1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CharInfo.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/Module.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Frontend/CodeGenOptions.h" 39 #include "llvm/ADT/APSInt.h" 40 #include "llvm/ADT/Triple.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ConvertUTF.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Target/Mangler.h" 50 51 using namespace clang; 52 using namespace CodeGen; 53 54 static const char AnnotationSection[] = "llvm.metadata"; 55 56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 57 switch (CGM.getTarget().getCXXABI().getKind()) { 58 case TargetCXXABI::GenericAArch64: 59 case TargetCXXABI::GenericARM: 60 case TargetCXXABI::iOS: 61 case TargetCXXABI::GenericItanium: 62 return *CreateItaniumCXXABI(CGM); 63 case TargetCXXABI::Microsoft: 64 return *CreateMicrosoftCXXABI(CGM); 65 } 66 67 llvm_unreachable("invalid C++ ABI kind"); 68 } 69 70 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 71 llvm::Module &M, const llvm::DataLayout &TD, 72 DiagnosticsEngine &diags) 73 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 74 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 75 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 76 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 77 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 78 NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0), 79 ConstantStringClassRef(0), NSConstantStringType(0), 80 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 81 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 82 LifetimeStartFn(0), LifetimeEndFn(0), 83 SanitizerBlacklist( 84 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 85 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 86 : LangOpts.Sanitize) { 87 88 // Initialize the type cache. 89 llvm::LLVMContext &LLVMContext = M.getContext(); 90 VoidTy = llvm::Type::getVoidTy(LLVMContext); 91 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 92 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 93 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 94 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 95 FloatTy = llvm::Type::getFloatTy(LLVMContext); 96 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 97 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 98 PointerAlignInBytes = 99 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 100 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 101 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 102 Int8PtrTy = Int8Ty->getPointerTo(0); 103 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 104 105 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 106 107 if (LangOpts.ObjC1) 108 createObjCRuntime(); 109 if (LangOpts.OpenCL) 110 createOpenCLRuntime(); 111 if (LangOpts.CUDA) 112 createCUDARuntime(); 113 114 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 115 if (SanOpts.Thread || 116 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 117 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 118 ABI.getMangleContext()); 119 120 // If debug info or coverage generation is enabled, create the CGDebugInfo 121 // object. 122 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 123 CodeGenOpts.EmitGcovArcs || 124 CodeGenOpts.EmitGcovNotes) 125 DebugInfo = new CGDebugInfo(*this); 126 127 Block.GlobalUniqueCount = 0; 128 129 if (C.getLangOpts().ObjCAutoRefCount) 130 ARCData = new ARCEntrypoints(); 131 RRData = new RREntrypoints(); 132 } 133 134 CodeGenModule::~CodeGenModule() { 135 delete ObjCRuntime; 136 delete OpenCLRuntime; 137 delete CUDARuntime; 138 delete TheTargetCodeGenInfo; 139 delete &ABI; 140 delete TBAA; 141 delete DebugInfo; 142 delete ARCData; 143 delete RRData; 144 } 145 146 void CodeGenModule::createObjCRuntime() { 147 // This is just isGNUFamily(), but we want to force implementors of 148 // new ABIs to decide how best to do this. 149 switch (LangOpts.ObjCRuntime.getKind()) { 150 case ObjCRuntime::GNUstep: 151 case ObjCRuntime::GCC: 152 case ObjCRuntime::ObjFW: 153 ObjCRuntime = CreateGNUObjCRuntime(*this); 154 return; 155 156 case ObjCRuntime::FragileMacOSX: 157 case ObjCRuntime::MacOSX: 158 case ObjCRuntime::iOS: 159 ObjCRuntime = CreateMacObjCRuntime(*this); 160 return; 161 } 162 llvm_unreachable("bad runtime kind"); 163 } 164 165 void CodeGenModule::createOpenCLRuntime() { 166 OpenCLRuntime = new CGOpenCLRuntime(*this); 167 } 168 169 void CodeGenModule::createCUDARuntime() { 170 CUDARuntime = CreateNVCUDARuntime(*this); 171 } 172 173 void CodeGenModule::Release() { 174 EmitDeferred(); 175 EmitCXXGlobalInitFunc(); 176 EmitCXXGlobalDtorFunc(); 177 EmitCXXThreadLocalInitFunc(); 178 if (ObjCRuntime) 179 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 180 AddGlobalCtor(ObjCInitFunction); 181 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 182 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 183 EmitGlobalAnnotations(); 184 EmitStaticExternCAliases(); 185 EmitLLVMUsed(); 186 187 if (CodeGenOpts.Autolink && 188 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 189 EmitModuleLinkOptions(); 190 } 191 if (CodeGenOpts.DwarfVersion) 192 // We actually want the latest version when there are conflicts. 193 // We can change from Warning to Latest if such mode is supported. 194 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 195 CodeGenOpts.DwarfVersion); 196 197 SimplifyPersonality(); 198 199 if (getCodeGenOpts().EmitDeclMetadata) 200 EmitDeclMetadata(); 201 202 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 203 EmitCoverageFile(); 204 205 if (DebugInfo) 206 DebugInfo->finalize(); 207 } 208 209 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 210 // Make sure that this type is translated. 211 Types.UpdateCompletedType(TD); 212 } 213 214 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 215 if (!TBAA) 216 return 0; 217 return TBAA->getTBAAInfo(QTy); 218 } 219 220 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 221 if (!TBAA) 222 return 0; 223 return TBAA->getTBAAInfoForVTablePtr(); 224 } 225 226 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 227 if (!TBAA) 228 return 0; 229 return TBAA->getTBAAStructInfo(QTy); 230 } 231 232 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 233 if (!TBAA) 234 return 0; 235 return TBAA->getTBAAStructTypeInfo(QTy); 236 } 237 238 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 239 llvm::MDNode *AccessN, 240 uint64_t O) { 241 if (!TBAA) 242 return 0; 243 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 244 } 245 246 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag 247 /// is the same as the type. For struct-path aware TBAA, the tag 248 /// is different from the type: base type, access type and offset. 249 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 250 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 251 llvm::MDNode *TBAAInfo, 252 bool ConvertTypeToTag) { 253 if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA) 254 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 255 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 256 else 257 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 258 } 259 260 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 261 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 262 getDiags().Report(Context.getFullLoc(loc), diagID); 263 } 264 265 /// ErrorUnsupported - Print out an error that codegen doesn't support the 266 /// specified stmt yet. 267 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 268 bool OmitOnError) { 269 if (OmitOnError && getDiags().hasErrorOccurred()) 270 return; 271 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 272 "cannot compile this %0 yet"); 273 std::string Msg = Type; 274 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 275 << Msg << S->getSourceRange(); 276 } 277 278 /// ErrorUnsupported - Print out an error that codegen doesn't support the 279 /// specified decl yet. 280 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 281 bool OmitOnError) { 282 if (OmitOnError && getDiags().hasErrorOccurred()) 283 return; 284 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 285 "cannot compile this %0 yet"); 286 std::string Msg = Type; 287 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 288 } 289 290 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 291 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 292 } 293 294 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 295 const NamedDecl *D) const { 296 // Internal definitions always have default visibility. 297 if (GV->hasLocalLinkage()) { 298 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 299 return; 300 } 301 302 // Set visibility for definitions. 303 LinkageInfo LV = D->getLinkageAndVisibility(); 304 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 305 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 306 } 307 308 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 309 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 310 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 311 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 312 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 313 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 314 } 315 316 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 317 CodeGenOptions::TLSModel M) { 318 switch (M) { 319 case CodeGenOptions::GeneralDynamicTLSModel: 320 return llvm::GlobalVariable::GeneralDynamicTLSModel; 321 case CodeGenOptions::LocalDynamicTLSModel: 322 return llvm::GlobalVariable::LocalDynamicTLSModel; 323 case CodeGenOptions::InitialExecTLSModel: 324 return llvm::GlobalVariable::InitialExecTLSModel; 325 case CodeGenOptions::LocalExecTLSModel: 326 return llvm::GlobalVariable::LocalExecTLSModel; 327 } 328 llvm_unreachable("Invalid TLS model!"); 329 } 330 331 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 332 const VarDecl &D) const { 333 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 334 335 llvm::GlobalVariable::ThreadLocalMode TLM; 336 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 337 338 // Override the TLS model if it is explicitly specified. 339 if (D.hasAttr<TLSModelAttr>()) { 340 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 341 TLM = GetLLVMTLSModel(Attr->getModel()); 342 } 343 344 GV->setThreadLocalMode(TLM); 345 } 346 347 /// Set the symbol visibility of type information (vtable and RTTI) 348 /// associated with the given type. 349 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 350 const CXXRecordDecl *RD, 351 TypeVisibilityKind TVK) const { 352 setGlobalVisibility(GV, RD); 353 354 if (!CodeGenOpts.HiddenWeakVTables) 355 return; 356 357 // We never want to drop the visibility for RTTI names. 358 if (TVK == TVK_ForRTTIName) 359 return; 360 361 // We want to drop the visibility to hidden for weak type symbols. 362 // This isn't possible if there might be unresolved references 363 // elsewhere that rely on this symbol being visible. 364 365 // This should be kept roughly in sync with setThunkVisibility 366 // in CGVTables.cpp. 367 368 // Preconditions. 369 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 370 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 371 return; 372 373 // Don't override an explicit visibility attribute. 374 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType)) 375 return; 376 377 switch (RD->getTemplateSpecializationKind()) { 378 // We have to disable the optimization if this is an EI definition 379 // because there might be EI declarations in other shared objects. 380 case TSK_ExplicitInstantiationDefinition: 381 case TSK_ExplicitInstantiationDeclaration: 382 return; 383 384 // Every use of a non-template class's type information has to emit it. 385 case TSK_Undeclared: 386 break; 387 388 // In theory, implicit instantiations can ignore the possibility of 389 // an explicit instantiation declaration because there necessarily 390 // must be an EI definition somewhere with default visibility. In 391 // practice, it's possible to have an explicit instantiation for 392 // an arbitrary template class, and linkers aren't necessarily able 393 // to deal with mixed-visibility symbols. 394 case TSK_ExplicitSpecialization: 395 case TSK_ImplicitInstantiation: 396 return; 397 } 398 399 // If there's a key function, there may be translation units 400 // that don't have the key function's definition. But ignore 401 // this if we're emitting RTTI under -fno-rtti. 402 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 403 // FIXME: what should we do if we "lose" the key function during 404 // the emission of the file? 405 if (Context.getCurrentKeyFunction(RD)) 406 return; 407 } 408 409 // Otherwise, drop the visibility to hidden. 