1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/ADT/Triple.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/Support/CRC.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/ConvertUTF.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/X86TargetParser.h" 71 #include "llvm/Support/xxhash.h" 72 73 using namespace clang; 74 using namespace CodeGen; 75 76 static llvm::cl::opt<bool> LimitedCoverage( 77 "limited-coverage-experimental", llvm::cl::Hidden, 78 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 79 80 static const char AnnotationSection[] = "llvm.metadata"; 81 82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 83 switch (CGM.getContext().getCXXABIKind()) { 84 case TargetCXXABI::AppleARM64: 85 case TargetCXXABI::Fuchsia: 86 case TargetCXXABI::GenericAArch64: 87 case TargetCXXABI::GenericARM: 88 case TargetCXXABI::iOS: 89 case TargetCXXABI::WatchOS: 90 case TargetCXXABI::GenericMIPS: 91 case TargetCXXABI::GenericItanium: 92 case TargetCXXABI::WebAssembly: 93 case TargetCXXABI::XL: 94 return CreateItaniumCXXABI(CGM); 95 case TargetCXXABI::Microsoft: 96 return CreateMicrosoftCXXABI(CGM); 97 } 98 99 llvm_unreachable("invalid C++ ABI kind"); 100 } 101 102 CodeGenModule::CodeGenModule(ASTContext &C, 103 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 104 const HeaderSearchOptions &HSO, 105 const PreprocessorOptions &PPO, 106 const CodeGenOptions &CGO, llvm::Module &M, 107 DiagnosticsEngine &diags, 108 CoverageSourceInfo *CoverageInfo) 109 : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)), 110 HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO), 111 TheModule(M), Diags(diags), Target(C.getTargetInfo()), 112 ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this), 113 VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) { 114 115 // Initialize the type cache. 116 llvm::LLVMContext &LLVMContext = M.getContext(); 117 VoidTy = llvm::Type::getVoidTy(LLVMContext); 118 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 119 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 120 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 121 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 122 HalfTy = llvm::Type::getHalfTy(LLVMContext); 123 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 124 FloatTy = llvm::Type::getFloatTy(LLVMContext); 125 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 126 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 127 PointerAlignInBytes = 128 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 129 SizeSizeInBytes = 130 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 131 IntAlignInBytes = 132 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 133 CharTy = 134 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 135 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 136 IntPtrTy = llvm::IntegerType::get(LLVMContext, 137 C.getTargetInfo().getMaxPointerWidth()); 138 Int8PtrTy = Int8Ty->getPointerTo(0); 139 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 140 const llvm::DataLayout &DL = M.getDataLayout(); 141 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 142 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 143 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 144 145 // Build C++20 Module initializers. 146 // TODO: Add Microsoft here once we know the mangling required for the 147 // initializers. 148 CXX20ModuleInits = 149 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 150 ItaniumMangleContext::MK_Itanium; 151 152 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 153 154 if (LangOpts.ObjC) 155 createObjCRuntime(); 156 if (LangOpts.OpenCL) 157 createOpenCLRuntime(); 158 if (LangOpts.OpenMP) 159 createOpenMPRuntime(); 160 if (LangOpts.CUDA) 161 createCUDARuntime(); 162 if (LangOpts.HLSL) 163 createHLSLRuntime(); 164 165 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 166 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 167 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 168 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 169 getCXXABI().getMangleContext())); 170 171 // If debug info or coverage generation is enabled, create the CGDebugInfo 172 // object. 173 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 174 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 175 DebugInfo.reset(new CGDebugInfo(*this)); 176 177 Block.GlobalUniqueCount = 0; 178 179 if (C.getLangOpts().ObjC) 180 ObjCData.reset(new ObjCEntrypoints()); 181 182 if (CodeGenOpts.hasProfileClangUse()) { 183 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 184 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 185 if (auto E = ReaderOrErr.takeError()) { 186 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 187 "Could not read profile %0: %1"); 188 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 189 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 190 << EI.message(); 191 }); 192 } else 193 PGOReader = std::move(ReaderOrErr.get()); 194 } 195 196 // If coverage mapping generation is enabled, create the 197 // CoverageMappingModuleGen object. 198 if (CodeGenOpts.CoverageMapping) 199 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 200 201 // Generate the module name hash here if needed. 202 if (CodeGenOpts.UniqueInternalLinkageNames && 203 !getModule().getSourceFileName().empty()) { 204 std::string Path = getModule().getSourceFileName(); 205 // Check if a path substitution is needed from the MacroPrefixMap. 206 for (const auto &Entry : LangOpts.MacroPrefixMap) 207 if (Path.rfind(Entry.first, 0) != std::string::npos) { 208 Path = Entry.second + Path.substr(Entry.first.size()); 209 break; 210 } 211 llvm::MD5 Md5; 212 Md5.update(Path); 213 llvm::MD5::MD5Result R; 214 Md5.final(R); 215 SmallString<32> Str; 216 llvm::MD5::stringifyResult(R, Str); 217 // Convert MD5hash to Decimal. Demangler suffixes can either contain 218 // numbers or characters but not both. 219 llvm::APInt IntHash(128, Str.str(), 16); 220 // Prepend "__uniq" before the hash for tools like profilers to understand 221 // that this symbol is of internal linkage type. The "__uniq" is the 222 // pre-determined prefix that is used to tell tools that this symbol was 223 // created with -funique-internal-linakge-symbols and the tools can strip or 224 // keep the prefix as needed. 225 ModuleNameHash = (Twine(".__uniq.") + 226 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 227 } 228 } 229 230 CodeGenModule::~CodeGenModule() {} 231 232 void CodeGenModule::createObjCRuntime() { 233 // This is just isGNUFamily(), but we want to force implementors of 234 // new ABIs to decide how best to do this. 235 switch (LangOpts.ObjCRuntime.getKind()) { 236 case ObjCRuntime::GNUstep: 237 case ObjCRuntime::GCC: 238 case ObjCRuntime::ObjFW: 239 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 240 return; 241 242 case ObjCRuntime::FragileMacOSX: 243 case ObjCRuntime::MacOSX: 244 case ObjCRuntime::iOS: 245 case ObjCRuntime::WatchOS: 246 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 247 return; 248 } 249 llvm_unreachable("bad runtime kind"); 250 } 251 252 void CodeGenModule::createOpenCLRuntime() { 253 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 254 } 255 256 void CodeGenModule::createOpenMPRuntime() { 257 // Select a specialized code generation class based on the target, if any. 258 // If it does not exist use the default implementation. 259 switch (getTriple().getArch()) { 260 case llvm::Triple::nvptx: 261 case llvm::Triple::nvptx64: 262 case llvm::Triple::amdgcn: 263 assert(getLangOpts().OpenMPIsDevice && 264 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 265 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 266 break; 267 default: 268 if (LangOpts.OpenMPSimd) 269 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 270 else 271 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 272 break; 273 } 274 } 275 276 void CodeGenModule::createCUDARuntime() { 277 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 278 } 279 280 void CodeGenModule::createHLSLRuntime() { 281 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 282 } 283 284 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 285 Replacements[Name] = C; 286 } 287 288 void CodeGenModule::applyReplacements() { 289 for (auto &I : Replacements) { 290 StringRef MangledName = I.first(); 291 llvm::Constant *Replacement = I.second; 292 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 293 if (!Entry) 294 continue; 295 auto *OldF = cast<llvm::Function>(Entry); 296 auto *NewF = dyn_cast<llvm::Function>(Replacement); 297 if (!NewF) { 298 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 299 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 300 } else { 301 auto *CE = cast<llvm::ConstantExpr>(Replacement); 302 assert(CE->getOpcode() == llvm::Instruction::BitCast || 303 CE->getOpcode() == llvm::Instruction::GetElementPtr); 304 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 305 } 306 } 307 308 // Replace old with new, but keep the old order. 309 OldF->replaceAllUsesWith(Replacement); 310 if (NewF) { 311 NewF->removeFromParent(); 312 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 313 NewF); 314 } 315 OldF->eraseFromParent(); 316 } 317 } 318 319 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 320 GlobalValReplacements.push_back(std::make_pair(GV, C)); 321 } 322 323 void CodeGenModule::applyGlobalValReplacements() { 324 for (auto &I : GlobalValReplacements) { 325 llvm::GlobalValue *GV = I.first; 326 llvm::Constant *C = I.second; 327 328 GV->replaceAllUsesWith(C); 329 GV->eraseFromParent(); 330 } 331 } 332 333 // This is only used in aliases that we created and we know they have a 334 // linear structure. 335 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 336 const llvm::Constant *C; 337 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 338 C = GA->getAliasee(); 339 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 340 C = GI->getResolver(); 341 else 342 return GV; 343 344 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 345 if (!AliaseeGV) 346 return nullptr; 347 348 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 349 if (FinalGV == GV) 350 return nullptr; 351 352 return FinalGV; 353 } 354 355 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 356 SourceLocation Location, bool IsIFunc, 357 const llvm::GlobalValue *Alias, 358 const llvm::GlobalValue *&GV) { 359 GV = getAliasedGlobal(Alias); 360 if (!GV) { 361 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 362 return false; 363 } 364 365 if (GV->isDeclaration()) { 366 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 367 return false; 368 } 369 370 if (IsIFunc) { 371 // Check resolver function type. 372 const auto *F = dyn_cast<llvm::Function>(GV); 373 if (!F) { 374 Diags.Report(Location, diag::err_alias_to_undefined) 375 << IsIFunc << IsIFunc; 376 return false; 377 } 378 379 llvm::FunctionType *FTy = F->getFunctionType(); 380 if (!FTy->getReturnType()->isPointerTy()) { 381 Diags.Report(Location, diag::err_ifunc_resolver_return); 382 return false; 383 } 384 } 385 386 return true; 387 } 388 389 void CodeGenModule::checkAliases() { 390 // Check if the constructed aliases are well formed. It is really unfortunate 391 // that we have to do this in CodeGen, but we only construct mangled names 392 // and aliases during codegen. 393 bool Error = false; 394 DiagnosticsEngine &Diags = getDiags(); 395 for (const GlobalDecl &GD : Aliases) { 396 const auto *D = cast<ValueDecl>(GD.getDecl()); 397 SourceLocation Location; 398 bool IsIFunc = D->hasAttr<IFuncAttr>(); 399 if (const Attr *A = D->getDefiningAttr()) 400 Location = A->getLocation(); 401 else 402 llvm_unreachable("Not an alias or ifunc?"); 403 404 StringRef MangledName = getMangledName(GD); 405 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 406 const llvm::GlobalValue *GV = nullptr; 407 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 408 Error = true; 409 continue; 410 } 411 412 llvm::Constant *Aliasee = 413 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 414 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 415 416 llvm::GlobalValue *AliaseeGV; 417 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 418 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 419 else 420 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 421 422 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 423 StringRef AliasSection = SA->getName(); 424 if (AliasSection != AliaseeGV->getSection()) 425 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 426 << AliasSection << IsIFunc << IsIFunc; 427 } 428 429 // We have to handle alias to weak aliases in here. LLVM itself disallows 430 // this since the object semantics would not match the IL one. For 431 // compatibility with gcc we implement it by just pointing the alias 432 // to its aliasee's aliasee. We also warn, since the user is probably 433 // expecting the link to be weak. 434 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 435 if (GA->isInterposable()) { 436 Diags.Report(Location, diag::warn_alias_to_weak_alias) 437 << GV->getName() << GA->getName() << IsIFunc; 438 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 439 GA->getAliasee(), Alias->getType()); 440 441 if (IsIFunc) 442 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 443 else 444 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 445 } 446 } 447 } 448 if (!Error) 449 return; 450 451 for (const GlobalDecl &GD : Aliases) { 452 StringRef MangledName = getMangledName(GD); 453 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 454 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 455 Alias->eraseFromParent(); 456 } 457 } 458 459 void CodeGenModule::clear() { 460 DeferredDeclsToEmit.clear(); 461 EmittedDeferredDecls.clear(); 462 if (OpenMPRuntime) 463 OpenMPRuntime->clear(); 464 } 465 466 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 467 StringRef MainFile) { 468 if (!hasDiagnostics()) 469 return; 470 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 471 if (MainFile.empty()) 472 MainFile = "<stdin>"; 473 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 474 } else { 475 if (Mismatched > 0) 476 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 477 478 if (Missing > 0) 479 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 480 } 481 } 482 483 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 484 llvm::Module &M) { 485 if (!LO.VisibilityFromDLLStorageClass) 486 return; 487 488 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 489 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 490 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 491 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 492 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 493 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 494 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 495 CodeGenModule::GetLLVMVisibility( 496 LO.getExternDeclNoDLLStorageClassVisibility()); 497 498 for (llvm::GlobalValue &GV : M.global_values()) { 499 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 500 continue; 501 502 // Reset DSO locality before setting the visibility. This removes 503 // any effects that visibility options and annotations may have 504 // had on the DSO locality. Setting the visibility will implicitly set 505 // appropriate globals to DSO Local; however, this will be pessimistic 506 // w.r.t. to the normal compiler IRGen. 507 GV.setDSOLocal(false); 508 509 if (GV.isDeclarationForLinker()) { 510 GV.setVisibility(GV.getDLLStorageClass() == 511 llvm::GlobalValue::DLLImportStorageClass 512 ? ExternDeclDLLImportVisibility 513 : ExternDeclNoDLLStorageClassVisibility); 514 } else { 515 GV.setVisibility(GV.getDLLStorageClass() == 516 llvm::GlobalValue::DLLExportStorageClass 517 ? DLLExportVisibility 518 : NoDLLStorageClassVisibility); 519 } 520 521 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 522 } 523 } 524 525 void CodeGenModule::Release() { 526 Module *Primary = getContext().getModuleForCodeGen(); 527 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 528 EmitModuleInitializers(Primary); 529 EmitDeferred(); 530 DeferredDecls.insert(EmittedDeferredDecls.begin(), 531 EmittedDeferredDecls.end()); 532 EmittedDeferredDecls.clear(); 533 EmitVTablesOpportunistically(); 534 applyGlobalValReplacements(); 535 applyReplacements(); 536 emitMultiVersionFunctions(); 537 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 538 EmitCXXModuleInitFunc(Primary); 539 else 540 EmitCXXGlobalInitFunc(); 541 EmitCXXGlobalCleanUpFunc(); 542 registerGlobalDtorsWithAtExit(); 543 EmitCXXThreadLocalInitFunc(); 544 if (ObjCRuntime) 545 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 546 AddGlobalCtor(ObjCInitFunction); 547 if (Context.getLangOpts().CUDA && CUDARuntime) { 548 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 549 AddGlobalCtor(CudaCtorFunction); 550 } 551 if (OpenMPRuntime) { 552 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 553 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 554 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 555 } 556 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 557 OpenMPRuntime->clear(); 558 } 559 if (PGOReader) { 560 getModule().setProfileSummary( 561 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 562 llvm::ProfileSummary::PSK_Instr); 563 if (PGOStats.hasDiagnostics()) 564 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 565 } 566 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 567 return L.LexOrder < R.LexOrder; 568 }); 569 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 570 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 571 EmitGlobalAnnotations(); 572 EmitStaticExternCAliases(); 573 checkAliases(); 574 EmitDeferredUnusedCoverageMappings(); 575 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 576 if (CoverageMapping) 577 CoverageMapping->emit(); 578 if (CodeGenOpts.SanitizeCfiCrossDso) { 579 CodeGenFunction(*this).EmitCfiCheckFail(); 580 CodeGenFunction(*this).EmitCfiCheckStub(); 581 } 582 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 583 finalizeKCFITypes(); 584 emitAtAvailableLinkGuard(); 585 if (Context.getTargetInfo().getTriple().isWasm()) 586 EmitMainVoidAlias(); 587 588 if (getTriple().isAMDGPU()) { 589 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 590 // preserve ASAN functions in bitcode libraries. 591 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 592 auto *FT = llvm::FunctionType::get(VoidTy, {}); 593 auto *F = llvm::Function::Create( 594 FT, llvm::GlobalValue::ExternalLinkage, 595 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 596 auto *Var = new llvm::GlobalVariable( 597 getModule(), FT->getPointerTo(), 598 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 599 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 600 llvm::GlobalVariable::NotThreadLocal); 601 addCompilerUsedGlobal(Var); 602 } 603 // Emit amdgpu_code_object_version module flag, which is code object version 604 // times 100. 605 // ToDo: Enable module flag for all code object version when ROCm device 606 // library is ready. 607 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 608 getModule().addModuleFlag(llvm::Module::Error, 609 "amdgpu_code_object_version", 610 getTarget().getTargetOpts().CodeObjectVersion); 611 } 612 } 613 614 // Emit a global array containing all external kernels or device variables 615 // used by host functions and mark it as used for CUDA/HIP. This is necessary 616 // to get kernels or device variables in archives linked in even if these 617 // kernels or device variables are only used in host functions. 618 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 619 SmallVector<llvm::Constant *, 8> UsedArray; 620 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 621 GlobalDecl GD; 622 if (auto *FD = dyn_cast<FunctionDecl>(D)) 623 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 624 else 625 GD = GlobalDecl(D); 626 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 627 GetAddrOfGlobal(GD), Int8PtrTy)); 628 } 629 630 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 631 632 auto *GV = new llvm::GlobalVariable( 633 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 634 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 635 addCompilerUsedGlobal(GV); 636 } 637 638 emitLLVMUsed(); 639 if (SanStats) 640 SanStats->finish(); 641 642 if (CodeGenOpts.Autolink && 643 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 644 EmitModuleLinkOptions(); 645 } 646 647 // On ELF we pass the dependent library specifiers directly to the linker 648 // without manipulating them. This is in contrast to other platforms where 649 // they are mapped to a specific linker option by the compiler. This 650 // difference is a result of the greater variety of ELF linkers and the fact 651 // that ELF linkers tend to handle libraries in a more complicated fashion 652 // than on other platforms. This forces us to defer handling the dependent 653 // libs to the linker. 654 // 655 // CUDA/HIP device and host libraries are different. Currently there is no 656 // way to differentiate dependent libraries for host or device. Existing 657 // usage of #pragma comment(lib, *) is intended for host libraries on 658 // Windows. Therefore emit llvm.dependent-libraries only for host. 659 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 660 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 661 for (auto *MD : ELFDependentLibraries) 662 NMD->addOperand(MD); 663 } 664 665 // Record mregparm value now so it is visible through rest of codegen. 666 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 667 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 668 CodeGenOpts.NumRegisterParameters); 669 670 if (CodeGenOpts.DwarfVersion) { 671 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 672 CodeGenOpts.DwarfVersion); 673 } 674 675 if (CodeGenOpts.Dwarf64) 676 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 677 678 if (Context.getLangOpts().SemanticInterposition) 679 // Require various optimization to respect semantic interposition. 680 getModule().setSemanticInterposition(true); 681 682 if (CodeGenOpts.EmitCodeView) { 683 // Indicate that we want CodeView in the metadata. 684 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 685 } 686 if (CodeGenOpts.CodeViewGHash) { 687 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 688 } 689 if (CodeGenOpts.ControlFlowGuard) { 690 // Function ID tables and checks for Control Flow Guard (cfguard=2). 691 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 692 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 693 // Function ID tables for Control Flow Guard (cfguard=1). 694 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 695 } 696 if (CodeGenOpts.EHContGuard) { 697 // Function ID tables for EH Continuation Guard. 698 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 699 } 700 if (Context.getLangOpts().Kernel) { 701 // Note if we are compiling with /kernel. 702 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 703 } 704 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 705 // We don't support LTO with 2 with different StrictVTablePointers 706 // FIXME: we could support it by stripping all the information introduced 707 // by StrictVTablePointers. 708 709 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 710 711 llvm::Metadata *Ops[2] = { 712 llvm::MDString::get(VMContext, "StrictVTablePointers"), 713 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 714 llvm::Type::getInt32Ty(VMContext), 1))}; 715 716 getModule().addModuleFlag(llvm::Module::Require, 717 "StrictVTablePointersRequirement", 718 llvm::MDNode::get(VMContext, Ops)); 719 } 720 if (getModuleDebugInfo()) 721 // We support a single version in the linked module. The LLVM 722 // parser will drop debug info with a different version number 723 // (and warn about it, too). 724 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 725 llvm::DEBUG_METADATA_VERSION); 726 727 // We need to record the widths of enums and wchar_t, so that we can generate 728 // the correct build attributes in the ARM backend. wchar_size is also used by 729 // TargetLibraryInfo. 730 uint64_t WCharWidth = 731 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 732 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 733 734 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 735 if ( Arch == llvm::Triple::arm 736 || Arch == llvm::Triple::armeb 737 || Arch == llvm::Triple::thumb 738 || Arch == llvm::Triple::thumbeb) { 739 // The minimum width of an enum in bytes 740 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 741 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 742 } 743 744 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 745 StringRef ABIStr = Target.getABI(); 746 llvm::LLVMContext &Ctx = TheModule.getContext(); 747 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 748 llvm::MDString::get(Ctx, ABIStr)); 749 } 750 751 if (CodeGenOpts.SanitizeCfiCrossDso) { 752 // Indicate that we want cross-DSO control flow integrity checks. 753 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 754 } 755 756 if (CodeGenOpts.WholeProgramVTables) { 757 // Indicate whether VFE was enabled for this module, so that the 758 // vcall_visibility metadata added under whole program vtables is handled 759 // appropriately in the optimizer. 760 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 761 CodeGenOpts.VirtualFunctionElimination); 762 } 763 764 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 765 getModule().addModuleFlag(llvm::Module::Override, 766 "CFI Canonical Jump Tables", 767 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 768 } 769 770 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 771 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 772 773 if (CodeGenOpts.CFProtectionReturn && 774 Target.checkCFProtectionReturnSupported(getDiags())) { 775 // Indicate that we want to instrument return control flow protection. 776 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 777 1); 778 } 779 780 if (CodeGenOpts.CFProtectionBranch && 781 Target.checkCFProtectionBranchSupported(getDiags())) { 782 // Indicate that we want to instrument branch control flow protection. 783 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 784 1); 785 } 786 787 if (CodeGenOpts.IBTSeal) 788 getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1); 789 790 if (CodeGenOpts.FunctionReturnThunks) 791 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 792 793 if (CodeGenOpts.IndirectBranchCSPrefix) 794 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 795 796 // Add module metadata for return address signing (ignoring 797 // non-leaf/all) and stack tagging. These are actually turned on by function 798 // attributes, but we use module metadata to emit build attributes. This is 799 // needed for LTO, where the function attributes are inside bitcode 800 // serialised into a global variable by the time build attributes are 801 // emitted, so we can't access them. LTO objects could be compiled with 802 // different flags therefore module flags are set to "Min" behavior to achieve 803 // the same end result of the normal build where e.g BTI is off if any object 804 // doesn't support it. 805 if (Context.getTargetInfo().hasFeature("ptrauth") && 806 LangOpts.getSignReturnAddressScope() != 807 LangOptions::SignReturnAddressScopeKind::None) 808 getModule().addModuleFlag(llvm::Module::Override, 809 "sign-return-address-buildattr", 1); 810 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 811 getModule().addModuleFlag(llvm::Module::Override, 812 "tag-stack-memory-buildattr", 1); 813 814 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 815 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 816 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 817 Arch == llvm::Triple::aarch64_be) { 818 if (LangOpts.BranchTargetEnforcement) 819 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 820 1); 821 if (LangOpts.hasSignReturnAddress()) 822 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 823 if (LangOpts.isSignReturnAddressScopeAll()) 824 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 825 1); 826 if (!LangOpts.isSignReturnAddressWithAKey()) 827 getModule().addModuleFlag(llvm::Module::Min, 828 "sign-return-address-with-bkey", 1); 829 } 830 831 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 832 llvm::LLVMContext &Ctx = TheModule.getContext(); 833 getModule().addModuleFlag( 834 llvm::Module::Error, "MemProfProfileFilename", 835 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 836 } 837 838 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 839 // Indicate whether __nvvm_reflect should be configured to flush denormal 840 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 841 // property.) 842 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 843 CodeGenOpts.FP32DenormalMode.Output != 844 llvm::DenormalMode::IEEE); 845 } 846 847 if (LangOpts.EHAsynch) 848 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 849 850 // Indicate whether this Module was compiled with -fopenmp 851 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 852 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 853 if (getLangOpts().OpenMPIsDevice) 854 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 855 LangOpts.OpenMP); 856 857 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 858 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 859 EmitOpenCLMetadata(); 860 // Emit SPIR version. 861 if (getTriple().isSPIR()) { 862 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 863 // opencl.spir.version named metadata. 864 // C++ for OpenCL has a distinct mapping for version compatibility with 865 // OpenCL. 866 auto Version = LangOpts.getOpenCLCompatibleVersion(); 867 llvm::Metadata *SPIRVerElts[] = { 868 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 869 Int32Ty, Version / 100)), 870 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 871 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 872 llvm::NamedMDNode *SPIRVerMD = 873 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 874 llvm::LLVMContext &Ctx = TheModule.getContext(); 875 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 876 } 877 } 878 879 // HLSL related end of code gen work items. 880 if (LangOpts.HLSL) 881 getHLSLRuntime().finishCodeGen(); 882 883 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 884 assert(PLevel < 3 && "Invalid PIC Level"); 885 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 886 if (Context.getLangOpts().PIE) 887 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 888 } 889 890 if (getCodeGenOpts().CodeModel.size() > 0) { 891 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 892 .Case("tiny", llvm::CodeModel::Tiny) 893 .Case("small", llvm::CodeModel::Small) 894 .Case("kernel", llvm::CodeModel::Kernel) 895 .Case("medium", llvm::CodeModel::Medium) 896 .Case("large", llvm::CodeModel::Large) 897 .Default(~0u); 898 if (CM != ~0u) { 899 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 900 getModule().setCodeModel(codeModel); 901 } 902 } 903 904 if (CodeGenOpts.NoPLT) 905 getModule().setRtLibUseGOT(); 906 if (CodeGenOpts.UnwindTables) 907 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 908 909 switch (CodeGenOpts.getFramePointer()) { 910 case CodeGenOptions::FramePointerKind::None: 911 // 0 ("none") is the default. 912 break; 913 case CodeGenOptions::FramePointerKind::NonLeaf: 914 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 915 break; 916 case CodeGenOptions::FramePointerKind::All: 917 getModule().setFramePointer(llvm::FramePointerKind::All); 918 break; 919 } 920 921 SimplifyPersonality(); 922 923 if (getCodeGenOpts().EmitDeclMetadata) 924 EmitDeclMetadata(); 925 926 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 927 EmitCoverageFile(); 928 929 if (CGDebugInfo *DI = getModuleDebugInfo()) 930 DI->finalize(); 931 932 if (getCodeGenOpts().EmitVersionIdentMetadata) 933 EmitVersionIdentMetadata(); 934 935 if (!getCodeGenOpts().RecordCommandLine.empty()) 936 EmitCommandLineMetadata(); 937 938 if (!getCodeGenOpts().StackProtectorGuard.empty()) 939 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 940 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 941 getModule().setStackProtectorGuardReg( 942 getCodeGenOpts().StackProtectorGuardReg); 943 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 944 getModule().setStackProtectorGuardSymbol( 945 getCodeGenOpts().StackProtectorGuardSymbol); 946 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 947 getModule().setStackProtectorGuardOffset( 948 getCodeGenOpts().StackProtectorGuardOffset); 949 if (getCodeGenOpts().StackAlignment) 950 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 951 if (getCodeGenOpts().SkipRaxSetup) 952 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 953 954 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 955 956 EmitBackendOptionsMetadata(getCodeGenOpts()); 957 958 // If there is device offloading code embed it in the host now. 959 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 960 961 // Set visibility from DLL storage class 962 // We do this at the end of LLVM IR generation; after any operation 963 // that might affect the DLL storage class or the visibility, and 964 // before anything that might act on these. 