xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision bc25ff4661aeb3c6f4589920d6b70098c1cd4c9c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ConvertUTF.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Target/Mangler.h"
49 using namespace clang;
50 using namespace CodeGen;
51 
52 static const char AnnotationSection[] = "llvm.metadata";
53 
54 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
55   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
56   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
57   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
58   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
59   }
60 
61   llvm_unreachable("invalid C++ ABI kind");
62 }
63 
64 
65 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
66                              llvm::Module &M, const llvm::DataLayout &TD,
67                              DiagnosticsEngine &diags)
68   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
69     TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
70     ABI(createCXXABI(*this)),
71     Types(*this),
72     TBAA(0),
73     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
74     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
75     RRData(0), CFConstantStringClassRef(0),
76     ConstantStringClassRef(0), NSConstantStringType(0),
77     VMContext(M.getContext()),
78     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
79     BlockObjectAssign(0), BlockObjectDispose(0),
80     BlockDescriptorType(0), GenericBlockLiteralType(0) {
81 
82   // Initialize the type cache.
83   llvm::LLVMContext &LLVMContext = M.getContext();
84   VoidTy = llvm::Type::getVoidTy(LLVMContext);
85   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
86   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
87   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
88   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
89   FloatTy = llvm::Type::getFloatTy(LLVMContext);
90   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
91   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
92   PointerAlignInBytes =
93   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
94   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
95   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
96   Int8PtrTy = Int8Ty->getPointerTo(0);
97   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
98 
99   if (LangOpts.ObjC1)
100     createObjCRuntime();
101   if (LangOpts.OpenCL)
102     createOpenCLRuntime();
103   if (LangOpts.CUDA)
104     createCUDARuntime();
105 
106   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
107   if (LangOpts.SanitizeThread ||
108       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
109     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
110                            ABI.getMangleContext());
111 
112   // If debug info or coverage generation is enabled, create the CGDebugInfo
113   // object.
114   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
115       CodeGenOpts.EmitGcovArcs ||
116       CodeGenOpts.EmitGcovNotes)
117     DebugInfo = new CGDebugInfo(*this);
118 
119   Block.GlobalUniqueCount = 0;
120 
121   if (C.getLangOpts().ObjCAutoRefCount)
122     ARCData = new ARCEntrypoints();
123   RRData = new RREntrypoints();
124 }
125 
126 CodeGenModule::~CodeGenModule() {
127   delete ObjCRuntime;
128   delete OpenCLRuntime;
129   delete CUDARuntime;
130   delete TheTargetCodeGenInfo;
131   delete &ABI;
132   delete TBAA;
133   delete DebugInfo;
134   delete ARCData;
135   delete RRData;
136 }
137 
138 void CodeGenModule::createObjCRuntime() {
139   // This is just isGNUFamily(), but we want to force implementors of
140   // new ABIs to decide how best to do this.
141   switch (LangOpts.ObjCRuntime.getKind()) {
142   case ObjCRuntime::GNUstep:
143   case ObjCRuntime::GCC:
144   case ObjCRuntime::ObjFW:
145     ObjCRuntime = CreateGNUObjCRuntime(*this);
146     return;
147 
148   case ObjCRuntime::FragileMacOSX:
149   case ObjCRuntime::MacOSX:
150   case ObjCRuntime::iOS:
151     ObjCRuntime = CreateMacObjCRuntime(*this);
152     return;
153   }
154   llvm_unreachable("bad runtime kind");
155 }
156 
157 void CodeGenModule::createOpenCLRuntime() {
158   OpenCLRuntime = new CGOpenCLRuntime(*this);
159 }
160 
161 void CodeGenModule::createCUDARuntime() {
162   CUDARuntime = CreateNVCUDARuntime(*this);
163 }
164 
165 void CodeGenModule::Release() {
166   EmitDeferred();
167   EmitCXXGlobalInitFunc();
168   EmitCXXGlobalDtorFunc();
169   if (ObjCRuntime)
170     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
171       AddGlobalCtor(ObjCInitFunction);
172   EmitCtorList(GlobalCtors, "llvm.global_ctors");
173   EmitCtorList(GlobalDtors, "llvm.global_dtors");
174   EmitGlobalAnnotations();
175   EmitLLVMUsed();
176   EmitModuleLinkOptions();
177 
178   SimplifyPersonality();
179 
180   if (getCodeGenOpts().EmitDeclMetadata)
181     EmitDeclMetadata();
182 
183   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
184     EmitCoverageFile();
185 
186   if (DebugInfo)
187     DebugInfo->finalize();
188 }
189 
190 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
191   // Make sure that this type is translated.
192   Types.UpdateCompletedType(TD);
193 }
194 
195 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
196   if (!TBAA)
197     return 0;
198   return TBAA->getTBAAInfo(QTy);
199 }
200 
201 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
202   if (!TBAA)
203     return 0;
204   return TBAA->getTBAAInfoForVTablePtr();
205 }
206 
207 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
208   if (!TBAA)
209     return 0;
210   return TBAA->getTBAAStructInfo(QTy);
211 }
212 
213 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
214                                         llvm::MDNode *TBAAInfo) {
215   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
216 }
217 
218 bool CodeGenModule::isTargetDarwin() const {
219   return getContext().getTargetInfo().getTriple().isOSDarwin();
220 }
221 
222 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
223   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
224   getDiags().Report(Context.getFullLoc(loc), diagID);
225 }
226 
227 /// ErrorUnsupported - Print out an error that codegen doesn't support the
228 /// specified stmt yet.
229 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
230                                      bool OmitOnError) {
231   if (OmitOnError && getDiags().hasErrorOccurred())
232     return;
233   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
234                                                "cannot compile this %0 yet");
235   std::string Msg = Type;
236   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
237     << Msg << S->getSourceRange();
238 }
239 
240 /// ErrorUnsupported - Print out an error that codegen doesn't support the
241 /// specified decl yet.
242 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
243                                      bool OmitOnError) {
244   if (OmitOnError && getDiags().hasErrorOccurred())
245     return;
246   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
247                                                "cannot compile this %0 yet");
248   std::string Msg = Type;
249   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
250 }
251 
252 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
253   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
254 }
255 
256 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
257                                         const NamedDecl *D) const {
258   // Internal definitions always have default visibility.
259   if (GV->hasLocalLinkage()) {
260     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
261     return;
262   }
263 
264   // Set visibility for definitions.
265   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
266   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
267     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
268 }
269 
270 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
271   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
272       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
273       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
274       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
275       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
276 }
277 
278 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
279     CodeGenOptions::TLSModel M) {
280   switch (M) {
281   case CodeGenOptions::GeneralDynamicTLSModel:
282     return llvm::GlobalVariable::GeneralDynamicTLSModel;
283   case CodeGenOptions::LocalDynamicTLSModel:
284     return llvm::GlobalVariable::LocalDynamicTLSModel;
285   case CodeGenOptions::InitialExecTLSModel:
286     return llvm::GlobalVariable::InitialExecTLSModel;
287   case CodeGenOptions::LocalExecTLSModel:
288     return llvm::GlobalVariable::LocalExecTLSModel;
289   }
290   llvm_unreachable("Invalid TLS model!");
291 }
292 
293 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
294                                const VarDecl &D) const {
295   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
296 
297   llvm::GlobalVariable::ThreadLocalMode TLM;
298   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
299 
300   // Override the TLS model if it is explicitly specified.
301   if (D.hasAttr<TLSModelAttr>()) {
302     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
303     TLM = GetLLVMTLSModel(Attr->getModel());
304   }
305 
306   GV->setThreadLocalMode(TLM);
307 }
308 
309 /// Set the symbol visibility of type information (vtable and RTTI)
310 /// associated with the given type.
311 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
312                                       const CXXRecordDecl *RD,
313                                       TypeVisibilityKind TVK) const {
314   setGlobalVisibility(GV, RD);
315 
316   if (!CodeGenOpts.HiddenWeakVTables)
317     return;
318 
319   // We never want to drop the visibility for RTTI names.
320   if (TVK == TVK_ForRTTIName)
321     return;
322 
323   // We want to drop the visibility to hidden for weak type symbols.
324   // This isn't possible if there might be unresolved references
325   // elsewhere that rely on this symbol being visible.
326 
327   // This should be kept roughly in sync with setThunkVisibility
328   // in CGVTables.cpp.
329 
330   // Preconditions.
331   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
332       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
333     return;
334 
335   // Don't override an explicit visibility attribute.
336   if (RD->getExplicitVisibility())
337     return;
338 
339   switch (RD->getTemplateSpecializationKind()) {
340   // We have to disable the optimization if this is an EI definition
341   // because there might be EI declarations in other shared objects.
342   case TSK_ExplicitInstantiationDefinition:
343   case TSK_ExplicitInstantiationDeclaration:
344     return;
345 
346   // Every use of a non-template class's type information has to emit it.
347   case TSK_Undeclared:
348     break;
349 
350   // In theory, implicit instantiations can ignore the possibility of
351   // an explicit instantiation declaration because there necessarily
352   // must be an EI definition somewhere with default visibility.  In
353   // practice, it's possible to have an explicit instantiation for
354   // an arbitrary template class, and linkers aren't necessarily able
355   // to deal with mixed-visibility symbols.
356   case TSK_ExplicitSpecialization:
357   case TSK_ImplicitInstantiation:
358     return;
359   }
360 
361   // If there's a key function, there may be translation units
362   // that don't have the key function's definition.  But ignore
363   // this if we're emitting RTTI under -fno-rtti.
364   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
365     if (Context.getKeyFunction(RD))
366       return;
367   }
368 
369   // Otherwise, drop the visibility to hidden.
370   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
371   GV->setUnnamedAddr(true);
372 }
373 
374 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
375   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
376 
377   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
378   if (!Str.empty())
379     return Str;
380 
381   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
382     IdentifierInfo *II = ND->getIdentifier();
383     assert(II && "Attempt to mangle unnamed decl.");
384 
385     Str = II->getName();
386     return Str;
387   }
388 
389   SmallString<256> Buffer;
390   llvm::raw_svector_ostream Out(Buffer);
391   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
392     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
393   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
394     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
395   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
396     getCXXABI().getMangleContext().mangleBlock(BD, Out,
397       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
398   else
399     getCXXABI().getMangleContext().mangleName(ND, Out);
400 
401   // Allocate space for the mangled name.
402   Out.flush();
403   size_t Length = Buffer.size();
404   char *Name = MangledNamesAllocator.Allocate<char>(Length);
405   std::copy(Buffer.begin(), Buffer.end(), Name);
406 
407   Str = StringRef(Name, Length);
408 
409   return Str;
410 }
411 
412 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
413                                         const BlockDecl *BD) {
414   MangleContext &MangleCtx = getCXXABI().getMangleContext();
415   const Decl *D = GD.getDecl();
416   llvm::raw_svector_ostream Out(Buffer.getBuffer());
417   if (D == 0)
418     MangleCtx.mangleGlobalBlock(BD,
419       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
420   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
421     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
422   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
423     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
424   else
425     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
426 }
427 
428 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
429   return getModule().getNamedValue(Name);
430 }
431 
432 /// AddGlobalCtor - Add a function to the list that will be called before
433 /// main() runs.
434 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
435   // FIXME: Type coercion of void()* types.
436   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
437 }
438 
439 /// AddGlobalDtor - Add a function to the list that will be called
440 /// when the module is unloaded.
441 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
442   // FIXME: Type coercion of void()* types.
443   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
444 }
445 
446 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
447   // Ctor function type is void()*.
448   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
449   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
450 
451   // Get the type of a ctor entry, { i32, void ()* }.
452   llvm::StructType *CtorStructTy =
453     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
454 
455   // Construct the constructor and destructor arrays.
