xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision bc502d9c24f8fce3b90e3fe8a8a9ca18894e68cb)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/ADT/Triple.h"
54 #include "llvm/Analysis/TargetLibraryInfo.h"
55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/X86TargetParser.h"
71 #include "llvm/Support/xxhash.h"
72 
73 using namespace clang;
74 using namespace CodeGen;
75 
76 static llvm::cl::opt<bool> LimitedCoverage(
77     "limited-coverage-experimental", llvm::cl::Hidden,
78     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
79 
80 static const char AnnotationSection[] = "llvm.metadata";
81 
82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
83   switch (CGM.getContext().getCXXABIKind()) {
84   case TargetCXXABI::AppleARM64:
85   case TargetCXXABI::Fuchsia:
86   case TargetCXXABI::GenericAArch64:
87   case TargetCXXABI::GenericARM:
88   case TargetCXXABI::iOS:
89   case TargetCXXABI::WatchOS:
90   case TargetCXXABI::GenericMIPS:
91   case TargetCXXABI::GenericItanium:
92   case TargetCXXABI::WebAssembly:
93   case TargetCXXABI::XL:
94     return CreateItaniumCXXABI(CGM);
95   case TargetCXXABI::Microsoft:
96     return CreateMicrosoftCXXABI(CGM);
97   }
98 
99   llvm_unreachable("invalid C++ ABI kind");
100 }
101 
102 CodeGenModule::CodeGenModule(ASTContext &C,
103                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
104                              const HeaderSearchOptions &HSO,
105                              const PreprocessorOptions &PPO,
106                              const CodeGenOptions &CGO, llvm::Module &M,
107                              DiagnosticsEngine &diags,
108                              CoverageSourceInfo *CoverageInfo)
109     : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
110       HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
111       TheModule(M), Diags(diags), Target(C.getTargetInfo()),
112       ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
113       VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
114 
115   // Initialize the type cache.
116   llvm::LLVMContext &LLVMContext = M.getContext();
117   VoidTy = llvm::Type::getVoidTy(LLVMContext);
118   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
119   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
120   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
121   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
122   HalfTy = llvm::Type::getHalfTy(LLVMContext);
123   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
124   FloatTy = llvm::Type::getFloatTy(LLVMContext);
125   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
126   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
127   PointerAlignInBytes =
128     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
129   SizeSizeInBytes =
130     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
131   IntAlignInBytes =
132     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
133   CharTy =
134     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
135   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
136   IntPtrTy = llvm::IntegerType::get(LLVMContext,
137     C.getTargetInfo().getMaxPointerWidth());
138   Int8PtrTy = Int8Ty->getPointerTo(0);
139   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
140   const llvm::DataLayout &DL = M.getDataLayout();
141   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
142   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
143   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
144 
145   // Build C++20 Module initializers.
146   // TODO: Add Microsoft here once we know the mangling required for the
147   // initializers.
148   CXX20ModuleInits =
149       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
150                                        ItaniumMangleContext::MK_Itanium;
151 
152   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
153 
154   if (LangOpts.ObjC)
155     createObjCRuntime();
156   if (LangOpts.OpenCL)
157     createOpenCLRuntime();
158   if (LangOpts.OpenMP)
159     createOpenMPRuntime();
160   if (LangOpts.CUDA)
161     createCUDARuntime();
162   if (LangOpts.HLSL)
163     createHLSLRuntime();
164 
165   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
166   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
167       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
168     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
169                                getCXXABI().getMangleContext()));
170 
171   // If debug info or coverage generation is enabled, create the CGDebugInfo
172   // object.
173   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
174       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
175     DebugInfo.reset(new CGDebugInfo(*this));
176 
177   Block.GlobalUniqueCount = 0;
178 
179   if (C.getLangOpts().ObjC)
180     ObjCData.reset(new ObjCEntrypoints());
181 
182   if (CodeGenOpts.hasProfileClangUse()) {
183     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
184         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
185     if (auto E = ReaderOrErr.takeError()) {
186       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
187                                               "Could not read profile %0: %1");
188       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
189         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
190                                   << EI.message();
191       });
192     } else
193       PGOReader = std::move(ReaderOrErr.get());
194   }
195 
196   // If coverage mapping generation is enabled, create the
197   // CoverageMappingModuleGen object.
198   if (CodeGenOpts.CoverageMapping)
199     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
200 
201   // Generate the module name hash here if needed.
202   if (CodeGenOpts.UniqueInternalLinkageNames &&
203       !getModule().getSourceFileName().empty()) {
204     std::string Path = getModule().getSourceFileName();
205     // Check if a path substitution is needed from the MacroPrefixMap.
206     for (const auto &Entry : LangOpts.MacroPrefixMap)
207       if (Path.rfind(Entry.first, 0) != std::string::npos) {
208         Path = Entry.second + Path.substr(Entry.first.size());
209         break;
210       }
211     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
212   }
213 }
214 
215 CodeGenModule::~CodeGenModule() {}
216 
217 void CodeGenModule::createObjCRuntime() {
218   // This is just isGNUFamily(), but we want to force implementors of
219   // new ABIs to decide how best to do this.
220   switch (LangOpts.ObjCRuntime.getKind()) {
221   case ObjCRuntime::GNUstep:
222   case ObjCRuntime::GCC:
223   case ObjCRuntime::ObjFW:
224     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
225     return;
226 
227   case ObjCRuntime::FragileMacOSX:
228   case ObjCRuntime::MacOSX:
229   case ObjCRuntime::iOS:
230   case ObjCRuntime::WatchOS:
231     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
232     return;
233   }
234   llvm_unreachable("bad runtime kind");
235 }
236 
237 void CodeGenModule::createOpenCLRuntime() {
238   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
239 }
240 
241 void CodeGenModule::createOpenMPRuntime() {
242   // Select a specialized code generation class based on the target, if any.
243   // If it does not exist use the default implementation.
244   switch (getTriple().getArch()) {
245   case llvm::Triple::nvptx:
246   case llvm::Triple::nvptx64:
247   case llvm::Triple::amdgcn:
248     assert(getLangOpts().OpenMPIsDevice &&
249            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
250     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
251     break;
252   default:
253     if (LangOpts.OpenMPSimd)
254       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
255     else
256       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
257     break;
258   }
259 }
260 
261 void CodeGenModule::createCUDARuntime() {
262   CUDARuntime.reset(CreateNVCUDARuntime(*this));
263 }
264 
265 void CodeGenModule::createHLSLRuntime() {
266   HLSLRuntime.reset(new CGHLSLRuntime(*this));
267 }
268 
269 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
270   Replacements[Name] = C;
271 }
272 
273 void CodeGenModule::applyReplacements() {
274   for (auto &I : Replacements) {
275     StringRef MangledName = I.first();
276     llvm::Constant *Replacement = I.second;
277     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
278     if (!Entry)
279       continue;
280     auto *OldF = cast<llvm::Function>(Entry);
281     auto *NewF = dyn_cast<llvm::Function>(Replacement);
282     if (!NewF) {
283       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
284         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
285       } else {
286         auto *CE = cast<llvm::ConstantExpr>(Replacement);
287         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
288                CE->getOpcode() == llvm::Instruction::GetElementPtr);
289         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
290       }
291     }
292 
293     // Replace old with new, but keep the old order.
294     OldF->replaceAllUsesWith(Replacement);
295     if (NewF) {
296       NewF->removeFromParent();
297       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
298                                                        NewF);
299     }
300     OldF->eraseFromParent();
301   }
302 }
303 
304 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
305   GlobalValReplacements.push_back(std::make_pair(GV, C));
306 }
307 
308 void CodeGenModule::applyGlobalValReplacements() {
309   for (auto &I : GlobalValReplacements) {
310     llvm::GlobalValue *GV = I.first;
311     llvm::Constant *C = I.second;
312 
313     GV->replaceAllUsesWith(C);
314     GV->eraseFromParent();
315   }
316 }
317 
318 // This is only used in aliases that we created and we know they have a
319 // linear structure.
320 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
321   const llvm::Constant *C;
322   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
323     C = GA->getAliasee();
324   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
325     C = GI->getResolver();
326   else
327     return GV;
328 
329   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
330   if (!AliaseeGV)
331     return nullptr;
332 
333   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
334   if (FinalGV == GV)
335     return nullptr;
336 
337   return FinalGV;
338 }
339 
340 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
341                                SourceLocation Location, bool IsIFunc,
342                                const llvm::GlobalValue *Alias,
343                                const llvm::GlobalValue *&GV) {
344   GV = getAliasedGlobal(Alias);
345   if (!GV) {
346     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
347     return false;
348   }
349 
350   if (GV->isDeclaration()) {
351     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
352     return false;
353   }
354 
355   if (IsIFunc) {
356     // Check resolver function type.
357     const auto *F = dyn_cast<llvm::Function>(GV);
358     if (!F) {
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361       return false;
362     }
363 
364     llvm::FunctionType *FTy = F->getFunctionType();
365     if (!FTy->getReturnType()->isPointerTy()) {
366       Diags.Report(Location, diag::err_ifunc_resolver_return);
367       return false;
368     }
369   }
370 
371   return true;
372 }
373 
374 void CodeGenModule::checkAliases() {
375   // Check if the constructed aliases are well formed. It is really unfortunate
376   // that we have to do this in CodeGen, but we only construct mangled names
377   // and aliases during codegen.
378   bool Error = false;
379   DiagnosticsEngine &Diags = getDiags();
380   for (const GlobalDecl &GD : Aliases) {
381     const auto *D = cast<ValueDecl>(GD.getDecl());
382     SourceLocation Location;
383     bool IsIFunc = D->hasAttr<IFuncAttr>();
384     if (const Attr *A = D->getDefiningAttr())
385       Location = A->getLocation();
386     else
387       llvm_unreachable("Not an alias or ifunc?");
388 
389     StringRef MangledName = getMangledName(GD);
390     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
391     const llvm::GlobalValue *GV = nullptr;
392     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
393       Error = true;
394       continue;
395     }
396 
397     llvm::Constant *Aliasee =
398         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
399                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
400 
401     llvm::GlobalValue *AliaseeGV;
402     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
403       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
404     else
405       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
406 
407     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
408       StringRef AliasSection = SA->getName();
409       if (AliasSection != AliaseeGV->getSection())
410         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
411             << AliasSection << IsIFunc << IsIFunc;
412     }
413 
414     // We have to handle alias to weak aliases in here. LLVM itself disallows
415     // this since the object semantics would not match the IL one. For
416     // compatibility with gcc we implement it by just pointing the alias
417     // to its aliasee's aliasee. We also warn, since the user is probably
418     // expecting the link to be weak.
419     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
420       if (GA->isInterposable()) {
421         Diags.Report(Location, diag::warn_alias_to_weak_alias)
422             << GV->getName() << GA->getName() << IsIFunc;
423         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
424             GA->getAliasee(), Alias->getType());
425 
426         if (IsIFunc)
427           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
428         else
429           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
430       }
431     }
432   }
433   if (!Error)
434     return;
435 
436   for (const GlobalDecl &GD : Aliases) {
437     StringRef MangledName = getMangledName(GD);
438     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
439     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
440     Alias->eraseFromParent();
441   }
442 }
443 
444 void CodeGenModule::clear() {
445   DeferredDeclsToEmit.clear();
446   EmittedDeferredDecls.clear();
447   if (OpenMPRuntime)
448     OpenMPRuntime->clear();
449 }
450 
451 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
452                                        StringRef MainFile) {
453   if (!hasDiagnostics())
454     return;
455   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
456     if (MainFile.empty())
457       MainFile = "<stdin>";
458     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
459   } else {
460     if (Mismatched > 0)
461       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
462 
463     if (Missing > 0)
464       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
465   }
466 }
467 
468 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
469                                              llvm::Module &M) {
470   if (!LO.VisibilityFromDLLStorageClass)
471     return;
472 
473   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
474       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
475   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
476       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
477   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
478       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
479   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
480       CodeGenModule::GetLLVMVisibility(
481           LO.getExternDeclNoDLLStorageClassVisibility());
482 
483   for (llvm::GlobalValue &GV : M.global_values()) {
484     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
485       continue;
486 
487     // Reset DSO locality before setting the visibility. This removes
488     // any effects that visibility options and annotations may have
489     // had on the DSO locality. Setting the visibility will implicitly set
490     // appropriate globals to DSO Local; however, this will be pessimistic
491     // w.r.t. to the normal compiler IRGen.
492     GV.setDSOLocal(false);
493 
494     if (GV.isDeclarationForLinker()) {
495       GV.setVisibility(GV.getDLLStorageClass() ==
496                                llvm::GlobalValue::DLLImportStorageClass
497                            ? ExternDeclDLLImportVisibility
498                            : ExternDeclNoDLLStorageClassVisibility);
499     } else {
500       GV.setVisibility(GV.getDLLStorageClass() ==
501                                llvm::GlobalValue::DLLExportStorageClass
502                            ? DLLExportVisibility
503                            : NoDLLStorageClassVisibility);
504     }
505 
506     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
507   }
508 }
509 
510 void CodeGenModule::Release() {
511   Module *Primary = getContext().getModuleForCodeGen();
512   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
513     EmitModuleInitializers(Primary);
514   EmitDeferred();
515   DeferredDecls.insert(EmittedDeferredDecls.begin(),
516                        EmittedDeferredDecls.end());
517   EmittedDeferredDecls.clear();
518   EmitVTablesOpportunistically();
519   applyGlobalValReplacements();
520   applyReplacements();
521   emitMultiVersionFunctions();
522   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
523     EmitCXXModuleInitFunc(Primary);
524   else
525     EmitCXXGlobalInitFunc();
526   EmitCXXGlobalCleanUpFunc();
527   registerGlobalDtorsWithAtExit();
528   EmitCXXThreadLocalInitFunc();
529   if (ObjCRuntime)
530     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
531       AddGlobalCtor(ObjCInitFunction);
532   if (Context.getLangOpts().CUDA && CUDARuntime) {
533     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
534       AddGlobalCtor(CudaCtorFunction);
535   }
536   if (OpenMPRuntime) {
537     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
538             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
539       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
540     }
541     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
542     OpenMPRuntime->clear();
543   }
544   if (PGOReader) {
545     getModule().setProfileSummary(
546         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
547         llvm::ProfileSummary::PSK_Instr);
548     if (PGOStats.hasDiagnostics())
549       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
550   }
551   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
552     return L.LexOrder < R.LexOrder;
553   });
554   EmitCtorList(GlobalCtors, "llvm.global_ctors");
555   EmitCtorList(GlobalDtors, "llvm.global_dtors");
556   EmitGlobalAnnotations();
557   EmitStaticExternCAliases();
558   checkAliases();
559   EmitDeferredUnusedCoverageMappings();
560   CodeGenPGO(*this).setValueProfilingFlag(getModule());
561   if (CoverageMapping)
562     CoverageMapping->emit();
563   if (CodeGenOpts.SanitizeCfiCrossDso) {
564     CodeGenFunction(*this).EmitCfiCheckFail();
565     CodeGenFunction(*this).EmitCfiCheckStub();
566   }
567   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
568     finalizeKCFITypes();
569   emitAtAvailableLinkGuard();
570   if (Context.getTargetInfo().getTriple().isWasm())
571     EmitMainVoidAlias();
572 
573   if (getTriple().isAMDGPU()) {
574     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
575     // preserve ASAN functions in bitcode libraries.
576     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
577       auto *FT = llvm::FunctionType::get(VoidTy, {});
578       auto *F = llvm::Function::Create(
579           FT, llvm::GlobalValue::ExternalLinkage,
580           "__amdgpu_device_library_preserve_asan_functions", &getModule());
581       auto *Var = new llvm::GlobalVariable(
582           getModule(), FT->getPointerTo(),
583           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
584           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
585           llvm::GlobalVariable::NotThreadLocal);
586       addCompilerUsedGlobal(Var);
587     }
588     // Emit amdgpu_code_object_version module flag, which is code object version
589     // times 100.
590     // ToDo: Enable module flag for all code object version when ROCm device
591     // library is ready.
592     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
593       getModule().addModuleFlag(llvm::Module::Error,
594                                 "amdgpu_code_object_version",
595                                 getTarget().getTargetOpts().CodeObjectVersion);
596     }
597   }
598 
599   // Emit a global array containing all external kernels or device variables
600   // used by host functions and mark it as used for CUDA/HIP. This is necessary
601   // to get kernels or device variables in archives linked in even if these
602   // kernels or device variables are only used in host functions.
603   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
604     SmallVector<llvm::Constant *, 8> UsedArray;
605     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
606       GlobalDecl GD;
607       if (auto *FD = dyn_cast<FunctionDecl>(D))
608         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
609       else
610         GD = GlobalDecl(D);
611       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
612           GetAddrOfGlobal(GD), Int8PtrTy));
613     }
614 
615     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
616 
617     auto *GV = new llvm::GlobalVariable(
618         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
619         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
620     addCompilerUsedGlobal(GV);
621   }
622 
623   emitLLVMUsed();
624   if (SanStats)
625     SanStats->finish();
626 
627   if (CodeGenOpts.Autolink &&
628       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
629     EmitModuleLinkOptions();
630   }
631 
632   // On ELF we pass the dependent library specifiers directly to the linker
633   // without manipulating them. This is in contrast to other platforms where
634   // they are mapped to a specific linker option by the compiler. This
635   // difference is a result of the greater variety of ELF linkers and the fact
636   // that ELF linkers tend to handle libraries in a more complicated fashion
637   // than on other platforms. This forces us to defer handling the dependent
638   // libs to the linker.
639   //
640   // CUDA/HIP device and host libraries are different. Currently there is no
641   // way to differentiate dependent libraries for host or device. Existing
642   // usage of #pragma comment(lib, *) is intended for host libraries on
643   // Windows. Therefore emit llvm.dependent-libraries only for host.
644   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
645     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
646     for (auto *MD : ELFDependentLibraries)
647       NMD->addOperand(MD);
648   }
649 
650   // Record mregparm value now so it is visible through rest of codegen.
651   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
652     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
653                               CodeGenOpts.NumRegisterParameters);
654 
655   if (CodeGenOpts.DwarfVersion) {
656     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
657                               CodeGenOpts.DwarfVersion);
658   }
659 
660   if (CodeGenOpts.Dwarf64)
661     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
662 
663   if (Context.getLangOpts().SemanticInterposition)
664     // Require various optimization to respect semantic interposition.
665     getModule().setSemanticInterposition(true);
666 
667   if (CodeGenOpts.EmitCodeView) {
668     // Indicate that we want CodeView in the metadata.
669     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
670   }
671   if (CodeGenOpts.CodeViewGHash) {
672     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
673   }
674   if (CodeGenOpts.ControlFlowGuard) {
675     // Function ID tables and checks for Control Flow Guard (cfguard=2).
676     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
677   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
678     // Function ID tables for Control Flow Guard (cfguard=1).
679     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
680   }
681   if (CodeGenOpts.EHContGuard) {
682     // Function ID tables for EH Continuation Guard.
683     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
684   }
685   if (Context.getLangOpts().Kernel) {
686     // Note if we are compiling with /kernel.
687     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
688   }
689   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
690     // We don't support LTO with 2 with different StrictVTablePointers
691     // FIXME: we could support it by stripping all the information introduced
692     // by StrictVTablePointers.
693 
694     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
695 
696     llvm::Metadata *Ops[2] = {
697               llvm::MDString::get(VMContext, "StrictVTablePointers"),
698               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
699                   llvm::Type::getInt32Ty(VMContext), 1))};
700 
701     getModule().addModuleFlag(llvm::Module::Require,
702                               "StrictVTablePointersRequirement",
703                               llvm::MDNode::get(VMContext, Ops));
704   }
705   if (getModuleDebugInfo())
706     // We support a single version in the linked module. The LLVM
707     // parser will drop debug info with a different version number
708     // (and warn about it, too).
709     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
710                               llvm::DEBUG_METADATA_VERSION);
711 
712   // We need to record the widths of enums and wchar_t, so that we can generate
713   // the correct build attributes in the ARM backend. wchar_size is also used by
714   // TargetLibraryInfo.
715   uint64_t WCharWidth =
716       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
717   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
718 
719   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
720   if (   Arch == llvm::Triple::arm
721       || Arch == llvm::Triple::armeb
722       || Arch == llvm::Triple::thumb
723       || Arch == llvm::Triple::thumbeb) {
724     // The minimum width of an enum in bytes
725     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
726     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
727   }
728 
729   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
730     StringRef ABIStr = Target.getABI();
731     llvm::LLVMContext &Ctx = TheModule.getContext();
732     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
733                               llvm::MDString::get(Ctx, ABIStr));
734   }
735 
736   if (CodeGenOpts.SanitizeCfiCrossDso) {
737     // Indicate that we want cross-DSO control flow integrity checks.
738     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
739   }
740 
741   if (CodeGenOpts.WholeProgramVTables) {
742     // Indicate whether VFE was enabled for this module, so that the
743     // vcall_visibility metadata added under whole program vtables is handled
744     // appropriately in the optimizer.
745     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
746                               CodeGenOpts.VirtualFunctionElimination);
747   }
748 
749   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
750     getModule().addModuleFlag(llvm::Module::Override,
751                               "CFI Canonical Jump Tables",
752                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
753   }
754 
755   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
756     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
757 
758   if (CodeGenOpts.CFProtectionReturn &&
759       Target.checkCFProtectionReturnSupported(getDiags())) {
760     // Indicate that we want to instrument return control flow protection.
761     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
762                               1);
763   }
764 
765   if (CodeGenOpts.CFProtectionBranch &&
766       Target.checkCFProtectionBranchSupported(getDiags())) {
767     // Indicate that we want to instrument branch control flow protection.
768     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
769                               1);
770   }
771 
772   if (CodeGenOpts.IBTSeal)
773     getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
774 
775   if (CodeGenOpts.FunctionReturnThunks)
776     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
777 
778   if (CodeGenOpts.IndirectBranchCSPrefix)
779     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
780 
781   // Add module metadata for return address signing (ignoring
782   // non-leaf/all) and stack tagging. These are actually turned on by function
783   // attributes, but we use module metadata to emit build attributes. This is
784   // needed for LTO, where the function attributes are inside bitcode
785   // serialised into a global variable by the time build attributes are
786   // emitted, so we can't access them. LTO objects could be compiled with
787   // different flags therefore module flags are set to "Min" behavior to achieve
788   // the same end result of the normal build where e.g BTI is off if any object
789   // doesn't support it.
790   if (Context.getTargetInfo().hasFeature("ptrauth") &&
791       LangOpts.getSignReturnAddressScope() !=
792           LangOptions::SignReturnAddressScopeKind::None)
793     getModule().addModuleFlag(llvm::Module::Override,
794                               "sign-return-address-buildattr", 1);
795   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
796     getModule().addModuleFlag(llvm::Module::Override,
797                               "tag-stack-memory-buildattr", 1);
798 
799   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
800       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
801       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
802       Arch == llvm::Triple::aarch64_be) {
803     if (LangOpts.BranchTargetEnforcement)
804       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
805                                 1);
806     if (LangOpts.hasSignReturnAddress())
807       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
808     if (LangOpts.isSignReturnAddressScopeAll())
809       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
810                                 1);
811     if (!LangOpts.isSignReturnAddressWithAKey())
812       getModule().addModuleFlag(llvm::Module::Min,
813                                 "sign-return-address-with-bkey", 1);
814   }
815 
816   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
817     llvm::LLVMContext &Ctx = TheModule.getContext();
818     getModule().addModuleFlag(
819         llvm::Module::Error, "MemProfProfileFilename",
820         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
821   }
822 
823   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
824     // Indicate whether __nvvm_reflect should be configured to flush denormal
825     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
826     // property.)
827     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
828                               CodeGenOpts.FP32DenormalMode.Output !=
829                                   llvm::DenormalMode::IEEE);
830   }
831 
832   if (LangOpts.EHAsynch)
833     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
834 
835   // Indicate whether this Module was compiled with -fopenmp
836   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
837     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
838   if (getLangOpts().OpenMPIsDevice)
839     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
840                               LangOpts.OpenMP);
841 
842   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
843   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
844     EmitOpenCLMetadata();
845     // Emit SPIR version.
846     if (getTriple().isSPIR()) {
847       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
848       // opencl.spir.version named metadata.
849       // C++ for OpenCL has a distinct mapping for version compatibility with
850       // OpenCL.
851       auto Version = LangOpts.getOpenCLCompatibleVersion();
852       llvm::Metadata *SPIRVerElts[] = {
853           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
854               Int32Ty, Version / 100)),
855           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
856               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
857       llvm::NamedMDNode *SPIRVerMD =
858           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
859       llvm::LLVMContext &Ctx = TheModule.getContext();
860       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
861     }
862   }
863 
864   // HLSL related end of code gen work items.
865   if (LangOpts.HLSL)
866     getHLSLRuntime().finishCodeGen();
867 
868   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
869     assert(PLevel < 3 && "Invalid PIC Level");
870     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
871     if (Context.getLangOpts().PIE)
872       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
873   }
874 
875   if (getCodeGenOpts().CodeModel.size() > 0) {
876     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
877                   .Case("tiny", llvm::CodeModel::Tiny)
878                   .Case("small", llvm::CodeModel::Small)
879                   .Case("kernel", llvm::CodeModel::Kernel)
880                   .Case("medium", llvm::CodeModel::Medium)
881                   .Case("large", llvm::CodeModel::Large)
882                   .Default(~0u);
883     if (CM != ~0u) {
884       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
885       getModule().setCodeModel(codeModel);
886     }
887   }
888 
889   if (CodeGenOpts.NoPLT)
890     getModule().setRtLibUseGOT();
891   if (CodeGenOpts.UnwindTables)
892     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
893 
894   switch (CodeGenOpts.getFramePointer()) {
895   case CodeGenOptions::FramePointerKind::None:
896     // 0 ("none") is the default.
897     break;
898   case CodeGenOptions::FramePointerKind::NonLeaf:
899     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
900     break;
901   case CodeGenOptions::FramePointerKind::All:
902     getModule().setFramePointer(llvm::FramePointerKind::All);
903     break;
904   }
905 
906   SimplifyPersonality();
907 
908   if (getCodeGenOpts().EmitDeclMetadata)
909     EmitDeclMetadata();
910 
911   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
912     EmitCoverageFile();
913 
914   if (CGDebugInfo *DI = getModuleDebugInfo())
915     DI->finalize();
916 
917   if (getCodeGenOpts().EmitVersionIdentMetadata)
918     EmitVersionIdentMetadata();
919 
920   if (!getCodeGenOpts().RecordCommandLine.empty())
921     EmitCommandLineMetadata();
922 
923   if (!getCodeGenOpts().StackProtectorGuard.empty())
924     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
925   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
926     getModule().setStackProtectorGuardReg(
927         getCodeGenOpts().StackProtectorGuardReg);
928   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
929     getModule().setStackProtectorGuardSymbol(
930         getCodeGenOpts().StackProtectorGuardSymbol);
931   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
932     getModule().setStackProtectorGuardOffset(
933         getCodeGenOpts().StackProtectorGuardOffset);
934   if (getCodeGenOpts().StackAlignment)
935     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
936   if (getCodeGenOpts().SkipRaxSetup)
937     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
938 
939   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
940 
941   EmitBackendOptionsMetadata(getCodeGenOpts());
942 
943   // If there is device offloading code embed it in the host now.