965 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 966 } 967 968 void CodeGenModule::EmitOpenCLMetadata() { 969 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 970 // opencl.ocl.version named metadata node. 971 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 972 auto Version = LangOpts.getOpenCLCompatibleVersion(); 973 llvm::Metadata *OCLVerElts[] = { 974 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 975 Int32Ty, Version / 100)), 976 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 977 Int32Ty, (Version % 100) / 10))}; 978 llvm::NamedMDNode *OCLVerMD = 979 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 980 llvm::LLVMContext &Ctx = TheModule.getContext(); 981 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 982 } 983 984 void CodeGenModule::EmitBackendOptionsMetadata( 985 const CodeGenOptions CodeGenOpts) { 986 if (getTriple().isRISCV()) { 987 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 988 CodeGenOpts.SmallDataLimit); 989 } 990 } 991 992 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 993 // Make sure that this type is translated. 994 Types.UpdateCompletedType(TD); 995 } 996 997 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 998 // Make sure that this type is translated. 999 Types.RefreshTypeCacheForClass(RD); 1000 } 1001 1002 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1003 if (!TBAA) 1004 return nullptr; 1005 return TBAA->getTypeInfo(QTy); 1006 } 1007 1008 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1009 if (!TBAA) 1010 return TBAAAccessInfo(); 1011 if (getLangOpts().CUDAIsDevice) { 1012 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1013 // access info. 1014 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1015 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1016 nullptr) 1017 return TBAAAccessInfo(); 1018 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1019 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1020 nullptr) 1021 return TBAAAccessInfo(); 1022 } 1023 } 1024 return TBAA->getAccessInfo(AccessType); 1025 } 1026 1027 TBAAAccessInfo 1028 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1029 if (!TBAA) 1030 return TBAAAccessInfo(); 1031 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1032 } 1033 1034 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1035 if (!TBAA) 1036 return nullptr; 1037 return TBAA->getTBAAStructInfo(QTy); 1038 } 1039 1040 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1041 if (!TBAA) 1042 return nullptr; 1043 return TBAA->getBaseTypeInfo(QTy); 1044 } 1045 1046 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1047 if (!TBAA) 1048 return nullptr; 1049 return TBAA->getAccessTagInfo(Info); 1050 } 1051 1052 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1053 TBAAAccessInfo TargetInfo) { 1054 if (!TBAA) 1055 return TBAAAccessInfo(); 1056 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1057 } 1058 1059 TBAAAccessInfo 1060 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1061 TBAAAccessInfo InfoB) { 1062 if (!TBAA) 1063 return TBAAAccessInfo(); 1064 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1065 } 1066 1067 TBAAAccessInfo 1068 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1069 TBAAAccessInfo SrcInfo) { 1070 if (!TBAA) 1071 return TBAAAccessInfo(); 1072 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1073 } 1074 1075 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1076 TBAAAccessInfo TBAAInfo) { 1077 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1078 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1079 } 1080 1081 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1082 llvm::Instruction *I, const CXXRecordDecl *RD) { 1083 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1084 llvm::MDNode::get(getLLVMContext(), {})); 1085 } 1086 1087 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1088 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1089 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1090 } 1091 1092 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1093 /// specified stmt yet. 1094 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1095 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1096 "cannot compile this %0 yet"); 1097 std::string Msg = Type; 1098 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1099 << Msg << S->getSourceRange(); 1100 } 1101 1102 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1103 /// specified decl yet. 1104 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1105 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1106 "cannot compile this %0 yet"); 1107 std::string Msg = Type; 1108 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1109 } 1110 1111 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1112 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1113 } 1114 1115 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1116 const NamedDecl *D) const { 1117 if (GV->hasDLLImportStorageClass()) 1118 return; 1119 // Internal definitions always have default visibility. 1120 if (GV->hasLocalLinkage()) { 1121 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1122 return; 1123 } 1124 if (!D) 1125 return; 1126 // Set visibility for definitions, and for declarations if requested globally 1127 // or set explicitly. 1128 LinkageInfo LV = D->getLinkageAndVisibility(); 1129 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1130 !GV->isDeclarationForLinker()) 1131 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1132 } 1133 1134 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1135 llvm::GlobalValue *GV) { 1136 if (GV->hasLocalLinkage()) 1137 return true; 1138 1139 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1140 return true; 1141 1142 // DLLImport explicitly marks the GV as external. 1143 if (GV->hasDLLImportStorageClass()) 1144 return false; 1145 1146 const llvm::Triple &TT = CGM.getTriple(); 1147 if (TT.isWindowsGNUEnvironment()) { 1148 // In MinGW, variables without DLLImport can still be automatically 1149 // imported from a DLL by the linker; don't mark variables that 1150 // potentially could come from another DLL as DSO local. 1151 1152 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1153 // (and this actually happens in the public interface of libstdc++), so 1154 // such variables can't be marked as DSO local. (Native TLS variables 1155 // can't be dllimported at all, though.) 1156 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1157 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1158 return false; 1159 } 1160 1161 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1162 // remain unresolved in the link, they can be resolved to zero, which is 1163 // outside the current DSO. 1164 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1165 return false; 1166 1167 // Every other GV is local on COFF. 1168 // Make an exception for windows OS in the triple: Some firmware builds use 1169 // *-win32-macho triples. This (accidentally?) produced windows relocations 1170 // without GOT tables in older clang versions; Keep this behaviour. 1171 // FIXME: even thread local variables? 1172 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1173 return true; 1174 1175 // Only handle COFF and ELF for now. 1176 if (!TT.isOSBinFormatELF()) 1177 return false; 1178 1179 // If this is not an executable, don't assume anything is local. 1180 const auto &CGOpts = CGM.getCodeGenOpts(); 1181 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1182 const auto &LOpts = CGM.getLangOpts(); 1183 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1184 // On ELF, if -fno-semantic-interposition is specified and the target 1185 // supports local aliases, there will be neither CC1 1186 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1187 // dso_local on the function if using a local alias is preferable (can avoid 1188 // PLT indirection). 1189 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1190 return false; 1191 return !(CGM.getLangOpts().SemanticInterposition || 1192 CGM.getLangOpts().HalfNoSemanticInterposition); 1193 } 1194 1195 // A definition cannot be preempted from an executable. 1196 if (!GV->isDeclarationForLinker()) 1197 return true; 1198 1199 // Most PIC code sequences that assume that a symbol is local cannot produce a 1200 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1201 // depended, it seems worth it to handle it here. 1202 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1203 return false; 1204 1205 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1206 if (TT.isPPC64()) 1207 return false; 1208 1209 if (CGOpts.DirectAccessExternalData) { 1210 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1211 // for non-thread-local variables. If the symbol is not defined in the 1212 // executable, a copy relocation will be needed at link time. dso_local is 1213 // excluded for thread-local variables because they generally don't support 1214 // copy relocations. 1215 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1216 if (!Var->isThreadLocal()) 1217 return true; 1218 1219 // -fno-pic sets dso_local on a function declaration to allow direct 1220 // accesses when taking its address (similar to a data symbol). If the 1221 // function is not defined in the executable, a canonical PLT entry will be 1222 // needed at link time. -fno-direct-access-external-data can avoid the 1223 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1224 // it could just cause trouble without providing perceptible benefits. 1225 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1226 return true; 1227 } 1228 1229 // If we can use copy relocations we can assume it is local. 1230 1231 // Otherwise don't assume it is local. 1232 return false; 1233 } 1234 1235 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1236 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1237 } 1238 1239 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1240 GlobalDecl GD) const { 1241 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1242 // C++ destructors have a few C++ ABI specific special cases. 1243 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1244 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1245 return; 1246 } 1247 setDLLImportDLLExport(GV, D); 1248 } 1249 1250 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1251 const NamedDecl *D) const { 1252 if (D && D->isExternallyVisible()) { 1253 if (D->hasAttr<DLLImportAttr>()) 1254 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1255 else if ((D->hasAttr<DLLExportAttr>() || 1256 shouldMapVisibilityToDLLExport(D)) && 1257 !GV->isDeclarationForLinker()) 1258 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1259 } 1260 } 1261 1262 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1263 GlobalDecl GD) const { 1264 setDLLImportDLLExport(GV, GD); 1265 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1266 } 1267 1268 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1269 const NamedDecl *D) const { 1270 setDLLImportDLLExport(GV, D); 1271 setGVPropertiesAux(GV, D); 1272 } 1273 1274 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1275 const NamedDecl *D) const { 1276 setGlobalVisibility(GV, D); 1277 setDSOLocal(GV); 1278 GV->setPartition(CodeGenOpts.SymbolPartition); 1279 } 1280 1281 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1282 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1283 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1284 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1285 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1286 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1287 } 1288 1289 llvm::GlobalVariable::ThreadLocalMode 1290 CodeGenModule::GetDefaultLLVMTLSModel() const { 1291 switch (CodeGenOpts.getDefaultTLSModel()) { 1292 case CodeGenOptions::GeneralDynamicTLSModel: 1293 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1294 case CodeGenOptions::LocalDynamicTLSModel: 1295 return llvm::GlobalVariable::LocalDynamicTLSModel; 1296 case CodeGenOptions::InitialExecTLSModel: 1297 return llvm::GlobalVariable::InitialExecTLSModel; 1298 case CodeGenOptions::LocalExecTLSModel: 1299 return llvm::GlobalVariable::LocalExecTLSModel; 1300 } 1301 llvm_unreachable("Invalid TLS model!"); 1302 } 1303 1304 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1305 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1306 1307 llvm::GlobalValue::ThreadLocalMode TLM; 1308 TLM = GetDefaultLLVMTLSModel(); 1309 1310 // Override the TLS model if it is explicitly specified. 1311 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1312 TLM = GetLLVMTLSModel(Attr->getModel()); 1313 } 1314 1315 GV->setThreadLocalMode(TLM); 1316 } 1317 1318 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1319 StringRef Name) { 1320 const TargetInfo &Target = CGM.getTarget(); 1321 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1322 } 1323 1324 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1325 const CPUSpecificAttr *Attr, 1326 unsigned CPUIndex, 1327 raw_ostream &Out) { 1328 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1329 // supported. 1330 if (Attr) 1331 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1332 else if (CGM.getTarget().supportsIFunc()) 1333 Out << ".resolver"; 1334 } 1335 1336 static void AppendTargetMangling(const CodeGenModule &CGM, 1337 const TargetAttr *Attr, raw_ostream &Out) { 1338 if (Attr->isDefaultVersion()) 1339 return; 1340 1341 Out << '.'; 1342 const TargetInfo &Target = CGM.getTarget(); 1343 ParsedTargetAttr Info = 1344 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1345 // Multiversioning doesn't allow "no-${feature}", so we can 1346 // only have "+" prefixes here. 1347 assert(LHS.startswith("+") && RHS.startswith("+") && 1348 "Features should always have a prefix."); 1349 return Target.multiVersionSortPriority(LHS.substr(1)) > 1350 Target.multiVersionSortPriority(RHS.substr(1)); 1351 }); 1352 1353 bool IsFirst = true; 1354 1355 if (!Info.Architecture.empty()) { 1356 IsFirst = false; 1357 Out << "arch_" << Info.Architecture; 1358 } 1359 1360 for (StringRef Feat : Info.Features) { 1361 if (!IsFirst) 1362 Out << '_'; 1363 IsFirst = false; 1364 Out << Feat.substr(1); 1365 } 1366 } 1367 1368 // Returns true if GD is a function decl with internal linkage and 1369 // needs a unique suffix after the mangled name. 1370 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1371 CodeGenModule &CGM) { 1372 const Decl *D = GD.getDecl(); 1373 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1374 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1375 } 1376 1377 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1378 const TargetClonesAttr *Attr, 1379 unsigned VersionIndex, 1380 raw_ostream &Out) { 1381 Out << '.'; 1382 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1383 if (FeatureStr.startswith("arch=")) 1384 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1385 else 1386 Out << FeatureStr; 1387 1388 Out << '.' << Attr->getMangledIndex(VersionIndex); 1389 } 1390 1391 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1392 const NamedDecl *ND, 1393 bool OmitMultiVersionMangling = false) { 1394 SmallString<256> Buffer; 1395 llvm::raw_svector_ostream Out(Buffer); 1396 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1397 if (!CGM.getModuleNameHash().empty()) 1398 MC.needsUniqueInternalLinkageNames(); 1399 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1400 if (ShouldMangle) 1401 MC.mangleName(GD.getWithDecl(ND), Out); 1402 else { 1403 IdentifierInfo *II = ND->getIdentifier(); 1404 assert(II && "Attempt to mangle unnamed decl."); 1405 const auto *FD = dyn_cast<FunctionDecl>(ND); 1406 1407 if (FD && 1408 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1409 Out << "__regcall3__" << II->getName(); 1410 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1411 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1412 Out << "__device_stub__" << II->getName(); 1413 } else { 1414 Out << II->getName(); 1415 } 1416 } 1417 1418 // Check if the module name hash should be appended for internal linkage 1419 // symbols. This should come before multi-version target suffixes are 1420 // appended. This is to keep the name and module hash suffix of the 1421 // internal linkage function together. The unique suffix should only be 1422 // added when name mangling is done to make sure that the final name can 1423 // be properly demangled. For example, for C functions without prototypes, 1424 // name mangling is not done and the unique suffix should not be appeneded 1425 // then. 1426 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1427 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1428 "Hash computed when not explicitly requested"); 1429 Out << CGM.getModuleNameHash(); 1430 } 1431 1432 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1433 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1434 switch (FD->getMultiVersionKind()) { 1435 case MultiVersionKind::CPUDispatch: 1436 case MultiVersionKind::CPUSpecific: 1437 AppendCPUSpecificCPUDispatchMangling(CGM, 1438 FD->getAttr<CPUSpecificAttr>(), 1439 GD.getMultiVersionIndex(), Out); 1440 break; 1441 case MultiVersionKind::Target: 1442 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1443 break; 1444 case MultiVersionKind::TargetClones: 1445 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1446 GD.getMultiVersionIndex(), Out); 1447 break; 1448 case MultiVersionKind::None: 1449 llvm_unreachable("None multiversion type isn't valid here"); 1450 } 1451 } 1452 1453 // Make unique name for device side static file-scope variable for HIP. 1454 if (CGM.getContext().shouldExternalize(ND) && 1455 CGM.getLangOpts().GPURelocatableDeviceCode && 1456 CGM.getLangOpts().CUDAIsDevice) 1457 CGM.printPostfixForExternalizedDecl(Out, ND); 1458 1459 return std::string(Out.str()); 1460 } 1461 1462 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1463 const FunctionDecl *FD, 1464 StringRef &CurName) { 1465 if (!FD->isMultiVersion()) 1466 return; 1467 1468 // Get the name of what this would be without the 'target' attribute. This 1469 // allows us to lookup the version that was emitted when this wasn't a 1470 // multiversion function. 1471 std::string NonTargetName = 1472 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1473 GlobalDecl OtherGD; 1474 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1475 assert(OtherGD.getCanonicalDecl() 1476 .getDecl() 1477 ->getAsFunction() 1478 ->isMultiVersion() && 1479 "Other GD should now be a multiversioned function"); 1480 // OtherFD is the version of this function that was mangled BEFORE 1481 // becoming a MultiVersion function. It potentially needs to be updated. 1482 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1483 .getDecl() 1484 ->getAsFunction() 1485 ->getMostRecentDecl(); 1486 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1487 // This is so that if the initial version was already the 'default' 1488 // version, we don't try to update it. 1489 if (OtherName != NonTargetName) { 1490 // Remove instead of erase, since others may have stored the StringRef 1491 // to this. 1492 const auto ExistingRecord = Manglings.find(NonTargetName); 1493 if (ExistingRecord != std::end(Manglings)) 1494 Manglings.remove(&(*ExistingRecord)); 1495 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1496 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1497 Result.first->first(); 1498 // If this is the current decl is being created, make sure we update the name. 1499 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1500 CurName = OtherNameRef; 1501 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1502 Entry->setName(OtherName); 1503 } 1504 } 1505 } 1506 1507 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1508 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1509 1510 // Some ABIs don't have constructor variants. Make sure that base and 1511 // complete constructors get mangled the same. 1512 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1513 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1514 CXXCtorType OrigCtorType = GD.getCtorType(); 1515 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1516 if (OrigCtorType == Ctor_Base) 1517 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1518 } 1519 } 1520 1521 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1522 // static device variable depends on whether the variable is referenced by 1523 // a host or device host function. Therefore the mangled name cannot be 1524 // cached. 1525 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1526 auto FoundName = MangledDeclNames.find(CanonicalGD); 1527 if (FoundName != MangledDeclNames.end()) 1528 return FoundName->second; 1529 } 1530 1531 // Keep the first result in the case of a mangling collision. 1532 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1533 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1534 1535 // Ensure either we have different ABIs between host and device compilations, 1536 // says host compilation following MSVC ABI but device compilation follows 1537 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1538 // mangling should be the same after name stubbing. The later checking is 1539 // very important as the device kernel name being mangled in host-compilation 1540 // is used to resolve the device binaries to be executed. Inconsistent naming 1541 // result in undefined behavior. Even though we cannot check that naming 1542 // directly between host- and device-compilations, the host- and 1543 // device-mangling in host compilation could help catching certain ones. 1544 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1545 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1546 (getContext().getAuxTargetInfo() && 1547 (getContext().getAuxTargetInfo()->getCXXABI() != 1548 getContext().getTargetInfo().getCXXABI())) || 1549 getCUDARuntime().getDeviceSideName(ND) == 1550 getMangledNameImpl( 1551 *this, 1552 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1553 ND)); 1554 1555 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1556 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1557 } 1558 1559 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1560 const BlockDecl *BD) { 1561 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1562 const Decl *D = GD.getDecl(); 1563 1564 SmallString<256> Buffer; 1565 llvm::raw_svector_ostream Out(Buffer); 1566 if (!D) 1567 MangleCtx.mangleGlobalBlock(BD, 1568 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1569 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1570 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1571 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1572 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1573 else 1574 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1575 1576 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1577 return Result.first->first(); 1578 } 1579 1580 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1581 auto it = MangledDeclNames.begin(); 1582 while (it != MangledDeclNames.end()) { 1583 if (it->second == Name) 1584 return it->first; 1585 it++; 1586 } 1587 return GlobalDecl(); 1588 } 1589 1590 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1591 return getModule().getNamedValue(Name); 1592 } 1593 1594 /// AddGlobalCtor - Add a function to the list that will be called before 1595 /// main() runs. 1596 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1597 unsigned LexOrder, 1598 llvm::Constant *AssociatedData) { 1599 // FIXME: Type coercion of void()* types. 1600 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1601 } 1602 1603 /// AddGlobalDtor - Add a function to the list that will be called 1604 /// when the module is unloaded. 1605 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1606 bool IsDtorAttrFunc) { 1607 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1608 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1609 DtorsUsingAtExit[Priority].push_back(Dtor); 1610 return; 1611 } 1612 1613 // FIXME: Type coercion of void()* types. 1614 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1615 } 1616 1617 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1618 if (Fns.empty()) return; 1619 1620 // Ctor function type is void()*. 1621 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1622 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1623 TheModule.getDataLayout().getProgramAddressSpace()); 1624 1625 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1626 llvm::StructType *CtorStructTy = llvm::StructType::get( 1627 Int32Ty, CtorPFTy, VoidPtrTy); 1628 1629 // Construct the constructor and destructor arrays. 1630 ConstantInitBuilder builder(*this); 1631 auto ctors = builder.beginArray(CtorStructTy); 1632 for (const auto &I : Fns) { 1633 auto ctor = ctors.beginStruct(CtorStructTy); 1634 ctor.addInt(Int32Ty, I.Priority); 1635 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1636 if (I.AssociatedData) 1637 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1638 else 1639 ctor.addNullPointer(VoidPtrTy); 1640 ctor.finishAndAddTo(ctors); 1641 } 1642 1643 auto list = 1644 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1645 /*constant*/ false, 1646 llvm::GlobalValue::AppendingLinkage); 1647 1648 // The LTO linker doesn't seem to like it when we set an alignment 1649 // on appending variables. Take it off as a workaround. 1650 list->setAlignment(llvm::None); 1651 1652 Fns.clear(); 1653 } 1654 1655 llvm::GlobalValue::LinkageTypes 1656 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1657 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1658 1659 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1660 1661 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1662 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1663 1664 if (isa<CXXConstructorDecl>(D) && 1665 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1666 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1667 // Our approach to inheriting constructors is fundamentally different from 1668 // that used by the MS ABI, so keep our inheriting constructor thunks 1669 // internal rather than trying to pick an unambiguous mangling for them. 1670 return llvm::GlobalValue::InternalLinkage; 1671 } 1672 1673 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1674 } 1675 1676 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1677 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1678 if (!MDS) return nullptr; 1679 1680 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1681 } 1682 1683 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1684 if (auto *FnType = T->getAs<FunctionProtoType>()) 1685 T = getContext().getFunctionType( 1686 FnType->getReturnType(), FnType->getParamTypes(), 1687 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1688 1689 std::string OutName; 1690 llvm::raw_string_ostream Out(OutName); 1691 getCXXABI().getMangleContext().mangleTypeName(T, Out); 1692 1693 return llvm::ConstantInt::get(Int32Ty, 1694 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1695 } 1696 1697 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1698 const CGFunctionInfo &Info, 1699 llvm::Function *F, bool IsThunk) { 1700 unsigned CallingConv; 1701 llvm::AttributeList PAL; 1702 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1703 /*AttrOnCallSite=*/false, IsThunk); 1704 F->setAttributes(PAL); 1705 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1706 if (getLangOpts().HLSL) { 1707 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl())) 1708 getHLSLRuntime().setHLSLFunctionAttributes(F, FD); 1709 } 1710 } 1711 1712 static void removeImageAccessQualifier(std::string& TyName) { 1713 std::string ReadOnlyQual("__read_only"); 1714 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1715 if (ReadOnlyPos != std::string::npos) 1716 // "+ 1" for the space after access qualifier. 1717 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1718 else { 1719 std::string WriteOnlyQual("__write_only"); 1720 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1721 if (WriteOnlyPos != std::string::npos) 1722 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1723 else { 1724 std::string ReadWriteQual("__read_write"); 1725 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1726 if (ReadWritePos != std::string::npos) 1727 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1728 } 1729 } 1730 } 1731 1732 // Returns the address space id that should be produced to the 1733 // kernel_arg_addr_space metadata. This is always fixed to the ids 1734 // as specified in the SPIR 2.0 specification in order to differentiate 1735 // for example in clGetKernelArgInfo() implementation between the address 1736 // spaces with targets without unique mapping to the OpenCL address spaces 1737 // (basically all single AS CPUs). 1738 static unsigned ArgInfoAddressSpace(LangAS AS) { 1739 switch (AS) { 1740 case LangAS::opencl_global: 1741 return 1; 1742 case LangAS::opencl_constant: 1743 return 2; 1744 case LangAS::opencl_local: 1745 return 3; 1746 case LangAS::opencl_generic: 1747 return 4; // Not in SPIR 2.0 specs. 1748 case LangAS::opencl_global_device: 1749 return 5; 1750 case LangAS::opencl_global_host: 1751 return 6; 1752 default: 1753 return 0; // Assume private. 1754 } 1755 } 1756 1757 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1758 const FunctionDecl *FD, 1759 CodeGenFunction *CGF) { 1760 assert(((FD && CGF) || (!FD && !CGF)) && 1761 "Incorrect use - FD and CGF should either be both null or not!"); 1762 // Create MDNodes that represent the kernel arg metadata. 1763 // Each MDNode is a list in the form of "key", N number of values which is 1764 // the same number of values as their are kernel arguments. 1765 1766 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1767 1768 // MDNode for the kernel argument address space qualifiers. 1769 SmallVector<llvm::Metadata *, 8> addressQuals; 1770 1771 // MDNode for the kernel argument access qualifiers (images only). 1772 SmallVector<llvm::Metadata *, 8> accessQuals; 1773 1774 // MDNode for the kernel argument type names. 1775 SmallVector<llvm::Metadata *, 8> argTypeNames; 1776 1777 // MDNode for the kernel argument base type names. 1778 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1779 1780 // MDNode for the kernel argument type qualifiers. 1781 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1782 1783 // MDNode for the kernel argument names. 1784 SmallVector<llvm::Metadata *, 8> argNames; 1785 1786 if (FD && CGF) 1787 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1788 const ParmVarDecl *parm = FD->getParamDecl(i); 1789 // Get argument name. 1790 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1791 1792 if (!getLangOpts().OpenCL) 1793 continue; 1794 QualType ty = parm->getType(); 1795 std::string typeQuals; 1796 1797 // Get image and pipe access qualifier: 1798 if (ty->isImageType() || ty->isPipeType()) { 1799 const Decl *PDecl = parm; 1800 if (const auto *TD = ty->getAs<TypedefType>()) 1801 PDecl = TD->getDecl(); 1802 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1803 if (A && A->isWriteOnly()) 1804 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1805 else if (A && A->isReadWrite()) 1806 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1807 else 1808 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1809 } else 1810 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1811 1812 auto getTypeSpelling = [&](QualType Ty) { 1813 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1814 1815 if (Ty.isCanonical()) { 1816 StringRef typeNameRef = typeName; 1817 // Turn "unsigned type" to "utype" 1818 if (typeNameRef.consume_front("unsigned ")) 1819 return std::string("u") + typeNameRef.str(); 1820 if (typeNameRef.consume_front("signed ")) 1821 return typeNameRef.str(); 1822 } 1823 1824 return typeName; 1825 }; 1826 1827 if (ty->isPointerType()) { 1828 QualType pointeeTy = ty->getPointeeType(); 1829 1830 // Get address qualifier. 