456   SmallVector<llvm::Constant*, 8> Ctors;
457   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
458     llvm::Constant *S[] = {
459       llvm::ConstantInt::get(Int32Ty, I->second, false),
460       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
461     };
462     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
463   }
464 
465   if (!Ctors.empty()) {
466     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
467     new llvm::GlobalVariable(TheModule, AT, false,
468                              llvm::GlobalValue::AppendingLinkage,
469                              llvm::ConstantArray::get(AT, Ctors),
470                              GlobalName);
471   }
472 }
473 
474 llvm::GlobalValue::LinkageTypes
475 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
476   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
477 
478   if (Linkage == GVA_Internal)
479     return llvm::Function::InternalLinkage;
480 
481   if (D->hasAttr<DLLExportAttr>())
482     return llvm::Function::DLLExportLinkage;
483 
484   if (D->hasAttr<WeakAttr>())
485     return llvm::Function::WeakAnyLinkage;
486 
487   // In C99 mode, 'inline' functions are guaranteed to have a strong
488   // definition somewhere else, so we can use available_externally linkage.
489   if (Linkage == GVA_C99Inline)
490     return llvm::Function::AvailableExternallyLinkage;
491 
492   // Note that Apple's kernel linker doesn't support symbol
493   // coalescing, so we need to avoid linkonce and weak linkages there.
494   // Normally, this means we just map to internal, but for explicit
495   // instantiations we'll map to external.
496 
497   // In C++, the compiler has to emit a definition in every translation unit
498   // that references the function.  We should use linkonce_odr because
499   // a) if all references in this translation unit are optimized away, we
500   // don't need to codegen it.  b) if the function persists, it needs to be
501   // merged with other definitions. c) C++ has the ODR, so we know the
502   // definition is dependable.
503   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
504     return !Context.getLangOpts().AppleKext
505              ? llvm::Function::LinkOnceODRLinkage
506              : llvm::Function::InternalLinkage;
507 
508   // An explicit instantiation of a template has weak linkage, since
509   // explicit instantiations can occur in multiple translation units
510   // and must all be equivalent. However, we are not allowed to
511   // throw away these explicit instantiations.
512   if (Linkage == GVA_ExplicitTemplateInstantiation)
513     return !Context.getLangOpts().AppleKext
514              ? llvm::Function::WeakODRLinkage
515              : llvm::Function::ExternalLinkage;
516 
517   // Otherwise, we have strong external linkage.
518   assert(Linkage == GVA_StrongExternal);
519   return llvm::Function::ExternalLinkage;
520 }
521 
522 
523 /// SetFunctionDefinitionAttributes - Set attributes for a global.
524 ///
525 /// FIXME: This is currently only done for aliases and functions, but not for
526 /// variables (these details are set in EmitGlobalVarDefinition for variables).
527 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
528                                                     llvm::GlobalValue *GV) {
529   SetCommonAttributes(D, GV);
530 }
531 
532 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
533                                               const CGFunctionInfo &Info,
534                                               llvm::Function *F) {
535   unsigned CallingConv;
536   AttributeListType AttributeList;
537   ConstructAttributeList(Info, D, AttributeList, CallingConv);
538   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
539   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
540 }
541 
542 /// Determines whether the language options require us to model
543 /// unwind exceptions.  We treat -fexceptions as mandating this
544 /// except under the fragile ObjC ABI with only ObjC exceptions
545 /// enabled.  This means, for example, that C with -fexceptions
546 /// enables this.
547 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
548   // If exceptions are completely disabled, obviously this is false.
549   if (!LangOpts.Exceptions) return false;
550 
551   // If C++ exceptions are enabled, this is true.
552   if (LangOpts.CXXExceptions) return true;
553 
554   // If ObjC exceptions are enabled, this depends on the ABI.
555   if (LangOpts.ObjCExceptions) {
556     return LangOpts.ObjCRuntime.hasUnwindExceptions();
557   }
558 
559   return true;
560 }
561 
562 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
563                                                            llvm::Function *F) {
564   if (CodeGenOpts.UnwindTables)
565     F->setHasUWTable();
566 
567   if (!hasUnwindExceptions(LangOpts))
568     F->addFnAttr(llvm::Attribute::NoUnwind);
569 
570   if (D->hasAttr<NakedAttr>()) {
571     // Naked implies noinline: we should not be inlining such functions.
572     F->addFnAttr(llvm::Attribute::Naked);
573     F->addFnAttr(llvm::Attribute::NoInline);
574   }
575 
576   if (D->hasAttr<NoInlineAttr>())
577     F->addFnAttr(llvm::Attribute::NoInline);
578 
579   // (noinline wins over always_inline, and we can't specify both in IR)
580   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
581       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
582                                        llvm::Attribute::NoInline))
583     F->addFnAttr(llvm::Attribute::AlwaysInline);
584 
585   // FIXME: Communicate hot and cold attributes to LLVM more directly.
586   if (D->hasAttr<ColdAttr>())
587     F->addFnAttr(llvm::Attribute::OptimizeForSize);
588 
589   if (D->hasAttr<MinSizeAttr>())
590     F->addFnAttr(llvm::Attribute::MinSize);
591 
592   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
593     F->setUnnamedAddr(true);
594 
595   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
596     if (MD->isVirtual())
597       F->setUnnamedAddr(true);
598 
599   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
600     F->addFnAttr(llvm::Attribute::StackProtect);
601   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
602     F->addFnAttr(llvm::Attribute::StackProtectReq);
603 
604   if (LangOpts.SanitizeAddress) {
605     // When AddressSanitizer is enabled, set AddressSafety attribute
606     // unless __attribute__((no_address_safety_analysis)) is used.
607     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
608       F->addFnAttr(llvm::Attribute::AddressSafety);
609   }
610 
611   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
612   if (alignment)
613     F->setAlignment(alignment);
614 
615   // C++ ABI requires 2-byte alignment for member functions.
616   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
617     F->setAlignment(2);
618 }
619 
620 void CodeGenModule::SetCommonAttributes(const Decl *D,
621                                         llvm::GlobalValue *GV) {
622   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
623     setGlobalVisibility(GV, ND);
624   else
625     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
626 
627   if (D->hasAttr<UsedAttr>())
628     AddUsedGlobal(GV);
629 
630   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
631     GV->setSection(SA->getName());
632 
633   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
634 }
635 
636 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
637                                                   llvm::Function *F,
638                                                   const CGFunctionInfo &FI) {
639   SetLLVMFunctionAttributes(D, FI, F);
640   SetLLVMFunctionAttributesForDefinition(D, F);
641 
642   F->setLinkage(llvm::Function::InternalLinkage);
643 
644   SetCommonAttributes(D, F);
645 }
646 
647 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
648                                           llvm::Function *F,
649                                           bool IsIncompleteFunction) {
650   if (unsigned IID = F->getIntrinsicID()) {
651     // If this is an intrinsic function, set the function's attributes
652     // to the intrinsic's attributes.
653     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
654                                                     (llvm::Intrinsic::ID)IID));
655     return;
656   }
657 
658   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
659 
660   if (!IsIncompleteFunction)
661     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
662 
663   // Only a few attributes are set on declarations; these may later be
664   // overridden by a definition.
665 
666   if (FD->hasAttr<DLLImportAttr>()) {
667     F->setLinkage(llvm::Function::DLLImportLinkage);
668   } else if (FD->hasAttr<WeakAttr>() ||
669              FD->isWeakImported()) {
670     // "extern_weak" is overloaded in LLVM; we probably should have
671     // separate linkage types for this.
672     F->setLinkage(llvm::Function::ExternalWeakLinkage);
673   } else {
674     F->setLinkage(llvm::Function::ExternalLinkage);
675 
676     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
677     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
678       F->setVisibility(GetLLVMVisibility(LV.visibility()));
679     }
680   }
681 
682   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
683     F->setSection(SA->getName());
684 }
685 
686 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
687   assert(!GV->isDeclaration() &&
688          "Only globals with definition can force usage.");
689   LLVMUsed.push_back(GV);
690 }
691 
692 void CodeGenModule::EmitLLVMUsed() {
693   // Don't create llvm.used if there is no need.
694   if (LLVMUsed.empty())
695     return;
696 
697   // Convert LLVMUsed to what ConstantArray needs.
698   SmallVector<llvm::Constant*, 8> UsedArray;
699   UsedArray.resize(LLVMUsed.size());
700   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
701     UsedArray[i] =
702      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
703                                     Int8PtrTy);
704   }
705 
706   if (UsedArray.empty())
707     return;
708   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
709 
710   llvm::GlobalVariable *GV =
711     new llvm::GlobalVariable(getModule(), ATy, false,
712                              llvm::GlobalValue::AppendingLinkage,
713                              llvm::ConstantArray::get(ATy, UsedArray),
714                              "llvm.used");
715 
716   GV->setSection("llvm.metadata");
717 }
718 
719 /// \brief Add link options implied by the given module, including modules
720 /// it depends on, using a postorder walk.
721 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
722                                     Module *Mod,
723                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
724                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
725   // Import this module's parent.
726   if (Mod->Parent && Visited.insert(Mod->Parent)) {
727     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
728   }
729 
730   // Import this module's dependencies.
731   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
732     if (Visited.insert(Mod->Imports[I-1]))
733       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
734   }
735 
736   // Add linker options to link against the libraries/frameworks
737   // described by this module.
738   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
739     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
740     // We need to know more about the linker to know how to encode these
741     // options propertly.
742 
743     // Link against a framework.
744     if (Mod->LinkLibraries[I-1].IsFramework) {
745       llvm::Value *Args[2] = {
746         llvm::MDString::get(Context, "-framework"),
747         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
748       };
749 
750       Metadata.push_back(llvm::MDNode::get(Context, Args));
751       continue;
752     }
753 
754     // Link against a library.
755     llvm::Value *OptString
756     = llvm::MDString::get(Context,
757                           "-l" + Mod->LinkLibraries[I-1].Library);
758     Metadata.push_back(llvm::MDNode::get(Context, OptString));
759   }
760 }
761 
762 void CodeGenModule::EmitModuleLinkOptions() {
763   // Collect the set of all of the modules we want to visit to emit link
764   // options, which is essentially the imported modules and all of their
765   // non-explicit child modules.
766   llvm::SetVector<clang::Module *> LinkModules;
767   llvm::SmallPtrSet<clang::Module *, 16> Visited;
768   SmallVector<clang::Module *, 16> Stack;
769 
770   // Seed the stack with imported modules.
771   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
772                                                MEnd = ImportedModules.end();
773        M != MEnd; ++M) {
774     if (Visited.insert(*M))
775       Stack.push_back(*M);
776   }
777 
778   // Find all of the modules to import, making a little effort to prune
779   // non-leaf modules.
780   while (!Stack.empty()) {
781     clang::Module *Mod = Stack.back();
782     Stack.pop_back();
783 
784     bool AnyChildren = false;
785 
786     // Visit the submodules of this module.
787     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
788                                         SubEnd = Mod->submodule_end();
789          Sub != SubEnd; ++Sub) {
790       // Skip explicit children; they need to be explicitly imported to be
791       // linked against.
792       if ((*Sub)->IsExplicit)
793         continue;
794 
795       if (Visited.insert(*Sub)) {
796         Stack.push_back(*Sub);
797         AnyChildren = true;
798       }
799     }
800 
801     // We didn't find any children, so add this module to the list of
802     // modules to link against.
803     if (!AnyChildren) {
804       LinkModules.insert(Mod);
805     }
806   }
807 
808   // Add link options for all of the imported modules in reverse topological
809   // order.
810   SmallVector<llvm::MDNode *, 16> MetadataArgs;
811   Visited.clear();
812   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
813                                                MEnd = LinkModules.end();
814        M != MEnd; ++M) {
815     if (Visited.insert(*M))
816       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
817   }
818 
819   // Get/create metadata for the link options.
820   llvm::NamedMDNode *Metadata
821     = getModule().getOrInsertNamedMetadata("llvm.module.linkoptions");
822 
823   // Add link options in topological order.
824   for (unsigned I = MetadataArgs.size(); I > 0; --I) {
825     Metadata->addOperand(MetadataArgs[I-1]);
826   }
827 }
828 
829 void CodeGenModule::EmitDeferred() {
830   // Emit code for any potentially referenced deferred decls.  Since a
831   // previously unused static decl may become used during the generation of code
832   // for a static function, iterate until no changes are made.
833 
834   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
835     if (!DeferredVTables.empty()) {
836       const CXXRecordDecl *RD = DeferredVTables.back();
837       DeferredVTables.pop_back();
838       getCXXABI().EmitVTables(RD);
839       continue;
840     }
841 
842     GlobalDecl D = DeferredDeclsToEmit.back();
843     DeferredDeclsToEmit.pop_back();
844 
845     // Check to see if we've already emitted this.  This is necessary
846     // for a couple of reasons: first, decls can end up in the
847     // deferred-decls queue multiple times, and second, decls can end
848     // up with definitions in unusual ways (e.g. by an extern inline
849     // function acquiring a strong function redefinition).  Just
850     // ignore these cases.
851     //
852     // TODO: That said, looking this up multiple times is very wasteful.
853     StringRef Name = getMangledName(D);
854     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
855     assert(CGRef && "Deferred decl wasn't referenced?");
856 
857     if (!CGRef->isDeclaration())
858       continue;
859 
860     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
861     // purposes an alias counts as a definition.
862     if (isa<llvm::GlobalAlias>(CGRef))
863       continue;
864 
865     // Otherwise, emit the definition and move on to the next one.
866     EmitGlobalDefinition(D);
867   }
868 }
869 
870 void CodeGenModule::EmitGlobalAnnotations() {
871   if (Annotations.empty())
872     return;
873 
874   // Create a new global variable for the ConstantStruct in the Module.
875   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
876     Annotations[0]->getType(), Annotations.size()), Annotations);
877   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
878     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
879     "llvm.global.annotations");
880   gv->setSection(AnnotationSection);
881 }
882 
883 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
884   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
885   if (i != AnnotationStrings.end())
886     return i->second;
887 
888   // Not found yet, create a new global.
889   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
890   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
891     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
892   gv->setSection(AnnotationSection);
893   gv->setUnnamedAddr(true);
894   AnnotationStrings[Str] = gv;
895   return gv;
896 }
897 
898 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
899   SourceManager &SM = getContext().getSourceManager();
900   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
901   if (PLoc.isValid())
902     return EmitAnnotationString(PLoc.getFilename());
903   return EmitAnnotationString(SM.getBufferName(Loc));
904 }
905 
906 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
907   SourceManager &SM = getContext().getSourceManager();
908   PresumedLoc PLoc = SM.getPresumedLoc(L);
909   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
910     SM.getExpansionLineNumber(L);
911   return llvm::ConstantInt::get(Int32Ty, LineNo);
912 }
913 
914 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
915                                                 const AnnotateAttr *AA,
916                                                 SourceLocation L) {
917   // Get the globals for file name, annotation, and the line number.
918   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
919                  *UnitGV = EmitAnnotationUnit(L),
920                  *LineNoCst = EmitAnnotationLineNo(L);
921 
922   // Create the ConstantStruct for the global annotation.
923   llvm::Constant *Fields[4] = {
924     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
925     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
926     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
927     LineNoCst
928   };
929   return llvm::ConstantStruct::getAnon(Fields);
930 }
931 
932 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
933                                          llvm::GlobalValue *GV) {
934   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
935   // Get the struct elements for these annotations.
936   for (specific_attr_iterator<AnnotateAttr>
937        ai = D->specific_attr_begin<AnnotateAttr>(),
938        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
939     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
940 }
941 
942 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
943   // Never defer when EmitAllDecls is specified.
944   if (LangOpts.EmitAllDecls)
945     return false;
946 
947   return !getContext().DeclMustBeEmitted(Global);
948 }
949 
950 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
951     const CXXUuidofExpr* E) {
952   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
953   // well-formed.
954   StringRef Uuid;
955   if (E->isTypeOperand())
956     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
957   else {
958     // Special case: __uuidof(0) means an all-zero GUID.
959     Expr *Op = E->getExprOperand();
960     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
961       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
962     else
963       Uuid = "00000000-0000-0000-0000-000000000000";
964   }
965   std::string Name = "__uuid_" + Uuid.str();
966 
967   // Look for an existing global.
968   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
969     return GV;
970 
971   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
972   assert(Init && "failed to initialize as constant");
973 
974   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
975   // first field is declared as "long", which for many targets is 8 bytes.
976   // Those architectures are not supported. (With the MS abi, long is always 4
977   // bytes.)
978   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
979   if (Init->getType() != GuidType) {
980     DiagnosticsEngine &Diags = getDiags();
981     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
982         "__uuidof codegen is not supported on this architecture");
983     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
984     Init = llvm::UndefValue::get(GuidType);
985   }
986 
987   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
988       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
989   GV->setUnnamedAddr(true);
990   return GV;
991 }
992 
993 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
994   const AliasAttr *AA = VD->getAttr<AliasAttr>();
995   assert(AA && "No alias?");
996 
997   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
998 
999   // See if there is already something with the target's name in the module.
1000   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1001   if (Entry) {
1002     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1003     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1004   }
1005 
1006   llvm::Constant *Aliasee;
1007   if (isa<llvm::FunctionType>(DeclTy))
1008     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1009                                       GlobalDecl(cast<FunctionDecl>(VD)),
1010                                       /*ForVTable=*/false);
1011   else
1012     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1013                                     llvm::PointerType::getUnqual(DeclTy), 0);
1014 
1015   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1016   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1017   WeakRefReferences.insert(F);
1018 
1019   return Aliasee;
1020 }
1021 
1022 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1023   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1024 
1025   // Weak references don't produce any output by themselves.
1026   if (Global->hasAttr<WeakRefAttr>())
1027     return;
1028 
1029   // If this is an alias definition (which otherwise looks like a declaration)
1030   // emit it now.
1031   if (Global->hasAttr<AliasAttr>())
1032     return EmitAliasDefinition(GD);
1033 
1034   // If this is CUDA, be selective about which declarations we emit.
1035   if (LangOpts.CUDA) {
1036     if (CodeGenOpts.CUDAIsDevice) {
1037       if (!Global->hasAttr<CUDADeviceAttr>() &&
1038           !Global->hasAttr<CUDAGlobalAttr>() &&
1039           !Global->hasAttr<CUDAConstantAttr>() &&
1040           !Global->hasAttr<CUDASharedAttr>())
1041         return;
1042     } else {
1043       if (!Global->hasAttr<CUDAHostAttr>() && (
1044             Global->hasAttr<CUDADeviceAttr>() ||
1045             Global->hasAttr<CUDAConstantAttr>() ||
1046             Global->hasAttr<CUDASharedAttr>()))
1047         return;
1048     }
1049   }
1050 
1051   // Ignore declarations, they will be emitted on their first use.
1052   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1053     // Forward declarations are emitted lazily on first use.
1054     if (!FD->doesThisDeclarationHaveABody()) {
1055       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1056         return;
1057 
1058       const FunctionDecl *InlineDefinition = 0;
1059       FD->getBody(InlineDefinition);
1060 
1061       StringRef MangledName = getMangledName(GD);
1062       DeferredDecls.erase(MangledName);
1063       EmitGlobalDefinition(InlineDefinition);
1064       return;
1065     }
1066   } else {
1067     const VarDecl *VD = cast<VarDecl>(Global);
1068     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1069 
1070     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1071       return;
1072   }
1073 
1074   // Defer code generation when possible if this is a static definition, inline
1075   // function etc.  These we only want to emit if they are used.
1076   if (!MayDeferGeneration(Global)) {
1077     // Emit the definition if it can't be deferred.
1078     EmitGlobalDefinition(GD);
1079     return;
1080   }
1081 
1082   // If we're deferring emission of a C++ variable with an
1083   // initializer, remember the order in which it appeared in the file.
1084   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1085       cast<VarDecl>(Global)->hasInit()) {
1086     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1087     CXXGlobalInits.push_back(0);
1088   }
1089 
1090   // If the value has already been used, add it directly to the
1091   // DeferredDeclsToEmit list.
1092   StringRef MangledName = getMangledName(GD);
1093   if (GetGlobalValue(MangledName))
1094     DeferredDeclsToEmit.push_back(GD);
1095   else {
1096     // Otherwise, remember that we saw a deferred decl with this name.  The
1097     // first use of the mangled name will cause it to move into
1098     // DeferredDeclsToEmit.
1099     DeferredDecls[MangledName] = GD;
1100   }
1101 }
1102 
1103 namespace {
1104   struct FunctionIsDirectlyRecursive :
1105     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1106     const StringRef Name;
1107     const Builtin::Context &BI;
1108     bool Result;
1109     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1110       Name(N), BI(C), Result(false) {
1111     }
1112     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1113 
1114     bool TraverseCallExpr(CallExpr *E) {
1115       const FunctionDecl *FD = E->getDirectCallee();
1116       if (!FD)
1117         return true;
1118       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1119       if (Attr && Name == Attr->getLabel()) {
1120         Result = true;
1121         return false;
1122       }
1123       unsigned BuiltinID = FD->getBuiltinID();
1124       if (!BuiltinID)
1125         return true;
1126       StringRef BuiltinName = BI.GetName(BuiltinID);
1127       if (BuiltinName.startswith("__builtin_") &&
1128           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1129         Result = true;
1130         return false;
1131       }
1132       return true;
1133     }
1134   };
1135 }
1136 
1137 // isTriviallyRecursive - Check if this function calls another
1138 // decl that, because of the asm attribute or the other decl being a builtin,
1139 // ends up pointing to itself.
1140 bool
1141 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1142   StringRef Name;
1143   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1144     // asm labels are a special kind of mangling we have to support.
1145     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1146     if (!Attr)
1147       return false;
1148     Name = Attr->getLabel();
1149   } else {
1150     Name = FD->getName();
1151   }
1152 
1153   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1154   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1155   return Walker.Result;
1156 }
1157 
1158 bool
1159 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1160   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1161     return true;
1162   if (CodeGenOpts.OptimizationLevel == 0 &&
1163       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1164     return false;
1165   // PR9614. Avoid cases where the source code is lying to us. An available
1166   // externally function should have an equivalent function somewhere else,
1167   // but a function that calls itself is clearly not equivalent to the real
1168   // implementation.
1169   // This happens in glibc's btowc and in some configure checks.
1170   return !isTriviallyRecursive(F);
1171 }
1172 
1173 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1174   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1175 
1176   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1177                                  Context.getSourceManager(),
1178                                  "Generating code for declaration");
1179 
1180   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1181     // At -O0, don't generate IR for functions with available_externally
1182     // linkage.
1183     if (!shouldEmitFunction(Function))
1184       return;
1185 
1186     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1187       // Make sure to emit the definition(s) before we emit the thunks.
1188       // This is necessary for the generation of certain thunks.
1189       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1190         EmitCXXConstructor(CD, GD.getCtorType());
1191       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1192         EmitCXXDestructor(DD, GD.getDtorType());
1193       else
1194         EmitGlobalFunctionDefinition(GD);
1195 
1196       if (Method->isVirtual())
1197         getVTables().EmitThunks(GD);
1198 
1199       return;
1200     }
1201 
1202     return EmitGlobalFunctionDefinition(GD);
1203   }
1204 
1205   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1206     return EmitGlobalVarDefinition(VD);
1207 
1208   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1209 }
1210 
1211 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1212 /// module, create and return an llvm Function with the specified type. If there
1213 /// is something in the module with the specified name, return it potentially
1214 /// bitcasted to the right type.
