1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 if (PGOReader) { 420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 421 if (PGOStats.hasDiagnostics()) 422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 423 } 424 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 425 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 426 EmitGlobalAnnotations(); 427 EmitStaticExternCAliases(); 428 EmitDeferredUnusedCoverageMappings(); 429 if (CoverageMapping) 430 CoverageMapping->emit(); 431 if (CodeGenOpts.SanitizeCfiCrossDso) { 432 CodeGenFunction(*this).EmitCfiCheckFail(); 433 CodeGenFunction(*this).EmitCfiCheckStub(); 434 } 435 emitAtAvailableLinkGuard(); 436 emitLLVMUsed(); 437 if (SanStats) 438 SanStats->finish(); 439 440 if (CodeGenOpts.Autolink && 441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 442 EmitModuleLinkOptions(); 443 } 444 445 // Record mregparm value now so it is visible through rest of codegen. 446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 448 CodeGenOpts.NumRegisterParameters); 449 450 if (CodeGenOpts.DwarfVersion) { 451 // We actually want the latest version when there are conflicts. 452 // We can change from Warning to Latest if such mode is supported. 453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 454 CodeGenOpts.DwarfVersion); 455 } 456 if (CodeGenOpts.EmitCodeView) { 457 // Indicate that we want CodeView in the metadata. 458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 459 } 460 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 461 // We don't support LTO with 2 with different StrictVTablePointers 462 // FIXME: we could support it by stripping all the information introduced 463 // by StrictVTablePointers. 464 465 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 466 467 llvm::Metadata *Ops[2] = { 468 llvm::MDString::get(VMContext, "StrictVTablePointers"), 469 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 470 llvm::Type::getInt32Ty(VMContext), 1))}; 471 472 getModule().addModuleFlag(llvm::Module::Require, 473 "StrictVTablePointersRequirement", 474 llvm::MDNode::get(VMContext, Ops)); 475 } 476 if (DebugInfo) 477 // We support a single version in the linked module. The LLVM 478 // parser will drop debug info with a different version number 479 // (and warn about it, too). 480 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 481 llvm::DEBUG_METADATA_VERSION); 482 483 // We need to record the widths of enums and wchar_t, so that we can generate 484 // the correct build attributes in the ARM backend. wchar_size is also used by 485 // TargetLibraryInfo. 486 uint64_t WCharWidth = 487 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 488 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 489 490 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 491 if ( Arch == llvm::Triple::arm 492 || Arch == llvm::Triple::armeb 493 || Arch == llvm::Triple::thumb 494 || Arch == llvm::Triple::thumbeb) { 495 // The minimum width of an enum in bytes 496 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 497 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 498 } 499 500 if (CodeGenOpts.SanitizeCfiCrossDso) { 501 // Indicate that we want cross-DSO control flow integrity checks. 502 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 503 } 504 505 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 506 // Indicate whether __nvvm_reflect should be configured to flush denormal 507 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 508 // property.) 509 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 510 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 511 } 512 513 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 514 if (LangOpts.OpenCL) { 515 EmitOpenCLMetadata(); 516 // Emit SPIR version. 517 if (getTriple().getArch() == llvm::Triple::spir || 518 getTriple().getArch() == llvm::Triple::spir64) { 519 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 520 // opencl.spir.version named metadata. 521 llvm::Metadata *SPIRVerElts[] = { 522 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 523 Int32Ty, LangOpts.OpenCLVersion / 100)), 524 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 525 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 526 llvm::NamedMDNode *SPIRVerMD = 527 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 528 llvm::LLVMContext &Ctx = TheModule.getContext(); 529 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 530 } 531 } 532 533 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 534 assert(PLevel < 3 && "Invalid PIC Level"); 535 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 536 if (Context.getLangOpts().PIE) 537 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 538 } 539 540 SimplifyPersonality(); 541 542 if (getCodeGenOpts().EmitDeclMetadata) 543 EmitDeclMetadata(); 544 545 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 546 EmitCoverageFile(); 547 548 if (DebugInfo) 549 DebugInfo->finalize(); 550 551 EmitVersionIdentMetadata(); 552 553 EmitTargetMetadata(); 554 } 555 556 void CodeGenModule::EmitOpenCLMetadata() { 557 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 558 // opencl.ocl.version named metadata node. 559 llvm::Metadata *OCLVerElts[] = { 560 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 561 Int32Ty, LangOpts.OpenCLVersion / 100)), 562 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 563 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 564 llvm::NamedMDNode *OCLVerMD = 565 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 566 llvm::LLVMContext &Ctx = TheModule.getContext(); 567 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 568 } 569 570 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 571 // Make sure that this type is translated. 572 Types.UpdateCompletedType(TD); 573 } 574 575 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 576 // Make sure that this type is translated. 577 Types.RefreshTypeCacheForClass(RD); 578 } 579 580 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 581 if (!TBAA) 582 return nullptr; 583 return TBAA->getTypeInfo(QTy); 584 } 585 586 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 587 // Pointee values may have incomplete types, but they shall never be 588 // dereferenced. 589 if (AccessType->isIncompleteType()) 590 return TBAAAccessInfo::getIncompleteInfo(); 591 592 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 593 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 594 } 595 596 TBAAAccessInfo 597 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 598 if (!TBAA) 599 return TBAAAccessInfo(); 600 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 601 } 602 603 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 604 if (!TBAA) 605 return nullptr; 606 return TBAA->getTBAAStructInfo(QTy); 607 } 608 609 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 610 if (!TBAA) 611 return nullptr; 612 return TBAA->getBaseTypeInfo(QTy); 613 } 614 615 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 616 if (!TBAA) 617 return nullptr; 618 return TBAA->getAccessTagInfo(Info); 619 } 620 621 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 622 TBAAAccessInfo TargetInfo) { 623 if (!TBAA) 624 return TBAAAccessInfo(); 625 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 626 } 627 628 TBAAAccessInfo 629 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 630 TBAAAccessInfo InfoB) { 631 if (!TBAA) 632 return TBAAAccessInfo(); 633 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 634 } 635 636 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 637 TBAAAccessInfo TBAAInfo) { 638 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 639 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 640 } 641 642 void CodeGenModule::DecorateInstructionWithInvariantGroup( 643 llvm::Instruction *I, const CXXRecordDecl *RD) { 644 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 645 llvm::MDNode::get(getLLVMContext(), {})); 646 } 647 648 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 649 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 650 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 651 } 652 653 /// ErrorUnsupported - Print out an error that codegen doesn't support the 654 /// specified stmt yet. 655 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 656 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 657 "cannot compile this %0 yet"); 658 std::string Msg = Type; 659 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 660 << Msg << S->getSourceRange(); 661 } 662 663 /// ErrorUnsupported - Print out an error that codegen doesn't support the 664 /// specified decl yet. 665 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 666 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 667 "cannot compile this %0 yet"); 668 std::string Msg = Type; 669 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 670 } 671 672 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 673 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 674 } 675 676 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 677 const NamedDecl *D, 678 ForDefinition_t IsForDefinition) const { 679 // Internal definitions always have default visibility. 680 if (GV->hasLocalLinkage()) { 681 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 682 return; 683 } 684 685 // Set visibility for definitions. 686 LinkageInfo LV = D->getLinkageAndVisibility(); 687 if (LV.isVisibilityExplicit() || 688 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 689 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 690 } 691 692 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 693 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 694 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 695 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 696 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 697 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 698 } 699 700 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 701 CodeGenOptions::TLSModel M) { 702 switch (M) { 703 case CodeGenOptions::GeneralDynamicTLSModel: 704 return llvm::GlobalVariable::GeneralDynamicTLSModel; 705 case CodeGenOptions::LocalDynamicTLSModel: 706 return llvm::GlobalVariable::LocalDynamicTLSModel; 707 case CodeGenOptions::InitialExecTLSModel: 708 return llvm::GlobalVariable::InitialExecTLSModel; 709 case CodeGenOptions::LocalExecTLSModel: 710 return llvm::GlobalVariable::LocalExecTLSModel; 711 } 712 llvm_unreachable("Invalid TLS model!"); 713 } 714 715 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 716 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 717 718 llvm::GlobalValue::ThreadLocalMode TLM; 719 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 720 721 // Override the TLS model if it is explicitly specified. 722 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 723 TLM = GetLLVMTLSModel(Attr->getModel()); 724 } 725 726 GV->setThreadLocalMode(TLM); 727 } 728 729 static void AppendTargetMangling(const CodeGenModule &CGM, 730 const TargetAttr *Attr, raw_ostream &Out) { 731 if (Attr->isDefaultVersion()) 732 return; 733 734 Out << '.'; 735 const auto &Target = CGM.getTarget(); 736 TargetAttr::ParsedTargetAttr Info = 737 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 738 return Target.multiVersionSortPriority(LHS) > 739 Target.multiVersionSortPriority(RHS); 740 }); 741 742 bool IsFirst = true; 743 744 if (!Info.Architecture.empty()) { 745 IsFirst = false; 746 Out << "arch_" << Info.Architecture; 747 } 748 749 for (StringRef Feat : Info.Features) { 750 if (!IsFirst) 751 Out << '_'; 752 IsFirst = false; 753 Out << Feat.substr(1); 754 } 755 } 756 757 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 758 const NamedDecl *ND, 759 bool OmitTargetMangling = false) { 760 SmallString<256> Buffer; 761 llvm::raw_svector_ostream Out(Buffer); 762 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 763 if (MC.shouldMangleDeclName(ND)) { 764 llvm::raw_svector_ostream Out(Buffer); 765 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 766 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 767 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 768 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 769 else 770 MC.mangleName(ND, Out); 771 } else { 772 IdentifierInfo *II = ND->getIdentifier(); 773 assert(II && "Attempt to mangle unnamed decl."); 774 const auto *FD = dyn_cast<FunctionDecl>(ND); 775 776 if (FD && 777 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 778 llvm::raw_svector_ostream Out(Buffer); 779 Out << "__regcall3__" << II->getName(); 780 } else { 781 Out << II->getName(); 782 } 783 } 784 785 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 786 if (FD->isMultiVersion() && !OmitTargetMangling) 787 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 788 return Out.str(); 789 } 790 791 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 792 const FunctionDecl *FD) { 793 if (!FD->isMultiVersion()) 794 return; 795 796 // Get the name of what this would be without the 'target' attribute. This 797 // allows us to lookup the version that was emitted when this wasn't a 798 // multiversion function. 799 std::string NonTargetName = 800 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 801 GlobalDecl OtherGD; 802 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 803 assert(OtherGD.getCanonicalDecl() 804 .getDecl() 805 ->getAsFunction() 806 ->isMultiVersion() && 807 "Other GD should now be a multiversioned function"); 808 // OtherFD is the version of this function that was mangled BEFORE 809 // becoming a MultiVersion function. It potentially needs to be updated. 810 const FunctionDecl *OtherFD = 811 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 812 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 813 // This is so that if the initial version was already the 'default' 814 // version, we don't try to update it. 815 if (OtherName != NonTargetName) { 816 // Remove instead of erase, since others may have stored the StringRef 817 // to this. 818 const auto ExistingRecord = Manglings.find(NonTargetName); 819 if (ExistingRecord != std::end(Manglings)) 820 Manglings.remove(&(*ExistingRecord)); 821 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 822 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 823 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 824 Entry->setName(OtherName); 825 } 826 } 827 } 828 829 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 830 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 831 832 // Some ABIs don't have constructor variants. Make sure that base and 833 // complete constructors get mangled the same. 834 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 835 if (!getTarget().getCXXABI().hasConstructorVariants()) { 836 CXXCtorType OrigCtorType = GD.getCtorType(); 837 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 838 if (OrigCtorType == Ctor_Base) 839 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 840 } 841 } 842 843 auto FoundName = MangledDeclNames.find(CanonicalGD); 844 if (FoundName != MangledDeclNames.end()) 845 return FoundName->second; 846 847 848 // Keep the first result in the case of a mangling collision. 849 const auto *ND = cast<NamedDecl>(GD.getDecl()); 850 auto Result = 851 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 852 return MangledDeclNames[CanonicalGD] = Result.first->first(); 853 } 854 855 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 856 const BlockDecl *BD) { 857 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 858 const Decl *D = GD.getDecl(); 859 860 SmallString<256> Buffer; 861 llvm::raw_svector_ostream Out(Buffer); 862 if (!D) 863 MangleCtx.mangleGlobalBlock(BD, 864 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 865 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 866 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 867 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 868 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 869 else 870 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 871 872 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 873 return Result.first->first(); 874 } 875 876 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 877 return getModule().getNamedValue(Name); 878 } 879 880 /// AddGlobalCtor - Add a function to the list that will be called before 881 /// main() runs. 882 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 883 llvm::Constant *AssociatedData) { 884 // FIXME: Type coercion of void()* types. 885 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 886 } 887 888 /// AddGlobalDtor - Add a function to the list that will be called 889 /// when the module is unloaded. 890 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 891 // FIXME: Type coercion of void()* types. 892 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 893 } 894 895 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 896 if (Fns.empty()) return; 897 898 // Ctor function type is void()*. 899 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 900 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 901 902 // Get the type of a ctor entry, { i32, void ()*, i8* }. 903 llvm::StructType *CtorStructTy = llvm::StructType::get( 904 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 905 906 // Construct the constructor and destructor arrays. 907 ConstantInitBuilder builder(*this); 908 auto ctors = builder.beginArray(CtorStructTy); 909 for (const auto &I : Fns) { 910 auto ctor = ctors.beginStruct(CtorStructTy); 911 ctor.addInt(Int32Ty, I.Priority); 912 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 913 if (I.AssociatedData) 914 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 915 else 916 ctor.addNullPointer(VoidPtrTy); 917 ctor.finishAndAddTo(ctors); 918 } 919 920 auto list = 921 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 922 /*constant*/ false, 923 llvm::GlobalValue::AppendingLinkage); 924 925 // The LTO linker doesn't seem to like it when we set an alignment 926 // on appending variables. Take it off as a workaround. 927 list->setAlignment(0); 928 929 Fns.clear(); 930 } 931 932 llvm::GlobalValue::LinkageTypes 933 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 934 const auto *D = cast<FunctionDecl>(GD.getDecl()); 935 936 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 937 938 if (isa<CXXDestructorDecl>(D) && 939 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 940 GD.getDtorType())) { 941 // Destructor variants in the Microsoft C++ ABI are always internal or 942 // linkonce_odr thunks emitted on an as-needed basis. 943 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 944 : llvm::GlobalValue::LinkOnceODRLinkage; 945 } 946 947 if (isa<CXXConstructorDecl>(D) && 948 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 949 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 950 // Our approach to inheriting constructors is fundamentally different from 951 // that used by the MS ABI, so keep our inheriting constructor thunks 952 // internal rather than trying to pick an unambiguous mangling for them. 953 return llvm::GlobalValue::InternalLinkage; 954 } 955 956 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 957 } 958 959 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 960 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 961 962 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 963 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 964 // Don't dllexport/import destructor thunks. 965 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 966 return; 967 } 968 } 969 970 if (FD->hasAttr<DLLImportAttr>()) 971 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 972 else if (FD->hasAttr<DLLExportAttr>()) 973 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 974 else 975 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 976 } 977 978 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 979 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 980 if (!MDS) return nullptr; 981 982 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 983 } 984 985 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 986 llvm::Function *F) { 987 setNonAliasAttributes(D, F); 988 } 989 990 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 991 const CGFunctionInfo &Info, 992 llvm::Function *F) { 993 unsigned CallingConv; 994 llvm::AttributeList PAL; 995 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 996 F->setAttributes(PAL); 997 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 998 } 999 1000 /// Determines whether the language options require us to model 1001 /// unwind exceptions. We treat -fexceptions as mandating this 1002 /// except under the fragile ObjC ABI with only ObjC exceptions 1003 /// enabled. This means, for example, that C with -fexceptions 1004 /// enables this. 1005 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1006 // If exceptions are completely disabled, obviously this is false. 