944   EmbedObject(&getModule(), CodeGenOpts, getDiags());
945 
946   // Set visibility from DLL storage class
947   // We do this at the end of LLVM IR generation; after any operation
948   // that might affect the DLL storage class or the visibility, and
949   // before anything that might act on these.
950   setVisibilityFromDLLStorageClass(LangOpts, getModule());
951 }
952 
953 void CodeGenModule::EmitOpenCLMetadata() {
954   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
955   // opencl.ocl.version named metadata node.
956   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
957   auto Version = LangOpts.getOpenCLCompatibleVersion();
958   llvm::Metadata *OCLVerElts[] = {
959       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
960           Int32Ty, Version / 100)),
961       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
962           Int32Ty, (Version % 100) / 10))};
963   llvm::NamedMDNode *OCLVerMD =
964       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
965   llvm::LLVMContext &Ctx = TheModule.getContext();
966   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
967 }
968 
969 void CodeGenModule::EmitBackendOptionsMetadata(
970     const CodeGenOptions CodeGenOpts) {
971   if (getTriple().isRISCV()) {
972     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
973                               CodeGenOpts.SmallDataLimit);
974   }
975 }
976 
977 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
978   // Make sure that this type is translated.
979   Types.UpdateCompletedType(TD);
980 }
981 
982 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
983   // Make sure that this type is translated.
984   Types.RefreshTypeCacheForClass(RD);
985 }
986 
987 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
988   if (!TBAA)
989     return nullptr;
990   return TBAA->getTypeInfo(QTy);
991 }
992 
993 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
994   if (!TBAA)
995     return TBAAAccessInfo();
996   if (getLangOpts().CUDAIsDevice) {
997     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
998     // access info.
999     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1000       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1001           nullptr)
1002         return TBAAAccessInfo();
1003     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1004       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1005           nullptr)
1006         return TBAAAccessInfo();
1007     }
1008   }
1009   return TBAA->getAccessInfo(AccessType);
1010 }
1011 
1012 TBAAAccessInfo
1013 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1014   if (!TBAA)
1015     return TBAAAccessInfo();
1016   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1017 }
1018 
1019 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1020   if (!TBAA)
1021     return nullptr;
1022   return TBAA->getTBAAStructInfo(QTy);
1023 }
1024 
1025 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1026   if (!TBAA)
1027     return nullptr;
1028   return TBAA->getBaseTypeInfo(QTy);
1029 }
1030 
1031 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1032   if (!TBAA)
1033     return nullptr;
1034   return TBAA->getAccessTagInfo(Info);
1035 }
1036 
1037 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1038                                                    TBAAAccessInfo TargetInfo) {
1039   if (!TBAA)
1040     return TBAAAccessInfo();
1041   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1042 }
1043 
1044 TBAAAccessInfo
1045 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1046                                                    TBAAAccessInfo InfoB) {
1047   if (!TBAA)
1048     return TBAAAccessInfo();
1049   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1050 }
1051 
1052 TBAAAccessInfo
1053 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1054                                               TBAAAccessInfo SrcInfo) {
1055   if (!TBAA)
1056     return TBAAAccessInfo();
1057   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1058 }
1059 
1060 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1061                                                 TBAAAccessInfo TBAAInfo) {
1062   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1063     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1064 }
1065 
1066 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1067     llvm::Instruction *I, const CXXRecordDecl *RD) {
1068   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1069                  llvm::MDNode::get(getLLVMContext(), {}));
1070 }
1071 
1072 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1073   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1074   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1075 }
1076 
1077 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1078 /// specified stmt yet.
1079 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1080   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1081                                                "cannot compile this %0 yet");
1082   std::string Msg = Type;
1083   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1084       << Msg << S->getSourceRange();
1085 }
1086 
1087 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1088 /// specified decl yet.
1089 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1090   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1091                                                "cannot compile this %0 yet");
1092   std::string Msg = Type;
1093   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1094 }
1095 
1096 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1097   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1098 }
1099 
1100 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1101                                         const NamedDecl *D) const {
1102   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass())
1103     return;
1104   // Internal definitions always have default visibility.
1105   if (GV->hasLocalLinkage()) {
1106     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1107     return;
1108   }
1109   if (!D)
1110     return;
1111   // Set visibility for definitions, and for declarations if requested globally
1112   // or set explicitly.
1113   LinkageInfo LV = D->getLinkageAndVisibility();
1114   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1115       !GV->isDeclarationForLinker())
1116     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1117 }
1118 
1119 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1120                                  llvm::GlobalValue *GV) {
1121   if (GV->hasLocalLinkage())
1122     return true;
1123 
1124   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1125     return true;
1126 
1127   // DLLImport explicitly marks the GV as external.
1128   if (GV->hasDLLImportStorageClass())
1129     return false;
1130 
1131   const llvm::Triple &TT = CGM.getTriple();
1132   if (TT.isWindowsGNUEnvironment()) {
1133     // In MinGW, variables without DLLImport can still be automatically
1134     // imported from a DLL by the linker; don't mark variables that
1135     // potentially could come from another DLL as DSO local.
1136 
1137     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1138     // (and this actually happens in the public interface of libstdc++), so
1139     // such variables can't be marked as DSO local. (Native TLS variables
1140     // can't be dllimported at all, though.)
1141     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1142         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1143       return false;
1144   }
1145 
1146   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1147   // remain unresolved in the link, they can be resolved to zero, which is
1148   // outside the current DSO.
1149   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1150     return false;
1151 
1152   // Every other GV is local on COFF.
1153   // Make an exception for windows OS in the triple: Some firmware builds use
1154   // *-win32-macho triples. This (accidentally?) produced windows relocations
1155   // without GOT tables in older clang versions; Keep this behaviour.
1156   // FIXME: even thread local variables?
1157   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1158     return true;
1159 
1160   // Only handle COFF and ELF for now.
1161   if (!TT.isOSBinFormatELF())
1162     return false;
1163 
1164   // If this is not an executable, don't assume anything is local.
1165   const auto &CGOpts = CGM.getCodeGenOpts();
1166   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1167   const auto &LOpts = CGM.getLangOpts();
1168   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1169     // On ELF, if -fno-semantic-interposition is specified and the target
1170     // supports local aliases, there will be neither CC1
1171     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1172     // dso_local on the function if using a local alias is preferable (can avoid
1173     // PLT indirection).
1174     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1175       return false;
1176     return !(CGM.getLangOpts().SemanticInterposition ||
1177              CGM.getLangOpts().HalfNoSemanticInterposition);
1178   }
1179 
1180   // A definition cannot be preempted from an executable.
1181   if (!GV->isDeclarationForLinker())
1182     return true;
1183 
1184   // Most PIC code sequences that assume that a symbol is local cannot produce a
1185   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1186   // depended, it seems worth it to handle it here.
1187   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1188     return false;
1189 
1190   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1191   if (TT.isPPC64())
1192     return false;
1193 
1194   if (CGOpts.DirectAccessExternalData) {
1195     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1196     // for non-thread-local variables. If the symbol is not defined in the
1197     // executable, a copy relocation will be needed at link time. dso_local is
1198     // excluded for thread-local variables because they generally don't support
1199     // copy relocations.
1200     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1201       if (!Var->isThreadLocal())
1202         return true;
1203 
1204     // -fno-pic sets dso_local on a function declaration to allow direct
1205     // accesses when taking its address (similar to a data symbol). If the
1206     // function is not defined in the executable, a canonical PLT entry will be
1207     // needed at link time. -fno-direct-access-external-data can avoid the
1208     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1209     // it could just cause trouble without providing perceptible benefits.
1210     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1211       return true;
1212   }
1213 
1214   // If we can use copy relocations we can assume it is local.
1215 
1216   // Otherwise don't assume it is local.
1217   return false;
1218 }
1219 
1220 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1221   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1222 }
1223 
1224 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1225                                           GlobalDecl GD) const {
1226   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1227   // C++ destructors have a few C++ ABI specific special cases.
1228   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1229     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1230     return;
1231   }
1232   setDLLImportDLLExport(GV, D);
1233 }
1234 
1235 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1236                                           const NamedDecl *D) const {
1237   if (D && D->isExternallyVisible()) {
1238     if (D->hasAttr<DLLImportAttr>())
1239       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1240     else if ((D->hasAttr<DLLExportAttr>() ||
1241               shouldMapVisibilityToDLLExport(D)) &&
1242              !GV->isDeclarationForLinker())
1243       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1244   }
1245 }
1246 
1247 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1248                                     GlobalDecl GD) const {
1249   setDLLImportDLLExport(GV, GD);
1250   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1251 }
1252 
1253 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1254                                     const NamedDecl *D) const {
1255   setDLLImportDLLExport(GV, D);
1256   setGVPropertiesAux(GV, D);
1257 }
1258 
1259 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1260                                        const NamedDecl *D) const {
1261   setGlobalVisibility(GV, D);
1262   setDSOLocal(GV);
1263   GV->setPartition(CodeGenOpts.SymbolPartition);
1264 }
1265 
1266 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1267   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1268       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1269       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1270       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1271       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1272 }
1273 
1274 llvm::GlobalVariable::ThreadLocalMode
1275 CodeGenModule::GetDefaultLLVMTLSModel() const {
1276   switch (CodeGenOpts.getDefaultTLSModel()) {
1277   case CodeGenOptions::GeneralDynamicTLSModel:
1278     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1279   case CodeGenOptions::LocalDynamicTLSModel:
1280     return llvm::GlobalVariable::LocalDynamicTLSModel;
1281   case CodeGenOptions::InitialExecTLSModel:
1282     return llvm::GlobalVariable::InitialExecTLSModel;
1283   case CodeGenOptions::LocalExecTLSModel:
1284     return llvm::GlobalVariable::LocalExecTLSModel;
1285   }
1286   llvm_unreachable("Invalid TLS model!");
1287 }
1288 
1289 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1290   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1291 
1292   llvm::GlobalValue::ThreadLocalMode TLM;
1293   TLM = GetDefaultLLVMTLSModel();
1294 
1295   // Override the TLS model if it is explicitly specified.
1296   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1297     TLM = GetLLVMTLSModel(Attr->getModel());
1298   }
1299 
1300   GV->setThreadLocalMode(TLM);
1301 }
1302 
1303 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1304                                           StringRef Name) {
1305   const TargetInfo &Target = CGM.getTarget();
1306   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1307 }
1308 
1309 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1310                                                  const CPUSpecificAttr *Attr,
1311                                                  unsigned CPUIndex,
1312                                                  raw_ostream &Out) {
1313   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1314   // supported.
1315   if (Attr)
1316     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1317   else if (CGM.getTarget().supportsIFunc())
1318     Out << ".resolver";
1319 }
1320 
1321 static void AppendTargetMangling(const CodeGenModule &CGM,
1322                                  const TargetAttr *Attr, raw_ostream &Out) {
1323   if (Attr->isDefaultVersion())
1324     return;
1325 
1326   Out << '.';
1327   const TargetInfo &Target = CGM.getTarget();
1328   ParsedTargetAttr Info =
1329       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1330         // Multiversioning doesn't allow "no-${feature}", so we can
1331         // only have "+" prefixes here.
1332         assert(LHS.startswith("+") && RHS.startswith("+") &&
1333                "Features should always have a prefix.");
1334         return Target.multiVersionSortPriority(LHS.substr(1)) >
1335                Target.multiVersionSortPriority(RHS.substr(1));
1336       });
1337 
1338   bool IsFirst = true;
1339 
1340   if (!Info.Architecture.empty()) {
1341     IsFirst = false;
1342     Out << "arch_" << Info.Architecture;
1343   }
1344 
1345   for (StringRef Feat : Info.Features) {
1346     if (!IsFirst)
1347       Out << '_';
1348     IsFirst = false;
1349     Out << Feat.substr(1);
1350   }
1351 }
1352 
1353 // Returns true if GD is a function decl with internal linkage and
1354 // needs a unique suffix after the mangled name.
1355 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1356                                         CodeGenModule &CGM) {
1357   const Decl *D = GD.getDecl();
1358   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1359          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1360 }
1361 
1362 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1363                                        const TargetClonesAttr *Attr,
1364                                        unsigned VersionIndex,
1365                                        raw_ostream &Out) {
1366   Out << '.';
1367   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1368   if (FeatureStr.startswith("arch="))
1369     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1370   else
1371     Out << FeatureStr;
1372 
1373   Out << '.' << Attr->getMangledIndex(VersionIndex);
1374 }
1375 
1376 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1377                                       const NamedDecl *ND,
1378                                       bool OmitMultiVersionMangling = false) {
1379   SmallString<256> Buffer;
1380   llvm::raw_svector_ostream Out(Buffer);
1381   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1382   if (!CGM.getModuleNameHash().empty())
1383     MC.needsUniqueInternalLinkageNames();
1384   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1385   if (ShouldMangle)
1386     MC.mangleName(GD.getWithDecl(ND), Out);
1387   else {
1388     IdentifierInfo *II = ND->getIdentifier();
1389     assert(II && "Attempt to mangle unnamed decl.");
1390     const auto *FD = dyn_cast<FunctionDecl>(ND);
1391 
1392     if (FD &&
1393         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1394       Out << "__regcall3__" << II->getName();
1395     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1396                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1397       Out << "__device_stub__" << II->getName();
1398     } else {
1399       Out << II->getName();
1400     }
1401   }
1402 
1403   // Check if the module name hash should be appended for internal linkage
1404   // symbols.   This should come before multi-version target suffixes are
1405   // appended. This is to keep the name and module hash suffix of the
1406   // internal linkage function together.  The unique suffix should only be
1407   // added when name mangling is done to make sure that the final name can
1408   // be properly demangled.  For example, for C functions without prototypes,
1409   // name mangling is not done and the unique suffix should not be appeneded
1410   // then.
1411   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1412     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1413            "Hash computed when not explicitly requested");
1414     Out << CGM.getModuleNameHash();
1415   }
1416 
1417   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1418     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1419       switch (FD->getMultiVersionKind()) {
1420       case MultiVersionKind::CPUDispatch:
1421       case MultiVersionKind::CPUSpecific:
1422         AppendCPUSpecificCPUDispatchMangling(CGM,
1423                                              FD->getAttr<CPUSpecificAttr>(),
1424                                              GD.getMultiVersionIndex(), Out);
1425         break;
1426       case MultiVersionKind::Target:
1427         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1428         break;
1429       case MultiVersionKind::TargetClones:
1430         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1431                                    GD.getMultiVersionIndex(), Out);
1432         break;
1433       case MultiVersionKind::None:
1434         llvm_unreachable("None multiversion type isn't valid here");
1435       }
1436     }
1437 
1438   // Make unique name for device side static file-scope variable for HIP.
1439   if (CGM.getContext().shouldExternalize(ND) &&
1440       CGM.getLangOpts().GPURelocatableDeviceCode &&
1441       CGM.getLangOpts().CUDAIsDevice)
1442     CGM.printPostfixForExternalizedDecl(Out, ND);
1443 
1444   return std::string(Out.str());
1445 }
1446 
1447 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1448                                             const FunctionDecl *FD,
1449                                             StringRef &CurName) {
1450   if (!FD->isMultiVersion())
1451     return;
1452 
1453   // Get the name of what this would be without the 'target' attribute.  This
1454   // allows us to lookup the version that was emitted when this wasn't a
1455   // multiversion function.
1456   std::string NonTargetName =
1457       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1458   GlobalDecl OtherGD;
1459   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1460     assert(OtherGD.getCanonicalDecl()
1461                .getDecl()
1462                ->getAsFunction()
1463                ->isMultiVersion() &&
1464            "Other GD should now be a multiversioned function");
1465     // OtherFD is the version of this function that was mangled BEFORE
1466     // becoming a MultiVersion function.  It potentially needs to be updated.
1467     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1468                                       .getDecl()
1469                                       ->getAsFunction()
1470                                       ->getMostRecentDecl();
1471     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1472     // This is so that if the initial version was already the 'default'
1473     // version, we don't try to update it.
1474     if (OtherName != NonTargetName) {
1475       // Remove instead of erase, since others may have stored the StringRef
1476       // to this.
1477       const auto ExistingRecord = Manglings.find(NonTargetName);
1478       if (ExistingRecord != std::end(Manglings))
1479         Manglings.remove(&(*ExistingRecord));
1480       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1481       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1482           Result.first->first();
1483       // If this is the current decl is being created, make sure we update the name.
1484       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1485         CurName = OtherNameRef;
1486       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1487         Entry->setName(OtherName);
1488     }
1489   }
1490 }
1491 
1492 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1493   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1494 
1495   // Some ABIs don't have constructor variants.  Make sure that base and
1496   // complete constructors get mangled the same.
1497   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1498     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1499       CXXCtorType OrigCtorType = GD.getCtorType();
1500       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1501       if (OrigCtorType == Ctor_Base)
1502         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1503     }
1504   }
1505 
1506   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1507   // static device variable depends on whether the variable is referenced by
1508   // a host or device host function. Therefore the mangled name cannot be
1509   // cached.
1510   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1511     auto FoundName = MangledDeclNames.find(CanonicalGD);
1512     if (FoundName != MangledDeclNames.end())
1513       return FoundName->second;
1514   }
1515 
1516   // Keep the first result in the case of a mangling collision.
1517   const auto *ND = cast<NamedDecl>(GD.getDecl());
1518   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1519 
1520   // Ensure either we have different ABIs between host and device compilations,
1521   // says host compilation following MSVC ABI but device compilation follows
1522   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1523   // mangling should be the same after name stubbing. The later checking is
1524   // very important as the device kernel name being mangled in host-compilation
1525   // is used to resolve the device binaries to be executed. Inconsistent naming
1526   // result in undefined behavior. Even though we cannot check that naming
1527   // directly between host- and device-compilations, the host- and
1528   // device-mangling in host compilation could help catching certain ones.
1529   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1530          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1531          (getContext().getAuxTargetInfo() &&
1532           (getContext().getAuxTargetInfo()->getCXXABI() !=
1533            getContext().getTargetInfo().getCXXABI())) ||
1534          getCUDARuntime().getDeviceSideName(ND) ==
1535              getMangledNameImpl(
1536                  *this,
1537                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1538                  ND));
1539 
1540   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1541   return MangledDeclNames[CanonicalGD] = Result.first->first();
1542 }
1543 
1544 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1545                                              const BlockDecl *BD) {
1546   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1547   const Decl *D = GD.getDecl();
1548 
1549   SmallString<256> Buffer;
1550   llvm::raw_svector_ostream Out(Buffer);
1551   if (!D)
1552     MangleCtx.mangleGlobalBlock(BD,
1553       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1554   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1555     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1556   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1557     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1558   else
1559     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1560 
1561   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1562   return Result.first->first();
1563 }
1564 
1565 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1566   auto it = MangledDeclNames.begin();
1567   while (it != MangledDeclNames.end()) {
1568     if (it->second == Name)
1569       return it->first;
1570     it++;
1571   }
1572   return GlobalDecl();
1573 }
1574 
1575 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1576   return getModule().getNamedValue(Name);
1577 }
1578 
1579 /// AddGlobalCtor - Add a function to the list that will be called before
1580 /// main() runs.
1581 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1582                                   unsigned LexOrder,
1583                                   llvm::Constant *AssociatedData) {
1584   // FIXME: Type coercion of void()* types.
1585   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1586 }
1587 
1588 /// AddGlobalDtor - Add a function to the list that will be called
1589 /// when the module is unloaded.
1590 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1591                                   bool IsDtorAttrFunc) {
1592   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1593       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1594     DtorsUsingAtExit[Priority].push_back(Dtor);
1595     return;
1596   }
1597 
1598   // FIXME: Type coercion of void()* types.
1599   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1600 }
1601 
1602 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1603   if (Fns.empty()) return;
1604 
1605   // Ctor function type is void()*.
1606   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1607   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1608       TheModule.getDataLayout().getProgramAddressSpace());
1609 
1610   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1611   llvm::StructType *CtorStructTy = llvm::StructType::get(
1612       Int32Ty, CtorPFTy, VoidPtrTy);
1613 
1614   // Construct the constructor and destructor arrays.
1615   ConstantInitBuilder builder(*this);
1616   auto ctors = builder.beginArray(CtorStructTy);
1617   for (const auto &I : Fns) {
1618     auto ctor = ctors.beginStruct(CtorStructTy);
1619     ctor.addInt(Int32Ty, I.Priority);
1620     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1621     if (I.AssociatedData)
1622       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1623     else
1624       ctor.addNullPointer(VoidPtrTy);
1625     ctor.finishAndAddTo(ctors);
1626   }
1627 
1628   auto list =
1629     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1630                                 /*constant*/ false,
1631                                 llvm::GlobalValue::AppendingLinkage);
1632 
1633   // The LTO linker doesn't seem to like it when we set an alignment
1634   // on appending variables.  Take it off as a workaround.
1635   list->setAlignment(llvm::None);
1636 
1637   Fns.clear();
1638 }
1639 
1640 llvm::GlobalValue::LinkageTypes
1641 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1642   const auto *D = cast<FunctionDecl>(GD.getDecl());
1643 
1644   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1645 
1646   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1647     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1648 
1649   if (isa<CXXConstructorDecl>(D) &&
1650       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1651       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1652     // Our approach to inheriting constructors is fundamentally different from
1653     // that used by the MS ABI, so keep our inheriting constructor thunks
1654     // internal rather than trying to pick an unambiguous mangling for them.
1655     return llvm::GlobalValue::InternalLinkage;
1656   }
1657 
1658   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1659 }
1660 
1661 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1662   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1663   if (!MDS) return nullptr;
1664 
1665   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1666 }
1667 
1668 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1669   if (auto *FnType = T->getAs<FunctionProtoType>())
1670     T = getContext().getFunctionType(
1671         FnType->getReturnType(), FnType->getParamTypes(),
1672         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1673 
1674   std::string OutName;
1675   llvm::raw_string_ostream Out(OutName);
1676   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1677 
1678   return llvm::ConstantInt::get(Int32Ty,
1679                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1680 }
1681 
1682 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1683                                               const CGFunctionInfo &Info,
1684                                               llvm::Function *F, bool IsThunk) {
1685   unsigned CallingConv;
1686   llvm::AttributeList PAL;
1687   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1688                          /*AttrOnCallSite=*/false, IsThunk);
1689   F->setAttributes(PAL);
1690   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1691 }
1692 
1693 static void removeImageAccessQualifier(std::string& TyName) {
1694   std::string ReadOnlyQual("__read_only");
1695   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1696   if (ReadOnlyPos != std::string::npos)
1697     // "+ 1" for the space after access qualifier.
1698     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1699   else {
1700     std::string WriteOnlyQual("__write_only");
1701     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1702     if (WriteOnlyPos != std::string::npos)
1703       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1704     else {
1705       std::string ReadWriteQual("__read_write");
1706       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1707       if (ReadWritePos != std::string::npos)
1708         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1709     }
1710   }
1711 }
1712 
1713 // Returns the address space id that should be produced to the
1714 // kernel_arg_addr_space metadata. This is always fixed to the ids
1715 // as specified in the SPIR 2.0 specification in order to differentiate
1716 // for example in clGetKernelArgInfo() implementation between the address
1717 // spaces with targets without unique mapping to the OpenCL address spaces
1718 // (basically all single AS CPUs).
1719 static unsigned ArgInfoAddressSpace(LangAS AS) {
1720   switch (AS) {
1721   case LangAS::opencl_global:
1722     return 1;
1723   case LangAS::opencl_constant:
1724     return 2;
1725   case LangAS::opencl_local:
1726     return 3;
1727   case LangAS::opencl_generic:
1728     return 4; // Not in SPIR 2.0 specs.
1729   case LangAS::opencl_global_device:
1730     return 5;
1731   case LangAS::opencl_global_host:
1732     return 6;
1733   default:
1734     return 0; // Assume private.
1735   }
1736 }
1737 
1738 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1739                                          const FunctionDecl *FD,
1740                                          CodeGenFunction *CGF) {
1741   assert(((FD && CGF) || (!FD && !CGF)) &&
1742          "Incorrect use - FD and CGF should either be both null or not!");
1743   // Create MDNodes that represent the kernel arg metadata.
1744   // Each MDNode is a list in the form of "key", N number of values which is
1745   // the same number of values as their are kernel arguments.
1746 
1747   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1748 
1749   // MDNode for the kernel argument address space qualifiers.
1750   SmallVector<llvm::Metadata *, 8> addressQuals;
1751 
1752   // MDNode for the kernel argument access qualifiers (images only).
1753   SmallVector<llvm::Metadata *, 8> accessQuals;
1754 
1755   // MDNode for the kernel argument type names.
1756   SmallVector<llvm::Metadata *, 8> argTypeNames;
1757 
1758   // MDNode for the kernel argument base type names.
1759   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1760 
1761   // MDNode for the kernel argument type qualifiers.
1762   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1763 
1764   // MDNode for the kernel argument names.
1765   SmallVector<llvm::Metadata *, 8> argNames;
1766 
1767   if (FD && CGF)
1768     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1769       const ParmVarDecl *parm = FD->getParamDecl(i);
1770       // Get argument name.
1771       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1772 
1773       if (!getLangOpts().OpenCL)
1774         continue;
1775       QualType ty = parm->getType();
1776       std::string typeQuals;
1777 
1778       // Get image and pipe access qualifier:
1779       if (ty->isImageType() || ty->isPipeType()) {
1780         const Decl *PDecl = parm;
1781         if (const auto *TD = ty->getAs<TypedefType>())
1782           PDecl = TD->getDecl();
1783         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1784         if (A && A->isWriteOnly())
1785           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1786         else if (A && A->isReadWrite())
1787           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1788         else
1789           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1790       } else
1791         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1792 
1793       auto getTypeSpelling = [&](QualType Ty) {
1794         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1795 
1796         if (Ty.isCanonical()) {
1797           StringRef typeNameRef = typeName;
1798           // Turn "unsigned type" to "utype"
1799           if (typeNameRef.consume_front("unsigned "))
1800             return std::string("u") + typeNameRef.str();
1801           if (typeNameRef.consume_front("signed "))
1802             return typeNameRef.str();
1803         }
1804 
1805         return typeName;
1806       };
1807 
1808       if (ty->isPointerType()) {
1809         QualType pointeeTy = ty->getPointeeType();
1810 
1811         // Get address qualifier.
1812         addressQuals.push_back(
1813             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1814                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1815 
1816         // Get argument type name.
1817         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1818         std::string baseTypeName =
1819             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1820         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1821         argBaseTypeNames.push_back(
1822             llvm::MDString::get(VMContext, baseTypeName));
1823 
1824         // Get argument type qualifiers:
1825         if (ty.isRestrictQualified())
1826           typeQuals = "restrict";
1827         if (pointeeTy.isConstQualified() ||
1828             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1829           typeQuals += typeQuals.empty() ? "const" : " const";
1830         if (pointeeTy.isVolatileQualified())
1831           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1832       } else {
1833         uint32_t AddrSpc = 0;
1834         bool isPipe = ty->isPipeType();
1835         if (ty->isImageType() || isPipe)
1836           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1837 
1838         addressQuals.push_back(
1839             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1840 
1841         // Get argument type name.