410 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 411 GV->setUnnamedAddr(true); 412 } 413 414 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 415 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 416 417 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 418 if (!Str.empty()) 419 return Str; 420 421 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 422 IdentifierInfo *II = ND->getIdentifier(); 423 assert(II && "Attempt to mangle unnamed decl."); 424 425 Str = II->getName(); 426 return Str; 427 } 428 429 SmallString<256> Buffer; 430 llvm::raw_svector_ostream Out(Buffer); 431 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 432 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 433 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 434 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 435 else 436 getCXXABI().getMangleContext().mangleName(ND, Out); 437 438 // Allocate space for the mangled name. 439 Out.flush(); 440 size_t Length = Buffer.size(); 441 char *Name = MangledNamesAllocator.Allocate<char>(Length); 442 std::copy(Buffer.begin(), Buffer.end(), Name); 443 444 Str = StringRef(Name, Length); 445 446 return Str; 447 } 448 449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 450 const BlockDecl *BD) { 451 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 452 const Decl *D = GD.getDecl(); 453 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 454 if (D == 0) 455 MangleCtx.mangleGlobalBlock(BD, 456 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 457 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 458 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 459 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 460 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 461 else 462 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 463 } 464 465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 466 return getModule().getNamedValue(Name); 467 } 468 469 /// AddGlobalCtor - Add a function to the list that will be called before 470 /// main() runs. 471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 472 // FIXME: Type coercion of void()* types. 473 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 474 } 475 476 /// AddGlobalDtor - Add a function to the list that will be called 477 /// when the module is unloaded. 478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 479 // FIXME: Type coercion of void()* types. 480 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 481 } 482 483 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 484 // Ctor function type is void()*. 485 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 486 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 487 488 // Get the type of a ctor entry, { i32, void ()* }. 489 llvm::StructType *CtorStructTy = 490 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 491 492 // Construct the constructor and destructor arrays. 493 SmallVector<llvm::Constant*, 8> Ctors; 494 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 495 llvm::Constant *S[] = { 496 llvm::ConstantInt::get(Int32Ty, I->second, false), 497 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 498 }; 499 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 500 } 501 502 if (!Ctors.empty()) { 503 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 504 new llvm::GlobalVariable(TheModule, AT, false, 505 llvm::GlobalValue::AppendingLinkage, 506 llvm::ConstantArray::get(AT, Ctors), 507 GlobalName); 508 } 509 } 510 511 llvm::GlobalValue::LinkageTypes 512 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 513 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 514 515 if (isa<CXXDestructorDecl>(D) && 516 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 517 GD.getDtorType())) 518 return llvm::Function::LinkOnceODRLinkage; 519 520 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 521 522 if (Linkage == GVA_Internal) 523 return llvm::Function::InternalLinkage; 524 525 if (D->hasAttr<DLLExportAttr>()) 526 return llvm::Function::DLLExportLinkage; 527 528 if (D->hasAttr<WeakAttr>()) 529 return llvm::Function::WeakAnyLinkage; 530 531 // In C99 mode, 'inline' functions are guaranteed to have a strong 532 // definition somewhere else, so we can use available_externally linkage. 533 if (Linkage == GVA_C99Inline) 534 return llvm::Function::AvailableExternallyLinkage; 535 536 // Note that Apple's kernel linker doesn't support symbol 537 // coalescing, so we need to avoid linkonce and weak linkages there. 538 // Normally, this means we just map to internal, but for explicit 539 // instantiations we'll map to external. 540 541 // In C++, the compiler has to emit a definition in every translation unit 542 // that references the function. We should use linkonce_odr because 543 // a) if all references in this translation unit are optimized away, we 544 // don't need to codegen it. b) if the function persists, it needs to be 545 // merged with other definitions. c) C++ has the ODR, so we know the 546 // definition is dependable. 547 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 548 return !Context.getLangOpts().AppleKext 549 ? llvm::Function::LinkOnceODRLinkage 550 : llvm::Function::InternalLinkage; 551 552 // An explicit instantiation of a template has weak linkage, since 553 // explicit instantiations can occur in multiple translation units 554 // and must all be equivalent. However, we are not allowed to 555 // throw away these explicit instantiations. 556 if (Linkage == GVA_ExplicitTemplateInstantiation) 557 return !Context.getLangOpts().AppleKext 558 ? llvm::Function::WeakODRLinkage 559 : llvm::Function::ExternalLinkage; 560 561 // Otherwise, we have strong external linkage. 562 assert(Linkage == GVA_StrongExternal); 563 return llvm::Function::ExternalLinkage; 564 } 565 566 567 /// SetFunctionDefinitionAttributes - Set attributes for a global. 568 /// 569 /// FIXME: This is currently only done for aliases and functions, but not for 570 /// variables (these details are set in EmitGlobalVarDefinition for variables). 571 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 572 llvm::GlobalValue *GV) { 573 SetCommonAttributes(D, GV); 574 } 575 576 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 577 const CGFunctionInfo &Info, 578 llvm::Function *F) { 579 unsigned CallingConv; 580 AttributeListType AttributeList; 581 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 582 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 583 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 584 } 585 586 /// Determines whether the language options require us to model 587 /// unwind exceptions. We treat -fexceptions as mandating this 588 /// except under the fragile ObjC ABI with only ObjC exceptions 589 /// enabled. This means, for example, that C with -fexceptions 590 /// enables this. 591 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 592 // If exceptions are completely disabled, obviously this is false. 593 if (!LangOpts.Exceptions) return false; 594 595 // If C++ exceptions are enabled, this is true. 596 if (LangOpts.CXXExceptions) return true; 597 598 // If ObjC exceptions are enabled, this depends on the ABI. 599 if (LangOpts.ObjCExceptions) { 600 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 601 } 602 603 return true; 604 } 605 606 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 607 llvm::Function *F) { 608 llvm::AttrBuilder B; 609 610 if (CodeGenOpts.UnwindTables) 611 B.addAttribute(llvm::Attribute::UWTable); 612 613 if (!hasUnwindExceptions(LangOpts)) 614 B.addAttribute(llvm::Attribute::NoUnwind); 615 616 if (D->hasAttr<NakedAttr>()) { 617 // Naked implies noinline: we should not be inlining such functions. 618 B.addAttribute(llvm::Attribute::Naked); 619 B.addAttribute(llvm::Attribute::NoInline); 620 } else if (D->hasAttr<NoInlineAttr>()) { 621 B.addAttribute(llvm::Attribute::NoInline); 622 } else if ((D->hasAttr<AlwaysInlineAttr>() || 623 D->hasAttr<ForceInlineAttr>()) && 624 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 625 llvm::Attribute::NoInline)) { 626 // (noinline wins over always_inline, and we can't specify both in IR) 627 B.addAttribute(llvm::Attribute::AlwaysInline); 628 } 629 630 if (D->hasAttr<ColdAttr>()) { 631 B.addAttribute(llvm::Attribute::OptimizeForSize); 632 B.addAttribute(llvm::Attribute::Cold); 633 } 634 635 if (D->hasAttr<MinSizeAttr>()) 636 B.addAttribute(llvm::Attribute::MinSize); 637 638 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 639 B.addAttribute(llvm::Attribute::StackProtect); 640 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 641 B.addAttribute(llvm::Attribute::StackProtectReq); 642 643 // Add sanitizer attributes if function is not blacklisted. 644 if (!SanitizerBlacklist->isIn(*F)) { 645 // When AddressSanitizer is enabled, set SanitizeAddress attribute 646 // unless __attribute__((no_sanitize_address)) is used. 647 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 648 B.addAttribute(llvm::Attribute::SanitizeAddress); 649 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 650 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 651 B.addAttribute(llvm::Attribute::SanitizeThread); 652 } 653 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 654 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 655 B.addAttribute(llvm::Attribute::SanitizeMemory); 656 } 657 658 F->addAttributes(llvm::AttributeSet::FunctionIndex, 659 llvm::AttributeSet::get( 660 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 661 662 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 663 F->setUnnamedAddr(true); 664 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 665 if (MD->isVirtual()) 666 F->setUnnamedAddr(true); 667 668 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 669 if (alignment) 670 F->setAlignment(alignment); 671 672 // C++ ABI requires 2-byte alignment for member functions. 673 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 674 F->setAlignment(2); 675 } 676 677 void CodeGenModule::SetCommonAttributes(const Decl *D, 678 llvm::GlobalValue *GV) { 679 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 680 setGlobalVisibility(GV, ND); 681 else 682 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 683 684 if (D->hasAttr<UsedAttr>()) 685 AddUsedGlobal(GV); 686 687 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 688 GV->setSection(SA->getName()); 689 690 // Alias cannot have attributes. Filter them here. 691 if (!isa<llvm::GlobalAlias>(GV)) 692 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 693 } 694 695 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 696 llvm::Function *F, 697 const CGFunctionInfo &FI) { 698 SetLLVMFunctionAttributes(D, FI, F); 699 SetLLVMFunctionAttributesForDefinition(D, F); 700 701 F->setLinkage(llvm::Function::InternalLinkage); 702 703 SetCommonAttributes(D, F); 704 } 705 706 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 707 llvm::Function *F, 708 bool IsIncompleteFunction) { 709 if (unsigned IID = F->getIntrinsicID()) { 710 // If this is an intrinsic function, set the function's attributes 711 // to the intrinsic's attributes. 712 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 713 (llvm::Intrinsic::ID)IID)); 714 return; 715 } 716 717 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 718 719 if (!IsIncompleteFunction) 720 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 721 722 if (getCXXABI().HasThisReturn(GD)) { 723 assert(!F->arg_empty() && 724 F->arg_begin()->getType() 725 ->canLosslesslyBitCastTo(F->getReturnType()) && 726 "unexpected this return"); 727 F->addAttribute(1, llvm::Attribute::Returned); 728 } 729 730 // Only a few attributes are set on declarations; these may later be 731 // overridden by a definition. 732 733 if (FD->hasAttr<DLLImportAttr>()) { 734 F->setLinkage(llvm::Function::DLLImportLinkage); 735 } else if (FD->hasAttr<WeakAttr>() || 736 FD->isWeakImported()) { 737 // "extern_weak" is overloaded in LLVM; we probably should have 738 // separate linkage types for this. 739 F->setLinkage(llvm::Function::ExternalWeakLinkage); 740 } else { 741 F->setLinkage(llvm::Function::ExternalLinkage); 742 743 LinkageInfo LV = FD->getLinkageAndVisibility(); 744 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 745 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 746 } 747 } 748 749 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 750 F->setSection(SA->getName()); 751 752 // A replaceable global allocation function does not act like a builtin by 753 // default, only if it is invoked by a new-expression or delete-expression. 754 if (FD->isReplaceableGlobalAllocationFunction()) 755 F->addAttribute(llvm::AttributeSet::FunctionIndex, 756 llvm::Attribute::NoBuiltin); 757 } 758 759 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 760 assert(!GV->isDeclaration() && 761 "Only globals with definition can force usage."); 762 LLVMUsed.push_back(GV); 763 } 764 765 void CodeGenModule::EmitLLVMUsed() { 766 // Don't create llvm.used if there is no need. 767 if (LLVMUsed.empty()) 768 return; 769 770 // Convert LLVMUsed to what ConstantArray needs. 771 SmallVector<llvm::Constant*, 8> UsedArray; 772 UsedArray.resize(LLVMUsed.size()); 773 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 774 UsedArray[i] = 775 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 776 Int8PtrTy); 777 } 778 779 if (UsedArray.empty()) 780 return; 781 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 782 783 llvm::GlobalVariable *GV = 784 new llvm::GlobalVariable(getModule(), ATy, false, 785 llvm::GlobalValue::AppendingLinkage, 786 llvm::ConstantArray::get(ATy, UsedArray), 787 "llvm.used"); 788 789 GV->setSection("llvm.metadata"); 790 } 791 792 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 793 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 794 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 795 } 796 797 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 798 llvm::SmallString<32> Opt; 799 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 800 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 801 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 802 } 803 804 void CodeGenModule::AddDependentLib(StringRef Lib) { 805 llvm::SmallString<24> Opt; 806 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 807 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 808 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 809 } 810 811 /// \brief Add link options implied by the given module, including modules 812 /// it depends on, using a postorder walk. 813 static void addLinkOptionsPostorder(CodeGenModule &CGM, 814 Module *Mod, 815 SmallVectorImpl<llvm::Value *> &Metadata, 816 llvm::SmallPtrSet<Module *, 16> &Visited) { 817 // Import this module's parent. 818 if (Mod->Parent && Visited.insert(Mod->Parent)) { 819 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 820 } 821 822 // Import this module's dependencies. 823 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 824 if (Visited.insert(Mod->Imports[I-1])) 825 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 826 } 827 828 // Add linker options to link against the libraries/frameworks 829 // described by this module. 830 llvm::LLVMContext &Context = CGM.getLLVMContext(); 831 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 832 // Link against a framework. Frameworks are currently Darwin only, so we 833 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 834 if (Mod->LinkLibraries[I-1].IsFramework) { 835 llvm::Value *Args[2] = { 836 llvm::MDString::get(Context, "-framework"), 837 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 838 }; 839 840 Metadata.push_back(llvm::MDNode::get(Context, Args)); 841 continue; 842 } 843 844 // Link against a library. 845 llvm::SmallString<24> Opt; 846 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 847 Mod->LinkLibraries[I-1].Library, Opt); 848 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 849 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 850 } 851 } 852 853 void CodeGenModule::EmitModuleLinkOptions() { 854 // Collect the set of all of the modules we want to visit to emit link 855 // options, which is essentially the imported modules and all of their 856 // non-explicit child modules. 857 llvm::SetVector<clang::Module *> LinkModules; 858 llvm::SmallPtrSet<clang::Module *, 16> Visited; 859 SmallVector<clang::Module *, 16> Stack; 860 861 // Seed the stack with imported modules. 862 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 863 MEnd = ImportedModules.end(); 864 M != MEnd; ++M) { 865 if (Visited.insert(*M)) 866 Stack.push_back(*M); 867 } 868 869 // Find all of the modules to import, making a little effort to prune 870 // non-leaf modules. 871 while (!Stack.empty()) { 872 clang::Module *Mod = Stack.back(); 873 Stack.pop_back(); 874 875 bool AnyChildren = false; 876 877 // Visit the submodules of this module. 878 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 879 SubEnd = Mod->submodule_end(); 880 Sub != SubEnd; ++Sub) { 881 // Skip explicit children; they need to be explicitly imported to be 882 // linked against. 883 if ((*Sub)->IsExplicit) 884 continue; 885 886 if (Visited.insert(*Sub)) { 887 Stack.push_back(*Sub); 888 AnyChildren = true; 889 } 890 } 891 892 // We didn't find any children, so add this module to the list of 893 // modules to link against. 894 if (!AnyChildren) { 895 LinkModules.insert(Mod); 896 } 897 } 898 899 // Add link options for all of the imported modules in reverse topological 900 // order. We don't do anything to try to order import link flags with respect 901 // to linker options inserted by things like #pragma comment(). 902 SmallVector<llvm::Value *, 16> MetadataArgs; 903 Visited.clear(); 904 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 905 MEnd = LinkModules.end(); 906 M != MEnd; ++M) { 907 if (Visited.insert(*M)) 908 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 909 } 910 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 911 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 912 913 // Add the linker options metadata flag. 914 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 915 llvm::MDNode::get(getLLVMContext(), 916 LinkerOptionsMetadata)); 917 } 918 919 void CodeGenModule::EmitDeferred() { 920 // Emit code for any potentially referenced deferred decls. Since a 921 // previously unused static decl may become used during the generation of code 922 // for a static function, iterate until no changes are made. 923 924 while (true) { 925 if (!DeferredVTables.empty()) { 926 EmitDeferredVTables(); 927 928 // Emitting a v-table doesn't directly cause more v-tables to 929 // become deferred, although it can cause functions to be 930 // emitted that then need those v-tables. 931 assert(DeferredVTables.empty()); 932 } 933 934 // Stop if we're out of both deferred v-tables and deferred declarations. 935 if (DeferredDeclsToEmit.empty()) break; 936 937 GlobalDecl D = DeferredDeclsToEmit.back(); 938 DeferredDeclsToEmit.pop_back(); 939 940 // Check to see if we've already emitted this. This is necessary 941 // for a couple of reasons: first, decls can end up in the 942 // deferred-decls queue multiple times, and second, decls can end 943 // up with definitions in unusual ways (e.g. by an extern inline 944 // function acquiring a strong function redefinition). Just 945 // ignore these cases. 946 // 947 // TODO: That said, looking this up multiple times is very wasteful. 948 StringRef Name = getMangledName(D); 949 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 950 assert(CGRef && "Deferred decl wasn't referenced?"); 951 952 if (!CGRef->isDeclaration()) 953 continue; 954 955 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 956 // purposes an alias counts as a definition. 957 if (isa<llvm::GlobalAlias>(CGRef)) 958 continue; 959 960 // Otherwise, emit the definition and move on to the next one. 961 EmitGlobalDefinition(D); 962 } 963 } 964 965 void CodeGenModule::EmitGlobalAnnotations() { 966 if (Annotations.empty()) 967 return; 968 969 // Create a new global variable for the ConstantStruct in the Module. 970 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 971 Annotations[0]->getType(), Annotations.size()), Annotations); 972 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 973 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 974 "llvm.global.annotations"); 975 gv->setSection(AnnotationSection); 976 } 977 978 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 979 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 980 if (i != AnnotationStrings.end()) 981 return i->second; 982 983 // Not found yet, create a new global. 984 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 985 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 986 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 987 gv->setSection(AnnotationSection); 988 gv->setUnnamedAddr(true); 989 AnnotationStrings[Str] = gv; 990 return gv; 991 } 992 993 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 994 SourceManager &SM = getContext().getSourceManager(); 995 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 996 if (PLoc.isValid()) 997 return EmitAnnotationString(PLoc.getFilename()); 998 return EmitAnnotationString(SM.getBufferName(Loc)); 999 } 1000 1001 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1002 SourceManager &SM = getContext().getSourceManager(); 1003 PresumedLoc PLoc = SM.getPresumedLoc(L); 1004 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1005 SM.getExpansionLineNumber(L); 1006 return llvm::ConstantInt::get(Int32Ty, LineNo); 1007 } 1008 1009 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1010 const AnnotateAttr *AA, 1011 SourceLocation L) { 1012 // Get the globals for file name, annotation, and the line number. 1013 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1014 *UnitGV = EmitAnnotationUnit(L), 1015 *LineNoCst = EmitAnnotationLineNo(L); 1016 1017 // Create the ConstantStruct for the global annotation. 1018 llvm::Constant *Fields[4] = { 1019 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1020 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1021 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1022 LineNoCst 1023 }; 1024 return llvm::ConstantStruct::getAnon(Fields); 1025 } 1026 1027 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1028 llvm::GlobalValue *GV) { 1029 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1030 // Get the struct elements for these annotations. 1031 for (specific_attr_iterator<AnnotateAttr> 1032 ai = D->specific_attr_begin<AnnotateAttr>(), 1033 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1034 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1035 } 1036 1037 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1038 // Never defer when EmitAllDecls is specified. 1039 if (LangOpts.EmitAllDecls) 1040 return false; 1041 1042 return !getContext().DeclMustBeEmitted(Global); 1043 } 1044 1045 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1046 const CXXUuidofExpr* E) { 1047 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1048 // well-formed. 1049 StringRef Uuid = E->getUuidAsStringRef(Context); 1050 std::string Name = "_GUID_" + Uuid.lower(); 1051 std::replace(Name.begin(), Name.end(), '-', '_'); 1052 1053 // Look for an existing global. 1054 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1055 return GV; 1056 1057 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1058 assert(Init && "failed to initialize as constant"); 1059 1060 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1061 getModule(), Init->getType(), 1062 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, Init, Name); 1063 return GV; 1064 } 1065 1066 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1067 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1068 assert(AA && "No alias?"); 1069 1070 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1071 1072 // See if there is already something with the target's name in the module. 1073 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1074 if (Entry) { 1075 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1076 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1077 } 1078 1079 llvm::Constant *Aliasee; 1080 if (isa<llvm::FunctionType>(DeclTy)) 1081 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1082 GlobalDecl(cast<FunctionDecl>(VD)), 1083 /*ForVTable=*/false); 1084 else 1085 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1086 llvm::PointerType::getUnqual(DeclTy), 0); 1087 1088 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1089 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1090 WeakRefReferences.insert(F); 1091 1092 return Aliasee; 1093 } 1094 1095 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1096 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1097 1098 // Weak references don't produce any output by themselves. 1099 if (Global->hasAttr<WeakRefAttr>()) 1100 return; 1101 1102 // If this is an alias definition (which otherwise looks like a declaration) 1103 // emit it now. 1104 if (Global->hasAttr<AliasAttr>()) 1105 return EmitAliasDefinition(GD); 1106 1107 // If this is CUDA, be selective about which declarations we emit. 1108 if (LangOpts.CUDA) { 1109 if (CodeGenOpts.CUDAIsDevice) { 1110 if (!Global->hasAttr<CUDADeviceAttr>() && 1111 !Global->hasAttr<CUDAGlobalAttr>() && 1112 !Global->hasAttr<CUDAConstantAttr>() && 1113 !Global->hasAttr<CUDASharedAttr>()) 1114 return; 1115 } else { 1116 if (!Global->hasAttr<CUDAHostAttr>() && ( 1117 Global->hasAttr<CUDADeviceAttr>() || 1118 Global->hasAttr<CUDAConstantAttr>() || 1119 Global->hasAttr<CUDASharedAttr>())) 1120 return; 1121 } 1122 } 1123 1124 // Ignore declarations, they will be emitted on their first use. 1125 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1126 // Forward declarations are emitted lazily on first use. 1127 if (!FD->doesThisDeclarationHaveABody()) { 1128 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1129 return; 1130 1131 const FunctionDecl *InlineDefinition = 0; 1132 FD->getBody(InlineDefinition); 1133 1134 StringRef MangledName = getMangledName(GD); 1135 DeferredDecls.erase(MangledName); 1136 EmitGlobalDefinition(InlineDefinition); 1137 return; 1138 } 1139 } else { 1140 const VarDecl *VD = cast<VarDecl>(Global); 1141 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1142 1143 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1144 return; 1145 } 1146 1147 // Defer code generation when possible if this is a static definition, inline 1148 // function etc. These we only want to emit if they are used. 1149 if (!MayDeferGeneration(Global)) { 1150 // Emit the definition if it can't be deferred. 1151 EmitGlobalDefinition(GD); 1152 return; 1153 } 1154 1155 // If we're deferring emission of a C++ variable with an 1156 // initializer, remember the order in which it appeared in the file. 1157 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1158 cast<VarDecl>(Global)->hasInit()) { 1159 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1160 CXXGlobalInits.push_back(0); 1161 } 1162 1163 // If the value has already been used, add it directly to the 1164 // DeferredDeclsToEmit list. 1165 StringRef MangledName = getMangledName(GD); 1166 if (GetGlobalValue(MangledName)) 1167 DeferredDeclsToEmit.push_back(GD); 1168 else { 1169 // Otherwise, remember that we saw a deferred decl with this name. The 1170 // first use of the mangled name will cause it to move into 1171 // DeferredDeclsToEmit. 1172 DeferredDecls[MangledName] = GD; 1173 } 1174 } 1175 1176 namespace { 1177 struct FunctionIsDirectlyRecursive : 1178 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1179 const StringRef Name; 1180 const Builtin::Context &BI; 1181 bool Result; 1182 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1183 Name(N), BI(C), Result(false) { 1184 } 1185 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1186 1187 bool TraverseCallExpr(CallExpr *E) { 1188 const FunctionDecl *FD = E->getDirectCallee(); 1189 if (!FD) 1190 return true; 1191 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1192 if (Attr && Name == Attr->getLabel()) { 1193 Result = true; 1194 return false; 1195 } 1196 unsigned BuiltinID = FD->getBuiltinID(); 1197 if (!BuiltinID) 1198 return true; 1199 StringRef BuiltinName = BI.GetName(BuiltinID); 1200 if (BuiltinName.startswith("__builtin_") && 1201 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1202 Result = true; 1203 return false; 1204 } 1205 return true; 1206 } 1207 }; 1208 } 1209 1210 // isTriviallyRecursive - Check if this function calls another 1211 // decl that, because of the asm attribute or the other decl being a builtin, 1212 // ends up pointing to itself. 1213 bool 1214 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1215 StringRef Name; 1216 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1217 // asm labels are a special kind of mangling we have to support. 1218 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1219 if (!Attr) 1220 return false; 1221 Name = Attr->getLabel(); 1222 } else { 1223 Name = FD->getName(); 1224 } 1225 1226 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1227 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1228 return Walker.Result; 1229 } 1230 1231 bool 1232 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1233 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1234 return true; 1235 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1236 if (CodeGenOpts.OptimizationLevel == 0 && 1237 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1238 return false; 1239 // PR9614. Avoid cases where the source code is lying to us. An available 1240 // externally function should have an equivalent function somewhere else, 1241 // but a function that calls itself is clearly not equivalent to the real 1242 // implementation. 1243 // This happens in glibc's btowc and in some configure checks. 1244 return !isTriviallyRecursive(F); 1245 } 1246 1247 /// If the type for the method's class was generated by 1248 /// CGDebugInfo::createContextChain(), the cache contains only a 1249 /// limited DIType without any declarations. Since EmitFunctionStart() 1250 /// needs to find the canonical declaration for each method, we need 1251 /// to construct the complete type prior to emitting the method. 1252 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1253 if (!D->isInstance()) 1254 return; 1255 1256 if (CGDebugInfo *DI = getModuleDebugInfo()) 1257 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1258 const PointerType *ThisPtr = 1259 cast<PointerType>(D->getThisType(getContext())); 1260 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1261 } 1262 } 1263 1264 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1265 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1266 1267 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1268 Context.getSourceManager(), 1269 "Generating code for declaration"); 1270 1271 if (isa<FunctionDecl>(D)) { 1272 // At -O0, don't generate IR for functions with available_externally 1273 // linkage. 1274 if (!shouldEmitFunction(GD)) 1275 return; 1276 1277 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1278 CompleteDIClassType(Method); 1279 // Make sure to emit the definition(s) before we emit the thunks. 1280 // This is necessary for the generation of certain thunks. 1281 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1282 EmitCXXConstructor(CD, GD.getCtorType()); 1283 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1284 EmitCXXDestructor(DD, GD.getDtorType()); 1285 else 1286 EmitGlobalFunctionDefinition(GD); 1287 1288 if (Method->isVirtual()) 1289 getVTables().EmitThunks(GD); 1290 1291 return; 1292 } 1293 1294 return EmitGlobalFunctionDefinition(GD); 1295 } 1296 1297 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1298 return EmitGlobalVarDefinition(VD); 1299 1300 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1301 } 1302 1303 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1304 /// module, create and return an llvm Function with the specified type. If there 1305 /// is something in the module with the specified name, return it potentially 1306 /// bitcasted to the right type. 1307 /// 1308 /// If D is non-null, it specifies a decl that correspond to this. This is used 1309 /// to set the attributes on the function when it is first created. 1310 llvm::Constant * 1311 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1312 llvm::Type *Ty, 1313 GlobalDecl GD, bool ForVTable, 1314 llvm::AttributeSet ExtraAttrs) { 1315 const Decl *D = GD.getDecl(); 1316 1317 // Lookup the entry, lazily creating it if necessary. 1318 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1319 if (Entry) { 1320 if (WeakRefReferences.erase(Entry)) { 1321 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1322 if (FD && !FD->hasAttr<WeakAttr>()) 1323 Entry->setLinkage(llvm::Function::ExternalLinkage); 1324 } 1325 1326 if (Entry->getType()->getElementType() == Ty) 1327 return Entry; 1328 1329 // Make sure the result is of the correct type. 1330 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1331 } 1332 1333 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1334 // each other bottoming out with the base dtor. Therefore we emit non-base 1335 // dtors on usage, even if there is no dtor definition in the TU. 1336 if (D && isa<CXXDestructorDecl>(D) && 1337 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1338 GD.getDtorType())) 1339 DeferredDeclsToEmit.push_back(GD); 1340 1341 // This function doesn't have a complete type (for example, the return 1342 // type is an incomplete struct). Use a fake type instead, and make 1343 // sure not to try to set attributes. 1344 bool IsIncompleteFunction = false; 1345 1346 llvm::FunctionType *FTy; 1347 if (isa<llvm::FunctionType>(Ty)) { 1348 FTy = cast<llvm::FunctionType>(Ty); 1349 } else { 1350 FTy = llvm::FunctionType::get(VoidTy, false); 1351 IsIncompleteFunction = true; 1352 } 1353 1354 llvm::Function *F = llvm::Function::Create(FTy, 1355 llvm::Function::ExternalLinkage, 1356 MangledName, &getModule()); 1357 assert(F->getName() == MangledName && "name was uniqued!"); 1358 if (D) 1359 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1360 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1361 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1362 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1363 llvm::AttributeSet::get(VMContext, 1364 llvm::AttributeSet::FunctionIndex, 1365 B)); 1366 } 1367 1368 // This is the first use or definition of a mangled name. If there is a 1369 // deferred decl with this name, remember that we need to emit it at the end 1370 // of the file. 1371 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1372 if (DDI != DeferredDecls.end()) { 1373 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1374 // list, and remove it from DeferredDecls (since we don't need it anymore). 1375 DeferredDeclsToEmit.push_back(DDI->second); 1376 DeferredDecls.erase(DDI); 1377 1378 // Otherwise, there are cases we have to worry about where we're 1379 // using a declaration for which we must emit a definition but where 1380 // we might not find a top-level definition: 1381 // - member functions defined inline in their classes 1382 // - friend functions defined inline in some class 1383 // - special member functions with implicit definitions 1384 // If we ever change our AST traversal to walk into class methods, 1385 // this will be unnecessary. 1386 // 1387 // We also don't emit a definition for a function if it's going to be an entry 1388 // in a vtable, unless it's already marked as used. 1389 } else if (getLangOpts().CPlusPlus && D) { 1390 // Look for a declaration that's lexically in a record. 1391 const FunctionDecl *FD = cast<FunctionDecl>(D); 1392 FD = FD->getMostRecentDecl(); 1393 do { 1394 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1395 if (FD->isImplicit() && !ForVTable) { 1396 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1397 DeferredDeclsToEmit.push_back(GD.getWithDecl(FD)); 1398 break; 1399 } else if (FD->doesThisDeclarationHaveABody()) { 1400 DeferredDeclsToEmit.push_back(GD.getWithDecl(FD)); 1401 break; 1402 } 1403 } 1404 FD = FD->getPreviousDecl(); 1405 } while (FD); 1406 } 1407 1408 // Make sure the result is of the requested type. 1409 if (!IsIncompleteFunction) { 1410 assert(F->getType()->getElementType() == Ty); 1411 return F; 1412 } 1413 1414 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1415 return llvm::ConstantExpr::getBitCast(F, PTy); 1416 } 1417 1418 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1419 /// non-null, then this function will use the specified type if it has to 1420 /// create it (this occurs when we see a definition of the function). 1421 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1422 llvm::Type *Ty, 1423 bool ForVTable) { 1424 // If there was no specific requested type, just convert it now. 1425 if (!Ty) 1426 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1427 1428 StringRef MangledName = getMangledName(GD); 1429 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1430 } 1431 1432 /// CreateRuntimeFunction - Create a new runtime function with the specified 1433 /// type and name. 1434 llvm::Constant * 1435 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1436 StringRef Name, 1437 llvm::AttributeSet ExtraAttrs) { 1438 llvm::Constant *C 1439 = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1440 ExtraAttrs); 1441 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1442 if (F->empty()) 1443 F->setCallingConv(getRuntimeCC()); 1444 return C; 1445 } 1446 1447 /// isTypeConstant - Determine whether an object of this type can be emitted 1448 /// as a constant. 1449 /// 1450 /// If ExcludeCtor is true, the duration when the object's constructor runs 1451 /// will not be considered. The caller will need to verify that the object is 1452 /// not written to during its construction. 1453 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1454 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1455 return false; 1456 1457 if (Context.getLangOpts().CPlusPlus) { 1458 if (const CXXRecordDecl *Record 1459 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1460 return ExcludeCtor && !Record->hasMutableFields() && 1461 Record->hasTrivialDestructor(); 1462 } 1463 1464 return true; 1465 } 1466 1467 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1468 /// create and return an llvm GlobalVariable with the specified type. If there 1469 /// is something in the module with the specified name, return it potentially 1470 /// bitcasted to the right type. 1471 /// 1472 /// If D is non-null, it specifies a decl that correspond to this. This is used 1473 /// to set the attributes on the global when it is first created. 1474 llvm::Constant * 1475 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1476 llvm::PointerType *Ty, 1477 const VarDecl *D, 1478 bool UnnamedAddr) { 1479 // Lookup the entry, lazily creating it if necessary. 1480 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1481 if (Entry) { 1482 if (WeakRefReferences.erase(Entry)) { 1483 if (D && !D->hasAttr<WeakAttr>()) 1484 Entry->setLinkage(llvm::Function::ExternalLinkage); 1485 } 1486 1487 if (UnnamedAddr) 1488 Entry->setUnnamedAddr(true); 1489 1490 if (Entry->getType() == Ty) 1491 return Entry; 1492 1493 // Make sure the result is of the correct type. 1494 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1495 } 1496 1497 // This is the first use or definition of a mangled name. If there is a 1498 // deferred decl with this name, remember that we need to emit it at the end 1499 // of the file. 1500 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1501 if (DDI != DeferredDecls.end()) { 1502 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1503 // list, and remove it from DeferredDecls (since we don't need it anymore). 1504 DeferredDeclsToEmit.push_back(DDI->second); 1505 DeferredDecls.erase(DDI); 1506 } 1507 1508 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1509 llvm::GlobalVariable *GV = 1510 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1511 llvm::GlobalValue::ExternalLinkage, 1512 0, MangledName, 0, 1513 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1514 1515 // Handle things which are present even on external declarations. 1516 if (D) { 1517 // FIXME: This code is overly simple and should be merged with other global 1518 // handling. 1519 GV->setConstant(isTypeConstant(D->getType(), false)); 1520 1521 // Set linkage and visibility in case we never see a definition. 1522 LinkageInfo LV = D->getLinkageAndVisibility(); 1523 if (LV.getLinkage() != ExternalLinkage) { 1524 // Don't set internal linkage on declarations. 1525 } else { 1526 if (D->hasAttr<DLLImportAttr>()) 1527 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1528 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1529 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1530 1531 // Set visibility on a declaration only if it's explicit. 1532 if (LV.isVisibilityExplicit()) 1533 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1534 } 1535 1536 if (D->getTLSKind()) { 1537 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1538 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1539 setTLSMode(GV, *D); 1540 } 1541 } 1542 1543 if (AddrSpace != Ty->getAddressSpace()) 1544 return llvm::ConstantExpr::getBitCast(GV, Ty); 1545 else 1546 return GV; 1547 } 1548 1549 1550 llvm::GlobalVariable * 1551 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1552 llvm::Type *Ty, 1553 llvm::GlobalValue::LinkageTypes Linkage) { 1554 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1555 llvm::GlobalVariable *OldGV = 0; 1556 1557 1558 if (GV) { 1559 // Check if the variable has the right type. 1560 if (GV->getType()->getElementType() == Ty) 1561 return GV; 1562 1563 // Because C++ name mangling, the only way we can end up with an already 1564 // existing global with the same name is if it has been declared extern "C". 1565 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1566 OldGV = GV; 1567 } 1568 1569 // Create a new variable. 1570 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1571 Linkage, 0, Name); 1572 1573 if (OldGV) { 1574 // Replace occurrences of the old variable if needed. 1575 GV->takeName(OldGV); 1576 1577 if (!OldGV->use_empty()) { 1578 llvm::Constant *NewPtrForOldDecl = 1579 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1580 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1581 } 1582 1583 OldGV->eraseFromParent(); 1584 } 1585 1586 return GV; 1587 } 1588 1589 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1590 /// given global variable. If Ty is non-null and if the global doesn't exist, 1591 /// then it will be created with the specified type instead of whatever the 1592 /// normal requested type would be. 1593 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1594 llvm::Type *Ty) { 1595 assert(D->hasGlobalStorage() && "Not a global variable"); 1596 QualType ASTTy = D->getType(); 1597 if (Ty == 0) 1598 Ty = getTypes().ConvertTypeForMem(ASTTy); 1599 1600 llvm::PointerType *PTy = 1601 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1602 1603 StringRef MangledName = getMangledName(D); 1604 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1605 } 1606 1607 /// CreateRuntimeVariable - Create a new runtime global variable with the 1608 /// specified type and name. 1609 llvm::Constant * 1610 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1611 StringRef Name) { 1612 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1613 true); 1614 } 1615 1616 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1617 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1618 1619 if (MayDeferGeneration(D)) { 1620 // If we have not seen a reference to this variable yet, place it 1621 // into the deferred declarations table to be emitted if needed 1622 // later. 1623 StringRef MangledName = getMangledName(D); 1624 if (!GetGlobalValue(MangledName)) { 1625 DeferredDecls[MangledName] = D; 1626 return; 1627 } 1628 } 1629 1630 // The tentative definition is the only definition. 1631 EmitGlobalVarDefinition(D); 1632 } 1633 1634 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1635 return Context.toCharUnitsFromBits( 1636 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1637 } 1638 1639 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1640 unsigned AddrSpace) { 1641 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1642 if (D->hasAttr<CUDAConstantAttr>()) 1643 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1644 else if (D->hasAttr<CUDASharedAttr>()) 1645 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1646 else 1647 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1648 } 1649 1650 return AddrSpace; 1651 } 1652 1653 template<typename SomeDecl> 1654 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1655 llvm::GlobalValue *GV) { 1656 if (!getLangOpts().CPlusPlus) 1657 return; 1658 1659 // Must have 'used' attribute, or else inline assembly can't rely on 1660 // the name existing. 1661 if (!D->template hasAttr<UsedAttr>()) 1662 return; 1663 1664 // Must have internal linkage and an ordinary name. 1665 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1666 return; 1667 1668 // Must be in an extern "C" context. Entities declared directly within 1669 // a record are not extern "C" even if the record is in such a context. 1670 const SomeDecl *First = D->getFirstDeclaration(); 1671 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1672 return; 1673 1674 // OK, this is an internal linkage entity inside an extern "C" linkage 1675 // specification. Make a note of that so we can give it the "expected" 1676 // mangled name if nothing else is using that name. 1677 std::pair<StaticExternCMap::iterator, bool> R = 1678 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1679 1680 // If we have multiple internal linkage entities with the same name 1681 // in extern "C" regions, none of them gets that name. 1682 if (!R.second) 1683 R.first->second = 0; 1684 } 1685 1686 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1687 llvm::Constant *Init = 0; 1688 QualType ASTTy = D->getType(); 1689 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1690 bool NeedsGlobalCtor = false; 1691 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1692 1693 const VarDecl *InitDecl; 1694 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1695 1696 if (!InitExpr) { 1697 // This is a tentative definition; tentative definitions are 1698 // implicitly initialized with { 0 }. 1699 // 1700 // Note that tentative definitions are only emitted at the end of 1701 // a translation unit, so they should never have incomplete 1702 // type. In addition, EmitTentativeDefinition makes sure that we 1703 // never attempt to emit a tentative definition if a real one 1704 // exists. A use may still exists, however, so we still may need 1705 // to do a RAUW. 1706 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1707 Init = EmitNullConstant(D->getType()); 1708 } else { 1709 initializedGlobalDecl = GlobalDecl(D); 1710 Init = EmitConstantInit(*InitDecl); 1711 1712 if (!Init) { 1713 QualType T = InitExpr->getType(); 1714 if (D->getType()->isReferenceType()) 1715 T = D->getType(); 1716 1717 if (getLangOpts().CPlusPlus) { 1718 Init = EmitNullConstant(T); 1719 NeedsGlobalCtor = true; 1720 } else { 1721 ErrorUnsupported(D, "static initializer"); 1722 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1723 } 1724 } else { 1725 // We don't need an initializer, so remove the entry for the delayed 1726 // initializer position (just in case this entry was delayed) if we 1727 // also don't need to register a destructor. 1728 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1729 DelayedCXXInitPosition.erase(D); 1730 } 1731 } 1732 1733 llvm::Type* InitType = Init->getType(); 1734 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1735 1736 // Strip off a bitcast if we got one back. 1737 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1738 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1739 // all zero index gep. 1740 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1741 Entry = CE->getOperand(0); 1742 } 1743 1744 // Entry is now either a Function or GlobalVariable. 1745 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1746 1747 // We have a definition after a declaration with the wrong type. 1748 // We must make a new GlobalVariable* and update everything that used OldGV 1749 // (a declaration or tentative definition) with the new GlobalVariable* 1750 // (which will be a definition). 1751 // 1752 // This happens if there is a prototype for a global (e.g. 1753 // "extern int x[];") and then a definition of a different type (e.g. 1754 // "int x[10];"). This also happens when an initializer has a different type 1755 // from the type of the global (this happens with unions). 1756 if (GV == 0 || 1757 GV->getType()->getElementType() != InitType || 1758 GV->getType()->getAddressSpace() != 1759 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1760 1761 // Move the old entry aside so that we'll create a new one. 1762 Entry->setName(StringRef()); 1763 1764 // Make a new global with the correct type, this is now guaranteed to work. 1765 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1766 1767 // Replace all uses of the old global with the new global 1768 llvm::Constant *NewPtrForOldDecl = 1769 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1770 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1771 1772 // Erase the old global, since it is no longer used. 1773 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1774 } 1775 1776 MaybeHandleStaticInExternC(D, GV); 1777 1778 if (D->hasAttr<AnnotateAttr>()) 1779 AddGlobalAnnotations(D, GV); 1780 1781 GV->setInitializer(Init); 1782 1783 // If it is safe to mark the global 'constant', do so now. 1784 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1785 isTypeConstant(D->getType(), true)); 1786 1787 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1788 1789 // Set the llvm linkage type as appropriate. 1790 llvm::GlobalValue::LinkageTypes Linkage = 1791 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1792 GV->setLinkage(Linkage); 1793 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1794 // common vars aren't constant even if declared const. 1795 GV->setConstant(false); 1796 1797 SetCommonAttributes(D, GV); 1798 1799 // Emit the initializer function if necessary. 1800 if (NeedsGlobalCtor || NeedsGlobalDtor) 1801 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1802 1803 // If we are compiling with ASan, add metadata indicating dynamically 1804 // initialized globals. 1805 if (SanOpts.Address && NeedsGlobalCtor) { 1806 llvm::Module &M = getModule(); 1807 1808 llvm::NamedMDNode *DynamicInitializers = 1809 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1810 llvm::Value *GlobalToAdd[] = { GV }; 1811 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1812 DynamicInitializers->addOperand(ThisGlobal); 1813 } 1814 1815 // Emit global variable debug information. 1816 if (CGDebugInfo *DI = getModuleDebugInfo()) 1817 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1818 DI->EmitGlobalVariable(GV, D); 1819 } 1820 1821 llvm::GlobalValue::LinkageTypes 1822 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1823 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1824 if (Linkage == GVA_Internal) 1825 return llvm::Function::InternalLinkage; 1826 else if (D->hasAttr<DLLImportAttr>()) 1827 return llvm::Function::DLLImportLinkage; 1828 else if (D->hasAttr<DLLExportAttr>()) 1829 return llvm::Function::DLLExportLinkage; 1830 else if (D->hasAttr<SelectAnyAttr>()) { 1831 // selectany symbols are externally visible, so use weak instead of 1832 // linkonce. MSVC optimizes away references to const selectany globals, so 1833 // all definitions should be the same and ODR linkage should be used. 1834 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1835 return llvm::GlobalVariable::WeakODRLinkage; 1836 } else if (D->hasAttr<WeakAttr>()) { 1837 if (isConstant) 1838 return llvm::GlobalVariable::WeakODRLinkage; 1839 else 1840 return llvm::GlobalVariable::WeakAnyLinkage; 1841 } else if (Linkage == GVA_TemplateInstantiation || 1842 Linkage == GVA_ExplicitTemplateInstantiation) 1843 return llvm::GlobalVariable::WeakODRLinkage; 1844 else if (!getLangOpts().CPlusPlus && 1845 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1846 D->getAttr<CommonAttr>()) && 1847 !D->hasExternalStorage() && !D->getInit() && 1848 !D->getAttr<SectionAttr>() && !D->getTLSKind() && 1849 !D->getAttr<WeakImportAttr>()) { 1850 // Thread local vars aren't considered common linkage. 1851 return llvm::GlobalVariable::CommonLinkage; 1852 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1853 getTarget().getTriple().isMacOSX()) 1854 // On Darwin, the backing variable for a C++11 thread_local variable always 1855 // has internal linkage; all accesses should just be calls to the 1856 // Itanium-specified entry point, which has the normal linkage of the 1857 // variable. 1858 return llvm::GlobalValue::InternalLinkage; 1859 return llvm::GlobalVariable::ExternalLinkage; 1860 } 1861 1862 /// Replace the uses of a function that was declared with a non-proto type. 1863 /// We want to silently drop extra arguments from call sites 1864 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1865 llvm::Function *newFn) { 1866 // Fast path. 1867 if (old->use_empty()) return; 1868 1869 llvm::Type *newRetTy = newFn->getReturnType(); 1870 SmallVector<llvm::Value*, 4> newArgs; 1871 1872 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1873 ui != ue; ) { 1874 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1875 llvm::User *user = *use; 1876 1877 // Recognize and replace uses of bitcasts. Most calls to 1878 // unprototyped functions will use bitcasts. 1879 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1880 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1881 replaceUsesOfNonProtoConstant(bitcast, newFn); 1882 continue; 1883 } 1884 1885 // Recognize calls to the function. 1886 llvm::CallSite callSite(user); 1887 if (!callSite) continue; 1888 if (!callSite.isCallee(use)) continue; 1889 1890 // If the return types don't match exactly, then we can't 1891 // transform this call unless it's dead. 1892 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1893 continue; 1894 1895 // Get the call site's attribute list. 1896 SmallVector<llvm::AttributeSet, 8> newAttrs; 1897 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1898 1899 // Collect any return attributes from the call. 1900 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1901 newAttrs.push_back( 1902 llvm::AttributeSet::get(newFn->getContext(), 1903 oldAttrs.getRetAttributes())); 1904 1905 // If the function was passed too few arguments, don't transform. 1906 unsigned newNumArgs = newFn->arg_size(); 1907 if (callSite.arg_size() < newNumArgs) continue; 1908 1909 // If extra arguments were passed, we silently drop them. 1910 // If any of the types mismatch, we don't transform. 1911 unsigned argNo = 0; 1912 bool dontTransform = false; 1913 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1914 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1915 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1916 dontTransform = true; 1917 break; 1918 } 1919 1920 // Add any parameter attributes. 1921 if (oldAttrs.hasAttributes(argNo + 1)) 1922 newAttrs. 1923 push_back(llvm:: 1924 AttributeSet::get(newFn->getContext(), 1925 oldAttrs.getParamAttributes(argNo + 1))); 1926 } 1927 if (dontTransform) 1928 continue; 1929 1930 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 1931 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 1932 oldAttrs.getFnAttributes())); 1933 1934 // Okay, we can transform this. Create the new call instruction and copy 1935 // over the required information. 1936 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1937 1938 llvm::CallSite newCall; 1939 if (callSite.isCall()) { 1940 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1941 callSite.getInstruction()); 1942 } else { 1943 llvm::InvokeInst *oldInvoke = 1944 cast<llvm::InvokeInst>(callSite.getInstruction()); 1945 newCall = llvm::InvokeInst::Create(newFn, 1946 oldInvoke->getNormalDest(), 1947 oldInvoke->getUnwindDest(), 1948 newArgs, "", 1949 callSite.getInstruction()); 1950 } 1951 newArgs.clear(); // for the next iteration 1952 1953 if (!newCall->getType()->isVoidTy()) 1954 newCall->takeName(callSite.getInstruction()); 1955 newCall.setAttributes( 1956 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 1957 newCall.setCallingConv(callSite.getCallingConv()); 1958 1959 // Finally, remove the old call, replacing any uses with the new one. 1960 if (!callSite->use_empty()) 1961 callSite->replaceAllUsesWith(newCall.getInstruction()); 1962 1963 // Copy debug location attached to CI. 1964 if (!callSite->getDebugLoc().isUnknown()) 1965 newCall->setDebugLoc(callSite->getDebugLoc()); 1966 callSite->eraseFromParent(); 1967 } 1968 } 1969 1970 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1971 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1972 /// existing call uses of the old function in the module, this adjusts them to 1973 /// call the new function directly. 1974 /// 1975 /// This is not just a cleanup: the always_inline pass requires direct calls to 1976 /// functions to be able to inline them. If there is a bitcast in the way, it 1977 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1978 /// run at -O0. 1979 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1980 llvm::Function *NewFn) { 1981 // If we're redefining a global as a function, don't transform it. 1982 if (!isa<llvm::Function>(Old)) return; 1983 1984 replaceUsesOfNonProtoConstant(Old, NewFn); 1985 } 1986 1987 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1988 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1989 // If we have a definition, this might be a deferred decl. If the 1990 // instantiation is explicit, make sure we emit it at the end. 1991 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1992 GetAddrOfGlobalVar(VD); 1993 1994 EmitTopLevelDecl(VD); 1995 } 1996 1997 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1998 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1999 2000 // Compute the function info and LLVM type. 2001 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2002 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2003 2004 // Get or create the prototype for the function. 2005 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 2006 2007 // Strip off a bitcast if we got one back. 2008 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2009 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2010 Entry = CE->getOperand(0); 2011 } 2012 2013 2014 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2015 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2016 2017 // If the types mismatch then we have to rewrite the definition. 2018 assert(OldFn->isDeclaration() && 2019 "Shouldn't replace non-declaration"); 2020 2021 // F is the Function* for the one with the wrong type, we must make a new 2022 // Function* and update everything that used F (a declaration) with the new 2023 // Function* (which will be a definition). 2024 // 2025 // This happens if there is a prototype for a function 2026 // (e.g. "int f()") and then a definition of a different type 2027 // (e.g. "int f(int x)"). Move the old function aside so that it 2028 // doesn't interfere with GetAddrOfFunction. 2029 OldFn->setName(StringRef()); 2030 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2031 2032 // This might be an implementation of a function without a 2033 // prototype, in which case, try to do special replacement of 2034 // calls which match the new prototype. The really key thing here 2035 // is that we also potentially drop arguments from the call site 2036 // so as to make a direct call, which makes the inliner happier 2037 // and suppresses a number of optimizer warnings (!) about 2038 // dropping arguments. 2039 if (!OldFn->use_empty()) { 2040 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2041 OldFn->removeDeadConstantUsers(); 2042 } 2043 2044 // Replace uses of F with the Function we will endow with a body. 2045 if (!Entry->use_empty()) { 2046 llvm::Constant *NewPtrForOldDecl = 2047 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2048 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2049 } 2050 2051 // Ok, delete the old function now, which is dead. 2052 OldFn->eraseFromParent(); 2053 2054 Entry = NewFn; 2055 } 2056 2057 // We need to set linkage and visibility on the function before 2058 // generating code for it because various parts of IR generation 2059 // want to propagate this information down (e.g. to local static 2060 // declarations). 2061 llvm::Function *Fn = cast<llvm::Function>(Entry); 2062 setFunctionLinkage(GD, Fn); 2063 2064 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2065 setGlobalVisibility(Fn, D); 2066 2067 MaybeHandleStaticInExternC(D, Fn); 2068 2069 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2070 2071 SetFunctionDefinitionAttributes(D, Fn); 2072 SetLLVMFunctionAttributesForDefinition(D, Fn); 2073 2074 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2075 AddGlobalCtor(Fn, CA->getPriority()); 2076 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2077 AddGlobalDtor(Fn, DA->getPriority()); 2078 if (D->hasAttr<AnnotateAttr>()) 2079 AddGlobalAnnotations(D, Fn); 2080 } 2081 2082 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2083 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2084 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2085 assert(AA && "Not an alias?"); 2086 2087 StringRef MangledName = getMangledName(GD); 2088 2089 // If there is a definition in the module, then it wins over the alias. 2090 // This is dubious, but allow it to be safe. Just ignore the alias. 2091 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2092 if (Entry && !Entry->isDeclaration()) 2093 return; 2094 2095 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2096 2097 // Create a reference to the named value. This ensures that it is emitted 2098 // if a deferred decl. 2099 llvm::Constant *Aliasee; 2100 if (isa<llvm::FunctionType>(DeclTy)) 2101 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2102 /*ForVTable=*/false); 2103 else 2104 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2105 llvm::PointerType::getUnqual(DeclTy), 0); 2106 2107 // Create the new alias itself, but don't set a name yet. 2108 llvm::GlobalValue *GA = 2109 new llvm::GlobalAlias(Aliasee->getType(), 2110 llvm::Function::ExternalLinkage, 2111 "", Aliasee, &getModule()); 2112 2113 if (Entry) { 2114 assert(Entry->isDeclaration()); 2115 2116 // If there is a declaration in the module, then we had an extern followed 2117 // by the alias, as in: 2118 // extern int test6(); 2119 // ... 2120 // int test6() __attribute__((alias("test7"))); 2121 // 2122 // Remove it and replace uses of it with the alias. 2123 GA->takeName(Entry); 2124 2125 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2126 Entry->getType())); 2127 Entry->eraseFromParent(); 2128 } else { 2129 GA->setName(MangledName); 2130 } 2131 2132 // Set attributes which are particular to an alias; this is a 2133 // specialization of the attributes which may be set on a global 2134 // variable/function. 2135 if (D->hasAttr<DLLExportAttr>()) { 2136 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2137 // The dllexport attribute is ignored for undefined symbols. 2138 if (FD->hasBody()) 2139 GA->setLinkage(llvm::Function::DLLExportLinkage); 2140 } else { 2141 GA->setLinkage(llvm::Function::DLLExportLinkage); 2142 } 2143 } else if (D->hasAttr<WeakAttr>() || 2144 D->hasAttr<WeakRefAttr>() || 2145 D->isWeakImported()) { 2146 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2147 } 2148 2149 SetCommonAttributes(D, GA); 2150 } 2151 2152 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2153 ArrayRef<llvm::Type*> Tys) { 2154 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2155 Tys); 2156 } 2157 2158 static llvm::StringMapEntry<llvm::Constant*> & 2159 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2160 const StringLiteral *Literal, 2161 bool TargetIsLSB, 2162 bool &IsUTF16, 2163 unsigned &StringLength) { 2164 StringRef String = Literal->getString(); 2165 unsigned NumBytes = String.size(); 2166 2167 // Check for simple case. 2168 if (!Literal->containsNonAsciiOrNull()) { 2169 StringLength = NumBytes; 2170 return Map.GetOrCreateValue(String); 2171 } 2172 2173 // Otherwise, convert the UTF8 literals into a string of shorts. 2174 IsUTF16 = true; 2175 2176 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2177 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2178 UTF16 *ToPtr = &ToBuf[0]; 2179 2180 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2181 &ToPtr, ToPtr + NumBytes, 2182 strictConversion); 2183 2184 // ConvertUTF8toUTF16 returns the length in ToPtr. 2185 StringLength = ToPtr - &ToBuf[0]; 2186 2187 // Add an explicit null. 2188 *ToPtr = 0; 2189 return Map. 2190 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2191 (StringLength + 1) * 2)); 2192 } 2193 2194 static llvm::StringMapEntry<llvm::Constant*> & 2195 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2196 const StringLiteral *Literal, 2197 unsigned &StringLength) { 2198 StringRef String = Literal->getString(); 2199 StringLength = String.size(); 2200 return Map.GetOrCreateValue(String); 2201 } 2202 2203 llvm::Constant * 2204 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2205 unsigned StringLength = 0; 2206 bool isUTF16 = false; 2207 llvm::StringMapEntry<llvm::Constant*> &Entry = 2208 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2209 getDataLayout().isLittleEndian(), 2210 isUTF16, StringLength); 2211 2212 if (llvm::Constant *C = Entry.getValue()) 2213 return C; 2214 2215 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2216 llvm::Constant *Zeros[] = { Zero, Zero }; 2217 llvm::Value *V; 2218 2219 // If we don't already have it, get __CFConstantStringClassReference. 2220 if (!CFConstantStringClassRef) { 2221 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2222 Ty = llvm::ArrayType::get(Ty, 0); 2223 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2224 "__CFConstantStringClassReference"); 2225 // Decay array -> ptr 2226 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2227 CFConstantStringClassRef = V; 2228 } 2229 else 2230 V = CFConstantStringClassRef; 2231 2232 QualType CFTy = getContext().getCFConstantStringType(); 2233 2234 llvm::StructType *STy = 2235 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2236 2237 llvm::Constant *Fields[4]; 2238 2239 // Class pointer. 2240 Fields[0] = cast<llvm::ConstantExpr>(V); 2241 2242 // Flags. 2243 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2244 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2245 llvm::ConstantInt::get(Ty, 0x07C8); 2246 2247 // String pointer. 2248 llvm::Constant *C = 0; 2249 if (isUTF16) { 2250 ArrayRef<uint16_t> Arr = 2251 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2252 const_cast<char *>(Entry.getKey().data())), 2253 Entry.getKey().size() / 2); 2254 C = llvm::ConstantDataArray::get(VMContext, Arr); 2255 } else { 2256 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2257 } 2258 2259 llvm::GlobalValue::LinkageTypes Linkage; 2260 if (isUTF16) 2261 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2262 Linkage = llvm::GlobalValue::InternalLinkage; 2263 else 2264 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2265 // when using private linkage. It is not clear if this is a bug in ld 2266 // or a reasonable new restriction. 2267 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2268 2269 // Note: -fwritable-strings doesn't make the backing store strings of 2270 // CFStrings writable. (See <rdar://problem/10657500>) 2271 llvm::GlobalVariable *GV = 2272 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2273 Linkage, C, ".str"); 2274 GV->setUnnamedAddr(true); 2275 // Don't enforce the target's minimum global alignment, since the only use 2276 // of the string is via this class initializer. 2277 if (isUTF16) { 2278 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2279 GV->setAlignment(Align.getQuantity()); 2280 } else { 2281 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2282 GV->setAlignment(Align.getQuantity()); 2283 } 2284 2285 // String. 2286 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2287 2288 if (isUTF16) 2289 // Cast the UTF16 string to the correct type. 2290 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2291 2292 // String length. 2293 Ty = getTypes().ConvertType(getContext().LongTy); 2294 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2295 2296 // The struct. 2297 C = llvm::ConstantStruct::get(STy, Fields); 2298 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2299 llvm::GlobalVariable::PrivateLinkage, C, 2300 "_unnamed_cfstring_"); 2301 if (const char *Sect = getTarget().getCFStringSection()) 2302 GV->setSection(Sect); 2303 Entry.setValue(GV); 2304 2305 return GV; 2306 } 2307 2308 static RecordDecl * 2309 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2310 DeclContext *DC, IdentifierInfo *Id) { 2311 SourceLocation Loc; 2312 if (Ctx.getLangOpts().CPlusPlus) 2313 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2314 else 2315 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2316 } 2317 2318 llvm::Constant * 2319 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2320 unsigned StringLength = 0; 2321 llvm::StringMapEntry<llvm::Constant*> &Entry = 2322 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2323 2324 if (llvm::Constant *C = Entry.getValue()) 2325 return C; 2326 2327 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2328 llvm::Constant *Zeros[] = { Zero, Zero }; 2329 llvm::Value *V; 2330 // If we don't already have it, get _NSConstantStringClassReference. 2331 if (!ConstantStringClassRef) { 2332 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2333 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2334 llvm::Constant *GV; 2335 if (LangOpts.ObjCRuntime.isNonFragile()) { 2336 std::string str = 2337 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2338 : "OBJC_CLASS_$_" + StringClass; 2339 GV = getObjCRuntime().GetClassGlobal(str); 2340 // Make sure the result is of the correct type. 2341 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2342 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2343 ConstantStringClassRef = V; 2344 } else { 2345 std::string str = 2346 StringClass.empty() ? "_NSConstantStringClassReference" 2347 : "_" + StringClass + "ClassReference"; 2348 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2349 GV = CreateRuntimeVariable(PTy, str); 2350 // Decay array -> ptr 2351 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2352 ConstantStringClassRef = V; 2353 } 2354 } 2355 else 2356 V = ConstantStringClassRef; 2357 2358 if (!NSConstantStringType) { 2359 // Construct the type for a constant NSString. 2360 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2361 Context.getTranslationUnitDecl(), 2362 &Context.Idents.get("__builtin_NSString")); 2363 D->startDefinition(); 2364 2365 QualType FieldTypes[3]; 2366 2367 // const int *isa; 2368 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2369 // const char *str; 2370 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2371 // unsigned int length; 2372 FieldTypes[2] = Context.UnsignedIntTy; 2373 2374 // Create fields 2375 for (unsigned i = 0; i < 3; ++i) { 2376 FieldDecl *Field = FieldDecl::Create(Context, D, 2377 SourceLocation(), 2378 SourceLocation(), 0, 2379 FieldTypes[i], /*TInfo=*/0, 2380 /*BitWidth=*/0, 2381 /*Mutable=*/false, 2382 ICIS_NoInit); 2383 Field->setAccess(AS_public); 2384 D->addDecl(Field); 2385 } 2386 2387 D->completeDefinition(); 2388 QualType NSTy = Context.getTagDeclType(D); 2389 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2390 } 2391 2392 llvm::Constant *Fields[3]; 2393 2394 // Class pointer. 2395 Fields[0] = cast<llvm::ConstantExpr>(V); 2396 2397 // String pointer. 2398 llvm::Constant *C = 2399 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2400 2401 llvm::GlobalValue::LinkageTypes Linkage; 2402 bool isConstant; 2403 Linkage = llvm::GlobalValue::PrivateLinkage; 2404 isConstant = !LangOpts.WritableStrings; 2405 2406 llvm::GlobalVariable *GV = 2407 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2408 ".str"); 2409 GV->setUnnamedAddr(true); 2410 // Don't enforce the target's minimum global alignment, since the only use 2411 // of the string is via this class initializer. 2412 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2413 GV->setAlignment(Align.getQuantity()); 2414 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2415 2416 // String length. 2417 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2418 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2419 2420 // The struct. 2421 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2422 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2423 llvm::GlobalVariable::PrivateLinkage, C, 2424 "_unnamed_nsstring_"); 2425 // FIXME. Fix section. 2426 if (const char *Sect = 2427 LangOpts.ObjCRuntime.isNonFragile() 2428 ? getTarget().getNSStringNonFragileABISection() 2429 : getTarget().getNSStringSection()) 2430 GV->setSection(Sect); 2431 Entry.setValue(GV); 2432 2433 return GV; 2434 } 2435 2436 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2437 if (ObjCFastEnumerationStateType.isNull()) { 2438 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2439 Context.getTranslationUnitDecl(), 2440 &Context.Idents.get("__objcFastEnumerationState")); 2441 D->startDefinition(); 2442 2443 QualType FieldTypes[] = { 2444 Context.UnsignedLongTy, 2445 Context.getPointerType(Context.getObjCIdType()), 2446 Context.getPointerType(Context.UnsignedLongTy), 2447 Context.getConstantArrayType(Context.UnsignedLongTy, 2448 llvm::APInt(32, 5), ArrayType::Normal, 0) 2449 }; 2450 2451 for (size_t i = 0; i < 4; ++i) { 2452 FieldDecl *Field = FieldDecl::Create(Context, 2453 D, 2454 SourceLocation(), 2455 SourceLocation(), 0, 2456 FieldTypes[i], /*TInfo=*/0, 2457 /*BitWidth=*/0, 2458 /*Mutable=*/false, 2459 ICIS_NoInit); 2460 Field->setAccess(AS_public); 2461 D->addDecl(Field); 2462 } 2463 2464 D->completeDefinition(); 2465 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2466 } 2467 2468 return ObjCFastEnumerationStateType; 2469 } 2470 2471 llvm::Constant * 2472 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2473 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2474 2475 // Don't emit it as the address of the string, emit the string data itself 2476 // as an inline array. 2477 if (E->getCharByteWidth() == 1) { 2478 SmallString<64> Str(E->getString()); 2479 2480 // Resize the string to the right size, which is indicated by its type. 2481 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2482 Str.resize(CAT->getSize().getZExtValue()); 2483 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2484 } 2485 2486 llvm::ArrayType *AType = 2487 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2488 llvm::Type *ElemTy = AType->getElementType(); 2489 unsigned NumElements = AType->getNumElements(); 2490 2491 // Wide strings have either 2-byte or 4-byte elements. 2492 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2493 SmallVector<uint16_t, 32> Elements; 2494 Elements.reserve(NumElements); 2495 2496 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2497 Elements.push_back(E->getCodeUnit(i)); 2498 Elements.resize(NumElements); 2499 return llvm::ConstantDataArray::get(VMContext, Elements); 2500 } 2501 2502 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2503 SmallVector<uint32_t, 32> Elements; 2504 Elements.reserve(NumElements); 2505 2506 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2507 Elements.push_back(E->getCodeUnit(i)); 2508 Elements.resize(NumElements); 2509 return llvm::ConstantDataArray::get(VMContext, Elements); 2510 } 2511 2512 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2513 /// constant array for the given string literal. 2514 llvm::Constant * 2515 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2516 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2517 if (S->isAscii() || S->isUTF8()) { 2518 SmallString<64> Str(S->getString()); 2519 2520 // Resize the string to the right size, which is indicated by its type. 2521 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2522 Str.resize(CAT->getSize().getZExtValue()); 2523 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2524 } 2525 2526 // FIXME: the following does not memoize wide strings. 2527 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2528 llvm::GlobalVariable *GV = 2529 new llvm::GlobalVariable(getModule(),C->getType(), 2530 !LangOpts.WritableStrings, 2531 llvm::GlobalValue::PrivateLinkage, 2532 C,".str"); 2533 2534 GV->setAlignment(Align.getQuantity()); 2535 GV->setUnnamedAddr(true); 2536 return GV; 2537 } 2538 2539 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2540 /// array for the given ObjCEncodeExpr node. 2541 llvm::Constant * 2542 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2543 std::string Str; 2544 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2545 2546 return GetAddrOfConstantCString(Str); 2547 } 2548 2549 2550 /// GenerateWritableString -- Creates storage for a string literal. 2551 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2552 bool constant, 2553 CodeGenModule &CGM, 2554 const char *GlobalName, 2555 unsigned Alignment) { 2556 // Create Constant for this string literal. Don't add a '\0'. 2557 llvm::Constant *C = 2558 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2559 2560 // Create a global variable for this string 2561 llvm::GlobalVariable *GV = 2562 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2563 llvm::GlobalValue::PrivateLinkage, 2564 C, GlobalName); 2565 GV->setAlignment(Alignment); 2566 GV->setUnnamedAddr(true); 2567 return GV; 2568 } 2569 2570 /// GetAddrOfConstantString - Returns a pointer to a character array 2571 /// containing the literal. This contents are exactly that of the 2572 /// given string, i.e. it will not be null terminated automatically; 2573 /// see GetAddrOfConstantCString. Note that whether the result is 2574 /// actually a pointer to an LLVM constant depends on 2575 /// Feature.WriteableStrings. 2576 /// 2577 /// The result has pointer to array type. 2578 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2579 const char *GlobalName, 2580 unsigned Alignment) { 2581 // Get the default prefix if a name wasn't specified. 2582 if (!GlobalName) 2583 GlobalName = ".str"; 2584 2585 if (Alignment == 0) 2586 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2587 .getQuantity(); 2588 2589 // Don't share any string literals if strings aren't constant. 2590 if (LangOpts.WritableStrings) 2591 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2592 2593 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2594 ConstantStringMap.GetOrCreateValue(Str); 2595 2596 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2597 if (Alignment > GV->getAlignment()) { 2598 GV->setAlignment(Alignment); 2599 } 2600 return GV; 2601 } 2602 2603 // Create a global variable for this. 2604 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2605 Alignment); 2606 Entry.setValue(GV); 2607 return GV; 2608 } 2609 2610 /// GetAddrOfConstantCString - Returns a pointer to a character 2611 /// array containing the literal and a terminating '\0' 2612 /// character. The result has pointer to array type. 2613 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2614 const char *GlobalName, 2615 unsigned Alignment) { 2616 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2617 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2618 } 2619 2620 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2621 const MaterializeTemporaryExpr *E, const Expr *Init) { 2622 assert((E->getStorageDuration() == SD_Static || 2623 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2624 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2625 2626 // If we're not materializing a subobject of the temporary, keep the 2627 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2628 QualType MaterializedType = Init->getType(); 2629 if (Init == E->GetTemporaryExpr()) 2630 MaterializedType = E->getType(); 2631 2632 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2633 if (Slot) 2634 return Slot; 2635 2636 // FIXME: If an externally-visible declaration extends multiple temporaries, 2637 // we need to give each temporary the same name in every translation unit (and 2638 // we also need to make the temporaries externally-visible). 2639 SmallString<256> Name; 2640 llvm::raw_svector_ostream Out(Name); 2641 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2642 Out.flush(); 2643 2644 APValue *Value = 0; 2645 if (E->getStorageDuration() == SD_Static) { 2646 // We might have a cached constant initializer for this temporary. Note 2647 // that this might have a different value from the value computed by 2648 // evaluating the initializer if the surrounding constant expression 2649 // modifies the temporary. 2650 Value = getContext().getMaterializedTemporaryValue(E, false); 2651 if (Value && Value->isUninit()) 2652 Value = 0; 2653 } 2654 2655 // Try evaluating it now, it might have a constant initializer. 2656 Expr::EvalResult EvalResult; 2657 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2658 !EvalResult.hasSideEffects()) 2659 Value = &EvalResult.Val; 2660 2661 llvm::Constant *InitialValue = 0; 2662 bool Constant = false; 2663 llvm::Type *Type; 2664 if (Value) { 2665 // The temporary has a constant initializer, use it. 2666 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2667 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2668 Type = InitialValue->getType(); 2669 } else { 2670 // No initializer, the initialization will be provided when we 2671 // initialize the declaration which performed lifetime extension. 2672 Type = getTypes().ConvertTypeForMem(MaterializedType); 2673 } 2674 2675 // Create a global variable for this lifetime-extended temporary. 2676 llvm::GlobalVariable *GV = 2677 new llvm::GlobalVariable(getModule(), Type, Constant, 2678 llvm::GlobalValue::PrivateLinkage, 2679 InitialValue, Name.c_str()); 2680 GV->setAlignment( 2681 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2682 if (VD->getTLSKind()) 2683 setTLSMode(GV, *VD); 2684 Slot = GV; 2685 return GV; 2686 } 2687 2688 /// EmitObjCPropertyImplementations - Emit information for synthesized 2689 /// properties for an implementation. 2690 void CodeGenModule::EmitObjCPropertyImplementations(const 2691 ObjCImplementationDecl *D) { 2692 for (ObjCImplementationDecl::propimpl_iterator 2693 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2694 ObjCPropertyImplDecl *PID = *i; 2695 2696 // Dynamic is just for type-checking. 2697 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2698 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2699 2700 // Determine which methods need to be implemented, some may have 2701 // been overridden. Note that ::isPropertyAccessor is not the method 2702 // we want, that just indicates if the decl came from a 2703 // property. What we want to know is if the method is defined in 2704 // this implementation. 2705 if (!D->getInstanceMethod(PD->getGetterName())) 2706 CodeGenFunction(*this).GenerateObjCGetter( 2707 const_cast<ObjCImplementationDecl *>(D), PID); 2708 if (!PD->isReadOnly() && 2709 !D->getInstanceMethod(PD->getSetterName())) 2710 CodeGenFunction(*this).GenerateObjCSetter( 2711 const_cast<ObjCImplementationDecl *>(D), PID); 2712 } 2713 } 2714 } 2715 2716 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2717 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2718 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2719 ivar; ivar = ivar->getNextIvar()) 2720 if (ivar->getType().isDestructedType()) 2721 return true; 2722 2723 return false; 2724 } 2725 2726 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2727 /// for an implementation. 2728 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2729 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2730 if (needsDestructMethod(D)) { 2731 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2732 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2733 ObjCMethodDecl *DTORMethod = 2734 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2735 cxxSelector, getContext().VoidTy, 0, D, 2736 /*isInstance=*/true, /*isVariadic=*/false, 2737 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2738 /*isDefined=*/false, ObjCMethodDecl::Required); 2739 D->addInstanceMethod(DTORMethod); 2740 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2741 D->setHasDestructors(true); 2742 } 2743 2744 // If the implementation doesn't have any ivar initializers, we don't need 2745 // a .cxx_construct. 2746 if (D->getNumIvarInitializers() == 0) 2747 return; 2748 2749 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2750 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2751 // The constructor returns 'self'. 2752 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2753 D->getLocation(), 2754 D->getLocation(), 2755 cxxSelector, 2756 getContext().getObjCIdType(), 0, 2757 D, /*isInstance=*/true, 2758 /*isVariadic=*/false, 2759 /*isPropertyAccessor=*/true, 2760 /*isImplicitlyDeclared=*/true, 2761 /*isDefined=*/false, 2762 ObjCMethodDecl::Required); 2763 D->addInstanceMethod(CTORMethod); 2764 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2765 D->setHasNonZeroConstructors(true); 2766 } 2767 2768 /// EmitNamespace - Emit all declarations in a namespace. 2769 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2770 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2771 I != E; ++I) 2772 EmitTopLevelDecl(*I); 2773 } 2774 2775 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2776 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2777 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2778 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2779 ErrorUnsupported(LSD, "linkage spec"); 2780 return; 2781 } 2782 2783 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2784 I != E; ++I) { 2785 // Meta-data for ObjC class includes references to implemented methods. 2786 // Generate class's method definitions first. 2787 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2788 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2789 MEnd = OID->meth_end(); 2790 M != MEnd; ++M) 2791 EmitTopLevelDecl(*M); 2792 } 2793 EmitTopLevelDecl(*I); 2794 } 2795 } 2796 2797 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2798 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2799 // If an error has occurred, stop code generation, but continue 2800 // parsing and semantic analysis (to ensure all warnings and errors 2801 // are emitted). 2802 if (Diags.hasErrorOccurred()) 2803 return; 2804 2805 // Ignore dependent declarations. 2806 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2807 return; 2808 2809 switch (D->getKind()) { 2810 case Decl::CXXConversion: 2811 case Decl::CXXMethod: 2812 case Decl::Function: 2813 // Skip function templates 2814 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2815 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2816 return; 2817 2818 EmitGlobal(cast<FunctionDecl>(D)); 2819 break; 2820 2821 case Decl::Var: 2822 // Skip variable templates 2823 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2824 return; 2825 case Decl::VarTemplateSpecialization: 2826 EmitGlobal(cast<VarDecl>(D)); 2827 break; 2828 2829 // Indirect fields from global anonymous structs and unions can be 2830 // ignored; only the actual variable requires IR gen support. 2831 case Decl::IndirectField: 2832 break; 2833 2834 // C++ Decls 2835 case Decl::Namespace: 2836 EmitNamespace(cast<NamespaceDecl>(D)); 2837 break; 2838 // No code generation needed. 2839 case Decl::UsingShadow: 2840 case Decl::Using: 2841 case Decl::ClassTemplate: 2842 case Decl::VarTemplate: 2843 case Decl::VarTemplatePartialSpecialization: 2844 case Decl::FunctionTemplate: 2845 case Decl::TypeAliasTemplate: 2846 case Decl::Block: 2847 case Decl::Empty: 2848 break; 2849 case Decl::NamespaceAlias: 2850 if (CGDebugInfo *DI = getModuleDebugInfo()) 2851 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2852 return; 2853 case Decl::UsingDirective: // using namespace X; [C++] 2854 if (CGDebugInfo *DI = getModuleDebugInfo()) 2855 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2856 return; 2857 case Decl::CXXConstructor: 2858 // Skip function templates 2859 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2860 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2861 return; 2862 2863 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2864 break; 2865 case Decl::CXXDestructor: 2866 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2867 return; 2868 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2869 break; 2870 2871 case Decl::StaticAssert: 2872 // Nothing to do. 2873 break; 2874 2875 // Objective-C Decls 2876 2877 // Forward declarations, no (immediate) code generation. 2878 case Decl::ObjCInterface: 2879 case Decl::ObjCCategory: 2880 break; 2881 2882 case Decl::ObjCProtocol: { 2883 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2884 if (Proto->isThisDeclarationADefinition()) 2885 ObjCRuntime->GenerateProtocol(Proto); 2886 break; 2887 } 2888 2889 case Decl::ObjCCategoryImpl: 2890 // Categories have properties but don't support synthesize so we 2891 // can ignore them here. 2892 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2893 break; 2894 2895 case Decl::ObjCImplementation: { 2896 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2897 EmitObjCPropertyImplementations(OMD); 2898 EmitObjCIvarInitializations(OMD); 2899 ObjCRuntime->GenerateClass(OMD); 2900 // Emit global variable debug information. 2901 if (CGDebugInfo *DI = getModuleDebugInfo()) 2902 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2903 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2904 OMD->getClassInterface()), OMD->getLocation()); 2905 break; 2906 } 2907 case Decl::ObjCMethod: { 2908 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2909 // If this is not a prototype, emit the body. 2910 if (OMD->getBody()) 2911 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2912 break; 2913 } 2914 case Decl::ObjCCompatibleAlias: 2915 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2916 break; 2917 2918 case Decl::LinkageSpec: 2919 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2920 break; 2921 2922 case Decl::FileScopeAsm: { 2923 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2924 StringRef AsmString = AD->getAsmString()->getString(); 2925 2926 const std::string &S = getModule().getModuleInlineAsm(); 2927 if (S.empty()) 2928 getModule().setModuleInlineAsm(AsmString); 2929 else if (S.end()[-1] == '\n') 2930 getModule().setModuleInlineAsm(S + AsmString.str()); 2931 else 2932 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2933 break; 2934 } 2935 2936 case Decl::Import: { 2937 ImportDecl *Import = cast<ImportDecl>(D); 2938 2939 // Ignore import declarations that come from imported modules. 2940 if (clang::Module *Owner = Import->getOwningModule()) { 2941 if (getLangOpts().CurrentModule.empty() || 2942 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 2943 break; 2944 } 2945 2946 ImportedModules.insert(Import->getImportedModule()); 2947 break; 2948 } 2949 2950 default: 2951 // Make sure we handled everything we should, every other kind is a 2952 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2953 // function. Need to recode Decl::Kind to do that easily. 2954 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2955 } 2956 } 2957 2958 /// Turns the given pointer into a constant. 2959 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2960 const void *Ptr) { 2961 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2962 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2963 return llvm::ConstantInt::get(i64, PtrInt); 2964 } 2965 2966 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2967 llvm::NamedMDNode *&GlobalMetadata, 2968 GlobalDecl D, 2969 llvm::GlobalValue *Addr) { 2970 if (!GlobalMetadata) 2971 GlobalMetadata = 2972 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2973 2974 // TODO: should we report variant information for ctors/dtors? 2975 llvm::Value *Ops[] = { 2976 Addr, 2977 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2978 }; 2979 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2980 } 2981 2982 /// For each function which is declared within an extern "C" region and marked 2983 /// as 'used', but has internal linkage, create an alias from the unmangled 2984 /// name to the mangled name if possible. People expect to be able to refer 2985 /// to such functions with an unmangled name from inline assembly within the 2986 /// same translation unit. 2987 void CodeGenModule::EmitStaticExternCAliases() { 2988 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 2989 E = StaticExternCValues.end(); 2990 I != E; ++I) { 2991 IdentifierInfo *Name = I->first; 2992 llvm::GlobalValue *Val = I->second; 2993 if (Val && !getModule().getNamedValue(Name->getName())) 2994 AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 2995 Name->getName(), