(GV);
4509 
4510   return GV;
4511 }
4512 
4513 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4514 /// constant array for the given string literal.
4515 ConstantAddress
4516 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4517                                                   StringRef Name) {
4518   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4519 
4520   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4521   llvm::GlobalVariable **Entry = nullptr;
4522   if (!LangOpts.WritableStrings) {
4523     Entry = &ConstantStringMap[C];
4524     if (auto GV = *Entry) {
4525       if (Alignment.getQuantity() > GV->getAlignment())
4526         GV->setAlignment(Alignment.getQuantity());
4527       return ConstantAddress(GV, Alignment);
4528     }
4529   }
4530 
4531   SmallString<256> MangledNameBuffer;
4532   StringRef GlobalVariableName;
4533   llvm::GlobalValue::LinkageTypes LT;
4534 
4535   // Mangle the string literal if that's how the ABI merges duplicate strings.
4536   // Don't do it if they are writable, since we don't want writes in one TU to
4537   // affect strings in another.
4538   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4539       !LangOpts.WritableStrings) {
4540     llvm::raw_svector_ostream Out(MangledNameBuffer);
4541     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4542     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4543     GlobalVariableName = MangledNameBuffer;
4544   } else {
4545     LT = llvm::GlobalValue::PrivateLinkage;
4546     GlobalVariableName = Name;
4547   }
4548 
4549   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4550   if (Entry)
4551     *Entry = GV;
4552 
4553   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4554                                   QualType());
4555 
4556   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4557                          Alignment);
4558 }
4559 
4560 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4561 /// array for the given ObjCEncodeExpr node.
4562 ConstantAddress
4563 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4564   std::string Str;
4565   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4566 
4567   return GetAddrOfConstantCString(Str);
4568 }
4569 
4570 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4571 /// the literal and a terminating '\0' character.
4572 /// The result has pointer to array type.
4573 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4574     const std::string &Str, const char *GlobalName) {
4575   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4576   CharUnits Alignment =
4577     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4578 
4579   llvm::Constant *C =
4580       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4581 
4582   // Don't share any string literals if strings aren't constant.
4583   llvm::GlobalVariable **Entry = nullptr;
4584   if (!LangOpts.WritableStrings) {
4585     Entry = &ConstantStringMap[C];
4586     if (auto GV = *Entry) {
4587       if (Alignment.getQuantity() > GV->getAlignment())
4588         GV->setAlignment(Alignment.getQuantity());
4589       return ConstantAddress(GV, Alignment);
4590     }
4591   }
4592 
4593   // Get the default prefix if a name wasn't specified.
4594   if (!GlobalName)
4595     GlobalName = ".str";
4596   // Create a global variable for this.
4597   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4598                                   GlobalName, Alignment);
4599   if (Entry)
4600     *Entry = GV;
4601 
4602   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4603                          Alignment);
4604 }
4605 
4606 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4607     const MaterializeTemporaryExpr *E, const Expr *Init) {
4608   assert((E->getStorageDuration() == SD_Static ||
4609           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4610   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4611 
4612   // If we're not materializing a subobject of the temporary, keep the
4613   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4614   QualType MaterializedType = Init->getType();
4615   if (Init == E->GetTemporaryExpr())
4616     MaterializedType = E->getType();
4617 
4618   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4619 
4620   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4621     return ConstantAddress(Slot, Align);
4622 
4623   // FIXME: If an externally-visible declaration extends multiple temporaries,
4624   // we need to give each temporary the same name in every translation unit (and
4625   // we also need to make the temporaries externally-visible).
4626   SmallString<256> Name;
4627   llvm::raw_svector_ostream Out(Name);
4628   getCXXABI().getMangleContext().mangleReferenceTemporary(
4629       VD, E->getManglingNumber(), Out);
4630 
4631   APValue *Value = nullptr;
4632   if (E->getStorageDuration() == SD_Static) {
4633     // We might have a cached constant initializer for this temporary. Note
4634     // that this might have a different value from the value computed by
4635     // evaluating the initializer if the surrounding constant expression
4636     // modifies the temporary.