1215 ///
1216 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1217 /// to set the attributes on the function when it is first created.
1218 llvm::Constant *
1219 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1220                                        llvm::Type *Ty,
1221                                        GlobalDecl D, bool ForVTable,
1222                                        llvm::Attribute ExtraAttrs) {
1223   // Lookup the entry, lazily creating it if necessary.
1224   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1225   if (Entry) {
1226     if (WeakRefReferences.erase(Entry)) {
1227       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1228       if (FD && !FD->hasAttr<WeakAttr>())
1229         Entry->setLinkage(llvm::Function::ExternalLinkage);
1230     }
1231 
1232     if (Entry->getType()->getElementType() == Ty)
1233       return Entry;
1234 
1235     // Make sure the result is of the correct type.
1236     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1237   }
1238 
1239   // This function doesn't have a complete type (for example, the return
1240   // type is an incomplete struct). Use a fake type instead, and make
1241   // sure not to try to set attributes.
1242   bool IsIncompleteFunction = false;
1243 
1244   llvm::FunctionType *FTy;
1245   if (isa<llvm::FunctionType>(Ty)) {
1246     FTy = cast<llvm::FunctionType>(Ty);
1247   } else {
1248     FTy = llvm::FunctionType::get(VoidTy, false);
1249     IsIncompleteFunction = true;
1250   }
1251 
1252   llvm::Function *F = llvm::Function::Create(FTy,
1253                                              llvm::Function::ExternalLinkage,
1254                                              MangledName, &getModule());
1255   assert(F->getName() == MangledName && "name was uniqued!");
1256   if (D.getDecl())
1257     SetFunctionAttributes(D, F, IsIncompleteFunction);
1258   if (ExtraAttrs.hasAttributes())
1259     F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs);
1260 
1261   // This is the first use or definition of a mangled name.  If there is a
1262   // deferred decl with this name, remember that we need to emit it at the end
1263   // of the file.
1264   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1265   if (DDI != DeferredDecls.end()) {
1266     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1267     // list, and remove it from DeferredDecls (since we don't need it anymore).
1268     DeferredDeclsToEmit.push_back(DDI->second);
1269     DeferredDecls.erase(DDI);
1270 
1271   // Otherwise, there are cases we have to worry about where we're
1272   // using a declaration for which we must emit a definition but where
1273   // we might not find a top-level definition:
1274   //   - member functions defined inline in their classes
1275   //   - friend functions defined inline in some class
1276   //   - special member functions with implicit definitions
1277   // If we ever change our AST traversal to walk into class methods,
1278   // this will be unnecessary.
1279   //
1280   // We also don't emit a definition for a function if it's going to be an entry
1281   // in a vtable, unless it's already marked as used.
1282   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1283     // Look for a declaration that's lexically in a record.
1284     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1285     FD = FD->getMostRecentDecl();
1286     do {
1287       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1288         if (FD->isImplicit() && !ForVTable) {
1289           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1290           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1291           break;
1292         } else if (FD->doesThisDeclarationHaveABody()) {
1293           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1294           break;
1295         }
1296       }
1297       FD = FD->getPreviousDecl();
1298     } while (FD);
1299   }
1300 
1301   // Make sure the result is of the requested type.
1302   if (!IsIncompleteFunction) {
1303     assert(F->getType()->getElementType() == Ty);
1304     return F;
1305   }
1306 
1307   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1308   return llvm::ConstantExpr::getBitCast(F, PTy);
1309 }
1310 
1311 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1312 /// non-null, then this function will use the specified type if it has to
1313 /// create it (this occurs when we see a definition of the function).
1314 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1315                                                  llvm::Type *Ty,
1316                                                  bool ForVTable) {
1317   // If there was no specific requested type, just convert it now.
1318   if (!Ty)
1319     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1320 
1321   StringRef MangledName = getMangledName(GD);
1322   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1323 }
1324 
1325 /// CreateRuntimeFunction - Create a new runtime function with the specified
1326 /// type and name.
1327 llvm::Constant *
1328 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1329                                      StringRef Name,
1330                                      llvm::Attribute ExtraAttrs) {
1331   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1332                                  ExtraAttrs);
1333 }
1334 
1335 /// isTypeConstant - Determine whether an object of this type can be emitted
1336 /// as a constant.
1337 ///
1338 /// If ExcludeCtor is true, the duration when the object's constructor runs
1339 /// will not be considered. The caller will need to verify that the object is
1340 /// not written to during its construction.
1341 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1342   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1343     return false;
1344 
1345   if (Context.getLangOpts().CPlusPlus) {
1346     if (const CXXRecordDecl *Record
1347           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1348       return ExcludeCtor && !Record->hasMutableFields() &&
1349              Record->hasTrivialDestructor();
1350   }
1351 
1352   return true;
1353 }
1354 
1355 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1356 /// create and return an llvm GlobalVariable with the specified type.  If there
1357 /// is something in the module with the specified name, return it potentially
1358 /// bitcasted to the right type.
1359 ///
1360 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1361 /// to set the attributes on the global when it is first created.
1362 llvm::Constant *
1363 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1364                                      llvm::PointerType *Ty,
1365                                      const VarDecl *D,
1366                                      bool UnnamedAddr) {
1367   // Lookup the entry, lazily creating it if necessary.
1368   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1369   if (Entry) {
1370     if (WeakRefReferences.erase(Entry)) {
1371       if (D && !D->hasAttr<WeakAttr>())
1372         Entry->setLinkage(llvm::Function::ExternalLinkage);
1373     }
1374 
1375     if (UnnamedAddr)
1376       Entry->setUnnamedAddr(true);
1377 
1378     if (Entry->getType() == Ty)
1379       return Entry;
1380 
1381     // Make sure the result is of the correct type.
1382     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1383   }
1384 
1385   // This is the first use or definition of a mangled name.  If there is a
1386   // deferred decl with this name, remember that we need to emit it at the end
1387   // of the file.
1388   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1389   if (DDI != DeferredDecls.end()) {
1390     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1391     // list, and remove it from DeferredDecls (since we don't need it anymore).
1392     DeferredDeclsToEmit.push_back(DDI->second);
1393     DeferredDecls.erase(DDI);
1394   }
1395 
1396   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1397   llvm::GlobalVariable *GV =
1398     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1399                              llvm::GlobalValue::ExternalLinkage,
1400                              0, MangledName, 0,
1401                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1402 
1403   // Handle things which are present even on external declarations.
1404   if (D) {
1405     // FIXME: This code is overly simple and should be merged with other global
1406     // handling.
1407     GV->setConstant(isTypeConstant(D->getType(), false));
1408 
1409     // Set linkage and visibility in case we never see a definition.
1410     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1411     if (LV.linkage() != ExternalLinkage) {
1412       // Don't set internal linkage on declarations.
1413     } else {
1414       if (D->hasAttr<DLLImportAttr>())
1415         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1416       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1417         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1418 
1419       // Set visibility on a declaration only if it's explicit.
1420       if (LV.visibilityExplicit())
1421         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1422     }
1423 
1424     if (D->isThreadSpecified())
1425       setTLSMode(GV, *D);
1426   }
1427 
1428   if (AddrSpace != Ty->getAddressSpace())
1429     return llvm::ConstantExpr::getBitCast(GV, Ty);
1430   else
1431     return GV;
1432 }
1433 
1434 
1435 llvm::GlobalVariable *
1436 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1437                                       llvm::Type *Ty,
1438                                       llvm::GlobalValue::LinkageTypes Linkage) {
1439   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1440   llvm::GlobalVariable *OldGV = 0;
1441 
1442 
1443   if (GV) {
1444     // Check if the variable has the right type.
1445     if (GV->getType()->getElementType() == Ty)
1446       return GV;
1447 
1448     // Because C++ name mangling, the only way we can end up with an already
1449     // existing global with the same name is if it has been declared extern "C".
1450     assert(GV->isDeclaration() && "Declaration has wrong type!");
1451     OldGV = GV;
1452   }
1453 
1454   // Create a new variable.
1455   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1456                                 Linkage, 0, Name);
1457 
1458   if (OldGV) {
1459     // Replace occurrences of the old variable if needed.
1460     GV->takeName(OldGV);
1461 
1462     if (!OldGV->use_empty()) {
1463       llvm::Constant *NewPtrForOldDecl =
1464       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1465       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1466     }
1467 
1468     OldGV->eraseFromParent();
1469   }
1470 
1471   return GV;
1472 }
1473 
1474 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1475 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1476 /// then it will be created with the specified type instead of whatever the
1477 /// normal requested type would be.
1478 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1479                                                   llvm::Type *Ty) {
1480   assert(D->hasGlobalStorage() && "Not a global variable");
1481   QualType ASTTy = D->getType();
1482   if (Ty == 0)
1483     Ty = getTypes().ConvertTypeForMem(ASTTy);
1484 
1485   llvm::PointerType *PTy =
1486     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1487 
1488   StringRef MangledName = getMangledName(D);
1489   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1490 }
1491 
1492 /// CreateRuntimeVariable - Create a new runtime global variable with the
1493 /// specified type and name.
1494 llvm::Constant *
1495 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1496                                      StringRef Name) {
1497   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1498                                true);
1499 }
1500 
1501 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1502   assert(!D->getInit() && "Cannot emit definite definitions here!");
1503 
1504   if (MayDeferGeneration(D)) {
1505     // If we have not seen a reference to this variable yet, place it
1506     // into the deferred declarations table to be emitted if needed
1507     // later.
1508     StringRef MangledName = getMangledName(D);
1509     if (!GetGlobalValue(MangledName)) {
1510       DeferredDecls[MangledName] = D;
1511       return;
1512     }
1513   }
1514 
1515   // The tentative definition is the only definition.
1516   EmitGlobalVarDefinition(D);
1517 }
1518 
1519 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1520   if (DefinitionRequired)
1521     getCXXABI().EmitVTables(Class);
1522 }
1523 
1524 llvm::GlobalVariable::LinkageTypes
1525 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1526   if (RD->getLinkage() != ExternalLinkage)
1527     return llvm::GlobalVariable::InternalLinkage;
1528 
1529   if (const CXXMethodDecl *KeyFunction
1530                                     = RD->getASTContext().getKeyFunction(RD)) {
1531     // If this class has a key function, use that to determine the linkage of
1532     // the vtable.
1533     const FunctionDecl *Def = 0;
1534     if (KeyFunction->hasBody(Def))
1535       KeyFunction = cast<CXXMethodDecl>(Def);
1536 
1537     switch (KeyFunction->getTemplateSpecializationKind()) {
1538       case TSK_Undeclared:
1539       case TSK_ExplicitSpecialization:
1540         // When compiling with optimizations turned on, we emit all vtables,
1541         // even if the key function is not defined in the current translation
1542         // unit. If this is the case, use available_externally linkage.
1543         if (!Def && CodeGenOpts.OptimizationLevel)
1544           return llvm::GlobalVariable::AvailableExternallyLinkage;
1545 
1546         if (KeyFunction->isInlined())
1547           return !Context.getLangOpts().AppleKext ?
1548                    llvm::GlobalVariable::LinkOnceODRLinkage :
1549                    llvm::Function::InternalLinkage;
1550 
1551         return llvm::GlobalVariable::ExternalLinkage;
1552 
1553       case TSK_ImplicitInstantiation:
1554         return !Context.getLangOpts().AppleKext ?
1555                  llvm::GlobalVariable::LinkOnceODRLinkage :
1556                  llvm::Function::InternalLinkage;
1557 
1558       case TSK_ExplicitInstantiationDefinition:
1559         return !Context.getLangOpts().AppleKext ?
1560                  llvm::GlobalVariable::WeakODRLinkage :
1561                  llvm::Function::InternalLinkage;
1562 
1563       case TSK_ExplicitInstantiationDeclaration:
1564         // FIXME: Use available_externally linkage. However, this currently
1565         // breaks LLVM's build due to undefined symbols.
1566         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1567         return !Context.getLangOpts().AppleKext ?
1568                  llvm::GlobalVariable::LinkOnceODRLinkage :
1569                  llvm::Function::InternalLinkage;
1570     }
1571   }
1572 
1573   if (Context.getLangOpts().AppleKext)
1574     return llvm::Function::InternalLinkage;
1575 
1576   switch (RD->getTemplateSpecializationKind()) {
1577   case TSK_Undeclared:
1578   case TSK_ExplicitSpecialization:
1579   case TSK_ImplicitInstantiation:
1580     // FIXME: Use available_externally linkage. However, this currently
1581     // breaks LLVM's build due to undefined symbols.
1582     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1583   case TSK_ExplicitInstantiationDeclaration:
1584     return llvm::GlobalVariable::LinkOnceODRLinkage;
1585 
1586   case TSK_ExplicitInstantiationDefinition:
1587       return llvm::GlobalVariable::WeakODRLinkage;
1588   }
1589 
1590   llvm_unreachable("Invalid TemplateSpecializationKind!");
1591 }
1592 
1593 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1594     return Context.toCharUnitsFromBits(
1595       TheDataLayout.getTypeStoreSizeInBits(Ty));
1596 }
1597 
1598 llvm::Constant *
1599 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1600                                                        const Expr *rawInit) {
1601   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1602   if (const ExprWithCleanups *withCleanups =
1603           dyn_cast<ExprWithCleanups>(rawInit)) {
1604     cleanups = withCleanups->getObjects();
1605     rawInit = withCleanups->getSubExpr();
1606   }
1607 
1608   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1609   if (!init || !init->initializesStdInitializerList() ||
1610       init->getNumInits() == 0)
1611     return 0;
1612 
1613   ASTContext &ctx = getContext();
1614   unsigned numInits = init->getNumInits();
1615   // FIXME: This check is here because we would otherwise silently miscompile
1616   // nested global std::initializer_lists. Better would be to have a real
1617   // implementation.
1618   for (unsigned i = 0; i < numInits; ++i) {
1619     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1620     if (inner && inner->initializesStdInitializerList()) {
1621       ErrorUnsupported(inner, "nested global std::initializer_list");
1622       return 0;
1623     }
1624   }
1625 
1626   // Synthesize a fake VarDecl for the array and initialize that.
1627   QualType elementType = init->getInit(0)->getType();
1628   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1629   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1630                                                 ArrayType::Normal, 0);
1631 
1632   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1633   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1634                                               arrayType, D->getLocation());
1635   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1636                                                           D->getDeclContext()),
1637                                           D->getLocStart(), D->getLocation(),
1638                                           name, arrayType, sourceInfo,
1639                                           SC_Static, SC_Static);
1640 
1641   // Now clone the InitListExpr to initialize the array instead.
1642   // Incredible hack: we want to use the existing InitListExpr here, so we need
1643   // to tell it that it no longer initializes a std::initializer_list.
1644   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1645                         init->getNumInits());
1646   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1647                                            init->getRBraceLoc());
1648   arrayInit->setType(arrayType);
1649 
1650   if (!cleanups.empty())
1651     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1652 
1653   backingArray->setInit(arrayInit);
1654 
1655   // Emit the definition of the array.
1656   EmitGlobalVarDefinition(backingArray);
1657 
1658   // Inspect the initializer list to validate it and determine its type.
1659   // FIXME: doing this every time is probably inefficient; caching would be nice
1660   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1661   RecordDecl::field_iterator field = record->field_begin();
1662   if (field == record->field_end()) {
1663     ErrorUnsupported(D, "weird std::initializer_list");
1664     return 0;
1665   }
1666   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1667   // Start pointer.
1668   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1669     ErrorUnsupported(D, "weird std::initializer_list");
1670     return 0;
1671   }
1672   ++field;
1673   if (field == record->field_end()) {
1674     ErrorUnsupported(D, "weird std::initializer_list");
1675     return 0;
1676   }
1677   bool isStartEnd = false;
1678   if (ctx.hasSameType(field->getType(), elementPtr)) {
1679     // End pointer.
1680     isStartEnd = true;
1681   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1682     ErrorUnsupported(D, "weird std::initializer_list");
1683     return 0;
1684   }
1685 
1686   // Now build an APValue representing the std::initializer_list.
1687   APValue initListValue(APValue::UninitStruct(), 0, 2);
1688   APValue &startField = initListValue.getStructField(0);
1689   APValue::LValuePathEntry startOffsetPathEntry;
1690   startOffsetPathEntry.ArrayIndex = 0;
1691   startField = APValue(APValue::LValueBase(backingArray),
1692                        CharUnits::fromQuantity(0),
1693                        llvm::makeArrayRef(startOffsetPathEntry),
1694                        /*IsOnePastTheEnd=*/false, 0);
1695 
1696   if (isStartEnd) {
1697     APValue &endField = initListValue.getStructField(1);
1698     APValue::LValuePathEntry endOffsetPathEntry;
1699     endOffsetPathEntry.ArrayIndex = numInits;
1700     endField = APValue(APValue::LValueBase(backingArray),
1701                        ctx.getTypeSizeInChars(elementType) * numInits,
1702                        llvm::makeArrayRef(endOffsetPathEntry),
1703                        /*IsOnePastTheEnd=*/true, 0);
1704   } else {
1705     APValue &sizeField = initListValue.getStructField(1);
1706     sizeField = APValue(llvm::APSInt(numElements));
1707   }
1708 
1709   // Emit the constant for the initializer_list.
1710   llvm::Constant *llvmInit =
1711       EmitConstantValueForMemory(initListValue, D->getType());
1712   assert(llvmInit && "failed to initialize as constant");
1713   return llvmInit;
1714 }
1715 
1716 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1717                                                  unsigned AddrSpace) {
1718   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1719     if (D->hasAttr<CUDAConstantAttr>())
1720       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1721     else if (D->hasAttr<CUDASharedAttr>())
1722       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1723     else
1724       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1725   }
1726 
1727   return AddrSpace;
1728 }
1729 
1730 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1731   llvm::Constant *Init = 0;
1732   QualType ASTTy = D->getType();
1733   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1734   bool NeedsGlobalCtor = false;
1735   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1736 
1737   const VarDecl *InitDecl;
1738   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1739 
1740   if (!InitExpr) {
1741     // This is a tentative definition; tentative definitions are
1742     // implicitly initialized with { 0 }.
1743     //
1744     // Note that tentative definitions are only emitted at the end of
1745     // a translation unit, so they should never have incomplete
1746     // type. In addition, EmitTentativeDefinition makes sure that we
1747     // never attempt to emit a tentative definition if a real one
1748     // exists. A use may still exists, however, so we still may need
1749     // to do a RAUW.
1750     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1751     Init = EmitNullConstant(D->getType());
1752   } else {
1753     // If this is a std::initializer_list, emit the special initializer.
1754     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1755     // An empty init list will perform zero-initialization, which happens
1756     // to be exactly what we want.
1757     // FIXME: It does so in a global constructor, which is *not* what we
1758     // want.
1759 
1760     if (!Init) {
1761       initializedGlobalDecl = GlobalDecl(D);
1762       Init = EmitConstantInit(*InitDecl);
1763     }
1764     if (!Init) {
1765       QualType T = InitExpr->getType();
1766       if (D->getType()->isReferenceType())
1767         T = D->getType();
1768 
1769       if (getLangOpts().CPlusPlus) {
1770         Init = EmitNullConstant(T);
1771         NeedsGlobalCtor = true;
1772       } else {
1773         ErrorUnsupported(D, "static initializer");
1774         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1775       }
1776     } else {
1777       // We don't need an initializer, so remove the entry for the delayed
1778       // initializer position (just in case this entry was delayed) if we
1779       // also don't need to register a destructor.
1780       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1781         DelayedCXXInitPosition.erase(D);
1782     }
1783   }
1784 
1785   llvm::Type* InitType = Init->getType();
1786   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1787 
1788   // Strip off a bitcast if we got one back.
1789   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1790     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1791            // all zero index gep.
1792            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1793     Entry = CE->getOperand(0);
1794   }
1795 
1796   // Entry is now either a Function or GlobalVariable.
1797   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1798 
1799   // We have a definition after a declaration with the wrong type.
1800   // We must make a new GlobalVariable* and update everything that used OldGV
1801   // (a declaration or tentative definition) with the new GlobalVariable*
1802   // (which will be a definition).
1803   //
1804   // This happens if there is a prototype for a global (e.g.
1805   // "extern int x[];") and then a definition of a different type (e.g.
1806   // "int x[10];"). This also happens when an initializer has a different type
1807   // from the type of the global (this happens with unions).
1808   if (GV == 0 ||
1809       GV->getType()->getElementType() != InitType ||
1810       GV->getType()->getAddressSpace() !=
1811        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1812 
1813     // Move the old entry aside so that we'll create a new one.
1814     Entry->setName(StringRef());
1815 
1816     // Make a new global with the correct type, this is now guaranteed to work.
1817     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1818 
1819     // Replace all uses of the old global with the new global
1820     llvm::Constant *NewPtrForOldDecl =
1821         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1822     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1823 
1824     // Erase the old global, since it is no longer used.
1825     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1826   }
1827 
1828   if (D->hasAttr<AnnotateAttr>())
1829     AddGlobalAnnotations(D, GV);
1830 
1831   GV->setInitializer(Init);
1832 
1833   // If it is safe to mark the global 'constant', do so now.
1834   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1835                   isTypeConstant(D->getType(), true));
1836 
1837   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1838 
1839   // Set the llvm linkage type as appropriate.
1840   llvm::GlobalValue::LinkageTypes Linkage =
1841     GetLLVMLinkageVarDefinition(D, GV);
1842   GV->setLinkage(Linkage);
1843   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1844     // common vars aren't constant even if declared const.
1845     GV->setConstant(false);
1846 
1847   SetCommonAttributes(D, GV);
1848 
1849   // Emit the initializer function if necessary.
1850   if (NeedsGlobalCtor || NeedsGlobalDtor)
1851     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1852 
1853   // If we are compiling with ASan, add metadata indicating dynamically
1854   // initialized globals.
1855   if (LangOpts.SanitizeAddress && NeedsGlobalCtor) {
1856     llvm::Module &M = getModule();
1857 
1858     llvm::NamedMDNode *DynamicInitializers =
1859         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1860     llvm::Value *GlobalToAdd[] = { GV };
1861     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1862     DynamicInitializers->addOperand(ThisGlobal);
1863   }
1864 
1865   // Emit global variable debug information.
1866   if (CGDebugInfo *DI = getModuleDebugInfo())
1867     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1868       DI->EmitGlobalVariable(GV, D);
1869 }
1870 
1871 llvm::GlobalValue::LinkageTypes
1872 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1873                                            llvm::GlobalVariable *GV) {
1874   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1875   if (Linkage == GVA_Internal)
1876     return llvm::Function::InternalLinkage;
1877   else if (D->hasAttr<DLLImportAttr>())
1878     return llvm::Function::DLLImportLinkage;
1879   else if (D->hasAttr<DLLExportAttr>())
1880     return llvm::Function::DLLExportLinkage;
1881   else if (D->hasAttr<WeakAttr>()) {
1882     if (GV->isConstant())
1883       return llvm::GlobalVariable::WeakODRLinkage;
1884     else
1885       return llvm::GlobalVariable::WeakAnyLinkage;
1886   } else if (Linkage == GVA_TemplateInstantiation ||
1887              Linkage == GVA_ExplicitTemplateInstantiation)
1888     return llvm::GlobalVariable::WeakODRLinkage;
1889   else if (!getLangOpts().CPlusPlus &&
1890            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1891              D->getAttr<CommonAttr>()) &&
1892            !D->hasExternalStorage() && !D->getInit() &&
1893            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1894            !D->getAttr<WeakImportAttr>()) {
1895     // Thread local vars aren't considered common linkage.
1896     return llvm::GlobalVariable::CommonLinkage;
1897   }
1898   return llvm::GlobalVariable::ExternalLinkage;
1899 }
1900 
1901 /// Replace the uses of a function that was declared with a non-proto type.
1902 /// We want to silently drop extra arguments from call sites
1903 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1904                                           llvm::Function *newFn) {
1905   // Fast path.
1906   if (old->use_empty()) return;
1907 
1908   llvm::Type *newRetTy = newFn->getReturnType();
1909   SmallVector<llvm::Value*, 4> newArgs;
1910 
1911   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1912          ui != ue; ) {
1913     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1914     llvm::User *user = *use;
1915 
1916     // Recognize and replace uses of bitcasts.  Most calls to
1917     // unprototyped functions will use bitcasts.
1918     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1919       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1920         replaceUsesOfNonProtoConstant(bitcast, newFn);
1921       continue;
1922     }
1923 
1924     // Recognize calls to the function.
1925     llvm::CallSite callSite(user);
1926     if (!callSite) continue;
1927     if (!callSite.isCallee(use)) continue;
1928 
1929     // If the return types don't match exactly, then we can't
1930     // transform this call unless it's dead.
1931     if (callSite->getType() != newRetTy && !callSite->use_empty())
1932       continue;
1933 
1934     // Get the call site's attribute list.
1935     SmallVector<llvm::AttributeWithIndex, 8> newAttrs;
1936     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1937 
1938     // Collect any return attributes from the call.
1939     llvm::Attribute returnAttrs = oldAttrs.getRetAttributes();
1940     if (returnAttrs.hasAttributes())
1941       newAttrs.push_back(llvm::AttributeWithIndex::get(
1942                                 llvm::AttributeSet::ReturnIndex, returnAttrs));
1943 
1944     // If the function was passed too few arguments, don't transform.
1945     unsigned newNumArgs = newFn->arg_size();
1946     if (callSite.arg_size() < newNumArgs) continue;
1947 
1948     // If extra arguments were passed, we silently drop them.
1949     // If any of the types mismatch, we don't transform.
1950     unsigned argNo = 0;
1951     bool dontTransform = false;
1952     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1953            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1954       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1955         dontTransform = true;
1956         break;
1957       }
1958 
1959       // Add any parameter attributes.
1960       llvm::Attribute pAttrs = oldAttrs.getParamAttributes(argNo + 1);
1961       if (pAttrs.hasAttributes())
1962         newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs));
1963     }
1964     if (dontTransform)
1965       continue;
1966 
1967     llvm::Attribute fnAttrs = oldAttrs.getFnAttributes();
1968     if (fnAttrs.hasAttributes())
1969       newAttrs.push_back(llvm::
1970                        AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex,
1971                                                fnAttrs));
1972 
1973     // Okay, we can transform this.  Create the new call instruction and copy
1974     // over the required information.
1975     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1976 
1977     llvm::CallSite newCall;
1978     if (callSite.isCall()) {
1979       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1980                                        callSite.getInstruction());
1981     } else {
1982       llvm::InvokeInst *oldInvoke =
1983         cast<llvm::InvokeInst>(callSite.getInstruction());
1984       newCall = llvm::InvokeInst::Create(newFn,
1985                                          oldInvoke->getNormalDest(),
1986                                          oldInvoke->getUnwindDest(),
1987                                          newArgs, "",
1988                                          callSite.getInstruction());
1989     }
1990     newArgs.clear(); // for the next iteration
1991 
1992     if (!newCall->getType()->isVoidTy())
1993       newCall->takeName(callSite.getInstruction());
1994     newCall.setAttributes(
1995                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1996     newCall.setCallingConv(callSite.getCallingConv());
1997 
1998     // Finally, remove the old call, replacing any uses with the new one.
1999     if (!callSite->use_empty())
2000       callSite->replaceAllUsesWith(newCall.getInstruction());
2001 
2002     // Copy debug location attached to CI.
2003     if (!callSite->getDebugLoc().isUnknown())
2004       newCall->setDebugLoc(callSite->getDebugLoc());
2005     callSite->eraseFromParent();
2006   }
2007 }
2008 
2009 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2010 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2011 /// existing call uses of the old function in the module, this adjusts them to
2012 /// call the new function directly.
2013 ///
2014 /// This is not just a cleanup: the always_inline pass requires direct calls to
2015 /// functions to be able to inline them.  If there is a bitcast in the way, it
2016 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2017 /// run at -O0.
2018 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2019                                                       llvm::Function *NewFn) {
2020   // If we're redefining a global as a function, don't transform it.
2021   if (!isa<llvm::Function>(Old)) return;
2022 
2023   replaceUsesOfNonProtoConstant(Old, NewFn);
2024 }
2025 
2026 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2027   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2028   // If we have a definition, this might be a deferred decl. If the
2029   // instantiation is explicit, make sure we emit it at the end.
2030   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2031     GetAddrOfGlobalVar(VD);
2032 }
2033 
2034 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2035   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2036 
2037   // Compute the function info and LLVM type.
2038   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2039   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2040 
2041   // Get or create the prototype for the function.
2042   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2043 
2044   // Strip off a bitcast if we got one back.
2045   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2046     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2047     Entry = CE->getOperand(0);
2048   }
2049 
2050 
2051   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2052     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2053 
2054     // If the types mismatch then we have to rewrite the definition.
2055     assert(OldFn->isDeclaration() &&
2056            "Shouldn't replace non-declaration");
2057 
2058     // F is the Function* for the one with the wrong type, we must make a new
2059     // Function* and update everything that used F (a declaration) with the new
2060     // Function* (which will be a definition).
2061     //
2062     // This happens if there is a prototype for a function
2063     // (e.g. "int f()") and then a definition of a different type
2064     // (e.g. "int f(int x)").  Move the old function aside so that it
2065     // doesn't interfere with GetAddrOfFunction.
2066     OldFn->setName(StringRef());
2067     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2068 
2069     // This might be an implementation of a function without a
2070     // prototype, in which case, try to do special replacement of
2071     // calls which match the new prototype.  The really key thing here
2072     // is that we also potentially drop arguments from the call site
2073     // so as to make a direct call, which makes the inliner happier
2074     // and suppresses a number of optimizer warnings (!) about
2075     // dropping arguments.
2076     if (!OldFn->use_empty()) {
2077       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2078       OldFn->removeDeadConstantUsers();
2079     }
2080 
2081     // Replace uses of F with the Function we will endow with a body.
2082     if (!Entry->use_empty()) {
2083       llvm::Constant *NewPtrForOldDecl =
2084         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2085       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2086     }
2087 
2088     // Ok, delete the old function now, which is dead.
2089     OldFn->eraseFromParent();
2090 
2091     Entry = NewFn;
2092   }
2093 
2094   // We need to set linkage and visibility on the function before
2095   // generating code for it because various parts of IR generation
2096   // want to propagate this information down (e.g. to local static
2097   // declarations).
2098   llvm::Function *Fn = cast<llvm::Function>(Entry);
2099   setFunctionLinkage(D, Fn);
2100 
2101   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2102   setGlobalVisibility(Fn, D);
2103 
2104   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2105 
2106   SetFunctionDefinitionAttributes(D, Fn);
2107   SetLLVMFunctionAttributesForDefinition(D, Fn);
2108 
2109   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2110     AddGlobalCtor(Fn, CA->getPriority());
2111   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2112     AddGlobalDtor(Fn, DA->getPriority());
2113   if (D->hasAttr<AnnotateAttr>())
2114     AddGlobalAnnotations(D, Fn);
2115 }
2116 
2117 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2118   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2119   const AliasAttr *AA = D->getAttr<AliasAttr>();
2120   assert(AA && "Not an alias?");
2121 
2122   StringRef MangledName = getMangledName(GD);
2123 
2124   // If there is a definition in the module, then it wins over the alias.
2125   // This is dubious, but allow it to be safe.  Just ignore the alias.
2126   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2127   if (Entry && !Entry->isDeclaration())
2128     return;
2129 
2130   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2131 
2132   // Create a reference to the named value.  This ensures that it is emitted
2133   // if a deferred decl.
2134   llvm::Constant *Aliasee;
2135   if (isa<llvm::FunctionType>(DeclTy))
2136     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2137                                       /*ForVTable=*/false);
2138   else
2139     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2140                                     llvm::PointerType::getUnqual(DeclTy), 0);
2141 
2142   // Create the new alias itself, but don't set a name yet.
2143   llvm::GlobalValue *GA =
2144     new llvm::GlobalAlias(Aliasee->getType(),
2145                           llvm::Function::ExternalLinkage,
2146                           "", Aliasee, &getModule());
2147 
2148   if (Entry) {
2149     assert(Entry->isDeclaration());
2150 
2151     // If there is a declaration in the module, then we had an extern followed
2152     // by the alias, as in:
2153     //   extern int test6();
2154     //   ...
2155     //   int test6() __attribute__((alias("test7")));
2156     //
2157     // Remove it and replace uses of it with the alias.
2158     GA->takeName(Entry);
2159 
2160     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2161                                                           Entry->getType()));
2162     Entry->eraseFromParent();
2163   } else {
2164     GA->setName(MangledName);
2165   }
2166 
2167   // Set attributes which are particular to an alias; this is a
2168   // specialization of the attributes which may be set on a global
2169   // variable/function.
2170   if (D->hasAttr<DLLExportAttr>()) {
2171     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2172       // The dllexport attribute is ignored for undefined symbols.
2173       if (FD->hasBody())
2174         GA->setLinkage(llvm::Function::DLLExportLinkage);
2175     } else {
2176       GA->setLinkage(llvm::Function::DLLExportLinkage);
2177     }
2178   } else if (D->hasAttr<WeakAttr>() ||
2179              D->hasAttr<WeakRefAttr>() ||
2180              D->isWeakImported()) {
2181     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2182   }
2183 
2184   SetCommonAttributes(D, GA);
2185 }
2186 
2187 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2188                                             ArrayRef<llvm::Type*> Tys) {
2189   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2190                                          Tys);
2191 }
2192 
2193 static llvm::StringMapEntry<llvm::Constant*> &
2194 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2195                          const StringLiteral *Literal,
2196                          bool TargetIsLSB,
2197                          bool &IsUTF16,
2198                          unsigned &StringLength) {
2199   StringRef String = Literal->getString();
2200   unsigned NumBytes = String.size();
2201 
2202   // Check for simple case.
2203   if (!Literal->containsNonAsciiOrNull()) {
2204     StringLength = NumBytes;
2205     return Map.GetOrCreateValue(String);
2206   }
2207 
2208   // Otherwise, convert the UTF8 literals into a string of shorts.
2209   IsUTF16 = true;
2210 
2211   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2212   const UTF8 *FromPtr = (const UTF8 *)String.data();
2213   UTF16 *ToPtr = &ToBuf[0];
2214 
2215   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2216                            &ToPtr, ToPtr + NumBytes,
2217                            strictConversion);
2218 
2219   // ConvertUTF8toUTF16 returns the length in ToPtr.
2220   StringLength = ToPtr - &ToBuf[0];
2221 
2222   // Add an explicit null.
2223   *ToPtr = 0;
2224   return Map.
2225     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2226                                (StringLength + 1) * 2));
2227 }
2228 
2229 static llvm::StringMapEntry<llvm::Constant*> &
2230 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2231                        const StringLiteral *Literal,
2232                        unsigned &StringLength) {
2233   StringRef String = Literal->getString();
2234   StringLength = String.size();
2235   return Map.GetOrCreateValue(String);
2236 }
2237 
2238 llvm::Constant *
2239 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2240   unsigned StringLength = 0;
2241   bool isUTF16 = false;
2242   llvm::StringMapEntry<llvm::Constant*> &Entry =
2243     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2244                              getDataLayout().isLittleEndian(),
2245                              isUTF16, StringLength);
2246 
2247   if (llvm::Constant *C = Entry.getValue())
2248     return C;
2249 
2250   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2251   llvm::Constant *Zeros[] = { Zero, Zero };
2252 
2253   // If we don't already have it, get __CFConstantStringClassReference.
2254   if (!CFConstantStringClassRef) {
2255     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2256     Ty = llvm::ArrayType::get(Ty, 0);
2257     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2258                                            "__CFConstantStringClassReference");
2259     // Decay array -> ptr
2260     CFConstantStringClassRef =
2261       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2262   }
2263 
2264   QualType CFTy = getContext().getCFConstantStringType();
2265 
2266   llvm::StructType *STy =
2267     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2268 
2269   llvm::Constant *Fields[4];
2270 
2271   // Class pointer.
2272   Fields[0] = CFConstantStringClassRef;
2273 
2274   // Flags.
2275   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2276   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2277     llvm::ConstantInt::get(Ty, 0x07C8);
2278 
2279   // String pointer.
2280   llvm::Constant *C = 0;
2281   if (isUTF16) {
2282     ArrayRef<uint16_t> Arr =
2283       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2284                                    Entry.getKey().size() / 2);
2285     C = llvm::ConstantDataArray::get(VMContext, Arr);
2286   } else {
2287     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2288   }
2289 
2290   llvm::GlobalValue::LinkageTypes Linkage;
2291   if (isUTF16)
2292     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2293     Linkage = llvm::GlobalValue::InternalLinkage;
2294   else
2295     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2296     // when using private linkage. It is not clear if this is a bug in ld
2297     // or a reasonable new restriction.
2298     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2299 
2300   // Note: -fwritable-strings doesn't make the backing store strings of
2301   // CFStrings writable. (See <rdar://problem/10657500>)
2302   llvm::GlobalVariable *GV =
2303     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2304                              Linkage, C, ".str");
2305   GV->setUnnamedAddr(true);
2306   if (isUTF16) {
2307     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2308     GV->setAlignment(Align.getQuantity());
2309   } else {
2310     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2311     GV->setAlignment(Align.getQuantity());
2312   }
2313 
2314   // String.
2315   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2316 
2317   if (isUTF16)
2318     // Cast the UTF16 string to the correct type.
2319     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2320 
2321   // String length.
2322   Ty = getTypes().ConvertType(getContext().LongTy);
2323   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2324 
2325   // The struct.
2326   C = llvm::ConstantStruct::get(STy, Fields);
2327   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2328                                 llvm::GlobalVariable::PrivateLinkage, C,
2329                                 "_unnamed_cfstring_");
2330   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2331     GV->setSection(Sect);
2332   Entry.setValue(GV);
2333 
2334   return GV;
2335 }
2336 
2337 static RecordDecl *
2338 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2339                  DeclContext *DC, IdentifierInfo *Id) {
2340   SourceLocation Loc;
2341   if (Ctx.getLangOpts().CPlusPlus)
2342     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2343   else
2344     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2345 }
2346 
2347 llvm::Constant *
2348 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2349   unsigned StringLength = 0;
2350   llvm::StringMapEntry<llvm::Constant*> &Entry =
2351     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2352 
2353   if (llvm::Constant *C = Entry.getValue())
2354     return C;
2355 
2356   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2357   llvm::Constant *Zeros[] = { Zero, Zero };
2358 
2359   // If we don't already have it, get _NSConstantStringClassReference.
2360   if (!ConstantStringClassRef) {
2361     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2362     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2363     llvm::Constant *GV;
2364     if (LangOpts.ObjCRuntime.isNonFragile()) {
2365       std::string str =
2366         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2367                             : "OBJC_CLASS_$_" + StringClass;
2368       GV = getObjCRuntime().GetClassGlobal(str);
2369       // Make sure the result is of the correct type.
2370       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2371       ConstantStringClassRef =
2372         llvm::ConstantExpr::getBitCast(GV, PTy);
2373     } else {
2374       std::string str =
2375         StringClass.empty() ? "_NSConstantStringClassReference"
2376                             : "_" + StringClass + "ClassReference";
2377       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2378       GV = CreateRuntimeVariable(PTy, str);
2379       // Decay array -> ptr
2380       ConstantStringClassRef =
2381         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2382     }
2383   }
2384 
2385   if (!NSConstantStringType) {
2386     // Construct the type for a constant NSString.
2387     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2388                                      Context.getTranslationUnitDecl(),
2389                                    &Context.Idents.get("__builtin_NSString"));
2390     D->startDefinition();
2391 
2392     QualType FieldTypes[3];
2393 
2394     // const int *isa;
2395     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2396     // const char *str;
2397     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2398     // unsigned int length;
2399     FieldTypes[2] = Context.UnsignedIntTy;
2400 
2401     // Create fields
2402     for (unsigned i = 0; i < 3; ++i) {
2403       FieldDecl *Field = FieldDecl::Create(Context, D,
2404                                            SourceLocation(),
2405                                            SourceLocation(), 0,
2406                                            FieldTypes[i], /*TInfo=*/0,
2407                                            /*BitWidth=*/0,
2408                                            /*Mutable=*/false,
2409                                            ICIS_NoInit);
2410       Field->setAccess(AS_public);
2411       D->addDecl(Field);
2412     }
2413 
2414     D->completeDefinition();
2415     QualType NSTy = Context.getTagDeclType(D);
2416     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2417   }
2418 
2419   llvm::Constant *Fields[3];
2420 
2421   // Class pointer.
2422   Fields[0] = ConstantStringClassRef;
2423 
2424   // String pointer.
2425   llvm::Constant *C =
2426     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2427 
2428   llvm::GlobalValue::LinkageTypes Linkage;
2429   bool isConstant;
2430   Linkage = llvm::GlobalValue::PrivateLinkage;
2431   isConstant = !LangOpts.WritableStrings;
2432 
2433   llvm::GlobalVariable *GV =
2434   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2435                            ".str");
2436   GV->setUnnamedAddr(true);
2437   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2438   GV->setAlignment(Align.getQuantity());
2439   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2440 
2441   // String length.
2442   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2443   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2444 
2445   // The struct.
2446   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2447   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2448                                 llvm::GlobalVariable::PrivateLinkage, C,
2449                                 "_unnamed_nsstring_");
2450   // FIXME. Fix section.
2451   if (const char *Sect =
2452         LangOpts.ObjCRuntime.isNonFragile()
2453           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2454           : getContext().getTargetInfo().getNSStringSection())
2455     GV->setSection(Sect);
2456   Entry.setValue(GV);
2457 
2458   return GV;
2459 }
2460 
2461 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2462   if (ObjCFastEnumerationStateType.isNull()) {
2463     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2464                                      Context.getTranslationUnitDecl(),
2465                       &Context.Idents.get("__objcFastEnumerationState"));
2466     D->startDefinition();
2467 
2468     QualType FieldTypes[] = {
2469       Context.UnsignedLongTy,
2470       Context.getPointerType(Context.getObjCIdType()),
2471       Context.getPointerType(Context.UnsignedLongTy),
2472       Context.getConstantArrayType(Context.UnsignedLongTy,
2473                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2474     };
2475 
2476     for (size_t i = 0; i < 4; ++i) {
2477       FieldDecl *Field = FieldDecl::Create(Context,
2478                                            D,
2479                                            SourceLocation(),
2480                                            SourceLocation(), 0,
2481                                            FieldTypes[i], /*TInfo=*/0,
2482                                            /*BitWidth=*/0,
2483                                            /*Mutable=*/false,
2484                                            ICIS_NoInit);
2485       Field->setAccess(AS_public);
2486       D->addDecl(Field);
2487     }
2488 
2489     D->completeDefinition();
2490     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2491   }
2492 
2493   return ObjCFastEnumerationStateType;
2494 }
2495 
2496 llvm::Constant *
2497 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2498   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2499 
2500   // Don't emit it as the address of the string, emit the string data itself
2501   // as an inline array.
2502   if (E->getCharByteWidth() == 1) {
2503     SmallString<64> Str(E->getString());
2504 
2505     // Resize the string to the right size, which is indicated by its type.
2506     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2507     Str.resize(CAT->getSize().getZExtValue());
2508     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2509   }
2510 
2511   llvm::ArrayType *AType =
2512     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2513   llvm::Type *ElemTy = AType->getElementType();
2514   unsigned NumElements = AType->getNumElements();
2515 
2516   // Wide strings have either 2-byte or 4-byte elements.
2517   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2518     SmallVector<uint16_t, 32> Elements;
2519     Elements.reserve(NumElements);
2520 
2521     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2522       Elements.push_back(E->getCodeUnit(i));
2523     Elements.resize(NumElements);
2524     return llvm::ConstantDataArray::get(VMContext, Elements);
2525   }
2526 
2527   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2528   SmallVector<uint32_t, 32> Elements;
2529   Elements.reserve(NumElements);
2530 
2531   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2532     Elements.push_back(E->getCodeUnit(i));
2533   Elements.resize(NumElements);
2534   return llvm::ConstantDataArray::get(VMContext, Elements);
2535 }
2536 
2537 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2538 /// constant array for the given string literal.
2539 llvm::Constant *
2540 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2541   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2542   if (S->isAscii() || S->isUTF8()) {
2543     SmallString<64> Str(S->getString());
2544 
2545     // Resize the string to the right size, which is indicated by its type.
2546     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2547     Str.resize(CAT->getSize().getZExtValue());
2548     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2549   }
2550 
2551   // FIXME: the following does not memoize wide strings.
2552   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2553   llvm::GlobalVariable *GV =
2554     new llvm::GlobalVariable(getModule(),C->getType(),
2555                              !LangOpts.WritableStrings,
2556                              llvm::GlobalValue::PrivateLinkage,
2557                              C,".str");
2558 
2559   GV->setAlignment(Align.getQuantity());
2560   GV->setUnnamedAddr(true);
2561   return GV;
2562 }
2563 
2564 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2565 /// array for the given ObjCEncodeExpr node.
2566 llvm::Constant *
2567 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2568   std::string Str;
2569   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2570 
2571   return GetAddrOfConstantCString(Str);
2572 }
2573 
2574 
2575 /// GenerateWritableString -- Creates storage for a string literal.
2576 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2577                                              bool constant,
2578                                              CodeGenModule &CGM,
2579                                              const char *GlobalName,
2580                                              unsigned Alignment) {
2581   // Create Constant for this string literal. Don't add a '\0'.
2582   llvm::Constant *C =
2583       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2584 
2585   // Create a global variable for this string
2586   llvm::GlobalVariable *GV =
2587     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2588                              llvm::GlobalValue::PrivateLinkage,
2589                              C, GlobalName);
2590   GV->setAlignment(Alignment);
2591   GV->setUnnamedAddr(true);
2592   return GV;
2593 }
2594 
2595 /// GetAddrOfConstantString - Returns a pointer to a character array
2596 /// containing the literal. This contents are exactly that of the
2597 /// given string, i.e. it will not be null terminated automatically;
2598 /// see GetAddrOfConstantCString. Note that whether the result is
2599 /// actually a pointer to an LLVM constant depends on
2600 /// Feature.WriteableStrings.
2601 ///
2602 /// The result has pointer to array type.
2603 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2604                                                        const char *GlobalName,
2605                                                        unsigned Alignment) {
2606   // Get the default prefix if a name wasn't specified.
2607   if (!GlobalName)
2608     GlobalName = ".str";
2609 
2610   // Don't share any string literals if strings aren't constant.
2611   if (LangOpts.WritableStrings)
2612     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2613 
2614   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2615     ConstantStringMap.GetOrCreateValue(Str);
2616 
2617   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2618     if (Alignment > GV->getAlignment()) {
2619       GV->setAlignment(Alignment);
2620     }
2621     return GV;
2622   }
2623 
2624   // Create a global variable for this.
2625   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2626                                                    Alignment);
2627   Entry.setValue(GV);
2628   return GV;
2629 }
2630 
2631 /// GetAddrOfConstantCString - Returns a pointer to a character
2632 /// array containing the literal and a terminating '\0'
2633 /// character. The result has pointer to array type.
2634 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2635                                                         const char *GlobalName,
2636                                                         unsigned Alignment) {
2637   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2638   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2639 }
2640 
2641 /// EmitObjCPropertyImplementations - Emit information for synthesized
2642 /// properties for an implementation.
2643 void CodeGenModule::EmitObjCPropertyImplementations(const
2644                                                     ObjCImplementationDecl *D) {
2645   for (ObjCImplementationDecl::propimpl_iterator
2646          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2647     ObjCPropertyImplDecl *PID = *i;
2648 
2649     // Dynamic is just for type-checking.
2650     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2651       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2652 
2653       // Determine which methods need to be implemented, some may have
2654       // been overridden. Note that ::isPropertyAccessor is not the method
2655       // we want, that just indicates if the decl came from a
2656       // property. What we want to know is if the method is defined in
2657       // this implementation.
2658       if (!D->getInstanceMethod(PD->getGetterName()))
2659         CodeGenFunction(*this).GenerateObjCGetter(
2660                                  const_cast<ObjCImplementationDecl *>(D), PID);
2661       if (!PD->isReadOnly() &&
2662           !D->getInstanceMethod(PD->getSetterName()))
2663         CodeGenFunction(*this).GenerateObjCSetter(
2664                                  const_cast<ObjCImplementationDecl *>(D), PID);
2665     }
2666   }
2667 }
2668 
2669 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2670   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2671   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2672        ivar; ivar = ivar->getNextIvar())
2673     if (ivar->getType().isDestructedType())
2674       return true;
2675 
2676   return false;
2677 }
2678 
2679 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2680 /// for an implementation.
2681 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2682   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2683   if (needsDestructMethod(D)) {
2684     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2685     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2686     ObjCMethodDecl *DTORMethod =
2687       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2688                              cxxSelector, getContext().VoidTy, 0, D,
2689                              /*isInstance=*/true, /*isVariadic=*/false,
2690                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2691                              /*isDefined=*/false, ObjCMethodDecl::Required);
2692     D->addInstanceMethod(DTORMethod);
2693     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2694     D->setHasDestructors(true);
2695   }
2696 
2697   // If the implementation doesn't have any ivar initializers, we don't need
2698   // a .cxx_construct.
2699   if (D->getNumIvarInitializers() == 0)
2700     return;
2701 
2702   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2703   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2704   // The constructor returns 'self'.
2705   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2706                                                 D->getLocation(),
2707                                                 D->getLocation(),
2708                                                 cxxSelector,
2709                                                 getContext().getObjCIdType(), 0,
2710                                                 D, /*isInstance=*/true,
2711                                                 /*isVariadic=*/false,
2712                                                 /*isPropertyAccessor=*/true,
2713                                                 /*isImplicitlyDeclared=*/true,
2714                                                 /*isDefined=*/false,
2715                                                 ObjCMethodDecl::Required);
2716   D->addInstanceMethod(CTORMethod);
2717   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2718   D->setHasNonZeroConstructors(true);
2719 }
2720 
2721 /// EmitNamespace - Emit all declarations in a namespace.
2722 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2723   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2724        I != E; ++I)
2725     EmitTopLevelDecl(*I);
2726 }
2727 
2728 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2729 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2730   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2731       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2732     ErrorUnsupported(LSD, "linkage spec");
2733     return;
2734   }
2735 
2736   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2737        I != E; ++I) {
2738     // Meta-data for ObjC class includes references to implemented methods.
2739     // Generate class's method definitions first.
2740     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2741       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2742            MEnd = OID->meth_end();
2743            M != MEnd; ++M)
2744         EmitTopLevelDecl(*M);
2745     }
2746     EmitTopLevelDecl(*I);
2747   }
2748 }
2749 
2750 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2751 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2752   // If an error has occurred, stop code generation, but continue
2753   // parsing and semantic analysis (to ensure all warnings and errors
2754   // are emitted).
2755   if (Diags.hasErrorOccurred())
2756     return;
2757 
2758   // Ignore dependent declarations.
2759   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2760     return;
2761 
2762   switch (D->getKind()) {
2763   case Decl::CXXConversion:
2764   case Decl::CXXMethod:
2765   case Decl::Function:
2766     // Skip function templates
2767     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2768         cast<FunctionDecl>(D)->isLateTemplateParsed())
2769       return;
2770 
2771     EmitGlobal(cast<FunctionDecl>(D));
2772     break;
2773 
2774   case Decl::Var:
2775     EmitGlobal(cast<VarDecl>(D));
2776     break;
2777 
2778   // Indirect fields from global anonymous structs and unions can be
2779   // ignored; only the actual variable requires IR gen support.
2780   case Decl::IndirectField:
2781     break;
2782 
2783   // C++ Decls
2784   case Decl::Namespace:
2785     EmitNamespace(cast<NamespaceDecl>(D));
2786     break;
2787     // No code generation needed.
2788   case Decl::UsingShadow:
2789   case Decl::Using:
2790   case Decl::UsingDirective:
2791   case Decl::ClassTemplate:
2792   case Decl::FunctionTemplate:
2793   case Decl::TypeAliasTemplate:
2794   case Decl::NamespaceAlias:
2795   case Decl::Block:
2796     break;
2797   case Decl::CXXConstructor:
2798     // Skip function templates
2799     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2800         cast<FunctionDecl>(D)->isLateTemplateParsed())
2801       return;
2802 
2803     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2804     break;
2805   case Decl::CXXDestructor:
2806     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2807       return;
2808     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2809     break;
2810 
2811   case Decl::StaticAssert:
2812     // Nothing to do.
2813     break;
2814 
2815   // Objective-C Decls
2816 
2817   // Forward declarations, no (immediate) code generation.
2818   case Decl::ObjCInterface:
2819   case Decl::ObjCCategory:
2820     break;
2821 
2822   case Decl::ObjCProtocol: {
2823     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2824     if (Proto->isThisDeclarationADefinition())
2825       ObjCRuntime->GenerateProtocol(Proto);
2826     break;
2827   }
2828 
2829   case Decl::ObjCCategoryImpl:
2830     // Categories have properties but don't support synthesize so we
2831     // can ignore them here.
2832     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2833     break;
2834 
2835   case Decl::ObjCImplementation: {
2836     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2837     EmitObjCPropertyImplementations(OMD);
2838     EmitObjCIvarInitializations(OMD);
2839     ObjCRuntime->GenerateClass(OMD);
2840     // Emit global variable debug information.
2841     if (CGDebugInfo *DI = getModuleDebugInfo())
2842       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2843         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2844             OMD->getClassInterface()), OMD->getLocation());
2845     break;
2846   }
2847   case Decl::ObjCMethod: {
2848     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2849     // If this is not a prototype, emit the body.
2850     if (OMD->getBody())
2851       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2852     break;
2853   }
2854   case Decl::ObjCCompatibleAlias:
2855     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2856     break;
2857 
2858   case Decl::LinkageSpec:
2859     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2860     break;
2861 
2862   case Decl::FileScopeAsm: {
2863     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2864     StringRef AsmString = AD->getAsmString()->getString();
2865 
2866     const std::string &S = getModule().getModuleInlineAsm();
2867     if (S.empty())
2868       getModule().setModuleInlineAsm(AsmString);
2869     else if (S.end()[-1] == '\n')
2870       getModule().setModuleInlineAsm(S + AsmString.str());
2871     else
2872       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2873     break;
2874   }
2875 
2876   case Decl::Import: {
2877     ImportDecl *Import = cast<ImportDecl>(D);
2878 
2879     // Ignore import declarations that come from imported modules.
2880     if (clang::Module *Owner = Import->getOwningModule()) {
2881       if (getLangOpts().CurrentModule.empty() ||
2882           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2883         break;
2884     }
2885 
2886     ImportedModules.insert(Import->getImportedModule());
2887     break;
2888  }
2889 
2890   default:
2891     // Make sure we handled everything we should, every other kind is a
2892     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2893     // function. Need to recode Decl::Kind to do that easily.
2894     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2895   }
2896 }
2897 
2898 /// Turns the given pointer into a constant.
2899 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2900                                           const void *Ptr) {
2901   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2902   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2903   return llvm::ConstantInt::get(i64, PtrInt);
2904 }
2905 
2906 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2907                                    llvm::NamedMDNode *&GlobalMetadata,
2908                                    GlobalDecl D,
2909                                    llvm::GlobalValue *Addr) {
2910   if (!GlobalMetadata)
2911     GlobalMetadata =
2912       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2913 
2914   // TODO: should we report variant information for ctors/dtors?
2915   llvm::Value *Ops[] = {
2916     Addr,
2917     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2918   };
2919   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2920 }
2921 
2922 /// Emits metadata nodes associating all the global values in the
2923 /// current module with the Decls they came from.  This is useful for
2924 /// projects using IR gen as a subroutine.
2925 ///
2926 /// Since there's currently no way to associate an MDNode directly
2927 /// with an llvm::GlobalValue, we create a global named metadata
2928 /// with the name 'clang.global.decl.ptrs'.
2929 void CodeGenModule::EmitDeclMetadata() {
2930   llvm::NamedMDNode *GlobalMetadata = 0;
2931 
2932   // StaticLocalDeclMap
2933   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2934          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2935        I != E; ++I) {
2936     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2937     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2938   }
2939 }
2940 
2941 /// Emits metadata nodes for all the local variables in the current
2942 /// function.
2943 void CodeGenFunction::EmitDeclMetadata() {
2944   if (LocalDeclMap.empty()) return;
2945 
2946   llvm::LLVMContext &Context = getLLVMContext();
2947 
2948   // Find the unique metadata ID for this name.
2949   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2950 
2951   llvm::NamedMDNode *GlobalMetadata = 0;
2952 
2953   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2954          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2955     const Decl *D = I->first;
2956     llvm::Value *Addr = I->second;
2957 
2958     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2959       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2960       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2961     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2962       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2963       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2964     }
2965   }
2966 }
2967 
2968 void CodeGenModule::EmitCoverageFile() {
2969   if (!getCodeGenOpts().CoverageFile.empty()) {
2970     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2971       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2972       llvm::LLVMContext &Ctx = TheModule.getContext();
2973       llvm::MDString *CoverageFile =
2974           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2975       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2976         llvm::MDNode *CU = CUNode->getOperand(i);
2977         llvm::Value *node[] = { CoverageFile, CU };
2978         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2979         GCov->addOperand(N);
2980       }
2981     }
2982   }
2983 }
2984 
2985 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2986                                                      QualType GuidType) {
2987   // Sema has checked that all uuid strings are of the form
2988   // "12345678-1234-1234-1234-1234567890ab".
2989   assert(Uuid.size() == 36);
2990   const char *Uuidstr = Uuid.data();
2991   for (int i = 0; i < 36; ++i) {
2992     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2993     else                                         assert(isxdigit(Uuidstr[i]));
2994   }
2995 
2996   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2997   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2998   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2999   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3000 
3001   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3002   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3003   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3004   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3005   APValue& Arr = InitStruct.getStructField(3);
3006   Arr = APValue(APValue::UninitArray(), 8, 8);
3007   for (int t = 0; t < 8; ++t)
3008     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3009           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3010 
3011   return EmitConstantValue(InitStruct, GuidType);
3012 }
3013