1831 addressQuals.push_back( 1832 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1833 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1834 1835 // Get argument type name. 1836 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1837 std::string baseTypeName = 1838 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1839 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1840 argBaseTypeNames.push_back( 1841 llvm::MDString::get(VMContext, baseTypeName)); 1842 1843 // Get argument type qualifiers: 1844 if (ty.isRestrictQualified()) 1845 typeQuals = "restrict"; 1846 if (pointeeTy.isConstQualified() || 1847 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1848 typeQuals += typeQuals.empty() ? "const" : " const"; 1849 if (pointeeTy.isVolatileQualified()) 1850 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1851 } else { 1852 uint32_t AddrSpc = 0; 1853 bool isPipe = ty->isPipeType(); 1854 if (ty->isImageType() || isPipe) 1855 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1856 1857 addressQuals.push_back( 1858 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1859 1860 // Get argument type name. 1861 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1862 std::string typeName = getTypeSpelling(ty); 1863 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1864 1865 // Remove access qualifiers on images 1866 // (as they are inseparable from type in clang implementation, 1867 // but OpenCL spec provides a special query to get access qualifier 1868 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1869 if (ty->isImageType()) { 1870 removeImageAccessQualifier(typeName); 1871 removeImageAccessQualifier(baseTypeName); 1872 } 1873 1874 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1875 argBaseTypeNames.push_back( 1876 llvm::MDString::get(VMContext, baseTypeName)); 1877 1878 if (isPipe) 1879 typeQuals = "pipe"; 1880 } 1881 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1882 } 1883 1884 if (getLangOpts().OpenCL) { 1885 Fn->setMetadata("kernel_arg_addr_space", 1886 llvm::MDNode::get(VMContext, addressQuals)); 1887 Fn->setMetadata("kernel_arg_access_qual", 1888 llvm::MDNode::get(VMContext, accessQuals)); 1889 Fn->setMetadata("kernel_arg_type", 1890 llvm::MDNode::get(VMContext, argTypeNames)); 1891 Fn->setMetadata("kernel_arg_base_type", 1892 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1893 Fn->setMetadata("kernel_arg_type_qual", 1894 llvm::MDNode::get(VMContext, argTypeQuals)); 1895 } 1896 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1897 getCodeGenOpts().HIPSaveKernelArgName) 1898 Fn->setMetadata("kernel_arg_name", 1899 llvm::MDNode::get(VMContext, argNames)); 1900 } 1901 1902 /// Determines whether the language options require us to model 1903 /// unwind exceptions. We treat -fexceptions as mandating this 1904 /// except under the fragile ObjC ABI with only ObjC exceptions 1905 /// enabled. This means, for example, that C with -fexceptions 1906 /// enables this. 1907 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1908 // If exceptions are completely disabled, obviously this is false. 1909 if (!LangOpts.Exceptions) return false; 1910 1911 // If C++ exceptions are enabled, this is true. 1912 if (LangOpts.CXXExceptions) return true; 1913 1914 // If ObjC exceptions are enabled, this depends on the ABI. 1915 if (LangOpts.ObjCExceptions) { 1916 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1917 } 1918 1919 return true; 1920 } 1921 1922 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1923 const CXXMethodDecl *MD) { 1924 // Check that the type metadata can ever actually be used by a call. 1925 if (!CGM.getCodeGenOpts().LTOUnit || 1926 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1927 return false; 1928 1929 // Only functions whose address can be taken with a member function pointer 1930 // need this sort of type metadata. 1931 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1932 !isa<CXXDestructorDecl>(MD); 1933 } 1934 1935 std::vector<const CXXRecordDecl *> 1936 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1937 llvm::SetVector<const CXXRecordDecl *> MostBases; 1938 1939 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1940 CollectMostBases = [&](const CXXRecordDecl *RD) { 1941 if (RD->getNumBases() == 0) 1942 MostBases.insert(RD); 1943 for (const CXXBaseSpecifier &B : RD->bases()) 1944 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1945 }; 1946 CollectMostBases(RD); 1947 return MostBases.takeVector(); 1948 } 1949 1950 llvm::GlobalVariable * 1951 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1952 auto It = RTTIProxyMap.find(Addr); 1953 if (It != RTTIProxyMap.end()) 1954 return It->second; 1955 1956 auto *FTRTTIProxy = new llvm::GlobalVariable( 1957 TheModule, Addr->getType(), 1958 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1959 "__llvm_rtti_proxy"); 1960 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1961 1962 RTTIProxyMap[Addr] = FTRTTIProxy; 1963 return FTRTTIProxy; 1964 } 1965 1966 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1967 llvm::Function *F) { 1968 llvm::AttrBuilder B(F->getContext()); 1969 1970 if (CodeGenOpts.UnwindTables) 1971 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1972 1973 if (CodeGenOpts.StackClashProtector) 1974 B.addAttribute("probe-stack", "inline-asm"); 1975 1976 if (!hasUnwindExceptions(LangOpts)) 1977 B.addAttribute(llvm::Attribute::NoUnwind); 1978 1979 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1980 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1981 B.addAttribute(llvm::Attribute::StackProtect); 1982 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1983 B.addAttribute(llvm::Attribute::StackProtectStrong); 1984 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1985 B.addAttribute(llvm::Attribute::StackProtectReq); 1986 } 1987 1988 if (!D) { 1989 // If we don't have a declaration to control inlining, the function isn't 1990 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1991 // disabled, mark the function as noinline. 1992 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1993 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1994 B.addAttribute(llvm::Attribute::NoInline); 1995 1996 F->addFnAttrs(B); 1997 return; 1998 } 1999 2000 // Track whether we need to add the optnone LLVM attribute, 2001 // starting with the default for this optimization level. 2002 bool ShouldAddOptNone = 2003 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2004 // We can't add optnone in the following cases, it won't pass the verifier. 2005 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2006 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2007 2008 // Add optnone, but do so only if the function isn't always_inline. 2009 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2010 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2011 B.addAttribute(llvm::Attribute::OptimizeNone); 2012 2013 // OptimizeNone implies noinline; we should not be inlining such functions. 2014 B.addAttribute(llvm::Attribute::NoInline); 2015 2016 // We still need to handle naked functions even though optnone subsumes 2017 // much of their semantics. 2018 if (D->hasAttr<NakedAttr>()) 2019 B.addAttribute(llvm::Attribute::Naked); 2020 2021 // OptimizeNone wins over OptimizeForSize and MinSize. 2022 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2023 F->removeFnAttr(llvm::Attribute::MinSize); 2024 } else if (D->hasAttr<NakedAttr>()) { 2025 // Naked implies noinline: we should not be inlining such functions. 2026 B.addAttribute(llvm::Attribute::Naked); 2027 B.addAttribute(llvm::Attribute::NoInline); 2028 } else if (D->hasAttr<NoDuplicateAttr>()) { 2029 B.addAttribute(llvm::Attribute::NoDuplicate); 2030 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2031 // Add noinline if the function isn't always_inline. 2032 B.addAttribute(llvm::Attribute::NoInline); 2033 } else if (D->hasAttr<AlwaysInlineAttr>() && 2034 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2035 // (noinline wins over always_inline, and we can't specify both in IR) 2036 B.addAttribute(llvm::Attribute::AlwaysInline); 2037 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2038 // If we're not inlining, then force everything that isn't always_inline to 2039 // carry an explicit noinline attribute. 2040 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2041 B.addAttribute(llvm::Attribute::NoInline); 2042 } else { 2043 // Otherwise, propagate the inline hint attribute and potentially use its 2044 // absence to mark things as noinline. 2045 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2046 // Search function and template pattern redeclarations for inline. 2047 auto CheckForInline = [](const FunctionDecl *FD) { 2048 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2049 return Redecl->isInlineSpecified(); 2050 }; 2051 if (any_of(FD->redecls(), CheckRedeclForInline)) 2052 return true; 2053 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2054 if (!Pattern) 2055 return false; 2056 return any_of(Pattern->redecls(), CheckRedeclForInline); 2057 }; 2058 if (CheckForInline(FD)) { 2059 B.addAttribute(llvm::Attribute::InlineHint); 2060 } else if (CodeGenOpts.getInlining() == 2061 CodeGenOptions::OnlyHintInlining && 2062 !FD->isInlined() && 2063 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2064 B.addAttribute(llvm::Attribute::NoInline); 2065 } 2066 } 2067 } 2068 2069 // Add other optimization related attributes if we are optimizing this 2070 // function. 2071 if (!D->hasAttr<OptimizeNoneAttr>()) { 2072 if (D->hasAttr<ColdAttr>()) { 2073 if (!ShouldAddOptNone) 2074 B.addAttribute(llvm::Attribute::OptimizeForSize); 2075 B.addAttribute(llvm::Attribute::Cold); 2076 } 2077 if (D->hasAttr<HotAttr>()) 2078 B.addAttribute(llvm::Attribute::Hot); 2079 if (D->hasAttr<MinSizeAttr>()) 2080 B.addAttribute(llvm::Attribute::MinSize); 2081 } 2082 2083 F->addFnAttrs(B); 2084 2085 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2086 if (alignment) 2087 F->setAlignment(llvm::Align(alignment)); 2088 2089 if (!D->hasAttr<AlignedAttr>()) 2090 if (LangOpts.FunctionAlignment) 2091 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2092 2093 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2094 // reserve a bit for differentiating between virtual and non-virtual member 2095 // functions. If the current target's C++ ABI requires this and this is a 2096 // member function, set its alignment accordingly. 2097 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2098 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2099 F->setAlignment(llvm::Align(2)); 2100 } 2101 2102 // In the cross-dso CFI mode with canonical jump tables, we want !type 2103 // attributes on definitions only. 2104 if (CodeGenOpts.SanitizeCfiCrossDso && 2105 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2106 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2107 // Skip available_externally functions. They won't be codegen'ed in the 2108 // current module anyway. 2109 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2110 CreateFunctionTypeMetadataForIcall(FD, F); 2111 } 2112 } 2113 2114 // Emit type metadata on member functions for member function pointer checks. 2115 // These are only ever necessary on definitions; we're guaranteed that the 2116 // definition will be present in the LTO unit as a result of LTO visibility. 2117 auto *MD = dyn_cast<CXXMethodDecl>(D); 2118 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2119 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2120 llvm::Metadata *Id = 2121 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2122 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2123 F->addTypeMetadata(0, Id); 2124 } 2125 } 2126 } 2127 2128 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2129 llvm::Function *F) { 2130 if (D->hasAttr<StrictFPAttr>()) { 2131 llvm::AttrBuilder FuncAttrs(F->getContext()); 2132 FuncAttrs.addAttribute("strictfp"); 2133 F->addFnAttrs(FuncAttrs); 2134 } 2135 } 2136 2137 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2138 const Decl *D = GD.getDecl(); 2139 if (isa_and_nonnull<NamedDecl>(D)) 2140 setGVProperties(GV, GD); 2141 else 2142 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2143 2144 if (D && D->hasAttr<UsedAttr>()) 2145 addUsedOrCompilerUsedGlobal(GV); 2146 2147 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2148 const auto *VD = cast<VarDecl>(D); 2149 if (VD->getType().isConstQualified() && 2150 VD->getStorageDuration() == SD_Static) 2151 addUsedOrCompilerUsedGlobal(GV); 2152 } 2153 } 2154 2155 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2156 llvm::AttrBuilder &Attrs) { 2157 // Add target-cpu and target-features attributes to functions. If 2158 // we have a decl for the function and it has a target attribute then 2159 // parse that and add it to the feature set. 2160 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2161 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2162 std::vector<std::string> Features; 2163 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2164 FD = FD ? FD->getMostRecentDecl() : FD; 2165 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2166 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2167 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2168 bool AddedAttr = false; 2169 if (TD || SD || TC) { 2170 llvm::StringMap<bool> FeatureMap; 2171 getContext().getFunctionFeatureMap(FeatureMap, GD); 2172 2173 // Produce the canonical string for this set of features. 2174 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2175 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2176 2177 // Now add the target-cpu and target-features to the function. 2178 // While we populated the feature map above, we still need to 2179 // get and parse the target attribute so we can get the cpu for 2180 // the function. 2181 if (TD) { 2182 ParsedTargetAttr ParsedAttr = TD->parse(); 2183 if (!ParsedAttr.Architecture.empty() && 2184 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2185 TargetCPU = ParsedAttr.Architecture; 2186 TuneCPU = ""; // Clear the tune CPU. 2187 } 2188 if (!ParsedAttr.Tune.empty() && 2189 getTarget().isValidCPUName(ParsedAttr.Tune)) 2190 TuneCPU = ParsedAttr.Tune; 2191 } 2192 2193 if (SD) { 2194 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2195 // favor this processor. 2196 TuneCPU = getTarget().getCPUSpecificTuneName( 2197 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2198 } 2199 } else { 2200 // Otherwise just add the existing target cpu and target features to the 2201 // function. 2202 Features = getTarget().getTargetOpts().Features; 2203 } 2204 2205 if (!TargetCPU.empty()) { 2206 Attrs.addAttribute("target-cpu", TargetCPU); 2207 AddedAttr = true; 2208 } 2209 if (!TuneCPU.empty()) { 2210 Attrs.addAttribute("tune-cpu", TuneCPU); 2211 AddedAttr = true; 2212 } 2213 if (!Features.empty()) { 2214 llvm::sort(Features); 2215 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2216 AddedAttr = true; 2217 } 2218 2219 return AddedAttr; 2220 } 2221 2222 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2223 llvm::GlobalObject *GO) { 2224 const Decl *D = GD.getDecl(); 2225 SetCommonAttributes(GD, GO); 2226 2227 if (D) { 2228 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2229 if (D->hasAttr<RetainAttr>()) 2230 addUsedGlobal(GV); 2231 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2232 GV->addAttribute("bss-section", SA->getName()); 2233 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2234 GV->addAttribute("data-section", SA->getName()); 2235 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2236 GV->addAttribute("rodata-section", SA->getName()); 2237 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2238 GV->addAttribute("relro-section", SA->getName()); 2239 } 2240 2241 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2242 if (D->hasAttr<RetainAttr>()) 2243 addUsedGlobal(F); 2244 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2245 if (!D->getAttr<SectionAttr>()) 2246 F->addFnAttr("implicit-section-name", SA->getName()); 2247 2248 llvm::AttrBuilder Attrs(F->getContext()); 2249 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2250 // We know that GetCPUAndFeaturesAttributes will always have the 2251 // newest set, since it has the newest possible FunctionDecl, so the 2252 // new ones should replace the old. 2253 llvm::AttributeMask RemoveAttrs; 2254 RemoveAttrs.addAttribute("target-cpu"); 2255 RemoveAttrs.addAttribute("target-features"); 2256 RemoveAttrs.addAttribute("tune-cpu"); 2257 F->removeFnAttrs(RemoveAttrs); 2258 F->addFnAttrs(Attrs); 2259 } 2260 } 2261 2262 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2263 GO->setSection(CSA->getName()); 2264 else if (const auto *SA = D->getAttr<SectionAttr>()) 2265 GO->setSection(SA->getName()); 2266 } 2267 2268 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2269 } 2270 2271 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2272 llvm::Function *F, 2273 const CGFunctionInfo &FI) { 2274 const Decl *D = GD.getDecl(); 2275 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2276 SetLLVMFunctionAttributesForDefinition(D, F); 2277 2278 F->setLinkage(llvm::Function::InternalLinkage); 2279 2280 setNonAliasAttributes(GD, F); 2281 } 2282 2283 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2284 // Set linkage and visibility in case we never see a definition. 2285 LinkageInfo LV = ND->getLinkageAndVisibility(); 2286 // Don't set internal linkage on declarations. 2287 // "extern_weak" is overloaded in LLVM; we probably should have 2288 // separate linkage types for this. 2289 if (isExternallyVisible(LV.getLinkage()) && 2290 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2291 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2292 } 2293 2294 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2295 llvm::Function *F) { 2296 // Only if we are checking indirect calls. 2297 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2298 return; 2299 2300 // Non-static class methods are handled via vtable or member function pointer 2301 // checks elsewhere. 2302 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2303 return; 2304 2305 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2306 F->addTypeMetadata(0, MD); 2307 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2308 2309 // Emit a hash-based bit set entry for cross-DSO calls. 2310 if (CodeGenOpts.SanitizeCfiCrossDso) 2311 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2312 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2313 } 2314 2315 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2316 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2317 return; 2318 2319 llvm::LLVMContext &Ctx = F->getContext(); 2320 llvm::MDBuilder MDB(Ctx); 2321 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2322 llvm::MDNode::get( 2323 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2324 } 2325 2326 static bool allowKCFIIdentifier(StringRef Name) { 2327 // KCFI type identifier constants are only necessary for external assembly 2328 // functions, which means it's safe to skip unusual names. Subset of 2329 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2330 return llvm::all_of(Name, [](const char &C) { 2331 return llvm::isAlnum(C) || C == '_' || C == '.'; 2332 }); 2333 } 2334 2335 void CodeGenModule::finalizeKCFITypes() { 2336 llvm::Module &M = getModule(); 2337 for (auto &F : M.functions()) { 2338 // Remove KCFI type metadata from non-address-taken local functions. 2339 bool AddressTaken = F.hasAddressTaken(); 2340 if (!AddressTaken && F.hasLocalLinkage()) 2341 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2342 2343 // Generate a constant with the expected KCFI type identifier for all 2344 // address-taken function declarations to support annotating indirectly 2345 // called assembly functions. 2346 if (!AddressTaken || !F.isDeclaration()) 2347 continue; 2348 2349 const llvm::ConstantInt *Type; 2350 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2351 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2352 else 2353 continue; 2354 2355 StringRef Name = F.getName(); 2356 if (!allowKCFIIdentifier(Name)) 2357 continue; 2358 2359 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2360 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2361 .str(); 2362 M.appendModuleInlineAsm(Asm); 2363 } 2364 } 2365 2366 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2367 bool IsIncompleteFunction, 2368 bool IsThunk) { 2369 2370 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2371 // If this is an intrinsic function, set the function's attributes 2372 // to the intrinsic's attributes. 2373 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2374 return; 2375 } 2376 2377 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2378 2379 if (!IsIncompleteFunction) 2380 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2381 IsThunk); 2382 2383 // Add the Returned attribute for "this", except for iOS 5 and earlier 2384 // where substantial code, including the libstdc++ dylib, was compiled with 2385 // GCC and does not actually return "this". 2386 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2387 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2388 assert(!F->arg_empty() && 2389 F->arg_begin()->getType() 2390 ->canLosslesslyBitCastTo(F->getReturnType()) && 2391 "unexpected this return"); 2392 F->addParamAttr(0, llvm::Attribute::Returned); 2393 } 2394 2395 // Only a few attributes are set on declarations; these may later be 2396 // overridden by a definition. 2397 2398 setLinkageForGV(F, FD); 2399 setGVProperties(F, FD); 2400 2401 // Setup target-specific attributes. 2402 if (!IsIncompleteFunction && F->isDeclaration()) 2403 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2404 2405 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2406 F->setSection(CSA->getName()); 2407 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2408 F->setSection(SA->getName()); 2409 2410 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2411 if (EA->isError()) 2412 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2413 else if (EA->isWarning()) 2414 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2415 } 2416 2417 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2418 if (FD->isInlineBuiltinDeclaration()) { 2419 const FunctionDecl *FDBody; 2420 bool HasBody = FD->hasBody(FDBody); 2421 (void)HasBody; 2422 assert(HasBody && "Inline builtin declarations should always have an " 2423 "available body!"); 2424 if (shouldEmitFunction(FDBody)) 2425 F->addFnAttr(llvm::Attribute::NoBuiltin); 2426 } 2427 2428 if (FD->isReplaceableGlobalAllocationFunction()) { 2429 // A replaceable global allocation function does not act like a builtin by 2430 // default, only if it is invoked by a new-expression or delete-expression. 2431 F->addFnAttr(llvm::Attribute::NoBuiltin); 2432 } 2433 2434 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2435 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2436 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2437 if (MD->isVirtual()) 2438 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2439 2440 // Don't emit entries for function declarations in the cross-DSO mode. This 2441 // is handled with better precision by the receiving DSO. But if jump tables 2442 // are non-canonical then we need type metadata in order to produce the local 2443 // jump table. 2444 if (!CodeGenOpts.SanitizeCfiCrossDso || 2445 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2446 CreateFunctionTypeMetadataForIcall(FD, F); 2447 2448 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2449 setKCFIType(FD, F); 2450 2451 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2452 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2453 2454 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2455 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2456 2457 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2458 // Annotate the callback behavior as metadata: 2459 // - The callback callee (as argument number). 2460 // - The callback payloads (as argument numbers). 2461 llvm::LLVMContext &Ctx = F->getContext(); 2462 llvm::MDBuilder MDB(Ctx); 2463 2464 // The payload indices are all but the first one in the encoding. The first 2465 // identifies the callback callee. 2466 int CalleeIdx = *CB->encoding_begin(); 2467 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2468 F->addMetadata(llvm::LLVMContext::MD_callback, 2469 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2470 CalleeIdx, PayloadIndices, 2471 /* VarArgsArePassed */ false)})); 2472 } 2473 } 2474 2475 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2476 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2477 "Only globals with definition can force usage."); 2478 LLVMUsed.emplace_back(GV); 2479 } 2480 2481 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2482 assert(!GV->isDeclaration() && 2483 "Only globals with definition can force usage."); 2484 LLVMCompilerUsed.emplace_back(GV); 2485 } 2486 2487 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2488 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2489 "Only globals with definition can force usage."); 2490 if (getTriple().isOSBinFormatELF()) 2491 LLVMCompilerUsed.emplace_back(GV); 2492 else 2493 LLVMUsed.emplace_back(GV); 2494 } 2495 2496 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2497 std::vector<llvm::WeakTrackingVH> &List) { 2498 // Don't create llvm.used if there is no need. 2499 if (List.empty()) 2500 return; 2501 2502 // Convert List to what ConstantArray needs. 2503 SmallVector<llvm::Constant*, 8> UsedArray; 2504 UsedArray.resize(List.size()); 2505 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2506 UsedArray[i] = 2507 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2508 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2509 } 2510 2511 if (UsedArray.empty()) 2512 return; 2513 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2514 2515 auto *GV = new llvm::GlobalVariable( 2516 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2517 llvm::ConstantArray::get(ATy, UsedArray), Name); 2518 2519 GV->setSection("llvm.metadata"); 2520 } 2521 2522 void CodeGenModule::emitLLVMUsed() { 2523 emitUsed(*this, "llvm.used", LLVMUsed); 2524 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2525 } 2526 2527 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2528 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2529 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2530 } 2531 2532 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2533 llvm::SmallString<32> Opt; 2534 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2535 if (Opt.empty()) 2536 return; 2537 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2538 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2539 } 2540 2541 void CodeGenModule::AddDependentLib(StringRef Lib) { 2542 auto &C = getLLVMContext(); 2543 if (getTarget().getTriple().isOSBinFormatELF()) { 2544 ELFDependentLibraries.push_back( 2545 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2546 return; 2547 } 2548 2549 llvm::SmallString<24> Opt; 2550 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2551 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2552 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2553 } 2554 2555 /// Add link options implied by the given module, including modules 2556 /// it depends on, using a postorder walk. 2557 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2558 SmallVectorImpl<llvm::MDNode *> &Metadata, 2559 llvm::SmallPtrSet<Module *, 16> &Visited) { 2560 // Import this module's parent. 2561 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2562 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2563 } 2564 2565 // Import this module's dependencies. 2566 for (Module *Import : llvm::reverse(Mod->Imports)) { 2567 if (Visited.insert(Import).second) 2568 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2569 } 2570 2571 // Add linker options to link against the libraries/frameworks 2572 // described by this module. 2573 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2574 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2575 2576 // For modules that use export_as for linking, use that module 2577 // name instead. 2578 if (Mod->UseExportAsModuleLinkName) 2579 return; 2580 2581 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2582 // Link against a framework. Frameworks are currently Darwin only, so we 2583 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2584 if (LL.IsFramework) { 2585 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2586 llvm::MDString::get(Context, LL.Library)}; 2587 2588 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2589 continue; 2590 } 2591 2592 // Link against a library. 2593 if (IsELF) { 2594 llvm::Metadata *Args[2] = { 2595 llvm::MDString::get(Context, "lib"), 2596 llvm::MDString::get(Context, LL.Library), 2597 }; 2598 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2599 } else { 2600 llvm::SmallString<24> Opt; 2601 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2602 auto *OptString = llvm::MDString::get(Context, Opt); 2603 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2604 } 2605 } 2606 } 2607 2608 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2609 // Emit the initializers in the order that sub-modules appear in the 2610 // source, first Global Module Fragments, if present. 2611 if (auto GMF = Primary->getGlobalModuleFragment()) { 2612 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2613 if (isa<ImportDecl>(D)) 2614 continue; 2615 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2616 EmitTopLevelDecl(D); 2617 } 2618 } 2619 // Second any associated with the module, itself. 2620 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2621 // Skip import decls, the inits for those are called explicitly. 2622 if (isa<ImportDecl>(D)) 2623 continue; 2624 EmitTopLevelDecl(D); 2625 } 2626 // Third any associated with the Privat eMOdule Fragment, if present. 2627 if (auto PMF = Primary->getPrivateModuleFragment()) { 2628 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2629 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2630 EmitTopLevelDecl(D); 2631 } 2632 } 2633 } 2634 2635 void CodeGenModule::EmitModuleLinkOptions() { 2636 // Collect the set of all of the modules we want to visit to emit link 2637 // options, which is essentially the imported modules and all of their 2638 // non-explicit child modules. 2639 llvm::SetVector<clang::Module *> LinkModules; 2640 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2641 SmallVector<clang::Module *, 16> Stack; 2642 2643 // Seed the stack with imported modules. 2644 for (Module *M : ImportedModules) { 2645 // Do not add any link flags when an implementation TU of a module imports 2646 // a header of that same module. 2647 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2648 !getLangOpts().isCompilingModule()) 2649 continue; 2650 if (Visited.insert(M).second) 2651 Stack.push_back(M); 2652 } 2653 2654 // Find all of the modules to import, making a little effort to prune 2655 // non-leaf modules. 2656 while (!Stack.empty()) { 2657 clang::Module *Mod = Stack.pop_back_val(); 2658 2659 bool AnyChildren = false; 2660 2661 // Visit the submodules of this module. 2662 for (const auto &SM : Mod->submodules()) { 2663 // Skip explicit children; they need to be explicitly imported to be 2664 // linked against. 2665 if (SM->IsExplicit) 2666 continue; 2667 2668 if (Visited.insert(SM).second) { 2669 Stack.push_back(SM); 2670 AnyChildren = true; 2671 } 2672 } 2673 2674 // We didn't find any children, so add this module to the list of 2675 // modules to link against. 2676 if (!AnyChildren) { 2677 LinkModules.insert(Mod); 2678 } 2679 } 2680 2681 // Add link options for all of the imported modules in reverse topological 2682 // order. We don't do anything to try to order import link flags with respect 2683 // to linker options inserted by things like #pragma comment(). 2684 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2685 Visited.clear(); 2686 for (Module *M : LinkModules) 2687 if (Visited.insert(M).second) 2688 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2689 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2690 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2691 2692 // Add the linker options metadata flag. 2693 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2694 for (auto *MD : LinkerOptionsMetadata) 2695 NMD->addOperand(MD); 2696 } 2697 2698 void CodeGenModule::EmitDeferred() { 2699 // Emit deferred declare target declarations. 