4637     Value = getContext().getMaterializedTemporaryValue(E, false);
4638     if (Value && Value->isUninit())
4639       Value = nullptr;
4640   }
4641 
4642   // Try evaluating it now, it might have a constant initializer.
4643   Expr::EvalResult EvalResult;
4644   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4645       !EvalResult.hasSideEffects())
4646     Value = &EvalResult.Val;
4647 
4648   LangAS AddrSpace =
4649       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4650 
4651   Optional<ConstantEmitter> emitter;
4652   llvm::Constant *InitialValue = nullptr;
4653   bool Constant = false;
4654   llvm::Type *Type;
4655   if (Value) {
4656     // The temporary has a constant initializer, use it.
4657     emitter.emplace(*this);
4658     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4659                                                MaterializedType);
4660     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4661     Type = InitialValue->getType();
4662   } else {
4663     // No initializer, the initialization will be provided when we
4664     // initialize the declaration which performed lifetime extension.
4665     Type = getTypes().ConvertTypeForMem(MaterializedType);
4666   }
4667 
4668   // Create a global variable for this lifetime-extended temporary.
4669   llvm::GlobalValue::LinkageTypes Linkage =
4670       getLLVMLinkageVarDefinition(VD, Constant);
4671   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4672     const VarDecl *InitVD;
4673     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4674         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4675       // Temporaries defined inside a class get linkonce_odr linkage because the
4676       // class can be defined in multiple translation units.
4677       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4678     } else {
4679       // There is no need for this temporary to have external linkage if the
4680       // VarDecl has external linkage.
4681       Linkage = llvm::GlobalVariable::InternalLinkage;
4682     }
4683   }
4684   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4685   auto *GV = new llvm::GlobalVariable(
4686       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4687       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4688   if (emitter) emitter->finalize(GV);
4689   setGVProperties(GV, VD);
4690   GV->setAlignment(Align.getQuantity());
4691   if (supportsCOMDAT() && GV->isWeakForLinker())
4692     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4693   if (VD->getTLSKind())
4694     setTLSMode(GV, *VD);
4695   llvm::Constant *CV = GV;
4696   if (AddrSpace != LangAS::Default)
4697     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4698         *this, GV, AddrSpace, LangAS::Default,
4699         Type->getPointerTo(
4700             getContext().getTargetAddressSpace(LangAS::Default)));
4701   MaterializedGlobalTemporaryMap[E] = CV;
4702   return ConstantAddress(CV, Align);
4703 }
4704 
4705 /// EmitObjCPropertyImplementations - Emit information for synthesized
4706 /// properties for an implementation.
4707 void CodeGenModule::EmitObjCPropertyImplementations(const
4708                                                     ObjCImplementationDecl *D) {
4709   for (const auto *PID : D->property_impls()) {
4710     // Dynamic is just for type-checking.
4711     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4712       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4713 
4714       // Determine which methods need to be implemented, some may have
4715       // been overridden. Note that ::isPropertyAccessor is not the method
4716       // we want, that just indicates if the decl came from a
4717       // property. What we want to know is if the method is defined in
4718       // this implementation.
4719       if (!D->getInstanceMethod(PD->getGetterName()))
4720         CodeGenFunction(*this).GenerateObjCGetter(
4721                                  const_cast<ObjCImplementationDecl *>(D), PID);
4722       if (!PD->isReadOnly() &&
4723           !D->getInstanceMethod(PD->getSetterName()))
4724         CodeGenFunction(*this).GenerateObjCSetter(
4725                                  const_cast<ObjCImplementationDecl *>(D), PID);
4726     }
4727   }
4728 }
4729 
4730 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4731   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4732   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4733        ivar; ivar = ivar->getNextIvar())
4734     if (ivar->getType().isDestructedType())
4735       return true;
4736 
4737   return false;
4738 }
4739 
4740 static bool AllTrivialInitializers(CodeGenModule &CGM,
4741                                    ObjCImplementationDecl *D) {
4742   CodeGenFunction CGF(CGM);
4743   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4744        E = D->init_end(); B != E; ++B) {
4745     CXXCtorInitializer *CtorInitExp = *B;
4746     Expr *Init = CtorInitExp->getInit();
4747     if (!CGF.isTrivialInitializer(Init))
4748       return false;
4749   }
4750   return true;
4751 }
4752 
4753 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4754 /// for an implementation.
