xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision beec5a080f57929bd3ebb29d8da25c43ee67aa6d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/ErrorHandling.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 
43 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
44                              llvm::Module &M, const llvm::TargetData &TD,
45                              Diagnostic &diags)
46   : BlockModule(C, M, TD, Types, *this), Context(C),
47     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
48     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
49     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
50     MangleCtx(C), VtableInfo(*this), Runtime(0),
51     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
52     VMContext(M.getContext()) {
53 
54   if (!Features.ObjC1)
55     Runtime = 0;
56   else if (!Features.NeXTRuntime)
57     Runtime = CreateGNUObjCRuntime(*this);
58   else if (Features.ObjCNonFragileABI)
59     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
60   else
61     Runtime = CreateMacObjCRuntime(*this);
62 
63   // If debug info generation is enabled, create the CGDebugInfo object.
64   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
65 }
66 
67 CodeGenModule::~CodeGenModule() {
68   delete Runtime;
69   delete DebugInfo;
70 }
71 
72 void CodeGenModule::createObjCRuntime() {
73   if (!Features.NeXTRuntime)
74     Runtime = CreateGNUObjCRuntime(*this);
75   else if (Features.ObjCNonFragileABI)
76     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
77   else
78     Runtime = CreateMacObjCRuntime(*this);
79 }
80 
81 void CodeGenModule::Release() {
82   EmitDeferred();
83   EmitCXXGlobalInitFunc();
84   if (Runtime)
85     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
86       AddGlobalCtor(ObjCInitFunction);
87   EmitCtorList(GlobalCtors, "llvm.global_ctors");
88   EmitCtorList(GlobalDtors, "llvm.global_dtors");
89   EmitAnnotations();
90   EmitLLVMUsed();
91 }
92 
93 bool CodeGenModule::isTargetDarwin() const {
94   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
95 }
96 
97 /// ErrorUnsupported - Print out an error that codegen doesn't support the
98 /// specified stmt yet.
99 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
100                                      bool OmitOnError) {
101   if (OmitOnError && getDiags().hasErrorOccurred())
102     return;
103   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
104                                                "cannot compile this %0 yet");
105   std::string Msg = Type;
106   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
107     << Msg << S->getSourceRange();
108 }
109 
110 /// ErrorUnsupported - Print out an error that codegen doesn't support the
111 /// specified decl yet.
112 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
113                                      bool OmitOnError) {
114   if (OmitOnError && getDiags().hasErrorOccurred())
115     return;
116   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
117                                                "cannot compile this %0 yet");
118   std::string Msg = Type;
119   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
120 }
121 
122 LangOptions::VisibilityMode
123 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
124   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
125     if (VD->getStorageClass() == VarDecl::PrivateExtern)
126       return LangOptions::Hidden;
127 
128   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
129     switch (attr->getVisibility()) {
130     default: assert(0 && "Unknown visibility!");
131     case VisibilityAttr::DefaultVisibility:
132       return LangOptions::Default;
133     case VisibilityAttr::HiddenVisibility:
134       return LangOptions::Hidden;
135     case VisibilityAttr::ProtectedVisibility:
136       return LangOptions::Protected;
137     }
138   }
139 
140   // This decl should have the same visibility as its parent.
141   if (const DeclContext *DC = D->getDeclContext())
142     return getDeclVisibilityMode(cast<Decl>(DC));
143 
144   return getLangOptions().getVisibilityMode();
145 }
146 
147 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
148                                         const Decl *D) const {
149   // Internal definitions always have default visibility.
150   if (GV->hasLocalLinkage()) {
151     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
152     return;
153   }
154 
155   switch (getDeclVisibilityMode(D)) {
156   default: assert(0 && "Unknown visibility!");
157   case LangOptions::Default:
158     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
159   case LangOptions::Hidden:
160     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
161   case LangOptions::Protected:
162     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
163   }
164 }
165 
166 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
167   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
168 
169   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
170     return getMangledCXXCtorName(D, GD.getCtorType());
171   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
172     return getMangledCXXDtorName(D, GD.getDtorType());
173 
174   return getMangledName(ND);
175 }
176 
177 /// \brief Retrieves the mangled name for the given declaration.
178 ///
179 /// If the given declaration requires a mangled name, returns an
180 /// const char* containing the mangled name.  Otherwise, returns
181 /// the unmangled name.
182 ///
183 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
184   if (!getMangleContext().shouldMangleDeclName(ND)) {
185     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
186     return ND->getNameAsCString();
187   }
188 
189   llvm::SmallString<256> Name;
190   getMangleContext().mangleName(ND, Name);
191   Name += '\0';
192   return UniqueMangledName(Name.begin(), Name.end());
193 }
194 
195 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
196                                              const char *NameEnd) {
197   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
198 
199   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
200 }
201 
202 /// AddGlobalCtor - Add a function to the list that will be called before
203 /// main() runs.
204 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
205   // FIXME: Type coercion of void()* types.
206   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
207 }
208 
209 /// AddGlobalDtor - Add a function to the list that will be called
210 /// when the module is unloaded.
211 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
212   // FIXME: Type coercion of void()* types.
213   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
214 }
215 
216 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
217   // Ctor function type is void()*.
218   llvm::FunctionType* CtorFTy =
219     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
220                             std::vector<const llvm::Type*>(),
221                             false);
222   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
223 
224   // Get the type of a ctor entry, { i32, void ()* }.
225   llvm::StructType* CtorStructTy =
226     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
227                           llvm::PointerType::getUnqual(CtorFTy), NULL);
228 
229   // Construct the constructor and destructor arrays.
230   std::vector<llvm::Constant*> Ctors;
231   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
232     std::vector<llvm::Constant*> S;
233     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
234                 I->second, false));
235     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
236     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
237   }
238 
239   if (!Ctors.empty()) {
240     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
241     new llvm::GlobalVariable(TheModule, AT, false,
242                              llvm::GlobalValue::AppendingLinkage,
243                              llvm::ConstantArray::get(AT, Ctors),
244                              GlobalName);
245   }
246 }
247 
248 void CodeGenModule::EmitAnnotations() {
249   if (Annotations.empty())
250     return;
251 
252   // Create a new global variable for the ConstantStruct in the Module.
253   llvm::Constant *Array =
254   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
255                                                 Annotations.size()),
256                            Annotations);
257   llvm::GlobalValue *gv =
258   new llvm::GlobalVariable(TheModule, Array->getType(), false,
259                            llvm::GlobalValue::AppendingLinkage, Array,
260                            "llvm.global.annotations");
261   gv->setSection("llvm.metadata");
262 }
263 
264 static CodeGenModule::GVALinkage
265 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
266                       const LangOptions &Features) {
267   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
268 
269   Linkage L = FD->getLinkage();
270   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
271       FD->getType()->getLinkage() == UniqueExternalLinkage)
272     L = UniqueExternalLinkage;
273 
274   switch (L) {
275   case NoLinkage:
276   case InternalLinkage:
277   case UniqueExternalLinkage:
278     return CodeGenModule::GVA_Internal;
279 
280   case ExternalLinkage:
281     switch (FD->getTemplateSpecializationKind()) {
282     case TSK_Undeclared:
283     case TSK_ExplicitSpecialization:
284       External = CodeGenModule::GVA_StrongExternal;
285       break;
286 
287     case TSK_ExplicitInstantiationDefinition:
288       // FIXME: explicit instantiation definitions should use weak linkage
289       return CodeGenModule::GVA_StrongExternal;
290 
291     case TSK_ExplicitInstantiationDeclaration:
292     case TSK_ImplicitInstantiation:
293       External = CodeGenModule::GVA_TemplateInstantiation;
294       break;
295     }
296   }
297 
298   if (!FD->isInlined())
299     return External;
300 
301   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
302     // GNU or C99 inline semantics. Determine whether this symbol should be
303     // externally visible.