1007 if (!LangOpts.Exceptions) return false; 1008 1009 // If C++ exceptions are enabled, this is true. 1010 if (LangOpts.CXXExceptions) return true; 1011 1012 // If ObjC exceptions are enabled, this depends on the ABI. 1013 if (LangOpts.ObjCExceptions) { 1014 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1015 } 1016 1017 return true; 1018 } 1019 1020 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1021 llvm::Function *F) { 1022 llvm::AttrBuilder B; 1023 1024 if (CodeGenOpts.UnwindTables) 1025 B.addAttribute(llvm::Attribute::UWTable); 1026 1027 if (!hasUnwindExceptions(LangOpts)) 1028 B.addAttribute(llvm::Attribute::NoUnwind); 1029 1030 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1031 B.addAttribute(llvm::Attribute::StackProtect); 1032 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1033 B.addAttribute(llvm::Attribute::StackProtectStrong); 1034 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1035 B.addAttribute(llvm::Attribute::StackProtectReq); 1036 1037 if (!D) { 1038 // If we don't have a declaration to control inlining, the function isn't 1039 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1040 // disabled, mark the function as noinline. 1041 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1042 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1043 B.addAttribute(llvm::Attribute::NoInline); 1044 1045 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1046 return; 1047 } 1048 1049 // Track whether we need to add the optnone LLVM attribute, 1050 // starting with the default for this optimization level. 1051 bool ShouldAddOptNone = 1052 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1053 // We can't add optnone in the following cases, it won't pass the verifier. 1054 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1055 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1056 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1057 1058 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1059 B.addAttribute(llvm::Attribute::OptimizeNone); 1060 1061 // OptimizeNone implies noinline; we should not be inlining such functions. 1062 B.addAttribute(llvm::Attribute::NoInline); 1063 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1064 "OptimizeNone and AlwaysInline on same function!"); 1065 1066 // We still need to handle naked functions even though optnone subsumes 1067 // much of their semantics. 1068 if (D->hasAttr<NakedAttr>()) 1069 B.addAttribute(llvm::Attribute::Naked); 1070 1071 // OptimizeNone wins over OptimizeForSize and MinSize. 1072 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1073 F->removeFnAttr(llvm::Attribute::MinSize); 1074 } else if (D->hasAttr<NakedAttr>()) { 1075 // Naked implies noinline: we should not be inlining such functions. 1076 B.addAttribute(llvm::Attribute::Naked); 1077 B.addAttribute(llvm::Attribute::NoInline); 1078 } else if (D->hasAttr<NoDuplicateAttr>()) { 1079 B.addAttribute(llvm::Attribute::NoDuplicate); 1080 } else if (D->hasAttr<NoInlineAttr>()) { 1081 B.addAttribute(llvm::Attribute::NoInline); 1082 } else if (D->hasAttr<AlwaysInlineAttr>() && 1083 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1084 // (noinline wins over always_inline, and we can't specify both in IR) 1085 B.addAttribute(llvm::Attribute::AlwaysInline); 1086 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1087 // If we're not inlining, then force everything that isn't always_inline to 1088 // carry an explicit noinline attribute. 1089 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1090 B.addAttribute(llvm::Attribute::NoInline); 1091 } else { 1092 // Otherwise, propagate the inline hint attribute and potentially use its 1093 // absence to mark things as noinline. 1094 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1095 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1096 return Redecl->isInlineSpecified(); 1097 })) { 1098 B.addAttribute(llvm::Attribute::InlineHint); 1099 } else if (CodeGenOpts.getInlining() == 1100 CodeGenOptions::OnlyHintInlining && 1101 !FD->isInlined() && 1102 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1103 B.addAttribute(llvm::Attribute::NoInline); 1104 } 1105 } 1106 } 1107 1108 // Add other optimization related attributes if we are optimizing this 1109 // function. 1110 if (!D->hasAttr<OptimizeNoneAttr>()) { 1111 if (D->hasAttr<ColdAttr>()) { 1112 if (!ShouldAddOptNone) 1113 B.addAttribute(llvm::Attribute::OptimizeForSize); 1114 B.addAttribute(llvm::Attribute::Cold); 1115 } 1116 1117 if (D->hasAttr<MinSizeAttr>()) 1118 B.addAttribute(llvm::Attribute::MinSize); 1119 } 1120 1121 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1122 1123 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1124 if (alignment) 1125 F->setAlignment(alignment); 1126 1127 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1128 // reserve a bit for differentiating between virtual and non-virtual member 1129 // functions. If the current target's C++ ABI requires this and this is a 1130 // member function, set its alignment accordingly. 1131 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1132 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1133 F->setAlignment(2); 1134 } 1135 1136 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1137 if (CodeGenOpts.SanitizeCfiCrossDso) 1138 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1139 CreateFunctionTypeMetadata(FD, F); 1140 } 1141 1142 void CodeGenModule::SetCommonAttributes(const Decl *D, 1143 llvm::GlobalValue *GV) { 1144 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1145 setGlobalVisibility(GV, ND, ForDefinition); 1146 else 1147 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1148 1149 if (D && D->hasAttr<UsedAttr>()) 1150 addUsedGlobal(GV); 1151 } 1152 1153 void CodeGenModule::setAliasAttributes(const Decl *D, 1154 llvm::GlobalValue *GV) { 1155 SetCommonAttributes(D, GV); 1156 1157 // Process the dllexport attribute based on whether the original definition 1158 // (not necessarily the aliasee) was exported. 1159 if (D->hasAttr<DLLExportAttr>()) 1160 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1161 } 1162 1163 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1164 llvm::GlobalObject *GO) { 1165 SetCommonAttributes(D, GO); 1166 1167 if (D) { 1168 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1169 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1170 GV->addAttribute("bss-section", SA->getName()); 1171 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1172 GV->addAttribute("data-section", SA->getName()); 1173 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1174 GV->addAttribute("rodata-section", SA->getName()); 1175 } 1176 1177 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1178 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1179 if (!D->getAttr<SectionAttr>()) 1180 F->addFnAttr("implicit-section-name", SA->getName()); 1181 } 1182 1183 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1184 GO->setSection(SA->getName()); 1185 } 1186 1187 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1188 } 1189 1190 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1191 llvm::Function *F, 1192 const CGFunctionInfo &FI) { 1193 SetLLVMFunctionAttributes(D, FI, F); 1194 SetLLVMFunctionAttributesForDefinition(D, F); 1195 1196 F->setLinkage(llvm::Function::InternalLinkage); 1197 1198 setNonAliasAttributes(D, F); 1199 } 1200 1201 static void setLinkageForGV(llvm::GlobalValue *GV, 1202 const NamedDecl *ND) { 1203 // Set linkage and visibility in case we never see a definition. 1204 LinkageInfo LV = ND->getLinkageAndVisibility(); 1205 if (!isExternallyVisible(LV.getLinkage())) { 1206 // Don't set internal linkage on declarations. 1207 } else { 1208 if (ND->hasAttr<DLLImportAttr>()) { 1209 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1210 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1211 } else if (ND->hasAttr<DLLExportAttr>()) { 1212 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1213 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1214 // "extern_weak" is overloaded in LLVM; we probably should have 1215 // separate linkage types for this. 1216 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1217 } 1218 } 1219 } 1220 1221 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1222 llvm::Function *F) { 1223 // Only if we are checking indirect calls. 1224 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1225 return; 1226 1227 // Non-static class methods are handled via vtable pointer checks elsewhere. 1228 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1229 return; 1230 1231 // Additionally, if building with cross-DSO support... 1232 if (CodeGenOpts.SanitizeCfiCrossDso) { 1233 // Skip available_externally functions. They won't be codegen'ed in the 1234 // current module anyway. 1235 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1236 return; 1237 } 1238 1239 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1240 F->addTypeMetadata(0, MD); 1241 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1242 1243 // Emit a hash-based bit set entry for cross-DSO calls. 1244 if (CodeGenOpts.SanitizeCfiCrossDso) 1245 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1246 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1247 } 1248 1249 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1250 bool IsIncompleteFunction, 1251 bool IsThunk, 1252 ForDefinition_t IsForDefinition) { 1253 1254 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1255 // If this is an intrinsic function, set the function's attributes 1256 // to the intrinsic's attributes. 1257 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1258 return; 1259 } 1260 1261 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1262 1263 if (!IsIncompleteFunction) { 1264 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1265 // Setup target-specific attributes. 1266 if (!IsForDefinition) 1267 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1268 NotForDefinition); 1269 } 1270 1271 // Add the Returned attribute for "this", except for iOS 5 and earlier 1272 // where substantial code, including the libstdc++ dylib, was compiled with 1273 // GCC and does not actually return "this". 1274 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1275 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1276 assert(!F->arg_empty() && 1277 F->arg_begin()->getType() 1278 ->canLosslesslyBitCastTo(F->getReturnType()) && 1279 "unexpected this return"); 1280 F->addAttribute(1, llvm::Attribute::Returned); 1281 } 1282 1283 // Only a few attributes are set on declarations; these may later be 1284 // overridden by a definition. 1285 1286 setLinkageForGV(F, FD); 1287 setGlobalVisibility(F, FD, NotForDefinition); 1288 1289 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1290 F->addFnAttr("implicit-section-name"); 1291 } 1292 1293 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1294 F->setSection(SA->getName()); 1295 1296 if (FD->isReplaceableGlobalAllocationFunction()) { 1297 // A replaceable global allocation function does not act like a builtin by 1298 // default, only if it is invoked by a new-expression or delete-expression. 1299 F->addAttribute(llvm::AttributeList::FunctionIndex, 1300 llvm::Attribute::NoBuiltin); 1301 1302 // A sane operator new returns a non-aliasing pointer. 1303 // FIXME: Also add NonNull attribute to the return value 1304 // for the non-nothrow forms? 1305 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1306 if (getCodeGenOpts().AssumeSaneOperatorNew && 1307 (Kind == OO_New || Kind == OO_Array_New)) 1308 F->addAttribute(llvm::AttributeList::ReturnIndex, 1309 llvm::Attribute::NoAlias); 1310 } 1311 1312 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1313 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1314 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1315 if (MD->isVirtual()) 1316 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1317 1318 // Don't emit entries for function declarations in the cross-DSO mode. This 1319 // is handled with better precision by the receiving DSO. 1320 if (!CodeGenOpts.SanitizeCfiCrossDso) 1321 CreateFunctionTypeMetadata(FD, F); 1322 1323 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1324 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1325 } 1326 1327 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1328 assert(!GV->isDeclaration() && 1329 "Only globals with definition can force usage."); 1330 LLVMUsed.emplace_back(GV); 1331 } 1332 1333 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1334 assert(!GV->isDeclaration() && 1335 "Only globals with definition can force usage."); 1336 LLVMCompilerUsed.emplace_back(GV); 1337 } 1338 1339 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1340 std::vector<llvm::WeakTrackingVH> &List) { 1341 // Don't create llvm.used if there is no need. 1342 if (List.empty()) 1343 return; 1344 1345 // Convert List to what ConstantArray needs. 1346 SmallVector<llvm::Constant*, 8> UsedArray; 1347 UsedArray.resize(List.size()); 1348 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1349 UsedArray[i] = 1350 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1351 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1352 } 1353 1354 if (UsedArray.empty()) 1355 return; 1356 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1357 1358 auto *GV = new llvm::GlobalVariable( 1359 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1360 llvm::ConstantArray::get(ATy, UsedArray), Name); 1361 1362 GV->setSection("llvm.metadata"); 1363 } 1364 1365 void CodeGenModule::emitLLVMUsed() { 1366 emitUsed(*this, "llvm.used", LLVMUsed); 1367 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1368 } 1369 1370 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1371 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1372 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1373 } 1374 1375 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1376 llvm::SmallString<32> Opt; 1377 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1378 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1379 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1380 } 1381 1382 void CodeGenModule::AddDependentLib(StringRef Lib) { 1383 llvm::SmallString<24> Opt; 1384 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1385 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1386 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1387 } 1388 1389 /// \brief Add link options implied by the given module, including modules 1390 /// it depends on, using a postorder walk. 1391 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1392 SmallVectorImpl<llvm::MDNode *> &Metadata, 1393 llvm::SmallPtrSet<Module *, 16> &Visited) { 1394 // Import this module's parent. 1395 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1396 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1397 } 1398 1399 // Import this module's dependencies. 1400 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1401 if (Visited.insert(Mod->Imports[I - 1]).second) 1402 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1403 } 1404 1405 // Add linker options to link against the libraries/frameworks 1406 // described by this module. 1407 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1408 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1409 // Link against a framework. Frameworks are currently Darwin only, so we 1410 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1411 if (Mod->LinkLibraries[I-1].IsFramework) { 1412 llvm::Metadata *Args[2] = { 1413 llvm::MDString::get(Context, "-framework"), 1414 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1415 1416 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1417 continue; 1418 } 1419 1420 // Link against a library. 1421 llvm::SmallString<24> Opt; 1422 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1423 Mod->LinkLibraries[I-1].Library, Opt); 1424 auto *OptString = llvm::MDString::get(Context, Opt); 1425 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1426 } 1427 } 1428 1429 void CodeGenModule::EmitModuleLinkOptions() { 1430 // Collect the set of all of the modules we want to visit to emit link 1431 // options, which is essentially the imported modules and all of their 1432 // non-explicit child modules. 1433 llvm::SetVector<clang::Module *> LinkModules; 1434 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1435 SmallVector<clang::Module *, 16> Stack; 1436 1437 // Seed the stack with imported modules. 1438 for (Module *M : ImportedModules) { 1439 // Do not add any link flags when an implementation TU of a module imports 1440 // a header of that same module. 1441 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1442 !getLangOpts().isCompilingModule()) 1443 continue; 1444 if (Visited.insert(M).second) 1445 Stack.push_back(M); 1446 } 1447 1448 // Find all of the modules to import, making a little effort to prune 1449 // non-leaf modules. 1450 while (!Stack.empty()) { 1451 clang::Module *Mod = Stack.pop_back_val(); 1452 1453 bool AnyChildren = false; 1454 1455 // Visit the submodules of this module. 1456 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1457 SubEnd = Mod->submodule_end(); 1458 Sub != SubEnd; ++Sub) { 1459 // Skip explicit children; they need to be explicitly imported to be 1460 // linked against. 1461 if ((*Sub)->IsExplicit) 1462 continue; 1463 1464 if (Visited.insert(*Sub).second) { 1465 Stack.push_back(*Sub); 1466 AnyChildren = true; 1467 } 1468 } 1469 1470 // We didn't find any children, so add this module to the list of 1471 // modules to link against. 1472 if (!AnyChildren) { 1473 LinkModules.insert(Mod); 1474 } 1475 } 1476 1477 // Add link options for all of the imported modules in reverse topological 1478 // order. We don't do anything to try to order import link flags with respect 1479 // to linker options inserted by things like #pragma comment(). 1480 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1481 Visited.clear(); 1482 for (Module *M : LinkModules) 1483 if (Visited.insert(M).second) 1484 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1485 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1486 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1487 1488 // Add the linker options metadata flag. 1489 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1490 for (auto *MD : LinkerOptionsMetadata) 1491 NMD->addOperand(MD); 1492 } 1493 1494 void CodeGenModule::EmitDeferred() { 1495 // Emit code for any potentially referenced deferred decls. Since a 1496 // previously unused static decl may become used during the generation of code 1497 // for a static function, iterate until no changes are made. 1498 1499 if (!DeferredVTables.empty()) { 1500 EmitDeferredVTables(); 1501 1502 // Emitting a vtable doesn't directly cause more vtables to 1503 // become deferred, although it can cause functions to be 1504 // emitted that then need those vtables. 1505 assert(DeferredVTables.empty()); 1506 } 1507 1508 // Stop if we're out of both deferred vtables and deferred declarations. 1509 if (DeferredDeclsToEmit.empty()) 1510 return; 1511 1512 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1513 // work, it will not interfere with this. 1514 std::vector<GlobalDecl> CurDeclsToEmit; 1515 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1516 1517 for (GlobalDecl &D : CurDeclsToEmit) { 1518 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1519 // to get GlobalValue with exactly the type we need, not something that 1520 // might had been created for another decl with the same mangled name but 1521 // different type. 1522 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1523 GetAddrOfGlobal(D, ForDefinition)); 1524 1525 // In case of different address spaces, we may still get a cast, even with 1526 // IsForDefinition equal to true. Query mangled names table to get 1527 // GlobalValue. 