4755 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4756   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4757   if (needsDestructMethod(D)) {
4758     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4759     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4760     ObjCMethodDecl *DTORMethod =
4761       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4762                              cxxSelector, getContext().VoidTy, nullptr, D,
4763                              /*isInstance=*/true, /*isVariadic=*/false,
4764                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4765                              /*isDefined=*/false, ObjCMethodDecl::Required);
4766     D->addInstanceMethod(DTORMethod);
4767     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4768     D->setHasDestructors(true);
4769   }
4770 
4771   // If the implementation doesn't have any ivar initializers, we don't need
4772   // a .cxx_construct.
4773   if (D->getNumIvarInitializers() == 0 ||
4774       AllTrivialInitializers(*this, D))
4775     return;
4776 
4777   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4778   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4779   // The constructor returns 'self'.
4780   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4781                                                 D->getLocation(),
4782                                                 D->getLocation(),
4783                                                 cxxSelector,
4784                                                 getContext().getObjCIdType(),
4785                                                 nullptr, D, /*isInstance=*/true,
4786                                                 /*isVariadic=*/false,
4787                                                 /*isPropertyAccessor=*/true,
4788                                                 /*isImplicitlyDeclared=*/true,
4789                                                 /*isDefined=*/false,
4790                                                 ObjCMethodDecl::Required);
4791   D->addInstanceMethod(CTORMethod);
4792   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4793   D->setHasNonZeroConstructors(true);
4794 }
4795 
4796 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4797 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4798   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4799       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4800     ErrorUnsupported(LSD, "linkage spec");
4801     return;
4802   }
4803 
4804   EmitDeclContext(LSD);
4805 }
4806 
4807 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4808   for (auto *I : DC->decls()) {
4809     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4810     // are themselves considered "top-level", so EmitTopLevelDecl on an
4811     // ObjCImplDecl does not recursively visit them. We need to do that in
4812     // case they're nested inside another construct (LinkageSpecDecl /
4813     // ExportDecl) that does stop them from being considered "top-level".
4814     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4815       for (auto *M : OID->methods())
4816         EmitTopLevelDecl(M);
4817     }
4818 
4819     EmitTopLevelDecl(I);
4820   }
4821 }
4822 
4823 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4824 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4825   // Ignore dependent declarations.
4826   if (D->isTemplated())
4827     return;
4828 
4829   switch (D->getKind()) {
4830   case Decl::CXXConversion:
4831   case Decl::CXXMethod:
4832   case Decl::Function:
4833     EmitGlobal(cast<FunctionDecl>(D));
4834     // Always provide some coverage mapping
4835     // even for the functions that aren't emitted.
4836     AddDeferredUnusedCoverageMapping(D);
4837     break;
4838 
4839   case Decl::CXXDeductionGuide:
4840     // Function-like, but does not result in code emission.
4841     break;
4842 
4843   case Decl::Var:
4844   case Decl::Decomposition:
4845   case Decl::VarTemplateSpecialization:
4846     EmitGlobal(cast<VarDecl>(D));
4847     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4848       for (auto *B : DD->bindings())
4849         if (auto *HD = B->getHoldingVar())
4850           EmitGlobal(HD);
4851     break;
4852 
4853   // Indirect fields from global anonymous structs and unions can be
4854   // ignored; only the actual variable requires IR gen support.
4855   case Decl::IndirectField:
4856     break;
4857 
4858   // C++ Decls
4859   case Decl::Namespace:
4860     EmitDeclContext(cast<NamespaceDecl>(D));
4861     break;
4862   case Decl::ClassTemplateSpecialization: {
4863     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4864     if (DebugInfo &&
4865         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4866         Spec->hasDefinition())
4867       DebugInfo->completeTemplateDefinition(*Spec);
4868   } LLVM_FALLTHROUGH;
4869   case Decl::CXXRecord:
4870     if (DebugInfo) {
4871       if (auto *ES = D->getASTContext().getExternalSource())
4872         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4873           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4874     }
4875     // Emit any static data members, they may be definitions.