2700 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2701 getOpenMPRuntime().emitDeferredTargetDecls(); 2702 2703 // Emit code for any potentially referenced deferred decls. Since a 2704 // previously unused static decl may become used during the generation of code 2705 // for a static function, iterate until no changes are made. 2706 2707 if (!DeferredVTables.empty()) { 2708 EmitDeferredVTables(); 2709 2710 // Emitting a vtable doesn't directly cause more vtables to 2711 // become deferred, although it can cause functions to be 2712 // emitted that then need those vtables. 2713 assert(DeferredVTables.empty()); 2714 } 2715 2716 // Emit CUDA/HIP static device variables referenced by host code only. 2717 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2718 // needed for further handling. 2719 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2720 llvm::append_range(DeferredDeclsToEmit, 2721 getContext().CUDADeviceVarODRUsedByHost); 2722 2723 // Stop if we're out of both deferred vtables and deferred declarations. 2724 if (DeferredDeclsToEmit.empty()) 2725 return; 2726 2727 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2728 // work, it will not interfere with this. 2729 std::vector<GlobalDecl> CurDeclsToEmit; 2730 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2731 2732 for (GlobalDecl &D : CurDeclsToEmit) { 2733 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2734 // to get GlobalValue with exactly the type we need, not something that 2735 // might had been created for another decl with the same mangled name but 2736 // different type. 2737 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2738 GetAddrOfGlobal(D, ForDefinition)); 2739 2740 // In case of different address spaces, we may still get a cast, even with 2741 // IsForDefinition equal to true. Query mangled names table to get 2742 // GlobalValue. 2743 if (!GV) 2744 GV = GetGlobalValue(getMangledName(D)); 2745 2746 // Make sure GetGlobalValue returned non-null. 2747 assert(GV); 2748 2749 // Check to see if we've already emitted this. This is necessary 2750 // for a couple of reasons: first, decls can end up in the 2751 // deferred-decls queue multiple times, and second, decls can end 2752 // up with definitions in unusual ways (e.g. by an extern inline 2753 // function acquiring a strong function redefinition). Just 2754 // ignore these cases. 2755 if (!GV->isDeclaration()) 2756 continue; 2757 2758 // If this is OpenMP, check if it is legal to emit this global normally. 2759 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2760 continue; 2761 2762 // Otherwise, emit the definition and move on to the next one. 2763 EmitGlobalDefinition(D, GV); 2764 2765 // If we found out that we need to emit more decls, do that recursively. 2766 // This has the advantage that the decls are emitted in a DFS and related 2767 // ones are close together, which is convenient for testing. 2768 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2769 EmitDeferred(); 2770 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2771 } 2772 } 2773 } 2774 2775 void CodeGenModule::EmitVTablesOpportunistically() { 2776 // Try to emit external vtables as available_externally if they have emitted 2777 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2778 // is not allowed to create new references to things that need to be emitted 2779 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2780 2781 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2782 && "Only emit opportunistic vtables with optimizations"); 2783 2784 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2785 assert(getVTables().isVTableExternal(RD) && 2786 "This queue should only contain external vtables"); 2787 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2788 VTables.GenerateClassData(RD); 2789 } 2790 OpportunisticVTables.clear(); 2791 } 2792 2793 void CodeGenModule::EmitGlobalAnnotations() { 2794 if (Annotations.empty()) 2795 return; 2796 2797 // Create a new global variable for the ConstantStruct in the Module. 2798 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2799 Annotations[0]->getType(), Annotations.size()), Annotations); 2800 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2801 llvm::GlobalValue::AppendingLinkage, 2802 Array, "llvm.global.annotations"); 2803 gv->setSection(AnnotationSection); 2804 } 2805 2806 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2807 llvm::Constant *&AStr = AnnotationStrings[Str]; 2808 if (AStr) 2809 return AStr; 2810 2811 // Not found yet, create a new global. 2812 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2813 auto *gv = 2814 new llvm::GlobalVariable(getModule(), s->getType(), true, 2815 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2816 gv->setSection(AnnotationSection); 2817 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2818 AStr = gv; 2819 return gv; 2820 } 2821 2822 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2823 SourceManager &SM = getContext().getSourceManager(); 2824 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2825 if (PLoc.isValid()) 2826 return EmitAnnotationString(PLoc.getFilename()); 2827 return EmitAnnotationString(SM.getBufferName(Loc)); 2828 } 2829 2830 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2831 SourceManager &SM = getContext().getSourceManager(); 2832 PresumedLoc PLoc = SM.getPresumedLoc(L); 2833 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2834 SM.getExpansionLineNumber(L); 2835 return llvm::ConstantInt::get(Int32Ty, LineNo); 2836 } 2837 2838 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2839 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2840 if (Exprs.empty()) 2841 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2842 2843 llvm::FoldingSetNodeID ID; 2844 for (Expr *E : Exprs) { 2845 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2846 } 2847 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2848 if (Lookup) 2849 return Lookup; 2850 2851 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2852 LLVMArgs.reserve(Exprs.size()); 2853 ConstantEmitter ConstEmiter(*this); 2854 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2855 const auto *CE = cast<clang::ConstantExpr>(E); 2856 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2857 CE->getType()); 2858 }); 2859 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2860 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2861 llvm::GlobalValue::PrivateLinkage, Struct, 2862 ".args"); 2863 GV->setSection(AnnotationSection); 2864 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2865 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2866 2867 Lookup = Bitcasted; 2868 return Bitcasted; 2869 } 2870 2871 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2872 const AnnotateAttr *AA, 2873 SourceLocation L) { 2874 // Get the globals for file name, annotation, and the line number. 2875 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2876 *UnitGV = EmitAnnotationUnit(L), 2877 *LineNoCst = EmitAnnotationLineNo(L), 2878 *Args = EmitAnnotationArgs(AA); 2879 2880 llvm::Constant *GVInGlobalsAS = GV; 2881 if (GV->getAddressSpace() != 2882 getDataLayout().getDefaultGlobalsAddressSpace()) { 2883 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2884 GV, GV->getValueType()->getPointerTo( 2885 getDataLayout().getDefaultGlobalsAddressSpace())); 2886 } 2887 2888 // Create the ConstantStruct for the global annotation. 2889 llvm::Constant *Fields[] = { 2890 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2891 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2892 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2893 LineNoCst, 2894 Args, 2895 }; 2896 return llvm::ConstantStruct::getAnon(Fields); 2897 } 2898 2899 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2900 llvm::GlobalValue *GV) { 2901 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2902 // Get the struct elements for these annotations. 2903 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2904 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2905 } 2906 2907 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2908 SourceLocation Loc) const { 2909 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2910 // NoSanitize by function name. 2911 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2912 return true; 2913 // NoSanitize by location. Check "mainfile" prefix. 2914 auto &SM = Context.getSourceManager(); 2915 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2916 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2917 return true; 2918 2919 // Check "src" prefix. 2920 if (Loc.isValid()) 2921 return NoSanitizeL.containsLocation(Kind, Loc); 2922 // If location is unknown, this may be a compiler-generated function. Assume 2923 // it's located in the main file. 2924 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2925 } 2926 2927 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2928 llvm::GlobalVariable *GV, 2929 SourceLocation Loc, QualType Ty, 2930 StringRef Category) const { 2931 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2932 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2933 return true; 2934 auto &SM = Context.getSourceManager(); 2935 if (NoSanitizeL.containsMainFile( 2936 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2937 return true; 2938 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2939 return true; 2940 2941 // Check global type. 2942 if (!Ty.isNull()) { 2943 // Drill down the array types: if global variable of a fixed type is 2944 // not sanitized, we also don't instrument arrays of them. 2945 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2946 Ty = AT->getElementType(); 2947 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2948 // Only record types (classes, structs etc.) are ignored. 2949 if (Ty->isRecordType()) { 2950 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2951 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2952 return true; 2953 } 2954 } 2955 return false; 2956 } 2957 2958 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2959 StringRef Category) const { 2960 const auto &XRayFilter = getContext().getXRayFilter(); 2961 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2962 auto Attr = ImbueAttr::NONE; 2963 if (Loc.isValid()) 2964 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2965 if (Attr == ImbueAttr::NONE) 2966 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2967 switch (Attr) { 2968 case ImbueAttr::NONE: 2969 return false; 2970 case ImbueAttr::ALWAYS: 2971 Fn->addFnAttr("function-instrument", "xray-always"); 2972 break; 2973 case ImbueAttr::ALWAYS_ARG1: 2974 Fn->addFnAttr("function-instrument", "xray-always"); 2975 Fn->addFnAttr("xray-log-args", "1"); 2976 break; 2977 case ImbueAttr::NEVER: 2978 Fn->addFnAttr("function-instrument", "xray-never"); 2979 break; 2980 } 2981 return true; 2982 } 2983 2984 ProfileList::ExclusionType 2985 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 2986 SourceLocation Loc) const { 2987 const auto &ProfileList = getContext().getProfileList(); 2988 // If the profile list is empty, then instrument everything. 2989 if (ProfileList.isEmpty()) 2990 return ProfileList::Allow; 2991 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2992 // First, check the function name. 2993 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 2994 return *V; 2995 // Next, check the source location. 2996 if (Loc.isValid()) 2997 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 2998 return *V; 2999 // If location is unknown, this may be a compiler-generated function. Assume 3000 // it's located in the main file. 3001 auto &SM = Context.getSourceManager(); 3002 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3003 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3004 return *V; 3005 return ProfileList.getDefault(Kind); 3006 } 3007 3008 ProfileList::ExclusionType 3009 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3010 SourceLocation Loc) const { 3011 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3012 if (V != ProfileList::Allow) 3013 return V; 3014 3015 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3016 if (NumGroups > 1) { 3017 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3018 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3019 return ProfileList::Skip; 3020 } 3021 return ProfileList::Allow; 3022 } 3023 3024 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3025 // Never defer when EmitAllDecls is specified. 3026 if (LangOpts.EmitAllDecls) 3027 return true; 3028 3029 if (CodeGenOpts.KeepStaticConsts) { 3030 const auto *VD = dyn_cast<VarDecl>(Global); 3031 if (VD && VD->getType().isConstQualified() && 3032 VD->getStorageDuration() == SD_Static) 3033 return true; 3034 } 3035 3036 return getContext().DeclMustBeEmitted(Global); 3037 } 3038 3039 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3040 // In OpenMP 5.0 variables and function may be marked as 3041 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3042 // that they must be emitted on the host/device. To be sure we need to have 3043 // seen a declare target with an explicit mentioning of the function, we know 3044 // we have if the level of the declare target attribute is -1. Note that we 3045 // check somewhere else if we should emit this at all. 3046 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3047 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3048 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3049 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3050 return false; 3051 } 3052 3053 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3054 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3055 // Implicit template instantiations may change linkage if they are later 3056 // explicitly instantiated, so they should not be emitted eagerly. 3057 return false; 3058 } 3059 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3060 if (Context.getInlineVariableDefinitionKind(VD) == 3061 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3062 // A definition of an inline constexpr static data member may change 3063 // linkage later if it's redeclared outside the class. 3064 return false; 3065 if (CXX20ModuleInits && VD->getOwningModule() && 3066 !VD->getOwningModule()->isModuleMapModule()) { 3067 // For CXX20, module-owned initializers need to be deferred, since it is 3068 // not known at this point if they will be run for the current module or 3069 // as part of the initializer for an imported one. 3070 return false; 3071 } 3072 } 3073 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3074 // codegen for global variables, because they may be marked as threadprivate. 3075 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3076 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3077 !isTypeConstant(Global->getType(), false) && 3078 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3079 return false; 3080 3081 return true; 3082 } 3083 3084 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3085 StringRef Name = getMangledName(GD); 3086 3087 // The UUID descriptor should be pointer aligned. 3088 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3089 3090 // Look for an existing global. 3091 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3092 return ConstantAddress(GV, GV->getValueType(), Alignment); 3093 3094 ConstantEmitter Emitter(*this); 3095 llvm::Constant *Init; 3096 3097 APValue &V = GD->getAsAPValue(); 3098 if (!V.isAbsent()) { 3099 // If possible, emit the APValue version of the initializer. In particular, 3100 // this gets the type of the constant right. 3101 Init = Emitter.emitForInitializer( 3102 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3103 } else { 3104 // As a fallback, directly construct the constant. 3105 // FIXME: This may get padding wrong under esoteric struct layout rules. 3106 // MSVC appears to create a complete type 'struct __s_GUID' that it 3107 // presumably uses to represent these constants. 3108 MSGuidDecl::Parts Parts = GD->getParts(); 3109 llvm::Constant *Fields[4] = { 3110 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3111 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3112 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3113 llvm::ConstantDataArray::getRaw( 3114 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3115 Int8Ty)}; 3116 Init = llvm::ConstantStruct::getAnon(Fields); 3117 } 3118 3119 auto *GV = new llvm::GlobalVariable( 3120 getModule(), Init->getType(), 3121 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3122 if (supportsCOMDAT()) 3123 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3124 setDSOLocal(GV); 3125 3126 if (!V.isAbsent()) { 3127 Emitter.finalize(GV); 3128 return ConstantAddress(GV, GV->getValueType(), Alignment); 3129 } 3130 3131 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3132 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3133 GV, Ty->getPointerTo(GV->getAddressSpace())); 3134 return ConstantAddress(Addr, Ty, Alignment); 3135 } 3136 3137 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3138 const UnnamedGlobalConstantDecl *GCD) { 3139 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3140 3141 llvm::GlobalVariable **Entry = nullptr; 3142 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3143 if (*Entry) 3144 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3145 3146 ConstantEmitter Emitter(*this); 3147 llvm::Constant *Init; 3148 3149 const APValue &V = GCD->getValue(); 3150 3151 assert(!V.isAbsent()); 3152 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3153 GCD->getType()); 3154 3155 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3156 /*isConstant=*/true, 3157 llvm::GlobalValue::PrivateLinkage, Init, 3158 ".constant"); 3159 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3160 GV->setAlignment(Alignment.getAsAlign()); 3161 3162 Emitter.finalize(GV); 3163 3164 *Entry = GV; 3165 return ConstantAddress(GV, GV->getValueType(), Alignment); 3166 } 3167 3168 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3169 const TemplateParamObjectDecl *TPO) { 3170 StringRef Name = getMangledName(TPO); 3171 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3172 3173 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3174 return ConstantAddress(GV, GV->getValueType(), Alignment); 3175 3176 ConstantEmitter Emitter(*this); 3177 llvm::Constant *Init = Emitter.emitForInitializer( 3178 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3179 3180 if (!Init) { 3181 ErrorUnsupported(TPO, "template parameter object"); 3182 return ConstantAddress::invalid(); 3183 } 3184 3185 auto *GV = new llvm::GlobalVariable( 3186 getModule(), Init->getType(), 3187 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3188 if (supportsCOMDAT()) 3189 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3190 Emitter.finalize(GV); 3191 3192 return ConstantAddress(GV, GV->getValueType(), Alignment); 3193 } 3194 3195 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3196 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3197 assert(AA && "No alias?"); 3198 3199 CharUnits Alignment = getContext().getDeclAlign(VD); 3200 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3201 3202 // See if there is already something with the target's name in the module. 3203 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3204 if (Entry) { 3205 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 3206 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3207 return ConstantAddress(Ptr, DeclTy, Alignment); 3208 } 3209 3210 llvm::Constant *Aliasee; 3211 if (isa<llvm::FunctionType>(DeclTy)) 3212 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3213 GlobalDecl(cast<FunctionDecl>(VD)), 3214 /*ForVTable=*/false); 3215 else 3216 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3217 nullptr); 3218 3219 auto *F = cast<llvm::GlobalValue>(Aliasee); 3220 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3221 WeakRefReferences.insert(F); 3222 3223 return ConstantAddress(Aliasee, DeclTy, Alignment); 3224 } 3225 3226 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3227 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3228 3229 // Weak references don't produce any output by themselves. 3230 if (Global->hasAttr<WeakRefAttr>()) 3231 return; 3232 3233 // If this is an alias definition (which otherwise looks like a declaration) 3234 // emit it now. 3235 if (Global->hasAttr<AliasAttr>()) 3236 return EmitAliasDefinition(GD); 3237 3238 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3239 if (Global->hasAttr<IFuncAttr>()) 3240 return emitIFuncDefinition(GD); 3241 3242 // If this is a cpu_dispatch multiversion function, emit the resolver. 3243 if (Global->hasAttr<CPUDispatchAttr>()) 3244 return emitCPUDispatchDefinition(GD); 3245 3246 // If this is CUDA, be selective about which declarations we emit. 3247 if (LangOpts.CUDA) { 3248 if (LangOpts.CUDAIsDevice) { 3249 if (!Global->hasAttr<CUDADeviceAttr>() && 3250 !Global->hasAttr<CUDAGlobalAttr>() && 3251 !Global->hasAttr<CUDAConstantAttr>() && 3252 !Global->hasAttr<CUDASharedAttr>() && 3253 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3254 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3255 return; 3256 } else { 3257 // We need to emit host-side 'shadows' for all global 3258 // device-side variables because the CUDA runtime needs their 3259 // size and host-side address in order to provide access to 3260 // their device-side incarnations. 3261 3262 // So device-only functions are the only things we skip. 3263 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3264 Global->hasAttr<CUDADeviceAttr>()) 3265 return; 3266 3267 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3268 "Expected Variable or Function"); 3269 } 3270 } 3271 3272 if (LangOpts.OpenMP) { 3273 // If this is OpenMP, check if it is legal to emit this global normally. 3274 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3275 return; 3276 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3277 if (MustBeEmitted(Global)) 3278 EmitOMPDeclareReduction(DRD); 3279 return; 3280 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3281 if (MustBeEmitted(Global)) 3282 EmitOMPDeclareMapper(DMD); 3283 return; 3284 } 3285 } 3286 3287 // Ignore declarations, they will be emitted on their first use. 3288 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3289 // Forward declarations are emitted lazily on first use. 3290 if (!FD->doesThisDeclarationHaveABody()) { 3291 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3292 return; 3293 3294 StringRef MangledName = getMangledName(GD); 3295 3296 // Compute the function info and LLVM type. 3297 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3298 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3299 3300 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3301 /*DontDefer=*/false); 3302 return; 3303 } 3304 } else { 3305 const auto *VD = cast<VarDecl>(Global); 3306 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3307 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3308 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3309 if (LangOpts.OpenMP) { 3310 // Emit declaration of the must-be-emitted declare target variable. 3311 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3312 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3313 bool UnifiedMemoryEnabled = 3314 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3315 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3316 !UnifiedMemoryEnabled) { 3317 (void)GetAddrOfGlobalVar(VD); 3318 } else { 3319 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3320 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3321 UnifiedMemoryEnabled)) && 3322 "Link clause or to clause with unified memory expected."); 3323 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3324 } 3325 3326 return; 3327 } 3328 } 3329 // If this declaration may have caused an inline variable definition to 3330 // change linkage, make sure that it's emitted. 3331 if (Context.getInlineVariableDefinitionKind(VD) == 3332 ASTContext::InlineVariableDefinitionKind::Strong) 3333 GetAddrOfGlobalVar(VD); 3334 return; 3335 } 3336 } 3337 3338 // Defer code generation to first use when possible, e.g. if this is an inline 3339 // function. If the global must always be emitted, do it eagerly if possible 3340 // to benefit from cache locality. 3341 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3342 // Emit the definition if it can't be deferred. 3343 EmitGlobalDefinition(GD); 3344 return; 3345 } 3346 3347 // If we're deferring emission of a C++ variable with an 3348 // initializer, remember the order in which it appeared in the file. 3349 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3350 cast<VarDecl>(Global)->hasInit()) { 3351 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3352 CXXGlobalInits.push_back(nullptr); 3353 } 3354 3355 StringRef MangledName = getMangledName(GD); 3356 if (GetGlobalValue(MangledName) != nullptr) { 3357 // The value has already been used and should therefore be emitted. 3358 addDeferredDeclToEmit(GD); 3359 } else if (MustBeEmitted(Global)) { 3360 // The value must be emitted, but cannot be emitted eagerly. 3361 assert(!MayBeEmittedEagerly(Global)); 3362 addDeferredDeclToEmit(GD); 3363 } else { 3364 // Otherwise, remember that we saw a deferred decl with this name. The 3365 // first use of the mangled name will cause it to move into 3366 // DeferredDeclsToEmit. 3367 DeferredDecls[MangledName] = GD; 3368 } 3369 } 3370 3371 // Check if T is a class type with a destructor that's not dllimport. 3372 static bool HasNonDllImportDtor(QualType T) { 3373 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3374 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3375 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3376 return true; 3377 3378 return false; 3379 } 3380 3381 namespace { 3382 struct FunctionIsDirectlyRecursive 3383 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3384 const StringRef Name; 3385 const Builtin::Context &BI; 3386 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3387 : Name(N), BI(C) {} 3388 3389 bool VisitCallExpr(const CallExpr *E) { 3390 const FunctionDecl *FD = E->getDirectCallee(); 3391 if (!FD) 3392 return false; 3393 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3394 if (Attr && Name == Attr->getLabel()) 3395 return true; 3396 unsigned BuiltinID = FD->getBuiltinID(); 3397 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3398 return false; 3399 StringRef BuiltinName = BI.getName(BuiltinID); 3400 if (BuiltinName.startswith("__builtin_") && 3401 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3402 return true; 3403 } 3404 return false; 3405 } 3406 3407 bool VisitStmt(const Stmt *S) { 3408 for (const Stmt *Child : S->children()) 3409 if (Child && this->Visit(Child)) 3410 return true; 3411 return false; 3412 } 3413 }; 3414 3415 // Make sure we're not referencing non-imported vars or functions. 3416 struct DLLImportFunctionVisitor 3417 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3418 bool SafeToInline = true; 3419 3420 bool shouldVisitImplicitCode() const { return true; } 3421 3422 bool VisitVarDecl(VarDecl *VD) { 3423 if (VD->getTLSKind()) { 3424 // A thread-local variable cannot be imported. 3425 SafeToInline = false; 3426 return SafeToInline; 3427 } 3428 3429 // A variable definition might imply a destructor call. 3430 if (VD->isThisDeclarationADefinition()) 3431 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3432 3433 return SafeToInline; 3434 } 3435 3436 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3437 if (const auto *D = E->getTemporary()->getDestructor()) 3438 SafeToInline = D->hasAttr<DLLImportAttr>(); 3439 return SafeToInline; 3440 } 3441 3442 bool VisitDeclRefExpr(DeclRefExpr *E) { 3443 ValueDecl *VD = E->getDecl(); 3444 if (isa<FunctionDecl>(VD)) 3445 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3446 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3447 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3448 return SafeToInline; 3449 } 3450 3451 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3452 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3453 return SafeToInline; 3454 } 3455 3456 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3457 CXXMethodDecl *M = E->getMethodDecl(); 3458 if (!M) { 3459 // Call through a pointer to member function. This is safe to inline. 3460 SafeToInline = true; 3461 } else { 3462 SafeToInline = M->hasAttr<DLLImportAttr>(); 3463 } 3464 return SafeToInline; 3465 } 3466 3467 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3468 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3469 return SafeToInline; 3470 } 3471 3472 bool VisitCXXNewExpr(CXXNewExpr *E) { 3473 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3474 return SafeToInline; 3475 } 3476 }; 3477 } 3478 3479 // isTriviallyRecursive - Check if this function calls another 3480 // decl that, because of the asm attribute or the other decl being a builtin, 3481 // ends up pointing to itself. 3482 bool 3483 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3484 StringRef Name; 3485 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3486 // asm labels are a special kind of mangling we have to support. 3487 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3488 if (!Attr) 3489 return false; 3490 Name = Attr->getLabel(); 3491 } else { 3492 Name = FD->getName(); 3493 } 3494 3495 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3496 const Stmt *Body = FD->getBody(); 3497 return Body ? Walker.Visit(Body) : false; 3498 } 3499 3500 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3501 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3502 return true; 3503 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3504 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3505 return false; 3506 3507 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3508 // Check whether it would be safe to inline this dllimport function. 3509 DLLImportFunctionVisitor Visitor; 3510 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3511 if (!Visitor.SafeToInline) 3512 return false; 3513 3514 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3515 // Implicit destructor invocations aren't captured in the AST, so the 3516 // check above can't see them. Check for them manually here. 3517 for (const Decl *Member : Dtor->getParent()->decls()) 3518 if (isa<FieldDecl>(Member)) 3519 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3520 return false; 3521 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3522 if (HasNonDllImportDtor(B.getType())) 3523 return false; 3524 } 3525 } 3526 3527 // Inline builtins declaration must be emitted. They often are fortified 3528 // functions. 3529 if (F->isInlineBuiltinDeclaration()) 3530 return true; 3531 3532 // PR9614. Avoid cases where the source code is lying to us. An available 3533 // externally function should have an equivalent function somewhere else, 3534 // but a function that calls itself through asm label/`__builtin_` trickery is 3535 // clearly not equivalent to the real implementation. 3536 // This happens in glibc's btowc and in some configure checks. 3537 return !isTriviallyRecursive(F); 3538 } 3539 3540 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3541 return CodeGenOpts.OptimizationLevel > 0; 3542 } 3543 3544 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3545 llvm::GlobalValue *GV) { 3546 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3547 3548 if (FD->isCPUSpecificMultiVersion()) { 3549 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3550 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3551 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3552 } else if (FD->isTargetClonesMultiVersion()) { 3553 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3554 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3555 if (Clone->isFirstOfVersion(I)) 3556 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3557 // Ensure that the resolver function is also emitted. 3558 GetOrCreateMultiVersionResolver(GD); 3559 } else 3560 EmitGlobalFunctionDefinition(GD, GV); 3561 } 3562 3563 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3564 const auto *D = cast<ValueDecl>(GD.getDecl()); 3565 3566 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3567 Context.getSourceManager(), 3568 "Generating code for declaration"); 3569 3570 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3571 // At -O0, don't generate IR for functions with available_externally 3572 // linkage. 3573 if (!shouldEmitFunction(GD)) 3574 return; 3575 3576 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3577 std::string Name; 3578 llvm::raw_string_ostream OS(Name); 3579 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3580 /*Qualified=*/true); 3581 return Name; 3582 }); 3583 3584 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3585 // Make sure to emit the definition(s) before we emit the thunks. 3586 // This is necessary for the generation of certain thunks. 3587 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3588 ABI->emitCXXStructor(GD); 3589 else if (FD->isMultiVersion()) 3590 EmitMultiVersionFunctionDefinition(GD, GV); 3591 else 3592 EmitGlobalFunctionDefinition(GD, GV); 3593 3594 if (Method->isVirtual()) 3595 getVTables().EmitThunks(GD); 3596 3597 return; 3598 } 3599 3600 if (FD->isMultiVersion()) 3601 return EmitMultiVersionFunctionDefinition(GD, GV); 3602 return EmitGlobalFunctionDefinition(GD, GV); 3603 } 3604 3605 if (const auto *VD = dyn_cast<VarDecl>(D)) 3606 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3607 3608 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3609 } 3610 3611 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3612 llvm::Function *NewFn); 3613 3614 static unsigned 3615 TargetMVPriority(const TargetInfo &TI, 3616 const CodeGenFunction::MultiVersionResolverOption &RO) { 3617 unsigned Priority = 0; 3618 for (StringRef Feat : RO.Conditions.Features) 3619 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3620 3621 if (!RO.Conditions.Architecture.empty()) 3622 Priority = std::max( 3623 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3624 return Priority; 3625 } 3626 3627 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3628 // TU can forward declare the function without causing problems. Particularly 3629 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3630 // work with internal linkage functions, so that the same function name can be 3631 // used with internal linkage in multiple TUs. 3632 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3633 GlobalDecl GD) { 3634 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3635 if (FD->getFormalLinkage() == InternalLinkage) 3636 return llvm::GlobalValue::InternalLinkage; 3637 return llvm::GlobalValue::WeakODRLinkage; 3638 } 3639 3640 void CodeGenModule::emitMultiVersionFunctions() { 3641 std::vector<GlobalDecl> MVFuncsToEmit; 3642 MultiVersionFuncs.swap(MVFuncsToEmit); 3643 for (GlobalDecl GD : MVFuncsToEmit) { 3644 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3645 assert(FD && "Expected a FunctionDecl"); 3646 3647 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3648 if (FD->isTargetMultiVersion()) { 3649 getContext().forEachMultiversionedFunctionVersion( 3650 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3651 GlobalDecl CurGD{ 3652 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3653 StringRef MangledName = getMangledName(CurGD); 3654 llvm::Constant *Func = GetGlobalValue(MangledName); 3655 if (!Func) { 3656 if (CurFD->isDefined()) { 3657 EmitGlobalFunctionDefinition(CurGD, nullptr); 3658 Func = GetGlobalValue(MangledName); 3659 } else { 3660 const CGFunctionInfo &FI = 3661 getTypes().arrangeGlobalDeclaration(GD); 3662 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3663 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3664 /*DontDefer=*/false, ForDefinition); 3665 } 3666 assert(Func && "This should have just been created"); 3667 } 3668 3669 const auto *TA = CurFD->getAttr<TargetAttr>(); 3670 llvm::SmallVector<StringRef, 8> Feats; 3671 TA->getAddedFeatures(Feats); 3672 3673 Options.emplace_back(cast<llvm::Function>(Func), 3674 TA->getArchitecture(), Feats); 3675 }); 3676 } else if (FD->isTargetClonesMultiVersion()) { 3677 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3678 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3679 ++VersionIndex) { 3680 if (!TC->isFirstOfVersion(VersionIndex)) 3681 continue; 3682 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3683 VersionIndex}; 3684 StringRef Version = TC->getFeatureStr(VersionIndex); 3685 StringRef MangledName = getMangledName(CurGD); 3686 llvm::Constant *Func = GetGlobalValue(MangledName); 3687 if (!Func) { 3688 if (FD->isDefined()) { 3689 EmitGlobalFunctionDefinition(CurGD, nullptr); 3690 Func = GetGlobalValue(MangledName); 3691 } else { 3692 const CGFunctionInfo &FI = 3693 getTypes().arrangeGlobalDeclaration(CurGD); 3694 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3695 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3696 /*DontDefer=*/false, ForDefinition); 3697 } 3698 assert(Func && "This should have just been created"); 3699 } 3700 3701 StringRef Architecture; 3702 llvm::SmallVector<StringRef, 1> Feature; 3703 3704 if (Version.startswith("arch=")) 3705 Architecture = Version.drop_front(sizeof("arch=") - 1); 3706 else if (Version != "default") 3707 Feature.push_back(Version); 3708 3709 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3710 } 3711 } else { 3712 assert(0 && "Expected a target or target_clones multiversion function"); 3713 continue; 3714 } 3715 3716 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3717 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3718 ResolverConstant = IFunc->getResolver(); 3719 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3720 3721 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3722 3723 if (supportsCOMDAT()) 3724 ResolverFunc->setComdat( 3725 getModule().getOrInsertComdat(ResolverFunc->getName())); 3726 3727 const TargetInfo &TI = getTarget(); 3728 llvm::stable_sort( 3729 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3730 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3731 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3732 }); 3733 CodeGenFunction CGF(*this); 3734 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3735 } 3736 3737 // Ensure that any additions to the deferred decls list caused by emitting a 3738 // variant are emitted. This can happen when the variant itself is inline and 3739 // calls a function without linkage. 3740 if (!MVFuncsToEmit.empty()) 3741 EmitDeferred(); 3742 3743 // Ensure that any additions to the multiversion funcs list from either the 3744 // deferred decls or the multiversion functions themselves are emitted. 3745 if (!MultiVersionFuncs.empty()) 3746 emitMultiVersionFunctions(); 3747 } 3748 3749 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3750 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3751 assert(FD && "Not a FunctionDecl?"); 3752 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3753 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3754 assert(DD && "Not a cpu_dispatch Function?"); 3755 3756 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3757 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3758 3759 StringRef ResolverName = getMangledName(GD); 3760 UpdateMultiVersionNames(GD, FD, ResolverName); 3761 3762 llvm::Type *ResolverType; 3763 GlobalDecl ResolverGD; 3764 if (getTarget().supportsIFunc()) { 3765 ResolverType = llvm::FunctionType::get( 3766 llvm::PointerType::get(DeclTy, 3767 Context.getTargetAddressSpace(FD->getType())), 3768 false); 3769 } 3770 else { 3771 ResolverType = DeclTy; 3772 ResolverGD = GD; 3773 } 3774 3775 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3776 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3777 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3778 if (supportsCOMDAT()) 3779 ResolverFunc->setComdat( 3780 getModule().getOrInsertComdat(ResolverFunc->getName())); 3781 3782 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3783 const TargetInfo &Target = getTarget(); 3784 unsigned Index = 0; 3785 for (const IdentifierInfo *II : DD->cpus()) { 3786 // Get the name of the target function so we can look it up/create it. 3787 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3788 getCPUSpecificMangling(*this, II->getName()); 3789 3790 llvm::Constant *Func = GetGlobalValue(MangledName); 3791 3792 if (!Func) { 3793 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3794 if (ExistingDecl.getDecl() && 3795 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3796 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3797 Func = GetGlobalValue(MangledName); 3798 } else { 3799 if (!ExistingDecl.getDecl()) 3800 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3801 3802 Func = GetOrCreateLLVMFunction( 3803 MangledName, DeclTy, ExistingDecl, 3804 /*ForVTable=*/false, /*DontDefer=*/true, 3805 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3806 } 3807 } 3808 3809 llvm::SmallVector<StringRef, 32> Features; 3810 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3811 llvm::transform(Features, Features.begin(), 3812 [](StringRef Str) { return Str.substr(1); }); 3813 llvm::erase_if(Features, [&Target](StringRef Feat) { 3814 return !Target.validateCpuSupports(Feat); 3815 }); 3816 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3817 ++Index; 3818 } 3819 3820 llvm::stable_sort( 3821 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3822 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3823 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3824 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3825 }); 3826 3827 // If the list contains multiple 'default' versions, such as when it contains 3828 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3829 // always run on at least a 'pentium'). We do this by deleting the 'least 3830 // advanced' (read, lowest mangling letter). 3831 while (Options.size() > 1 && 3832 llvm::X86::getCpuSupportsMask( 3833 (Options.end() - 2)->Conditions.Features) == 0) { 3834 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3835 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3836 if (LHSName.compare(RHSName) < 0) 3837 Options.erase(Options.end() - 2); 3838 else 3839 Options.erase(Options.end() - 1); 3840 } 3841 3842 CodeGenFunction CGF(*this); 3843 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3844 3845 if (getTarget().supportsIFunc()) { 3846 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3847 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3848 3849 // Fix up function declarations that were created for cpu_specific before 3850 // cpu_dispatch was known 3851 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3852 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3853 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3854 &getModule()); 3855 GI->takeName(IFunc); 3856 IFunc->replaceAllUsesWith(GI); 3857 IFunc->eraseFromParent(); 3858 IFunc = GI; 3859 } 3860 3861 std::string AliasName = getMangledNameImpl( 3862 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3863 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3864 if (!AliasFunc) { 3865 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3866 &getModule()); 3867 SetCommonAttributes(GD, GA); 3868 } 3869 } 3870 } 3871 3872 /// If a dispatcher for the specified mangled name is not in the module, create 3873 /// and return an llvm Function with the specified type. 3874 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3875 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3876 assert(FD && "Not a FunctionDecl?"); 3877 3878 std::string MangledName = 3879 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3880 3881 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3882 // a separate resolver). 3883 std::string ResolverName = MangledName; 3884 if (getTarget().supportsIFunc()) 3885 ResolverName += ".ifunc"; 3886 else if (FD->isTargetMultiVersion()) 3887 ResolverName += ".resolver"; 3888 3889 // If the resolver has already been created, just return it. 3890 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3891 return ResolverGV; 3892 3893 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3894 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3895 3896 // The resolver needs to be created. For target and target_clones, defer 3897 // creation until the end of the TU. 3898 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3899 MultiVersionFuncs.push_back(GD); 3900 3901 // For cpu_specific, don't create an ifunc yet because we don't know if the 3902 // cpu_dispatch will be emitted in this translation unit. 3903 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3904 llvm::Type *ResolverType = llvm::FunctionType::get( 3905 llvm::PointerType::get( 3906 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3907 false); 3908 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3909 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3910 /*ForVTable=*/false); 3911 llvm::GlobalIFunc *GIF = 3912 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3913 "", Resolver, &getModule()); 3914 GIF->setName(ResolverName); 3915 SetCommonAttributes(FD, GIF); 3916 3917 return GIF; 3918 } 3919 3920 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3921 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3922 assert(isa<llvm::GlobalValue>(Resolver) && 3923 "Resolver should be created for the first time"); 3924 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3925 return Resolver; 3926 } 3927 3928 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3929 /// module, create and return an llvm Function with the specified type. If there 3930 /// is something in the module with the specified name, return it potentially 3931 /// bitcasted to the right type. 3932 /// 3933 /// If D is non-null, it specifies a decl that correspond to this. This is used 3934 /// to set the attributes on the function when it is first created. 3935 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3936 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3937 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3938 ForDefinition_t IsForDefinition) { 3939 const Decl *D = GD.getDecl(); 3940 3941 // Any attempts to use a MultiVersion function should result in retrieving 3942 // the iFunc instead. Name Mangling will handle the rest of the changes. 3943 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3944 // For the device mark the function as one that should be emitted. 3945 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3946 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3947 !DontDefer && !IsForDefinition) { 3948 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3949 GlobalDecl GDDef; 3950 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3951 GDDef = GlobalDecl(CD, GD.getCtorType()); 3952 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3953 GDDef = GlobalDecl(DD, GD.getDtorType()); 3954 else 3955 GDDef = GlobalDecl(FDDef); 3956 EmitGlobal(GDDef); 3957 } 3958 } 3959 3960 if (FD->isMultiVersion()) { 3961 UpdateMultiVersionNames(GD, FD, MangledName); 3962 if (!IsForDefinition) 3963 return GetOrCreateMultiVersionResolver(GD); 3964 } 3965 } 3966 3967 // Lookup the entry, lazily creating it if necessary. 3968 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3969 if (Entry) { 3970 if (WeakRefReferences.erase(Entry)) { 3971 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3972 if (FD && !FD->hasAttr<WeakAttr>()) 3973 Entry->setLinkage(llvm::Function::ExternalLinkage); 3974 } 3975 3976 // Handle dropped DLL attributes. 3977 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 3978 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 3979 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3980 setDSOLocal(Entry); 3981 } 3982 3983 // If there are two attempts to define the same mangled name, issue an 3984 // error. 3985 if (IsForDefinition && !Entry->isDeclaration()) { 3986 GlobalDecl OtherGD; 3987 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3988 // to make sure that we issue an error only once. 3989 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3990 (GD.getCanonicalDecl().getDecl() != 3991 OtherGD.getCanonicalDecl().getDecl()) && 3992 DiagnosedConflictingDefinitions.insert(GD).second) { 3993 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3994 << MangledName; 3995 getDiags().Report(OtherGD.getDecl()->getLocation(), 3996 diag::note_previous_definition); 3997 } 3998 } 3999 4000 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4001 (Entry->getValueType() == Ty)) { 4002 return Entry; 4003 } 4004 4005 // Make sure the result is of the correct type. 4006 // (If function is requested for a definition, we always need to create a new 4007 // function, not just return a bitcast.) 4008 if (!IsForDefinition) 4009 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 4010 } 4011 4012 // This function doesn't have a complete type (for example, the return 4013 // type is an incomplete struct). Use a fake type instead, and make 4014 // sure not to try to set attributes. 4015 bool IsIncompleteFunction = false; 4016 4017 llvm::FunctionType *FTy; 4018 if (isa<llvm::FunctionType>(Ty)) { 4019 FTy = cast<llvm::FunctionType>(Ty); 4020 } else { 4021 FTy = llvm::FunctionType::get(VoidTy, false); 4022 IsIncompleteFunction = true; 4023 } 4024 4025 llvm::Function *F = 4026 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4027 Entry ? StringRef() : MangledName, &getModule()); 4028 4029 // If we already created a function with the same mangled name (but different 4030 // type) before, take its name and add it to the list of functions to be 4031 // replaced with F at the end of CodeGen. 4032 // 4033 // This happens if there is a prototype for a function (e.g. "int f()") and 4034 // then a definition of a different type (e.g. "int f(int x)"). 4035 if (Entry) { 4036 F->takeName(Entry); 4037 4038 // This might be an implementation of a function without a prototype, in 4039 // which case, try to do special replacement of calls which match the new 4040 // prototype. The really key thing here is that we also potentially drop 4041 // arguments from the call site so as to make a direct call, which makes the 4042 // inliner happier and suppresses a number of optimizer warnings (!) about 4043 // dropping arguments. 4044 if (!Entry->use_empty()) { 4045 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4046 Entry->removeDeadConstantUsers(); 4047 } 4048 4049 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4050 F, Entry->getValueType()->getPointerTo()); 4051 addGlobalValReplacement(Entry, BC); 4052 } 4053 4054 assert(F->getName() == MangledName && "name was uniqued!"); 4055 if (D) 4056 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4057 if (ExtraAttrs.hasFnAttrs()) { 4058 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4059 F->addFnAttrs(B); 4060 } 4061 4062 if (!DontDefer) { 4063 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4064 // each other bottoming out with the base dtor. Therefore we emit non-base 4065 // dtors on usage, even if there is no dtor definition in the TU. 4066 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4067 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4068 GD.getDtorType())) 4069 addDeferredDeclToEmit(GD); 4070 4071 // This is the first use or definition of a mangled name. If there is a 4072 // deferred decl with this name, remember that we need to emit it at the end 4073 // of the file. 4074 auto DDI = DeferredDecls.find(MangledName); 4075 if (DDI != DeferredDecls.end()) { 4076 // Move the potentially referenced deferred decl to the 4077 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4078 // don't need it anymore). 4079 addDeferredDeclToEmit(DDI->second); 4080 DeferredDecls.erase(DDI); 4081 4082 // Otherwise, there are cases we have to worry about where we're 4083 // using a declaration for which we must emit a definition but where 4084 // we might not find a top-level definition: 4085 // - member functions defined inline in their classes 4086 // - friend functions defined inline in some class 4087 // - special member functions with implicit definitions 4088 // If we ever change our AST traversal to walk into class methods, 4089 // this will be unnecessary. 4090 // 4091 // We also don't emit a definition for a function if it's going to be an 4092 // entry in a vtable, unless it's already marked as used. 4093 } else if (getLangOpts().CPlusPlus && D) { 4094 // Look for a declaration that's lexically in a record. 4095 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4096 FD = FD->getPreviousDecl()) { 4097 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4098 if (FD->doesThisDeclarationHaveABody()) { 4099 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4100 break; 4101 } 4102 } 4103 } 4104 } 4105 } 4106 4107 // Make sure the result is of the requested type. 4108 if (!IsIncompleteFunction) { 4109 assert(F->getFunctionType() == Ty); 4110 return F; 4111 } 4112 4113 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 4114 return llvm::ConstantExpr::getBitCast(F, PTy); 4115 } 4116 4117 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4118 /// non-null, then this function will use the specified type if it has to 4119 /// create it (this occurs when we see a definition of the function). 4120 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4121 llvm::Type *Ty, 4122 bool ForVTable, 4123 bool DontDefer, 4124 ForDefinition_t IsForDefinition) { 4125 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4126 "consteval function should never be emitted"); 4127 // If there was no specific requested type, just convert it now. 4128 if (!Ty) { 4129 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4130 Ty = getTypes().ConvertType(FD->getType()); 4131 } 4132 4133 // Devirtualized destructor calls may come through here instead of via 4134 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4135 // of the complete destructor when necessary. 4136 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4137 if (getTarget().getCXXABI().isMicrosoft() && 4138 GD.getDtorType() == Dtor_Complete && 4139 DD->getParent()->getNumVBases() == 0) 4140 GD = GlobalDecl(DD, Dtor_Base); 4141 } 4142 4143 StringRef MangledName = getMangledName(GD); 4144 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4145 /*IsThunk=*/false, llvm::AttributeList(), 4146 IsForDefinition); 4147 // Returns kernel handle for HIP kernel stub function. 4148 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4149 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4150 auto *Handle = getCUDARuntime().getKernelHandle( 4151 cast<llvm::Function>(F->stripPointerCasts()), GD); 4152 if (IsForDefinition) 4153 return F; 4154 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4155 } 4156 return F; 4157 } 4158 4159 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4160 llvm::GlobalValue *F = 4161 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4162 4163 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 4164 llvm::Type::getInt8PtrTy(VMContext)); 4165 } 4166 4167 static const FunctionDecl * 4168 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4169 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4170 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4171 4172 IdentifierInfo &CII = C.Idents.get(Name); 4173 for (const auto *Result : DC->lookup(&CII)) 4174 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4175 return FD; 4176 4177 if (!C.getLangOpts().CPlusPlus) 4178 return nullptr; 4179 4180 // Demangle the premangled name from getTerminateFn() 4181 IdentifierInfo &CXXII = 4182 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4183 ? C.Idents.get("terminate") 4184 : C.Idents.get(Name); 4185 4186 for (const auto &N : {"__cxxabiv1", "std"}) { 4187 IdentifierInfo &NS = C.Idents.get(N); 4188 for (const auto *Result : DC->lookup(&NS)) { 4189 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4190 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4191 for (const auto *Result : LSD->lookup(&NS)) 4192 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4193 break; 4194 4195 if (ND) 4196 for (const auto *Result : ND->lookup(&CXXII)) 4197 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4198 return FD; 4199 } 4200 } 4201 4202 return nullptr; 4203 } 4204 4205 /// CreateRuntimeFunction - Create a new runtime function with the specified 4206 /// type and name. 4207 llvm::FunctionCallee 4208 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4209 llvm::AttributeList ExtraAttrs, bool Local, 4210 bool AssumeConvergent) { 4211 if (AssumeConvergent) { 4212 ExtraAttrs = 4213 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4214 } 4215 4216 llvm::Constant *C = 4217 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4218 /*DontDefer=*/false, /*IsThunk=*/false, 4219 ExtraAttrs); 4220 4221 if (auto *F = dyn_cast<llvm::Function>(C)) { 4222 if (F->empty()) { 4223 F->setCallingConv(getRuntimeCC()); 4224 4225 // In Windows Itanium environments, try to mark runtime functions 4226 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4227 // will link their standard library statically or dynamically. Marking 4228 // functions imported when they are not imported can cause linker errors 4229 // and warnings. 4230 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4231 !getCodeGenOpts().LTOVisibilityPublicStd) { 4232 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4233 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4234 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4235 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4236 } 4237 } 4238 setDSOLocal(F); 4239 } 4240 } 4241 4242 return {FTy, C}; 4243 } 4244 4245 /// isTypeConstant - Determine whether an object of this type can be emitted 4246 /// as a constant. 4247 /// 4248 /// If ExcludeCtor is true, the duration when the object's constructor runs 4249 /// will not be considered. The caller will need to verify that the object is 4250 /// not written to during its construction. 4251 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4252 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4253 return false; 4254 4255 if (Context.getLangOpts().CPlusPlus) { 4256 if (const CXXRecordDecl *Record 4257 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4258 return ExcludeCtor && !Record->hasMutableFields() && 4259 Record->hasTrivialDestructor(); 4260 } 4261 4262 return true; 4263 } 4264 4265 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4266 /// create and return an llvm GlobalVariable with the specified type and address 4267 /// space. If there is something in the module with the specified name, return 4268 /// it potentially bitcasted to the right type. 4269 /// 4270 /// If D is non-null, it specifies a decl that correspond to this. This is used 4271 /// to set the attributes on the global when it is first created. 4272 /// 4273 /// If IsForDefinition is true, it is guaranteed that an actual global with 4274 /// type Ty will be returned, not conversion of a variable with the same 4275 /// mangled name but some other type. 4276 llvm::Constant * 4277 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4278 LangAS AddrSpace, const VarDecl *D, 4279 ForDefinition_t IsForDefinition) { 4280 // Lookup the entry, lazily creating it if necessary. 4281 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4282 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4283 if (Entry) { 4284 if (WeakRefReferences.erase(Entry)) { 4285 if (D && !D->hasAttr<WeakAttr>()) 4286 Entry->setLinkage(llvm::Function::ExternalLinkage); 4287 } 4288 4289 // Handle dropped DLL attributes. 4290 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4291 !shouldMapVisibilityToDLLExport(D)) 4292 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4293 4294 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4295 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4296 4297 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4298 return Entry; 4299 4300 // If there are two attempts to define the same mangled name, issue an 4301 // error. 4302 if (IsForDefinition && !Entry->isDeclaration()) { 4303 GlobalDecl OtherGD; 4304 const VarDecl *OtherD; 4305 4306 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4307 // to make sure that we issue an error only once. 4308 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4309 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4310 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4311 OtherD->hasInit() && 4312 DiagnosedConflictingDefinitions.insert(D).second) { 4313 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4314 << MangledName; 4315 getDiags().Report(OtherGD.getDecl()->getLocation(), 4316 diag::note_previous_definition); 4317 } 4318 } 4319 4320 // Make sure the result is of the correct type. 4321 if (Entry->getType()->getAddressSpace() != TargetAS) { 4322 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4323 Ty->getPointerTo(TargetAS)); 4324 } 4325 4326 // (If global is requested for a definition, we always need to create a new 4327 // global, not just return a bitcast.) 4328 if (!IsForDefinition) 4329 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4330 } 4331 4332 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4333 4334 auto *GV = new llvm::GlobalVariable( 4335 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4336 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4337 getContext().getTargetAddressSpace(DAddrSpace)); 4338 4339 // If we already created a global with the same mangled name (but different 4340 // type) before, take its name and remove it from its parent. 4341 if (Entry) { 4342 GV->takeName(Entry); 4343 4344 if (!Entry->use_empty()) { 4345 llvm::Constant *NewPtrForOldDecl = 4346 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4347 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4348 } 4349 4350 Entry->eraseFromParent(); 4351 } 4352 4353 // This is the first use or definition of a mangled name. If there is a 4354 // deferred decl with this name, remember that we need to emit it at the end 4355 // of the file. 4356 auto DDI = DeferredDecls.find(MangledName); 4357 if (DDI != DeferredDecls.end()) { 4358 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4359 // list, and remove it from DeferredDecls (since we don't need it anymore). 4360 addDeferredDeclToEmit(DDI->second); 4361 DeferredDecls.erase(DDI); 4362 } 4363 4364 // Handle things which are present even on external declarations. 4365 if (D) { 4366 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4367 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4368 4369 // FIXME: This code is overly simple and should be merged with other global 4370 // handling. 4371 GV->setConstant(isTypeConstant(D->getType(), false)); 4372 4373 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4374 4375 setLinkageForGV(GV, D); 4376 4377 if (D->getTLSKind()) { 4378 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4379 CXXThreadLocals.push_back(D); 4380 setTLSMode(GV, *D); 4381 } 4382 4383 setGVProperties(GV, D); 4384 4385 // If required by the ABI, treat declarations of static data members with 4386 // inline initializers as definitions. 4387 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4388 EmitGlobalVarDefinition(D); 4389 } 4390 4391 // Emit section information for extern variables. 4392 if (D->hasExternalStorage()) { 4393 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4394 GV->setSection(SA->getName()); 4395 } 4396 4397 // Handle XCore specific ABI requirements. 4398 if (getTriple().getArch() == llvm::Triple::xcore && 4399 D->getLanguageLinkage() == CLanguageLinkage && 4400 D->getType().isConstant(Context) && 4401 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4402 GV->setSection(".cp.rodata"); 4403 4404 // Check if we a have a const declaration with an initializer, we may be 4405 // able to emit it as available_externally to expose it's value to the 4406 // optimizer. 4407 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4408 D->getType().isConstQualified() && !GV->hasInitializer() && 4409 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4410 const auto *Record = 4411 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4412 bool HasMutableFields = Record && Record->hasMutableFields(); 4413 if (!HasMutableFields) { 4414 const VarDecl *InitDecl; 4415 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4416 if (InitExpr) { 4417 ConstantEmitter emitter(*this); 4418 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4419 if (Init) { 4420 auto *InitType = Init->getType(); 4421 if (GV->getValueType() != InitType) { 4422 // The type of the initializer does not match the definition. 4423 // This happens when an initializer has a different type from 4424 // the type of the global (because of padding at the end of a 4425 // structure for instance). 