1528 if (!GV) 1529 GV = GetGlobalValue(getMangledName(D)); 1530 1531 // Make sure GetGlobalValue returned non-null. 1532 assert(GV); 1533 1534 // Check to see if we've already emitted this. This is necessary 1535 // for a couple of reasons: first, decls can end up in the 1536 // deferred-decls queue multiple times, and second, decls can end 1537 // up with definitions in unusual ways (e.g. by an extern inline 1538 // function acquiring a strong function redefinition). Just 1539 // ignore these cases. 1540 if (!GV->isDeclaration()) 1541 continue; 1542 1543 // Otherwise, emit the definition and move on to the next one. 1544 EmitGlobalDefinition(D, GV); 1545 1546 // If we found out that we need to emit more decls, do that recursively. 1547 // This has the advantage that the decls are emitted in a DFS and related 1548 // ones are close together, which is convenient for testing. 1549 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1550 EmitDeferred(); 1551 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1552 } 1553 } 1554 } 1555 1556 void CodeGenModule::EmitVTablesOpportunistically() { 1557 // Try to emit external vtables as available_externally if they have emitted 1558 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1559 // is not allowed to create new references to things that need to be emitted 1560 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1561 1562 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1563 && "Only emit opportunistic vtables with optimizations"); 1564 1565 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1566 assert(getVTables().isVTableExternal(RD) && 1567 "This queue should only contain external vtables"); 1568 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1569 VTables.GenerateClassData(RD); 1570 } 1571 OpportunisticVTables.clear(); 1572 } 1573 1574 void CodeGenModule::EmitGlobalAnnotations() { 1575 if (Annotations.empty()) 1576 return; 1577 1578 // Create a new global variable for the ConstantStruct in the Module. 1579 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1580 Annotations[0]->getType(), Annotations.size()), Annotations); 1581 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1582 llvm::GlobalValue::AppendingLinkage, 1583 Array, "llvm.global.annotations"); 1584 gv->setSection(AnnotationSection); 1585 } 1586 1587 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1588 llvm::Constant *&AStr = AnnotationStrings[Str]; 1589 if (AStr) 1590 return AStr; 1591 1592 // Not found yet, create a new global. 1593 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1594 auto *gv = 1595 new llvm::GlobalVariable(getModule(), s->getType(), true, 1596 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1597 gv->setSection(AnnotationSection); 1598 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1599 AStr = gv; 1600 return gv; 1601 } 1602 1603 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1604 SourceManager &SM = getContext().getSourceManager(); 1605 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1606 if (PLoc.isValid()) 1607 return EmitAnnotationString(PLoc.getFilename()); 1608 return EmitAnnotationString(SM.getBufferName(Loc)); 1609 } 1610 1611 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1612 SourceManager &SM = getContext().getSourceManager(); 1613 PresumedLoc PLoc = SM.getPresumedLoc(L); 1614 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1615 SM.getExpansionLineNumber(L); 1616 return llvm::ConstantInt::get(Int32Ty, LineNo); 1617 } 1618 1619 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1620 const AnnotateAttr *AA, 1621 SourceLocation L) { 1622 // Get the globals for file name, annotation, and the line number. 1623 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1624 *UnitGV = EmitAnnotationUnit(L), 1625 *LineNoCst = EmitAnnotationLineNo(L); 1626 1627 // Create the ConstantStruct for the global annotation. 1628 llvm::Constant *Fields[4] = { 1629 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1630 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1631 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1632 LineNoCst 1633 }; 1634 return llvm::ConstantStruct::getAnon(Fields); 1635 } 1636 1637 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1638 llvm::GlobalValue *GV) { 1639 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1640 // Get the struct elements for these annotations. 1641 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1642 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1643 } 1644 1645 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1646 llvm::Function *Fn, 1647 SourceLocation Loc) const { 1648 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1649 // Blacklist by function name. 1650 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1651 return true; 1652 // Blacklist by location. 1653 if (Loc.isValid()) 1654 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1655 // If location is unknown, this may be a compiler-generated function. Assume 1656 // it's located in the main file. 1657 auto &SM = Context.getSourceManager(); 1658 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1659 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1660 } 1661 return false; 1662 } 1663 1664 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1665 SourceLocation Loc, QualType Ty, 1666 StringRef Category) const { 1667 // For now globals can be blacklisted only in ASan and KASan. 1668 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1669 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1670 if (!EnabledAsanMask) 1671 return false; 1672 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1673 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1674 return true; 1675 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1676 return true; 1677 // Check global type. 1678 if (!Ty.isNull()) { 1679 // Drill down the array types: if global variable of a fixed type is 1680 // blacklisted, we also don't instrument arrays of them. 1681 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1682 Ty = AT->getElementType(); 1683 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1684 // We allow to blacklist only record types (classes, structs etc.) 1685 if (Ty->isRecordType()) { 1686 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1687 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1688 return true; 1689 } 1690 } 1691 return false; 1692 } 1693 1694 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1695 StringRef Category) const { 1696 if (!LangOpts.XRayInstrument) 1697 return false; 1698 const auto &XRayFilter = getContext().getXRayFilter(); 1699 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1700 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1701 if (Loc.isValid()) 1702 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1703 if (Attr == ImbueAttr::NONE) 1704 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1705 switch (Attr) { 1706 case ImbueAttr::NONE: 1707 return false; 1708 case ImbueAttr::ALWAYS: 1709 Fn->addFnAttr("function-instrument", "xray-always"); 1710 break; 1711 case ImbueAttr::ALWAYS_ARG1: 1712 Fn->addFnAttr("function-instrument", "xray-always"); 1713 Fn->addFnAttr("xray-log-args", "1"); 1714 break; 1715 case ImbueAttr::NEVER: 1716 Fn->addFnAttr("function-instrument", "xray-never"); 1717 break; 1718 } 1719 return true; 1720 } 1721 1722 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1723 // Never defer when EmitAllDecls is specified. 1724 if (LangOpts.EmitAllDecls) 1725 return true; 1726 1727 return getContext().DeclMustBeEmitted(Global); 1728 } 1729 1730 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1731 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1732 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1733 // Implicit template instantiations may change linkage if they are later 1734 // explicitly instantiated, so they should not be emitted eagerly. 1735 return false; 1736 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1737 if (Context.getInlineVariableDefinitionKind(VD) == 1738 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1739 // A definition of an inline constexpr static data member may change 1740 // linkage later if it's redeclared outside the class. 1741 return false; 1742 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1743 // codegen for global variables, because they may be marked as threadprivate. 1744 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1745 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1746 return false; 1747 1748 return true; 1749 } 1750 1751 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1752 const CXXUuidofExpr* E) { 1753 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1754 // well-formed. 1755 StringRef Uuid = E->getUuidStr(); 1756 std::string Name = "_GUID_" + Uuid.lower(); 1757 std::replace(Name.begin(), Name.end(), '-', '_'); 1758 1759 // The UUID descriptor should be pointer aligned. 1760 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1761 1762 // Look for an existing global. 1763 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1764 return ConstantAddress(GV, Alignment); 1765 1766 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1767 assert(Init && "failed to initialize as constant"); 1768 1769 auto *GV = new llvm::GlobalVariable( 1770 getModule(), Init->getType(), 1771 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1772 if (supportsCOMDAT()) 1773 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1774 return ConstantAddress(GV, Alignment); 1775 } 1776 1777 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1778 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1779 assert(AA && "No alias?"); 1780 1781 CharUnits Alignment = getContext().getDeclAlign(VD); 1782 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1783 1784 // See if there is already something with the target's name in the module. 1785 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1786 if (Entry) { 1787 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1788 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1789 return ConstantAddress(Ptr, Alignment); 1790 } 1791 1792 llvm::Constant *Aliasee; 1793 if (isa<llvm::FunctionType>(DeclTy)) 1794 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1795 GlobalDecl(cast<FunctionDecl>(VD)), 1796 /*ForVTable=*/false); 1797 else 1798 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1799 llvm::PointerType::getUnqual(DeclTy), 1800 nullptr); 1801 1802 auto *F = cast<llvm::GlobalValue>(Aliasee); 1803 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1804 WeakRefReferences.insert(F); 1805 1806 return ConstantAddress(Aliasee, Alignment); 1807 } 1808 1809 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1810 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1811 1812 // Weak references don't produce any output by themselves. 1813 if (Global->hasAttr<WeakRefAttr>()) 1814 return; 1815 1816 // If this is an alias definition (which otherwise looks like a declaration) 1817 // emit it now. 1818 if (Global->hasAttr<AliasAttr>()) 1819 return EmitAliasDefinition(GD); 1820 1821 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1822 if (Global->hasAttr<IFuncAttr>()) 1823 return emitIFuncDefinition(GD); 1824 1825 // If this is CUDA, be selective about which declarations we emit. 1826 if (LangOpts.CUDA) { 1827 if (LangOpts.CUDAIsDevice) { 1828 if (!Global->hasAttr<CUDADeviceAttr>() && 1829 !Global->hasAttr<CUDAGlobalAttr>() && 1830 !Global->hasAttr<CUDAConstantAttr>() && 1831 !Global->hasAttr<CUDASharedAttr>()) 1832 return; 1833 } else { 1834 // We need to emit host-side 'shadows' for all global 1835 // device-side variables because the CUDA runtime needs their 1836 // size and host-side address in order to provide access to 1837 // their device-side incarnations. 1838 1839 // So device-only functions are the only things we skip. 1840 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1841 Global->hasAttr<CUDADeviceAttr>()) 1842 return; 1843 1844 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1845 "Expected Variable or Function"); 1846 } 1847 } 1848 1849 if (LangOpts.OpenMP) { 1850 // If this is OpenMP device, check if it is legal to emit this global 1851 // normally. 1852 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1853 return; 1854 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1855 if (MustBeEmitted(Global)) 1856 EmitOMPDeclareReduction(DRD); 1857 return; 1858 } 1859 } 1860 1861 // Ignore declarations, they will be emitted on their first use. 1862 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1863 // Forward declarations are emitted lazily on first use. 1864 if (!FD->doesThisDeclarationHaveABody()) { 1865 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1866 return; 1867 1868 StringRef MangledName = getMangledName(GD); 1869 1870 // Compute the function info and LLVM type. 1871 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1872 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1873 1874 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1875 /*DontDefer=*/false); 1876 return; 1877 } 1878 } else { 1879 const auto *VD = cast<VarDecl>(Global); 1880 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1881 // We need to emit device-side global CUDA variables even if a 1882 // variable does not have a definition -- we still need to define 1883 // host-side shadow for it. 1884 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1885 !VD->hasDefinition() && 1886 (VD->hasAttr<CUDAConstantAttr>() || 1887 VD->hasAttr<CUDADeviceAttr>()); 1888 if (!MustEmitForCuda && 1889 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1890 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1891 // If this declaration may have caused an inline variable definition to 1892 // change linkage, make sure that it's emitted. 1893 if (Context.getInlineVariableDefinitionKind(VD) == 1894 ASTContext::InlineVariableDefinitionKind::Strong) 1895 GetAddrOfGlobalVar(VD); 1896 return; 1897 } 1898 } 1899 1900 // Defer code generation to first use when possible, e.g. if this is an inline 1901 // function. If the global must always be emitted, do it eagerly if possible 1902 // to benefit from cache locality. 1903 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1904 // Emit the definition if it can't be deferred. 1905 EmitGlobalDefinition(GD); 1906 return; 1907 } 1908 1909 // If we're deferring emission of a C++ variable with an 1910 // initializer, remember the order in which it appeared in the file. 1911 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1912 cast<VarDecl>(Global)->hasInit()) { 1913 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1914 CXXGlobalInits.push_back(nullptr); 1915 } 1916 1917 StringRef MangledName = getMangledName(GD); 1918 if (GetGlobalValue(MangledName) != nullptr) { 1919 // The value has already been used and should therefore be emitted. 1920 addDeferredDeclToEmit(GD); 1921 } else if (MustBeEmitted(Global)) { 1922 // The value must be emitted, but cannot be emitted eagerly. 1923 assert(!MayBeEmittedEagerly(Global)); 1924 addDeferredDeclToEmit(GD); 1925 } else { 1926 // Otherwise, remember that we saw a deferred decl with this name. The 1927 // first use of the mangled name will cause it to move into 1928 // DeferredDeclsToEmit. 1929 DeferredDecls[MangledName] = GD; 1930 } 1931 } 1932 1933 // Check if T is a class type with a destructor that's not dllimport. 1934 static bool HasNonDllImportDtor(QualType T) { 1935 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1936 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1937 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1938 return true; 1939 1940 return false; 1941 } 1942 1943 namespace { 1944 struct FunctionIsDirectlyRecursive : 1945 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1946 const StringRef Name; 1947 const Builtin::Context &BI; 1948 bool Result; 1949 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1950 Name(N), BI(C), Result(false) { 1951 } 1952 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1953 1954 bool TraverseCallExpr(CallExpr *E) { 1955 const FunctionDecl *FD = E->getDirectCallee(); 1956 if (!FD) 1957 return true; 1958 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1959 if (Attr && Name == Attr->getLabel()) { 1960 Result = true; 1961 return false; 1962 } 1963 unsigned BuiltinID = FD->getBuiltinID(); 1964 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1965 return true; 1966 StringRef BuiltinName = BI.getName(BuiltinID); 1967 if (BuiltinName.startswith("__builtin_") && 1968 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1969 Result = true; 1970 return false; 1971 } 1972 return true; 1973 } 1974 }; 1975 1976 // Make sure we're not referencing non-imported vars or functions. 1977 struct DLLImportFunctionVisitor 1978 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1979 bool SafeToInline = true; 1980 1981 bool shouldVisitImplicitCode() const { return true; } 1982 1983 bool VisitVarDecl(VarDecl *VD) { 1984 if (VD->getTLSKind()) { 1985 // A thread-local variable cannot be imported. 1986 SafeToInline = false; 1987 return SafeToInline; 1988 } 1989 1990 // A variable definition might imply a destructor call. 1991 if (VD->isThisDeclarationADefinition()) 1992 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1993 1994 return SafeToInline; 1995 } 1996 1997 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1998 if (const auto *D = E->getTemporary()->getDestructor()) 1999 SafeToInline = D->hasAttr<DLLImportAttr>(); 2000 return SafeToInline; 2001 } 2002 2003 bool VisitDeclRefExpr(DeclRefExpr *E) { 2004 ValueDecl *VD = E->getDecl(); 2005 if (isa<FunctionDecl>(VD)) 2006 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2007 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2008 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2009 return SafeToInline; 2010 } 2011 2012 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2013 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2014 return SafeToInline; 2015 } 2016 2017 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2018 CXXMethodDecl *M = E->getMethodDecl(); 2019 if (!M) { 2020 // Call through a pointer to member function. This is safe to inline. 2021 SafeToInline = true; 2022 } else { 2023 SafeToInline = M->hasAttr<DLLImportAttr>(); 2024 } 2025 return SafeToInline; 2026 } 2027 2028 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2029 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2030 return SafeToInline; 2031 } 2032 2033 bool VisitCXXNewExpr(CXXNewExpr *E) { 2034 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2035 return SafeToInline; 2036 } 2037 }; 2038 } 2039 2040 // isTriviallyRecursive - Check if this function calls another 2041 // decl that, because of the asm attribute or the other decl being a builtin, 2042 // ends up pointing to itself. 2043 bool 2044 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2045 StringRef Name; 2046 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2047 // asm labels are a special kind of mangling we have to support. 2048 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2049 if (!Attr) 2050 return false; 2051 Name = Attr->getLabel(); 2052 } else { 2053 Name = FD->getName(); 2054 } 2055 2056 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2057 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2058 return Walker.Result; 2059 } 2060 2061 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2062 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2063 return true; 2064 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2065 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2066 return false; 2067 2068 if (F->hasAttr<DLLImportAttr>()) { 2069 // Check whether it would be safe to inline this dllimport function. 2070 DLLImportFunctionVisitor Visitor; 2071 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2072 if (!Visitor.SafeToInline) 2073 return false; 2074 2075 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2076 // Implicit destructor invocations aren't captured in the AST, so the 2077 // check above can't see them. Check for them manually here. 2078 for (const Decl *Member : Dtor->getParent()->decls()) 2079 if (isa<FieldDecl>(Member)) 2080 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2081 return false; 2082 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2083 if (HasNonDllImportDtor(B.getType())) 2084 return false; 2085 } 2086 } 2087 2088 // PR9614. Avoid cases where the source code is lying to us. An available 2089 // externally function should have an equivalent function somewhere else, 2090 // but a function that calls itself is clearly not equivalent to the real 2091 // implementation. 