4876     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4877       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4878         EmitTopLevelDecl(I);
4879     break;
4880     // No code generation needed.
4881   case Decl::UsingShadow:
4882   case Decl::ClassTemplate:
4883   case Decl::VarTemplate:
4884   case Decl::VarTemplatePartialSpecialization:
4885   case Decl::FunctionTemplate:
4886   case Decl::TypeAliasTemplate:
4887   case Decl::Block:
4888   case Decl::Empty:
4889   case Decl::Binding:
4890     break;
4891   case Decl::Using:          // using X; [C++]
4892     if (CGDebugInfo *DI = getModuleDebugInfo())
4893         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4894     return;
4895   case Decl::NamespaceAlias:
4896     if (CGDebugInfo *DI = getModuleDebugInfo())
4897         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4898     return;
4899   case Decl::UsingDirective: // using namespace X; [C++]
4900     if (CGDebugInfo *DI = getModuleDebugInfo())
4901       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4902     return;
4903   case Decl::CXXConstructor:
4904     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4905     break;
4906   case Decl::CXXDestructor:
4907     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4908     break;
4909 
4910   case Decl::StaticAssert:
4911     // Nothing to do.
4912     break;
4913 
4914   // Objective-C Decls
4915 
4916   // Forward declarations, no (immediate) code generation.
4917   case Decl::ObjCInterface:
4918   case Decl::ObjCCategory:
4919     break;
4920 
4921   case Decl::ObjCProtocol: {
4922     auto *Proto = cast<ObjCProtocolDecl>(D);
4923     if (Proto->isThisDeclarationADefinition())
4924       ObjCRuntime->GenerateProtocol(Proto);
4925     break;
4926   }
4927 
4928   case Decl::ObjCCategoryImpl:
4929     // Categories have properties but don't support synthesize so we
4930     // can ignore them here.
4931     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4932     break;
4933 
4934   case Decl::ObjCImplementation: {
4935     auto *OMD = cast<ObjCImplementationDecl>(D);
4936     EmitObjCPropertyImplementations(OMD);
4937     EmitObjCIvarInitializations(OMD);
4938     ObjCRuntime->GenerateClass(OMD);
4939     // Emit global variable debug information.
4940     if (CGDebugInfo *DI = getModuleDebugInfo())
4941       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4942         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4943             OMD->getClassInterface()), OMD->getLocation());
4944     break;
4945   }
4946   case Decl::ObjCMethod: {
4947     auto *OMD = cast<ObjCMethodDecl>(D);
4948     // If this is not a prototype, emit the body.
4949     if (OMD->getBody())
4950       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4951     break;
4952   }
4953   case Decl::ObjCCompatibleAlias:
4954     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4955     break;
4956 
4957   case Decl::PragmaComment: {
4958     const auto *PCD = cast<PragmaCommentDecl>(D);
4959     switch (PCD->getCommentKind()) {
4960     case PCK_Unknown:
4961       llvm_unreachable("unexpected pragma comment kind");
4962     case PCK_Linker:
4963       AppendLinkerOptions(PCD->getArg());
4964       break;
4965     case PCK_Lib:
4966       if (getTarget().getTriple().isOSBinFormatELF() &&
4967           !getTarget().getTriple().isPS4())
4968         AddELFLibDirective(PCD->getArg());
4969       else
4970         AddDependentLib(PCD->getArg());
4971       break;
4972     case PCK_Compiler:
4973     case PCK_ExeStr:
4974     case PCK_User:
4975       break; // We ignore all of these.