304     if (FD->isInlineDefinitionExternallyVisible())
305       return External;
306 
307     // C99 inline semantics, where the symbol is not externally visible.
308     return CodeGenModule::GVA_C99Inline;
309   }
310 
311   // C++0x [temp.explicit]p9:
312   //   [ Note: The intent is that an inline function that is the subject of
313   //   an explicit instantiation declaration will still be implicitly
314   //   instantiated when used so that the body can be considered for
315   //   inlining, but that no out-of-line copy of the inline function would be
316   //   generated in the translation unit. -- end note ]
317   if (FD->getTemplateSpecializationKind()
318                                        == TSK_ExplicitInstantiationDeclaration)
319     return CodeGenModule::GVA_C99Inline;
320 
321   return CodeGenModule::GVA_CXXInline;
322 }
323 
324 llvm::GlobalValue::LinkageTypes
325 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
326   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
327 
328   if (Linkage == GVA_Internal) {
329     return llvm::Function::InternalLinkage;
330   } else if (D->hasAttr<DLLExportAttr>()) {
331     return llvm::Function::DLLExportLinkage;
332   } else if (D->hasAttr<WeakAttr>()) {
333     return llvm::Function::WeakAnyLinkage;
334   } else if (Linkage == GVA_C99Inline) {
335     // In C99 mode, 'inline' functions are guaranteed to have a strong
336     // definition somewhere else, so we can use available_externally linkage.
337     return llvm::Function::AvailableExternallyLinkage;
338   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
339     // In C++, the compiler has to emit a definition in every translation unit
340     // that references the function.  We should use linkonce_odr because
341     // a) if all references in this translation unit are optimized away, we
342     // don't need to codegen it.  b) if the function persists, it needs to be
343     // merged with other definitions. c) C++ has the ODR, so we know the
344     // definition is dependable.
345     return llvm::Function::LinkOnceODRLinkage;
346   } else {
347     assert(Linkage == GVA_StrongExternal);
348     // Otherwise, we have strong external linkage.
349     return llvm::Function::ExternalLinkage;
350   }
351 }
352 
353 
354 /// SetFunctionDefinitionAttributes - Set attributes for a global.
355 ///
356 /// FIXME: This is currently only done for aliases and functions, but not for
357 /// variables (these details are set in EmitGlobalVarDefinition for variables).
358 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
359                                                     llvm::GlobalValue *GV) {
360   GV->setLinkage(getFunctionLinkage(D));
361   SetCommonAttributes(D, GV);
362 }
363 
364 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
365                                               const CGFunctionInfo &Info,
366                                               llvm::Function *F) {
367   unsigned CallingConv;
368   AttributeListType AttributeList;
369   ConstructAttributeList(Info, D, AttributeList, CallingConv);
370   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
371                                           AttributeList.size()));
372   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
373 }
374 
375 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
376                                                            llvm::Function *F) {
377   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
378     F->addFnAttr(llvm::Attribute::NoUnwind);
379 
380   if (D->hasAttr<AlwaysInlineAttr>())
381     F->addFnAttr(llvm::Attribute::AlwaysInline);
382 
383   if (D->hasAttr<NoInlineAttr>())
384     F->addFnAttr(llvm::Attribute::NoInline);
385 
386   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
387     F->addFnAttr(llvm::Attribute::StackProtect);
388   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
389     F->addFnAttr(llvm::Attribute::StackProtectReq);
390 
391   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
392     unsigned width = Context.Target.getCharWidth();
393     F->setAlignment(AA->getAlignment() / width);
394     while ((AA = AA->getNext<AlignedAttr>()))
395       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
396   }
397   // C++ ABI requires 2-byte alignment for member functions.
398   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
399     F->setAlignment(2);
400 }
401 
402 void CodeGenModule::SetCommonAttributes(const Decl *D,
403                                         llvm::GlobalValue *GV) {
404   setGlobalVisibility(GV, D);
405 
406   if (D->hasAttr<UsedAttr>())
407     AddUsedGlobal(GV);
408 
409   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
410     GV->setSection(SA->getName());
411 
412   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
413 }
414 
415 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
416                                                   llvm::Function *F,
417                                                   const CGFunctionInfo &FI) {
418   SetLLVMFunctionAttributes(D, FI, F);
419   SetLLVMFunctionAttributesForDefinition(D, F);
420 
421   F->setLinkage(llvm::Function::InternalLinkage);
422 
423   SetCommonAttributes(D, F);
424 }
425 
426 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
427                                           llvm::Function *F,
428                                           bool IsIncompleteFunction) {
429   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
430 
431   if (!IsIncompleteFunction)
432     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
433 
434   // Only a few attributes are set on declarations; these may later be
435   // overridden by a definition.
436 
437   if (FD->hasAttr<DLLImportAttr>()) {
438     F->setLinkage(llvm::Function::DLLImportLinkage);
439   } else if (FD->hasAttr<WeakAttr>() ||
440              FD->hasAttr<WeakImportAttr>()) {
441     // "extern_weak" is overloaded in LLVM; we probably should have
442     // separate linkage types for this.
443     F->setLinkage(llvm::Function::ExternalWeakLinkage);
444   } else {
445     F->setLinkage(llvm::Function::ExternalLinkage);
446   }
447 
448   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
449     F->setSection(SA->getName());
450 }
451 
452 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
453   assert(!GV->isDeclaration() &&
454          "Only globals with definition can force usage.");
455   LLVMUsed.push_back(GV);
456 }
457 
458 void CodeGenModule::EmitLLVMUsed() {
459   // Don't create llvm.used if there is no need.
460   if (LLVMUsed.empty())
461     return;
462 
463   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
464 
465   // Convert LLVMUsed to what ConstantArray needs.
466   std::vector<llvm::Constant*> UsedArray;
467   UsedArray.resize(LLVMUsed.size());
468   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
469     UsedArray[i] =
470      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
471                                       i8PTy);
472   }
473 
474   if (UsedArray.empty())
475     return;
476   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
477 
478   llvm::GlobalVariable *GV =
479     new llvm::GlobalVariable(getModule(), ATy, false,
480                              llvm::GlobalValue::AppendingLinkage,
481                              llvm::ConstantArray::get(ATy, UsedArray),
482                              "llvm.used");
483 
484   GV->setSection("llvm.metadata");
485 }
486 
487 void CodeGenModule::EmitDeferred() {
488   // Emit code for any potentially referenced deferred decls.  Since a
489   // previously unused static decl may become used during the generation of code
490   // for a static function, iterate until no  changes are made.
491   while (!DeferredDeclsToEmit.empty()) {
492     GlobalDecl D = DeferredDeclsToEmit.back();
493     DeferredDeclsToEmit.pop_back();
494 
495     // The mangled name for the decl must have been emitted in GlobalDeclMap.
496     // Look it up to see if it was defined with a stronger definition (e.g. an
497     // extern inline function with a strong function redefinition).  If so,
498     // just ignore the deferred decl.
499     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
500     assert(CGRef && "Deferred decl wasn't referenced?");
501 
502     if (!CGRef->isDeclaration())
503       continue;
504 
505     // Otherwise, emit the definition and move on to the next one.
506     EmitGlobalDefinition(D);
507   }
508 }
509 
510 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
511 /// annotation information for a given GlobalValue.  The annotation struct is
512 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
513 /// GlobalValue being annotated.  The second field is the constant string
514 /// created from the AnnotateAttr's annotation.  The third field is a constant
515 /// string containing the name of the translation unit.  The fourth field is
516 /// the line number in the file of the annotated value declaration.
517 ///
518 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
519 ///        appears to.
520 ///
521 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
522                                                 const AnnotateAttr *AA,
523                                                 unsigned LineNo) {
524   llvm::Module *M = &getModule();
525 
526   // get [N x i8] constants for the annotation string, and the filename string
527   // which are the 2nd and 3rd elements of the global annotation structure.
528   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
529   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
530                                                   AA->getAnnotation(), true);
531   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
532                                                   M->getModuleIdentifier(),
533                                                   true);
534 
535   // Get the two global values corresponding to the ConstantArrays we just
536   // created to hold the bytes of the strings.
537   llvm::GlobalValue *annoGV =
538     new llvm::GlobalVariable(*M, anno->getType(), false,
539                              llvm::GlobalValue::PrivateLinkage, anno,
540                              GV->getName());
541   // translation unit name string, emitted into the llvm.metadata section.
542   llvm::GlobalValue *unitGV =
543     new llvm::GlobalVariable(*M, unit->getType(), false,
544                              llvm::GlobalValue::PrivateLinkage, unit,
545                              ".str");
546 
547   // Create the ConstantStruct for the global annotation.
548   llvm::Constant *Fields[4] = {
549     llvm::ConstantExpr::getBitCast(GV, SBP),
550     llvm::ConstantExpr::getBitCast(annoGV, SBP),
551     llvm::ConstantExpr::getBitCast(unitGV, SBP),
552     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
553   };
554   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
555 }
556 
557 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
558   // Never defer when EmitAllDecls is specified or the decl has
559   // attribute used.
560   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
561     return false;
562 
563   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
564     // Constructors and destructors should never be deferred.
565     if (FD->hasAttr<ConstructorAttr>() ||
566         FD->hasAttr<DestructorAttr>())
567       return false;
568 
569     // The key function for a class must never be deferred.
570     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
571       const CXXRecordDecl *RD = MD->getParent();
572       if (MD->isOutOfLine() && RD->isDynamicClass()) {
573         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
574         if (KeyFunction &&
575             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
576           return false;
577       }
578     }
579 
580     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
581 
582     // static, static inline, always_inline, and extern inline functions can
583     // always be deferred.  Normal inline functions can be deferred in C99/C++.
584     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
585         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
586       return true;
587     return false;
588   }
589 
590   const VarDecl *VD = cast<VarDecl>(Global);
591   assert(VD->isFileVarDecl() && "Invalid decl");
592 
593   // We never want to defer structs that have non-trivial constructors or
594   // destructors.
595 
596   // FIXME: Handle references.
597   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
598     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
599       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
600         return false;
601     }
602   }
603 
604   // Static data may be deferred, but out-of-line static data members
605   // cannot be.
606   Linkage L = VD->getLinkage();
607   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
608       VD->getType()->getLinkage() == UniqueExternalLinkage)
609     L = UniqueExternalLinkage;
610 
611   switch (L) {
612   case NoLinkage:
613   case InternalLinkage:
614   case UniqueExternalLinkage:
615     // Initializer has side effects?
616     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
617       return false;
618     return !(VD->isStaticDataMember() && VD->isOutOfLine());
619 
620   case ExternalLinkage:
621     break;
622   }
623 
624   return false;
625 }
626 
627 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
628   const AliasAttr *AA = VD->getAttr<AliasAttr>();
629   assert(AA && "No alias?");
630 
631   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
632 
633   // Unique the name through the identifier table.
634   const char *AliaseeName =
635     getContext().Idents.get(AA->getAliasee()).getNameStart();
636 
637   // See if there is already something with the target's name in the module.
638   llvm::GlobalValue *Entry = GlobalDeclMap[AliaseeName];
639 
640   llvm::Constant *Aliasee;
641   if (isa<llvm::FunctionType>(DeclTy))
642     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
643   else
644     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
645                                     llvm::PointerType::getUnqual(DeclTy), 0);
646   if (!Entry) {
647     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
648     F->setLinkage(llvm::Function::ExternalWeakLinkage);
649     WeakRefReferences.insert(F);
650   }
651 
652   return Aliasee;
653 }
654 
655 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
656   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
657 
658   // Weak references don't produce any output by themselves.
659   if (Global->hasAttr<WeakRefAttr>())
660     return;
661 
662   // If this is an alias definition (which otherwise looks like a declaration)
663   // emit it now.
664   if (Global->hasAttr<AliasAttr>())
665     return EmitAliasDefinition(Global);
666 
667   // Ignore declarations, they will be emitted on their first use.
668   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
669     // Forward declarations are emitted lazily on first use.
670     if (!FD->isThisDeclarationADefinition())
671       return;
672   } else {
673     const VarDecl *VD = cast<VarDecl>(Global);
674     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
675 
676     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
677       return;
678   }
679 
680   // Defer code generation when possible if this is a static definition, inline
681   // function etc.  These we only want to emit if they are used.
682   if (MayDeferGeneration(Global)) {
683     // If the value has already been used, add it directly to the
684     // DeferredDeclsToEmit list.
685     const char *MangledName = getMangledName(GD);
686     if (GlobalDeclMap.count(MangledName))
687       DeferredDeclsToEmit.push_back(GD);
688     else {
689       // Otherwise, remember that we saw a deferred decl with this name.  The
690       // first use of the mangled name will cause it to move into
691       // DeferredDeclsToEmit.
692       DeferredDecls[MangledName] = GD;
693     }
694     return;
695   }
696 
697   // Otherwise emit the definition.
698   EmitGlobalDefinition(GD);
699 }
700 
701 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
702   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
703 
704   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
705                                  Context.getSourceManager(),
706                                  "Generating code for declaration");
707 
708   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
709     getVtableInfo().MaybeEmitVtable(GD);
710     if (MD->isVirtual() && MD->isOutOfLine() &&
711         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
712       if (isa<CXXDestructorDecl>(D)) {
713         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
714                            GD.getDtorType());
715         BuildThunksForVirtual(CanonGD);
716       } else {
717         BuildThunksForVirtual(MD->getCanonicalDecl());
718       }
719     }
720   }
721 
722   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
723     EmitCXXConstructor(CD, GD.getCtorType());
724   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
725     EmitCXXDestructor(DD, GD.getDtorType());
726   else if (isa<FunctionDecl>(D))
727     EmitGlobalFunctionDefinition(GD);
728   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
729     EmitGlobalVarDefinition(VD);
730   else {
731     assert(0 && "Invalid argument to EmitGlobalDefinition()");
732   }
733 }
734 
735 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
736 /// module, create and return an llvm Function with the specified type. If there
737 /// is something in the module with the specified name, return it potentially
738 /// bitcasted to the right type.
739 ///
740 /// If D is non-null, it specifies a decl that correspond to this.  This is used
741 /// to set the attributes on the function when it is first created.
742 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
743                                                        const llvm::Type *Ty,
744                                                        GlobalDecl D) {
745   // Lookup the entry, lazily creating it if necessary.
746   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
747   if (Entry) {
748     if (WeakRefReferences.count(Entry)) {
749       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
750       if (FD && !FD->hasAttr<WeakAttr>())
751 	Entry->setLinkage(llvm::Function::ExternalLinkage);
752 
753       WeakRefReferences.erase(Entry);
754     }
755 
756     if (Entry->getType()->getElementType() == Ty)
757       return Entry;
758 
759     // Make sure the result is of the correct type.
760     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
761     return llvm::ConstantExpr::getBitCast(Entry, PTy);
762   }
763 
764   // This function doesn't have a complete type (for example, the return
765   // type is an incomplete struct). Use a fake type instead, and make
766   // sure not to try to set attributes.
767   bool IsIncompleteFunction = false;
768   if (!isa<llvm::FunctionType>(Ty)) {
769     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
770                                  std::vector<const llvm::Type*>(), false);
771     IsIncompleteFunction = true;
772   }
773   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
774                                              llvm::Function::ExternalLinkage,
775                                              "", &getModule());
776   F->setName(MangledName);
777   if (D.getDecl())
778     SetFunctionAttributes(D, F, IsIncompleteFunction);
779   Entry = F;
780 
781   // This is the first use or definition of a mangled name.  If there is a
782   // deferred decl with this name, remember that we need to emit it at the end
783   // of the file.
784   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
785     DeferredDecls.find(MangledName);
786   if (DDI != DeferredDecls.end()) {
787     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
788     // list, and remove it from DeferredDecls (since we don't need it anymore).
789     DeferredDeclsToEmit.push_back(DDI->second);
790     DeferredDecls.erase(DDI);
791   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
792     // If this the first reference to a C++ inline function in a class, queue up
793     // the deferred function body for emission.  These are not seen as
794     // top-level declarations.
795     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
796       DeferredDeclsToEmit.push_back(D);
797     // A called constructor which has no definition or declaration need be
798     // synthesized.
799     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
800       if (CD->isImplicit()) {
801         assert (CD->isUsed());
802         DeferredDeclsToEmit.push_back(D);
803       }
804     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
805       if (DD->isImplicit()) {
806         assert (DD->isUsed());
807         DeferredDeclsToEmit.push_back(D);
808       }
809     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
810       if (MD->isCopyAssignment() && MD->isImplicit()) {
811         assert (MD->isUsed());
812         DeferredDeclsToEmit.push_back(D);
813       }
814     }
815   }
816 
817   return F;
818 }
819 
820 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
821 /// non-null, then this function will use the specified type if it has to
822 /// create it (this occurs when we see a definition of the function).
823 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
824                                                  const llvm::Type *Ty) {
825   // If there was no specific requested type, just convert it now.
826   if (!Ty)
827     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
828   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
829 }
830 
831 /// CreateRuntimeFunction - Create a new runtime function with the specified
832 /// type and name.
833 llvm::Constant *
834 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
835                                      const char *Name) {
836   // Convert Name to be a uniqued string from the IdentifierInfo table.
837   Name = getContext().Idents.get(Name).getNameStart();
838   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
839 }
840 
841 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
842   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
843     return false;
844   if (Context.getLangOptions().CPlusPlus &&
845       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
846     // FIXME: We should do something fancier here!
847     return false;
848   }
849   return true;
850 }
851 
852 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
853 /// create and return an llvm GlobalVariable with the specified type.  If there
854 /// is something in the module with the specified name, return it potentially
855 /// bitcasted to the right type.
856 ///
857 /// If D is non-null, it specifies a decl that correspond to this.  This is used
858 /// to set the attributes on the global when it is first created.
859 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
860                                                      const llvm::PointerType*Ty,
861                                                      const VarDecl *D) {
862   // Lookup the entry, lazily creating it if necessary.
863   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
864   if (Entry) {
865     if (WeakRefReferences.count(Entry)) {
866       if (D && !D->hasAttr<WeakAttr>())
867 	Entry->setLinkage(llvm::Function::ExternalLinkage);
868 
869       WeakRefReferences.erase(Entry);
870     }
871 
872     if (Entry->getType() == Ty)
873       return Entry;
874 
875     // Make sure the result is of the correct type.
876     return llvm::ConstantExpr::getBitCast(Entry, Ty);
877   }
878 
879   // This is the first use or definition of a mangled name.  If there is a
880   // deferred decl with this name, remember that we need to emit it at the end
881   // of the file.
882   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
883     DeferredDecls.find(MangledName);
884   if (DDI != DeferredDecls.end()) {
885     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
886     // list, and remove it from DeferredDecls (since we don't need it anymore).
887     DeferredDeclsToEmit.push_back(DDI->second);
888     DeferredDecls.erase(DDI);
889   }
890 
891   llvm::GlobalVariable *GV =
892     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
893                              llvm::GlobalValue::ExternalLinkage,
894                              0, "", 0,
895                              false, Ty->getAddressSpace());
896   GV->setName(MangledName);
897 
898   // Handle things which are present even on external declarations.
899   if (D) {
900     // FIXME: This code is overly simple and should be merged with other global
901     // handling.
902     GV->setConstant(DeclIsConstantGlobal(Context, D));
903 
904     // FIXME: Merge with other attribute handling code.
905     if (D->getStorageClass() == VarDecl::PrivateExtern)
906       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
907 
908     if (D->hasAttr<WeakAttr>() ||
909         D->hasAttr<WeakImportAttr>())
910       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
911 
912     GV->setThreadLocal(D->isThreadSpecified());
913   }
914 
915   return Entry = GV;
916 }
917 
918 
919 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
920 /// given global variable.  If Ty is non-null and if the global doesn't exist,
921 /// then it will be greated with the specified type instead of whatever the
922 /// normal requested type would be.
923 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
924                                                   const llvm::Type *Ty) {
925   assert(D->hasGlobalStorage() && "Not a global variable");
926   QualType ASTTy = D->getType();
927   if (Ty == 0)
928     Ty = getTypes().ConvertTypeForMem(ASTTy);
929 
930   const llvm::PointerType *PTy =
931     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
932   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
933 }
934 
935 /// CreateRuntimeVariable - Create a new runtime global variable with the
936 /// specified type and name.
937 llvm::Constant *
938 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
939                                      const char *Name) {
940   // Convert Name to be a uniqued string from the IdentifierInfo table.
941   Name = getContext().Idents.get(Name).getNameStart();
942   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
943 }
944 
945 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
946   assert(!D->getInit() && "Cannot emit definite definitions here!");
947 
948   if (MayDeferGeneration(D)) {
949     // If we have not seen a reference to this variable yet, place it
950     // into the deferred declarations table to be emitted if needed
951     // later.
952     const char *MangledName = getMangledName(D);
953     if (GlobalDeclMap.count(MangledName) == 0) {
954       DeferredDecls[MangledName] = D;
955       return;
956     }
957   }
958 
959   // The tentative definition is the only definition.
960   EmitGlobalVarDefinition(D);
961 }
962 
963 llvm::GlobalVariable::LinkageTypes
964 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
965   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
966     return llvm::GlobalVariable::InternalLinkage;
967 
968   if (const CXXMethodDecl *KeyFunction
969                                     = RD->getASTContext().getKeyFunction(RD)) {
970     // If this class has a key function, use that to determine the linkage of
971     // the vtable.
972     const FunctionDecl *Def = 0;
973     if (KeyFunction->getBody(Def))
974       KeyFunction = cast<CXXMethodDecl>(Def);
975 
976     switch (KeyFunction->getTemplateSpecializationKind()) {
977       case TSK_Undeclared:
978       case TSK_ExplicitSpecialization:
979         if (KeyFunction->isInlined())
980           return llvm::GlobalVariable::WeakODRLinkage;
981 
982         return llvm::GlobalVariable::ExternalLinkage;
983 
984       case TSK_ImplicitInstantiation:
985       case TSK_ExplicitInstantiationDefinition:
986         return llvm::GlobalVariable::WeakODRLinkage;
987 
988       case TSK_ExplicitInstantiationDeclaration:
989         // FIXME: Use available_externally linkage. However, this currently
990         // breaks LLVM's build due to undefined symbols.
991         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
992         return llvm::GlobalVariable::WeakODRLinkage;
993     }
994   }
995 
996   switch (RD->getTemplateSpecializationKind()) {
997   case TSK_Undeclared:
998   case TSK_ExplicitSpecialization:
999   case TSK_ImplicitInstantiation:
1000   case TSK_ExplicitInstantiationDefinition:
1001     return llvm::GlobalVariable::WeakODRLinkage;
1002 
1003   case TSK_ExplicitInstantiationDeclaration:
1004     // FIXME: Use available_externally linkage. However, this currently
1005     // breaks LLVM's build due to undefined symbols.
1006     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1007     return llvm::GlobalVariable::WeakODRLinkage;
1008   }
1009 
1010   // Silence GCC warning.
1011   return llvm::GlobalVariable::WeakODRLinkage;
1012 }
1013 
1014 static CodeGenModule::GVALinkage
1015 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1016   // If this is a static data member, compute the kind of template
1017   // specialization. Otherwise, this variable is not part of a
1018   // template.
1019   TemplateSpecializationKind TSK = TSK_Undeclared;
1020   if (VD->isStaticDataMember())
1021     TSK = VD->getTemplateSpecializationKind();
1022 
1023   Linkage L = VD->getLinkage();
1024   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1025       VD->getType()->getLinkage() == UniqueExternalLinkage)
1026     L = UniqueExternalLinkage;
1027 
1028   switch (L) {
1029   case NoLinkage:
1030   case InternalLinkage:
1031   case UniqueExternalLinkage:
1032     return CodeGenModule::GVA_Internal;
1033 
1034   case ExternalLinkage:
1035     switch (TSK) {
1036     case TSK_Undeclared:
1037     case TSK_ExplicitSpecialization:
1038 
1039       // FIXME: ExplicitInstantiationDefinition should be weak!
1040     case TSK_ExplicitInstantiationDefinition:
1041       return CodeGenModule::GVA_StrongExternal;
1042 
1043     case TSK_ExplicitInstantiationDeclaration:
1044       llvm_unreachable("Variable should not be instantiated");
1045       // Fall through to treat this like any other instantiation.
1046 
1047     case TSK_ImplicitInstantiation:
1048       return CodeGenModule::GVA_TemplateInstantiation;
1049     }
1050   }
1051 
1052   return CodeGenModule::GVA_StrongExternal;
1053 }
1054 
1055 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1056     return CharUnits::fromQuantity(
1057       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1058 }
1059 
1060 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1061   llvm::Constant *Init = 0;
1062   QualType ASTTy = D->getType();
1063   bool NonConstInit = false;
1064 
1065   const Expr *InitExpr = D->getAnyInitializer();
1066 
1067   if (!InitExpr) {
1068     // This is a tentative definition; tentative definitions are
1069     // implicitly initialized with { 0 }.
1070     //
1071     // Note that tentative definitions are only emitted at the end of
1072     // a translation unit, so they should never have incomplete
1073     // type. In addition, EmitTentativeDefinition makes sure that we
1074     // never attempt to emit a tentative definition if a real one
1075     // exists. A use may still exists, however, so we still may need
1076     // to do a RAUW.
1077     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1078     Init = EmitNullConstant(D->getType());
1079   } else {
1080     Init = EmitConstantExpr(InitExpr, D->getType());
1081 
1082     if (!Init) {
1083       QualType T = InitExpr->getType();
1084       if (getLangOptions().CPlusPlus) {
1085         EmitCXXGlobalVarDeclInitFunc(D);
1086         Init = EmitNullConstant(T);
1087         NonConstInit = true;
1088       } else {
1089         ErrorUnsupported(D, "static initializer");
1090         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1091       }
1092     }
1093   }
1094 
1095   const llvm::Type* InitType = Init->getType();
1096   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1097 
1098   // Strip off a bitcast if we got one back.
1099   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1100     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1101            // all zero index gep.
1102            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1103     Entry = CE->getOperand(0);
1104   }
1105 
1106   // Entry is now either a Function or GlobalVariable.
1107   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1108 
1109   // We have a definition after a declaration with the wrong type.
1110   // We must make a new GlobalVariable* and update everything that used OldGV
1111   // (a declaration or tentative definition) with the new GlobalVariable*
1112   // (which will be a definition).
1113   //
1114   // This happens if there is a prototype for a global (e.g.
1115   // "extern int x[];") and then a definition of a different type (e.g.
1116   // "int x[10];"). This also happens when an initializer has a different type
1117   // from the type of the global (this happens with unions).
1118   if (GV == 0 ||
1119       GV->getType()->getElementType() != InitType ||
1120       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1121 
1122     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1123     GlobalDeclMap.erase(getMangledName(D));
1124 
1125     // Make a new global with the correct type, this is now guaranteed to work.
1126     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1127     GV->takeName(cast<llvm::GlobalValue>(Entry));
1128 
1129     // Replace all uses of the old global with the new global
1130     llvm::Constant *NewPtrForOldDecl =
1131         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1132     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1133 
1134     // Erase the old global, since it is no longer used.
1135     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1136   }
1137 
1138   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1139     SourceManager &SM = Context.getSourceManager();
1140     AddAnnotation(EmitAnnotateAttr(GV, AA,
1141                               SM.getInstantiationLineNumber(D->getLocation())));
1142   }
1143 
1144   GV->setInitializer(Init);
1145 
1146   // If it is safe to mark the global 'constant', do so now.
1147   GV->setConstant(false);
1148   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1149     GV->setConstant(true);
1150 
1151   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1152 
1153   // Set the llvm linkage type as appropriate.
1154   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1155   if (Linkage == GVA_Internal)
1156     GV->setLinkage(llvm::Function::InternalLinkage);
1157   else if (D->hasAttr<DLLImportAttr>())
1158     GV->setLinkage(llvm::Function::DLLImportLinkage);
1159   else if (D->hasAttr<DLLExportAttr>())
1160     GV->setLinkage(llvm::Function::DLLExportLinkage);
1161   else if (D->hasAttr<WeakAttr>()) {
1162     if (GV->isConstant())
1163       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1164     else
1165       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1166   } else if (Linkage == GVA_TemplateInstantiation)
1167     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1168   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1169            !D->hasExternalStorage() && !D->getInit() &&
1170            !D->getAttr<SectionAttr>()) {
1171     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1172     // common vars aren't constant even if declared const.
1173     GV->setConstant(false);
1174   } else
1175     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1176 
1177   SetCommonAttributes(D, GV);
1178 
1179   // Emit global variable debug information.
1180   if (CGDebugInfo *DI = getDebugInfo()) {
1181     DI->setLocation(D->getLocation());
1182     DI->EmitGlobalVariable(GV, D);
1183   }
1184 }
1185 
1186 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1187 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1188 /// existing call uses of the old function in the module, this adjusts them to
1189 /// call the new function directly.
1190 ///
1191 /// This is not just a cleanup: the always_inline pass requires direct calls to
1192 /// functions to be able to inline them.  If there is a bitcast in the way, it
1193 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1194 /// run at -O0.
1195 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1196                                                       llvm::Function *NewFn) {
1197   // If we're redefining a global as a function, don't transform it.
1198   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1199   if (OldFn == 0) return;
1200 
1201   const llvm::Type *NewRetTy = NewFn->getReturnType();
1202   llvm::SmallVector<llvm::Value*, 4> ArgList;
1203 
1204   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1205        UI != E; ) {
1206     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1207     unsigned OpNo = UI.getOperandNo();
1208     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1209     if (!CI || OpNo != 0) continue;
1210 
1211     // If the return types don't match exactly, and if the call isn't dead, then
1212     // we can't transform this call.
1213     if (CI->getType() != NewRetTy && !CI->use_empty())
1214       continue;
1215 
1216     // If the function was passed too few arguments, don't transform.  If extra
1217     // arguments were passed, we silently drop them.  If any of the types
1218     // mismatch, we don't transform.
1219     unsigned ArgNo = 0;
1220     bool DontTransform = false;
1221     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1222          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1223       if (CI->getNumOperands()-1 == ArgNo ||
1224           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1225         DontTransform = true;
1226         break;
1227       }
1228     }
1229     if (DontTransform)
1230       continue;
1231 
1232     // Okay, we can transform this.  Create the new call instruction and copy
1233     // over the required information.
1234     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1235     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1236                                                      ArgList.end(), "", CI);
1237     ArgList.clear();
1238     if (!NewCall->getType()->isVoidTy())
1239       NewCall->takeName(CI);
1240     NewCall->setAttributes(CI->getAttributes());
1241     NewCall->setCallingConv(CI->getCallingConv());
1242 
1243     // Finally, remove the old call, replacing any uses with the new one.
1244     if (!CI->use_empty())
1245       CI->replaceAllUsesWith(NewCall);
1246 
1247     // Copy any custom metadata attached with CI.
1248     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1249       NewCall->setMetadata("dbg", DbgNode);
1250     CI->eraseFromParent();
1251   }
1252 }
1253 
1254 
1255 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1256   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1257   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1258   getMangleContext().mangleInitDiscriminator();
1259   // Get or create the prototype for the function.
1260   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1261 
1262   // Strip off a bitcast if we got one back.
1263   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1264     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1265     Entry = CE->getOperand(0);
1266   }
1267 
1268 
1269   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1270     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1271 
1272     // If the types mismatch then we have to rewrite the definition.
1273     assert(OldFn->isDeclaration() &&
1274            "Shouldn't replace non-declaration");
1275 
1276     // F is the Function* for the one with the wrong type, we must make a new
1277     // Function* and update everything that used F (a declaration) with the new
1278     // Function* (which will be a definition).
1279     //
1280     // This happens if there is a prototype for a function
1281     // (e.g. "int f()") and then a definition of a different type
1282     // (e.g. "int f(int x)").  Start by making a new function of the
1283     // correct type, RAUW, then steal the name.
1284     GlobalDeclMap.erase(getMangledName(D));
1285     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1286     NewFn->takeName(OldFn);
1287 
1288     // If this is an implementation of a function without a prototype, try to
1289     // replace any existing uses of the function (which may be calls) with uses
1290     // of the new function
1291     if (D->getType()->isFunctionNoProtoType()) {
1292       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1293       OldFn->removeDeadConstantUsers();
1294     }
1295 
1296     // Replace uses of F with the Function we will endow with a body.
1297     if (!Entry->use_empty()) {
1298       llvm::Constant *NewPtrForOldDecl =
1299         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1300       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1301     }
1302 
1303     // Ok, delete the old function now, which is dead.
1304     OldFn->eraseFromParent();
1305 
1306     Entry = NewFn;
1307   }
1308 
1309   llvm::Function *Fn = cast<llvm::Function>(Entry);
1310 
1311   CodeGenFunction(*this).GenerateCode(D, Fn);
1312 
1313   SetFunctionDefinitionAttributes(D, Fn);
1314   SetLLVMFunctionAttributesForDefinition(D, Fn);
1315 
1316   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1317     AddGlobalCtor(Fn, CA->getPriority());
1318   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1319     AddGlobalDtor(Fn, DA->getPriority());
1320 }
1321 
1322 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1323   const AliasAttr *AA = D->getAttr<AliasAttr>();
1324   assert(AA && "Not an alias?");
1325 
1326   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1327 
1328   // Unique the name through the identifier table.
1329   const char *AliaseeName =
1330     getContext().Idents.get(AA->getAliasee()).getNameStart();
1331 
1332   // Create a reference to the named value.  This ensures that it is emitted
1333   // if a deferred decl.
1334   llvm::Constant *Aliasee;
1335   if (isa<llvm::FunctionType>(DeclTy))
1336     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1337   else
1338     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1339                                     llvm::PointerType::getUnqual(DeclTy), 0);
1340 
1341   // Create the new alias itself, but don't set a name yet.
1342   llvm::GlobalValue *GA =
1343     new llvm::GlobalAlias(Aliasee->getType(),
1344                           llvm::Function::ExternalLinkage,
1345                           "", Aliasee, &getModule());
1346 
1347   // See if there is already something with the alias' name in the module.
1348   const char *MangledName = getMangledName(D);
1349   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1350 
1351   if (Entry && !Entry->isDeclaration()) {
1352     // If there is a definition in the module, then it wins over the alias.
1353     // This is dubious, but allow it to be safe.  Just ignore the alias.
1354     GA->eraseFromParent();
1355     return;
1356   }
1357 
1358   if (Entry) {
1359     // If there is a declaration in the module, then we had an extern followed
1360     // by the alias, as in:
1361     //   extern int test6();
1362     //   ...
1363     //   int test6() __attribute__((alias("test7")));
1364     //
1365     // Remove it and replace uses of it with the alias.
1366 
1367     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1368                                                           Entry->getType()));
1369     Entry->eraseFromParent();
1370   }
1371 
1372   // Now we know that there is no conflict, set the name.
1373   Entry = GA;
1374   GA->setName(MangledName);
1375 
1376   // Set attributes which are particular to an alias; this is a
1377   // specialization of the attributes which may be set on a global
1378   // variable/function.
1379   if (D->hasAttr<DLLExportAttr>()) {
1380     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1381       // The dllexport attribute is ignored for undefined symbols.
1382       if (FD->getBody())
1383         GA->setLinkage(llvm::Function::DLLExportLinkage);
1384     } else {
1385       GA->setLinkage(llvm::Function::DLLExportLinkage);
1386     }
1387   } else if (D->hasAttr<WeakAttr>() ||
1388              D->hasAttr<WeakRefAttr>() ||
1389              D->hasAttr<WeakImportAttr>()) {
1390     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1391   }
1392 
1393   SetCommonAttributes(D, GA);
1394 }
1395 
1396 /// getBuiltinLibFunction - Given a builtin id for a function like
1397 /// "__builtin_fabsf", return a Function* for "fabsf".
1398 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1399                                                   unsigned BuiltinID) {
1400   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1401           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1402          "isn't a lib fn");
1403 
1404   // Get the name, skip over the __builtin_ prefix (if necessary).
1405   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1406   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1407     Name += 10;
1408 
1409   const llvm::FunctionType *Ty =
1410     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1411 
1412   // Unique the name through the identifier table.
1413   Name = getContext().Idents.get(Name).getNameStart();
1414   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1415 }
1416 
1417 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1418                                             unsigned NumTys) {
1419   return llvm::Intrinsic::getDeclaration(&getModule(),
1420                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1421 }
1422 
1423 llvm::Function *CodeGenModule::getMemCpyFn() {
1424   if (MemCpyFn) return MemCpyFn;
1425   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1426   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1427 }
1428 
1429 llvm::Function *CodeGenModule::getMemMoveFn() {
1430   if (MemMoveFn) return MemMoveFn;
1431   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1432   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1433 }
1434 
1435 llvm::Function *CodeGenModule::getMemSetFn() {
1436   if (MemSetFn) return MemSetFn;
1437   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1438   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1439 }
1440 
1441 static llvm::StringMapEntry<llvm::Constant*> &
1442 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1443                          const StringLiteral *Literal,
1444                          bool TargetIsLSB,
1445                          bool &IsUTF16,
1446                          unsigned &StringLength) {
1447   unsigned NumBytes = Literal->getByteLength();
1448 
1449   // Check for simple case.
1450   if (!Literal->containsNonAsciiOrNull()) {
1451     StringLength = NumBytes;
1452     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1453                                                 StringLength));
1454   }
1455 
1456   // Otherwise, convert the UTF8 literals into a byte string.
1457   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1458   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1459   UTF16 *ToPtr = &ToBuf[0];
1460 
1461   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1462                                                &ToPtr, ToPtr + NumBytes,
1463                                                strictConversion);
1464 
1465   // Check for conversion failure.
1466   if (Result != conversionOK) {
1467     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1468     // this duplicate code.
1469     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1470     StringLength = NumBytes;
1471     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1472                                                 StringLength));
1473   }
1474 
1475   // ConvertUTF8toUTF16 returns the length in ToPtr.
1476   StringLength = ToPtr - &ToBuf[0];
1477 
1478   // Render the UTF-16 string into a byte array and convert to the target byte
1479   // order.
1480   //
1481   // FIXME: This isn't something we should need to do here.
1482   llvm::SmallString<128> AsBytes;
1483   AsBytes.reserve(StringLength * 2);
1484   for (unsigned i = 0; i != StringLength; ++i) {
1485     unsigned short Val = ToBuf[i];
1486     if (TargetIsLSB) {
1487       AsBytes.push_back(Val & 0xFF);
1488       AsBytes.push_back(Val >> 8);
1489     } else {
1490       AsBytes.push_back(Val >> 8);
1491       AsBytes.push_back(Val & 0xFF);
1492     }
1493   }
1494   // Append one extra null character, the second is automatically added by our
1495   // caller.
1496   AsBytes.push_back(0);
1497 
1498   IsUTF16 = true;
1499   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1500 }
1501 
1502 llvm::Constant *
1503 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1504   unsigned StringLength = 0;
1505   bool isUTF16 = false;
1506   llvm::StringMapEntry<llvm::Constant*> &Entry =
1507     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1508                              getTargetData().isLittleEndian(),
1509                              isUTF16, StringLength);
1510 
1511   if (llvm::Constant *C = Entry.getValue())
1512     return C;
1513 
1514   llvm::Constant *Zero =
1515       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1516   llvm::Constant *Zeros[] = { Zero, Zero };
1517 
1518   // If we don't already have it, get __CFConstantStringClassReference.
1519   if (!CFConstantStringClassRef) {
1520     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1521     Ty = llvm::ArrayType::get(Ty, 0);
1522     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1523                                            "__CFConstantStringClassReference");
1524     // Decay array -> ptr
1525     CFConstantStringClassRef =
1526       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1527   }
1528 
1529   QualType CFTy = getContext().getCFConstantStringType();
1530 
1531   const llvm::StructType *STy =
1532     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1533 
1534   std::vector<llvm::Constant*> Fields(4);
1535 
1536   // Class pointer.
1537   Fields[0] = CFConstantStringClassRef;
1538 
1539   // Flags.
1540   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1541   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1542     llvm::ConstantInt::get(Ty, 0x07C8);
1543 
1544   // String pointer.
1545   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1546 
1547   llvm::GlobalValue::LinkageTypes Linkage;
1548   bool isConstant;
1549   if (isUTF16) {
1550     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1551     Linkage = llvm::GlobalValue::InternalLinkage;
1552     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1553     // does make plain ascii ones writable.
1554     isConstant = true;
1555   } else {
1556     Linkage = llvm::GlobalValue::PrivateLinkage;
1557     isConstant = !Features.WritableStrings;
1558   }
1559 
1560   llvm::GlobalVariable *GV =
1561     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1562                              ".str");
1563   if (isUTF16) {
1564     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1565     GV->setAlignment(Align.getQuantity());
1566   }
1567   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1568 
1569   // String length.
1570   Ty = getTypes().ConvertType(getContext().LongTy);
1571   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1572 
1573   // The struct.
1574   C = llvm::ConstantStruct::get(STy, Fields);
1575   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1576                                 llvm::GlobalVariable::PrivateLinkage, C,
1577                                 "_unnamed_cfstring_");
1578   if (const char *Sect = getContext().Target.getCFStringSection())
1579     GV->setSection(Sect);
1580   Entry.setValue(GV);
1581 
1582   return GV;
1583 }
1584 
1585 /// GetStringForStringLiteral - Return the appropriate bytes for a
1586 /// string literal, properly padded to match the literal type.
1587 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1588   const char *StrData = E->getStrData();
1589   unsigned Len = E->getByteLength();
1590 
1591   const ConstantArrayType *CAT =
1592     getContext().getAsConstantArrayType(E->getType());
1593   assert(CAT && "String isn't pointer or array!");
1594 
1595   // Resize the string to the right size.
1596   std::string Str(StrData, StrData+Len);
1597   uint64_t RealLen = CAT->getSize().getZExtValue();
1598 
1599   if (E->isWide())
1600     RealLen *= getContext().Target.getWCharWidth()/8;
1601 
1602   Str.resize(RealLen, '\0');
1603 
1604   return Str;
1605 }
1606 
1607 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1608 /// constant array for the given string literal.
1609 llvm::Constant *
1610 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1611   // FIXME: This can be more efficient.
1612   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1613   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1614   if (S->isWide()) {
1615     llvm::Type *DestTy =
1616         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1617     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1618   }
1619   return C;
1620 }
1621 
1622 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1623 /// array for the given ObjCEncodeExpr node.
1624 llvm::Constant *
1625 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1626   std::string Str;
1627   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1628 
1629   return GetAddrOfConstantCString(Str);
1630 }
1631 
1632 
1633 /// GenerateWritableString -- Creates storage for a string literal.
1634 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1635                                              bool constant,
1636                                              CodeGenModule &CGM,
1637                                              const char *GlobalName) {
1638   // Create Constant for this string literal. Don't add a '\0'.
1639   llvm::Constant *C =
1640       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1641 
1642   // Create a global variable for this string
1643   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1644                                   llvm::GlobalValue::PrivateLinkage,
1645                                   C, GlobalName);
1646 }
1647 
1648 /// GetAddrOfConstantString - Returns a pointer to a character array
1649 /// containing the literal. This contents are exactly that of the
1650 /// given string, i.e. it will not be null terminated automatically;
1651 /// see GetAddrOfConstantCString. Note that whether the result is
1652 /// actually a pointer to an LLVM constant depends on
1653 /// Feature.WriteableStrings.
1654 ///
1655 /// The result has pointer to array type.
1656 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1657                                                        const char *GlobalName) {
1658   bool IsConstant = !Features.WritableStrings;
1659 
1660   // Get the default prefix if a name wasn't specified.
1661   if (!GlobalName)
1662     GlobalName = ".str";
1663 
1664   // Don't share any string literals if strings aren't constant.
1665   if (!IsConstant)
1666     return GenerateStringLiteral(str, false, *this, GlobalName);
1667 
1668   llvm::StringMapEntry<llvm::Constant *> &Entry =
1669     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1670 
1671   if (Entry.getValue())
1672     return Entry.getValue();
1673 
1674   // Create a global variable for this.
1675   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1676   Entry.setValue(C);
1677   return C;
1678 }
1679 
1680 /// GetAddrOfConstantCString - Returns a pointer to a character
1681 /// array containing the literal and a terminating '\-'
1682 /// character. The result has pointer to array type.
1683 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1684                                                         const char *GlobalName){
1685   return GetAddrOfConstantString(str + '\0', GlobalName);
1686 }
1687 
1688 /// EmitObjCPropertyImplementations - Emit information for synthesized
1689 /// properties for an implementation.
1690 void CodeGenModule::EmitObjCPropertyImplementations(const
1691                                                     ObjCImplementationDecl *D) {
1692   for (ObjCImplementationDecl::propimpl_iterator
1693          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1694     ObjCPropertyImplDecl *PID = *i;
1695 
1696     // Dynamic is just for type-checking.
1697     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1698       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1699 
1700       // Determine which methods need to be implemented, some may have
1701       // been overridden. Note that ::isSynthesized is not the method
1702       // we want, that just indicates if the decl came from a
1703       // property. What we want to know is if the method is defined in
1704       // this implementation.
1705       if (!D->getInstanceMethod(PD->getGetterName()))
1706         CodeGenFunction(*this).GenerateObjCGetter(
1707                                  const_cast<ObjCImplementationDecl *>(D), PID);
1708       if (!PD->isReadOnly() &&
1709           !D->getInstanceMethod(PD->getSetterName()))
1710         CodeGenFunction(*this).GenerateObjCSetter(
1711                                  const_cast<ObjCImplementationDecl *>(D), PID);
1712     }
1713   }
1714 }
1715 
1716 /// EmitNamespace - Emit all declarations in a namespace.
1717 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1718   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1719        I != E; ++I)
1720     EmitTopLevelDecl(*I);
1721 }
1722 
1723 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1724 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1725   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1726       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1727     ErrorUnsupported(LSD, "linkage spec");
1728     return;
1729   }
1730 
1731   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1732        I != E; ++I)
1733     EmitTopLevelDecl(*I);
1734 }
1735 
1736 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1737 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1738   // If an error has occurred, stop code generation, but continue
1739   // parsing and semantic analysis (to ensure all warnings and errors
1740   // are emitted).
1741   if (Diags.hasErrorOccurred())
1742     return;
1743 
1744   // Ignore dependent declarations.
1745   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1746     return;
1747 
1748   switch (D->getKind()) {
1749   case Decl::CXXConversion:
1750   case Decl::CXXMethod:
1751   case Decl::Function:
1752     // Skip function templates
1753     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1754       return;
1755 
1756     EmitGlobal(cast<FunctionDecl>(D));
1757     break;
1758 
1759   case Decl::Var:
1760     EmitGlobal(cast<VarDecl>(D));
1761     break;
1762 
1763   // C++ Decls
1764   case Decl::Namespace:
1765     EmitNamespace(cast<NamespaceDecl>(D));
1766     break;
1767     // No code generation needed.
1768   case Decl::UsingShadow:
1769   case Decl::Using:
1770   case Decl::UsingDirective:
1771   case Decl::ClassTemplate:
1772   case Decl::FunctionTemplate:
1773   case Decl::NamespaceAlias:
1774     break;
1775   case Decl::CXXConstructor:
1776     // Skip function templates
1777     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1778       return;
1779 
1780     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1781     break;
1782   case Decl::CXXDestructor:
1783     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1784     break;
1785 
1786   case Decl::StaticAssert:
1787     // Nothing to do.
1788     break;
1789 
1790   // Objective-C Decls
1791 
1792   // Forward declarations, no (immediate) code generation.
1793   case Decl::ObjCClass:
1794   case Decl::ObjCForwardProtocol:
1795   case Decl::ObjCCategory:
1796   case Decl::ObjCInterface:
1797     break;
1798 
1799   case Decl::ObjCProtocol:
1800     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1801     break;
1802 
1803   case Decl::ObjCCategoryImpl:
1804     // Categories have properties but don't support synthesize so we
1805     // can ignore them here.
1806     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1807     break;
1808 
1809   case Decl::ObjCImplementation: {
1810     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1811     EmitObjCPropertyImplementations(OMD);
1812     Runtime->GenerateClass(OMD);
1813     break;
1814   }
1815   case Decl::ObjCMethod: {
1816     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1817     // If this is not a prototype, emit the body.
1818     if (OMD->getBody())
1819       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1820     break;
1821   }
1822   case Decl::ObjCCompatibleAlias:
1823     // compatibility-alias is a directive and has no code gen.
1824     break;
1825 
1826   case Decl::LinkageSpec:
1827     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1828     break;
1829 
1830   case Decl::FileScopeAsm: {
1831     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1832     llvm::StringRef AsmString = AD->getAsmString()->getString();
1833 
1834     const std::string &S = getModule().getModuleInlineAsm();
1835     if (S.empty())
1836       getModule().setModuleInlineAsm(AsmString);
1837     else
1838       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1839     break;
1840   }
1841 
1842   default:
1843     // Make sure we handled everything we should, every other kind is a
1844     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1845     // function. Need to recode Decl::Kind to do that easily.
1846     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1847   }
1848 }
1849