4426 GV->setName(StringRef()); 4427 // Make a new global with the correct type, this is now guaranteed 4428 // to work. 4429 auto *NewGV = cast<llvm::GlobalVariable>( 4430 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4431 ->stripPointerCasts()); 4432 4433 // Erase the old global, since it is no longer used. 4434 GV->eraseFromParent(); 4435 GV = NewGV; 4436 } else { 4437 GV->setInitializer(Init); 4438 GV->setConstant(true); 4439 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4440 } 4441 emitter.finalize(GV); 4442 } 4443 } 4444 } 4445 } 4446 } 4447 4448 if (GV->isDeclaration()) { 4449 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4450 // External HIP managed variables needed to be recorded for transformation 4451 // in both device and host compilations. 4452 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4453 D->hasExternalStorage()) 4454 getCUDARuntime().handleVarRegistration(D, *GV); 4455 } 4456 4457 if (D) 4458 SanitizerMD->reportGlobal(GV, *D); 4459 4460 LangAS ExpectedAS = 4461 D ? D->getType().getAddressSpace() 4462 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4463 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4464 if (DAddrSpace != ExpectedAS) { 4465 return getTargetCodeGenInfo().performAddrSpaceCast( 4466 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4467 } 4468 4469 return GV; 4470 } 4471 4472 llvm::Constant * 4473 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4474 const Decl *D = GD.getDecl(); 4475 4476 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4477 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4478 /*DontDefer=*/false, IsForDefinition); 4479 4480 if (isa<CXXMethodDecl>(D)) { 4481 auto FInfo = 4482 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4483 auto Ty = getTypes().GetFunctionType(*FInfo); 4484 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4485 IsForDefinition); 4486 } 4487 4488 if (isa<FunctionDecl>(D)) { 4489 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4490 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4491 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4492 IsForDefinition); 4493 } 4494 4495 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4496 } 4497 4498 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4499 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4500 unsigned Alignment) { 4501 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4502 llvm::GlobalVariable *OldGV = nullptr; 4503 4504 if (GV) { 4505 // Check if the variable has the right type. 4506 if (GV->getValueType() == Ty) 4507 return GV; 4508 4509 // Because C++ name mangling, the only way we can end up with an already 4510 // existing global with the same name is if it has been declared extern "C". 4511 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4512 OldGV = GV; 4513 } 4514 4515 // Create a new variable. 4516 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4517 Linkage, nullptr, Name); 4518 4519 if (OldGV) { 4520 // Replace occurrences of the old variable if needed. 4521 GV->takeName(OldGV); 4522 4523 if (!OldGV->use_empty()) { 4524 llvm::Constant *NewPtrForOldDecl = 4525 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4526 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4527 } 4528 4529 OldGV->eraseFromParent(); 4530 } 4531 4532 if (supportsCOMDAT() && GV->isWeakForLinker() && 4533 !GV->hasAvailableExternallyLinkage()) 4534 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4535 4536 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4537 4538 return GV; 4539 } 4540 4541 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4542 /// given global variable. If Ty is non-null and if the global doesn't exist, 4543 /// then it will be created with the specified type instead of whatever the 4544 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4545 /// that an actual global with type Ty will be returned, not conversion of a 4546 /// variable with the same mangled name but some other type. 4547 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4548 llvm::Type *Ty, 4549 ForDefinition_t IsForDefinition) { 4550 assert(D->hasGlobalStorage() && "Not a global variable"); 4551 QualType ASTTy = D->getType(); 4552 if (!Ty) 4553 Ty = getTypes().ConvertTypeForMem(ASTTy); 4554 4555 StringRef MangledName = getMangledName(D); 4556 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4557 IsForDefinition); 4558 } 4559 4560 /// CreateRuntimeVariable - Create a new runtime global variable with the 4561 /// specified type and name. 4562 llvm::Constant * 4563 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4564 StringRef Name) { 4565 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4566 : LangAS::Default; 4567 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4568 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4569 return Ret; 4570 } 4571 4572 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4573 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4574 4575 StringRef MangledName = getMangledName(D); 4576 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4577 4578 // We already have a definition, not declaration, with the same mangled name. 4579 // Emitting of declaration is not required (and actually overwrites emitted 4580 // definition). 4581 if (GV && !GV->isDeclaration()) 4582 return; 4583 4584 // If we have not seen a reference to this variable yet, place it into the 4585 // deferred declarations table to be emitted if needed later. 4586 if (!MustBeEmitted(D) && !GV) { 4587 DeferredDecls[MangledName] = D; 4588 return; 4589 } 4590 4591 // The tentative definition is the only definition. 4592 EmitGlobalVarDefinition(D); 4593 } 4594 4595 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4596 EmitExternalVarDeclaration(D); 4597 } 4598 4599 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4600 return Context.toCharUnitsFromBits( 4601 getDataLayout().getTypeStoreSizeInBits(Ty)); 4602 } 4603 4604 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4605 if (LangOpts.OpenCL) { 4606 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4607 assert(AS == LangAS::opencl_global || 4608 AS == LangAS::opencl_global_device || 4609 AS == LangAS::opencl_global_host || 4610 AS == LangAS::opencl_constant || 4611 AS == LangAS::opencl_local || 4612 AS >= LangAS::FirstTargetAddressSpace); 4613 return AS; 4614 } 4615 4616 if (LangOpts.SYCLIsDevice && 4617 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4618 return LangAS::sycl_global; 4619 4620 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4621 if (D && D->hasAttr<CUDAConstantAttr>()) 4622 return LangAS::cuda_constant; 4623 else if (D && D->hasAttr<CUDASharedAttr>()) 4624 return LangAS::cuda_shared; 4625 else if (D && D->hasAttr<CUDADeviceAttr>()) 4626 return LangAS::cuda_device; 4627 else if (D && D->getType().isConstQualified()) 4628 return LangAS::cuda_constant; 4629 else 4630 return LangAS::cuda_device; 4631 } 4632 4633 if (LangOpts.OpenMP) { 4634 LangAS AS; 4635 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4636 return AS; 4637 } 4638 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4639 } 4640 4641 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4642 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4643 if (LangOpts.OpenCL) 4644 return LangAS::opencl_constant; 4645 if (LangOpts.SYCLIsDevice) 4646 return LangAS::sycl_global; 4647 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4648 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4649 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4650 // with OpVariable instructions with Generic storage class which is not 4651 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4652 // UniformConstant storage class is not viable as pointers to it may not be 4653 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4654 return LangAS::cuda_device; 4655 if (auto AS = getTarget().getConstantAddressSpace()) 4656 return *AS; 4657 return LangAS::Default; 4658 } 4659 4660 // In address space agnostic languages, string literals are in default address 4661 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4662 // emitted in constant address space in LLVM IR. To be consistent with other 4663 // parts of AST, string literal global variables in constant address space 4664 // need to be casted to default address space before being put into address 4665 // map and referenced by other part of CodeGen. 4666 // In OpenCL, string literals are in constant address space in AST, therefore 4667 // they should not be casted to default address space. 4668 static llvm::Constant * 4669 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4670 llvm::GlobalVariable *GV) { 4671 llvm::Constant *Cast = GV; 4672 if (!CGM.getLangOpts().OpenCL) { 4673 auto AS = CGM.GetGlobalConstantAddressSpace(); 4674 if (AS != LangAS::Default) 4675 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4676 CGM, GV, AS, LangAS::Default, 4677 GV->getValueType()->getPointerTo( 4678 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4679 } 4680 return Cast; 4681 } 4682 4683 template<typename SomeDecl> 4684 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4685 llvm::GlobalValue *GV) { 4686 if (!getLangOpts().CPlusPlus) 4687 return; 4688 4689 // Must have 'used' attribute, or else inline assembly can't rely on 4690 // the name existing. 4691 if (!D->template hasAttr<UsedAttr>()) 4692 return; 4693 4694 // Must have internal linkage and an ordinary name. 4695 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4696 return; 4697 4698 // Must be in an extern "C" context. Entities declared directly within 4699 // a record are not extern "C" even if the record is in such a context. 4700 const SomeDecl *First = D->getFirstDecl(); 4701 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4702 return; 4703 4704 // OK, this is an internal linkage entity inside an extern "C" linkage 4705 // specification. Make a note of that so we can give it the "expected" 4706 // mangled name if nothing else is using that name. 4707 std::pair<StaticExternCMap::iterator, bool> R = 4708 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4709 4710 // If we have multiple internal linkage entities with the same name 4711 // in extern "C" regions, none of them gets that name. 4712 if (!R.second) 4713 R.first->second = nullptr; 4714 } 4715 4716 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4717 if (!CGM.supportsCOMDAT()) 4718 return false; 4719 4720 if (D.hasAttr<SelectAnyAttr>()) 4721 return true; 4722 4723 GVALinkage Linkage; 4724 if (auto *VD = dyn_cast<VarDecl>(&D)) 4725 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4726 else 4727 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4728 4729 switch (Linkage) { 4730 case GVA_Internal: 4731 case GVA_AvailableExternally: 4732 case GVA_StrongExternal: 4733 return false; 4734 case GVA_DiscardableODR: 4735 case GVA_StrongODR: 4736 return true; 4737 } 4738 llvm_unreachable("No such linkage"); 4739 } 4740 4741 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4742 llvm::GlobalObject &GO) { 4743 if (!shouldBeInCOMDAT(*this, D)) 4744 return; 4745 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4746 } 4747 4748 /// Pass IsTentative as true if you want to create a tentative definition. 4749 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4750 bool IsTentative) { 4751 // OpenCL global variables of sampler type are translated to function calls, 4752 // therefore no need to be translated. 4753 QualType ASTTy = D->getType(); 4754 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4755 return; 4756 4757 // If this is OpenMP device, check if it is legal to emit this global 4758 // normally. 4759 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4760 OpenMPRuntime->emitTargetGlobalVariable(D)) 4761 return; 4762 4763 llvm::TrackingVH<llvm::Constant> Init; 4764 bool NeedsGlobalCtor = false; 4765 bool NeedsGlobalDtor = 4766 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4767 4768 const VarDecl *InitDecl; 4769 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4770 4771 Optional<ConstantEmitter> emitter; 4772 4773 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4774 // as part of their declaration." Sema has already checked for 4775 // error cases, so we just need to set Init to UndefValue. 4776 bool IsCUDASharedVar = 4777 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4778 // Shadows of initialized device-side global variables are also left 4779 // undefined. 4780 // Managed Variables should be initialized on both host side and device side. 4781 bool IsCUDAShadowVar = 4782 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4783 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4784 D->hasAttr<CUDASharedAttr>()); 4785 bool IsCUDADeviceShadowVar = 4786 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4787 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4788 D->getType()->isCUDADeviceBuiltinTextureType()); 4789 if (getLangOpts().CUDA && 4790 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4791 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4792 else if (D->hasAttr<LoaderUninitializedAttr>()) 4793 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4794 else if (!InitExpr) { 4795 // This is a tentative definition; tentative definitions are 4796 // implicitly initialized with { 0 }. 4797 // 4798 // Note that tentative definitions are only emitted at the end of 4799 // a translation unit, so they should never have incomplete 4800 // type. In addition, EmitTentativeDefinition makes sure that we 4801 // never attempt to emit a tentative definition if a real one 4802 // exists. A use may still exists, however, so we still may need 4803 // to do a RAUW. 4804 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4805 Init = EmitNullConstant(D->getType()); 4806 } else { 4807 initializedGlobalDecl = GlobalDecl(D); 4808 emitter.emplace(*this); 4809 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4810 if (!Initializer) { 4811 QualType T = InitExpr->getType(); 4812 if (D->getType()->isReferenceType()) 4813 T = D->getType(); 4814 4815 if (getLangOpts().CPlusPlus) { 4816 if (InitDecl->hasFlexibleArrayInit(getContext())) 4817 ErrorUnsupported(D, "flexible array initializer"); 4818 Init = EmitNullConstant(T); 4819 NeedsGlobalCtor = true; 4820 } else { 4821 ErrorUnsupported(D, "static initializer"); 4822 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4823 } 4824 } else { 4825 Init = Initializer; 4826 // We don't need an initializer, so remove the entry for the delayed 4827 // initializer position (just in case this entry was delayed) if we 4828 // also don't need to register a destructor. 4829 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4830 DelayedCXXInitPosition.erase(D); 4831 4832 #ifndef NDEBUG 4833 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4834 InitDecl->getFlexibleArrayInitChars(getContext()); 4835 CharUnits CstSize = CharUnits::fromQuantity( 4836 getDataLayout().getTypeAllocSize(Init->getType())); 4837 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4838 #endif 4839 } 4840 } 4841 4842 llvm::Type* InitType = Init->getType(); 4843 llvm::Constant *Entry = 4844 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4845 4846 // Strip off pointer casts if we got them. 4847 Entry = Entry->stripPointerCasts(); 4848 4849 // Entry is now either a Function or GlobalVariable. 4850 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4851 4852 // We have a definition after a declaration with the wrong type. 4853 // We must make a new GlobalVariable* and update everything that used OldGV 4854 // (a declaration or tentative definition) with the new GlobalVariable* 4855 // (which will be a definition). 4856 // 4857 // This happens if there is a prototype for a global (e.g. 4858 // "extern int x[];") and then a definition of a different type (e.g. 4859 // "int x[10];"). This also happens when an initializer has a different type 4860 // from the type of the global (this happens with unions). 4861 if (!GV || GV->getValueType() != InitType || 4862 GV->getType()->getAddressSpace() != 4863 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4864 4865 // Move the old entry aside so that we'll create a new one. 4866 Entry->setName(StringRef()); 4867 4868 // Make a new global with the correct type, this is now guaranteed to work. 4869 GV = cast<llvm::GlobalVariable>( 4870 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4871 ->stripPointerCasts()); 4872 4873 // Replace all uses of the old global with the new global 4874 llvm::Constant *NewPtrForOldDecl = 4875 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4876 Entry->getType()); 4877 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4878 4879 // Erase the old global, since it is no longer used. 4880 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4881 } 4882 4883 MaybeHandleStaticInExternC(D, GV); 4884 4885 if (D->hasAttr<AnnotateAttr>()) 4886 AddGlobalAnnotations(D, GV); 4887 4888 // Set the llvm linkage type as appropriate. 4889 llvm::GlobalValue::LinkageTypes Linkage = 4890 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4891 4892 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4893 // the device. [...]" 4894 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4895 // __device__, declares a variable that: [...] 4896 // Is accessible from all the threads within the grid and from the host 4897 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4898 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4899 if (GV && LangOpts.CUDA) { 4900 if (LangOpts.CUDAIsDevice) { 4901 if (Linkage != llvm::GlobalValue::InternalLinkage && 4902 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4903 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4904 D->getType()->isCUDADeviceBuiltinTextureType())) 4905 GV->setExternallyInitialized(true); 4906 } else { 4907 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4908 } 4909 getCUDARuntime().handleVarRegistration(D, *GV); 4910 } 4911 4912 GV->setInitializer(Init); 4913 if (emitter) 4914 emitter->finalize(GV); 4915 4916 // If it is safe to mark the global 'constant', do so now. 4917 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4918 isTypeConstant(D->getType(), true)); 4919 4920 // If it is in a read-only section, mark it 'constant'. 4921 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4922 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4923 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4924 GV->setConstant(true); 4925 } 4926 4927 CharUnits AlignVal = getContext().getDeclAlign(D); 4928 // Check for alignment specifed in an 'omp allocate' directive. 4929 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4930 getOMPAllocateAlignment(D)) 4931 AlignVal = *AlignValFromAllocate; 4932 GV->setAlignment(AlignVal.getAsAlign()); 4933 4934 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4935 // function is only defined alongside the variable, not also alongside 4936 // callers. Normally, all accesses to a thread_local go through the 4937 // thread-wrapper in order to ensure initialization has occurred, underlying 4938 // variable will never be used other than the thread-wrapper, so it can be 4939 // converted to internal linkage. 4940 // 4941 // However, if the variable has the 'constinit' attribute, it _can_ be 4942 // referenced directly, without calling the thread-wrapper, so the linkage 4943 // must not be changed. 4944 // 4945 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4946 // weak or linkonce, the de-duplication semantics are important to preserve, 4947 // so we don't change the linkage. 4948 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4949 Linkage == llvm::GlobalValue::ExternalLinkage && 4950 Context.getTargetInfo().getTriple().isOSDarwin() && 4951 !D->hasAttr<ConstInitAttr>()) 4952 Linkage = llvm::GlobalValue::InternalLinkage; 4953 4954 GV->setLinkage(Linkage); 4955 if (D->hasAttr<DLLImportAttr>()) 4956 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4957 else if (D->hasAttr<DLLExportAttr>()) 4958 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4959 else 4960 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4961 4962 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4963 // common vars aren't constant even if declared const. 4964 GV->setConstant(false); 4965 // Tentative definition of global variables may be initialized with 4966 // non-zero null pointers. In this case they should have weak linkage 4967 // since common linkage must have zero initializer and must not have 4968 // explicit section therefore cannot have non-zero initial value. 4969 if (!GV->getInitializer()->isNullValue()) 4970 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4971 } 4972 4973 setNonAliasAttributes(D, GV); 4974 4975 if (D->getTLSKind() && !GV->isThreadLocal()) { 4976 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4977 CXXThreadLocals.push_back(D); 4978 setTLSMode(GV, *D); 4979 } 4980 4981 maybeSetTrivialComdat(*D, *GV); 4982 4983 // Emit the initializer function if necessary. 4984 if (NeedsGlobalCtor || NeedsGlobalDtor) 4985 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4986 4987 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 4988 4989 // Emit global variable debug information. 4990 if (CGDebugInfo *DI = getModuleDebugInfo()) 4991 if (getCodeGenOpts().hasReducedDebugInfo()) 4992 DI->EmitGlobalVariable(GV, D); 4993 } 4994 4995 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4996 if (CGDebugInfo *DI = getModuleDebugInfo()) 4997 if (getCodeGenOpts().hasReducedDebugInfo()) { 4998 QualType ASTTy = D->getType(); 4999 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5000 llvm::Constant *GV = 5001 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5002 DI->EmitExternalVariable( 5003 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5004 } 5005 } 5006 5007 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5008 CodeGenModule &CGM, const VarDecl *D, 5009 bool NoCommon) { 5010 // Don't give variables common linkage if -fno-common was specified unless it 5011 // was overridden by a NoCommon attribute. 5012 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5013 return true; 5014 5015 // C11 6.9.2/2: 5016 // A declaration of an identifier for an object that has file scope without 5017 // an initializer, and without a storage-class specifier or with the 5018 // storage-class specifier static, constitutes a tentative definition. 5019 if (D->getInit() || D->hasExternalStorage()) 5020 return true; 5021 5022 // A variable cannot be both common and exist in a section. 5023 if (D->hasAttr<SectionAttr>()) 5024 return true; 5025 5026 // A variable cannot be both common and exist in a section. 5027 // We don't try to determine which is the right section in the front-end. 5028 // If no specialized section name is applicable, it will resort to default. 5029 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5030 D->hasAttr<PragmaClangDataSectionAttr>() || 5031 D->hasAttr<PragmaClangRelroSectionAttr>() || 5032 D->hasAttr<PragmaClangRodataSectionAttr>()) 5033 return true; 5034 5035 // Thread local vars aren't considered common linkage. 5036 if (D->getTLSKind()) 5037 return true; 5038 5039 // Tentative definitions marked with WeakImportAttr are true definitions. 5040 if (D->hasAttr<WeakImportAttr>()) 5041 return true; 5042 5043 // A variable cannot be both common and exist in a comdat. 5044 if (shouldBeInCOMDAT(CGM, *D)) 5045 return true; 5046 5047 // Declarations with a required alignment do not have common linkage in MSVC 5048 // mode. 5049 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5050 if (D->hasAttr<AlignedAttr>()) 5051 return true; 5052 QualType VarType = D->getType(); 5053 if (Context.isAlignmentRequired(VarType)) 5054 return true; 5055 5056 if (const auto *RT = VarType->getAs<RecordType>()) { 5057 const RecordDecl *RD = RT->getDecl(); 5058 for (const FieldDecl *FD : RD->fields()) { 5059 if (FD->isBitField()) 5060 continue; 5061 if (FD->hasAttr<AlignedAttr>()) 5062 return true; 5063 if (Context.isAlignmentRequired(FD->getType())) 5064 return true; 5065 } 5066 } 5067 } 5068 5069 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5070 // common symbols, so symbols with greater alignment requirements cannot be 5071 // common. 5072 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5073 // alignments for common symbols via the aligncomm directive, so this 5074 // restriction only applies to MSVC environments. 5075 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5076 Context.getTypeAlignIfKnown(D->getType()) > 5077 Context.toBits(CharUnits::fromQuantity(32))) 5078 return true; 5079 5080 return false; 5081 } 5082 5083 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5084 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5085 if (Linkage == GVA_Internal) 5086 return llvm::Function::InternalLinkage; 5087 5088 if (D->hasAttr<WeakAttr>()) 5089 return llvm::GlobalVariable::WeakAnyLinkage; 5090 5091 if (const auto *FD = D->getAsFunction()) 5092 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5093 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5094 5095 // We are guaranteed to have a strong definition somewhere else, 5096 // so we can use available_externally linkage. 5097 if (Linkage == GVA_AvailableExternally) 5098 return llvm::GlobalValue::AvailableExternallyLinkage; 5099 5100 // Note that Apple's kernel linker doesn't support symbol 5101 // coalescing, so we need to avoid linkonce and weak linkages there. 5102 // Normally, this means we just map to internal, but for explicit 5103 // instantiations we'll map to external. 5104 5105 // In C++, the compiler has to emit a definition in every translation unit 5106 // that references the function. We should use linkonce_odr because 5107 // a) if all references in this translation unit are optimized away, we 5108 // don't need to codegen it. b) if the function persists, it needs to be 5109 // merged with other definitions. c) C++ has the ODR, so we know the 5110 // definition is dependable. 5111 if (Linkage == GVA_DiscardableODR) 5112 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5113 : llvm::Function::InternalLinkage; 5114 5115 // An explicit instantiation of a template has weak linkage, since 5116 // explicit instantiations can occur in multiple translation units 5117 // and must all be equivalent. However, we are not allowed to 5118 // throw away these explicit instantiations. 5119 // 5120 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5121 // so say that CUDA templates are either external (for kernels) or internal. 5122 // This lets llvm perform aggressive inter-procedural optimizations. For 5123 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5124 // therefore we need to follow the normal linkage paradigm. 5125 if (Linkage == GVA_StrongODR) { 5126 if (getLangOpts().AppleKext) 5127 return llvm::Function::ExternalLinkage; 5128 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5129 !getLangOpts().GPURelocatableDeviceCode) 5130 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5131 : llvm::Function::InternalLinkage; 5132 return llvm::Function::WeakODRLinkage; 5133 } 5134 5135 // C++ doesn't have tentative definitions and thus cannot have common 5136 // linkage. 5137 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5138 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5139 CodeGenOpts.NoCommon)) 5140 return llvm::GlobalVariable::CommonLinkage; 5141 5142 // selectany symbols are externally visible, so use weak instead of 5143 // linkonce. MSVC optimizes away references to const selectany globals, so 5144 // all definitions should be the same and ODR linkage should be used. 5145 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5146 if (D->hasAttr<SelectAnyAttr>()) 5147 return llvm::GlobalVariable::WeakODRLinkage; 5148 5149 // Otherwise, we have strong external linkage. 5150 assert(Linkage == GVA_StrongExternal); 5151 return llvm::GlobalVariable::ExternalLinkage; 5152 } 5153 5154 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5155 const VarDecl *VD, bool IsConstant) { 5156 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5157 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5158 } 5159 5160 /// Replace the uses of a function that was declared with a non-proto type. 5161 /// We want to silently drop extra arguments from call sites 5162 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5163 llvm::Function *newFn) { 5164 // Fast path. 5165 if (old->use_empty()) return; 5166 5167 llvm::Type *newRetTy = newFn->getReturnType(); 5168 SmallVector<llvm::Value*, 4> newArgs; 5169 5170 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5171 ui != ue; ) { 5172 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5173 llvm::User *user = use->getUser(); 5174 5175 // Recognize and replace uses of bitcasts. Most calls to 5176 // unprototyped functions will use bitcasts. 5177 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5178 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5179 replaceUsesOfNonProtoConstant(bitcast, newFn); 5180 continue; 5181 } 5182 5183 // Recognize calls to the function. 5184 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5185 if (!callSite) continue; 5186 if (!callSite->isCallee(&*use)) 5187 continue; 5188 5189 // If the return types don't match exactly, then we can't 5190 // transform this call unless it's dead. 5191 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5192 continue; 5193 5194 // Get the call site's attribute list. 5195 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5196 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5197 5198 // If the function was passed too few arguments, don't transform. 5199 unsigned newNumArgs = newFn->arg_size(); 5200 if (callSite->arg_size() < newNumArgs) 5201 continue; 5202 5203 // If extra arguments were passed, we silently drop them. 5204 // If any of the types mismatch, we don't transform. 5205 unsigned argNo = 0; 5206 bool dontTransform = false; 5207 for (llvm::Argument &A : newFn->args()) { 5208 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5209 dontTransform = true; 5210 break; 5211 } 5212 5213 // Add any parameter attributes. 5214 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5215 argNo++; 5216 } 5217 if (dontTransform) 5218 continue; 5219 5220 // Okay, we can transform this. Create the new call instruction and copy 5221 // over the required information. 5222 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5223 5224 // Copy over any operand bundles. 5225 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5226 callSite->getOperandBundlesAsDefs(newBundles); 5227 5228 llvm::CallBase *newCall; 5229 if (isa<llvm::CallInst>(callSite)) { 5230 newCall = 5231 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5232 } else { 5233 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5234 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5235 oldInvoke->getUnwindDest(), newArgs, 5236 newBundles, "", callSite); 5237 } 5238 newArgs.clear(); // for the next iteration 5239 5240 if (!newCall->getType()->isVoidTy()) 5241 newCall->takeName(callSite); 5242 newCall->setAttributes( 5243 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5244 oldAttrs.getRetAttrs(), newArgAttrs)); 5245 newCall->setCallingConv(callSite->getCallingConv()); 5246 5247 // Finally, remove the old call, replacing any uses with the new one. 5248 if (!callSite->use_empty()) 5249 callSite->replaceAllUsesWith(newCall); 5250 5251 // Copy debug location attached to CI. 5252 if (callSite->getDebugLoc()) 5253 newCall->setDebugLoc(callSite->getDebugLoc()); 5254 5255 callSite->eraseFromParent(); 5256 } 5257 } 5258 5259 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5260 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5261 /// existing call uses of the old function in the module, this adjusts them to 5262 /// call the new function directly. 5263 /// 5264 /// This is not just a cleanup: the always_inline pass requires direct calls to 5265 /// functions to be able to inline them. If there is a bitcast in the way, it 5266 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5267 /// run at -O0. 