4976     }
4977     break;
4978   }
4979 
4980   case Decl::PragmaDetectMismatch: {
4981     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4982     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4983     break;
4984   }
4985 
4986   case Decl::LinkageSpec:
4987     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4988     break;
4989 
4990   case Decl::FileScopeAsm: {
4991     // File-scope asm is ignored during device-side CUDA compilation.
4992     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4993       break;
4994     // File-scope asm is ignored during device-side OpenMP compilation.
4995     if (LangOpts.OpenMPIsDevice)
4996       break;
4997     auto *AD = cast<FileScopeAsmDecl>(D);
4998     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4999     break;
5000   }
5001 
5002   case Decl::Import: {
5003     auto *Import = cast<ImportDecl>(D);
5004 
5005     // If we've already imported this module, we're done.
5006     if (!ImportedModules.insert(Import->getImportedModule()))
5007       break;
5008 
5009     // Emit debug information for direct imports.
5010     if (!Import->getImportedOwningModule()) {
5011       if (CGDebugInfo *DI = getModuleDebugInfo())
5012         DI->EmitImportDecl(*Import);
5013     }
5014 
5015     // Find all of the submodules and emit the module initializers.
5016     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5017     SmallVector<clang::Module *, 16> Stack;
5018     Visited.insert(Import->getImportedModule());
5019     Stack.push_back(Import->getImportedModule());
5020 
5021     while (!Stack.empty()) {
5022       clang::Module *Mod = Stack.pop_back_val();
5023       if (!EmittedModuleInitializers.insert(Mod).second)
5024         continue;
5025 
5026       for (auto *D : Context.getModuleInitializers(Mod))
5027         EmitTopLevelDecl(D);
5028 
5029       // Visit the submodules of this module.
5030       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5031                                              SubEnd = Mod->submodule_end();
5032            Sub != SubEnd; ++Sub) {
5033         // Skip explicit children; they need to be explicitly imported to emit
5034         // the initializers.
5035         if ((*Sub)->IsExplicit)
5036           continue;
5037 
5038         if (Visited.insert(*Sub).second)
5039           Stack.push_back(*Sub);
5040       }
5041     }
5042     break;
5043   }
5044 
5045   case Decl::Export:
5046     EmitDeclContext(cast<ExportDecl>(D));
5047     break;
5048 
5049   case Decl::OMPThreadPrivate:
5050     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5051     break;
5052 
5053   case Decl::OMPDeclareReduction:
5054     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5055     break;
5056 
5057   case Decl::OMPRequires:
5058     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5059     break;
5060 
5061   default:
5062     // Make sure we handled everything we should, every other kind is a
5063     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5064     // function. Need to recode Decl::Kind to do that easily.
5065     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5066     break;
5067   }
5068 }
5069 
5070 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5071   // Do we need to generate coverage mapping?
5072   if (!CodeGenOpts.CoverageMapping)
5073     return;
5074   switch (D->getKind()) {
5075   case Decl::CXXConversion:
5076   case Decl::CXXMethod:
5077   case Decl::Function:
5078   case Decl::ObjCMethod:
5079   case Decl::CXXConstructor:
5080   case Decl::CXXDestructor: {
5081     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5082       return;
5083     SourceManager &SM = getContext().getSourceManager();
5084     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5085       return;
5086     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5087     if (I == DeferredEmptyCoverageMappingDecls.end())
5088       DeferredEmptyCoverageMappingDecls[D] = true;
5089     break;
5090   }
5091   default:
5092     break;
5093   };
5094 }
5095 
5096 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5097   // Do we need to generate coverage mapping?
5098   if (!CodeGenOpts.CoverageMapping)
5099     return;
5100   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5101     if (Fn->isTemplateInstantiation())
5102       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5103   }
5104   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5105   if (I == DeferredEmptyCoverageMappingDecls.end())
5106     DeferredEmptyCoverageMappingDecls[D] = false;
5107   else
5108     I->second = false;
5109 }
5110 
5111 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5112   // We call takeVector() here to avoid use-after-free.
5113   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5114   // we deserialize function bodies to emit coverage info for them, and that
5115   // deserializes more declarations. How should we handle that case?