2092 // This happens in glibc's btowc and in some configure checks. 2093 return !isTriviallyRecursive(F); 2094 } 2095 2096 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2097 return CodeGenOpts.OptimizationLevel > 0; 2098 } 2099 2100 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2101 const auto *D = cast<ValueDecl>(GD.getDecl()); 2102 2103 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2104 Context.getSourceManager(), 2105 "Generating code for declaration"); 2106 2107 if (isa<FunctionDecl>(D)) { 2108 // At -O0, don't generate IR for functions with available_externally 2109 // linkage. 2110 if (!shouldEmitFunction(GD)) 2111 return; 2112 2113 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2114 // Make sure to emit the definition(s) before we emit the thunks. 2115 // This is necessary for the generation of certain thunks. 2116 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2117 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2118 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2119 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2120 else 2121 EmitGlobalFunctionDefinition(GD, GV); 2122 2123 if (Method->isVirtual()) 2124 getVTables().EmitThunks(GD); 2125 2126 return; 2127 } 2128 2129 return EmitGlobalFunctionDefinition(GD, GV); 2130 } 2131 2132 if (const auto *VD = dyn_cast<VarDecl>(D)) 2133 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2134 2135 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2136 } 2137 2138 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2139 llvm::Function *NewFn); 2140 2141 void CodeGenModule::emitMultiVersionFunctions() { 2142 for (GlobalDecl GD : MultiVersionFuncs) { 2143 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2144 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2145 getContext().forEachMultiversionedFunctionVersion( 2146 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2147 GlobalDecl CurGD{ 2148 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2149 StringRef MangledName = getMangledName(CurGD); 2150 llvm::Constant *Func = GetGlobalValue(MangledName); 2151 if (!Func) { 2152 if (CurFD->isDefined()) { 2153 EmitGlobalFunctionDefinition(CurGD, nullptr); 2154 Func = GetGlobalValue(MangledName); 2155 } else { 2156 const CGFunctionInfo &FI = 2157 getTypes().arrangeGlobalDeclaration(GD); 2158 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2159 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2160 /*DontDefer=*/false, ForDefinition); 2161 } 2162 assert(Func && "This should have just been created"); 2163 } 2164 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2165 CurFD->getAttr<TargetAttr>()->parse()); 2166 }); 2167 2168 llvm::Function *ResolverFunc = cast<llvm::Function>( 2169 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2170 std::stable_sort( 2171 Options.begin(), Options.end(), 2172 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2173 CodeGenFunction CGF(*this); 2174 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2175 } 2176 } 2177 2178 /// If an ifunc for the specified mangled name is not in the module, create and 2179 /// return an llvm IFunc Function with the specified type. 2180 llvm::Constant * 2181 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2182 StringRef MangledName, 2183 const FunctionDecl *FD) { 2184 std::string IFuncName = (MangledName + ".ifunc").str(); 2185 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2186 return IFuncGV; 2187 2188 // Since this is the first time we've created this IFunc, make sure 2189 // that we put this multiversioned function into the list to be 2190 // replaced later. 2191 MultiVersionFuncs.push_back(GD); 2192 2193 std::string ResolverName = (MangledName + ".resolver").str(); 2194 llvm::Type *ResolverType = llvm::FunctionType::get( 2195 llvm::PointerType::get(DeclTy, 2196 Context.getTargetAddressSpace(FD->getType())), 2197 false); 2198 llvm::Constant *Resolver = 2199 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2200 /*ForVTable=*/false); 2201 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2202 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2203 GIF->setName(IFuncName); 2204 SetCommonAttributes(FD, GIF); 2205 2206 return GIF; 2207 } 2208 2209 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2210 /// module, create and return an llvm Function with the specified type. If there 2211 /// is something in the module with the specified name, return it potentially 2212 /// bitcasted to the right type. 2213 /// 2214 /// If D is non-null, it specifies a decl that correspond to this. This is used 2215 /// to set the attributes on the function when it is first created. 2216 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2217 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2218 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2219 ForDefinition_t IsForDefinition) { 2220 const Decl *D = GD.getDecl(); 2221 2222 // Any attempts to use a MultiVersion function should result in retrieving 2223 // the iFunc instead. Name Mangling will handle the rest of the changes. 2224 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2225 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2226 UpdateMultiVersionNames(GD, FD); 2227 if (!IsForDefinition) 2228 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2229 } 2230 } 2231 2232 // Lookup the entry, lazily creating it if necessary. 2233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2234 if (Entry) { 2235 if (WeakRefReferences.erase(Entry)) { 2236 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2237 if (FD && !FD->hasAttr<WeakAttr>()) 2238 Entry->setLinkage(llvm::Function::ExternalLinkage); 2239 } 2240 2241 // Handle dropped DLL attributes. 2242 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2243 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2244 2245 // If there are two attempts to define the same mangled name, issue an 2246 // error. 2247 if (IsForDefinition && !Entry->isDeclaration()) { 2248 GlobalDecl OtherGD; 2249 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2250 // to make sure that we issue an error only once. 2251 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2252 (GD.getCanonicalDecl().getDecl() != 2253 OtherGD.getCanonicalDecl().getDecl()) && 2254 DiagnosedConflictingDefinitions.insert(GD).second) { 2255 getDiags().Report(D->getLocation(), 2256 diag::err_duplicate_mangled_name); 2257 getDiags().Report(OtherGD.getDecl()->getLocation(), 2258 diag::note_previous_definition); 2259 } 2260 } 2261 2262 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2263 (Entry->getType()->getElementType() == Ty)) { 2264 return Entry; 2265 } 2266 2267 // Make sure the result is of the correct type. 2268 // (If function is requested for a definition, we always need to create a new 2269 // function, not just return a bitcast.) 2270 if (!IsForDefinition) 2271 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2272 } 2273 2274 // This function doesn't have a complete type (for example, the return 2275 // type is an incomplete struct). Use a fake type instead, and make 2276 // sure not to try to set attributes. 2277 bool IsIncompleteFunction = false; 2278 2279 llvm::FunctionType *FTy; 2280 if (isa<llvm::FunctionType>(Ty)) { 2281 FTy = cast<llvm::FunctionType>(Ty); 2282 } else { 2283 FTy = llvm::FunctionType::get(VoidTy, false); 2284 IsIncompleteFunction = true; 2285 } 2286 2287 llvm::Function *F = 2288 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2289 Entry ? StringRef() : MangledName, &getModule()); 2290 2291 // If we already created a function with the same mangled name (but different 2292 // type) before, take its name and add it to the list of functions to be 2293 // replaced with F at the end of CodeGen. 2294 // 2295 // This happens if there is a prototype for a function (e.g. "int f()") and 2296 // then a definition of a different type (e.g. "int f(int x)"). 2297 if (Entry) { 2298 F->takeName(Entry); 2299 2300 // This might be an implementation of a function without a prototype, in 2301 // which case, try to do special replacement of calls which match the new 2302 // prototype. The really key thing here is that we also potentially drop 2303 // arguments from the call site so as to make a direct call, which makes the 2304 // inliner happier and suppresses a number of optimizer warnings (!) about 2305 // dropping arguments. 2306 if (!Entry->use_empty()) { 2307 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2308 Entry->removeDeadConstantUsers(); 2309 } 2310 2311 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2312 F, Entry->getType()->getElementType()->getPointerTo()); 2313 addGlobalValReplacement(Entry, BC); 2314 } 2315 2316 assert(F->getName() == MangledName && "name was uniqued!"); 2317 if (D) 2318 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2319 IsForDefinition); 2320 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2321 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2322 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2323 } 2324 2325 if (!DontDefer) { 2326 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2327 // each other bottoming out with the base dtor. Therefore we emit non-base 2328 // dtors on usage, even if there is no dtor definition in the TU. 2329 if (D && isa<CXXDestructorDecl>(D) && 2330 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2331 GD.getDtorType())) 2332 addDeferredDeclToEmit(GD); 2333 2334 // This is the first use or definition of a mangled name. If there is a 2335 // deferred decl with this name, remember that we need to emit it at the end 2336 // of the file. 2337 auto DDI = DeferredDecls.find(MangledName); 2338 if (DDI != DeferredDecls.end()) { 2339 // Move the potentially referenced deferred decl to the 2340 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2341 // don't need it anymore). 2342 addDeferredDeclToEmit(DDI->second); 2343 DeferredDecls.erase(DDI); 2344 2345 // Otherwise, there are cases we have to worry about where we're 2346 // using a declaration for which we must emit a definition but where 2347 // we might not find a top-level definition: 2348 // - member functions defined inline in their classes 2349 // - friend functions defined inline in some class 2350 // - special member functions with implicit definitions 2351 // If we ever change our AST traversal to walk into class methods, 2352 // this will be unnecessary. 2353 // 2354 // We also don't emit a definition for a function if it's going to be an 2355 // entry in a vtable, unless it's already marked as used. 2356 } else if (getLangOpts().CPlusPlus && D) { 2357 // Look for a declaration that's lexically in a record. 2358 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2359 FD = FD->getPreviousDecl()) { 2360 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2361 if (FD->doesThisDeclarationHaveABody()) { 2362 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2363 break; 2364 } 2365 } 2366 } 2367 } 2368 } 2369 2370 // Make sure the result is of the requested type. 2371 if (!IsIncompleteFunction) { 2372 assert(F->getType()->getElementType() == Ty); 2373 return F; 2374 } 2375 2376 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2377 return llvm::ConstantExpr::getBitCast(F, PTy); 2378 } 2379 2380 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2381 /// non-null, then this function will use the specified type if it has to 2382 /// create it (this occurs when we see a definition of the function). 2383 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2384 llvm::Type *Ty, 2385 bool ForVTable, 2386 bool DontDefer, 2387 ForDefinition_t IsForDefinition) { 2388 // If there was no specific requested type, just convert it now. 2389 if (!Ty) { 2390 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2391 auto CanonTy = Context.getCanonicalType(FD->getType()); 2392 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2393 } 2394 2395 StringRef MangledName = getMangledName(GD); 2396 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2397 /*IsThunk=*/false, llvm::AttributeList(), 2398 IsForDefinition); 2399 } 2400 2401 static const FunctionDecl * 2402 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2403 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2404 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2405 2406 IdentifierInfo &CII = C.Idents.get(Name); 2407 for (const auto &Result : DC->lookup(&CII)) 2408 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2409 return FD; 2410 2411 if (!C.getLangOpts().CPlusPlus) 2412 return nullptr; 2413 2414 // Demangle the premangled name from getTerminateFn() 2415 IdentifierInfo &CXXII = 2416 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2417 ? C.Idents.get("terminate") 2418 : C.Idents.get(Name); 2419 2420 for (const auto &N : {"__cxxabiv1", "std"}) { 2421 IdentifierInfo &NS = C.Idents.get(N); 2422 for (const auto &Result : DC->lookup(&NS)) { 2423 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2424 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2425 for (const auto &Result : LSD->lookup(&NS)) 2426 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2427 break; 2428 2429 if (ND) 2430 for (const auto &Result : ND->lookup(&CXXII)) 2431 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2432 return FD; 2433 } 2434 } 2435 2436 return nullptr; 2437 } 2438 2439 /// CreateRuntimeFunction - Create a new runtime function with the specified 2440 /// type and name. 2441 llvm::Constant * 2442 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2443 llvm::AttributeList ExtraAttrs, 2444 bool Local) { 2445 llvm::Constant *C = 2446 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2447 /*DontDefer=*/false, /*IsThunk=*/false, 2448 ExtraAttrs); 2449 2450 if (auto *F = dyn_cast<llvm::Function>(C)) { 2451 if (F->empty()) { 2452 F->setCallingConv(getRuntimeCC()); 2453 2454 if (!Local && getTriple().isOSBinFormatCOFF() && 2455 !getCodeGenOpts().LTOVisibilityPublicStd && 2456 !getTriple().isWindowsGNUEnvironment()) { 2457 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2458 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2459 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2460 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2461 } 2462 } 2463 } 2464 } 2465 2466 return C; 2467 } 2468 2469 /// CreateBuiltinFunction - Create a new builtin function with the specified 2470 /// type and name. 2471 llvm::Constant * 2472 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2473 llvm::AttributeList ExtraAttrs) { 2474 llvm::Constant *C = 2475 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2476 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2477 if (auto *F = dyn_cast<llvm::Function>(C)) 2478 if (F->empty()) 2479 F->setCallingConv(getBuiltinCC()); 2480 return C; 2481 } 2482 2483 /// isTypeConstant - Determine whether an object of this type can be emitted 2484 /// as a constant. 2485 /// 2486 /// If ExcludeCtor is true, the duration when the object's constructor runs 2487 /// will not be considered. The caller will need to verify that the object is 2488 /// not written to during its construction. 2489 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2490 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2491 return false; 2492 2493 if (Context.getLangOpts().CPlusPlus) { 2494 if (const CXXRecordDecl *Record 2495 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2496 return ExcludeCtor && !Record->hasMutableFields() && 2497 Record->hasTrivialDestructor(); 2498 } 2499 2500 return true; 2501 } 2502 2503 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2504 /// create and return an llvm GlobalVariable with the specified type. If there 2505 /// is something in the module with the specified name, return it potentially 2506 /// bitcasted to the right type. 2507 /// 2508 /// If D is non-null, it specifies a decl that correspond to this. This is used 2509 /// to set the attributes on the global when it is first created. 2510 /// 2511 /// If IsForDefinition is true, it is guranteed that an actual global with 2512 /// type Ty will be returned, not conversion of a variable with the same 2513 /// mangled name but some other type. 2514 llvm::Constant * 2515 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2516 llvm::PointerType *Ty, 2517 const VarDecl *D, 2518 ForDefinition_t IsForDefinition) { 2519 // Lookup the entry, lazily creating it if necessary. 2520 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2521 if (Entry) { 2522 if (WeakRefReferences.erase(Entry)) { 2523 if (D && !D->hasAttr<WeakAttr>()) 2524 Entry->setLinkage(llvm::Function::ExternalLinkage); 2525 } 2526 2527 // Handle dropped DLL attributes. 2528 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2529 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2530 2531 if (Entry->getType() == Ty) 2532 return Entry; 2533 2534 // If there are two attempts to define the same mangled name, issue an 2535 // error. 2536 if (IsForDefinition && !Entry->isDeclaration()) { 2537 GlobalDecl OtherGD; 2538 const VarDecl *OtherD; 2539 2540 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2541 // to make sure that we issue an error only once. 2542 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2543 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2544 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2545 OtherD->hasInit() && 2546 DiagnosedConflictingDefinitions.insert(D).second) { 2547 getDiags().Report(D->getLocation(), 2548 diag::err_duplicate_mangled_name); 2549 getDiags().Report(OtherGD.getDecl()->getLocation(), 2550 diag::note_previous_definition); 2551 } 2552 } 2553 2554 // Make sure the result is of the correct type. 2555 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2556 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2557 2558 // (If global is requested for a definition, we always need to create a new 2559 // global, not just return a bitcast.) 2560 if (!IsForDefinition) 2561 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2562 } 2563 2564 auto AddrSpace = GetGlobalVarAddressSpace(D); 2565 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2566 2567 auto *GV = new llvm::GlobalVariable( 2568 getModule(), Ty->getElementType(), false, 2569 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2570 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2571 2572 // If we already created a global with the same mangled name (but different 2573 // type) before, take its name and remove it from its parent. 2574 if (Entry) { 2575 GV->takeName(Entry); 2576 2577 if (!Entry->use_empty()) { 2578 llvm::Constant *NewPtrForOldDecl = 2579 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2580 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2581 } 2582 2583 Entry->eraseFromParent(); 2584 } 2585 2586 // This is the first use or definition of a mangled name. If there is a 2587 // deferred decl with this name, remember that we need to emit it at the end 2588 // of the file. 2589 auto DDI = DeferredDecls.find(MangledName); 2590 if (DDI != DeferredDecls.end()) { 2591 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2592 // list, and remove it from DeferredDecls (since we don't need it anymore). 2593 addDeferredDeclToEmit(DDI->second); 2594 DeferredDecls.erase(DDI); 2595 } 2596 2597 // Handle things which are present even on external declarations. 2598 if (D) { 2599 // FIXME: This code is overly simple and should be merged with other global 2600 // handling. 2601 GV->setConstant(isTypeConstant(D->getType(), false)); 2602 2603 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2604 2605 setLinkageForGV(GV, D); 2606 setGlobalVisibility(GV, D, NotForDefinition); 2607 2608 if (D->getTLSKind()) { 2609 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2610 CXXThreadLocals.push_back(D); 2611 setTLSMode(GV, *D); 2612 } 2613 2614 // If required by the ABI, treat declarations of static data members with 2615 // inline initializers as definitions. 2616 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2617 EmitGlobalVarDefinition(D); 2618 } 2619 2620 // Emit section information for extern variables. 2621 if (D->hasExternalStorage()) { 2622 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2623 GV->setSection(SA->getName()); 2624 } 2625 2626 // Handle XCore specific ABI requirements. 2627 if (getTriple().getArch() == llvm::Triple::xcore && 2628 D->getLanguageLinkage() == CLanguageLinkage && 2629 D->getType().isConstant(Context) && 2630 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2631 GV->setSection(".cp.rodata"); 2632 2633 // Check if we a have a const declaration with an initializer, we may be 2634 // able to emit it as available_externally to expose it's value to the 2635 // optimizer. 2636 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2637 D->getType().isConstQualified() && !GV->hasInitializer() && 2638 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2639 const auto *Record = 2640 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2641 bool HasMutableFields = Record && Record->hasMutableFields(); 2642 if (!HasMutableFields) { 2643 const VarDecl *InitDecl; 2644 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2645 if (InitExpr) { 2646 ConstantEmitter emitter(*this); 2647 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2648 if (Init) { 2649 auto *InitType = Init->getType(); 2650 if (GV->getType()->getElementType() != InitType) { 2651 // The type of the initializer does not match the definition. 2652 // This happens when an initializer has a different type from 2653 // the type of the global (because of padding at the end of a 2654 // structure for instance). 2655 GV->setName(StringRef()); 2656 // Make a new global with the correct type, this is now guaranteed 2657 // to work. 2658 auto *NewGV = cast<llvm::GlobalVariable>( 2659 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2660 2661 // Erase the old global, since it is no longer used. 2662 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2663 GV = NewGV; 2664 } else { 2665 GV->setInitializer(Init); 2666 GV->setConstant(true); 2667 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2668 } 2669 emitter.finalize(GV); 2670 } 2671 } 2672 } 2673 } 2674 } 2675 2676 LangAS ExpectedAS = 2677 D ? D->getType().getAddressSpace() 2678 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2679 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2680 Ty->getPointerAddressSpace()); 2681 if (AddrSpace != ExpectedAS) 2682 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2683 ExpectedAS, Ty); 2684 2685 return GV; 2686 } 2687 2688 llvm::Constant * 2689 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2690 ForDefinition_t IsForDefinition) { 2691 const Decl *D = GD.getDecl(); 2692 if (isa<CXXConstructorDecl>(D)) 2693 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2694 getFromCtorType(GD.getCtorType()), 2695 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2696 /*DontDefer=*/false, IsForDefinition); 2697 else if (isa<CXXDestructorDecl>(D)) 2698 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2699 getFromDtorType(GD.getDtorType()), 2700 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2701 /*DontDefer=*/false, IsForDefinition); 2702 else if (isa<CXXMethodDecl>(D)) { 2703 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2704 cast<CXXMethodDecl>(D)); 2705 auto Ty = getTypes().GetFunctionType(*FInfo); 2706 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2707 IsForDefinition); 2708 } else if (isa<FunctionDecl>(D)) { 2709 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2710 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2711 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2712 IsForDefinition); 2713 } else 2714 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2715 IsForDefinition); 2716 } 2717 2718 llvm::GlobalVariable * 2719 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2720 llvm::Type *Ty, 2721 llvm::GlobalValue::LinkageTypes Linkage) { 2722 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2723 llvm::GlobalVariable *OldGV = nullptr; 2724 2725 if (GV) { 2726 // Check if the variable has the right type. 2727 if (GV->getType()->getElementType() == Ty) 2728 return GV; 2729 2730 // Because C++ name mangling, the only way we can end up with an already 2731 // existing global with the same name is if it has been declared extern "C". 2732 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2733 OldGV = GV; 2734 } 2735 2736 // Create a new variable. 2737 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2738 Linkage, nullptr, Name); 2739 2740 if (OldGV) { 2741 // Replace occurrences of the old variable if needed. 2742 GV->takeName(OldGV); 2743 2744 if (!OldGV->use_empty()) { 2745 llvm::Constant *NewPtrForOldDecl = 2746 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2747 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2748 } 2749 2750 OldGV->eraseFromParent(); 2751 } 2752 2753 if (supportsCOMDAT() && GV->isWeakForLinker() && 2754 !GV->hasAvailableExternallyLinkage()) 2755 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2756 2757 return GV; 2758 } 2759 2760 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2761 /// given global variable. If Ty is non-null and if the global doesn't exist, 2762 /// then it will be created with the specified type instead of whatever the 2763 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2764 /// that an actual global with type Ty will be returned, not conversion of a 2765 /// variable with the same mangled name but some other type. 2766 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2767 llvm::Type *Ty, 2768 ForDefinition_t IsForDefinition) { 2769 assert(D->hasGlobalStorage() && "Not a global variable"); 2770 QualType ASTTy = D->getType(); 2771 if (!Ty) 2772 Ty = getTypes().ConvertTypeForMem(ASTTy); 2773 2774 llvm::PointerType *PTy = 2775 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2776 2777 StringRef MangledName = getMangledName(D); 2778 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2779 } 2780 2781 /// CreateRuntimeVariable - Create a new runtime global variable with the 2782 /// specified type and name. 2783 llvm::Constant * 2784 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2785 StringRef Name) { 2786 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2787 } 2788 2789 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2790 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2791 2792 StringRef MangledName = getMangledName(D); 2793 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2794 2795 // We already have a definition, not declaration, with the same mangled name. 2796 // Emitting of declaration is not required (and actually overwrites emitted 2797 // definition). 2798 if (GV && !GV->isDeclaration()) 2799 return; 2800 2801 // If we have not seen a reference to this variable yet, place it into the 2802 // deferred declarations table to be emitted if needed later. 2803 if (!MustBeEmitted(D) && !GV) { 2804 DeferredDecls[MangledName] = D; 2805 return; 2806 } 2807 2808 // The tentative definition is the only definition. 2809 EmitGlobalVarDefinition(D); 2810 } 2811 2812 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2813 return Context.toCharUnitsFromBits( 2814 getDataLayout().getTypeStoreSizeInBits(Ty)); 2815 } 2816 2817 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2818 LangAS AddrSpace = LangAS::Default; 2819 if (LangOpts.OpenCL) { 2820 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2821 assert(AddrSpace == LangAS::opencl_global || 2822 AddrSpace == LangAS::opencl_constant || 2823 AddrSpace == LangAS::opencl_local || 2824 AddrSpace >= LangAS::FirstTargetAddressSpace); 2825 return AddrSpace; 2826 } 2827 2828 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2829 if (D && D->hasAttr<CUDAConstantAttr>()) 2830 return LangAS::cuda_constant; 2831 else if (D && D->hasAttr<CUDASharedAttr>()) 2832 return LangAS::cuda_shared; 2833 else 2834 return LangAS::cuda_device; 2835 } 2836 2837 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2838 } 2839 2840 template<typename SomeDecl> 2841 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2842 llvm::GlobalValue *GV) { 2843 if (!getLangOpts().CPlusPlus) 2844 return; 2845 2846 // Must have 'used' attribute, or else inline assembly can't rely on 2847 // the name existing. 2848 if (!D->template hasAttr<UsedAttr>()) 2849 return; 2850 2851 // Must have internal linkage and an ordinary name. 2852 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2853 return; 2854 2855 // Must be in an extern "C" context. Entities declared directly within 2856 // a record are not extern "C" even if the record is in such a context. 2857 const SomeDecl *First = D->getFirstDecl(); 2858 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2859 return; 2860 2861 // OK, this is an internal linkage entity inside an extern "C" linkage 2862 // specification. Make a note of that so we can give it the "expected" 2863 // mangled name if nothing else is using that name. 2864 std::pair<StaticExternCMap::iterator, bool> R = 2865 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2866 2867 // If we have multiple internal linkage entities with the same name 2868 // in extern "C" regions, none of them gets that name. 2869 if (!R.second) 2870 R.first->second = nullptr; 2871 } 2872 2873 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2874 if (!CGM.supportsCOMDAT()) 2875 return false; 2876 2877 if (D.hasAttr<SelectAnyAttr>()) 2878 return true; 2879 2880 GVALinkage Linkage; 2881 if (auto *VD = dyn_cast<VarDecl>(&D)) 2882 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2883 else 2884 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2885 2886 switch (Linkage) { 2887 case GVA_Internal: 2888 case GVA_AvailableExternally: 2889 case GVA_StrongExternal: 2890 return false; 2891 case GVA_DiscardableODR: 2892 case GVA_StrongODR: 2893 return true; 2894 } 2895 llvm_unreachable("No such linkage"); 2896 } 2897 2898 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2899 llvm::GlobalObject &GO) { 2900 if (!shouldBeInCOMDAT(*this, D)) 2901 return; 2902 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2903 } 2904 2905 /// Pass IsTentative as true if you want to create a tentative definition. 2906 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2907 bool IsTentative) { 2908 // OpenCL global variables of sampler type are translated to function calls, 2909 // therefore no need to be translated. 2910 QualType ASTTy = D->getType(); 2911 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2912 return; 2913 2914 llvm::Constant *Init = nullptr; 2915 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2916 bool NeedsGlobalCtor = false; 2917 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2918 2919 const VarDecl *InitDecl; 2920 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2921 2922 Optional<ConstantEmitter> emitter; 2923 2924 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2925 // as part of their declaration." Sema has already checked for 2926 // error cases, so we just need to set Init to UndefValue. 2927 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2928 D->hasAttr<CUDASharedAttr>()) 2929 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2930 else if (!InitExpr) { 2931 // This is a tentative definition; tentative definitions are 2932 // implicitly initialized with { 0 }. 2933 // 2934 // Note that tentative definitions are only emitted at the end of 2935 // a translation unit, so they should never have incomplete 2936 // type. In addition, EmitTentativeDefinition makes sure that we 2937 // never attempt to emit a tentative definition if a real one 2938 // exists. A use may still exists, however, so we still may need 2939 // to do a RAUW. 2940 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2941 Init = EmitNullConstant(D->getType()); 2942 } else { 2943 initializedGlobalDecl = GlobalDecl(D); 2944 emitter.emplace(*this); 2945 Init = emitter->tryEmitForInitializer(*InitDecl); 2946 2947 if (!Init) { 2948 QualType T = InitExpr->getType(); 2949 if (D->getType()->isReferenceType()) 2950 T = D->getType(); 2951 2952 if (getLangOpts().CPlusPlus) { 2953 Init = EmitNullConstant(T); 2954 NeedsGlobalCtor = true; 2955 } else { 2956 ErrorUnsupported(D, "static initializer"); 2957 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2958 } 2959 } else { 2960 // We don't need an initializer, so remove the entry for the delayed 2961 // initializer position (just in case this entry was delayed) if we 2962 // also don't need to register a destructor. 2963 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2964 DelayedCXXInitPosition.erase(D); 2965 } 2966 } 2967 2968 llvm::Type* InitType = Init->getType(); 2969 llvm::Constant *Entry = 2970 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2971 2972 // Strip off a bitcast if we got one back. 2973 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2974 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2975 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2976 // All zero index gep. 2977 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2978 Entry = CE->getOperand(0); 2979 } 2980 2981 // Entry is now either a Function or GlobalVariable. 2982 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2983 2984 // We have a definition after a declaration with the wrong type. 2985 // We must make a new GlobalVariable* and update everything that used OldGV 2986 // (a declaration or tentative definition) with the new GlobalVariable* 2987 // (which will be a definition). 2988 // 2989 // This happens if there is a prototype for a global (e.g. 2990 // "extern int x[];") and then a definition of a different type (e.g. 2991 // "int x[10];"). This also happens when an initializer has a different type 2992 // from the type of the global (this happens with unions). 2993 if (!GV || GV->getType()->getElementType() != InitType || 2994 GV->getType()->getAddressSpace() != 2995 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2996 2997 // Move the old entry aside so that we'll create a new one. 2998 Entry->setName(StringRef()); 2999 3000 // Make a new global with the correct type, this is now guaranteed to work. 3001 GV = cast<llvm::GlobalVariable>( 3002 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3003 3004 // Replace all uses of the old global with the new global 3005 llvm::Constant *NewPtrForOldDecl = 3006 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3007 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3008 3009 // Erase the old global, since it is no longer used. 3010 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3011 } 3012 3013 MaybeHandleStaticInExternC(D, GV); 3014 3015 if (D->hasAttr<AnnotateAttr>()) 3016 AddGlobalAnnotations(D, GV); 3017 3018 // Set the llvm linkage type as appropriate. 3019 llvm::GlobalValue::LinkageTypes Linkage = 3020 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3021 3022 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3023 // the device. [...]" 3024 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3025 // __device__, declares a variable that: [...] 3026 // Is accessible from all the threads within the grid and from the host 3027 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3028 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3029 if (GV && LangOpts.CUDA) { 3030 if (LangOpts.CUDAIsDevice) { 3031 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3032 GV->setExternallyInitialized(true); 3033 } else { 3034 // Host-side shadows of external declarations of device-side 3035 // global variables become internal definitions. These have to 3036 // be internal in order to prevent name conflicts with global 3037 // host variables with the same name in a different TUs. 3038 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3039 Linkage = llvm::GlobalValue::InternalLinkage; 3040 3041 // Shadow variables and their properties must be registered 3042 // with CUDA runtime. 3043 unsigned Flags = 0; 3044 if (!D->hasDefinition()) 3045 Flags |= CGCUDARuntime::ExternDeviceVar; 3046 if (D->hasAttr<CUDAConstantAttr>()) 3047 Flags |= CGCUDARuntime::ConstantDeviceVar; 3048 getCUDARuntime().registerDeviceVar(*GV, Flags); 3049 } else if (D->hasAttr<CUDASharedAttr>()) 3050 // __shared__ variables are odd. Shadows do get created, but 3051 // they are not registered with the CUDA runtime, so they 3052 // can't really be used to access their device-side 3053 // counterparts. It's not clear yet whether it's nvcc's bug or 3054 // a feature, but we've got to do the same for compatibility. 3055 Linkage = llvm::GlobalValue::InternalLinkage; 3056 } 3057 } 3058 3059 GV->setInitializer(Init); 3060 if (emitter) emitter->finalize(GV); 3061 3062 // If it is safe to mark the global 'constant', do so now. 3063 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3064 isTypeConstant(D->getType(), true)); 3065 3066 // If it is in a read-only section, mark it 'constant'. 3067 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3068 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3069 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3070 GV->setConstant(true); 3071 } 3072 3073 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3074 3075 3076 // On Darwin, if the normal linkage of a C++ thread_local variable is 3077 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3078 // copies within a linkage unit; otherwise, the backing variable has 3079 // internal linkage and all accesses should just be calls to the 3080 // Itanium-specified entry point, which has the normal linkage of the 3081 // variable. This is to preserve the ability to change the implementation 3082 // behind the scenes. 3083 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3084 Context.getTargetInfo().getTriple().isOSDarwin() && 3085 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3086 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3087 Linkage = llvm::GlobalValue::InternalLinkage; 3088 3089 GV->setLinkage(Linkage); 3090 if (D->hasAttr<DLLImportAttr>()) 3091 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3092 else if (D->hasAttr<DLLExportAttr>()) 3093 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3094 else 3095 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3096 3097 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3098 // common vars aren't constant even if declared const. 3099 GV->setConstant(false); 3100 // Tentative definition of global variables may be initialized with 3101 // non-zero null pointers. In this case they should have weak linkage 3102 // since common linkage must have zero initializer and must not have 3103 // explicit section therefore cannot have non-zero initial value. 3104 if (!GV->getInitializer()->isNullValue()) 3105 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3106 } 3107 3108 setNonAliasAttributes(D, GV); 3109 3110 if (D->getTLSKind() && !GV->isThreadLocal()) { 3111 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3112 CXXThreadLocals.push_back(D); 3113 setTLSMode(GV, *D); 3114 } 3115 3116 maybeSetTrivialComdat(*D, *GV); 3117 3118 // Emit the initializer function if necessary. 3119 if (NeedsGlobalCtor || NeedsGlobalDtor) 3120 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3121 3122 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3123 3124 // Emit global variable debug information. 3125 if (CGDebugInfo *DI = getModuleDebugInfo()) 3126 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3127 DI->EmitGlobalVariable(GV, D); 3128 } 3129 3130 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3131 CodeGenModule &CGM, const VarDecl *D, 3132 bool NoCommon) { 3133 // Don't give variables common linkage if -fno-common was specified unless it 3134 // was overridden by a NoCommon attribute. 3135 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3136 return true; 3137 3138 // C11 6.9.2/2: 3139 // A declaration of an identifier for an object that has file scope without 3140 // an initializer, and without a storage-class specifier or with the 3141 // storage-class specifier static, constitutes a tentative definition. 3142 if (D->getInit() || D->hasExternalStorage()) 3143 return true; 3144 3145 // A variable cannot be both common and exist in a section. 3146 if (D->hasAttr<SectionAttr>()) 3147 return true; 3148 3149 // A variable cannot be both common and exist in a section. 3150 // We dont try to determine which is the right section in the front-end. 3151 // If no specialized section name is applicable, it will resort to default. 3152 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3153 D->hasAttr<PragmaClangDataSectionAttr>() || 3154 D->hasAttr<PragmaClangRodataSectionAttr>()) 3155 return true; 3156 3157 // Thread local vars aren't considered common linkage. 3158 if (D->getTLSKind()) 3159 return true; 3160 3161 // Tentative definitions marked with WeakImportAttr are true definitions. 3162 if (D->hasAttr<WeakImportAttr>()) 3163 return true; 3164 3165 // A variable cannot be both common and exist in a comdat. 3166 if (shouldBeInCOMDAT(CGM, *D)) 3167 return true; 3168 3169 // Declarations with a required alignment do not have common linkage in MSVC 3170 // mode. 3171 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3172 if (D->hasAttr<AlignedAttr>()) 3173 return true; 3174 QualType VarType = D->getType(); 3175 if (Context.isAlignmentRequired(VarType)) 3176 return true; 3177 3178 if (const auto *RT = VarType->getAs<RecordType>()) { 3179 const RecordDecl *RD = RT->getDecl(); 3180 for (const FieldDecl *FD : RD->fields()) { 3181 if (FD->isBitField()) 3182 continue; 3183 if (FD->hasAttr<AlignedAttr>()) 3184 return true; 3185 if (Context.isAlignmentRequired(FD->getType())) 3186 return true; 3187 } 3188 } 3189 } 3190 3191 return false; 3192 } 3193 3194 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3195 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3196 if (Linkage == GVA_Internal) 3197 return llvm::Function::InternalLinkage; 3198 3199 if (D->hasAttr<WeakAttr>()) { 3200 if (IsConstantVariable) 3201 return llvm::GlobalVariable::WeakODRLinkage; 3202 else 3203 return llvm::GlobalVariable::WeakAnyLinkage; 3204 } 3205 3206 // We are guaranteed to have a strong definition somewhere else, 3207 // so we can use available_externally linkage. 3208 if (Linkage == GVA_AvailableExternally) 3209 return llvm::GlobalValue::AvailableExternallyLinkage; 3210 3211 // Note that Apple's kernel linker doesn't support symbol 3212 // coalescing, so we need to avoid linkonce and weak linkages there. 3213 // Normally, this means we just map to internal, but for explicit 3214 // instantiations we'll map to external. 3215 3216 // In C++, the compiler has to emit a definition in every translation unit 3217 // that references the function. We should use linkonce_odr because 3218 // a) if all references in this translation unit are optimized away, we 3219 // don't need to codegen it. b) if the function persists, it needs to be 3220 // merged with other definitions. c) C++ has the ODR, so we know the 3221 // definition is dependable. 3222 if (Linkage == GVA_DiscardableODR) 3223 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3224 : llvm::Function::InternalLinkage; 3225 3226 // An explicit instantiation of a template has weak linkage, since 3227 // explicit instantiations can occur in multiple translation units 3228 // and must all be equivalent. However, we are not allowed to 3229 // throw away these explicit instantiations. 3230 // 3231 // We don't currently support CUDA device code spread out across multiple TUs, 3232 // so say that CUDA templates are either external (for kernels) or internal. 3233 // This lets llvm perform aggressive inter-procedural optimizations. 3234 if (Linkage == GVA_StrongODR) { 3235 if (Context.getLangOpts().AppleKext) 3236 return llvm::Function::ExternalLinkage; 3237 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3238 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3239 : llvm::Function::InternalLinkage; 3240 return llvm::Function::WeakODRLinkage; 3241 } 3242 3243 // C++ doesn't have tentative definitions and thus cannot have common 3244 // linkage. 3245 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3246 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3247 CodeGenOpts.NoCommon)) 3248 return llvm::GlobalVariable::CommonLinkage; 3249 3250 // selectany symbols are externally visible, so use weak instead of 3251 // linkonce. MSVC optimizes away references to const selectany globals, so 3252 // all definitions should be the same and ODR linkage should be used. 3253 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3254 if (D->hasAttr<SelectAnyAttr>()) 3255 return llvm::GlobalVariable::WeakODRLinkage; 3256 3257 // Otherwise, we have strong external linkage. 3258 assert(Linkage == GVA_StrongExternal); 3259 return llvm::GlobalVariable::ExternalLinkage; 3260 } 3261 3262 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3263 const VarDecl *VD, bool IsConstant) { 3264 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3265 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3266 } 3267 3268 /// Replace the uses of a function that was declared with a non-proto type. 3269 /// We want to silently drop extra arguments from call sites 3270 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3271 llvm::Function *newFn) { 3272 // Fast path. 3273 if (old->use_empty()) return; 3274 3275 llvm::Type *newRetTy = newFn->getReturnType(); 3276 SmallVector<llvm::Value*, 4> newArgs; 3277 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3278 3279 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3280 ui != ue; ) { 3281 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3282 llvm::User *user = use->getUser(); 3283 3284 // Recognize and replace uses of bitcasts. Most calls to 3285 // unprototyped functions will use bitcasts. 3286 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3287 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3288 replaceUsesOfNonProtoConstant(bitcast, newFn); 3289 continue; 3290 } 3291 3292 // Recognize calls to the function. 3293 llvm::CallSite callSite(user); 3294 if (!callSite) continue; 3295 if (!callSite.isCallee(&*use)) continue; 3296 3297 // If the return types don't match exactly, then we can't 3298 // transform this call unless it's dead. 3299 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3300 continue; 3301 3302 // Get the call site's attribute list. 3303 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3304 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3305 3306 // If the function was passed too few arguments, don't transform. 3307 unsigned newNumArgs = newFn->arg_size(); 3308 if (callSite.arg_size() < newNumArgs) continue; 3309 3310 // If extra arguments were passed, we silently drop them. 3311 // If any of the types mismatch, we don't transform. 3312 unsigned argNo = 0; 3313 bool dontTransform = false; 3314 for (llvm::Argument &A : newFn->args()) { 3315 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3316 dontTransform = true; 3317 break; 3318 } 3319 3320 // Add any parameter attributes. 3321 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3322 argNo++; 3323 } 3324 if (dontTransform) 3325 continue; 3326 3327 // Okay, we can transform this. Create the new call instruction and copy 3328 // over the required information. 3329 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3330 3331 // Copy over any operand bundles. 3332 callSite.getOperandBundlesAsDefs(newBundles); 3333 3334 llvm::CallSite newCall; 3335 if (callSite.isCall()) { 3336 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3337 callSite.getInstruction()); 3338 } else { 3339 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3340 newCall = llvm::InvokeInst::Create(newFn, 3341 oldInvoke->getNormalDest(), 3342 oldInvoke->getUnwindDest(), 3343 newArgs, newBundles, "", 3344 callSite.getInstruction()); 3345 } 3346 newArgs.clear(); // for the next iteration 3347 3348 if (!newCall->getType()->isVoidTy()) 3349 newCall->takeName(callSite.getInstruction()); 3350 newCall.setAttributes(llvm::AttributeList::get( 3351 newFn->getContext(), oldAttrs.getFnAttributes(), 3352 oldAttrs.getRetAttributes(), newArgAttrs)); 3353 newCall.setCallingConv(callSite.getCallingConv()); 3354 3355 // Finally, remove the old call, replacing any uses with the new one. 3356 if (!callSite->use_empty()) 3357 callSite->replaceAllUsesWith(newCall.getInstruction()); 3358 3359 // Copy debug location attached to CI. 3360 if (callSite->getDebugLoc()) 3361 newCall->setDebugLoc(callSite->getDebugLoc()); 3362 3363 callSite->eraseFromParent(); 3364 } 3365 } 3366 3367 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3368 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3369 /// existing call uses of the old function in the module, this adjusts them to 3370 /// call the new function directly. 3371 /// 3372 /// This is not just a cleanup: the always_inline pass requires direct calls to 3373 /// functions to be able to inline them. If there is a bitcast in the way, it 3374 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3375 /// run at -O0. 3376 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3377 llvm::Function *NewFn) { 3378 // If we're redefining a global as a function, don't transform it. 3379 if (!isa<llvm::Function>(Old)) return; 3380 3381 replaceUsesOfNonProtoConstant(Old, NewFn); 3382 } 3383 3384 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3385 auto DK = VD->isThisDeclarationADefinition(); 3386 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3387 return; 3388 3389 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3390 // If we have a definition, this might be a deferred decl. If the 3391 // instantiation is explicit, make sure we emit it at the end. 3392 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3393 GetAddrOfGlobalVar(VD); 3394 3395 EmitTopLevelDecl(VD); 3396 } 3397 3398 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3399 llvm::GlobalValue *GV) { 3400 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3401 3402 // Compute the function info and LLVM type. 3403 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3404 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3405 3406 // Get or create the prototype for the function. 3407 if (!GV || (GV->getType()->getElementType() != Ty)) 3408 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3409 /*DontDefer=*/true, 3410 ForDefinition)); 3411 3412 // Already emitted. 3413 if (!GV->isDeclaration()) 3414 return; 3415 3416 // We need to set linkage and visibility on the function before 3417 // generating code for it because various parts of IR generation 3418 // want to propagate this information down (e.g. to local static 3419 // declarations). 3420 auto *Fn = cast<llvm::Function>(GV); 3421 setFunctionLinkage(GD, Fn); 3422 setFunctionDLLStorageClass(GD, Fn); 3423 3424 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3425 setGlobalVisibility(Fn, D, ForDefinition); 3426 3427 MaybeHandleStaticInExternC(D, Fn); 3428 3429 maybeSetTrivialComdat(*D, *Fn); 3430 3431 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3432 3433 setFunctionDefinitionAttributes(D, Fn); 3434 SetLLVMFunctionAttributesForDefinition(D, Fn); 3435 3436 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3437 AddGlobalCtor(Fn, CA->getPriority()); 3438 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3439 AddGlobalDtor(Fn, DA->getPriority()); 3440 if (D->hasAttr<AnnotateAttr>()) 3441 AddGlobalAnnotations(D, Fn); 3442 } 3443 3444 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3445 const auto *D = cast<ValueDecl>(GD.getDecl()); 3446 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3447 assert(AA && "Not an alias?"); 3448 3449 StringRef MangledName = getMangledName(GD); 3450 3451 if (AA->getAliasee() == MangledName) { 3452 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3453 return; 3454 } 3455 3456 // If there is a definition in the module, then it wins over the alias. 3457 // This is dubious, but allow it to be safe. Just ignore the alias. 3458 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3459 if (Entry && !Entry->isDeclaration()) 3460 return; 3461 3462 Aliases.push_back(GD); 3463 3464 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3465 3466 // Create a reference to the named value. This ensures that it is emitted 3467 // if a deferred decl. 3468 llvm::Constant *Aliasee; 3469 if (isa<llvm::FunctionType>(DeclTy)) 3470 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3471 /*ForVTable=*/false); 3472 else 3473 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3474 llvm::PointerType::getUnqual(DeclTy), 3475 /*D=*/nullptr); 3476 3477 // Create the new alias itself, but don't set a name yet. 3478 auto *GA = llvm::GlobalAlias::create( 3479 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3480 3481 if (Entry) { 3482 if (GA->getAliasee() == Entry) { 3483 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3484 return; 3485 } 3486 3487 assert(Entry->isDeclaration()); 3488 3489 // If there is a declaration in the module, then we had an extern followed 3490 // by the alias, as in: 3491 // extern int test6(); 3492 // ... 3493 // int test6() __attribute__((alias("test7"))); 3494 // 3495 // Remove it and replace uses of it with the alias. 3496 GA->takeName(Entry); 3497 3498 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3499 Entry->getType())); 3500 Entry->eraseFromParent(); 3501 } else { 3502 GA->setName(MangledName); 3503 } 3504 3505 // Set attributes which are particular to an alias; this is a 3506 // specialization of the attributes which may be set on a global 3507 // variable/function. 3508 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3509 D->isWeakImported()) { 3510 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3511 } 3512 3513 if (const auto *VD = dyn_cast<VarDecl>(D)) 3514 if (VD->getTLSKind()) 3515 setTLSMode(GA, *VD); 3516 3517 setAliasAttributes(D, GA); 3518 } 3519 3520 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3521 const auto *D = cast<ValueDecl>(GD.getDecl()); 3522 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3523 assert(IFA && "Not an ifunc?"); 3524 3525 StringRef MangledName = getMangledName(GD); 3526 3527 if (IFA->getResolver() == MangledName) { 3528 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3529 return; 3530 } 3531 3532 // Report an error if some definition overrides ifunc. 3533 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3534 if (Entry && !Entry->isDeclaration()) { 3535 GlobalDecl OtherGD; 3536 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3537 DiagnosedConflictingDefinitions.insert(GD).second) { 3538 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3539 Diags.Report(OtherGD.getDecl()->getLocation(), 3540 diag::note_previous_definition); 3541 } 3542 return; 3543 } 3544 3545 Aliases.push_back(GD); 3546 3547 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3548 llvm::Constant *Resolver = 3549 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3550 /*ForVTable=*/false); 3551 llvm::GlobalIFunc *GIF = 3552 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3553 "", Resolver, &getModule()); 3554 if (Entry) { 3555 if (GIF->getResolver() == Entry) { 3556 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3557 return; 3558 } 3559 assert(Entry->isDeclaration()); 3560 3561 // If there is a declaration in the module, then we had an extern followed 3562 // by the ifunc, as in: 3563 // extern int test(); 3564 // ... 3565 // int test() __attribute__((ifunc("resolver"))); 3566 // 3567 // Remove it and replace uses of it with the ifunc. 3568 GIF->takeName(Entry); 3569 3570 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3571 Entry->getType())); 3572 Entry->eraseFromParent(); 3573 } else 3574 GIF->setName(MangledName); 3575 3576 SetCommonAttributes(D, GIF); 3577 } 3578 3579 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3580 ArrayRef<llvm::Type*> Tys) { 3581 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3582 Tys); 3583 } 3584 3585 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3586 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3587 const StringLiteral *Literal, bool TargetIsLSB, 3588 bool &IsUTF16, unsigned &StringLength) { 3589 StringRef String = Literal->getString(); 3590 unsigned NumBytes = String.size(); 3591 3592 // Check for simple case. 3593 if (!Literal->containsNonAsciiOrNull()) { 3594 StringLength = NumBytes; 3595 return *Map.insert(std::make_pair(String, nullptr)).first; 3596 } 3597 3598 // Otherwise, convert the UTF8 literals into a string of shorts. 3599 IsUTF16 = true; 3600 3601 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3602 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3603 llvm::UTF16 *ToPtr = &ToBuf[0]; 3604 3605 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3606 ToPtr + NumBytes, llvm::strictConversion); 3607 3608 // ConvertUTF8toUTF16 returns the length in ToPtr. 3609 StringLength = ToPtr - &ToBuf[0]; 3610 3611 // Add an explicit null. 3612 *ToPtr = 0; 3613 return *Map.insert(std::make_pair( 3614 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3615 (StringLength + 1) * 2), 3616 nullptr)).first; 3617 } 3618 3619 ConstantAddress 3620 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3621 unsigned StringLength = 0; 3622 bool isUTF16 = false; 3623 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3624 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3625 getDataLayout().isLittleEndian(), isUTF16, 3626 StringLength); 3627 3628 if (auto *C = Entry.second) 3629 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3630 3631 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3632 llvm::Constant *Zeros[] = { Zero, Zero }; 3633 3634 // If we don't already have it, get __CFConstantStringClassReference. 3635 if (!CFConstantStringClassRef) { 3636 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3637 Ty = llvm::ArrayType::get(Ty, 0); 3638 llvm::Constant *GV = 3639 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3640 3641 if (getTriple().isOSBinFormatCOFF()) { 3642 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3643 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3644 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3645 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3646 3647 const VarDecl *VD = nullptr; 3648 for (const auto &Result : DC->lookup(&II)) 3649 if ((VD = dyn_cast<VarDecl>(Result))) 3650 break; 3651 3652 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3653 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3654 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3655 } else { 3656 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3657 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3658 } 3659 } 3660 3661 // Decay array -> ptr 3662 CFConstantStringClassRef = 3663 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3664 } 3665 3666 QualType CFTy = getContext().getCFConstantStringType(); 3667 3668 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3669 3670 ConstantInitBuilder Builder(*this); 3671 auto Fields = Builder.beginStruct(STy); 3672 3673 // Class pointer. 3674 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3675 3676 // Flags. 3677 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3678 3679 // String pointer. 3680 llvm::Constant *C = nullptr; 3681 if (isUTF16) { 3682 auto Arr = llvm::makeArrayRef( 3683 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3684 Entry.first().size() / 2); 3685 C = llvm::ConstantDataArray::get(VMContext, Arr); 3686 } else { 3687 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3688 } 3689 3690 // Note: -fwritable-strings doesn't make the backing store strings of 3691 // CFStrings writable. (See <rdar://problem/10657500>) 3692 auto *GV = 3693 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3694 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3695 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3696 // Don't enforce the target's minimum global alignment, since the only use 3697 // of the string is via this class initializer. 3698 CharUnits Align = isUTF16 3699 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3700 : getContext().getTypeAlignInChars(getContext().CharTy); 3701 GV->setAlignment(Align.getQuantity()); 3702 3703 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3704 // Without it LLVM can merge the string with a non unnamed_addr one during 3705 // LTO. Doing that changes the section it ends in, which surprises ld64. 3706 if (getTriple().isOSBinFormatMachO()) 3707 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3708 : "__TEXT,__cstring,cstring_literals"); 3709 3710 // String. 3711 llvm::Constant *Str = 3712 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3713 3714 if (isUTF16) 3715 // Cast the UTF16 string to the correct type. 3716 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3717 Fields.add(Str); 3718 3719 // String length. 3720 auto Ty = getTypes().ConvertType(getContext().LongTy); 3721 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3722 3723 CharUnits Alignment = getPointerAlign(); 3724 3725 // The struct. 3726 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3727 /*isConstant=*/false, 3728 llvm::GlobalVariable::PrivateLinkage); 3729 switch (getTriple().getObjectFormat()) { 3730 case llvm::Triple::UnknownObjectFormat: 3731 llvm_unreachable("unknown file format"); 3732 case llvm::Triple::COFF: 3733 case llvm::Triple::ELF: 3734 case llvm::Triple::Wasm: 3735 GV->setSection("cfstring"); 3736 break; 3737 case llvm::Triple::MachO: 3738 GV->setSection("__DATA,__cfstring"); 3739 break; 3740 } 3741 Entry.second = GV; 3742 3743 return ConstantAddress(GV, Alignment); 3744 } 3745 3746 bool CodeGenModule::getExpressionLocationsEnabled() const { 3747 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3748 } 3749 3750 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3751 if (ObjCFastEnumerationStateType.isNull()) { 3752 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3753 D->startDefinition(); 3754 3755 QualType FieldTypes[] = { 3756 Context.UnsignedLongTy, 3757 Context.getPointerType(Context.getObjCIdType()), 3758 Context.getPointerType(Context.UnsignedLongTy), 3759 Context.getConstantArrayType(Context.UnsignedLongTy, 3760 llvm::APInt(32, 5), ArrayType::Normal, 0) 3761 }; 3762 3763 for (size_t i = 0; i < 4; ++i) { 3764 FieldDecl *Field = FieldDecl::Create(Context, 3765 D, 3766 SourceLocation(), 3767 SourceLocation(), nullptr, 3768 FieldTypes[i], /*TInfo=*/nullptr, 3769 /*BitWidth=*/nullptr, 3770 /*Mutable=*/false, 3771 ICIS_NoInit); 3772 Field->setAccess(AS_public); 3773 D->addDecl(Field); 3774 } 3775 3776 D->completeDefinition(); 3777 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3778 } 3779 3780 return ObjCFastEnumerationStateType; 3781 } 3782 3783 llvm::Constant * 3784 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3785 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3786 3787 // Don't emit it as the address of the string, emit the string data itself 3788 // as an inline array. 3789 if (E->getCharByteWidth() == 1) { 3790 SmallString<64> Str(E->getString()); 3791 3792 // Resize the string to the right size, which is indicated by its type. 3793 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3794 Str.resize(CAT->getSize().getZExtValue()); 3795 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3796 } 3797 3798 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3799 llvm::Type *ElemTy = AType->getElementType(); 3800 unsigned NumElements = AType->getNumElements(); 3801 3802 // Wide strings have either 2-byte or 4-byte elements. 3803 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3804 SmallVector<uint16_t, 32> Elements; 3805 Elements.reserve(NumElements); 3806 3807 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3808 Elements.push_back(E->getCodeUnit(i)); 3809 Elements.resize(NumElements); 3810 return llvm::ConstantDataArray::get(VMContext, Elements); 3811 } 3812 3813 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3814 SmallVector<uint32_t, 32> Elements; 3815 Elements.reserve(NumElements); 3816 3817 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3818 Elements.push_back(E->getCodeUnit(i)); 3819 Elements.resize(NumElements); 3820 return llvm::ConstantDataArray::get(VMContext, Elements); 3821 } 3822 3823 static llvm::GlobalVariable * 3824 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3825 CodeGenModule &CGM, StringRef GlobalName, 3826 CharUnits Alignment) { 3827 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3828 unsigned AddrSpace = 0; 3829 if (CGM.getLangOpts().OpenCL) 3830 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3831 3832 llvm::Module &M = CGM.getModule(); 3833 // Create a global variable for this string 3834 auto *GV = new llvm::GlobalVariable( 3835 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3836 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3837 GV->setAlignment(Alignment.getQuantity()); 3838 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3839 if (GV->isWeakForLinker()) { 3840 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3841 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3842 } 3843 3844 return GV; 3845 } 3846 3847 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3848 /// constant array for the given string literal. 3849 ConstantAddress 3850 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3851 StringRef Name) { 3852 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3853 3854 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3855 llvm::GlobalVariable **Entry = nullptr; 3856 if (!LangOpts.WritableStrings) { 3857 Entry = &ConstantStringMap[C]; 3858 if (auto GV = *Entry) { 3859 if (Alignment.getQuantity() > GV->getAlignment()) 3860 GV->setAlignment(Alignment.getQuantity()); 3861 return ConstantAddress(GV, Alignment); 3862 } 3863 } 3864 3865 SmallString<256> MangledNameBuffer; 3866 StringRef GlobalVariableName; 3867 llvm::GlobalValue::LinkageTypes LT; 3868 3869 // Mangle the string literal if the ABI allows for it. However, we cannot 3870 // do this if we are compiling with ASan or -fwritable-strings because they 3871 // rely on strings having normal linkage. 3872 if (!LangOpts.WritableStrings && 3873 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3874 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3875 llvm::raw_svector_ostream Out(MangledNameBuffer); 3876 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3877 3878 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3879 GlobalVariableName = MangledNameBuffer; 3880 } else { 3881 LT = llvm::GlobalValue::PrivateLinkage; 3882 GlobalVariableName = Name; 3883 } 3884 3885 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3886 if (Entry) 3887 *Entry = GV; 3888 3889 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3890 QualType()); 3891 return ConstantAddress(GV, Alignment); 3892 } 3893 3894 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3895 /// array for the given ObjCEncodeExpr node. 3896 ConstantAddress 3897 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3898 std::string Str; 3899 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3900 3901 return GetAddrOfConstantCString(Str); 3902 } 3903 3904 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3905 /// the literal and a terminating '\0' character. 3906 /// The result has pointer to array type. 3907 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3908 const std::string &Str, const char *GlobalName) { 3909 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3910 CharUnits Alignment = 3911 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3912 3913 llvm::Constant *C = 3914 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3915 3916 // Don't share any string literals if strings aren't constant. 3917 llvm::GlobalVariable **Entry = nullptr; 3918 if (!LangOpts.WritableStrings) { 3919 Entry = &ConstantStringMap[C]; 3920 if (auto GV = *Entry) { 3921 if (Alignment.getQuantity() > GV->getAlignment()) 3922 GV->setAlignment(Alignment.getQuantity()); 3923 return ConstantAddress(GV, Alignment); 3924 } 3925 } 3926 3927 // Get the default prefix if a name wasn't specified. 3928 if (!GlobalName) 3929 GlobalName = ".str"; 3930 // Create a global variable for this. 3931 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3932 GlobalName, Alignment); 3933 if (Entry) 3934 *Entry = GV; 3935 return ConstantAddress(GV, Alignment); 3936 } 3937 3938 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3939 const MaterializeTemporaryExpr *E, const Expr *Init) { 3940 assert((E->getStorageDuration() == SD_Static || 3941 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3942 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3943 3944 // If we're not materializing a subobject of the temporary, keep the 3945 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3946 QualType MaterializedType = Init->getType(); 3947 if (Init == E->GetTemporaryExpr()) 3948 MaterializedType = E->getType(); 3949 3950 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3951 3952 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3953 return ConstantAddress(Slot, Align); 3954 3955 // FIXME: If an externally-visible declaration extends multiple temporaries, 3956 // we need to give each temporary the same name in every translation unit (and 3957 // we also need to make the temporaries externally-visible). 3958 SmallString<256> Name; 3959 llvm::raw_svector_ostream Out(Name); 3960 getCXXABI().getMangleContext().mangleReferenceTemporary( 3961 VD, E->getManglingNumber(), Out); 3962 3963 APValue *Value = nullptr; 3964 if (E->getStorageDuration() == SD_Static) { 3965 // We might have a cached constant initializer for this temporary. Note 3966 // that this might have a different value from the value computed by 3967 // evaluating the initializer if the surrounding constant expression 3968 // modifies the temporary. 3969 Value = getContext().getMaterializedTemporaryValue(E, false); 3970 if (Value && Value->isUninit()) 3971 Value = nullptr; 3972 } 3973 3974 // Try evaluating it now, it might have a constant initializer. 3975 Expr::EvalResult EvalResult; 3976 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3977 !EvalResult.hasSideEffects()) 3978 Value = &EvalResult.Val; 3979 3980 LangAS AddrSpace = 3981 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3982 3983 Optional<ConstantEmitter> emitter; 3984 llvm::Constant *InitialValue = nullptr; 3985 bool Constant = false; 3986 llvm::Type *Type; 3987 if (Value) { 3988 // The temporary has a constant initializer, use it. 3989 emitter.emplace(*this); 3990 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3991 MaterializedType); 3992 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3993 Type = InitialValue->getType(); 3994 } else { 3995 // No initializer, the initialization will be provided when we 3996 // initialize the declaration which performed lifetime extension. 3997 Type = getTypes().ConvertTypeForMem(MaterializedType); 3998 } 3999 4000 // Create a global variable for this lifetime-extended temporary. 4001 llvm::GlobalValue::LinkageTypes Linkage = 4002 getLLVMLinkageVarDefinition(VD, Constant); 4003 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4004 const VarDecl *InitVD; 4005 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4006 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4007 // Temporaries defined inside a class get linkonce_odr linkage because the 4008 // class can be defined in multipe translation units. 4009 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4010 } else { 4011 // There is no need for this temporary to have external linkage if the 4012 // VarDecl has external linkage. 4013 Linkage = llvm::GlobalVariable::InternalLinkage; 4014 } 4015 } 4016 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4017 auto *GV = new llvm::GlobalVariable( 4018 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4019 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4020 if (emitter) emitter->finalize(GV); 4021 setGlobalVisibility(GV, VD, ForDefinition); 4022 GV->setAlignment(Align.getQuantity()); 4023 if (supportsCOMDAT() && GV->isWeakForLinker()) 4024 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4025 if (VD->getTLSKind()) 4026 setTLSMode(GV, *VD); 4027 llvm::Constant *CV = GV; 4028 if (AddrSpace != LangAS::Default) 4029 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4030 *this, GV, AddrSpace, LangAS::Default, 4031 Type->getPointerTo( 4032 getContext().getTargetAddressSpace(LangAS::Default))); 4033 MaterializedGlobalTemporaryMap[E] = CV; 4034 return ConstantAddress(CV, Align); 4035 } 4036 4037 /// EmitObjCPropertyImplementations - Emit information for synthesized 4038 /// properties for an implementation. 4039 void CodeGenModule::EmitObjCPropertyImplementations(const 4040 ObjCImplementationDecl *D) { 4041 for (const auto *PID : D->property_impls()) { 4042 // Dynamic is just for type-checking. 4043 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4044 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4045 4046 // Determine which methods need to be implemented, some may have 4047 // been overridden. Note that ::isPropertyAccessor is not the method 4048 // we want, that just indicates if the decl came from a 4049 // property. What we want to know is if the method is defined in 4050 // this implementation. 4051 if (!D->getInstanceMethod(PD->getGetterName())) 4052 CodeGenFunction(*this).GenerateObjCGetter( 4053 const_cast<ObjCImplementationDecl *>(D), PID); 4054 if (!PD->isReadOnly() && 4055 !D->getInstanceMethod(PD->getSetterName())) 4056 CodeGenFunction(*this).GenerateObjCSetter( 4057 const_cast<ObjCImplementationDecl *>(D), PID); 4058 } 4059 } 4060 } 4061 4062 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4063 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4064 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4065 ivar; ivar = ivar->getNextIvar()) 4066 if (ivar->getType().isDestructedType()) 4067 return true; 4068 4069 return false; 4070 } 4071 4072 static bool AllTrivialInitializers(CodeGenModule &CGM, 4073 ObjCImplementationDecl *D) { 4074 CodeGenFunction CGF(CGM); 4075 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4076 E = D->init_end(); B != E; ++B) { 4077 CXXCtorInitializer *CtorInitExp = *B; 4078 Expr *Init = CtorInitExp->getInit(); 4079 if (!CGF.isTrivialInitializer(Init)) 4080 return false; 4081 } 4082 return true; 4083 } 4084 4085 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4086 /// for an implementation. 4087 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4088 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4089 if (needsDestructMethod(D)) { 4090 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4091 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4092 ObjCMethodDecl *DTORMethod = 4093 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4094 cxxSelector, getContext().VoidTy, nullptr, D, 4095 /*isInstance=*/true, /*isVariadic=*/false, 4096 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4097 /*isDefined=*/false, ObjCMethodDecl::Required); 4098 D->addInstanceMethod(DTORMethod); 4099 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4100 D->setHasDestructors(true); 4101 } 4102 4103 // If the implementation doesn't have any ivar initializers, we don't need 4104 // a .cxx_construct. 4105 if (D->getNumIvarInitializers() == 0 || 4106 AllTrivialInitializers(*this, D)) 4107 return; 4108 4109 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4110 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4111 // The constructor returns 'self'. 4112 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4113 D->getLocation(), 4114 D->getLocation(), 4115 cxxSelector, 4116 getContext().getObjCIdType(), 4117 nullptr, D, /*isInstance=*/true, 4118 /*isVariadic=*/false, 4119 /*isPropertyAccessor=*/true, 4120 /*isImplicitlyDeclared=*/true, 4121 /*isDefined=*/false, 4122 ObjCMethodDecl::Required); 4123 D->addInstanceMethod(CTORMethod); 4124 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4125 D->setHasNonZeroConstructors(true); 4126 } 4127 4128 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4129 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4130 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4131 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4132 ErrorUnsupported(LSD, "linkage spec"); 4133 return; 4134 } 4135 4136 EmitDeclContext(LSD); 4137 } 4138 4139 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4140 for (auto *I : DC->decls()) { 4141 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4142 // are themselves considered "top-level", so EmitTopLevelDecl on an 4143 // ObjCImplDecl does not recursively visit them. We need to do that in 4144 // case they're nested inside another construct (LinkageSpecDecl / 4145 // ExportDecl) that does stop them from being considered "top-level". 4146 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4147 for (auto *M : OID->methods()) 4148 EmitTopLevelDecl(M); 4149 } 4150 4151 EmitTopLevelDecl(I); 4152 } 4153 } 4154 4155 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4156 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4157 // Ignore dependent declarations. 4158 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 4159 return; 4160 4161 switch (D->getKind()) { 4162 case Decl::CXXConversion: 4163 case Decl::CXXMethod: 4164 case Decl::Function: 4165 // Skip function templates 4166 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4167 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4168 return; 4169 4170 EmitGlobal(cast<FunctionDecl>(D)); 4171 // Always provide some coverage mapping 4172 // even for the functions that aren't emitted. 4173 AddDeferredUnusedCoverageMapping(D); 4174 break; 4175 4176 case Decl::CXXDeductionGuide: 4177 // Function-like, but does not result in code emission. 4178 break; 4179 4180 case Decl::Var: 4181 case Decl::Decomposition: 4182 // Skip variable templates 4183 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4184 return; 4185 LLVM_FALLTHROUGH; 4186 case Decl::VarTemplateSpecialization: 4187 EmitGlobal(cast<VarDecl>(D)); 4188 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4189 for (auto *B : DD->bindings()) 4190 if (auto *HD = B->getHoldingVar()) 4191 EmitGlobal(HD); 4192 break; 4193 4194 // Indirect fields from global anonymous structs and unions can be 4195 // ignored; only the actual variable requires IR gen support. 4196 case Decl::IndirectField: 4197 break; 4198 4199 // C++ Decls 4200 case Decl::Namespace: 4201 EmitDeclContext(cast<NamespaceDecl>(D)); 4202 break; 4203 case Decl::ClassTemplateSpecialization: { 4204 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4205 if (DebugInfo && 4206 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4207 Spec->hasDefinition()) 4208 DebugInfo->completeTemplateDefinition(*Spec); 4209 } LLVM_FALLTHROUGH; 4210 case Decl::CXXRecord: 4211 if (DebugInfo) { 4212 if (auto *ES = D->getASTContext().getExternalSource()) 4213 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4214 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4215 } 4216 // Emit any static data members, they may be definitions. 4217 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4218 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4219 EmitTopLevelDecl(I); 4220 break; 4221 // No code generation needed. 4222 case Decl::UsingShadow: 4223 case Decl::ClassTemplate: 4224 case Decl::VarTemplate: 4225 case Decl::VarTemplatePartialSpecialization: 4226 case Decl::FunctionTemplate: 4227 case Decl::TypeAliasTemplate: 4228 case Decl::Block: 4229 case Decl::Empty: 4230 break; 4231 case Decl::Using: // using X; [C++] 4232 if (CGDebugInfo *DI = getModuleDebugInfo()) 4233 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4234 return; 4235 case Decl::NamespaceAlias: 4236 if (CGDebugInfo *DI = getModuleDebugInfo()) 4237 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4238 return; 4239 case Decl::UsingDirective: // using namespace X; [C++] 4240 if (CGDebugInfo *DI = getModuleDebugInfo()) 4241 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4242 return; 4243 case Decl::CXXConstructor: 4244 // Skip function templates 4245 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4246 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4247 return; 4248 4249 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4250 break; 4251 case Decl::CXXDestructor: 4252 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4253 return; 4254 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4255 break; 4256 4257 case Decl::StaticAssert: 4258 // Nothing to do. 4259 break; 4260 4261 // Objective-C Decls 4262 4263 // Forward declarations, no (immediate) code generation. 4264 case Decl::ObjCInterface: 4265 case Decl::ObjCCategory: 4266 break; 4267 4268 case Decl::ObjCProtocol: { 4269 auto *Proto = cast<ObjCProtocolDecl>(D); 4270 if (Proto->isThisDeclarationADefinition()) 4271 ObjCRuntime->GenerateProtocol(Proto); 4272 break; 4273 } 4274 4275 case Decl::ObjCCategoryImpl: 4276 // Categories have properties but don't support synthesize so we 4277 // can ignore them here. 4278 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4279 break; 4280 4281 case Decl::ObjCImplementation: { 4282 auto *OMD = cast<ObjCImplementationDecl>(D); 4283 EmitObjCPropertyImplementations(OMD); 4284 EmitObjCIvarInitializations(OMD); 4285 ObjCRuntime->GenerateClass(OMD); 4286 // Emit global variable debug information. 4287 if (CGDebugInfo *DI = getModuleDebugInfo()) 4288 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4289 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4290 OMD->getClassInterface()), OMD->getLocation()); 4291 break; 4292 } 4293 case Decl::ObjCMethod: { 4294 auto *OMD = cast<ObjCMethodDecl>(D); 4295 // If this is not a prototype, emit the body. 4296 if (OMD->getBody()) 4297 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4298 break; 4299 } 4300 case Decl::ObjCCompatibleAlias: 4301 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4302 break; 4303 4304 case Decl::PragmaComment: { 4305 const auto *PCD = cast<PragmaCommentDecl>(D); 4306 switch (PCD->getCommentKind()) { 4307 case PCK_Unknown: 4308 llvm_unreachable("unexpected pragma comment kind"); 4309 case PCK_Linker: 4310 AppendLinkerOptions(PCD->getArg()); 4311 break; 4312 case PCK_Lib: 4313 AddDependentLib(PCD->getArg()); 4314 break; 4315 case PCK_Compiler: 4316 case PCK_ExeStr: 4317 case PCK_User: 4318 break; // We ignore all of these. 4319 } 4320 break; 4321 } 4322 4323 case Decl::PragmaDetectMismatch: { 4324 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4325 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4326 break; 4327 } 4328 4329 case Decl::LinkageSpec: 4330 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4331 break; 4332 4333 case Decl::FileScopeAsm: { 4334 // File-scope asm is ignored during device-side CUDA compilation. 4335 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4336 break; 4337 // File-scope asm is ignored during device-side OpenMP compilation. 4338 if (LangOpts.OpenMPIsDevice) 4339 break; 4340 auto *AD = cast<FileScopeAsmDecl>(D); 4341 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4342 break; 4343 } 4344 4345 case Decl::Import: { 4346 auto *Import = cast<ImportDecl>(D); 4347 4348 // If we've already imported this module, we're done. 4349 if (!ImportedModules.insert(Import->getImportedModule())) 4350 break; 4351 4352 // Emit debug information for direct imports. 4353 if (!Import->getImportedOwningModule()) { 4354 if (CGDebugInfo *DI = getModuleDebugInfo()) 4355 DI->EmitImportDecl(*Import); 4356 } 4357 4358 // Find all of the submodules and emit the module initializers. 4359 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4360 SmallVector<clang::Module *, 16> Stack; 4361 Visited.insert(Import->getImportedModule()); 4362 Stack.push_back(Import->getImportedModule()); 4363 4364 while (!Stack.empty()) { 4365 clang::Module *Mod = Stack.pop_back_val(); 4366 if (!EmittedModuleInitializers.insert(Mod).second) 4367 continue; 4368 4369 for (auto *D : Context.getModuleInitializers(Mod)) 4370 EmitTopLevelDecl(D); 4371 4372 // Visit the submodules of this module. 4373 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4374 SubEnd = Mod->submodule_end(); 4375 Sub != SubEnd; ++Sub) { 4376 // Skip explicit children; they need to be explicitly imported to emit 4377 // the initializers. 4378 if ((*Sub)->IsExplicit) 4379 continue; 4380 4381 if (Visited.insert(*Sub).second) 4382 Stack.push_back(*Sub); 4383 } 4384 } 4385 break; 4386 } 4387 4388 case Decl::Export: 4389 EmitDeclContext(cast<ExportDecl>(D)); 4390 break; 4391 4392 case Decl::OMPThreadPrivate: 4393 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4394 break; 4395 4396 case Decl::OMPDeclareReduction: 4397 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4398 break; 4399 4400 default: 4401 // Make sure we handled everything we should, every other kind is a 4402 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4403 // function. Need to recode Decl::Kind to do that easily. 4404 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4405 break; 4406 } 4407 } 4408 4409 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4410 // Do we need to generate coverage mapping? 4411 if (!CodeGenOpts.CoverageMapping) 4412 return; 4413 switch (D->getKind()) { 4414 case Decl::CXXConversion: 4415 case Decl::CXXMethod: 4416 case Decl::Function: 4417 case Decl::ObjCMethod: 4418 case Decl::CXXConstructor: 4419 case Decl::CXXDestructor: { 4420 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4421 return; 4422 SourceManager &SM = getContext().getSourceManager(); 4423 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4424 return; 4425 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4426 if (I == DeferredEmptyCoverageMappingDecls.end()) 4427 DeferredEmptyCoverageMappingDecls[D] = true; 4428 break; 4429 } 4430 default: 4431 break; 4432 }; 4433 } 4434 4435 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4436 // Do we need to generate coverage mapping? 4437 if (!CodeGenOpts.CoverageMapping) 4438 return; 4439 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4440 if (Fn->isTemplateInstantiation()) 4441 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4442 } 4443 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4444 if (I == DeferredEmptyCoverageMappingDecls.end()) 4445 DeferredEmptyCoverageMappingDecls[D] = false; 4446 else 4447 I->second = false; 4448 } 4449 4450 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4451 // We call takeVector() here to avoid use-after-free. 4452 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4453 // we deserialize function bodies to emit coverage info for them, and that 4454 // deserializes more declarations. How should we handle that case? 4455 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4456 if (!Entry.second) 4457 continue; 4458 const Decl *D = Entry.first; 4459 switch (D->getKind()) { 4460 case Decl::CXXConversion: 4461 case Decl::CXXMethod: 4462 case Decl::Function: 4463 case Decl::ObjCMethod: { 4464 CodeGenPGO PGO(*this); 4465 GlobalDecl GD(cast<FunctionDecl>(D)); 4466 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4467 getFunctionLinkage(GD)); 4468 break; 4469 } 4470 case Decl::CXXConstructor: { 4471 CodeGenPGO PGO(*this); 4472 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4473 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4474 getFunctionLinkage(GD)); 4475 break; 4476 } 4477 case Decl::CXXDestructor: { 4478 CodeGenPGO PGO(*this); 4479 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4480 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4481 getFunctionLinkage(GD)); 4482 break; 4483 } 4484 default: 4485 break; 4486 }; 4487 } 4488 } 4489 4490 /// Turns the given pointer into a constant. 4491 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4492 const void *Ptr) { 4493 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4494 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4495 return llvm::ConstantInt::get(i64, PtrInt); 4496 } 4497 4498 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4499 llvm::NamedMDNode *&GlobalMetadata, 4500 GlobalDecl D, 4501 llvm::GlobalValue *Addr) { 4502 if (!GlobalMetadata) 4503 GlobalMetadata = 4504 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4505 4506 // TODO: should we report variant information for ctors/dtors? 4507 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4508 llvm::ConstantAsMetadata::get(GetPointerConstant( 4509 CGM.getLLVMContext(), D.getDecl()))}; 4510 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4511 } 4512 4513 /// For each function which is declared within an extern "C" region and marked 4514 /// as 'used', but has internal linkage, create an alias from the unmangled 4515 /// name to the mangled name if possible. People expect to be able to refer 4516 /// to such functions with an unmangled name from inline assembly within the 4517 /// same translation unit. 4518 void CodeGenModule::EmitStaticExternCAliases() { 4519 // Don't do anything if we're generating CUDA device code -- the NVPTX 4520 // assembly target doesn't support aliases. 4521 if (Context.getTargetInfo().getTriple().isNVPTX()) 4522 return; 4523 for (auto &I : StaticExternCValues) { 4524 IdentifierInfo *Name = I.first; 4525 llvm::GlobalValue *Val = I.second; 4526 if (Val && !getModule().getNamedValue(Name->getName())) 4527 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4528 } 4529 } 4530 4531 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4532 GlobalDecl &Result) const { 4533 auto Res = Manglings.find(MangledName); 4534 if (Res == Manglings.end()) 4535 return false; 4536 Result = Res->getValue(); 4537 return true; 4538 } 4539 4540 /// Emits metadata nodes associating all the global values in the 4541 /// current module with the Decls they came from. This is useful for 4542 /// projects using IR gen as a subroutine. 4543 /// 4544 /// Since there's currently no way to associate an MDNode directly 4545 /// with an llvm::GlobalValue, we create a global named metadata 4546 /// with the name 'clang.global.decl.ptrs'. 4547 void CodeGenModule::EmitDeclMetadata() { 4548 llvm::NamedMDNode *GlobalMetadata = nullptr; 4549 4550 for (auto &I : MangledDeclNames) { 4551 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4552 // Some mangled names don't necessarily have an associated GlobalValue 4553 // in this module, e.g. if we mangled it for DebugInfo. 4554 if (Addr) 4555 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4556 } 4557 } 4558 4559 /// Emits metadata nodes for all the local variables in the current 4560 /// function. 4561 void CodeGenFunction::EmitDeclMetadata() { 4562 if (LocalDeclMap.empty()) return; 4563 4564 llvm::LLVMContext &Context = getLLVMContext(); 4565 4566 // Find the unique metadata ID for this name. 4567 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4568 4569 llvm::NamedMDNode *GlobalMetadata = nullptr; 4570 4571 for (auto &I : LocalDeclMap) { 4572 const Decl *D = I.first; 4573 llvm::Value *Addr = I.second.getPointer(); 4574 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4575 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4576 Alloca->setMetadata( 4577 DeclPtrKind, llvm::MDNode::get( 4578 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4579 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4580 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4581 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4582 } 4583 } 4584 } 4585 4586 void CodeGenModule::EmitVersionIdentMetadata() { 4587 llvm::NamedMDNode *IdentMetadata = 4588 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4589 std::string Version = getClangFullVersion(); 4590 llvm::LLVMContext &Ctx = TheModule.getContext(); 4591 4592 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4593 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4594 } 4595 4596 void CodeGenModule::EmitTargetMetadata() { 4597 // Warning, new MangledDeclNames may be appended within this loop. 4598 // We rely on MapVector insertions adding new elements to the end 4599 // of the container. 4600 // FIXME: Move this loop into the one target that needs it, and only 4601 // loop over those declarations for which we couldn't emit the target 4602 // metadata when we emitted the declaration. 4603 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4604 auto Val = *(MangledDeclNames.begin() + I); 4605 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4606 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4607 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4608 } 4609 } 4610 4611 void CodeGenModule::EmitCoverageFile() { 4612 if (getCodeGenOpts().CoverageDataFile.empty() && 4613 getCodeGenOpts().CoverageNotesFile.empty()) 4614 return; 4615 4616 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4617 if (!CUNode) 4618 return; 4619 4620 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4621 llvm::LLVMContext &Ctx = TheModule.getContext(); 4622 auto *CoverageDataFile = 4623 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4624 auto *CoverageNotesFile = 4625 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4626 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4627 llvm::MDNode *CU = CUNode->getOperand(i); 4628 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4629 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4630 } 4631 } 4632 4633 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4634 // Sema has checked that all uuid strings are of the form 4635 // "12345678-1234-1234-1234-1234567890ab". 4636 assert(Uuid.size() == 36); 4637 for (unsigned i = 0; i < 36; ++i) { 4638 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4639 else assert(isHexDigit(Uuid[i])); 4640 } 4641 4642 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4643 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4644 4645 llvm::Constant *Field3[8]; 4646 for (unsigned Idx = 0; Idx < 8; ++Idx) 4647 Field3[Idx] = llvm::ConstantInt::get( 4648 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4649 4650 llvm::Constant *Fields[4] = { 4651 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4652 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4653 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4654 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4655 }; 4656 4657 return llvm::ConstantStruct::getAnon(Fields); 4658 } 4659 4660 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4661 bool ForEH) { 4662 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4663 // FIXME: should we even be calling this method if RTTI is disabled 4664 // and it's not for EH? 4665 if (!ForEH && !getLangOpts().RTTI) 4666 return llvm::Constant::getNullValue(Int8PtrTy); 4667 4668 if (ForEH && Ty->isObjCObjectPointerType() && 4669 LangOpts.ObjCRuntime.isGNUFamily()) 4670 return ObjCRuntime->GetEHType(Ty); 4671 4672 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4673 } 4674 4675 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4676 // Do not emit threadprivates in simd-only mode. 4677 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4678 return; 4679 for (auto RefExpr : D->varlists()) { 4680 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4681 bool PerformInit = 4682 VD->getAnyInitializer() && 4683 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4684 /*ForRef=*/false); 4685 4686 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4687 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4688 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4689 CXXGlobalInits.push_back(InitFunction); 4690 } 4691 } 4692 4693 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4694 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4695 if (InternalId) 4696 return InternalId; 4697 4698 if (isExternallyVisible(T->getLinkage())) { 4699 std::string OutName; 4700 llvm::raw_string_ostream Out(OutName); 4701 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4702 4703 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4704 } else { 4705 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4706 llvm::ArrayRef<llvm::Metadata *>()); 4707 } 4708 4709 return InternalId; 4710 } 4711 4712 // Generalize pointer types to a void pointer with the qualifiers of the 4713 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4714 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4715 // 'void *'. 4716 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4717 if (!Ty->isPointerType()) 4718 return Ty; 4719 4720 return Ctx.getPointerType( 4721 QualType(Ctx.VoidTy).withCVRQualifiers( 4722 Ty->getPointeeType().getCVRQualifiers())); 4723 } 4724 4725 // Apply type generalization to a FunctionType's return and argument types 4726 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4727 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4728 SmallVector<QualType, 8> GeneralizedParams; 4729 for (auto &Param : FnType->param_types()) 4730 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4731 4732 return Ctx.getFunctionType( 4733 GeneralizeType(Ctx, FnType->getReturnType()), 4734 GeneralizedParams, FnType->getExtProtoInfo()); 4735 } 4736 4737 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4738 return Ctx.getFunctionNoProtoType( 4739 GeneralizeType(Ctx, FnType->getReturnType())); 4740 4741 llvm_unreachable("Encountered unknown FunctionType"); 4742 } 4743 4744 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4745 T = GeneralizeFunctionType(getContext(), T); 4746 4747 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4748 if (InternalId) 4749 return InternalId; 4750 4751 if (isExternallyVisible(T->getLinkage())) { 4752 std::string OutName; 4753 llvm::raw_string_ostream Out(OutName); 4754 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4755 Out << ".generalized"; 4756 4757 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4758 } else { 4759 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4760 llvm::ArrayRef<llvm::Metadata *>()); 4761 } 4762 4763 return InternalId; 4764 } 4765 4766 /// Returns whether this module needs the "all-vtables" type identifier. 4767 bool CodeGenModule::NeedAllVtablesTypeId() const { 4768 // Returns true if at least one of vtable-based CFI checkers is enabled and 4769 // is not in the trapping mode. 4770 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4771 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4772 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4773 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4774 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4775 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4776 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4777 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4778 } 4779 4780 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4781 CharUnits Offset, 4782 const CXXRecordDecl *RD) { 4783 llvm::Metadata *MD = 4784 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4785 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4786 4787 if (CodeGenOpts.SanitizeCfiCrossDso) 4788 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4789 VTable->addTypeMetadata(Offset.getQuantity(), 4790 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4791 4792 if (NeedAllVtablesTypeId()) { 4793 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4794 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4795 } 4796 } 4797 4798 // Fills in the supplied string map with the set of target features for the 4799 // passed in function. 4800 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4801 const FunctionDecl *FD) { 4802 StringRef TargetCPU = Target.getTargetOpts().CPU; 4803 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4804 // If we have a TargetAttr build up the feature map based on that. 4805 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4806 4807 ParsedAttr.Features.erase( 4808 llvm::remove_if(ParsedAttr.Features, 4809 [&](const std::string &Feat) { 4810 return !Target.isValidFeatureName( 4811 StringRef{Feat}.substr(1)); 4812 }), 4813 ParsedAttr.Features.end()); 4814 4815 // Make a copy of the features as passed on the command line into the 4816 // beginning of the additional features from the function to override. 4817 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4818 Target.getTargetOpts().FeaturesAsWritten.begin(), 4819 Target.getTargetOpts().FeaturesAsWritten.end()); 4820 4821 if (ParsedAttr.Architecture != "" && 4822 Target.isValidCPUName(ParsedAttr.Architecture)) 4823 TargetCPU = ParsedAttr.Architecture; 4824 4825 // Now populate the feature map, first with the TargetCPU which is either 4826 // the default or a new one from the target attribute string. Then we'll use 4827 // the passed in features (FeaturesAsWritten) along with the new ones from 4828 // the attribute. 4829 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4830 ParsedAttr.Features); 4831 } else { 4832 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4833 Target.getTargetOpts().Features); 4834 } 4835 } 4836 4837 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4838 if (!SanStats) 4839 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4840 4841 return *SanStats; 4842 } 4843 llvm::Value * 4844 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4845 CodeGenFunction &CGF) { 4846 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4847 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4848 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4849 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4850 "__translate_sampler_initializer"), 4851 {C}); 4852 } 4853