5268 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5269 llvm::Function *NewFn) { 5270 // If we're redefining a global as a function, don't transform it. 5271 if (!isa<llvm::Function>(Old)) return; 5272 5273 replaceUsesOfNonProtoConstant(Old, NewFn); 5274 } 5275 5276 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5277 auto DK = VD->isThisDeclarationADefinition(); 5278 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5279 return; 5280 5281 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5282 // If we have a definition, this might be a deferred decl. If the 5283 // instantiation is explicit, make sure we emit it at the end. 5284 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5285 GetAddrOfGlobalVar(VD); 5286 5287 EmitTopLevelDecl(VD); 5288 } 5289 5290 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5291 llvm::GlobalValue *GV) { 5292 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5293 5294 // Compute the function info and LLVM type. 5295 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5296 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5297 5298 // Get or create the prototype for the function. 5299 if (!GV || (GV->getValueType() != Ty)) 5300 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5301 /*DontDefer=*/true, 5302 ForDefinition)); 5303 5304 // Already emitted. 5305 if (!GV->isDeclaration()) 5306 return; 5307 5308 // We need to set linkage and visibility on the function before 5309 // generating code for it because various parts of IR generation 5310 // want to propagate this information down (e.g. to local static 5311 // declarations). 5312 auto *Fn = cast<llvm::Function>(GV); 5313 setFunctionLinkage(GD, Fn); 5314 5315 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5316 setGVProperties(Fn, GD); 5317 5318 MaybeHandleStaticInExternC(D, Fn); 5319 5320 maybeSetTrivialComdat(*D, *Fn); 5321 5322 // Set CodeGen attributes that represent floating point environment. 5323 setLLVMFunctionFEnvAttributes(D, Fn); 5324 5325 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5326 5327 setNonAliasAttributes(GD, Fn); 5328 SetLLVMFunctionAttributesForDefinition(D, Fn); 5329 5330 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5331 AddGlobalCtor(Fn, CA->getPriority()); 5332 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5333 AddGlobalDtor(Fn, DA->getPriority(), true); 5334 if (D->hasAttr<AnnotateAttr>()) 5335 AddGlobalAnnotations(D, Fn); 5336 } 5337 5338 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5339 const auto *D = cast<ValueDecl>(GD.getDecl()); 5340 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5341 assert(AA && "Not an alias?"); 5342 5343 StringRef MangledName = getMangledName(GD); 5344 5345 if (AA->getAliasee() == MangledName) { 5346 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5347 return; 5348 } 5349 5350 // If there is a definition in the module, then it wins over the alias. 5351 // This is dubious, but allow it to be safe. Just ignore the alias. 5352 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5353 if (Entry && !Entry->isDeclaration()) 5354 return; 5355 5356 Aliases.push_back(GD); 5357 5358 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5359 5360 // Create a reference to the named value. This ensures that it is emitted 5361 // if a deferred decl. 5362 llvm::Constant *Aliasee; 5363 llvm::GlobalValue::LinkageTypes LT; 5364 if (isa<llvm::FunctionType>(DeclTy)) { 5365 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5366 /*ForVTable=*/false); 5367 LT = getFunctionLinkage(GD); 5368 } else { 5369 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5370 /*D=*/nullptr); 5371 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5372 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5373 else 5374 LT = getFunctionLinkage(GD); 5375 } 5376 5377 // Create the new alias itself, but don't set a name yet. 5378 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5379 auto *GA = 5380 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5381 5382 if (Entry) { 5383 if (GA->getAliasee() == Entry) { 5384 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5385 return; 5386 } 5387 5388 assert(Entry->isDeclaration()); 5389 5390 // If there is a declaration in the module, then we had an extern followed 5391 // by the alias, as in: 5392 // extern int test6(); 5393 // ... 5394 // int test6() __attribute__((alias("test7"))); 5395 // 5396 // Remove it and replace uses of it with the alias. 5397 GA->takeName(Entry); 5398 5399 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5400 Entry->getType())); 5401 Entry->eraseFromParent(); 5402 } else { 5403 GA->setName(MangledName); 5404 } 5405 5406 // Set attributes which are particular to an alias; this is a 5407 // specialization of the attributes which may be set on a global 5408 // variable/function. 5409 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5410 D->isWeakImported()) { 5411 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5412 } 5413 5414 if (const auto *VD = dyn_cast<VarDecl>(D)) 5415 if (VD->getTLSKind()) 5416 setTLSMode(GA, *VD); 5417 5418 SetCommonAttributes(GD, GA); 5419 5420 // Emit global alias debug information. 5421 if (isa<VarDecl>(D)) 5422 if (CGDebugInfo *DI = getModuleDebugInfo()) 5423 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5424 } 5425 5426 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5427 const auto *D = cast<ValueDecl>(GD.getDecl()); 5428 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5429 assert(IFA && "Not an ifunc?"); 5430 5431 StringRef MangledName = getMangledName(GD); 5432 5433 if (IFA->getResolver() == MangledName) { 5434 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5435 return; 5436 } 5437 5438 // Report an error if some definition overrides ifunc. 5439 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5440 if (Entry && !Entry->isDeclaration()) { 5441 GlobalDecl OtherGD; 5442 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5443 DiagnosedConflictingDefinitions.insert(GD).second) { 5444 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5445 << MangledName; 5446 Diags.Report(OtherGD.getDecl()->getLocation(), 5447 diag::note_previous_definition); 5448 } 5449 return; 5450 } 5451 5452 Aliases.push_back(GD); 5453 5454 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5455 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5456 llvm::Constant *Resolver = 5457 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5458 /*ForVTable=*/false); 5459 llvm::GlobalIFunc *GIF = 5460 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5461 "", Resolver, &getModule()); 5462 if (Entry) { 5463 if (GIF->getResolver() == Entry) { 5464 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5465 return; 5466 } 5467 assert(Entry->isDeclaration()); 5468 5469 // If there is a declaration in the module, then we had an extern followed 5470 // by the ifunc, as in: 5471 // extern int test(); 5472 // ... 5473 // int test() __attribute__((ifunc("resolver"))); 5474 // 5475 // Remove it and replace uses of it with the ifunc. 5476 GIF->takeName(Entry); 5477 5478 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5479 Entry->getType())); 5480 Entry->eraseFromParent(); 5481 } else 5482 GIF->setName(MangledName); 5483 5484 SetCommonAttributes(GD, GIF); 5485 } 5486 5487 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5488 ArrayRef<llvm::Type*> Tys) { 5489 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5490 Tys); 5491 } 5492 5493 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5494 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5495 const StringLiteral *Literal, bool TargetIsLSB, 5496 bool &IsUTF16, unsigned &StringLength) { 5497 StringRef String = Literal->getString(); 5498 unsigned NumBytes = String.size(); 5499 5500 // Check for simple case. 5501 if (!Literal->containsNonAsciiOrNull()) { 5502 StringLength = NumBytes; 5503 return *Map.insert(std::make_pair(String, nullptr)).first; 5504 } 5505 5506 // Otherwise, convert the UTF8 literals into a string of shorts. 5507 IsUTF16 = true; 5508 5509 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5510 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5511 llvm::UTF16 *ToPtr = &ToBuf[0]; 5512 5513 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5514 ToPtr + NumBytes, llvm::strictConversion); 5515 5516 // ConvertUTF8toUTF16 returns the length in ToPtr. 5517 StringLength = ToPtr - &ToBuf[0]; 5518 5519 // Add an explicit null. 5520 *ToPtr = 0; 5521 return *Map.insert(std::make_pair( 5522 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5523 (StringLength + 1) * 2), 5524 nullptr)).first; 5525 } 5526 5527 ConstantAddress 5528 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5529 unsigned StringLength = 0; 5530 bool isUTF16 = false; 5531 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5532 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5533 getDataLayout().isLittleEndian(), isUTF16, 5534 StringLength); 5535 5536 if (auto *C = Entry.second) 5537 return ConstantAddress( 5538 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5539 5540 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5541 llvm::Constant *Zeros[] = { Zero, Zero }; 5542 5543 const ASTContext &Context = getContext(); 5544 const llvm::Triple &Triple = getTriple(); 5545 5546 const auto CFRuntime = getLangOpts().CFRuntime; 5547 const bool IsSwiftABI = 5548 static_cast<unsigned>(CFRuntime) >= 5549 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5550 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5551 5552 // If we don't already have it, get __CFConstantStringClassReference. 5553 if (!CFConstantStringClassRef) { 5554 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5555 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5556 Ty = llvm::ArrayType::get(Ty, 0); 5557 5558 switch (CFRuntime) { 5559 default: break; 5560 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5561 case LangOptions::CoreFoundationABI::Swift5_0: 5562 CFConstantStringClassName = 5563 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5564 : "$s10Foundation19_NSCFConstantStringCN"; 5565 Ty = IntPtrTy; 5566 break; 5567 case LangOptions::CoreFoundationABI::Swift4_2: 5568 CFConstantStringClassName = 5569 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5570 : "$S10Foundation19_NSCFConstantStringCN"; 5571 Ty = IntPtrTy; 5572 break; 5573 case LangOptions::CoreFoundationABI::Swift4_1: 5574 CFConstantStringClassName = 5575 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5576 : "__T010Foundation19_NSCFConstantStringCN"; 5577 Ty = IntPtrTy; 5578 break; 5579 } 5580 5581 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5582 5583 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5584 llvm::GlobalValue *GV = nullptr; 5585 5586 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5587 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5588 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5589 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5590 5591 const VarDecl *VD = nullptr; 5592 for (const auto *Result : DC->lookup(&II)) 5593 if ((VD = dyn_cast<VarDecl>(Result))) 5594 break; 5595 5596 if (Triple.isOSBinFormatELF()) { 5597 if (!VD) 5598 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5599 } else { 5600 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5601 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5602 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5603 else 5604 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5605 } 5606 5607 setDSOLocal(GV); 5608 } 5609 } 5610 5611 // Decay array -> ptr 5612 CFConstantStringClassRef = 5613 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5614 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5615 } 5616 5617 QualType CFTy = Context.getCFConstantStringType(); 5618 5619 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5620 5621 ConstantInitBuilder Builder(*this); 5622 auto Fields = Builder.beginStruct(STy); 5623 5624 // Class pointer. 5625 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5626 5627 // Flags. 5628 if (IsSwiftABI) { 5629 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5630 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5631 } else { 5632 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5633 } 5634 5635 // String pointer. 5636 llvm::Constant *C = nullptr; 5637 if (isUTF16) { 5638 auto Arr = llvm::makeArrayRef( 5639 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5640 Entry.first().size() / 2); 5641 C = llvm::ConstantDataArray::get(VMContext, Arr); 5642 } else { 5643 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5644 } 5645 5646 // Note: -fwritable-strings doesn't make the backing store strings of 5647 // CFStrings writable. (See <rdar://problem/10657500>) 5648 auto *GV = 5649 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5650 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5651 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5652 // Don't enforce the target's minimum global alignment, since the only use 5653 // of the string is via this class initializer. 5654 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5655 : Context.getTypeAlignInChars(Context.CharTy); 5656 GV->setAlignment(Align.getAsAlign()); 5657 5658 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5659 // Without it LLVM can merge the string with a non unnamed_addr one during 5660 // LTO. Doing that changes the section it ends in, which surprises ld64. 5661 if (Triple.isOSBinFormatMachO()) 5662 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5663 : "__TEXT,__cstring,cstring_literals"); 5664 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5665 // the static linker to adjust permissions to read-only later on. 5666 else if (Triple.isOSBinFormatELF()) 5667 GV->setSection(".rodata"); 5668 5669 // String. 5670 llvm::Constant *Str = 5671 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5672 5673 if (isUTF16) 5674 // Cast the UTF16 string to the correct type. 5675 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5676 Fields.add(Str); 5677 5678 // String length. 5679 llvm::IntegerType *LengthTy = 5680 llvm::IntegerType::get(getModule().getContext(), 5681 Context.getTargetInfo().getLongWidth()); 5682 if (IsSwiftABI) { 5683 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5684 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5685 LengthTy = Int32Ty; 5686 else 5687 LengthTy = IntPtrTy; 5688 } 5689 Fields.addInt(LengthTy, StringLength); 5690 5691 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5692 // properly aligned on 32-bit platforms. 5693 CharUnits Alignment = 5694 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5695 5696 // The struct. 5697 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5698 /*isConstant=*/false, 5699 llvm::GlobalVariable::PrivateLinkage); 5700 GV->addAttribute("objc_arc_inert"); 5701 switch (Triple.getObjectFormat()) { 5702 case llvm::Triple::UnknownObjectFormat: 5703 llvm_unreachable("unknown file format"); 5704 case llvm::Triple::DXContainer: 5705 case llvm::Triple::GOFF: 5706 case llvm::Triple::SPIRV: 5707 case llvm::Triple::XCOFF: 5708 llvm_unreachable("unimplemented"); 5709 case llvm::Triple::COFF: 5710 case llvm::Triple::ELF: 5711 case llvm::Triple::Wasm: 5712 GV->setSection("cfstring"); 5713 break; 5714 case llvm::Triple::MachO: 5715 GV->setSection("__DATA,__cfstring"); 5716 break; 5717 } 5718 Entry.second = GV; 5719 5720 return ConstantAddress(GV, GV->getValueType(), Alignment); 5721 } 5722 5723 bool CodeGenModule::getExpressionLocationsEnabled() const { 5724 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5725 } 5726 5727 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5728 if (ObjCFastEnumerationStateType.isNull()) { 5729 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5730 D->startDefinition(); 5731 5732 QualType FieldTypes[] = { 5733 Context.UnsignedLongTy, 5734 Context.getPointerType(Context.getObjCIdType()), 5735 Context.getPointerType(Context.UnsignedLongTy), 5736 Context.getConstantArrayType(Context.UnsignedLongTy, 5737 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5738 }; 5739 5740 for (size_t i = 0; i < 4; ++i) { 5741 FieldDecl *Field = FieldDecl::Create(Context, 5742 D, 5743 SourceLocation(), 5744 SourceLocation(), nullptr, 5745 FieldTypes[i], /*TInfo=*/nullptr, 5746 /*BitWidth=*/nullptr, 5747 /*Mutable=*/false, 5748 ICIS_NoInit); 5749 Field->setAccess(AS_public); 5750 D->addDecl(Field); 5751 } 5752 5753 D->completeDefinition(); 5754 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5755 } 5756 5757 return ObjCFastEnumerationStateType; 5758 } 5759 5760 llvm::Constant * 5761 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5762 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5763 5764 // Don't emit it as the address of the string, emit the string data itself 5765 // as an inline array. 5766 if (E->getCharByteWidth() == 1) { 5767 SmallString<64> Str(E->getString()); 5768 5769 // Resize the string to the right size, which is indicated by its type. 5770 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5771 Str.resize(CAT->getSize().getZExtValue()); 5772 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5773 } 5774 5775 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5776 llvm::Type *ElemTy = AType->getElementType(); 5777 unsigned NumElements = AType->getNumElements(); 5778 5779 // Wide strings have either 2-byte or 4-byte elements. 5780 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5781 SmallVector<uint16_t, 32> Elements; 5782 Elements.reserve(NumElements); 5783 5784 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5785 Elements.push_back(E->getCodeUnit(i)); 5786 Elements.resize(NumElements); 5787 return llvm::ConstantDataArray::get(VMContext, Elements); 5788 } 5789 5790 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5791 SmallVector<uint32_t, 32> Elements; 5792 Elements.reserve(NumElements); 5793 5794 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5795 Elements.push_back(E->getCodeUnit(i)); 5796 Elements.resize(NumElements); 5797 return llvm::ConstantDataArray::get(VMContext, Elements); 5798 } 5799 5800 static llvm::GlobalVariable * 5801 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5802 CodeGenModule &CGM, StringRef GlobalName, 5803 CharUnits Alignment) { 5804 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5805 CGM.GetGlobalConstantAddressSpace()); 5806 5807 llvm::Module &M = CGM.getModule(); 5808 // Create a global variable for this string 5809 auto *GV = new llvm::GlobalVariable( 5810 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5811 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5812 GV->setAlignment(Alignment.getAsAlign()); 5813 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5814 if (GV->isWeakForLinker()) { 5815 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5816 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5817 } 5818 CGM.setDSOLocal(GV); 5819 5820 return GV; 5821 } 5822 5823 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5824 /// constant array for the given string literal. 5825 ConstantAddress 5826 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5827 StringRef Name) { 5828 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5829 5830 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5831 llvm::GlobalVariable **Entry = nullptr; 5832 if (!LangOpts.WritableStrings) { 5833 Entry = &ConstantStringMap[C]; 5834 if (auto GV = *Entry) { 5835 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5836 GV->setAlignment(Alignment.getAsAlign()); 5837 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5838 GV->getValueType(), Alignment); 5839 } 5840 } 5841 5842 SmallString<256> MangledNameBuffer; 5843 StringRef GlobalVariableName; 5844 llvm::GlobalValue::LinkageTypes LT; 5845 5846 // Mangle the string literal if that's how the ABI merges duplicate strings. 5847 // Don't do it if they are writable, since we don't want writes in one TU to 5848 // affect strings in another. 5849 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5850 !LangOpts.WritableStrings) { 5851 llvm::raw_svector_ostream Out(MangledNameBuffer); 5852 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5853 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5854 GlobalVariableName = MangledNameBuffer; 5855 } else { 5856 LT = llvm::GlobalValue::PrivateLinkage; 5857 GlobalVariableName = Name; 5858 } 5859 5860 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5861 5862 CGDebugInfo *DI = getModuleDebugInfo(); 5863 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5864 DI->AddStringLiteralDebugInfo(GV, S); 5865 5866 if (Entry) 5867 *Entry = GV; 5868 5869 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5870 5871 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5872 GV->getValueType(), Alignment); 5873 } 5874 5875 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5876 /// array for the given ObjCEncodeExpr node. 5877 ConstantAddress 5878 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5879 std::string Str; 5880 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5881 5882 return GetAddrOfConstantCString(Str); 5883 } 5884 5885 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5886 /// the literal and a terminating '\0' character. 5887 /// The result has pointer to array type. 5888 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5889 const std::string &Str, const char *GlobalName) { 5890 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5891 CharUnits Alignment = 5892 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5893 5894 llvm::Constant *C = 5895 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5896 5897 // Don't share any string literals if strings aren't constant. 5898 llvm::GlobalVariable **Entry = nullptr; 5899 if (!LangOpts.WritableStrings) { 5900 Entry = &ConstantStringMap[C]; 5901 if (auto GV = *Entry) { 5902 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5903 GV->setAlignment(Alignment.getAsAlign()); 5904 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5905 GV->getValueType(), Alignment); 5906 } 5907 } 5908 5909 // Get the default prefix if a name wasn't specified. 5910 if (!GlobalName) 5911 GlobalName = ".str"; 5912 // Create a global variable for this. 5913 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5914 GlobalName, Alignment); 5915 if (Entry) 5916 *Entry = GV; 5917 5918 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5919 GV->getValueType(), Alignment); 5920 } 5921 5922 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5923 const MaterializeTemporaryExpr *E, const Expr *Init) { 5924 assert((E->getStorageDuration() == SD_Static || 5925 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5926 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5927 5928 // If we're not materializing a subobject of the temporary, keep the 5929 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5930 QualType MaterializedType = Init->getType(); 5931 if (Init == E->getSubExpr()) 5932 MaterializedType = E->getType(); 5933 5934 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5935 5936 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5937 if (!InsertResult.second) { 5938 // We've seen this before: either we already created it or we're in the 5939 // process of doing so. 5940 if (!InsertResult.first->second) { 5941 // We recursively re-entered this function, probably during emission of 5942 // the initializer. Create a placeholder. We'll clean this up in the 5943 // outer call, at the end of this function. 5944 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5945 InsertResult.first->second = new llvm::GlobalVariable( 5946 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5947 nullptr); 5948 } 5949 return ConstantAddress(InsertResult.first->second, 5950 llvm::cast<llvm::GlobalVariable>( 5951 InsertResult.first->second->stripPointerCasts()) 5952 ->getValueType(), 5953 Align); 5954 } 5955 5956 // FIXME: If an externally-visible declaration extends multiple temporaries, 5957 // we need to give each temporary the same name in every translation unit (and 5958 // we also need to make the temporaries externally-visible). 5959 SmallString<256> Name; 5960 llvm::raw_svector_ostream Out(Name); 5961 getCXXABI().getMangleContext().mangleReferenceTemporary( 5962 VD, E->getManglingNumber(), Out); 5963 5964 APValue *Value = nullptr; 5965 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5966 // If the initializer of the extending declaration is a constant 5967 // initializer, we should have a cached constant initializer for this 5968 // temporary. Note that this might have a different value from the value 5969 // computed by evaluating the initializer if the surrounding constant 5970 // expression modifies the temporary. 5971 Value = E->getOrCreateValue(false); 5972 } 5973 5974 // Try evaluating it now, it might have a constant initializer. 5975 Expr::EvalResult EvalResult; 5976 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5977 !EvalResult.hasSideEffects()) 5978 Value = &EvalResult.Val; 5979 5980 LangAS AddrSpace = 5981 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5982 5983 Optional<ConstantEmitter> emitter; 5984 llvm::Constant *InitialValue = nullptr; 5985 bool Constant = false; 5986 llvm::Type *Type; 5987 if (Value) { 5988 // The temporary has a constant initializer, use it. 5989 emitter.emplace(*this); 5990 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5991 MaterializedType); 5992 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5993 Type = InitialValue->getType(); 5994 } else { 5995 // No initializer, the initialization will be provided when we 5996 // initialize the declaration which performed lifetime extension. 5997 Type = getTypes().ConvertTypeForMem(MaterializedType); 5998 } 5999 6000 // Create a global variable for this lifetime-extended temporary. 6001 llvm::GlobalValue::LinkageTypes Linkage = 6002 getLLVMLinkageVarDefinition(VD, Constant); 6003 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6004 const VarDecl *InitVD; 6005 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6006 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6007 // Temporaries defined inside a class get linkonce_odr linkage because the 6008 // class can be defined in multiple translation units. 6009 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6010 } else { 6011 // There is no need for this temporary to have external linkage if the 6012 // VarDecl has external linkage. 6013 Linkage = llvm::GlobalVariable::InternalLinkage; 6014 } 6015 } 6016 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6017 auto *GV = new llvm::GlobalVariable( 6018 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6019 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6020 if (emitter) emitter->finalize(GV); 6021 setGVProperties(GV, VD); 6022 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6023 // The reference temporary should never be dllexport. 6024 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6025 GV->setAlignment(Align.getAsAlign()); 6026 if (supportsCOMDAT() && GV->isWeakForLinker()) 6027 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6028 if (VD->getTLSKind()) 6029 setTLSMode(GV, *VD); 6030 llvm::Constant *CV = GV; 6031 if (AddrSpace != LangAS::Default) 6032 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6033 *this, GV, AddrSpace, LangAS::Default, 6034 Type->getPointerTo( 6035 getContext().getTargetAddressSpace(LangAS::Default))); 6036 6037 // Update the map with the new temporary. If we created a placeholder above, 6038 // replace it with the new global now. 6039 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6040 if (Entry) { 6041 Entry->replaceAllUsesWith( 6042 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6043 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6044 } 6045 Entry = CV; 6046 6047 return ConstantAddress(CV, Type, Align); 6048 } 6049 6050 /// EmitObjCPropertyImplementations - Emit information for synthesized 6051 /// properties for an implementation. 6052 void CodeGenModule::EmitObjCPropertyImplementations(const 6053 ObjCImplementationDecl *D) { 6054 for (const auto *PID : D->property_impls()) { 6055 // Dynamic is just for type-checking. 6056 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6057 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6058 6059 // Determine which methods need to be implemented, some may have 6060 // been overridden. Note that ::isPropertyAccessor is not the method 6061 // we want, that just indicates if the decl came from a 6062 // property. What we want to know is if the method is defined in 6063 // this implementation. 6064 auto *Getter = PID->getGetterMethodDecl(); 6065 if (!Getter || Getter->isSynthesizedAccessorStub()) 6066 CodeGenFunction(*this).GenerateObjCGetter( 6067 const_cast<ObjCImplementationDecl *>(D), PID); 6068 auto *Setter = PID->getSetterMethodDecl(); 6069 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6070 CodeGenFunction(*this).GenerateObjCSetter( 6071 const_cast<ObjCImplementationDecl *>(D), PID); 6072 } 6073 } 6074 } 6075 6076 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6077 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6078 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6079 ivar; ivar = ivar->getNextIvar()) 6080 if (ivar->getType().isDestructedType()) 6081 return true; 6082 6083 return false; 6084 } 6085 6086 static bool AllTrivialInitializers(CodeGenModule &CGM, 6087 ObjCImplementationDecl *D) { 6088 CodeGenFunction CGF(CGM); 6089 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6090 E = D->init_end(); B != E; ++B) { 6091 CXXCtorInitializer *CtorInitExp = *B; 6092 Expr *Init = CtorInitExp->getInit(); 6093 if (!CGF.isTrivialInitializer(Init)) 6094 return false; 6095 } 6096 return true; 6097 } 6098 6099 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6100 /// for an implementation. 6101 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6102 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6103 if (needsDestructMethod(D)) { 6104 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6105 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6106 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6107 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6108 getContext().VoidTy, nullptr, D, 6109 /*isInstance=*/true, /*isVariadic=*/false, 6110 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6111 /*isImplicitlyDeclared=*/true, 6112 /*isDefined=*/false, ObjCMethodDecl::Required); 6113 D->addInstanceMethod(DTORMethod); 6114 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6115 D->setHasDestructors(true); 6116 } 6117 6118 // If the implementation doesn't have any ivar initializers, we don't need 6119 // a .cxx_construct. 6120 if (D->getNumIvarInitializers() == 0 || 6121 AllTrivialInitializers(*this, D)) 6122 return; 6123 6124 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6125 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6126 // The constructor returns 'self'. 6127 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6128 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6129 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6130 /*isVariadic=*/false, 6131 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6132 /*isImplicitlyDeclared=*/true, 6133 /*isDefined=*/false, ObjCMethodDecl::Required); 6134 D->addInstanceMethod(CTORMethod); 6135 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6136 D->setHasNonZeroConstructors(true); 6137 } 6138 6139 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6140 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6141 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6142 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6143 ErrorUnsupported(LSD, "linkage spec"); 6144 return; 6145 } 6146 6147 EmitDeclContext(LSD); 6148 } 6149 6150 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6151 for (auto *I : DC->decls()) { 6152 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6153 // are themselves considered "top-level", so EmitTopLevelDecl on an 6154 // ObjCImplDecl does not recursively visit them. We need to do that in 6155 // case they're nested inside another construct (LinkageSpecDecl / 6156 // ExportDecl) that does stop them from being considered "top-level". 6157 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6158 for (auto *M : OID->methods()) 6159 EmitTopLevelDecl(M); 6160 } 6161 6162 EmitTopLevelDecl(I); 6163 } 6164 } 6165 6166 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6167 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6168 // Ignore dependent declarations. 6169 if (D->isTemplated()) 6170 return; 6171 6172 // Consteval function shouldn't be emitted. 6173 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6174 if (FD->isConsteval()) 6175 return; 6176 6177 switch (D->getKind()) { 6178 case Decl::CXXConversion: 6179 case Decl::CXXMethod: 6180 case Decl::Function: 6181 EmitGlobal(cast<FunctionDecl>(D)); 6182 // Always provide some coverage mapping 6183 // even for the functions that aren't emitted. 6184 AddDeferredUnusedCoverageMapping(D); 6185 break; 6186 6187 case Decl::CXXDeductionGuide: 6188 // Function-like, but does not result in code emission. 6189 break; 6190 6191 case Decl::Var: 6192 case Decl::Decomposition: 6193 case Decl::VarTemplateSpecialization: 6194 EmitGlobal(cast<VarDecl>(D)); 6195 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6196 for (auto *B : DD->bindings()) 6197 if (auto *HD = B->getHoldingVar()) 6198 EmitGlobal(HD); 6199 break; 6200 6201 // Indirect fields from global anonymous structs and unions can be 6202 // ignored; only the actual variable requires IR gen support. 6203 case Decl::IndirectField: 6204 break; 6205 6206 // C++ Decls 6207 case Decl::Namespace: 6208 EmitDeclContext(cast<NamespaceDecl>(D)); 6209 break; 6210 case Decl::ClassTemplateSpecialization: { 6211 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6212 if (CGDebugInfo *DI = getModuleDebugInfo()) 6213 if (Spec->getSpecializationKind() == 6214 TSK_ExplicitInstantiationDefinition && 6215 Spec->hasDefinition()) 6216 DI->completeTemplateDefinition(*Spec); 6217 } [[fallthrough]]; 6218 case Decl::CXXRecord: { 6219 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6220 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6221 if (CRD->hasDefinition()) 6222 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6223 if (auto *ES = D->getASTContext().getExternalSource()) 6224 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6225 DI->completeUnusedClass(*CRD); 6226 } 6227 // Emit any static data members, they may be definitions. 6228 for (auto *I : CRD->decls()) 6229 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6230 EmitTopLevelDecl(I); 6231 break; 6232 } 6233 // No code generation needed. 6234 case Decl::UsingShadow: 6235 case Decl::ClassTemplate: 6236 case Decl::VarTemplate: 6237 case Decl::Concept: 6238 case Decl::VarTemplatePartialSpecialization: 6239 case Decl::FunctionTemplate: 6240 case Decl::TypeAliasTemplate: 6241 case Decl::Block: 6242 case Decl::Empty: 6243 case Decl::Binding: 6244 break; 6245 case Decl::Using: // using X; [C++] 6246 if (CGDebugInfo *DI = getModuleDebugInfo()) 6247 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6248 break; 6249 case Decl::UsingEnum: // using enum X; [C++] 6250 if (CGDebugInfo *DI = getModuleDebugInfo()) 6251 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6252 break; 6253 case Decl::NamespaceAlias: 6254 if (CGDebugInfo *DI = getModuleDebugInfo()) 6255 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6256 break; 6257 case Decl::UsingDirective: // using namespace X; [C++] 6258 if (CGDebugInfo *DI = getModuleDebugInfo()) 6259 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6260 break; 6261 case Decl::CXXConstructor: 6262 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6263 break; 6264 case Decl::CXXDestructor: 6265 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6266 break; 6267 6268 case Decl::StaticAssert: 6269 // Nothing to do. 6270 break; 6271 6272 // Objective-C Decls 6273 6274 // Forward declarations, no (immediate) code generation. 6275 case Decl::ObjCInterface: 6276 case Decl::ObjCCategory: 6277 break; 6278 6279 case Decl::ObjCProtocol: { 6280 auto *Proto = cast<ObjCProtocolDecl>(D); 6281 if (Proto->isThisDeclarationADefinition()) 6282 ObjCRuntime->GenerateProtocol(Proto); 6283 break; 6284 } 6285 6286 case Decl::ObjCCategoryImpl: 6287 // Categories have properties but don't support synthesize so we 6288 // can ignore them here. 6289 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6290 break; 6291 6292 case Decl::ObjCImplementation: { 6293 auto *OMD = cast<ObjCImplementationDecl>(D); 6294 EmitObjCPropertyImplementations(OMD); 6295 EmitObjCIvarInitializations(OMD); 6296 ObjCRuntime->GenerateClass(OMD); 6297 // Emit global variable debug information. 6298 if (CGDebugInfo *DI = getModuleDebugInfo()) 6299 if (getCodeGenOpts().hasReducedDebugInfo()) 6300 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6301 OMD->getClassInterface()), OMD->getLocation()); 6302 break; 6303 } 6304 case Decl::ObjCMethod: { 6305 auto *OMD = cast<ObjCMethodDecl>(D); 6306 // If this is not a prototype, emit the body. 6307 if (OMD->getBody()) 6308 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6309 break; 6310 } 6311 case Decl::ObjCCompatibleAlias: 6312 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6313 break; 6314 6315 case Decl::PragmaComment: { 6316 const auto *PCD = cast<PragmaCommentDecl>(D); 6317 switch (PCD->getCommentKind()) { 6318 case PCK_Unknown: 6319 llvm_unreachable("unexpected pragma comment kind"); 6320 case PCK_Linker: 6321 AppendLinkerOptions(PCD->getArg()); 6322 break; 6323 case PCK_Lib: 6324 AddDependentLib(PCD->getArg()); 6325 break; 6326 case PCK_Compiler: 6327 case PCK_ExeStr: 6328 case PCK_User: 6329 break; // We ignore all of these. 6330 } 6331 break; 6332 } 6333 6334 case Decl::PragmaDetectMismatch: { 6335 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6336 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6337 break; 6338 } 6339 6340 case Decl::LinkageSpec: 6341 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6342 break; 6343 6344 case Decl::FileScopeAsm: { 6345 // File-scope asm is ignored during device-side CUDA compilation. 6346 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6347 break; 6348 // File-scope asm is ignored during device-side OpenMP compilation. 6349 if (LangOpts.OpenMPIsDevice) 6350 break; 6351 // File-scope asm is ignored during device-side SYCL compilation. 6352 if (LangOpts.SYCLIsDevice) 6353 break; 6354 auto *AD = cast<FileScopeAsmDecl>(D); 6355 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6356 break; 6357 } 6358 6359 case Decl::Import: { 6360 auto *Import = cast<ImportDecl>(D); 6361 6362 // If we've already imported this module, we're done. 6363 if (!ImportedModules.insert(Import->getImportedModule())) 6364 break; 6365 6366 // Emit debug information for direct imports. 6367 if (!Import->getImportedOwningModule()) { 6368 if (CGDebugInfo *DI = getModuleDebugInfo()) 6369 DI->EmitImportDecl(*Import); 6370 } 6371 6372 // For C++ standard modules we are done - we will call the module 6373 // initializer for imported modules, and that will likewise call those for 6374 // any imports it has. 6375 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6376 !Import->getImportedOwningModule()->isModuleMapModule()) 6377 break; 6378 6379 // For clang C++ module map modules the initializers for sub-modules are 6380 // emitted here. 6381 6382 // Find all of the submodules and emit the module initializers. 6383 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6384 SmallVector<clang::Module *, 16> Stack; 6385 Visited.insert(Import->getImportedModule()); 6386 Stack.push_back(Import->getImportedModule()); 6387 6388 while (!Stack.empty()) { 6389 clang::Module *Mod = Stack.pop_back_val(); 6390 if (!EmittedModuleInitializers.insert(Mod).second) 6391 continue; 6392 6393 for (auto *D : Context.getModuleInitializers(Mod)) 6394 EmitTopLevelDecl(D); 6395 6396 // Visit the submodules of this module. 6397 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6398 SubEnd = Mod->submodule_end(); 6399 Sub != SubEnd; ++Sub) { 6400 // Skip explicit children; they need to be explicitly imported to emit 6401 // the initializers. 6402 if ((*Sub)->IsExplicit) 6403 continue; 6404 6405 if (Visited.insert(*Sub).second) 6406 Stack.push_back(*Sub); 6407 } 6408 } 6409 break; 6410 } 6411 6412 case Decl::Export: 6413 EmitDeclContext(cast<ExportDecl>(D)); 6414 break; 6415 6416 case Decl::OMPThreadPrivate: 6417 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6418 break; 6419 6420 case Decl::OMPAllocate: 6421 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6422 break; 6423 6424 case Decl::OMPDeclareReduction: 6425 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6426 break; 6427 6428 case Decl::OMPDeclareMapper: 6429 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6430 break; 6431 6432 case Decl::OMPRequires: 6433 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6434 break; 6435 6436 case Decl::Typedef: 6437 case Decl::TypeAlias: // using foo = bar; [C++11] 6438 if (CGDebugInfo *DI = getModuleDebugInfo()) 6439 DI->EmitAndRetainType( 6440 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6441 break; 6442 6443 case Decl::Record: 6444 if (CGDebugInfo *DI = getModuleDebugInfo()) 6445 if (cast<RecordDecl>(D)->getDefinition()) 6446 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6447 break; 6448 6449 case Decl::Enum: 6450 if (CGDebugInfo *DI = getModuleDebugInfo()) 6451 if (cast<EnumDecl>(D)->getDefinition()) 6452 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6453 break; 6454 6455 default: 6456 // Make sure we handled everything we should, every other kind is a 6457 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6458 // function. Need to recode Decl::Kind to do that easily. 6459 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6460 break; 6461 } 6462 } 6463 6464 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6465 // Do we need to generate coverage mapping? 6466 if (!CodeGenOpts.CoverageMapping) 6467 return; 6468 switch (D->getKind()) { 6469 case Decl::CXXConversion: 6470 case Decl::CXXMethod: 6471 case Decl::Function: 6472 case Decl::ObjCMethod: 6473 case Decl::CXXConstructor: 6474 case Decl::CXXDestructor: { 6475 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6476 break; 6477 SourceManager &SM = getContext().getSourceManager(); 6478 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6479 break; 6480 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6481 if (I == DeferredEmptyCoverageMappingDecls.end()) 6482 DeferredEmptyCoverageMappingDecls[D] = true; 6483 break; 6484 } 6485 default: 6486 break; 6487 }; 6488 } 6489 6490 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6491 // Do we need to generate coverage mapping? 6492 if (!CodeGenOpts.CoverageMapping) 6493 return; 6494 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6495 if (Fn->isTemplateInstantiation()) 6496 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6497 } 6498 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6499 if (I == DeferredEmptyCoverageMappingDecls.end()) 6500 DeferredEmptyCoverageMappingDecls[D] = false; 6501 else 6502 I->second = false; 6503 } 6504 6505 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6506 // We call takeVector() here to avoid use-after-free. 6507 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6508 // we deserialize function bodies to emit coverage info for them, and that 6509 // deserializes more declarations. How should we handle that case? 6510 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6511 if (!Entry.second) 6512 continue; 6513 const Decl *D = Entry.first; 6514 switch (D->getKind()) { 6515 case Decl::CXXConversion: 6516 case Decl::CXXMethod: 6517 case Decl::Function: 6518 case Decl::ObjCMethod: { 6519 CodeGenPGO PGO(*this); 6520 GlobalDecl GD(cast<FunctionDecl>(D)); 6521 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6522 getFunctionLinkage(GD)); 6523 break; 6524 } 6525 case Decl::CXXConstructor: { 6526 CodeGenPGO PGO(*this); 6527 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6528 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6529 getFunctionLinkage(GD)); 6530 break; 6531 } 6532 case Decl::CXXDestructor: { 6533 CodeGenPGO PGO(*this); 6534 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6535 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6536 getFunctionLinkage(GD)); 6537 break; 6538 } 6539 default: 6540 break; 6541 }; 6542 } 6543 } 6544 6545 void CodeGenModule::EmitMainVoidAlias() { 6546 // In order to transition away from "__original_main" gracefully, emit an 6547 // alias for "main" in the no-argument case so that libc can detect when 6548 // new-style no-argument main is in used. 6549 if (llvm::Function *F = getModule().getFunction("main")) { 6550 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6551 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6552 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6553 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6554 } 6555 } 6556 } 6557 6558 /// Turns the given pointer into a constant. 6559 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6560 const void *Ptr) { 6561 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6562 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6563 return llvm::ConstantInt::get(i64, PtrInt); 6564 } 6565 6566 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6567 llvm::NamedMDNode *&GlobalMetadata, 6568 GlobalDecl D, 6569 llvm::GlobalValue *Addr) { 6570 if (!GlobalMetadata) 6571 GlobalMetadata = 6572 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6573 6574 // TODO: should we report variant information for ctors/dtors? 6575 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6576 llvm::ConstantAsMetadata::get(GetPointerConstant( 6577 CGM.getLLVMContext(), D.getDecl()))}; 6578 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6579 } 6580 6581 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6582 llvm::GlobalValue *CppFunc) { 6583 // Store the list of ifuncs we need to replace uses in. 6584 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6585 // List of ConstantExprs that we should be able to delete when we're done 6586 // here. 6587 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6588 6589 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6590 if (Elem == CppFunc) 6591 return false; 6592 6593 // First make sure that all users of this are ifuncs (or ifuncs via a 6594 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6595 // later. 6596 for (llvm::User *User : Elem->users()) { 6597 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6598 // ifunc directly. In any other case, just give up, as we don't know what we 6599 // could break by changing those. 6600 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6601 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6602 return false; 6603 6604 for (llvm::User *CEUser : ConstExpr->users()) { 6605 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6606 IFuncs.push_back(IFunc); 6607 } else { 6608 return false; 6609 } 6610 } 6611 CEs.push_back(ConstExpr); 6612 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6613 IFuncs.push_back(IFunc); 6614 } else { 6615 // This user is one we don't know how to handle, so fail redirection. This 6616 // will result in an ifunc retaining a resolver name that will ultimately 6617 // fail to be resolved to a defined function. 6618 return false; 6619 } 6620 } 6621 6622 // Now we know this is a valid case where we can do this alias replacement, we 6623 // need to remove all of the references to Elem (and the bitcasts!) so we can 6624 // delete it. 6625 for (llvm::GlobalIFunc *IFunc : IFuncs) 6626 IFunc->setResolver(nullptr); 6627 for (llvm::ConstantExpr *ConstExpr : CEs) 6628 ConstExpr->destroyConstant(); 6629 6630 // We should now be out of uses for the 'old' version of this function, so we 6631 // can erase it as well. 6632 Elem->eraseFromParent(); 6633 6634 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6635 // The type of the resolver is always just a function-type that returns the 6636 // type of the IFunc, so create that here. If the type of the actual 6637 // resolver doesn't match, it just gets bitcast to the right thing. 6638 auto *ResolverTy = 6639 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6640 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6641 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6642 IFunc->setResolver(Resolver); 6643 } 6644 return true; 6645 } 6646 6647 /// For each function which is declared within an extern "C" region and marked 6648 /// as 'used', but has internal linkage, create an alias from the unmangled 6649 /// name to the mangled name if possible. People expect to be able to refer 6650 /// to such functions with an unmangled name from inline assembly within the 6651 /// same translation unit. 6652 void CodeGenModule::EmitStaticExternCAliases() { 6653 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6654 return; 6655 for (auto &I : StaticExternCValues) { 6656 IdentifierInfo *Name = I.first; 6657 llvm::GlobalValue *Val = I.second; 6658 6659 // If Val is null, that implies there were multiple declarations that each 6660 // had a claim to the unmangled name. In this case, generation of the alias 6661 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6662 if (!Val) 6663 break; 6664 6665 llvm::GlobalValue *ExistingElem = 6666 getModule().getNamedValue(Name->getName()); 6667 6668 // If there is either not something already by this name, or we were able to 6669 // replace all uses from IFuncs, create the alias. 6670 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6671 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6672 } 6673 } 6674 6675 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6676 GlobalDecl &Result) const { 6677 auto Res = Manglings.find(MangledName); 6678 if (Res == Manglings.end()) 6679 return false; 6680 Result = Res->getValue(); 6681 return true; 6682 } 6683 6684 /// Emits metadata nodes associating all the global values in the 6685 /// current module with the Decls they came from. This is useful for 6686 /// projects using IR gen as a subroutine. 6687 /// 6688 /// Since there's currently no way to associate an MDNode directly 6689 /// with an llvm::GlobalValue, we create a global named metadata 6690 /// with the name 'clang.global.decl.ptrs'. 6691 void CodeGenModule::EmitDeclMetadata() { 6692 llvm::NamedMDNode *GlobalMetadata = nullptr; 6693 6694 for (auto &I : MangledDeclNames) { 6695 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6696 // Some mangled names don't necessarily have an associated GlobalValue 6697 // in this module, e.g. if we mangled it for DebugInfo. 6698 if (Addr) 6699 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6700 } 6701 } 6702 6703 /// Emits metadata nodes for all the local variables in the current 6704 /// function. 6705 void CodeGenFunction::EmitDeclMetadata() { 6706 if (LocalDeclMap.empty()) return; 6707 6708 llvm::LLVMContext &Context = getLLVMContext(); 6709 6710 // Find the unique metadata ID for this name. 6711 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6712 6713 llvm::NamedMDNode *GlobalMetadata = nullptr; 6714 6715 for (auto &I : LocalDeclMap) { 6716 const Decl *D = I.first; 6717 llvm::Value *Addr = I.second.getPointer(); 6718 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6719 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6720 Alloca->setMetadata( 6721 DeclPtrKind, llvm::MDNode::get( 6722 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6723 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6724 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6725 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6726 } 6727 } 6728 } 6729 6730 void CodeGenModule::EmitVersionIdentMetadata() { 6731 llvm::NamedMDNode *IdentMetadata = 6732 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6733 std::string Version = getClangFullVersion(); 6734 llvm::LLVMContext &Ctx = TheModule.getContext(); 6735 6736 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6737 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6738 } 6739 6740 void CodeGenModule::EmitCommandLineMetadata() { 6741 llvm::NamedMDNode *CommandLineMetadata = 6742 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6743 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6744 llvm::LLVMContext &Ctx = TheModule.getContext(); 6745 6746 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6747 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6748 } 6749 6750 void CodeGenModule::EmitCoverageFile() { 6751 if (getCodeGenOpts().CoverageDataFile.empty() && 6752 getCodeGenOpts().CoverageNotesFile.empty()) 6753 return; 6754 6755 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6756 if (!CUNode) 6757 return; 6758 6759 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6760 llvm::LLVMContext &Ctx = TheModule.getContext(); 6761 auto *CoverageDataFile = 6762 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6763 auto *CoverageNotesFile = 6764 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6765 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6766 llvm::MDNode *CU = CUNode->getOperand(i); 6767 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6768 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6769 } 6770 } 6771 6772 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6773 bool ForEH) { 6774 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6775 // FIXME: should we even be calling this method if RTTI is disabled 6776 // and it's not for EH? 6777 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6778 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6779 getTriple().isNVPTX())) 6780 return llvm::Constant::getNullValue(Int8PtrTy); 6781 6782 if (ForEH && Ty->isObjCObjectPointerType() && 6783 LangOpts.ObjCRuntime.isGNUFamily()) 6784 return ObjCRuntime->GetEHType(Ty); 6785 6786 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6787 } 6788 6789 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6790 // Do not emit threadprivates in simd-only mode. 6791 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6792 return; 6793 for (auto RefExpr : D->varlists()) { 6794 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6795 bool PerformInit = 6796 VD->getAnyInitializer() && 6797 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6798 /*ForRef=*/false); 6799 6800 Address Addr(GetAddrOfGlobalVar(VD), 6801 getTypes().ConvertTypeForMem(VD->getType()), 6802 getContext().getDeclAlign(VD)); 6803 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6804 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6805 CXXGlobalInits.push_back(InitFunction); 6806 } 6807 } 6808 6809 llvm::Metadata * 6810 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6811 StringRef Suffix) { 6812 if (auto *FnType = T->getAs<FunctionProtoType>()) 6813 T = getContext().getFunctionType( 6814 FnType->getReturnType(), FnType->getParamTypes(), 6815 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6816 6817 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6818 if (InternalId) 6819 return InternalId; 6820 6821 if (isExternallyVisible(T->getLinkage())) { 6822 std::string OutName; 6823 llvm::raw_string_ostream Out(OutName); 6824 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6825 Out << Suffix; 6826 6827 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6828 } else { 6829 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6830 llvm::ArrayRef<llvm::Metadata *>()); 6831 } 6832 6833 return InternalId; 6834 } 6835 6836 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6837 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6838 } 6839 6840 llvm::Metadata * 6841 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6842 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6843 } 6844 6845 // Generalize pointer types to a void pointer with the qualifiers of the 6846 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6847 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6848 // 'void *'. 6849 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6850 if (!Ty->isPointerType()) 6851 return Ty; 6852 6853 return Ctx.getPointerType( 6854 QualType(Ctx.VoidTy).withCVRQualifiers( 6855 Ty->getPointeeType().getCVRQualifiers())); 6856 } 6857 6858 // Apply type generalization to a FunctionType's return and argument types 6859 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6860 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6861 SmallVector<QualType, 8> GeneralizedParams; 6862 for (auto &Param : FnType->param_types()) 6863 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6864 6865 return Ctx.getFunctionType( 6866 GeneralizeType(Ctx, FnType->getReturnType()), 6867 GeneralizedParams, FnType->getExtProtoInfo()); 6868 } 6869 6870 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6871 return Ctx.getFunctionNoProtoType( 6872 GeneralizeType(Ctx, FnType->getReturnType())); 6873 6874 llvm_unreachable("Encountered unknown FunctionType"); 6875 } 6876 6877 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6878 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6879 GeneralizedMetadataIdMap, ".generalized"); 6880 } 6881 6882 /// Returns whether this module needs the "all-vtables" type identifier. 6883 bool CodeGenModule::NeedAllVtablesTypeId() const { 6884 // Returns true if at least one of vtable-based CFI checkers is enabled and 6885 // is not in the trapping mode. 6886 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6887 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6888 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6889 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6890 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6891 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6892 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6893 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6894 } 6895 6896 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6897 CharUnits Offset, 6898 const CXXRecordDecl *RD) { 6899 llvm::Metadata *MD = 6900 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6901 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6902 6903 if (CodeGenOpts.SanitizeCfiCrossDso) 6904 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6905 VTable->addTypeMetadata(Offset.getQuantity(), 6906 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6907 6908 if (NeedAllVtablesTypeId()) { 6909 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6910 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6911 } 6912 } 6913 6914 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6915 if (!SanStats) 6916 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6917 6918 return *SanStats; 6919 } 6920 6921 llvm::Value * 6922 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6923 CodeGenFunction &CGF) { 6924 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6925 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6926 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6927 auto *Call = CGF.EmitRuntimeCall( 6928 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6929 return Call; 6930 } 6931 6932 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6933 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6934 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6935 /* forPointeeType= */ true); 6936 } 6937 6938 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6939 LValueBaseInfo *BaseInfo, 6940 TBAAAccessInfo *TBAAInfo, 6941 bool forPointeeType) { 6942 if (TBAAInfo) 6943 *TBAAInfo = getTBAAAccessInfo(T); 6944 6945 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6946 // that doesn't return the information we need to compute BaseInfo. 6947 6948 // Honor alignment typedef attributes even on incomplete types. 6949 // We also honor them straight for C++ class types, even as pointees; 6950 // there's an expressivity gap here. 6951 if (auto TT = T->getAs<TypedefType>()) { 6952 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6953 if (BaseInfo) 6954 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6955 return getContext().toCharUnitsFromBits(Align); 6956 } 6957 } 6958 6959 bool AlignForArray = T->isArrayType(); 6960 6961 // Analyze the base element type, so we don't get confused by incomplete 6962 // array types. 6963 T = getContext().getBaseElementType(T); 6964 6965 if (T->isIncompleteType()) { 6966 // We could try to replicate the logic from 6967 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6968 // type is incomplete, so it's impossible to test. We could try to reuse 6969 // getTypeAlignIfKnown, but that doesn't return the information we need 6970 // to set BaseInfo. So just ignore the possibility that the alignment is 6971 // greater than one. 6972 if (BaseInfo) 6973 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6974 return CharUnits::One(); 6975 } 6976 6977 if (BaseInfo) 6978 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6979 6980 CharUnits Alignment; 6981 const CXXRecordDecl *RD; 6982 if (T.getQualifiers().hasUnaligned()) { 6983 Alignment = CharUnits::One(); 6984 } else if (forPointeeType && !AlignForArray && 6985 (RD = T->getAsCXXRecordDecl())) { 6986 // For C++ class pointees, we don't know whether we're pointing at a 6987 // base or a complete object, so we generally need to use the 6988 // non-virtual alignment. 6989 Alignment = getClassPointerAlignment(RD); 6990 } else { 6991 Alignment = getContext().getTypeAlignInChars(T); 6992 } 6993 6994 // Cap to the global maximum type alignment unless the alignment 6995 // was somehow explicit on the type. 6996 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6997 if (Alignment.getQuantity() > MaxAlign && 6998 !getContext().isAlignmentRequired(T)) 6999 Alignment = CharUnits::fromQuantity(MaxAlign); 7000 } 7001 return Alignment; 7002 } 7003 7004 bool CodeGenModule::stopAutoInit() { 7005 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7006 if (StopAfter) { 7007 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7008 // used 7009 if (NumAutoVarInit >= StopAfter) { 7010 return true; 7011 } 7012 if (!NumAutoVarInit) { 7013 unsigned DiagID = getDiags().getCustomDiagID( 7014 DiagnosticsEngine::Warning, 7015 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7016 "number of times ftrivial-auto-var-init=%1 gets applied."); 7017 getDiags().Report(DiagID) 7018 << StopAfter 7019 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7020 LangOptions::TrivialAutoVarInitKind::Zero 7021 ? "zero" 7022 : "pattern"); 7023 } 7024 ++NumAutoVarInit; 7025 } 7026 return false; 7027 } 7028 7029 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7030 const Decl *D) const { 7031 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7032 // postfix beginning with '.' since the symbol name can be demangled. 7033 if (LangOpts.HIP) 7034 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7035 else 7036 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7037 7038 // If the CUID is not specified we try to generate a unique postfix. 7039 if (getLangOpts().CUID.empty()) { 7040 SourceManager &SM = getContext().getSourceManager(); 7041 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7042 assert(PLoc.isValid() && "Source location is expected to be valid."); 7043 7044 // Get the hash of the user defined macros. 7045 llvm::MD5 Hash; 7046 llvm::MD5::MD5Result Result; 7047 for (const auto &Arg : PreprocessorOpts.Macros) 7048 Hash.update(Arg.first); 7049 Hash.final(Result); 7050 7051 // Get the UniqueID for the file containing the decl. 7052 llvm::sys::fs::UniqueID ID; 7053 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7054 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7055 assert(PLoc.isValid() && "Source location is expected to be valid."); 7056 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7057 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7058 << PLoc.getFilename() << EC.message(); 7059 } 7060 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7061 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7062 } else { 7063 OS << getContext().getCUIDHash(); 7064 } 7065 } 7066 7067 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7068 assert(DeferredDeclsToEmit.empty() && 7069 "Should have emitted all decls deferred to emit."); 7070 assert(NewBuilder->DeferredDecls.empty() && 7071 "Newly created module should not have deferred decls"); 7072 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7073 7074 assert(NewBuilder->DeferredVTables.empty() && 7075 "Newly created module should not have deferred vtables"); 7076 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7077 7078 assert(NewBuilder->MangledDeclNames.empty() && 7079 "Newly created module should not have mangled decl names"); 7080 assert(NewBuilder->Manglings.empty() && 7081 "Newly created module should not have manglings"); 7082 NewBuilder->Manglings = std::move(Manglings); 7083 7084 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); 7085 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7086 7087 NewBuilder->TBAA = std::move(TBAA); 7088 7089 assert(NewBuilder->EmittedDeferredDecls.empty() && 7090 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7091 7092 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7093 7094 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7095 } 7096