5116   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5117     if (!Entry.second)
5118       continue;
5119     const Decl *D = Entry.first;
5120     switch (D->getKind()) {
5121     case Decl::CXXConversion:
5122     case Decl::CXXMethod:
5123     case Decl::Function:
5124     case Decl::ObjCMethod: {
5125       CodeGenPGO PGO(*this);
5126       GlobalDecl GD(cast<FunctionDecl>(D));
5127       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5128                                   getFunctionLinkage(GD));
5129       break;
5130     }
5131     case Decl::CXXConstructor: {
5132       CodeGenPGO PGO(*this);
5133       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5134       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5135                                   getFunctionLinkage(GD));
5136       break;
5137     }
5138     case Decl::CXXDestructor: {
5139       CodeGenPGO PGO(*this);
5140       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5141       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5142                                   getFunctionLinkage(GD));
5143       break;
5144     }
5145     default:
5146       break;
5147     };
5148   }
5149 }
5150 
5151 /// Turns the given pointer into a constant.
5152 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5153                                           const void *Ptr) {
5154   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5155   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5156   return llvm::ConstantInt::get(i64, PtrInt);
5157 }
5158 
5159 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5160                                    llvm::NamedMDNode *&GlobalMetadata,
5161                                    GlobalDecl D,
5162                                    llvm::GlobalValue *Addr) {
5163   if (!GlobalMetadata)
5164     GlobalMetadata =
5165       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5166 
5167   // TODO: should we report variant information for ctors/dtors?
5168   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5169                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5170                                CGM.getLLVMContext(), D.getDecl()))};
5171   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5172 }
5173 
5174 /// For each function which is declared within an extern "C" region and marked
5175 /// as 'used', but has internal linkage, create an alias from the unmangled
5176 /// name to the mangled name if possible. People expect to be able to refer
5177 /// to such functions with an unmangled name from inline assembly within the
5178 /// same translation unit.
5179 void CodeGenModule::EmitStaticExternCAliases() {
5180   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5181     return;
5182   for (auto &I : StaticExternCValues) {
5183     IdentifierInfo *Name = I.first;
5184     llvm::GlobalValue *Val = I.second;
5185     if (Val && !getModule().getNamedValue(Name->getName()))
5186       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5187   }
5188 }
5189 
5190 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5191                                              GlobalDecl &Result) const {
5192   auto Res = Manglings.find(MangledName);
5193   if (Res == Manglings.end())
5194     return false;
5195   Result = Res->getValue();
5196   return true;
5197 }
5198 
5199 /// Emits metadata nodes associating all the global values in the
5200 /// current module with the Decls they came from.  This is useful for
5201 /// projects using IR gen as a subroutine.
5202 ///
5203 /// Since there's currently no way to associate an MDNode directly
5204 /// with an llvm::GlobalValue, we create a global named metadata
5205 /// with the name 'clang.global.decl.ptrs'.
5206 void CodeGenModule::EmitDeclMetadata() {
5207   llvm::NamedMDNode *GlobalMetadata = nullptr;
5208 
5209   for (auto &I : MangledDeclNames) {
5210     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5211     // Some mangled names don't necessarily have an associated GlobalValue
5212     // in this module, e.g. if we mangled it for DebugInfo.
5213     if (Addr)
5214       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5215   }
5216 }
5217 
5218 /// Emits metadata nodes for all the local variables in the current
5219 /// function.
5220 void CodeGenFunction::EmitDeclMetadata() {
5221   if (LocalDeclMap.empty()) return;
5222 
5223   llvm::LLVMContext &Context = getLLVMContext();
5224 
5225   // Find the unique metadata ID for this name.