1842         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1843         std::string typeName = getTypeSpelling(ty);
1844         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1845 
1846         // Remove access qualifiers on images
1847         // (as they are inseparable from type in clang implementation,
1848         // but OpenCL spec provides a special query to get access qualifier
1849         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1850         if (ty->isImageType()) {
1851           removeImageAccessQualifier(typeName);
1852           removeImageAccessQualifier(baseTypeName);
1853         }
1854 
1855         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1856         argBaseTypeNames.push_back(
1857             llvm::MDString::get(VMContext, baseTypeName));
1858 
1859         if (isPipe)
1860           typeQuals = "pipe";
1861       }
1862       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1863     }
1864 
1865   if (getLangOpts().OpenCL) {
1866     Fn->setMetadata("kernel_arg_addr_space",
1867                     llvm::MDNode::get(VMContext, addressQuals));
1868     Fn->setMetadata("kernel_arg_access_qual",
1869                     llvm::MDNode::get(VMContext, accessQuals));
1870     Fn->setMetadata("kernel_arg_type",
1871                     llvm::MDNode::get(VMContext, argTypeNames));
1872     Fn->setMetadata("kernel_arg_base_type",
1873                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1874     Fn->setMetadata("kernel_arg_type_qual",
1875                     llvm::MDNode::get(VMContext, argTypeQuals));
1876   }
1877   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1878       getCodeGenOpts().HIPSaveKernelArgName)
1879     Fn->setMetadata("kernel_arg_name",
1880                     llvm::MDNode::get(VMContext, argNames));
1881 }
1882 
1883 /// Determines whether the language options require us to model
1884 /// unwind exceptions.  We treat -fexceptions as mandating this
1885 /// except under the fragile ObjC ABI with only ObjC exceptions
1886 /// enabled.  This means, for example, that C with -fexceptions
1887 /// enables this.
1888 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1889   // If exceptions are completely disabled, obviously this is false.
1890   if (!LangOpts.Exceptions) return false;
1891 
1892   // If C++ exceptions are enabled, this is true.
1893   if (LangOpts.CXXExceptions) return true;
1894 
1895   // If ObjC exceptions are enabled, this depends on the ABI.
1896   if (LangOpts.ObjCExceptions) {
1897     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1898   }
1899 
1900   return true;
1901 }
1902 
1903 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1904                                                       const CXXMethodDecl *MD) {
1905   // Check that the type metadata can ever actually be used by a call.
1906   if (!CGM.getCodeGenOpts().LTOUnit ||
1907       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1908     return false;
1909 
1910   // Only functions whose address can be taken with a member function pointer
1911   // need this sort of type metadata.
1912   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1913          !isa<CXXDestructorDecl>(MD);
1914 }
1915 
1916 std::vector<const CXXRecordDecl *>
1917 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1918   llvm::SetVector<const CXXRecordDecl *> MostBases;
1919 
1920   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1921   CollectMostBases = [&](const CXXRecordDecl *RD) {
1922     if (RD->getNumBases() == 0)
1923       MostBases.insert(RD);
1924     for (const CXXBaseSpecifier &B : RD->bases())
1925       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1926   };
1927   CollectMostBases(RD);
1928   return MostBases.takeVector();
1929 }
1930 
1931 llvm::GlobalVariable *
1932 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1933   auto It = RTTIProxyMap.find(Addr);
1934   if (It != RTTIProxyMap.end())
1935     return It->second;
1936 
1937   auto *FTRTTIProxy = new llvm::GlobalVariable(
1938       TheModule, Addr->getType(),
1939       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1940       "__llvm_rtti_proxy");
1941   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1942 
1943   RTTIProxyMap[Addr] = FTRTTIProxy;
1944   return FTRTTIProxy;
1945 }
1946 
1947 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1948                                                            llvm::Function *F) {
1949   llvm::AttrBuilder B(F->getContext());
1950 
1951   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
1952     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1953 
1954   if (CodeGenOpts.StackClashProtector)
1955     B.addAttribute("probe-stack", "inline-asm");
1956 
1957   if (!hasUnwindExceptions(LangOpts))
1958     B.addAttribute(llvm::Attribute::NoUnwind);
1959 
1960   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1961     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1962       B.addAttribute(llvm::Attribute::StackProtect);
1963     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1964       B.addAttribute(llvm::Attribute::StackProtectStrong);
1965     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1966       B.addAttribute(llvm::Attribute::StackProtectReq);
1967   }
1968 
1969   if (!D) {
1970     // If we don't have a declaration to control inlining, the function isn't
1971     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1972     // disabled, mark the function as noinline.
1973     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1974         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1975       B.addAttribute(llvm::Attribute::NoInline);
1976 
1977     F->addFnAttrs(B);
1978     return;
1979   }
1980 
1981   // Track whether we need to add the optnone LLVM attribute,
1982   // starting with the default for this optimization level.
1983   bool ShouldAddOptNone =
1984       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1985   // We can't add optnone in the following cases, it won't pass the verifier.
1986   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1987   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1988 
1989   // Add optnone, but do so only if the function isn't always_inline.
1990   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1991       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1992     B.addAttribute(llvm::Attribute::OptimizeNone);
1993 
1994     // OptimizeNone implies noinline; we should not be inlining such functions.
1995     B.addAttribute(llvm::Attribute::NoInline);
1996 
1997     // We still need to handle naked functions even though optnone subsumes
1998     // much of their semantics.
1999     if (D->hasAttr<NakedAttr>())
2000       B.addAttribute(llvm::Attribute::Naked);
2001 
2002     // OptimizeNone wins over OptimizeForSize and MinSize.
2003     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2004     F->removeFnAttr(llvm::Attribute::MinSize);
2005   } else if (D->hasAttr<NakedAttr>()) {
2006     // Naked implies noinline: we should not be inlining such functions.
2007     B.addAttribute(llvm::Attribute::Naked);
2008     B.addAttribute(llvm::Attribute::NoInline);
2009   } else if (D->hasAttr<NoDuplicateAttr>()) {
2010     B.addAttribute(llvm::Attribute::NoDuplicate);
2011   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2012     // Add noinline if the function isn't always_inline.
2013     B.addAttribute(llvm::Attribute::NoInline);
2014   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2015              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2016     // (noinline wins over always_inline, and we can't specify both in IR)
2017     B.addAttribute(llvm::Attribute::AlwaysInline);
2018   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2019     // If we're not inlining, then force everything that isn't always_inline to
2020     // carry an explicit noinline attribute.
2021     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2022       B.addAttribute(llvm::Attribute::NoInline);
2023   } else {
2024     // Otherwise, propagate the inline hint attribute and potentially use its
2025     // absence to mark things as noinline.
2026     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2027       // Search function and template pattern redeclarations for inline.
2028       auto CheckForInline = [](const FunctionDecl *FD) {
2029         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2030           return Redecl->isInlineSpecified();
2031         };
2032         if (any_of(FD->redecls(), CheckRedeclForInline))
2033           return true;
2034         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2035         if (!Pattern)
2036           return false;
2037         return any_of(Pattern->redecls(), CheckRedeclForInline);
2038       };
2039       if (CheckForInline(FD)) {
2040         B.addAttribute(llvm::Attribute::InlineHint);
2041       } else if (CodeGenOpts.getInlining() ==
2042                      CodeGenOptions::OnlyHintInlining &&
2043                  !FD->isInlined() &&
2044                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2045         B.addAttribute(llvm::Attribute::NoInline);
2046       }
2047     }
2048   }
2049 
2050   // Add other optimization related attributes if we are optimizing this
2051   // function.
2052   if (!D->hasAttr<OptimizeNoneAttr>()) {
2053     if (D->hasAttr<ColdAttr>()) {
2054       if (!ShouldAddOptNone)
2055         B.addAttribute(llvm::Attribute::OptimizeForSize);
2056       B.addAttribute(llvm::Attribute::Cold);
2057     }
2058     if (D->hasAttr<HotAttr>())
2059       B.addAttribute(llvm::Attribute::Hot);
2060     if (D->hasAttr<MinSizeAttr>())
2061       B.addAttribute(llvm::Attribute::MinSize);
2062   }
2063 
2064   F->addFnAttrs(B);
2065 
2066   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2067   if (alignment)
2068     F->setAlignment(llvm::Align(alignment));
2069 
2070   if (!D->hasAttr<AlignedAttr>())
2071     if (LangOpts.FunctionAlignment)
2072       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2073 
2074   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2075   // reserve a bit for differentiating between virtual and non-virtual member
2076   // functions. If the current target's C++ ABI requires this and this is a
2077   // member function, set its alignment accordingly.
2078   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2079     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2080       F->setAlignment(llvm::Align(2));
2081   }
2082 
2083   // In the cross-dso CFI mode with canonical jump tables, we want !type
2084   // attributes on definitions only.
2085   if (CodeGenOpts.SanitizeCfiCrossDso &&
2086       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2087     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2088       // Skip available_externally functions. They won't be codegen'ed in the
2089       // current module anyway.
2090       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2091         CreateFunctionTypeMetadataForIcall(FD, F);
2092     }
2093   }
2094 
2095   // Emit type metadata on member functions for member function pointer checks.
2096   // These are only ever necessary on definitions; we're guaranteed that the
2097   // definition will be present in the LTO unit as a result of LTO visibility.
2098   auto *MD = dyn_cast<CXXMethodDecl>(D);
2099   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2100     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2101       llvm::Metadata *Id =
2102           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2103               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2104       F->addTypeMetadata(0, Id);
2105     }
2106   }
2107 }
2108 
2109 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2110                                                   llvm::Function *F) {
2111   if (D->hasAttr<StrictFPAttr>()) {
2112     llvm::AttrBuilder FuncAttrs(F->getContext());
2113     FuncAttrs.addAttribute("strictfp");
2114     F->addFnAttrs(FuncAttrs);
2115   }
2116 }
2117 
2118 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2119   const Decl *D = GD.getDecl();
2120   if (isa_and_nonnull<NamedDecl>(D))
2121     setGVProperties(GV, GD);
2122   else
2123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2124 
2125   if (D && D->hasAttr<UsedAttr>())
2126     addUsedOrCompilerUsedGlobal(GV);
2127 
2128   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2129     const auto *VD = cast<VarDecl>(D);
2130     if (VD->getType().isConstQualified() &&
2131         VD->getStorageDuration() == SD_Static)
2132       addUsedOrCompilerUsedGlobal(GV);
2133   }
2134 }
2135 
2136 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2137                                                 llvm::AttrBuilder &Attrs) {
2138   // Add target-cpu and target-features attributes to functions. If
2139   // we have a decl for the function and it has a target attribute then
2140   // parse that and add it to the feature set.
2141   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2142   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2143   std::vector<std::string> Features;
2144   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2145   FD = FD ? FD->getMostRecentDecl() : FD;
2146   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2147   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2148   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2149   bool AddedAttr = false;
2150   if (TD || SD || TC) {
2151     llvm::StringMap<bool> FeatureMap;
2152     getContext().getFunctionFeatureMap(FeatureMap, GD);
2153 
2154     // Produce the canonical string for this set of features.
2155     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2156       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2157 
2158     // Now add the target-cpu and target-features to the function.
2159     // While we populated the feature map above, we still need to
2160     // get and parse the target attribute so we can get the cpu for
2161     // the function.
2162     if (TD) {
2163       ParsedTargetAttr ParsedAttr = TD->parse();
2164       if (!ParsedAttr.Architecture.empty() &&
2165           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2166         TargetCPU = ParsedAttr.Architecture;
2167         TuneCPU = ""; // Clear the tune CPU.
2168       }
2169       if (!ParsedAttr.Tune.empty() &&
2170           getTarget().isValidCPUName(ParsedAttr.Tune))
2171         TuneCPU = ParsedAttr.Tune;
2172     }
2173 
2174     if (SD) {
2175       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2176       // favor this processor.
2177       TuneCPU = getTarget().getCPUSpecificTuneName(
2178           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2179     }
2180   } else {
2181     // Otherwise just add the existing target cpu and target features to the
2182     // function.
2183     Features = getTarget().getTargetOpts().Features;
2184   }
2185 
2186   if (!TargetCPU.empty()) {
2187     Attrs.addAttribute("target-cpu", TargetCPU);
2188     AddedAttr = true;
2189   }
2190   if (!TuneCPU.empty()) {
2191     Attrs.addAttribute("tune-cpu", TuneCPU);
2192     AddedAttr = true;
2193   }
2194   if (!Features.empty()) {
2195     llvm::sort(Features);
2196     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2197     AddedAttr = true;
2198   }
2199 
2200   return AddedAttr;
2201 }
2202 
2203 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2204                                           llvm::GlobalObject *GO) {
2205   const Decl *D = GD.getDecl();
2206   SetCommonAttributes(GD, GO);
2207 
2208   if (D) {
2209     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2210       if (D->hasAttr<RetainAttr>())
2211         addUsedGlobal(GV);
2212       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2213         GV->addAttribute("bss-section", SA->getName());
2214       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2215         GV->addAttribute("data-section", SA->getName());
2216       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2217         GV->addAttribute("rodata-section", SA->getName());
2218       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2219         GV->addAttribute("relro-section", SA->getName());
2220     }
2221 
2222     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2223       if (D->hasAttr<RetainAttr>())
2224         addUsedGlobal(F);
2225       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2226         if (!D->getAttr<SectionAttr>())
2227           F->addFnAttr("implicit-section-name", SA->getName());
2228 
2229       llvm::AttrBuilder Attrs(F->getContext());
2230       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2231         // We know that GetCPUAndFeaturesAttributes will always have the
2232         // newest set, since it has the newest possible FunctionDecl, so the
2233         // new ones should replace the old.
2234         llvm::AttributeMask RemoveAttrs;
2235         RemoveAttrs.addAttribute("target-cpu");
2236         RemoveAttrs.addAttribute("target-features");
2237         RemoveAttrs.addAttribute("tune-cpu");
2238         F->removeFnAttrs(RemoveAttrs);
2239         F->addFnAttrs(Attrs);
2240       }
2241     }
2242 
2243     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2244       GO->setSection(CSA->getName());
2245     else if (const auto *SA = D->getAttr<SectionAttr>())
2246       GO->setSection(SA->getName());
2247   }
2248 
2249   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2250 }
2251 
2252 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2253                                                   llvm::Function *F,
2254                                                   const CGFunctionInfo &FI) {
2255   const Decl *D = GD.getDecl();
2256   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2257   SetLLVMFunctionAttributesForDefinition(D, F);
2258 
2259   F->setLinkage(llvm::Function::InternalLinkage);
2260 
2261   setNonAliasAttributes(GD, F);
2262 }
2263 
2264 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2265   // Set linkage and visibility in case we never see a definition.
2266   LinkageInfo LV = ND->getLinkageAndVisibility();
2267   // Don't set internal linkage on declarations.
2268   // "extern_weak" is overloaded in LLVM; we probably should have
2269   // separate linkage types for this.
2270   if (isExternallyVisible(LV.getLinkage()) &&
2271       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2272     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2273 }
2274 
2275 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2276                                                        llvm::Function *F) {
2277   // Only if we are checking indirect calls.
2278   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2279     return;
2280 
2281   // Non-static class methods are handled via vtable or member function pointer
2282   // checks elsewhere.
2283   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2284     return;
2285 
2286   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2287   F->addTypeMetadata(0, MD);
2288   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2289 
2290   // Emit a hash-based bit set entry for cross-DSO calls.
2291   if (CodeGenOpts.SanitizeCfiCrossDso)
2292     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2293       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2294 }
2295 
2296 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2297   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2298     return;
2299 
2300   llvm::LLVMContext &Ctx = F->getContext();
2301   llvm::MDBuilder MDB(Ctx);
2302   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2303                  llvm::MDNode::get(
2304                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2305 }
2306 
2307 static bool allowKCFIIdentifier(StringRef Name) {
2308   // KCFI type identifier constants are only necessary for external assembly
2309   // functions, which means it's safe to skip unusual names. Subset of
2310   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2311   return llvm::all_of(Name, [](const char &C) {
2312     return llvm::isAlnum(C) || C == '_' || C == '.';
2313   });
2314 }
2315 
2316 void CodeGenModule::finalizeKCFITypes() {
2317   llvm::Module &M = getModule();
2318   for (auto &F : M.functions()) {
2319     // Remove KCFI type metadata from non-address-taken local functions.
2320     bool AddressTaken = F.hasAddressTaken();
2321     if (!AddressTaken && F.hasLocalLinkage())
2322       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2323 
2324     // Generate a constant with the expected KCFI type identifier for all
2325     // address-taken function declarations to support annotating indirectly
2326     // called assembly functions.
2327     if (!AddressTaken || !F.isDeclaration())
2328       continue;
2329 
2330     const llvm::ConstantInt *Type;
2331     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2332       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2333     else
2334       continue;
2335 
2336     StringRef Name = F.getName();
2337     if (!allowKCFIIdentifier(Name))
2338       continue;
2339 
2340     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2341                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2342                           .str();
2343     M.appendModuleInlineAsm(Asm);
2344   }
2345 }
2346 
2347 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2348                                           bool IsIncompleteFunction,
2349                                           bool IsThunk) {
2350 
2351   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2352     // If this is an intrinsic function, set the function's attributes
2353     // to the intrinsic's attributes.
2354     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2355     return;
2356   }
2357 
2358   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2359 
2360   if (!IsIncompleteFunction)
2361     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2362                               IsThunk);
2363 
2364   // Add the Returned attribute for "this", except for iOS 5 and earlier
2365   // where substantial code, including the libstdc++ dylib, was compiled with
2366   // GCC and does not actually return "this".
2367   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2368       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2369     assert(!F->arg_empty() &&
2370            F->arg_begin()->getType()
2371              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2372            "unexpected this return");
2373     F->addParamAttr(0, llvm::Attribute::Returned);
2374   }
2375 
2376   // Only a few attributes are set on declarations; these may later be
2377   // overridden by a definition.
2378 
2379   setLinkageForGV(F, FD);
2380   setGVProperties(F, FD);
2381 
2382   // Setup target-specific attributes.
2383   if (!IsIncompleteFunction && F->isDeclaration())
2384     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2385 
2386   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2387     F->setSection(CSA->getName());
2388   else if (const auto *SA = FD->getAttr<SectionAttr>())
2389      F->setSection(SA->getName());
2390 
2391   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2392     if (EA->isError())
2393       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2394     else if (EA->isWarning())
2395       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2396   }
2397 
2398   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2399   if (FD->isInlineBuiltinDeclaration()) {
2400     const FunctionDecl *FDBody;
2401     bool HasBody = FD->hasBody(FDBody);
2402     (void)HasBody;
2403     assert(HasBody && "Inline builtin declarations should always have an "
2404                       "available body!");
2405     if (shouldEmitFunction(FDBody))
2406       F->addFnAttr(llvm::Attribute::NoBuiltin);
2407   }
2408 
2409   if (FD->isReplaceableGlobalAllocationFunction()) {
2410     // A replaceable global allocation function does not act like a builtin by
2411     // default, only if it is invoked by a new-expression or delete-expression.
2412     F->addFnAttr(llvm::Attribute::NoBuiltin);
2413   }
2414 
2415   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2416     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2417   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2418     if (MD->isVirtual())
2419       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2420 
2421   // Don't emit entries for function declarations in the cross-DSO mode. This
2422   // is handled with better precision by the receiving DSO. But if jump tables
2423   // are non-canonical then we need type metadata in order to produce the local
2424   // jump table.
2425   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2426       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2427     CreateFunctionTypeMetadataForIcall(FD, F);
2428 
2429   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2430     setKCFIType(FD, F);
2431 
2432   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2433     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2434 
2435   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2436     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2437 
2438   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2439     // Annotate the callback behavior as metadata:
2440     //  - The callback callee (as argument number).
2441     //  - The callback payloads (as argument numbers).
2442     llvm::LLVMContext &Ctx = F->getContext();
2443     llvm::MDBuilder MDB(Ctx);
2444 
2445     // The payload indices are all but the first one in the encoding. The first
2446     // identifies the callback callee.
2447     int CalleeIdx = *CB->encoding_begin();
2448     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2449     F->addMetadata(llvm::LLVMContext::MD_callback,
2450                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2451                                                CalleeIdx, PayloadIndices,
2452                                                /* VarArgsArePassed */ false)}));
2453   }
2454 }
2455 
2456 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2457   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2458          "Only globals with definition can force usage.");
2459   LLVMUsed.emplace_back(GV);
2460 }
2461 
2462 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2463   assert(!GV->isDeclaration() &&
2464          "Only globals with definition can force usage.");
2465   LLVMCompilerUsed.emplace_back(GV);
2466 }
2467 
2468 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2469   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2470          "Only globals with definition can force usage.");
2471   if (getTriple().isOSBinFormatELF())
2472     LLVMCompilerUsed.emplace_back(GV);
2473   else
2474     LLVMUsed.emplace_back(GV);
2475 }
2476 
2477 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2478                      std::vector<llvm::WeakTrackingVH> &List) {
2479   // Don't create llvm.used if there is no need.
2480   if (List.empty())
2481     return;
2482 
2483   // Convert List to what ConstantArray needs.
2484   SmallVector<llvm::Constant*, 8> UsedArray;
2485   UsedArray.resize(List.size());
2486   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2487     UsedArray[i] =
2488         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2489             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2490   }
2491 
2492   if (UsedArray.empty())
2493     return;
2494   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2495 
2496   auto *GV = new llvm::GlobalVariable(
2497       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2498       llvm::ConstantArray::get(ATy, UsedArray), Name);
2499 
2500   GV->setSection("llvm.metadata");
2501 }
2502 
2503 void CodeGenModule::emitLLVMUsed() {
2504   emitUsed(*this, "llvm.used", LLVMUsed);
2505   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2506 }
2507 
2508 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2509   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2510   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2511 }
2512 
2513 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2514   llvm::SmallString<32> Opt;
2515   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2516   if (Opt.empty())
2517     return;
2518   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2519   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2520 }
2521 
2522 void CodeGenModule::AddDependentLib(StringRef Lib) {
2523   auto &C = getLLVMContext();
2524   if (getTarget().getTriple().isOSBinFormatELF()) {
2525       ELFDependentLibraries.push_back(
2526         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2527     return;
2528   }
2529 
2530   llvm::SmallString<24> Opt;
2531   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2532   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2533   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2534 }
2535 
2536 /// Add link options implied by the given module, including modules
2537 /// it depends on, using a postorder walk.
2538 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2539                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2540                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2541   // Import this module's parent.
2542   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2543     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2544   }
2545 
2546   // Import this module's dependencies.
2547   for (Module *Import : llvm::reverse(Mod->Imports)) {
2548     if (Visited.insert(Import).second)
2549       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2550   }
2551 
2552   // Add linker options to link against the libraries/frameworks
2553   // described by this module.
2554   llvm::LLVMContext &Context = CGM.getLLVMContext();
2555   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2556 
2557   // For modules that use export_as for linking, use that module
2558   // name instead.
2559   if (Mod->UseExportAsModuleLinkName)
2560     return;
2561 
2562   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2563     // Link against a framework.  Frameworks are currently Darwin only, so we
2564     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2565     if (LL.IsFramework) {
2566       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2567                                  llvm::MDString::get(Context, LL.Library)};
2568 
2569       Metadata.push_back(llvm::MDNode::get(Context, Args));
2570       continue;
2571     }
2572 
2573     // Link against a library.
2574     if (IsELF) {
2575       llvm::Metadata *Args[2] = {
2576           llvm::MDString::get(Context, "lib"),
2577           llvm::MDString::get(Context, LL.Library),
2578       };
2579       Metadata.push_back(llvm::MDNode::get(Context, Args));
2580     } else {
2581       llvm::SmallString<24> Opt;
2582       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2583       auto *OptString = llvm::MDString::get(Context, Opt);
2584       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2585     }
2586   }
2587 }
2588 
2589 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2590   // Emit the initializers in the order that sub-modules appear in the
2591   // source, first Global Module Fragments, if present.
2592   if (auto GMF = Primary->getGlobalModuleFragment()) {
2593     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2594       if (isa<ImportDecl>(D))
2595         continue;
2596       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2597       EmitTopLevelDecl(D);
2598     }
2599   }
2600   // Second any associated with the module, itself.
2601   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2602     // Skip import decls, the inits for those are called explicitly.
2603     if (isa<ImportDecl>(D))
2604       continue;
2605     EmitTopLevelDecl(D);
2606   }
2607   // Third any associated with the Privat eMOdule Fragment, if present.
2608   if (auto PMF = Primary->getPrivateModuleFragment()) {
2609     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2610       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2611       EmitTopLevelDecl(D);
2612     }
2613   }
2614 }
2615 
2616 void CodeGenModule::EmitModuleLinkOptions() {
2617   // Collect the set of all of the modules we want to visit to emit link
2618   // options, which is essentially the imported modules and all of their
2619   // non-explicit child modules.
2620   llvm::SetVector<clang::Module *> LinkModules;
2621   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2622   SmallVector<clang::Module *, 16> Stack;
2623 
2624   // Seed the stack with imported modules.
2625   for (Module *M : ImportedModules) {
2626     // Do not add any link flags when an implementation TU of a module imports
2627     // a header of that same module.
2628     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2629         !getLangOpts().isCompilingModule())
2630       continue;
2631     if (Visited.insert(M).second)
2632       Stack.push_back(M);
2633   }
2634 
2635   // Find all of the modules to import, making a little effort to prune
2636   // non-leaf modules.
2637   while (!Stack.empty()) {
2638     clang::Module *Mod = Stack.pop_back_val();
2639 
2640     bool AnyChildren = false;
2641 
2642     // Visit the submodules of this module.
2643     for (const auto &SM : Mod->submodules()) {
2644       // Skip explicit children; they need to be explicitly imported to be
2645       // linked against.
2646       if (SM->IsExplicit)
2647         continue;
2648 
2649       if (Visited.insert(SM).second) {
2650         Stack.push_back(SM);
2651         AnyChildren = true;
2652       }
2653     }
2654 
2655     // We didn't find any children, so add this module to the list of
2656     // modules to link against.
2657     if (!AnyChildren) {
2658       LinkModules.insert(Mod);
2659     }
2660   }
2661 
2662   // Add link options for all of the imported modules in reverse topological
2663   // order.  We don't do anything to try to order import link flags with respect
2664   // to linker options inserted by things like #pragma comment().
2665   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2666   Visited.clear();
2667   for (Module *M : LinkModules)
2668     if (Visited.insert(M).second)
2669       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2670   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2671   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2672 
2673   // Add the linker options metadata flag.
2674   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2675   for (auto *MD : LinkerOptionsMetadata)
2676     NMD->addOperand(MD);
2677 }
2678 
2679 void CodeGenModule::EmitDeferred() {
2680   // Emit deferred declare target declarations.
2681   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2682     getOpenMPRuntime().emitDeferredTargetDecls();
2683 
2684   // Emit code for any potentially referenced deferred decls.  Since a
2685   // previously unused static decl may become used during the generation of code
2686   // for a static function, iterate until no changes are made.
2687 
2688   if (!DeferredVTables.empty()) {
2689     EmitDeferredVTables();
2690 
2691     // Emitting a vtable doesn't directly cause more vtables to
2692     // become deferred, although it can cause functions to be
2693     // emitted that then need those vtables.
2694     assert(DeferredVTables.empty());
2695   }
2696 
2697   // Emit CUDA/HIP static device variables referenced by host code only.
2698   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2699   // needed for further handling.
2700   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2701     llvm::append_range(DeferredDeclsToEmit,
2702                        getContext().CUDADeviceVarODRUsedByHost);
2703 
2704   // Stop if we're out of both deferred vtables and deferred declarations.
2705   if (DeferredDeclsToEmit.empty())
2706     return;
2707 
2708   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2709   // work, it will not interfere with this.
2710   std::vector<GlobalDecl> CurDeclsToEmit;
2711   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2712 
2713   for (GlobalDecl &D : CurDeclsToEmit) {
2714     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2715     // to get GlobalValue with exactly the type we need, not something that
2716     // might had been created for another decl with the same mangled name but
2717     // different type.
2718     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2719         GetAddrOfGlobal(D, ForDefinition));
2720 
2721     // In case of different address spaces, we may still get a cast, even with
2722     // IsForDefinition equal to true. Query mangled names table to get
2723     // GlobalValue.
2724     if (!GV)
2725       GV = GetGlobalValue(getMangledName(D));
2726 
2727     // Make sure GetGlobalValue returned non-null.
2728     assert(GV);
2729 
2730     // Check to see if we've already emitted this.  This is necessary
2731     // for a couple of reasons: first, decls can end up in the
2732     // deferred-decls queue multiple times, and second, decls can end
2733     // up with definitions in unusual ways (e.g. by an extern inline
2734     // function acquiring a strong function redefinition).  Just
2735     // ignore these cases.
2736     if (!GV->isDeclaration())
2737       continue;
2738 
2739     // If this is OpenMP, check if it is legal to emit this global normally.
2740     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2741       continue;
2742 
2743     // Otherwise, emit the definition and move on to the next one.
2744     EmitGlobalDefinition(D, GV);
2745 
2746     // If we found out that we need to emit more decls, do that recursively.
2747     // This has the advantage that the decls are emitted in a DFS and related
2748     // ones are close together, which is convenient for testing.
2749     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2750       EmitDeferred();
2751       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2752     }
2753   }
2754 }
2755 
2756 void CodeGenModule::EmitVTablesOpportunistically() {
2757   // Try to emit external vtables as available_externally if they have emitted
2758   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2759   // is not allowed to create new references to things that need to be emitted
2760   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2761 
2762   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2763          && "Only emit opportunistic vtables with optimizations");
2764 
2765   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2766     assert(getVTables().isVTableExternal(RD) &&
2767            "This queue should only contain external vtables");
2768     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2769       VTables.GenerateClassData(RD);
2770   }
2771   OpportunisticVTables.clear();
2772 }
2773 
2774 void CodeGenModule::EmitGlobalAnnotations() {
2775   if (Annotations.empty())
2776     return;
2777 
2778   // Create a new global variable for the ConstantStruct in the Module.
2779   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2780     Annotations[0]->getType(), Annotations.size()), Annotations);
2781   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2782                                       llvm::GlobalValue::AppendingLinkage,
2783                                       Array, "llvm.global.annotations");
2784   gv->setSection(AnnotationSection);
2785 }
2786 
2787 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2788   llvm::Constant *&AStr = AnnotationStrings[Str];
2789   if (AStr)
2790     return AStr;
2791 
2792   // Not found yet, create a new global.
2793   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2794   auto *gv =
2795       new llvm::GlobalVariable(getModule(), s->getType(), true,
2796                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2797   gv->setSection(AnnotationSection);
2798   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2799   AStr = gv;
2800   return gv;
2801 }
2802 
2803 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2804   SourceManager &SM = getContext().getSourceManager();
2805   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2806   if (PLoc.isValid())
2807     return EmitAnnotationString(PLoc.getFilename());
2808   return EmitAnnotationString(SM.getBufferName(Loc));
2809 }
2810 
2811 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2812   SourceManager &SM = getContext().getSourceManager();
2813   PresumedLoc PLoc = SM.getPresumedLoc(L);
2814   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2815     SM.getExpansionLineNumber(L);
2816   return llvm::ConstantInt::get(Int32Ty, LineNo);
2817 }
2818 
2819 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2820   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2821   if (Exprs.empty())
2822     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2823 
2824   llvm::FoldingSetNodeID ID;
2825   for (Expr *E : Exprs) {
2826     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2827   }
2828   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2829   if (Lookup)
2830     return Lookup;
2831 
2832   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2833   LLVMArgs.reserve(Exprs.size());
2834   ConstantEmitter ConstEmiter(*this);
2835   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2836     const auto *CE = cast<clang::ConstantExpr>(E);
2837     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2838                                     CE->getType());
2839   });
2840   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2841   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2842                                       llvm::GlobalValue::PrivateLinkage, Struct,
2843                                       ".args");
2844   GV->setSection(AnnotationSection);
2845   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2846   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2847 
2848   Lookup = Bitcasted;
2849   return Bitcasted;
2850 }
2851 
2852 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2853                                                 const AnnotateAttr *AA,
2854                                                 SourceLocation L) {
2855   // Get the globals for file name, annotation, and the line number.
2856   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2857                  *UnitGV = EmitAnnotationUnit(L),
2858                  *LineNoCst = EmitAnnotationLineNo(L),
2859                  *Args = EmitAnnotationArgs(AA);
2860 
2861   llvm::Constant *GVInGlobalsAS = GV;
2862   if (GV->getAddressSpace() !=
2863       getDataLayout().getDefaultGlobalsAddressSpace()) {
2864     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2865         GV, GV->getValueType()->getPointerTo(
2866                 getDataLayout().getDefaultGlobalsAddressSpace()));
2867   }
2868 
2869   // Create the ConstantStruct for the global annotation.
2870   llvm::Constant *Fields[] = {
2871       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2872       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2873       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2874       LineNoCst,
2875       Args,
2876   };
2877   return llvm::ConstantStruct::getAnon(Fields);
2878 }
2879 
2880 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2881                                          llvm::GlobalValue *GV) {
2882   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2883   // Get the struct elements for these annotations.
2884   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2885     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2886 }
2887 
2888 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2889                                        SourceLocation Loc) const {
2890   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2891   // NoSanitize by function name.
2892   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2893     return true;
2894   // NoSanitize by location. Check "mainfile" prefix.
2895   auto &SM = Context.getSourceManager();
2896   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2897   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2898     return true;
2899 
2900   // Check "src" prefix.
2901   if (Loc.isValid())
2902     return NoSanitizeL.containsLocation(Kind, Loc);
2903   // If location is unknown, this may be a compiler-generated function. Assume
2904   // it's located in the main file.
2905   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2906 }
2907 
2908 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2909                                        llvm::GlobalVariable *GV,
2910                                        SourceLocation Loc, QualType Ty,
2911                                        StringRef Category) const {
2912   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2913   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2914     return true;
2915   auto &SM = Context.getSourceManager();
2916   if (NoSanitizeL.containsMainFile(
2917           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2918     return true;
2919   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2920     return true;
2921 
2922   // Check global type.
2923   if (!Ty.isNull()) {
2924     // Drill down the array types: if global variable of a fixed type is
2925     // not sanitized, we also don't instrument arrays of them.
2926     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2927       Ty = AT->getElementType();
2928     Ty = Ty.getCanonicalType().getUnqualifiedType();
2929     // Only record types (classes, structs etc.) are ignored.
2930     if (Ty->isRecordType()) {
2931       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2932       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2933         return true;
2934     }
2935   }
2936   return false;
2937 }
2938 
2939 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2940                                    StringRef Category) const {
2941   const auto &XRayFilter = getContext().getXRayFilter();
2942   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2943   auto Attr = ImbueAttr::NONE;
2944   if (Loc.isValid())
2945     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2946   if (Attr == ImbueAttr::NONE)
2947     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2948   switch (Attr) {
2949   case ImbueAttr::NONE:
2950     return false;
2951   case ImbueAttr::ALWAYS:
2952     Fn->addFnAttr("function-instrument", "xray-always");
2953     break;
2954   case ImbueAttr::ALWAYS_ARG1:
2955     Fn->addFnAttr("function-instrument", "xray-always");
2956     Fn->addFnAttr("xray-log-args", "1");
2957     break;
2958   case ImbueAttr::NEVER:
2959     Fn->addFnAttr("function-instrument", "xray-never");
2960     break;
2961   }
2962   return true;
2963 }
2964 
2965 ProfileList::ExclusionType
2966 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2967                                               SourceLocation Loc) const {
2968   const auto &ProfileList = getContext().getProfileList();
2969   // If the profile list is empty, then instrument everything.
2970   if (ProfileList.isEmpty())
2971     return ProfileList::Allow;
2972   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2973   // First, check the function name.
2974   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
2975     return *V;
2976   // Next, check the source location.
2977   if (Loc.isValid())
2978     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
2979       return *V;
2980   // If location is unknown, this may be a compiler-generated function. Assume
2981   // it's located in the main file.
2982   auto &SM = Context.getSourceManager();
2983   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
2984     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
2985       return *V;
2986   return ProfileList.getDefault(Kind);
2987 }
2988 
2989 ProfileList::ExclusionType
2990 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
2991                                                  SourceLocation Loc) const {
2992   auto V = isFunctionBlockedByProfileList(Fn, Loc);
2993   if (V != ProfileList::Allow)
2994     return V;
2995 
2996   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
2997   if (NumGroups > 1) {
2998     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
2999     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3000       return ProfileList::Skip;
3001   }
3002   return ProfileList::Allow;
3003 }
3004 
3005 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3006   // Never defer when EmitAllDecls is specified.
3007   if (LangOpts.EmitAllDecls)
3008     return true;
3009 
3010   if (CodeGenOpts.KeepStaticConsts) {
3011     const auto *VD = dyn_cast<VarDecl>(Global);
3012     if (VD && VD->getType().isConstQualified() &&
3013         VD->getStorageDuration() == SD_Static)
3014       return true;
3015   }
3016 
3017   return getContext().DeclMustBeEmitted(Global);
3018 }
3019 
3020 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3021   // In OpenMP 5.0 variables and function may be marked as
3022   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3023   // that they must be emitted on the host/device. To be sure we need to have
3024   // seen a declare target with an explicit mentioning of the function, we know
3025   // we have if the level of the declare target attribute is -1. Note that we
3026   // check somewhere else if we should emit this at all.
3027   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3028     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3029         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3030     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3031       return false;
3032   }
3033 
3034   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3035     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3036       // Implicit template instantiations may change linkage if they are later
3037       // explicitly instantiated, so they should not be emitted eagerly.
3038       return false;
3039   }
3040   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3041     if (Context.getInlineVariableDefinitionKind(VD) ==
3042         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3043       // A definition of an inline constexpr static data member may change
3044       // linkage later if it's redeclared outside the class.
3045       return false;
3046     if (CXX20ModuleInits && VD->getOwningModule() &&
3047         !VD->getOwningModule()->isModuleMapModule()) {
3048       // For CXX20, module-owned initializers need to be deferred, since it is
3049       // not known at this point if they will be run for the current module or
3050       // as part of the initializer for an imported one.
3051       return false;
3052     }
3053   }
3054   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3055   // codegen for global variables, because they may be marked as threadprivate.
3056   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3057       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3058       !isTypeConstant(Global->getType(), false) &&
3059       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3060     return false;
3061 
3062   return true;
3063 }
3064 
3065 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3066   StringRef Name = getMangledName(GD);
3067 
3068   // The UUID descriptor should be pointer aligned.
3069   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3070 
3071   // Look for an existing global.
3072   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3073     return ConstantAddress(GV, GV->getValueType(), Alignment);
3074 
3075   ConstantEmitter Emitter(*this);
3076   llvm::Constant *Init;
3077 
3078   APValue &V = GD->getAsAPValue();
3079   if (!V.isAbsent()) {
3080     // If possible, emit the APValue version of the initializer. In particular,
3081     // this gets the type of the constant right.
3082     Init = Emitter.emitForInitializer(
3083         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3084   } else {
3085     // As a fallback, directly construct the constant.
3086     // FIXME: This may get padding wrong under esoteric struct layout rules.
3087     // MSVC appears to create a complete type 'struct __s_GUID' that it
3088     // presumably uses to represent these constants.
3089     MSGuidDecl::Parts Parts = GD->getParts();
3090     llvm::Constant *Fields[4] = {
3091         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3092         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3093         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3094         llvm::ConstantDataArray::getRaw(
3095             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3096             Int8Ty)};
3097     Init = llvm::ConstantStruct::getAnon(Fields);
3098   }
3099 
3100   auto *GV = new llvm::GlobalVariable(
3101       getModule(), Init->getType(),
3102       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3103   if (supportsCOMDAT())
3104     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3105   setDSOLocal(GV);
3106 
3107   if (!V.isAbsent()) {
3108     Emitter.finalize(GV);
3109     return ConstantAddress(GV, GV->getValueType(), Alignment);
3110   }
3111 
3112   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3113   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3114       GV, Ty->getPointerTo(GV->getAddressSpace()));
3115   return ConstantAddress(Addr, Ty, Alignment);
3116 }
3117 
3118 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3119     const UnnamedGlobalConstantDecl *GCD) {
3120   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3121 
3122   llvm::GlobalVariable **Entry = nullptr;
3123   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3124   if (*Entry)
3125     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3126 
3127   ConstantEmitter Emitter(*this);
3128   llvm::Constant *Init;
3129 
3130   const APValue &V = GCD->getValue();
3131 
3132   assert(!V.isAbsent());
3133   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3134                                     GCD->getType());
3135 
3136   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3137                                       /*isConstant=*/true,
3138                                       llvm::GlobalValue::PrivateLinkage, Init,
3139                                       ".constant");
3140   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3141   GV->setAlignment(Alignment.getAsAlign());
3142 
3143   Emitter.finalize(GV);
3144 
3145   *Entry = GV;
3146   return ConstantAddress(GV, GV->getValueType(), Alignment);
3147 }
3148 
3149 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3150     const TemplateParamObjectDecl *TPO) {
3151   StringRef Name = getMangledName(TPO);
3152   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3153 
3154   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3155     return ConstantAddress(GV, GV->getValueType(), Alignment);
3156 
3157   ConstantEmitter Emitter(*this);
3158   llvm::Constant *Init = Emitter.emitForInitializer(
3159         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3160 
3161   if (!Init) {
3162     ErrorUnsupported(TPO, "template parameter object");
3163     return ConstantAddress::invalid();
3164   }
3165 
3166   auto *GV = new llvm::GlobalVariable(
3167       getModule(), Init->getType(),
3168       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3169   if (supportsCOMDAT())
3170     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3171   Emitter.finalize(GV);
3172 
3173   return ConstantAddress(GV, GV->getValueType(), Alignment);
3174 }
3175 
3176 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3177   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3178   assert(AA && "No alias?");
3179 
3180   CharUnits Alignment = getContext().getDeclAlign(VD);
3181   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3182 
3183   // See if there is already something with the target's name in the module.
3184   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3185   if (Entry) {
3186     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3187     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3188     return ConstantAddress(Ptr, DeclTy, Alignment);
3189   }
3190 
3191   llvm::Constant *Aliasee;
3192   if (isa<llvm::FunctionType>(DeclTy))
3193     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3194                                       GlobalDecl(cast<FunctionDecl>(VD)),
3195                                       /*ForVTable=*/false);
3196   else
3197     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3198                                     nullptr);
3199 
3200   auto *F = cast<llvm::GlobalValue>(Aliasee);
3201   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3202   WeakRefReferences.insert(F);
3203 
3204   return ConstantAddress(Aliasee, DeclTy, Alignment);
3205 }
3206 
3207 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3208   const auto *Global = cast<ValueDecl>(GD.getDecl());
3209 
3210   // Weak references don't produce any output by themselves.
3211   if (Global->hasAttr<WeakRefAttr>())
3212     return;
3213 
3214   // If this is an alias definition (which otherwise looks like a declaration)
3215   // emit it now.
3216   if (Global->hasAttr<AliasAttr>())
3217     return EmitAliasDefinition(GD);
3218 
3219   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3220   if (Global->hasAttr<IFuncAttr>())
3221     return emitIFuncDefinition(GD);
3222 
3223   // If this is a cpu_dispatch multiversion function, emit the resolver.
3224   if (Global->hasAttr<CPUDispatchAttr>())
3225     return emitCPUDispatchDefinition(GD);
3226 
3227   // If this is CUDA, be selective about which declarations we emit.
3228   if (LangOpts.CUDA) {
3229     if (LangOpts.CUDAIsDevice) {
3230       if (!Global->hasAttr<CUDADeviceAttr>() &&
3231           !Global->hasAttr<CUDAGlobalAttr>() &&
3232           !Global->hasAttr<CUDAConstantAttr>() &&
3233           !Global->hasAttr<CUDASharedAttr>() &&
3234           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3235           !Global->getType()->isCUDADeviceBuiltinTextureType())
3236         return;
3237     } else {
3238       // We need to emit host-side 'shadows' for all global
3239       // device-side variables because the CUDA runtime needs their
3240       // size and host-side address in order to provide access to
3241       // their device-side incarnations.
3242 
3243       // So device-only functions are the only things we skip.
3244       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3245           Global->hasAttr<CUDADeviceAttr>())
3246         return;
3247 
3248       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3249              "Expected Variable or Function");
3250     }
3251   }
3252 
3253   if (LangOpts.OpenMP) {
3254     // If this is OpenMP, check if it is legal to emit this global normally.
3255     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3256       return;
3257     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3258       if (MustBeEmitted(Global))
3259         EmitOMPDeclareReduction(DRD);
3260       return;
3261     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3262       if (MustBeEmitted(Global))
3263         EmitOMPDeclareMapper(DMD);
3264       return;
3265     }
3266   }
3267 
3268   // Ignore declarations, they will be emitted on their first use.
3269   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3270     // Forward declarations are emitted lazily on first use.
3271     if (!FD->doesThisDeclarationHaveABody()) {
3272       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3273         return;
3274 
3275       StringRef MangledName = getMangledName(GD);
3276 
3277       // Compute the function info and LLVM type.
3278       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3279       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3280 
3281       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3282                               /*DontDefer=*/false);
3283       return;
3284     }
3285   } else {
3286     const auto *VD = cast<VarDecl>(Global);
3287     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3288     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3289         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3290       if (LangOpts.OpenMP) {
3291         // Emit declaration of the must-be-emitted declare target variable.
3292         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3293                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3294           bool UnifiedMemoryEnabled =
3295               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3296           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3297               !UnifiedMemoryEnabled) {
3298             (void)GetAddrOfGlobalVar(VD);
3299           } else {
3300             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3301                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3302                      UnifiedMemoryEnabled)) &&
3303                    "Link clause or to clause with unified memory expected.");
3304             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3305           }
3306 
3307           return;
3308         }
3309       }
3310       // If this declaration may have caused an inline variable definition to
3311       // change linkage, make sure that it's emitted.
3312       if (Context.getInlineVariableDefinitionKind(VD) ==
3313           ASTContext::InlineVariableDefinitionKind::Strong)
3314         GetAddrOfGlobalVar(VD);
3315       return;
3316     }
3317   }
3318 
3319   // Defer code generation to first use when possible, e.g. if this is an inline
3320   // function. If the global must always be emitted, do it eagerly if possible
3321   // to benefit from cache locality.
3322   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3323     // Emit the definition if it can't be deferred.
3324     EmitGlobalDefinition(GD);
3325     return;
3326   }
3327 
3328   // If we're deferring emission of a C++ variable with an
3329   // initializer, remember the order in which it appeared in the file.
3330   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3331       cast<VarDecl>(Global)->hasInit()) {
3332     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3333     CXXGlobalInits.push_back(nullptr);
3334   }
3335 
3336   StringRef MangledName = getMangledName(GD);
3337   if (GetGlobalValue(MangledName) != nullptr) {
3338     // The value has already been used and should therefore be emitted.
3339     addDeferredDeclToEmit(GD);
3340   } else if (MustBeEmitted(Global)) {
3341     // The value must be emitted, but cannot be emitted eagerly.
3342     assert(!MayBeEmittedEagerly(Global));
3343     addDeferredDeclToEmit(GD);
3344     EmittedDeferredDecls[MangledName] = GD;
3345   } else {
3346     // Otherwise, remember that we saw a deferred decl with this name.  The
3347     // first use of the mangled name will cause it to move into
3348     // DeferredDeclsToEmit.
3349     DeferredDecls[MangledName] = GD;
3350   }
3351 }
3352 
3353 // Check if T is a class type with a destructor that's not dllimport.
3354 static bool HasNonDllImportDtor(QualType T) {
3355   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3356     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3357       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3358         return true;
3359 
3360   return false;
3361 }
3362 
3363 namespace {
3364   struct FunctionIsDirectlyRecursive
3365       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3366     const StringRef Name;
3367     const Builtin::Context &BI;
3368     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3369         : Name(N), BI(C) {}
3370 
3371     bool VisitCallExpr(const CallExpr *E) {
3372       const FunctionDecl *FD = E->getDirectCallee();
3373       if (!FD)
3374         return false;
3375       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3376       if (Attr && Name == Attr->getLabel())
3377         return true;
3378       unsigned BuiltinID = FD->getBuiltinID();
3379       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3380         return false;
3381       StringRef BuiltinName = BI.getName(BuiltinID);
3382       if (BuiltinName.startswith("__builtin_") &&
3383           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3384         return true;
3385       }
3386       return false;
3387     }
3388 
3389     bool VisitStmt(const Stmt *S) {
3390       for (const Stmt *Child : S->children())
3391         if (Child && this->Visit(Child))
3392           return true;
3393       return false;
3394     }
3395   };
3396 
3397   // Make sure we're not referencing non-imported vars or functions.
3398   struct DLLImportFunctionVisitor
3399       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3400     bool SafeToInline = true;
3401 
3402     bool shouldVisitImplicitCode() const { return true; }
3403 
3404     bool VisitVarDecl(VarDecl *VD) {
3405       if (VD->getTLSKind()) {
3406         // A thread-local variable cannot be imported.
3407         SafeToInline = false;
3408         return SafeToInline;
3409       }
3410 
3411       // A variable definition might imply a destructor call.
3412       if (VD->isThisDeclarationADefinition())
3413         SafeToInline = !HasNonDllImportDtor(VD->getType());
3414 
3415       return SafeToInline;
3416     }
3417 
3418     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3419       if (const auto *D = E->getTemporary()->getDestructor())
3420         SafeToInline = D->hasAttr<DLLImportAttr>();
3421       return SafeToInline;
3422     }
3423 
3424     bool VisitDeclRefExpr(DeclRefExpr *E) {
3425       ValueDecl *VD = E->getDecl();
3426       if (isa<FunctionDecl>(VD))
3427         SafeToInline = VD->hasAttr<DLLImportAttr>();
3428       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3429         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3430       return SafeToInline;
3431     }
3432 
3433     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3434       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3435       return SafeToInline;
3436     }
3437 
3438     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3439       CXXMethodDecl *M = E->getMethodDecl();
3440       if (!M) {
3441         // Call through a pointer to member function. This is safe to inline.
3442         SafeToInline = true;
3443       } else {
3444         SafeToInline = M->hasAttr<DLLImportAttr>();
3445       }
3446       return SafeToInline;
3447     }
3448 
3449     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3450       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3451       return SafeToInline;
3452     }
3453 
3454     bool VisitCXXNewExpr(CXXNewExpr *E) {
3455       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3456       return SafeToInline;
3457     }
3458   };
3459 }
3460 
3461 // isTriviallyRecursive - Check if this function calls another
3462 // decl that, because of the asm attribute or the other decl being a builtin,
3463 // ends up pointing to itself.
3464 bool
3465 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3466   StringRef Name;
3467   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3468     // asm labels are a special kind of mangling we have to support.
3469     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3470     if (!Attr)
3471       return false;
3472     Name = Attr->getLabel();
3473   } else {
3474     Name = FD->getName();
3475   }
3476 
3477   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3478   const Stmt *Body = FD->getBody();
3479   return Body ? Walker.Visit(Body) : false;
3480 }
3481 
3482 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3483   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3484     return true;
3485   const auto *F = cast<FunctionDecl>(GD.getDecl());
3486   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3487     return false;
3488 
3489   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3490     // Check whether it would be safe to inline this dllimport function.
3491     DLLImportFunctionVisitor Visitor;
3492     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3493     if (!Visitor.SafeToInline)
3494       return false;
3495 
3496     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3497       // Implicit destructor invocations aren't captured in the AST, so the
3498       // check above can't see them. Check for them manually here.
3499       for (const Decl *Member : Dtor->getParent()->decls())
3500         if (isa<FieldDecl>(Member))
3501           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3502             return false;
3503       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3504         if (HasNonDllImportDtor(B.getType()))
3505           return false;
3506     }
3507   }
3508 
3509   // Inline builtins declaration must be emitted. They often are fortified
3510   // functions.
3511   if (F->isInlineBuiltinDeclaration())
3512     return true;
3513 
3514   // PR9614. Avoid cases where the source code is lying to us. An available
3515   // externally function should have an equivalent function somewhere else,
3516   // but a function that calls itself through asm label/`__builtin_` trickery is
3517   // clearly not equivalent to the real implementation.
3518   // This happens in glibc's btowc and in some configure checks.
3519   return !isTriviallyRecursive(F);
3520 }
3521 
3522 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3523   return CodeGenOpts.OptimizationLevel > 0;
3524 }
3525 
3526 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3527                                                        llvm::GlobalValue *GV) {
3528   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3529 
3530   if (FD->isCPUSpecificMultiVersion()) {
3531     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3532     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3533       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3534   } else if (FD->isTargetClonesMultiVersion()) {
3535     auto *Clone = FD->getAttr<TargetClonesAttr>();
3536     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3537       if (Clone->isFirstOfVersion(I))
3538         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3539     // Ensure that the resolver function is also emitted.
3540     GetOrCreateMultiVersionResolver(GD);
3541   } else
3542     EmitGlobalFunctionDefinition(GD, GV);
3543 }
3544 
3545 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3546   const auto *D = cast<ValueDecl>(GD.getDecl());
3547 
3548   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3549                                  Context.getSourceManager(),
3550                                  "Generating code for declaration");
3551 
3552   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3553     // At -O0, don't generate IR for functions with available_externally
3554     // linkage.
3555     if (!shouldEmitFunction(GD))
3556       return;
3557 
3558     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3559       std::string Name;
3560       llvm::raw_string_ostream OS(Name);
3561       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3562                                /*Qualified=*/true);
3563       return Name;
3564     });
3565 
3566     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3567       // Make sure to emit the definition(s) before we emit the thunks.
3568       // This is necessary for the generation of certain thunks.
3569       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3570         ABI->emitCXXStructor(GD);
3571       else if (FD->isMultiVersion())
3572         EmitMultiVersionFunctionDefinition(GD, GV);
3573       else
3574         EmitGlobalFunctionDefinition(GD, GV);
3575 
3576       if (Method->isVirtual())
3577         getVTables().EmitThunks(GD);
3578 
3579       return;
3580     }
3581 
3582     if (FD->isMultiVersion())
3583       return EmitMultiVersionFunctionDefinition(GD, GV);
3584     return EmitGlobalFunctionDefinition(GD, GV);
3585   }
3586 
3587   if (const auto *VD = dyn_cast<VarDecl>(D))
3588     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3589 
3590   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3591 }
3592 
3593 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3594                                                       llvm::Function *NewFn);
3595 
3596 static unsigned
3597 TargetMVPriority(const TargetInfo &TI,
3598                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3599   unsigned Priority = 0;
3600   for (StringRef Feat : RO.Conditions.Features)
3601     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3602 
3603   if (!RO.Conditions.Architecture.empty())
3604     Priority = std::max(
3605         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3606   return Priority;
3607 }
3608 
3609 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3610 // TU can forward declare the function without causing problems.  Particularly
3611 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3612 // work with internal linkage functions, so that the same function name can be
3613 // used with internal linkage in multiple TUs.
3614 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3615                                                        GlobalDecl GD) {
3616   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3617   if (FD->getFormalLinkage() == InternalLinkage)
3618     return llvm::GlobalValue::InternalLinkage;
3619   return llvm::GlobalValue::WeakODRLinkage;
3620 }
3621 
3622 void CodeGenModule::emitMultiVersionFunctions() {
3623   std::vector<GlobalDecl> MVFuncsToEmit;
3624   MultiVersionFuncs.swap(MVFuncsToEmit);
3625   for (GlobalDecl GD : MVFuncsToEmit) {
3626     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3627     assert(FD && "Expected a FunctionDecl");
3628 
3629     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3630     if (FD->isTargetMultiVersion()) {
3631       getContext().forEachMultiversionedFunctionVersion(
3632           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3633             GlobalDecl CurGD{
3634                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3635             StringRef MangledName = getMangledName(CurGD);
3636             llvm::Constant *Func = GetGlobalValue(MangledName);
3637             if (!Func) {
3638               if (CurFD->isDefined()) {
3639                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3640                 Func = GetGlobalValue(MangledName);
3641               } else {
3642                 const CGFunctionInfo &FI =
3643                     getTypes().arrangeGlobalDeclaration(GD);
3644                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3645                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3646                                          /*DontDefer=*/false, ForDefinition);
3647               }
3648               assert(Func && "This should have just been created");
3649             }
3650 
3651             const auto *TA = CurFD->getAttr<TargetAttr>();
3652             llvm::SmallVector<StringRef, 8> Feats;
3653             TA->getAddedFeatures(Feats);
3654 
3655             Options.emplace_back(cast<llvm::Function>(Func),
3656                                  TA->getArchitecture(), Feats);
3657           });
3658     } else if (FD->isTargetClonesMultiVersion()) {
3659       const auto *TC = FD->getAttr<TargetClonesAttr>();
3660       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3661            ++VersionIndex) {
3662         if (!TC->isFirstOfVersion(VersionIndex))
3663           continue;
3664         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3665                          VersionIndex};
3666         StringRef Version = TC->getFeatureStr(VersionIndex);
3667         StringRef MangledName = getMangledName(CurGD);
3668         llvm::Constant *Func = GetGlobalValue(MangledName);
3669         if (!Func) {
3670           if (FD->isDefined()) {
3671             EmitGlobalFunctionDefinition(CurGD, nullptr);
3672             Func = GetGlobalValue(MangledName);
3673           } else {
3674             const CGFunctionInfo &FI =
3675                 getTypes().arrangeGlobalDeclaration(CurGD);
3676             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3677             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3678                                      /*DontDefer=*/false, ForDefinition);
3679           }
3680           assert(Func && "This should have just been created");
3681         }
3682 
3683         StringRef Architecture;
3684         llvm::SmallVector<StringRef, 1> Feature;
3685 
3686         if (Version.startswith("arch="))
3687           Architecture = Version.drop_front(sizeof("arch=") - 1);
3688         else if (Version != "default")
3689           Feature.push_back(Version);
3690 
3691         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3692       }
3693     } else {
3694       assert(0 && "Expected a target or target_clones multiversion function");
3695       continue;
3696     }
3697 
3698     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3699     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3700       ResolverConstant = IFunc->getResolver();
3701     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3702 
3703     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3704 
3705     if (supportsCOMDAT())
3706       ResolverFunc->setComdat(
3707           getModule().getOrInsertComdat(ResolverFunc->getName()));
3708 
3709     const TargetInfo &TI = getTarget();
3710     llvm::stable_sort(
3711         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3712                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3713           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3714         });
3715     CodeGenFunction CGF(*this);
3716     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3717   }
3718 
3719   // Ensure that any additions to the deferred decls list caused by emitting a
3720   // variant are emitted.  This can happen when the variant itself is inline and
3721   // calls a function without linkage.
3722   if (!MVFuncsToEmit.empty())
3723     EmitDeferred();
3724 
3725   // Ensure that any additions to the multiversion funcs list from either the
3726   // deferred decls or the multiversion functions themselves are emitted.
3727   if (!MultiVersionFuncs.empty())
3728     emitMultiVersionFunctions();
3729 }
3730 
3731 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3732   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3733   assert(FD && "Not a FunctionDecl?");
3734   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3735   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3736   assert(DD && "Not a cpu_dispatch Function?");
3737 
3738   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3739   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3740 
3741   StringRef ResolverName = getMangledName(GD);
3742   UpdateMultiVersionNames(GD, FD, ResolverName);
3743 
3744   llvm::Type *ResolverType;
3745   GlobalDecl ResolverGD;
3746   if (getTarget().supportsIFunc()) {
3747     ResolverType = llvm::FunctionType::get(
3748         llvm::PointerType::get(DeclTy,
3749                                Context.getTargetAddressSpace(FD->getType())),
3750         false);
3751   }
3752   else {
3753     ResolverType = DeclTy;
3754     ResolverGD = GD;
3755   }
3756 
3757   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3758       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3759   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3760   if (supportsCOMDAT())
3761     ResolverFunc->setComdat(
3762         getModule().getOrInsertComdat(ResolverFunc->getName()));
3763 
3764   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3765   const TargetInfo &Target = getTarget();
3766   unsigned Index = 0;
3767   for (const IdentifierInfo *II : DD->cpus()) {
3768     // Get the name of the target function so we can look it up/create it.
3769     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3770                               getCPUSpecificMangling(*this, II->getName());
3771 
3772     llvm::Constant *Func = GetGlobalValue(MangledName);
3773 
3774     if (!Func) {
3775       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3776       if (ExistingDecl.getDecl() &&
3777           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3778         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3779         Func = GetGlobalValue(MangledName);
3780       } else {
3781         if (!ExistingDecl.getDecl())
3782           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3783 
3784       Func = GetOrCreateLLVMFunction(
3785           MangledName, DeclTy, ExistingDecl,
3786           /*ForVTable=*/false, /*DontDefer=*/true,
3787           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3788       }
3789     }
3790 
3791     llvm::SmallVector<StringRef, 32> Features;
3792     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3793     llvm::transform(Features, Features.begin(),
3794                     [](StringRef Str) { return Str.substr(1); });
3795     llvm::erase_if(Features, [&Target](StringRef Feat) {
3796       return !Target.validateCpuSupports(Feat);
3797     });
3798     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3799     ++Index;
3800   }
3801 
3802   llvm::stable_sort(
3803       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3804                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3805         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3806                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3807       });
3808 
3809   // If the list contains multiple 'default' versions, such as when it contains
3810   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3811   // always run on at least a 'pentium'). We do this by deleting the 'least
3812   // advanced' (read, lowest mangling letter).
3813   while (Options.size() > 1 &&
3814          llvm::X86::getCpuSupportsMask(
3815              (Options.end() - 2)->Conditions.Features) == 0) {
3816     StringRef LHSName = (Options.end() - 2)->Function->getName();
3817     StringRef RHSName = (Options.end() - 1)->Function->getName();
3818     if (LHSName.compare(RHSName) < 0)
3819       Options.erase(Options.end() - 2);
3820     else
3821       Options.erase(Options.end() - 1);
3822   }
3823 
3824   CodeGenFunction CGF(*this);
3825   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3826 
3827   if (getTarget().supportsIFunc()) {
3828     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3829     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3830 
3831     // Fix up function declarations that were created for cpu_specific before
3832     // cpu_dispatch was known
3833     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3834       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3835       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3836                                            &getModule());
3837       GI->takeName(IFunc);
3838       IFunc->replaceAllUsesWith(GI);
3839       IFunc->eraseFromParent();
3840       IFunc = GI;
3841     }
3842 
3843     std::string AliasName = getMangledNameImpl(
3844         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3845     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3846     if (!AliasFunc) {
3847       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3848                                            &getModule());
3849       SetCommonAttributes(GD, GA);
3850     }
3851   }
3852 }
3853 
3854 /// If a dispatcher for the specified mangled name is not in the module, create
3855 /// and return an llvm Function with the specified type.
3856 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3857   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3858   assert(FD && "Not a FunctionDecl?");
3859 
3860   std::string MangledName =
3861       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3862 
3863   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3864   // a separate resolver).
3865   std::string ResolverName = MangledName;
3866   if (getTarget().supportsIFunc())
3867     ResolverName += ".ifunc";
3868   else if (FD->isTargetMultiVersion())
3869     ResolverName += ".resolver";
3870 
3871   // If the resolver has already been created, just return it.
3872   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3873     return ResolverGV;
3874 
3875   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3876   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3877 
3878   // The resolver needs to be created. For target and target_clones, defer
3879   // creation until the end of the TU.
3880   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3881     MultiVersionFuncs.push_back(GD);
3882 
3883   // For cpu_specific, don't create an ifunc yet because we don't know if the
3884   // cpu_dispatch will be emitted in this translation unit.
3885   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3886     llvm::Type *ResolverType = llvm::FunctionType::get(
3887         llvm::PointerType::get(
3888             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3889         false);
3890     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3891         MangledName + ".resolver", ResolverType, GlobalDecl{},
3892         /*ForVTable=*/false);
3893     llvm::GlobalIFunc *GIF =
3894         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3895                                   "", Resolver, &getModule());
3896     GIF->setName(ResolverName);
3897     SetCommonAttributes(FD, GIF);
3898 
3899     return GIF;
3900   }
3901 
3902   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3903       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3904   assert(isa<llvm::GlobalValue>(Resolver) &&
3905          "Resolver should be created for the first time");
3906   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3907   return Resolver;
3908 }
3909 
3910 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3911 /// module, create and return an llvm Function with the specified type. If there
3912 /// is something in the module with the specified name, return it potentially
3913 /// bitcasted to the right type.
3914 ///
3915 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3916 /// to set the attributes on the function when it is first created.
3917 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3918     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3919     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3920     ForDefinition_t IsForDefinition) {
3921   const Decl *D = GD.getDecl();
3922 
3923   // Any attempts to use a MultiVersion function should result in retrieving
3924   // the iFunc instead. Name Mangling will handle the rest of the changes.
3925   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3926     // For the device mark the function as one that should be emitted.
3927     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3928         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3929         !DontDefer && !IsForDefinition) {
3930       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3931         GlobalDecl GDDef;
3932         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3933           GDDef = GlobalDecl(CD, GD.getCtorType());
3934         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3935           GDDef = GlobalDecl(DD, GD.getDtorType());
3936         else
3937           GDDef = GlobalDecl(FDDef);
3938         EmitGlobal(GDDef);
3939       }
3940     }
3941 
3942     if (FD->isMultiVersion()) {
3943       UpdateMultiVersionNames(GD, FD, MangledName);
3944       if (!IsForDefinition)
3945         return GetOrCreateMultiVersionResolver(GD);
3946     }
3947   }
3948 
3949   // Lookup the entry, lazily creating it if necessary.
3950   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3951   if (Entry) {
3952     if (WeakRefReferences.erase(Entry)) {
3953       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3954       if (FD && !FD->hasAttr<WeakAttr>())
3955         Entry->setLinkage(llvm::Function::ExternalLinkage);
3956     }
3957 
3958     // Handle dropped DLL attributes.
3959     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3960         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3961       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3962       setDSOLocal(Entry);
3963     }
3964 
3965     // If there are two attempts to define the same mangled name, issue an
3966     // error.
3967     if (IsForDefinition && !Entry->isDeclaration()) {
3968       GlobalDecl OtherGD;
3969       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3970       // to make sure that we issue an error only once.
3971       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3972           (GD.getCanonicalDecl().getDecl() !=
3973            OtherGD.getCanonicalDecl().getDecl()) &&
3974           DiagnosedConflictingDefinitions.insert(GD).second) {
3975         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3976             << MangledName;
3977         getDiags().Report(OtherGD.getDecl()->getLocation(),
3978                           diag::note_previous_definition);
3979       }
3980     }
3981 
3982     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3983         (Entry->getValueType() == Ty)) {
3984       return Entry;
3985     }
3986 
3987     // Make sure the result is of the correct type.
3988     // (If function is requested for a definition, we always need to create a new
3989     // function, not just return a bitcast.)
3990     if (!IsForDefinition)
3991       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3992   }
3993 
3994   // This function doesn't have a complete type (for example, the return
3995   // type is an incomplete struct). Use a fake type instead, and make
3996   // sure not to try to set attributes.
3997   bool IsIncompleteFunction = false;
3998 
3999   llvm::FunctionType *FTy;
4000   if (isa<llvm::FunctionType>(Ty)) {
4001     FTy = cast<llvm::FunctionType>(Ty);
4002   } else {
4003     FTy = llvm::FunctionType::get(VoidTy, false);
4004     IsIncompleteFunction = true;
4005   }
4006 
4007   llvm::Function *F =
4008       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4009                              Entry ? StringRef() : MangledName, &getModule());
4010 
4011   // If we already created a function with the same mangled name (but different
4012   // type) before, take its name and add it to the list of functions to be
4013   // replaced with F at the end of CodeGen.
4014   //
4015   // This happens if there is a prototype for a function (e.g. "int f()") and
4016   // then a definition of a different type (e.g. "int f(int x)").
4017   if (Entry) {
4018     F->takeName(Entry);
4019 
4020     // This might be an implementation of a function without a prototype, in
4021     // which case, try to do special replacement of calls which match the new
4022     // prototype.  The really key thing here is that we also potentially drop
4023     // arguments from the call site so as to make a direct call, which makes the
4024     // inliner happier and suppresses a number of optimizer warnings (!) about
4025     // dropping arguments.
4026     if (!Entry->use_empty()) {
4027       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4028       Entry->removeDeadConstantUsers();
4029     }
4030 
4031     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4032         F, Entry->getValueType()->getPointerTo());
4033     addGlobalValReplacement(Entry, BC);
4034   }
4035 
4036   assert(F->getName() == MangledName && "name was uniqued!");
4037   if (D)
4038     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4039   if (ExtraAttrs.hasFnAttrs()) {
4040     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4041     F->addFnAttrs(B);
4042   }
4043 
4044   if (!DontDefer) {
4045     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4046     // each other bottoming out with the base dtor.  Therefore we emit non-base
4047     // dtors on usage, even if there is no dtor definition in the TU.
4048     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4049         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4050                                            GD.getDtorType()))
4051       addDeferredDeclToEmit(GD);
4052 
4053     // This is the first use or definition of a mangled name.  If there is a
4054     // deferred decl with this name, remember that we need to emit it at the end
4055     // of the file.
4056     auto DDI = DeferredDecls.find(MangledName);
4057     if (DDI != DeferredDecls.end()) {
4058       // Move the potentially referenced deferred decl to the
4059       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4060       // don't need it anymore).
4061       addDeferredDeclToEmit(DDI->second);
4062       EmittedDeferredDecls[DDI->first] = DDI->second;
4063       DeferredDecls.erase(DDI);
4064 
4065       // Otherwise, there are cases we have to worry about where we're
4066       // using a declaration for which we must emit a definition but where
4067       // we might not find a top-level definition:
4068       //   - member functions defined inline in their classes
4069       //   - friend functions defined inline in some class
4070       //   - special member functions with implicit definitions
4071       // If we ever change our AST traversal to walk into class methods,
4072       // this will be unnecessary.
4073       //
4074       // We also don't emit a definition for a function if it's going to be an
4075       // entry in a vtable, unless it's already marked as used.
4076     } else if (getLangOpts().CPlusPlus && D) {
4077       // Look for a declaration that's lexically in a record.
4078       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4079            FD = FD->getPreviousDecl()) {
4080         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4081           if (FD->doesThisDeclarationHaveABody()) {
4082             addDeferredDeclToEmit(GD.getWithDecl(FD));
4083             break;
4084           }
4085         }
4086       }
4087     }
4088   }
4089 
4090   // Make sure the result is of the requested type.
4091   if (!IsIncompleteFunction) {
4092     assert(F->getFunctionType() == Ty);
4093     return F;
4094   }
4095 
4096   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4097   return llvm::ConstantExpr::getBitCast(F, PTy);
4098 }
4099 
4100 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4101 /// non-null, then this function will use the specified type if it has to
4102 /// create it (this occurs when we see a definition of the function).
4103 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4104                                                  llvm::Type *Ty,
4105                                                  bool ForVTable,
4106                                                  bool DontDefer,
4107                                               ForDefinition_t IsForDefinition) {
4108   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4109          "consteval function should never be emitted");
4110   // If there was no specific requested type, just convert it now.
4111   if (!Ty) {
4112     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4113     Ty = getTypes().ConvertType(FD->getType());
4114   }
4115 
4116   // Devirtualized destructor calls may come through here instead of via
4117   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4118   // of the complete destructor when necessary.
4119   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4120     if (getTarget().getCXXABI().isMicrosoft() &&
4121         GD.getDtorType() == Dtor_Complete &&
4122         DD->getParent()->getNumVBases() == 0)
4123       GD = GlobalDecl(DD, Dtor_Base);
4124   }
4125 
4126   StringRef MangledName = getMangledName(GD);
4127   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4128                                     /*IsThunk=*/false, llvm::AttributeList(),
4129                                     IsForDefinition);
4130   // Returns kernel handle for HIP kernel stub function.
4131   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4132       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4133     auto *Handle = getCUDARuntime().getKernelHandle(
4134         cast<llvm::Function>(F->stripPointerCasts()), GD);
4135     if (IsForDefinition)
4136       return F;
4137     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4138   }
4139   return F;
4140 }
4141 
4142 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4143   llvm::GlobalValue *F =
4144       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4145 
4146   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4147                                         llvm::Type::getInt8PtrTy(VMContext));
4148 }
4149 
4150 static const FunctionDecl *
4151 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4152   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4153   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4154 
4155   IdentifierInfo &CII = C.Idents.get(Name);
4156   for (const auto *Result : DC->lookup(&CII))
4157     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4158       return FD;
4159 
4160   if (!C.getLangOpts().CPlusPlus)
4161     return nullptr;
4162 
4163   // Demangle the premangled name from getTerminateFn()
4164   IdentifierInfo &CXXII =
4165       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4166           ? C.Idents.get("terminate")
4167           : C.Idents.get(Name);
4168 
4169   for (const auto &N : {"__cxxabiv1", "std"}) {
4170     IdentifierInfo &NS = C.Idents.get(N);
4171     for (const auto *Result : DC->lookup(&NS)) {
4172       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4173       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4174         for (const auto *Result : LSD->lookup(&NS))
4175           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4176             break;
4177 
4178       if (ND)
4179         for (const auto *Result : ND->lookup(&CXXII))
4180           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4181             return FD;
4182     }
4183   }
4184 
4185   return nullptr;
4186 }
4187 
4188 /// CreateRuntimeFunction - Create a new runtime function with the specified
4189 /// type and name.
4190 llvm::FunctionCallee
4191 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4192                                      llvm::AttributeList ExtraAttrs, bool Local,
4193                                      bool AssumeConvergent) {
4194   if (AssumeConvergent) {
4195     ExtraAttrs =
4196         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4197   }
4198 
4199   llvm::Constant *C =
4200       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4201                               /*DontDefer=*/false, /*IsThunk=*/false,
4202                               ExtraAttrs);
4203 
4204   if (auto *F = dyn_cast<llvm::Function>(C)) {
4205     if (F->empty()) {
4206       F->setCallingConv(getRuntimeCC());
4207 
4208       // In Windows Itanium environments, try to mark runtime functions
4209       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4210       // will link their standard library statically or dynamically. Marking
4211       // functions imported when they are not imported can cause linker errors
4212       // and warnings.
4213       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4214           !getCodeGenOpts().LTOVisibilityPublicStd) {
4215         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4216         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4217           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4218           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4219         }
4220       }
4221       setDSOLocal(F);
4222     }
4223   }
4224 
4225   return {FTy, C};
4226 }
4227 
4228 /// isTypeConstant - Determine whether an object of this type can be emitted
4229 /// as a constant.
4230 ///
4231 /// If ExcludeCtor is true, the duration when the object's constructor runs
4232 /// will not be considered. The caller will need to verify that the object is
4233 /// not written to during its construction.
4234 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4235   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4236     return false;
4237 
4238   if (Context.getLangOpts().CPlusPlus) {
4239     if (const CXXRecordDecl *Record
4240           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4241       return ExcludeCtor && !Record->hasMutableFields() &&
4242              Record->hasTrivialDestructor();
4243   }
4244 
4245   return true;
4246 }
4247 
4248 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4249 /// create and return an llvm GlobalVariable with the specified type and address
4250 /// space. If there is something in the module with the specified name, return
4251 /// it potentially bitcasted to the right type.
4252 ///
4253 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4254 /// to set the attributes on the global when it is first created.
4255 ///
4256 /// If IsForDefinition is true, it is guaranteed that an actual global with
4257 /// type Ty will be returned, not conversion of a variable with the same
4258 /// mangled name but some other type.
4259 llvm::Constant *
4260 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4261                                      LangAS AddrSpace, const VarDecl *D,
4262                                      ForDefinition_t IsForDefinition) {
4263   // Lookup the entry, lazily creating it if necessary.
4264   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4265   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4266   if (Entry) {
4267     if (WeakRefReferences.erase(Entry)) {
4268       if (D && !D->hasAttr<WeakAttr>())
4269         Entry->setLinkage(llvm::Function::ExternalLinkage);
4270     }
4271 
4272     // Handle dropped DLL attributes.
4273     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4274         !shouldMapVisibilityToDLLExport(D))
4275       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4276 
4277     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4278       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4279 
4280     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4281       return Entry;
4282 
4283     // If there are two attempts to define the same mangled name, issue an
4284     // error.
4285     if (IsForDefinition && !Entry->isDeclaration()) {
4286       GlobalDecl OtherGD;
4287       const VarDecl *OtherD;
4288 
4289       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4290       // to make sure that we issue an error only once.
4291       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4292           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4293           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4294           OtherD->hasInit() &&
4295           DiagnosedConflictingDefinitions.insert(D).second) {
4296         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4297             << MangledName;
4298         getDiags().Report(OtherGD.getDecl()->getLocation(),
4299                           diag::note_previous_definition);
4300       }
4301     }
4302 
4303     // Make sure the result is of the correct type.
4304     if (Entry->getType()->getAddressSpace() != TargetAS) {
4305       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4306                                                   Ty->getPointerTo(TargetAS));
4307     }
4308 
4309     // (If global is requested for a definition, we always need to create a new
4310     // global, not just return a bitcast.)
4311     if (!IsForDefinition)
4312       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4313   }
4314 
4315   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4316 
4317   auto *GV = new llvm::GlobalVariable(
4318       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4319       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4320       getContext().getTargetAddressSpace(DAddrSpace));
4321 
4322   // If we already created a global with the same mangled name (but different
4323   // type) before, take its name and remove it from its parent.
4324   if (Entry) {
4325     GV->takeName(Entry);
4326 
4327     if (!Entry->use_empty()) {
4328       llvm::Constant *NewPtrForOldDecl =
4329           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4330       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4331     }
4332 
4333     Entry->eraseFromParent();
4334   }
4335 
4336   // This is the first use or definition of a mangled name.  If there is a
4337   // deferred decl with this name, remember that we need to emit it at the end
4338   // of the file.
4339   auto DDI = DeferredDecls.find(MangledName);
4340   if (DDI != DeferredDecls.end()) {
4341     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4342     // list, and remove it from DeferredDecls (since we don't need it anymore).
4343     addDeferredDeclToEmit(DDI->second);
4344     EmittedDeferredDecls[DDI->first] = DDI->second;
4345     DeferredDecls.erase(DDI);
4346   }
4347 
4348   // Handle things which are present even on external declarations.
4349   if (D) {
4350     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4351       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4352 
4353     // FIXME: This code is overly simple and should be merged with other global
4354     // handling.
4355     GV->setConstant(isTypeConstant(D->getType(), false));
4356 
4357     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4358 
4359     setLinkageForGV(GV, D);
4360 
4361     if (D->getTLSKind()) {
4362       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4363         CXXThreadLocals.push_back(D);
4364       setTLSMode(GV, *D);
4365     }
4366 
4367     setGVProperties(GV, D);
4368 
4369     // If required by the ABI, treat declarations of static data members with
4370     // inline initializers as definitions.
4371     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4372       EmitGlobalVarDefinition(D);
4373     }
4374 
4375     // Emit section information for extern variables.
4376     if (D->hasExternalStorage()) {
4377       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4378         GV->setSection(SA->getName());
4379     }
4380 
4381     // Handle XCore specific ABI requirements.
4382     if (getTriple().getArch() == llvm::Triple::xcore &&
4383         D->getLanguageLinkage() == CLanguageLinkage &&
4384         D->getType().isConstant(Context) &&
4385         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4386       GV->setSection(".cp.rodata");
4387 
4388     // Check if we a have a const declaration with an initializer, we may be
4389     // able to emit it as available_externally to expose it's value to the
4390     // optimizer.
4391     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4392         D->getType().isConstQualified() && !GV->hasInitializer() &&
4393         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4394       const auto *Record =
4395           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4396       bool HasMutableFields = Record && Record->hasMutableFields();
4397       if (!HasMutableFields) {
4398         const VarDecl *InitDecl;
4399         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4400         if (InitExpr) {
4401           ConstantEmitter emitter(*this);
4402           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4403           if (Init) {
4404             auto *InitType = Init->getType();
4405             if (GV->getValueType() != InitType) {
4406               // The type of the initializer does not match the definition.
4407               // This happens when an initializer has a different type from
4408               // the type of the global (because of padding at the end of a
4409               // structure for instance).
4410               GV->setName(StringRef());
4411               // Make a new global with the correct type, this is now guaranteed
4412               // to work.
4413               auto *NewGV = cast<llvm::GlobalVariable>(
4414                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4415                       ->stripPointerCasts());
4416 
4417               // Erase the old global, since it is no longer used.
4418               GV->eraseFromParent();
4419               GV = NewGV;
4420             } else {
4421               GV->setInitializer(Init);
4422               GV->setConstant(true);
4423               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4424             }
4425             emitter.finalize(GV);
4426           }
4427         }
4428       }
4429     }
4430   }
4431 
4432   if (GV->isDeclaration()) {
4433     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4434     // External HIP managed variables needed to be recorded for transformation
4435     // in both device and host compilations.
4436     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4437         D->hasExternalStorage())
4438       getCUDARuntime().handleVarRegistration(D, *GV);
4439   }
4440 
4441   if (D)
4442     SanitizerMD->reportGlobal(GV, *D);
4443 
4444   LangAS ExpectedAS =
4445       D ? D->getType().getAddressSpace()
4446         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4447   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4448   if (DAddrSpace != ExpectedAS) {
4449     return getTargetCodeGenInfo().performAddrSpaceCast(
4450         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4451   }
4452 
4453   return GV;
4454 }
4455 
4456 llvm::Constant *
4457 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4458   const Decl *D = GD.getDecl();
4459 
4460   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4461     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4462                                 /*DontDefer=*/false, IsForDefinition);
4463 
4464   if (isa<CXXMethodDecl>(D)) {
4465     auto FInfo =
4466         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4467     auto Ty = getTypes().GetFunctionType(*FInfo);
4468     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4469                              IsForDefinition);
4470   }
4471 
4472   if (isa<FunctionDecl>(D)) {
4473     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4474     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4475     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4476                              IsForDefinition);
4477   }
4478 
4479   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4480 }
4481 
4482 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4483     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4484     unsigned Alignment) {
4485   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4486   llvm::GlobalVariable *OldGV = nullptr;
4487 
4488   if (GV) {
4489     // Check if the variable has the right type.
4490     if (GV->getValueType() == Ty)
4491       return GV;
4492 
4493     // Because C++ name mangling, the only way we can end up with an already
4494     // existing global with the same name is if it has been declared extern "C".
4495     assert(GV->isDeclaration() && "Declaration has wrong type!");
4496     OldGV = GV;
4497   }
4498 
4499   // Create a new variable.
4500   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4501                                 Linkage, nullptr, Name);
4502 
4503   if (OldGV) {
4504     // Replace occurrences of the old variable if needed.
4505     GV->takeName(OldGV);
4506 
4507     if (!OldGV->use_empty()) {
4508       llvm::Constant *NewPtrForOldDecl =
4509       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4510       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4511     }
4512 
4513     OldGV->eraseFromParent();
4514   }
4515 
4516   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4517       !GV->hasAvailableExternallyLinkage())
4518     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4519 
4520   GV->setAlignment(llvm::MaybeAlign(Alignment));
4521 
4522   return GV;
4523 }
4524 
4525 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4526 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4527 /// then it will be created with the specified type instead of whatever the
4528 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4529 /// that an actual global with type Ty will be returned, not conversion of a
4530 /// variable with the same mangled name but some other type.
4531 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4532                                                   llvm::Type *Ty,
4533                                            ForDefinition_t IsForDefinition) {
4534   assert(D->hasGlobalStorage() && "Not a global variable");
4535   QualType ASTTy = D->getType();
4536   if (!Ty)
4537     Ty = getTypes().ConvertTypeForMem(ASTTy);
4538 
4539   StringRef MangledName = getMangledName(D);
4540   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4541                                IsForDefinition);
4542 }
4543 
4544 /// CreateRuntimeVariable - Create a new runtime global variable with the
4545 /// specified type and name.
4546 llvm::Constant *
4547 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4548                                      StringRef Name) {
4549   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4550                                                        : LangAS::Default;
4551   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4552   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4553   return Ret;
4554 }
4555 
4556 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4557   assert(!D->getInit() && "Cannot emit definite definitions here!");
4558 
4559   StringRef MangledName = getMangledName(D);
4560   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4561 
4562   // We already have a definition, not declaration, with the same mangled name.
4563   // Emitting of declaration is not required (and actually overwrites emitted
4564   // definition).
4565   if (GV && !GV->isDeclaration())
4566     return;
4567 
4568   // If we have not seen a reference to this variable yet, place it into the
4569   // deferred declarations table to be emitted if needed later.
4570   if (!MustBeEmitted(D) && !GV) {
4571       DeferredDecls[MangledName] = D;
4572       return;
4573   }
4574 
4575   // The tentative definition is the only definition.
4576   EmitGlobalVarDefinition(D);
4577 }
4578 
4579 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4580   EmitExternalVarDeclaration(D);
4581 }
4582 
4583 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4584   return Context.toCharUnitsFromBits(
4585       getDataLayout().getTypeStoreSizeInBits(Ty));
4586 }
4587 
4588 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4589   if (LangOpts.OpenCL) {
4590     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4591     assert(AS == LangAS::opencl_global ||
4592            AS == LangAS::opencl_global_device ||
4593            AS == LangAS::opencl_global_host ||
4594            AS == LangAS::opencl_constant ||
4595            AS == LangAS::opencl_local ||
4596            AS >= LangAS::FirstTargetAddressSpace);
4597     return AS;
4598   }
4599 
4600   if (LangOpts.SYCLIsDevice &&
4601       (!D || D->getType().getAddressSpace() == LangAS::Default))
4602     return LangAS::sycl_global;
4603 
4604   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4605     if (D && D->hasAttr<CUDAConstantAttr>())
4606       return LangAS::cuda_constant;
4607     else if (D && D->hasAttr<CUDASharedAttr>())
4608       return LangAS::cuda_shared;
4609     else if (D && D->hasAttr<CUDADeviceAttr>())
4610       return LangAS::cuda_device;
4611     else if (D && D->getType().isConstQualified())
4612       return LangAS::cuda_constant;
4613     else
4614       return LangAS::cuda_device;
4615   }
4616 
4617   if (LangOpts.OpenMP) {
4618     LangAS AS;
4619     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4620       return AS;
4621   }
4622   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4623 }
4624 
4625 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4626   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4627   if (LangOpts.OpenCL)
4628     return LangAS::opencl_constant;
4629   if (LangOpts.SYCLIsDevice)
4630     return LangAS::sycl_global;
4631   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4632     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4633     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4634     // with OpVariable instructions with Generic storage class which is not
4635     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4636     // UniformConstant storage class is not viable as pointers to it may not be
4637     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4638     return LangAS::cuda_device;
4639   if (auto AS = getTarget().getConstantAddressSpace())
4640     return *AS;
4641   return LangAS::Default;
4642 }
4643 
4644 // In address space agnostic languages, string literals are in default address
4645 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4646 // emitted in constant address space in LLVM IR. To be consistent with other
4647 // parts of AST, string literal global variables in constant address space
4648 // need to be casted to default address space before being put into address
4649 // map and referenced by other part of CodeGen.
4650 // In OpenCL, string literals are in constant address space in AST, therefore
4651 // they should not be casted to default address space.
4652 static llvm::Constant *
4653 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4654                                        llvm::GlobalVariable *GV) {
4655   llvm::Constant *Cast = GV;
4656   if (!CGM.getLangOpts().OpenCL) {
4657     auto AS = CGM.GetGlobalConstantAddressSpace();
4658     if (AS != LangAS::Default)
4659       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4660           CGM, GV, AS, LangAS::Default,
4661           GV->getValueType()->getPointerTo(
4662               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4663   }
4664   return Cast;
4665 }
4666 
4667 template<typename SomeDecl>
4668 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4669                                                llvm::GlobalValue *GV) {
4670   if (!getLangOpts().CPlusPlus)
4671     return;
4672 
4673   // Must have 'used' attribute, or else inline assembly can't rely on
4674   // the name existing.
4675   if (!D->template hasAttr<UsedAttr>())
4676     return;
4677 
4678   // Must have internal linkage and an ordinary name.
4679   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4680     return;
4681 
4682   // Must be in an extern "C" context. Entities declared directly within
4683   // a record are not extern "C" even if the record is in such a context.
4684   const SomeDecl *First = D->getFirstDecl();
4685   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4686     return;
4687 
4688   // OK, this is an internal linkage entity inside an extern "C" linkage
4689   // specification. Make a note of that so we can give it the "expected"
4690   // mangled name if nothing else is using that name.
4691   std::pair<StaticExternCMap::iterator, bool> R =
4692       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4693 
4694   // If we have multiple internal linkage entities with the same name
4695   // in extern "C" regions, none of them gets that name.
4696   if (!R.second)
4697     R.first->second = nullptr;
4698 }
4699 
4700 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4701   if (!CGM.supportsCOMDAT())
4702     return false;
4703 
4704   if (D.hasAttr<SelectAnyAttr>())
4705     return true;
4706 
4707   GVALinkage Linkage;
4708   if (auto *VD = dyn_cast<VarDecl>(&D))
4709     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4710   else
4711     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4712 
4713   switch (Linkage) {
4714   case GVA_Internal:
4715   case GVA_AvailableExternally:
4716   case GVA_StrongExternal:
4717     return false;
4718   case GVA_DiscardableODR:
4719   case GVA_StrongODR:
4720     return true;
4721   }
4722   llvm_unreachable("No such linkage");
4723 }
4724 
4725 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4726                                           llvm::GlobalObject &GO) {
4727   if (!shouldBeInCOMDAT(*this, D))
4728     return;
4729   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4730 }
4731 
4732 /// Pass IsTentative as true if you want to create a tentative definition.
4733 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4734                                             bool IsTentative) {
4735   // OpenCL global variables of sampler type are translated to function calls,
4736   // therefore no need to be translated.
4737   QualType ASTTy = D->getType();
4738   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4739     return;
4740 
4741   // If this is OpenMP device, check if it is legal to emit this global
4742   // normally.
4743   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4744       OpenMPRuntime->emitTargetGlobalVariable(D))
4745     return;
4746 
4747   llvm::TrackingVH<llvm::Constant> Init;
4748   bool NeedsGlobalCtor = false;
4749   bool NeedsGlobalDtor =
4750       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4751 
4752   const VarDecl *InitDecl;
4753   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4754 
4755   Optional<ConstantEmitter> emitter;
4756 
4757   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4758   // as part of their declaration."  Sema has already checked for
4759   // error cases, so we just need to set Init to UndefValue.
4760   bool IsCUDASharedVar =
4761       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4762   // Shadows of initialized device-side global variables are also left
4763   // undefined.
4764   // Managed Variables should be initialized on both host side and device side.
4765   bool IsCUDAShadowVar =
4766       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4767       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4768        D->hasAttr<CUDASharedAttr>());
4769   bool IsCUDADeviceShadowVar =
4770       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4771       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4772        D->getType()->isCUDADeviceBuiltinTextureType());
4773   if (getLangOpts().CUDA &&
4774       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4775     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4776   else if (D->hasAttr<LoaderUninitializedAttr>())
4777     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4778   else if (!InitExpr) {
4779     // This is a tentative definition; tentative definitions are
4780     // implicitly initialized with { 0 }.
4781     //
4782     // Note that tentative definitions are only emitted at the end of
4783     // a translation unit, so they should never have incomplete
4784     // type. In addition, EmitTentativeDefinition makes sure that we
4785     // never attempt to emit a tentative definition if a real one
4786     // exists. A use may still exists, however, so we still may need
4787     // to do a RAUW.
4788     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4789     Init = EmitNullConstant(D->getType());
4790   } else {
4791     initializedGlobalDecl = GlobalDecl(D);
4792     emitter.emplace(*this);
4793     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4794     if (!Initializer) {
4795       QualType T = InitExpr->getType();
4796       if (D->getType()->isReferenceType())
4797         T = D->getType();
4798 
4799       if (getLangOpts().CPlusPlus) {
4800         if (InitDecl->hasFlexibleArrayInit(getContext()))
4801           ErrorUnsupported(D, "flexible array initializer");
4802         Init = EmitNullConstant(T);
4803         NeedsGlobalCtor = true;
4804       } else {
4805         ErrorUnsupported(D, "static initializer");
4806         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4807       }
4808     } else {
4809       Init = Initializer;
4810       // We don't need an initializer, so remove the entry for the delayed
4811       // initializer position (just in case this entry was delayed) if we
4812       // also don't need to register a destructor.
4813       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4814         DelayedCXXInitPosition.erase(D);
4815 
4816 #ifndef NDEBUG
4817       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4818                           InitDecl->getFlexibleArrayInitChars(getContext());
4819       CharUnits CstSize = CharUnits::fromQuantity(
4820           getDataLayout().getTypeAllocSize(Init->getType()));
4821       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4822 #endif
4823     }
4824   }
4825 
4826   llvm::Type* InitType = Init->getType();
4827   llvm::Constant *Entry =
4828       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4829 
4830   // Strip off pointer casts if we got them.
4831   Entry = Entry->stripPointerCasts();
4832 
4833   // Entry is now either a Function or GlobalVariable.
4834   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4835 
4836   // We have a definition after a declaration with the wrong type.
4837   // We must make a new GlobalVariable* and update everything that used OldGV
4838   // (a declaration or tentative definition) with the new GlobalVariable*
4839   // (which will be a definition).
4840   //
4841   // This happens if there is a prototype for a global (e.g.
4842   // "extern int x[];") and then a definition of a different type (e.g.
4843   // "int x[10];"). This also happens when an initializer has a different type
4844   // from the type of the global (this happens with unions).
4845   if (!GV || GV->getValueType() != InitType ||
4846       GV->getType()->getAddressSpace() !=
4847           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4848 
4849     // Move the old entry aside so that we'll create a new one.
4850     Entry->setName(StringRef());
4851 
4852     // Make a new global with the correct type, this is now guaranteed to work.
4853     GV = cast<llvm::GlobalVariable>(
4854         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4855             ->stripPointerCasts());
4856 
4857     // Replace all uses of the old global with the new global
4858     llvm::Constant *NewPtrForOldDecl =
4859         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4860                                                              Entry->getType());
4861     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4862 
4863     // Erase the old global, since it is no longer used.
4864     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4865   }
4866 
4867   MaybeHandleStaticInExternC(D, GV);
4868 
4869   if (D->hasAttr<AnnotateAttr>())
4870     AddGlobalAnnotations(D, GV);
4871 
4872   // Set the llvm linkage type as appropriate.
4873   llvm::GlobalValue::LinkageTypes Linkage =
4874       getLLVMLinkageVarDefinition(D, GV->isConstant());
4875 
4876   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4877   // the device. [...]"
4878   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4879   // __device__, declares a variable that: [...]
4880   // Is accessible from all the threads within the grid and from the host
4881   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4882   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4883   if (GV && LangOpts.CUDA) {
4884     if (LangOpts.CUDAIsDevice) {
4885       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4886           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4887            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4888            D->getType()->isCUDADeviceBuiltinTextureType()))
4889         GV->setExternallyInitialized(true);
4890     } else {
4891       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4892     }
4893     getCUDARuntime().handleVarRegistration(D, *GV);
4894   }
4895 
4896   GV->setInitializer(Init);
4897   if (emitter)
4898     emitter->finalize(GV);
4899 
4900   // If it is safe to mark the global 'constant', do so now.
4901   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4902                   isTypeConstant(D->getType(), true));
4903 
4904   // If it is in a read-only section, mark it 'constant'.
4905   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4906     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4907     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4908       GV->setConstant(true);
4909   }
4910 
4911   CharUnits AlignVal = getContext().getDeclAlign(D);
4912   // Check for alignment specifed in an 'omp allocate' directive.
4913   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4914           getOMPAllocateAlignment(D))
4915     AlignVal = *AlignValFromAllocate;
4916   GV->setAlignment(AlignVal.getAsAlign());
4917 
4918   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4919   // function is only defined alongside the variable, not also alongside
4920   // callers. Normally, all accesses to a thread_local go through the
4921   // thread-wrapper in order to ensure initialization has occurred, underlying
4922   // variable will never be used other than the thread-wrapper, so it can be
4923   // converted to internal linkage.
4924   //
4925   // However, if the variable has the 'constinit' attribute, it _can_ be
4926   // referenced directly, without calling the thread-wrapper, so the linkage
4927   // must not be changed.
4928   //
4929   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4930   // weak or linkonce, the de-duplication semantics are important to preserve,
4931   // so we don't change the linkage.
4932   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4933       Linkage == llvm::GlobalValue::ExternalLinkage &&
4934       Context.getTargetInfo().getTriple().isOSDarwin() &&
4935       !D->hasAttr<ConstInitAttr>())
4936     Linkage = llvm::GlobalValue::InternalLinkage;
4937 
4938   GV->setLinkage(Linkage);
4939   if (D->hasAttr<DLLImportAttr>())
4940     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4941   else if (D->hasAttr<DLLExportAttr>())
4942     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4943   else
4944     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4945 
4946   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4947     // common vars aren't constant even if declared const.
4948     GV->setConstant(false);
4949     // Tentative definition of global variables may be initialized with
4950     // non-zero null pointers. In this case they should have weak linkage
4951     // since common linkage must have zero initializer and must not have
4952     // explicit section therefore cannot have non-zero initial value.
4953     if (!GV->getInitializer()->isNullValue())
4954       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4955   }
4956 
4957   setNonAliasAttributes(D, GV);
4958 
4959   if (D->getTLSKind() && !GV->isThreadLocal()) {
4960     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4961       CXXThreadLocals.push_back(D);
4962     setTLSMode(GV, *D);
4963   }
4964 
4965   maybeSetTrivialComdat(*D, *GV);
4966 
4967   // Emit the initializer function if necessary.
4968   if (NeedsGlobalCtor || NeedsGlobalDtor)
4969     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4970 
4971   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4972 
4973   // Emit global variable debug information.
4974   if (CGDebugInfo *DI = getModuleDebugInfo())
4975     if (getCodeGenOpts().hasReducedDebugInfo())
4976       DI->EmitGlobalVariable(GV, D);
4977 }
4978 
4979 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4980   if (CGDebugInfo *DI = getModuleDebugInfo())
4981     if (getCodeGenOpts().hasReducedDebugInfo()) {
4982       QualType ASTTy = D->getType();
4983       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4984       llvm::Constant *GV =
4985           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4986       DI->EmitExternalVariable(
4987           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4988     }
4989 }
4990 
4991 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4992                                       CodeGenModule &CGM, const VarDecl *D,
4993                                       bool NoCommon) {
4994   // Don't give variables common linkage if -fno-common was specified unless it
4995   // was overridden by a NoCommon attribute.
4996   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4997     return true;
4998 
4999   // C11 6.9.2/2:
5000   //   A declaration of an identifier for an object that has file scope without
5001   //   an initializer, and without a storage-class specifier or with the
5002   //   storage-class specifier static, constitutes a tentative definition.
5003   if (D->getInit() || D->hasExternalStorage())
5004     return true;
5005 
5006   // A variable cannot be both common and exist in a section.
5007   if (D->hasAttr<SectionAttr>())
5008     return true;
5009 
5010   // A variable cannot be both common and exist in a section.
5011   // We don't try to determine which is the right section in the front-end.
5012   // If no specialized section name is applicable, it will resort to default.
5013   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5014       D->hasAttr<PragmaClangDataSectionAttr>() ||
5015       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5016       D->hasAttr<PragmaClangRodataSectionAttr>())
5017     return true;
5018 
5019   // Thread local vars aren't considered common linkage.
5020   if (D->getTLSKind())
5021     return true;
5022 
5023   // Tentative definitions marked with WeakImportAttr are true definitions.
5024   if (D->hasAttr<WeakImportAttr>())
5025     return true;
5026 
5027   // A variable cannot be both common and exist in a comdat.
5028   if (shouldBeInCOMDAT(CGM, *D))
5029     return true;
5030 
5031   // Declarations with a required alignment do not have common linkage in MSVC
5032   // mode.
5033   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5034     if (D->hasAttr<AlignedAttr>())
5035       return true;
5036     QualType VarType = D->getType();
5037     if (Context.isAlignmentRequired(VarType))
5038       return true;
5039 
5040     if (const auto *RT = VarType->getAs<RecordType>()) {
5041       const RecordDecl *RD = RT->getDecl();
5042       for (const FieldDecl *FD : RD->fields()) {
5043         if (FD->isBitField())
5044           continue;
5045         if (FD->hasAttr<AlignedAttr>())
5046           return true;
5047         if (Context.isAlignmentRequired(FD->getType()))
5048           return true;
5049       }
5050     }
5051   }
5052 
5053   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5054   // common symbols, so symbols with greater alignment requirements cannot be
5055   // common.
5056   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5057   // alignments for common symbols via the aligncomm directive, so this
5058   // restriction only applies to MSVC environments.
5059   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5060       Context.getTypeAlignIfKnown(D->getType()) >
5061           Context.toBits(CharUnits::fromQuantity(32)))
5062     return true;
5063 
5064   return false;
5065 }
5066 
5067 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5068     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5069   if (Linkage == GVA_Internal)
5070     return llvm::Function::InternalLinkage;
5071 
5072   if (D->hasAttr<WeakAttr>())
5073     return llvm::GlobalVariable::WeakAnyLinkage;
5074 
5075   if (const auto *FD = D->getAsFunction())
5076     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5077       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5078 
5079   // We are guaranteed to have a strong definition somewhere else,
5080   // so we can use available_externally linkage.
5081   if (Linkage == GVA_AvailableExternally)
5082     return llvm::GlobalValue::AvailableExternallyLinkage;
5083 
5084   // Note that Apple's kernel linker doesn't support symbol
5085   // coalescing, so we need to avoid linkonce and weak linkages there.
5086   // Normally, this means we just map to internal, but for explicit
5087   // instantiations we'll map to external.
5088 
5089   // In C++, the compiler has to emit a definition in every translation unit
5090   // that references the function.  We should use linkonce_odr because
5091   // a) if all references in this translation unit are optimized away, we
5092   // don't need to codegen it.  b) if the function persists, it needs to be
5093   // merged with other definitions. c) C++ has the ODR, so we know the
5094   // definition is dependable.
5095   if (Linkage == GVA_DiscardableODR)
5096     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5097                                             : llvm::Function::InternalLinkage;
5098 
5099   // An explicit instantiation of a template has weak linkage, since
5100   // explicit instantiations can occur in multiple translation units
5101   // and must all be equivalent. However, we are not allowed to
5102   // throw away these explicit instantiations.
5103   //
5104   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5105   // so say that CUDA templates are either external (for kernels) or internal.
5106   // This lets llvm perform aggressive inter-procedural optimizations. For
5107   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5108   // therefore we need to follow the normal linkage paradigm.
5109   if (Linkage == GVA_StrongODR) {
5110     if (getLangOpts().AppleKext)
5111       return llvm::Function::ExternalLinkage;
5112     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5113         !getLangOpts().GPURelocatableDeviceCode)
5114       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5115                                           : llvm::Function::InternalLinkage;
5116     return llvm::Function::WeakODRLinkage;
5117   }
5118 
5119   // C++ doesn't have tentative definitions and thus cannot have common
5120   // linkage.
5121   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5122       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5123                                  CodeGenOpts.NoCommon))
5124     return llvm::GlobalVariable::CommonLinkage;
5125 
5126   // selectany symbols are externally visible, so use weak instead of
5127   // linkonce.  MSVC optimizes away references to const selectany globals, so
5128   // all definitions should be the same and ODR linkage should be used.
5129   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5130   if (D->hasAttr<SelectAnyAttr>())
5131     return llvm::GlobalVariable::WeakODRLinkage;
5132 
5133   // Otherwise, we have strong external linkage.
5134   assert(Linkage == GVA_StrongExternal);
5135   return llvm::GlobalVariable::ExternalLinkage;
5136 }
5137 
5138 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5139     const VarDecl *VD, bool IsConstant) {
5140   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5141   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5142 }
5143 
5144 /// Replace the uses of a function that was declared with a non-proto type.
5145 /// We want to silently drop extra arguments from call sites
5146 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5147                                           llvm::Function *newFn) {
5148   // Fast path.
5149   if (old->use_empty()) return;
5150 
5151   llvm::Type *newRetTy = newFn->getReturnType();
5152   SmallVector<llvm::Value*, 4> newArgs;
5153 
5154   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5155          ui != ue; ) {
5156     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5157     llvm::User *user = use->getUser();
5158 
5159     // Recognize and replace uses of bitcasts.  Most calls to
5160     // unprototyped functions will use bitcasts.
5161     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5162       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5163         replaceUsesOfNonProtoConstant(bitcast, newFn);
5164       continue;
5165     }
5166 
5167     // Recognize calls to the function.
5168     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5169     if (!callSite) continue;
5170     if (!callSite->isCallee(&*use))
5171       continue;
5172 
5173     // If the return types don't match exactly, then we can't
5174     // transform this call unless it's dead.
5175     if (callSite->getType() != newRetTy && !callSite->use_empty())
5176       continue;
5177 
5178     // Get the call site's attribute list.
5179     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5180     llvm::AttributeList oldAttrs = callSite->getAttributes();
5181 
5182     // If the function was passed too few arguments, don't transform.
5183     unsigned newNumArgs = newFn->arg_size();
5184     if (callSite->arg_size() < newNumArgs)
5185       continue;
5186 
5187     // If extra arguments were passed, we silently drop them.
5188     // If any of the types mismatch, we don't transform.
5189     unsigned argNo = 0;
5190     bool dontTransform = false;
5191     for (llvm::Argument &A : newFn->args()) {
5192       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5193         dontTransform = true;
5194         break;
5195       }
5196 
5197       // Add any parameter attributes.
5198       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5199       argNo++;
5200     }
5201     if (dontTransform)
5202       continue;
5203 
5204     // Okay, we can transform this.  Create the new call instruction and copy
5205     // over the required information.
5206     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5207 
5208     // Copy over any operand bundles.
5209     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5210     callSite->getOperandBundlesAsDefs(newBundles);
5211 
5212     llvm::CallBase *newCall;
5213     if (isa<llvm::CallInst>(callSite)) {
5214       newCall =
5215           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5216     } else {
5217       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5218       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5219                                          oldInvoke->getUnwindDest(), newArgs,
5220                                          newBundles, "", callSite);
5221     }
5222     newArgs.clear(); // for the next iteration
5223 
5224     if (!newCall->getType()->isVoidTy())
5225       newCall->takeName(callSite);
5226     newCall->setAttributes(
5227         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5228                                  oldAttrs.getRetAttrs(), newArgAttrs));
5229     newCall->setCallingConv(callSite->getCallingConv());
5230 
5231     // Finally, remove the old call, replacing any uses with the new one.
5232     if (!callSite->use_empty())
5233       callSite->replaceAllUsesWith(newCall);
5234 
5235     // Copy debug location attached to CI.
5236     if (callSite->getDebugLoc())
5237       newCall->setDebugLoc(callSite->getDebugLoc());
5238 
5239     callSite->eraseFromParent();
5240   }
5241 }
5242 
5243 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5244 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5245 /// existing call uses of the old function in the module, this adjusts them to
5246 /// call the new function directly.
5247 ///
5248 /// This is not just a cleanup: the always_inline pass requires direct calls to
5249 /// functions to be able to inline them.  If there is a bitcast in the way, it
5250 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5251 /// run at -O0.
5252 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5253                                                       llvm::Function *NewFn) {
5254   // If we're redefining a global as a function, don't transform it.
5255   if (!isa<llvm::Function>(Old)) return;
5256 
5257   replaceUsesOfNonProtoConstant(Old, NewFn);
5258 }
5259 
5260 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5261   auto DK = VD->isThisDeclarationADefinition();
5262   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5263     return;
5264 
5265   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5266   // If we have a definition, this might be a deferred decl. If the
5267   // instantiation is explicit, make sure we emit it at the end.
5268   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5269     GetAddrOfGlobalVar(VD);
5270 
5271   EmitTopLevelDecl(VD);
5272 }
5273 
5274 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5275                                                  llvm::GlobalValue *GV) {
5276   const auto *D = cast<FunctionDecl>(GD.getDecl());
5277 
5278   // Compute the function info and LLVM type.
5279   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5280   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5281 
5282   // Get or create the prototype for the function.
5283   if (!GV || (GV->getValueType() != Ty))
5284     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5285                                                    /*DontDefer=*/true,
5286                                                    ForDefinition));
5287 
5288   // Already emitted.
5289   if (!GV->isDeclaration())
5290     return;
5291 
5292   // We need to set linkage and visibility on the function before
5293   // generating code for it because various parts of IR generation
5294   // want to propagate this information down (e.g. to local static
5295   // declarations).
5296   auto *Fn = cast<llvm::Function>(GV);
5297   setFunctionLinkage(GD, Fn);
5298 
5299   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5300   setGVProperties(Fn, GD);
5301 
5302   MaybeHandleStaticInExternC(D, Fn);
5303 
5304   maybeSetTrivialComdat(*D, *Fn);
5305 
5306   // Set CodeGen attributes that represent floating point environment.
5307   setLLVMFunctionFEnvAttributes(D, Fn);
5308 
5309   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5310 
5311   setNonAliasAttributes(GD, Fn);
5312   SetLLVMFunctionAttributesForDefinition(D, Fn);
5313 
5314   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5315     AddGlobalCtor(Fn, CA->getPriority());
5316   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5317     AddGlobalDtor(Fn, DA->getPriority(), true);
5318   if (D->hasAttr<AnnotateAttr>())
5319     AddGlobalAnnotations(D, Fn);
5320 }
5321 
5322 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5323   const auto *D = cast<ValueDecl>(GD.getDecl());
5324   const AliasAttr *AA = D->getAttr<AliasAttr>();
5325   assert(AA && "Not an alias?");
5326 
5327   StringRef MangledName = getMangledName(GD);
5328 
5329   if (AA->getAliasee() == MangledName) {
5330     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5331     return;
5332   }
5333 
5334   // If there is a definition in the module, then it wins over the alias.
5335   // This is dubious, but allow it to be safe.  Just ignore the alias.
5336   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5337   if (Entry && !Entry->isDeclaration())
5338     return;
5339 
5340   Aliases.push_back(GD);
5341 
5342   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5343 
5344   // Create a reference to the named value.  This ensures that it is emitted
5345   // if a deferred decl.
5346   llvm::Constant *Aliasee;
5347   llvm::GlobalValue::LinkageTypes LT;
5348   if (isa<llvm::FunctionType>(DeclTy)) {
5349     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5350                                       /*ForVTable=*/false);
5351     LT = getFunctionLinkage(GD);
5352   } else {
5353     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5354                                     /*D=*/nullptr);
5355     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5356       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5357     else
5358       LT = getFunctionLinkage(GD);
5359   }
5360 
5361   // Create the new alias itself, but don't set a name yet.
5362   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5363   auto *GA =
5364       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5365 
5366   if (Entry) {
5367     if (GA->getAliasee() == Entry) {
5368       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5369       return;
5370     }
5371 
5372     assert(Entry->isDeclaration());
5373 
5374     // If there is a declaration in the module, then we had an extern followed
5375     // by the alias, as in:
5376     //   extern int test6();
5377     //   ...
5378     //   int test6() __attribute__((alias("test7")));
5379     //
5380     // Remove it and replace uses of it with the alias.
5381     GA->takeName(Entry);
5382 
5383     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5384                                                           Entry->getType()));
5385     Entry->eraseFromParent();
5386   } else {
5387     GA->setName(MangledName);
5388   }
5389 
5390   // Set attributes which are particular to an alias; this is a
5391   // specialization of the attributes which may be set on a global
5392   // variable/function.
5393   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5394       D->isWeakImported()) {
5395     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5396   }
5397 
5398   if (const auto *VD = dyn_cast<VarDecl>(D))
5399     if (VD->getTLSKind())
5400       setTLSMode(GA, *VD);
5401 
5402   SetCommonAttributes(GD, GA);
5403 
5404   // Emit global alias debug information.
5405   if (isa<VarDecl>(D))
5406     if (CGDebugInfo *DI = getModuleDebugInfo())
5407       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5408 }
5409 
5410 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5411   const auto *D = cast<ValueDecl>(GD.getDecl());
5412   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5413   assert(IFA && "Not an ifunc?");
5414 
5415   StringRef MangledName = getMangledName(GD);
5416 
5417   if (IFA->getResolver() == MangledName) {
5418     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5419     return;
5420   }
5421 
5422   // Report an error if some definition overrides ifunc.
5423   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5424   if (Entry && !Entry->isDeclaration()) {
5425     GlobalDecl OtherGD;
5426     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5427         DiagnosedConflictingDefinitions.insert(GD).second) {
5428       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5429           << MangledName;
5430       Diags.Report(OtherGD.getDecl()->getLocation(),
5431                    diag::note_previous_definition);
5432     }
5433     return;
5434   }
5435 
5436   Aliases.push_back(GD);
5437 
5438   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5439   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5440   llvm::Constant *Resolver =
5441       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5442                               /*ForVTable=*/false);
5443   llvm::GlobalIFunc *GIF =
5444       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5445                                 "", Resolver, &getModule());
5446   if (Entry) {
5447     if (GIF->getResolver() == Entry) {
5448       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5449       return;
5450     }
5451     assert(Entry->isDeclaration());
5452 
5453     // If there is a declaration in the module, then we had an extern followed
5454     // by the ifunc, as in:
5455     //   extern int test();
5456     //   ...
5457     //   int test() __attribute__((ifunc("resolver")));
5458     //
5459     // Remove it and replace uses of it with the ifunc.
5460     GIF->takeName(Entry);
5461 
5462     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5463                                                           Entry->getType()));
5464     Entry->eraseFromParent();
5465   } else
5466     GIF->setName(MangledName);
5467 
5468   SetCommonAttributes(GD, GIF);
5469 }
5470 
5471 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5472                                             ArrayRef<llvm::Type*> Tys) {
5473   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5474                                          Tys);
5475 }
5476 
5477 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5478 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5479                          const StringLiteral *Literal, bool TargetIsLSB,
5480                          bool &IsUTF16, unsigned &StringLength) {
5481   StringRef String = Literal->getString();
5482   unsigned NumBytes = String.size();
5483 
5484   // Check for simple case.
5485   if (!Literal->containsNonAsciiOrNull()) {
5486     StringLength = NumBytes;
5487     return *Map.insert(std::make_pair(String, nullptr)).first;
5488   }
5489 
5490   // Otherwise, convert the UTF8 literals into a string of shorts.
5491   IsUTF16 = true;
5492 
5493   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5494   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5495   llvm::UTF16 *ToPtr = &ToBuf[0];
5496 
5497   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5498                                  ToPtr + NumBytes, llvm::strictConversion);
5499 
5500   // ConvertUTF8toUTF16 returns the length in ToPtr.
5501   StringLength = ToPtr - &ToBuf[0];
5502 
5503   // Add an explicit null.
5504   *ToPtr = 0;
5505   return *Map.insert(std::make_pair(
5506                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5507                                    (StringLength + 1) * 2),
5508                          nullptr)).first;
5509 }
5510 
5511 ConstantAddress
5512 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5513   unsigned StringLength = 0;
5514   bool isUTF16 = false;
5515   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5516       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5517                                getDataLayout().isLittleEndian(), isUTF16,
5518                                StringLength);
5519 
5520   if (auto *C = Entry.second)
5521     return ConstantAddress(
5522         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5523 
5524   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5525   llvm::Constant *Zeros[] = { Zero, Zero };
5526 
5527   const ASTContext &Context = getContext();
5528   const llvm::Triple &Triple = getTriple();
5529 
5530   const auto CFRuntime = getLangOpts().CFRuntime;
5531   const bool IsSwiftABI =
5532       static_cast<unsigned>(CFRuntime) >=
5533       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5534   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5535 
5536   // If we don't already have it, get __CFConstantStringClassReference.
5537   if (!CFConstantStringClassRef) {
5538     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5539     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5540     Ty = llvm::ArrayType::get(Ty, 0);
5541 
5542     switch (CFRuntime) {
5543     default: break;
5544     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5545     case LangOptions::CoreFoundationABI::Swift5_0:
5546       CFConstantStringClassName =
5547           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5548                               : "$s10Foundation19_NSCFConstantStringCN";
5549       Ty = IntPtrTy;
5550       break;
5551     case LangOptions::CoreFoundationABI::Swift4_2:
5552       CFConstantStringClassName =
5553           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5554                               : "$S10Foundation19_NSCFConstantStringCN";
5555       Ty = IntPtrTy;
5556       break;
5557     case LangOptions::CoreFoundationABI::Swift4_1:
5558       CFConstantStringClassName =
5559           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5560                               : "__T010Foundation19_NSCFConstantStringCN";
5561       Ty = IntPtrTy;
5562       break;
5563     }
5564 
5565     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5566 
5567     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5568       llvm::GlobalValue *GV = nullptr;
5569 
5570       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5571         IdentifierInfo &II = Context.Idents.get(GV->getName());
5572         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5573         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5574 
5575         const VarDecl *VD = nullptr;
5576         for (const auto *Result : DC->lookup(&II))
5577           if ((VD = dyn_cast<VarDecl>(Result)))
5578             break;
5579 
5580         if (Triple.isOSBinFormatELF()) {
5581           if (!VD)
5582             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5583         } else {
5584           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5585           if (!VD || !VD->hasAttr<DLLExportAttr>())
5586             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5587           else
5588             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5589         }
5590 
5591         setDSOLocal(GV);
5592       }
5593     }
5594 
5595     // Decay array -> ptr
5596     CFConstantStringClassRef =
5597         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5598                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5599   }
5600 
5601   QualType CFTy = Context.getCFConstantStringType();
5602 
5603   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5604 
5605   ConstantInitBuilder Builder(*this);
5606   auto Fields = Builder.beginStruct(STy);
5607 
5608   // Class pointer.
5609   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5610 
5611   // Flags.
5612   if (IsSwiftABI) {
5613     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5614     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5615   } else {
5616     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5617   }
5618 
5619   // String pointer.
5620   llvm::Constant *C = nullptr;
5621   if (isUTF16) {
5622     auto Arr = llvm::makeArrayRef(
5623         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5624         Entry.first().size() / 2);
5625     C = llvm::ConstantDataArray::get(VMContext, Arr);
5626   } else {
5627     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5628   }
5629 
5630   // Note: -fwritable-strings doesn't make the backing store strings of
5631   // CFStrings writable. (See <rdar://problem/10657500>)
5632   auto *GV =
5633       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5634                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5635   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5636   // Don't enforce the target's minimum global alignment, since the only use
5637   // of the string is via this class initializer.
5638   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5639                             : Context.getTypeAlignInChars(Context.CharTy);
5640   GV->setAlignment(Align.getAsAlign());
5641 
5642   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5643   // Without it LLVM can merge the string with a non unnamed_addr one during
5644   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5645   if (Triple.isOSBinFormatMachO())
5646     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5647                            : "__TEXT,__cstring,cstring_literals");
5648   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5649   // the static linker to adjust permissions to read-only later on.
5650   else if (Triple.isOSBinFormatELF())
5651     GV->setSection(".rodata");
5652 
5653   // String.
5654   llvm::Constant *Str =
5655       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5656 
5657   if (isUTF16)
5658     // Cast the UTF16 string to the correct type.
5659     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5660   Fields.add(Str);
5661 
5662   // String length.
5663   llvm::IntegerType *LengthTy =
5664       llvm::IntegerType::get(getModule().getContext(),
5665                              Context.getTargetInfo().getLongWidth());
5666   if (IsSwiftABI) {
5667     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5668         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5669       LengthTy = Int32Ty;
5670     else
5671       LengthTy = IntPtrTy;
5672   }
5673   Fields.addInt(LengthTy, StringLength);
5674 
5675   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5676   // properly aligned on 32-bit platforms.
5677   CharUnits Alignment =
5678       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5679 
5680   // The struct.
5681   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5682                                     /*isConstant=*/false,
5683                                     llvm::GlobalVariable::PrivateLinkage);
5684   GV->addAttribute("objc_arc_inert");
5685   switch (Triple.getObjectFormat()) {
5686   case llvm::Triple::UnknownObjectFormat:
5687     llvm_unreachable("unknown file format");
5688   case llvm::Triple::DXContainer:
5689   case llvm::Triple::GOFF:
5690   case llvm::Triple::SPIRV:
5691   case llvm::Triple::XCOFF:
5692     llvm_unreachable("unimplemented");
5693   case llvm::Triple::COFF:
5694   case llvm::Triple::ELF:
5695   case llvm::Triple::Wasm:
5696     GV->setSection("cfstring");
5697     break;
5698   case llvm::Triple::MachO:
5699     GV->setSection("__DATA,__cfstring");
5700     break;
5701   }
5702   Entry.second = GV;
5703 
5704   return ConstantAddress(GV, GV->getValueType(), Alignment);
5705 }
5706 
5707 bool CodeGenModule::getExpressionLocationsEnabled() const {
5708   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5709 }
5710 
5711 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5712   if (ObjCFastEnumerationStateType.isNull()) {
5713     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5714     D->startDefinition();
5715 
5716     QualType FieldTypes[] = {
5717       Context.UnsignedLongTy,
5718       Context.getPointerType(Context.getObjCIdType()),
5719       Context.getPointerType(Context.UnsignedLongTy),
5720       Context.getConstantArrayType(Context.UnsignedLongTy,
5721                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5722     };
5723 
5724     for (size_t i = 0; i < 4; ++i) {
5725       FieldDecl *Field = FieldDecl::Create(Context,
5726                                            D,
5727                                            SourceLocation(),
5728                                            SourceLocation(), nullptr,
5729                                            FieldTypes[i], /*TInfo=*/nullptr,
5730                                            /*BitWidth=*/nullptr,
5731                                            /*Mutable=*/false,
5732                                            ICIS_NoInit);
5733       Field->setAccess(AS_public);
5734       D->addDecl(Field);
5735     }
5736 
5737     D->completeDefinition();
5738     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5739   }
5740 
5741   return ObjCFastEnumerationStateType;
5742 }
5743 
5744 llvm::Constant *
5745 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5746   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5747 
5748   // Don't emit it as the address of the string, emit the string data itself
5749   // as an inline array.
5750   if (E->getCharByteWidth() == 1) {
5751     SmallString<64> Str(E->getString());
5752 
5753     // Resize the string to the right size, which is indicated by its type.
5754     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5755     Str.resize(CAT->getSize().getZExtValue());
5756     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5757   }
5758 
5759   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5760   llvm::Type *ElemTy = AType->getElementType();
5761   unsigned NumElements = AType->getNumElements();
5762 
5763   // Wide strings have either 2-byte or 4-byte elements.
5764   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5765     SmallVector<uint16_t, 32> Elements;
5766     Elements.reserve(NumElements);
5767 
5768     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5769       Elements.push_back(E->getCodeUnit(i));
5770     Elements.resize(NumElements);
5771     return llvm::ConstantDataArray::get(VMContext, Elements);
5772   }
5773 
5774   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5775   SmallVector<uint32_t, 32> Elements;
5776   Elements.reserve(NumElements);
5777 
5778   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5779     Elements.push_back(E->getCodeUnit(i));
5780   Elements.resize(NumElements);
5781   return llvm::ConstantDataArray::get(VMContext, Elements);
5782 }
5783 
5784 static llvm::GlobalVariable *
5785 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5786                       CodeGenModule &CGM, StringRef GlobalName,
5787                       CharUnits Alignment) {
5788   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5789       CGM.GetGlobalConstantAddressSpace());
5790 
5791   llvm::Module &M = CGM.getModule();
5792   // Create a global variable for this string
5793   auto *GV = new llvm::GlobalVariable(
5794       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5795       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5796   GV->setAlignment(Alignment.getAsAlign());
5797   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5798   if (GV->isWeakForLinker()) {
5799     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5800     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5801   }
5802   CGM.setDSOLocal(GV);
5803 
5804   return GV;
5805 }
5806 
5807 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5808 /// constant array for the given string literal.
5809 ConstantAddress
5810 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5811                                                   StringRef Name) {
5812   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5813 
5814   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5815   llvm::GlobalVariable **Entry = nullptr;
5816   if (!LangOpts.WritableStrings) {
5817     Entry = &ConstantStringMap[C];
5818     if (auto GV = *Entry) {
5819       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5820         GV->setAlignment(Alignment.getAsAlign());
5821       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5822                              GV->getValueType(), Alignment);
5823     }
5824   }
5825 
5826   SmallString<256> MangledNameBuffer;
5827   StringRef GlobalVariableName;
5828   llvm::GlobalValue::LinkageTypes LT;
5829 
5830   // Mangle the string literal if that's how the ABI merges duplicate strings.
5831   // Don't do it if they are writable, since we don't want writes in one TU to
5832   // affect strings in another.
5833   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5834       !LangOpts.WritableStrings) {
5835     llvm::raw_svector_ostream Out(MangledNameBuffer);
5836     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5837     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5838     GlobalVariableName = MangledNameBuffer;
5839   } else {
5840     LT = llvm::GlobalValue::PrivateLinkage;
5841     GlobalVariableName = Name;
5842   }
5843 
5844   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5845 
5846   CGDebugInfo *DI = getModuleDebugInfo();
5847   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5848     DI->AddStringLiteralDebugInfo(GV, S);
5849 
5850   if (Entry)
5851     *Entry = GV;
5852 
5853   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5854 
5855   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5856                          GV->getValueType(), Alignment);
5857 }
5858 
5859 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5860 /// array for the given ObjCEncodeExpr node.
5861 ConstantAddress
5862 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5863   std::string Str;
5864   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5865 
5866   return GetAddrOfConstantCString(Str);
5867 }
5868 
5869 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5870 /// the literal and a terminating '\0' character.
5871 /// The result has pointer to array type.
5872 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5873     const std::string &Str, const char *GlobalName) {
5874   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5875   CharUnits Alignment =
5876     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5877 
5878   llvm::Constant *C =
5879       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5880 
5881   // Don't share any string literals if strings aren't constant.
5882   llvm::GlobalVariable **Entry = nullptr;
5883   if (!LangOpts.WritableStrings) {
5884     Entry = &ConstantStringMap[C];
5885     if (auto GV = *Entry) {
5886       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5887         GV->setAlignment(Alignment.getAsAlign());
5888       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5889                              GV->getValueType(), Alignment);
5890     }
5891   }
5892 
5893   // Get the default prefix if a name wasn't specified.
5894   if (!GlobalName)
5895     GlobalName = ".str";
5896   // Create a global variable for this.
5897   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5898                                   GlobalName, Alignment);
5899   if (Entry)
5900     *Entry = GV;
5901 
5902   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5903                          GV->getValueType(), Alignment);
5904 }
5905 
5906 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5907     const MaterializeTemporaryExpr *E, const Expr *Init) {
5908   assert((E->getStorageDuration() == SD_Static ||
5909           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5910   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5911 
5912   // If we're not materializing a subobject of the temporary, keep the
5913   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5914   QualType MaterializedType = Init->getType();
5915   if (Init == E->getSubExpr())
5916     MaterializedType = E->getType();
5917 
5918   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5919 
5920   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5921   if (!InsertResult.second) {
5922     // We've seen this before: either we already created it or we're in the
5923     // process of doing so.
5924     if (!InsertResult.first->second) {
5925       // We recursively re-entered this function, probably during emission of
5926       // the initializer. Create a placeholder. We'll clean this up in the
5927       // outer call, at the end of this function.
5928       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5929       InsertResult.first->second = new llvm::GlobalVariable(
5930           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5931           nullptr);
5932     }
5933     return ConstantAddress(InsertResult.first->second,
5934                            llvm::cast<llvm::GlobalVariable>(
5935                                InsertResult.first->second->stripPointerCasts())
5936                                ->getValueType(),
5937                            Align);
5938   }
5939 
5940   // FIXME: If an externally-visible declaration extends multiple temporaries,
5941   // we need to give each temporary the same name in every translation unit (and
5942   // we also need to make the temporaries externally-visible).
5943   SmallString<256> Name;
5944   llvm::raw_svector_ostream Out(Name);
5945   getCXXABI().getMangleContext().mangleReferenceTemporary(
5946       VD, E->getManglingNumber(), Out);
5947 
5948   APValue *Value = nullptr;
5949   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5950     // If the initializer of the extending declaration is a constant
5951     // initializer, we should have a cached constant initializer for this
5952     // temporary. Note that this might have a different value from the value
5953     // computed by evaluating the initializer if the surrounding constant
5954     // expression modifies the temporary.
5955     Value = E->getOrCreateValue(false);
5956   }
5957 
5958   // Try evaluating it now, it might have a constant initializer.
5959   Expr::EvalResult EvalResult;
5960   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5961       !EvalResult.hasSideEffects())
5962     Value = &EvalResult.Val;
5963 
5964   LangAS AddrSpace =
5965       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5966 
5967   Optional<ConstantEmitter> emitter;
5968   llvm::Constant *InitialValue = nullptr;
5969   bool Constant = false;
5970   llvm::Type *Type;
5971   if (Value) {
5972     // The temporary has a constant initializer, use it.
5973     emitter.emplace(*this);
5974     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5975                                                MaterializedType);
5976     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5977     Type = InitialValue->getType();
5978   } else {
5979     // No initializer, the initialization will be provided when we
5980     // initialize the declaration which performed lifetime extension.
5981     Type = getTypes().ConvertTypeForMem(MaterializedType);
5982   }
5983 
5984   // Create a global variable for this lifetime-extended temporary.
5985   llvm::GlobalValue::LinkageTypes Linkage =
5986       getLLVMLinkageVarDefinition(VD, Constant);
5987   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5988     const VarDecl *InitVD;
5989     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5990         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5991       // Temporaries defined inside a class get linkonce_odr linkage because the
5992       // class can be defined in multiple translation units.
5993       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5994     } else {
5995       // There is no need for this temporary to have external linkage if the
5996       // VarDecl has external linkage.
5997       Linkage = llvm::GlobalVariable::InternalLinkage;
5998     }
5999   }
6000   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6001   auto *GV = new llvm::GlobalVariable(
6002       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6003       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6004   if (emitter) emitter->finalize(GV);
6005   setGVProperties(GV, VD);
6006   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6007     // The reference temporary should never be dllexport.
6008     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6009   GV->setAlignment(Align.getAsAlign());
6010   if (supportsCOMDAT() && GV->isWeakForLinker())
6011     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6012   if (VD->getTLSKind())
6013     setTLSMode(GV, *VD);
6014   llvm::Constant *CV = GV;
6015   if (AddrSpace != LangAS::Default)
6016     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6017         *this, GV, AddrSpace, LangAS::Default,
6018         Type->getPointerTo(
6019             getContext().getTargetAddressSpace(LangAS::Default)));
6020 
6021   // Update the map with the new temporary. If we created a placeholder above,
6022   // replace it with the new global now.
6023   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6024   if (Entry) {
6025     Entry->replaceAllUsesWith(
6026         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6027     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6028   }
6029   Entry = CV;
6030 
6031   return ConstantAddress(CV, Type, Align);
6032 }
6033 
6034 /// EmitObjCPropertyImplementations - Emit information for synthesized
6035 /// properties for an implementation.
6036 void CodeGenModule::EmitObjCPropertyImplementations(const
6037                                                     ObjCImplementationDecl *D) {
6038   for (const auto *PID : D->property_impls()) {
6039     // Dynamic is just for type-checking.
6040     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6041       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6042 
6043       // Determine which methods need to be implemented, some may have
6044       // been overridden. Note that ::isPropertyAccessor is not the method
6045       // we want, that just indicates if the decl came from a
6046       // property. What we want to know is if the method is defined in
6047       // this implementation.
6048       auto *Getter = PID->getGetterMethodDecl();
6049       if (!Getter || Getter->isSynthesizedAccessorStub())
6050         CodeGenFunction(*this).GenerateObjCGetter(
6051             const_cast<ObjCImplementationDecl *>(D), PID);
6052       auto *Setter = PID->getSetterMethodDecl();
6053       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6054         CodeGenFunction(*this).GenerateObjCSetter(
6055                                  const_cast<ObjCImplementationDecl *>(D), PID);
6056     }
6057   }
6058 }
6059 
6060 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6061   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6062   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6063        ivar; ivar = ivar->getNextIvar())
6064     if (ivar->getType().isDestructedType())
6065       return true;
6066 
6067   return false;
6068 }
6069 
6070 static bool AllTrivialInitializers(CodeGenModule &CGM,
6071                                    ObjCImplementationDecl *D) {
6072   CodeGenFunction CGF(CGM);
6073   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6074        E = D->init_end(); B != E; ++B) {
6075     CXXCtorInitializer *CtorInitExp = *B;
6076     Expr *Init = CtorInitExp->getInit();
6077     if (!CGF.isTrivialInitializer(Init))
6078       return false;
6079   }
6080   return true;
6081 }
6082 
6083 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6084 /// for an implementation.
6085 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6086   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6087   if (needsDestructMethod(D)) {
6088     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6089     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6090     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6091         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6092         getContext().VoidTy, nullptr, D,
6093         /*isInstance=*/true, /*isVariadic=*/false,
6094         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6095         /*isImplicitlyDeclared=*/true,
6096         /*isDefined=*/false, ObjCMethodDecl::Required);
6097     D->addInstanceMethod(DTORMethod);
6098     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6099     D->setHasDestructors(true);
6100   }
6101 
6102   // If the implementation doesn't have any ivar initializers, we don't need
6103   // a .cxx_construct.
6104   if (D->getNumIvarInitializers() == 0 ||
6105       AllTrivialInitializers(*this, D))
6106     return;
6107 
6108   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6109   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6110   // The constructor returns 'self'.
6111   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6112       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6113       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6114       /*isVariadic=*/false,
6115       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6116       /*isImplicitlyDeclared=*/true,
6117       /*isDefined=*/false, ObjCMethodDecl::Required);
6118   D->addInstanceMethod(CTORMethod);
6119   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6120   D->setHasNonZeroConstructors(true);
6121 }
6122 
6123 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6124 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6125   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6126       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6127     ErrorUnsupported(LSD, "linkage spec");
6128     return;
6129   }
6130 
6131   EmitDeclContext(LSD);
6132 }
6133 
6134 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6135   for (auto *I : DC->decls()) {
6136     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6137     // are themselves considered "top-level", so EmitTopLevelDecl on an
6138     // ObjCImplDecl does not recursively visit them. We need to do that in
6139     // case they're nested inside another construct (LinkageSpecDecl /
6140     // ExportDecl) that does stop them from being considered "top-level".
6141     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6142       for (auto *M : OID->methods())
6143         EmitTopLevelDecl(M);
6144     }
6145 
6146     EmitTopLevelDecl(I);
6147   }
6148 }
6149 
6150 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6151 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6152   // Ignore dependent declarations.
6153   if (D->isTemplated())
6154     return;
6155 
6156   // Consteval function shouldn't be emitted.
6157   if (auto *FD = dyn_cast<FunctionDecl>(D))
6158     if (FD->isConsteval())
6159       return;
6160 
6161   switch (D->getKind()) {
6162   case Decl::CXXConversion:
6163   case Decl::CXXMethod:
6164   case Decl::Function:
6165     EmitGlobal(cast<FunctionDecl>(D));
6166     // Always provide some coverage mapping
6167     // even for the functions that aren't emitted.
6168     AddDeferredUnusedCoverageMapping(D);
6169     break;
6170 
6171   case Decl::CXXDeductionGuide:
6172     // Function-like, but does not result in code emission.
6173     break;
6174 
6175   case Decl::Var:
6176   case Decl::Decomposition:
6177   case Decl::VarTemplateSpecialization:
6178     EmitGlobal(cast<VarDecl>(D));
6179     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6180       for (auto *B : DD->bindings())
6181         if (auto *HD = B->getHoldingVar())
6182           EmitGlobal(HD);
6183     break;
6184 
6185   // Indirect fields from global anonymous structs and unions can be
6186   // ignored; only the actual variable requires IR gen support.
6187   case Decl::IndirectField:
6188     break;
6189 
6190   // C++ Decls
6191   case Decl::Namespace:
6192     EmitDeclContext(cast<NamespaceDecl>(D));
6193     break;
6194   case Decl::ClassTemplateSpecialization: {
6195     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6196     if (CGDebugInfo *DI = getModuleDebugInfo())
6197       if (Spec->getSpecializationKind() ==
6198               TSK_ExplicitInstantiationDefinition &&
6199           Spec->hasDefinition())
6200         DI->completeTemplateDefinition(*Spec);
6201   } [[fallthrough]];
6202   case Decl::CXXRecord: {
6203     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6204     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6205       if (CRD->hasDefinition())
6206         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6207       if (auto *ES = D->getASTContext().getExternalSource())
6208         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6209           DI->completeUnusedClass(*CRD);
6210     }
6211     // Emit any static data members, they may be definitions.
6212     for (auto *I : CRD->decls())
6213       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6214         EmitTopLevelDecl(I);
6215     break;
6216   }
6217     // No code generation needed.
6218   case Decl::UsingShadow:
6219   case Decl::ClassTemplate:
6220   case Decl::VarTemplate:
6221   case Decl::Concept:
6222   case Decl::VarTemplatePartialSpecialization:
6223   case Decl::FunctionTemplate:
6224   case Decl::TypeAliasTemplate:
6225   case Decl::Block:
6226   case Decl::Empty:
6227   case Decl::Binding:
6228     break;
6229   case Decl::Using:          // using X; [C++]
6230     if (CGDebugInfo *DI = getModuleDebugInfo())
6231         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6232     break;
6233   case Decl::UsingEnum: // using enum X; [C++]
6234     if (CGDebugInfo *DI = getModuleDebugInfo())
6235       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6236     break;
6237   case Decl::NamespaceAlias:
6238     if (CGDebugInfo *DI = getModuleDebugInfo())
6239         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6240     break;
6241   case Decl::UsingDirective: // using namespace X; [C++]
6242     if (CGDebugInfo *DI = getModuleDebugInfo())
6243       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6244     break;
6245   case Decl::CXXConstructor:
6246     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6247     break;
6248   case Decl::CXXDestructor:
6249     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6250     break;
6251 
6252   case Decl::StaticAssert:
6253     // Nothing to do.
6254     break;
6255 
6256   // Objective-C Decls
6257 
6258   // Forward declarations, no (immediate) code generation.
6259   case Decl::ObjCInterface:
6260   case Decl::ObjCCategory:
6261     break;
6262 
6263   case Decl::ObjCProtocol: {
6264     auto *Proto = cast<ObjCProtocolDecl>(D);
6265     if (Proto->isThisDeclarationADefinition())
6266       ObjCRuntime->GenerateProtocol(Proto);
6267     break;
6268   }
6269 
6270   case Decl::ObjCCategoryImpl:
6271     // Categories have properties but don't support synthesize so we
6272     // can ignore them here.
6273     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6274     break;
6275 
6276   case Decl::ObjCImplementation: {
6277     auto *OMD = cast<ObjCImplementationDecl>(D);
6278     EmitObjCPropertyImplementations(OMD);
6279     EmitObjCIvarInitializations(OMD);
6280     ObjCRuntime->GenerateClass(OMD);
6281     // Emit global variable debug information.
6282     if (CGDebugInfo *DI = getModuleDebugInfo())
6283       if (getCodeGenOpts().hasReducedDebugInfo())
6284         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6285             OMD->getClassInterface()), OMD->getLocation());
6286     break;
6287   }
6288   case Decl::ObjCMethod: {
6289     auto *OMD = cast<ObjCMethodDecl>(D);
6290     // If this is not a prototype, emit the body.
6291     if (OMD->getBody())
6292       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6293     break;
6294   }
6295   case Decl::ObjCCompatibleAlias:
6296     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6297     break;
6298 
6299   case Decl::PragmaComment: {
6300     const auto *PCD = cast<PragmaCommentDecl>(D);
6301     switch (PCD->getCommentKind()) {
6302     case PCK_Unknown:
6303       llvm_unreachable("unexpected pragma comment kind");
6304     case PCK_Linker:
6305       AppendLinkerOptions(PCD->getArg());
6306       break;
6307     case PCK_Lib:
6308         AddDependentLib(PCD->getArg());
6309       break;
6310     case PCK_Compiler:
6311     case PCK_ExeStr:
6312     case PCK_User:
6313       break; // We ignore all of these.
6314     }
6315     break;
6316   }
6317 
6318   case Decl::PragmaDetectMismatch: {
6319     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6320     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6321     break;
6322   }
6323 
6324   case Decl::LinkageSpec:
6325     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6326     break;
6327 
6328   case Decl::FileScopeAsm: {
6329     // File-scope asm is ignored during device-side CUDA compilation.
6330     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6331       break;
6332     // File-scope asm is ignored during device-side OpenMP compilation.
6333     if (LangOpts.OpenMPIsDevice)
6334       break;
6335     // File-scope asm is ignored during device-side SYCL compilation.
6336     if (LangOpts.SYCLIsDevice)
6337       break;
6338     auto *AD = cast<FileScopeAsmDecl>(D);
6339     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6340     break;
6341   }
6342 
6343   case Decl::Import: {
6344     auto *Import = cast<ImportDecl>(D);
6345 
6346     // If we've already imported this module, we're done.
6347     if (!ImportedModules.insert(Import->getImportedModule()))
6348       break;
6349 
6350     // Emit debug information for direct imports.
6351     if (!Import->getImportedOwningModule()) {
6352       if (CGDebugInfo *DI = getModuleDebugInfo())
6353         DI->EmitImportDecl(*Import);
6354     }
6355 
6356     // For C++ standard modules we are done - we will call the module
6357     // initializer for imported modules, and that will likewise call those for
6358     // any imports it has.
6359     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6360         !Import->getImportedOwningModule()->isModuleMapModule())
6361       break;
6362 
6363     // For clang C++ module map modules the initializers for sub-modules are
6364     // emitted here.
6365 
6366     // Find all of the submodules and emit the module initializers.
6367     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6368     SmallVector<clang::Module *, 16> Stack;
6369     Visited.insert(Import->getImportedModule());
6370     Stack.push_back(Import->getImportedModule());
6371 
6372     while (!Stack.empty()) {
6373       clang::Module *Mod = Stack.pop_back_val();
6374       if (!EmittedModuleInitializers.insert(Mod).second)
6375         continue;
6376 
6377       for (auto *D : Context.getModuleInitializers(Mod))
6378         EmitTopLevelDecl(D);
6379 
6380       // Visit the submodules of this module.
6381       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6382                                              SubEnd = Mod->submodule_end();
6383            Sub != SubEnd; ++Sub) {
6384         // Skip explicit children; they need to be explicitly imported to emit
6385         // the initializers.
6386         if ((*Sub)->IsExplicit)
6387           continue;
6388 
6389         if (Visited.insert(*Sub).second)
6390           Stack.push_back(*Sub);
6391       }
6392     }
6393     break;
6394   }
6395 
6396   case Decl::Export:
6397     EmitDeclContext(cast<ExportDecl>(D));
6398     break;
6399 
6400   case Decl::OMPThreadPrivate:
6401     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6402     break;
6403 
6404   case Decl::OMPAllocate:
6405     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6406     break;
6407 
6408   case Decl::OMPDeclareReduction:
6409     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6410     break;
6411 
6412   case Decl::OMPDeclareMapper:
6413     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6414     break;
6415 
6416   case Decl::OMPRequires:
6417     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6418     break;
6419 
6420   case Decl::Typedef:
6421   case Decl::TypeAlias: // using foo = bar; [C++11]
6422     if (CGDebugInfo *DI = getModuleDebugInfo())
6423       DI->EmitAndRetainType(
6424           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6425     break;
6426 
6427   case Decl::Record:
6428     if (CGDebugInfo *DI = getModuleDebugInfo())
6429       if (cast<RecordDecl>(D)->getDefinition())
6430         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6431     break;
6432 
6433   case Decl::Enum:
6434     if (CGDebugInfo *DI = getModuleDebugInfo())
6435       if (cast<EnumDecl>(D)->getDefinition())
6436         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6437     break;
6438 
6439   default:
6440     // Make sure we handled everything we should, every other kind is a
6441     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6442     // function. Need to recode Decl::Kind to do that easily.
6443     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6444     break;
6445   }
6446 }
6447 
6448 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6449   // Do we need to generate coverage mapping?
6450   if (!CodeGenOpts.CoverageMapping)
6451     return;
6452   switch (D->getKind()) {
6453   case Decl::CXXConversion:
6454   case Decl::CXXMethod:
6455   case Decl::Function:
6456   case Decl::ObjCMethod:
6457   case Decl::CXXConstructor:
6458   case Decl::CXXDestructor: {
6459     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6460       break;
6461     SourceManager &SM = getContext().getSourceManager();
6462     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6463       break;
6464     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6465     if (I == DeferredEmptyCoverageMappingDecls.end())
6466       DeferredEmptyCoverageMappingDecls[D] = true;
6467     break;
6468   }
6469   default:
6470     break;
6471   };
6472 }
6473 
6474 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6475   // Do we need to generate coverage mapping?
6476   if (!CodeGenOpts.CoverageMapping)
6477     return;
6478   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6479     if (Fn->isTemplateInstantiation())
6480       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6481   }
6482   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6483   if (I == DeferredEmptyCoverageMappingDecls.end())
6484     DeferredEmptyCoverageMappingDecls[D] = false;
6485   else
6486     I->second = false;
6487 }
6488 
6489 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6490   // We call takeVector() here to avoid use-after-free.
6491   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6492   // we deserialize function bodies to emit coverage info for them, and that
6493   // deserializes more declarations. How should we handle that case?
6494   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6495     if (!Entry.second)
6496       continue;
6497     const Decl *D = Entry.first;
6498     switch (D->getKind()) {
6499     case Decl::CXXConversion:
6500     case Decl::CXXMethod:
6501     case Decl::Function:
6502     case Decl::ObjCMethod: {
6503       CodeGenPGO PGO(*this);
6504       GlobalDecl GD(cast<FunctionDecl>(D));
6505       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6506                                   getFunctionLinkage(GD));
6507       break;
6508     }
6509     case Decl::CXXConstructor: {
6510       CodeGenPGO PGO(*this);
6511       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6512       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6513                                   getFunctionLinkage(GD));
6514       break;
6515     }
6516     case Decl::CXXDestructor: {
6517       CodeGenPGO PGO(*this);
6518       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6519       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6520                                   getFunctionLinkage(GD));
6521       break;
6522     }
6523     default:
6524       break;
6525     };
6526   }
6527 }
6528 
6529 void CodeGenModule::EmitMainVoidAlias() {
6530   // In order to transition away from "__original_main" gracefully, emit an
6531   // alias for "main" in the no-argument case so that libc can detect when
6532   // new-style no-argument main is in used.
6533   if (llvm::Function *F = getModule().getFunction("main")) {
6534     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6535         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6536       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6537       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6538     }
6539   }
6540 }
6541 
6542 /// Turns the given pointer into a constant.
6543 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6544                                           const void *Ptr) {
6545   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6546   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6547   return llvm::ConstantInt::get(i64, PtrInt);
6548 }
6549 
6550 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6551                                    llvm::NamedMDNode *&GlobalMetadata,
6552                                    GlobalDecl D,
6553                                    llvm::GlobalValue *Addr) {
6554   if (!GlobalMetadata)
6555     GlobalMetadata =
6556       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6557 
6558   // TODO: should we report variant information for ctors/dtors?
6559   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6560                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6561                                CGM.getLLVMContext(), D.getDecl()))};
6562   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6563 }
6564 
6565 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6566                                                  llvm::GlobalValue *CppFunc) {
6567   // Store the list of ifuncs we need to replace uses in.
6568   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6569   // List of ConstantExprs that we should be able to delete when we're done
6570   // here.
6571   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6572 
6573   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6574   if (Elem == CppFunc)
6575     return false;
6576 
6577   // First make sure that all users of this are ifuncs (or ifuncs via a
6578   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6579   // later.
6580   for (llvm::User *User : Elem->users()) {
6581     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6582     // ifunc directly. In any other case, just give up, as we don't know what we
6583     // could break by changing those.
6584     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6585       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6586         return false;
6587 
6588       for (llvm::User *CEUser : ConstExpr->users()) {
6589         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6590           IFuncs.push_back(IFunc);
6591         } else {
6592           return false;
6593         }
6594       }
6595       CEs.push_back(ConstExpr);
6596     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6597       IFuncs.push_back(IFunc);
6598     } else {
6599       // This user is one we don't know how to handle, so fail redirection. This
6600       // will result in an ifunc retaining a resolver name that will ultimately
6601       // fail to be resolved to a defined function.
6602       return false;
6603     }
6604   }
6605 
6606   // Now we know this is a valid case where we can do this alias replacement, we
6607   // need to remove all of the references to Elem (and the bitcasts!) so we can
6608   // delete it.
6609   for (llvm::GlobalIFunc *IFunc : IFuncs)
6610     IFunc->setResolver(nullptr);
6611   for (llvm::ConstantExpr *ConstExpr : CEs)
6612     ConstExpr->destroyConstant();
6613 
6614   // We should now be out of uses for the 'old' version of this function, so we
6615   // can erase it as well.
6616   Elem->eraseFromParent();
6617 
6618   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6619     // The type of the resolver is always just a function-type that returns the
6620     // type of the IFunc, so create that here. If the type of the actual
6621     // resolver doesn't match, it just gets bitcast to the right thing.
6622     auto *ResolverTy =
6623         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6624     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6625         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6626     IFunc->setResolver(Resolver);
6627   }
6628   return true;
6629 }
6630 
6631 /// For each function which is declared within an extern "C" region and marked
6632 /// as 'used', but has internal linkage, create an alias from the unmangled
6633 /// name to the mangled name if possible. People expect to be able to refer
6634 /// to such functions with an unmangled name from inline assembly within the
6635 /// same translation unit.
6636 void CodeGenModule::EmitStaticExternCAliases() {
6637   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6638     return;
6639   for (auto &I : StaticExternCValues) {
6640     IdentifierInfo *Name = I.first;
6641     llvm::GlobalValue *Val = I.second;
6642 
6643     // If Val is null, that implies there were multiple declarations that each
6644     // had a claim to the unmangled name. In this case, generation of the alias
6645     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6646     if (!Val)
6647       break;
6648 
6649     llvm::GlobalValue *ExistingElem =
6650         getModule().getNamedValue(Name->getName());
6651 
6652     // If there is either not something already by this name, or we were able to
6653     // replace all uses from IFuncs, create the alias.
6654     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6655       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6656   }
6657 }
6658 
6659 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6660                                              GlobalDecl &Result) const {
6661   auto Res = Manglings.find(MangledName);
6662   if (Res == Manglings.end())
6663     return false;
6664   Result = Res->getValue();
6665   return true;
6666 }
6667 
6668 /// Emits metadata nodes associating all the global values in the
6669 /// current module with the Decls they came from.  This is useful for
6670 /// projects using IR gen as a subroutine.
6671 ///
6672 /// Since there's currently no way to associate an MDNode directly
6673 /// with an llvm::GlobalValue, we create a global named metadata
6674 /// with the name 'clang.global.decl.ptrs'.
6675 void CodeGenModule::EmitDeclMetadata() {
6676   llvm::NamedMDNode *GlobalMetadata = nullptr;
6677 
6678   for (auto &I : MangledDeclNames) {
6679     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6680     // Some mangled names don't necessarily have an associated GlobalValue
6681     // in this module, e.g. if we mangled it for DebugInfo.
6682     if (Addr)
6683       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6684   }
6685 }
6686 
6687 /// Emits metadata nodes for all the local variables in the current
6688 /// function.
6689 void CodeGenFunction::EmitDeclMetadata() {
6690   if (LocalDeclMap.empty()) return;
6691 
6692   llvm::LLVMContext &Context = getLLVMContext();
6693 
6694   // Find the unique metadata ID for this name.
6695   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6696 
6697   llvm::NamedMDNode *GlobalMetadata = nullptr;
6698 
6699   for (auto &I : LocalDeclMap) {
6700     const Decl *D = I.first;
6701     llvm::Value *Addr = I.second.getPointer();
6702     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6703       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6704       Alloca->setMetadata(
6705           DeclPtrKind, llvm::MDNode::get(
6706                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6707     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6708       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6709       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6710     }
6711   }
6712 }
6713 
6714 void CodeGenModule::EmitVersionIdentMetadata() {
6715   llvm::NamedMDNode *IdentMetadata =
6716     TheModule.getOrInsertNamedMetadata("llvm.ident");
6717   std::string Version = getClangFullVersion();
6718   llvm::LLVMContext &Ctx = TheModule.getContext();
6719 
6720   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6721   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6722 }
6723 
6724 void CodeGenModule::EmitCommandLineMetadata() {
6725   llvm::NamedMDNode *CommandLineMetadata =
6726     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6727   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6728   llvm::LLVMContext &Ctx = TheModule.getContext();
6729 
6730   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6731   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6732 }
6733 
6734 void CodeGenModule::EmitCoverageFile() {
6735   if (getCodeGenOpts().CoverageDataFile.empty() &&
6736       getCodeGenOpts().CoverageNotesFile.empty())
6737     return;
6738 
6739   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6740   if (!CUNode)
6741     return;
6742 
6743   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6744   llvm::LLVMContext &Ctx = TheModule.getContext();
6745   auto *CoverageDataFile =
6746       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6747   auto *CoverageNotesFile =
6748       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6749   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6750     llvm::MDNode *CU = CUNode->getOperand(i);
6751     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6752     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6753   }
6754 }
6755 
6756 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6757                                                        bool ForEH) {
6758   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6759   // FIXME: should we even be calling this method if RTTI is disabled
6760   // and it's not for EH?
6761   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6762       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6763        getTriple().isNVPTX()))
6764     return llvm::Constant::getNullValue(Int8PtrTy);
6765 
6766   if (ForEH && Ty->isObjCObjectPointerType() &&
6767       LangOpts.ObjCRuntime.isGNUFamily())
6768     return ObjCRuntime->GetEHType(Ty);
6769 
6770   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6771 }
6772 
6773 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6774   // Do not emit threadprivates in simd-only mode.
6775   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6776     return;
6777   for (auto RefExpr : D->varlists()) {
6778     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6779     bool PerformInit =
6780         VD->getAnyInitializer() &&
6781         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6782                                                         /*ForRef=*/false);
6783 
6784     Address Addr(GetAddrOfGlobalVar(VD),
6785                  getTypes().ConvertTypeForMem(VD->getType()),
6786                  getContext().getDeclAlign(VD));
6787     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6788             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6789       CXXGlobalInits.push_back(InitFunction);
6790   }
6791 }
6792 
6793 llvm::Metadata *
6794 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6795                                             StringRef Suffix) {
6796   if (auto *FnType = T->getAs<FunctionProtoType>())
6797     T = getContext().getFunctionType(
6798         FnType->getReturnType(), FnType->getParamTypes(),
6799         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6800 
6801   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6802   if (InternalId)
6803     return InternalId;
6804 
6805   if (isExternallyVisible(T->getLinkage())) {
6806     std::string OutName;
6807     llvm::raw_string_ostream Out(OutName);
6808     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6809     Out << Suffix;
6810 
6811     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6812   } else {
6813     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6814                                            llvm::ArrayRef<llvm::Metadata *>());
6815   }
6816 
6817   return InternalId;
6818 }
6819 
6820 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6821   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6822 }
6823 
6824 llvm::Metadata *
6825 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6826   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6827 }
6828 
6829 // Generalize pointer types to a void pointer with the qualifiers of the
6830 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6831 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6832 // 'void *'.
6833 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6834   if (!Ty->isPointerType())
6835     return Ty;
6836 
6837   return Ctx.getPointerType(
6838       QualType(Ctx.VoidTy).withCVRQualifiers(
6839           Ty->getPointeeType().getCVRQualifiers()));
6840 }
6841 
6842 // Apply type generalization to a FunctionType's return and argument types
6843 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6844   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6845     SmallVector<QualType, 8> GeneralizedParams;
6846     for (auto &Param : FnType->param_types())
6847       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6848 
6849     return Ctx.getFunctionType(
6850         GeneralizeType(Ctx, FnType->getReturnType()),
6851         GeneralizedParams, FnType->getExtProtoInfo());
6852   }
6853 
6854   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6855     return Ctx.getFunctionNoProtoType(
6856         GeneralizeType(Ctx, FnType->getReturnType()));
6857 
6858   llvm_unreachable("Encountered unknown FunctionType");
6859 }
6860 
6861 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6862   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6863                                       GeneralizedMetadataIdMap, ".generalized");
6864 }
6865 
6866 /// Returns whether this module needs the "all-vtables" type identifier.
6867 bool CodeGenModule::NeedAllVtablesTypeId() const {
6868   // Returns true if at least one of vtable-based CFI checkers is enabled and
6869   // is not in the trapping mode.
6870   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6871            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6872           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6873            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6874           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6875            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6876           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6877            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6878 }
6879 
6880 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6881                                           CharUnits Offset,
6882                                           const CXXRecordDecl *RD) {
6883   llvm::Metadata *MD =
6884       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6885   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6886 
6887   if (CodeGenOpts.SanitizeCfiCrossDso)
6888     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6889       VTable->addTypeMetadata(Offset.getQuantity(),
6890                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6891 
6892   if (NeedAllVtablesTypeId()) {
6893     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6894     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6895   }
6896 }
6897 
6898 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6899   if (!SanStats)
6900     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6901 
6902   return *SanStats;
6903 }
6904 
6905 llvm::Value *
6906 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6907                                                   CodeGenFunction &CGF) {
6908   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6909   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6910   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6911   auto *Call = CGF.EmitRuntimeCall(
6912       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6913   return Call;
6914 }
6915 
6916 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6917     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6918   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6919                                  /* forPointeeType= */ true);
6920 }
6921 
6922 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6923                                                  LValueBaseInfo *BaseInfo,
6924                                                  TBAAAccessInfo *TBAAInfo,
6925                                                  bool forPointeeType) {
6926   if (TBAAInfo)
6927     *TBAAInfo = getTBAAAccessInfo(T);
6928 
6929   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6930   // that doesn't return the information we need to compute BaseInfo.
6931 
6932   // Honor alignment typedef attributes even on incomplete types.
6933   // We also honor them straight for C++ class types, even as pointees;
6934   // there's an expressivity gap here.
6935   if (auto TT = T->getAs<TypedefType>()) {
6936     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6937       if (BaseInfo)
6938         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6939       return getContext().toCharUnitsFromBits(Align);
6940     }
6941   }
6942 
6943   bool AlignForArray = T->isArrayType();
6944 
6945   // Analyze the base element type, so we don't get confused by incomplete
6946   // array types.
6947   T = getContext().getBaseElementType(T);
6948 
6949   if (T->isIncompleteType()) {
6950     // We could try to replicate the logic from
6951     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6952     // type is incomplete, so it's impossible to test. We could try to reuse
6953     // getTypeAlignIfKnown, but that doesn't return the information we need
6954     // to set BaseInfo.  So just ignore the possibility that the alignment is
6955     // greater than one.
6956     if (BaseInfo)
6957       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6958     return CharUnits::One();
6959   }
6960 
6961   if (BaseInfo)
6962     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6963 
6964   CharUnits Alignment;
6965   const CXXRecordDecl *RD;
6966   if (T.getQualifiers().hasUnaligned()) {
6967     Alignment = CharUnits::One();
6968   } else if (forPointeeType && !AlignForArray &&
6969              (RD = T->getAsCXXRecordDecl())) {
6970     // For C++ class pointees, we don't know whether we're pointing at a
6971     // base or a complete object, so we generally need to use the
6972     // non-virtual alignment.
6973     Alignment = getClassPointerAlignment(RD);
6974   } else {
6975     Alignment = getContext().getTypeAlignInChars(T);
6976   }
6977 
6978   // Cap to the global maximum type alignment unless the alignment
6979   // was somehow explicit on the type.
6980   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6981     if (Alignment.getQuantity() > MaxAlign &&
6982         !getContext().isAlignmentRequired(T))
6983       Alignment = CharUnits::fromQuantity(MaxAlign);
6984   }
6985   return Alignment;
6986 }
6987 
6988 bool CodeGenModule::stopAutoInit() {
6989   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6990   if (StopAfter) {
6991     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6992     // used
6993     if (NumAutoVarInit >= StopAfter) {
6994       return true;
6995     }
6996     if (!NumAutoVarInit) {
6997       unsigned DiagID = getDiags().getCustomDiagID(
6998           DiagnosticsEngine::Warning,
6999           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7000           "number of times ftrivial-auto-var-init=%1 gets applied.");
7001       getDiags().Report(DiagID)
7002           << StopAfter
7003           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7004                       LangOptions::TrivialAutoVarInitKind::Zero
7005                   ? "zero"
7006                   : "pattern");
7007     }
7008     ++NumAutoVarInit;
7009   }
7010   return false;
7011 }
7012 
7013 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7014                                                     const Decl *D) const {
7015   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7016   // postfix beginning with '.' since the symbol name can be demangled.
7017   if (LangOpts.HIP)
7018     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7019   else
7020     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7021 
7022   // If the CUID is not specified we try to generate a unique postfix.
7023   if (getLangOpts().CUID.empty()) {
7024     SourceManager &SM = getContext().getSourceManager();
7025     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7026     assert(PLoc.isValid() && "Source location is expected to be valid.");
7027 
7028     // Get the hash of the user defined macros.
7029     llvm::MD5 Hash;
7030     llvm::MD5::MD5Result Result;
7031     for (const auto &Arg : PreprocessorOpts.Macros)
7032       Hash.update(Arg.first);
7033     Hash.final(Result);
7034 
7035     // Get the UniqueID for the file containing the decl.
7036     llvm::sys::fs::UniqueID ID;
7037     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7038       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7039       assert(PLoc.isValid() && "Source location is expected to be valid.");
7040       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7041         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7042             << PLoc.getFilename() << EC.message();
7043     }
7044     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7045        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7046   } else {
7047     OS << getContext().getCUIDHash();
7048   }
7049 }
7050 
7051 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7052   assert(DeferredDeclsToEmit.empty() &&
7053          "Should have emitted all decls deferred to emit.");
7054   assert(NewBuilder->DeferredDecls.empty() &&
7055          "Newly created module should not have deferred decls");
7056   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7057 
7058   assert(NewBuilder->DeferredVTables.empty() &&
7059          "Newly created module should not have deferred vtables");
7060   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7061 
7062   assert(NewBuilder->MangledDeclNames.empty() &&
7063          "Newly created module should not have mangled decl names");
7064   assert(NewBuilder->Manglings.empty() &&
7065          "Newly created module should not have manglings");
7066   NewBuilder->Manglings = std::move(Manglings);
7067 
7068   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7069   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7070 
7071   NewBuilder->TBAA = std::move(TBAA);
7072 
7073   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7074          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7075 
7076   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7077 
7078   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7079 }
7080