5226   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5227 
5228   llvm::NamedMDNode *GlobalMetadata = nullptr;
5229 
5230   for (auto &I : LocalDeclMap) {
5231     const Decl *D = I.first;
5232     llvm::Value *Addr = I.second.getPointer();
5233     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5234       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5235       Alloca->setMetadata(
5236           DeclPtrKind, llvm::MDNode::get(
5237                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5238     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5239       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5240       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5241     }
5242   }
5243 }
5244 
5245 void CodeGenModule::EmitVersionIdentMetadata() {
5246   llvm::NamedMDNode *IdentMetadata =
5247     TheModule.getOrInsertNamedMetadata("llvm.ident");
5248   std::string Version = getClangFullVersion();
5249   llvm::LLVMContext &Ctx = TheModule.getContext();
5250 
5251   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5252   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5253 }
5254 
5255 void CodeGenModule::EmitCommandLineMetadata() {
5256   llvm::NamedMDNode *CommandLineMetadata =
5257     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5258   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5259   llvm::LLVMContext &Ctx = TheModule.getContext();
5260 
5261   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5262   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5263 }
5264 
5265 void CodeGenModule::EmitTargetMetadata() {
5266   // Warning, new MangledDeclNames may be appended within this loop.
5267   // We rely on MapVector insertions adding new elements to the end
5268   // of the container.
5269   // FIXME: Move this loop into the one target that needs it, and only
5270   // loop over those declarations for which we couldn't emit the target
5271   // metadata when we emitted the declaration.
5272   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5273     auto Val = *(MangledDeclNames.begin() + I);
5274     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5275     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5276     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5277   }
5278 }
5279 
5280 void CodeGenModule::EmitCoverageFile() {
5281   if (getCodeGenOpts().CoverageDataFile.empty() &&
5282       getCodeGenOpts().CoverageNotesFile.empty())
5283     return;
5284 
5285   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5286   if (!CUNode)
5287     return;
5288 
5289   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5290   llvm::LLVMContext &Ctx = TheModule.getContext();
5291   auto *CoverageDataFile =
5292       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5293   auto *CoverageNotesFile =
5294       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5295   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5296     llvm::MDNode *CU = CUNode->getOperand(i);
5297     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5298     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5299   }
5300 }
5301 
5302 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5303   // Sema has checked that all uuid strings are of the form
5304   // "12345678-1234-1234-1234-1234567890ab".
5305   assert(Uuid.size() == 36);
5306   for (unsigned i = 0; i < 36; ++i) {
5307     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5308     else                                         assert(isHexDigit(Uuid[i]));
5309   }
5310 
5311   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5312   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5313 
5314   llvm::Constant *Field3[8];
5315   for (unsigned Idx = 0; Idx < 8; ++Idx)
5316     Field3[Idx] = llvm::ConstantInt::get(
5317         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5318 
5319   llvm::Constant *Fields[4] = {
5320     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5321     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5322     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5323     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5324   };
5325 
5326   return llvm::ConstantStruct::getAnon(Fields);
5327 }
5328 
5329 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5330                                                        bool ForEH) {
5331   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5332   // FIXME: should we even be calling this method if RTTI is disabled
5333   // and it's not for EH?
5334   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5335     return llvm::Constant::getNullValue(Int8PtrTy);
5336 
5337   if (ForEH && Ty->isObjCObjectPointerType() &&
5338       LangOpts.ObjCRuntime.isGNUFamily())
5339     return ObjCRuntime->GetEHType(Ty);
5340 
5341   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5342 }
5343 
5344 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5345   // Do not emit threadprivates in simd-only mode.
5346   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5347     return;
5348   for (auto RefExpr : D->varlists()) {
5349     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5350     bool PerformInit =
5351         VD->getAnyInitializer() &&
5352         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5353                                                         /*ForRef=*/false);
5354 
5355     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5356     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5357             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5358       CXXGlobalInits.push_back(InitFunction);
5359   }
5360 }
5361 
5362 llvm::Metadata *
5363 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5364                                             StringRef Suffix) {
5365   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5366   if (InternalId)
5367     return InternalId;
5368 
5369   if (isExternallyVisible(T->getLinkage())) {
5370     std::string OutName;
5371     llvm::raw_string_ostream Out(OutName);
5372     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5373     Out << Suffix;
5374 
5375     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5376   } else {
5377     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5378                                            llvm::ArrayRef<llvm::Metadata *>());
5379   }
5380 
5381   return InternalId;
5382 }
5383 
5384 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5385   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5386 }
5387 
5388 llvm::Metadata *
5389 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5390   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5391 }
5392 
5393 // Generalize pointer types to a void pointer with the qualifiers of the
5394 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5395 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5396 // 'void *'.
5397 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5398   if (!Ty->isPointerType())
5399     return Ty;
5400 
5401   return Ctx.getPointerType(
5402       QualType(Ctx.VoidTy).withCVRQualifiers(
5403           Ty->getPointeeType().getCVRQualifiers()));
5404 }
5405 
5406 // Apply type generalization to a FunctionType's return and argument types
5407 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5408   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5409     SmallVector<QualType, 8> GeneralizedParams;
5410     for (auto &Param : FnType->param_types())
5411       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5412 
5413     return Ctx.getFunctionType(
5414         GeneralizeType(Ctx, FnType->getReturnType()),
5415         GeneralizedParams, FnType->getExtProtoInfo());
5416   }
5417 
5418   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5419     return Ctx.getFunctionNoProtoType(
5420         GeneralizeType(Ctx, FnType->getReturnType()));
5421 
5422   llvm_unreachable("Encountered unknown FunctionType");
5423 }
5424 
5425 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5426   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5427                                       GeneralizedMetadataIdMap, ".generalized");
5428 }
5429 
5430 /// Returns whether this module needs the "all-vtables" type identifier.
5431 bool CodeGenModule::NeedAllVtablesTypeId() const {
5432   // Returns true if at least one of vtable-based CFI checkers is enabled and
5433   // is not in the trapping mode.
5434   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5435            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5436           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5437            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5438           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5439            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5440           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5441            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5442 }
5443 
5444 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5445                                           CharUnits Offset,
5446                                           const CXXRecordDecl *RD) {
5447   llvm::Metadata *MD =
5448       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5449   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5450 
5451   if (CodeGenOpts.SanitizeCfiCrossDso)
5452     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5453       VTable->addTypeMetadata(Offset.getQuantity(),
5454                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5455 
5456   if (NeedAllVtablesTypeId()) {
5457     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5458     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5459   }
5460 }
5461 
5462 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5463   assert(TD != nullptr);
5464   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5465 
5466   ParsedAttr.Features.erase(
5467       llvm::remove_if(ParsedAttr.Features,
5468                       [&](const std::string &Feat) {
5469                         return !Target.isValidFeatureName(
5470                             StringRef{Feat}.substr(1));
5471                       }),
5472       ParsedAttr.Features.end());
5473   return ParsedAttr;
5474 }
5475 
5476 
5477 // Fills in the supplied string map with the set of target features for the
5478 // passed in function.
5479 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5480                                           GlobalDecl GD) {
5481   StringRef TargetCPU = Target.getTargetOpts().CPU;
5482   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5483   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5484     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5485 
5486     // Make a copy of the features as passed on the command line into the
5487     // beginning of the additional features from the function to override.
5488     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5489                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5490                             Target.getTargetOpts().FeaturesAsWritten.end());
5491 
5492     if (ParsedAttr.Architecture != "" &&
5493         Target.isValidCPUName(ParsedAttr.Architecture))
5494       TargetCPU = ParsedAttr.Architecture;
5495 
5496     // Now populate the feature map, first with the TargetCPU which is either
5497     // the default or a new one from the target attribute string. Then we'll use
5498     // the passed in features (FeaturesAsWritten) along with the new ones from
5499     // the attribute.
5500     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5501                           ParsedAttr.Features);
5502   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5503     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5504     Target.getCPUSpecificCPUDispatchFeatures(
5505         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5506     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5507     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5508   } else {
5509     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5510                           Target.getTargetOpts().Features);
5511   }
5512 }
5513 
5514 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5515   if (!SanStats)
5516     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5517 
5518   return *SanStats;
5519 }
5520 llvm::Value *
5521 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5522                                                   CodeGenFunction &CGF) {
5523   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5524   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5525   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5526   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5527                                 "__translate_sampler_initializer"),
5528                                 {C});
5529 }
5530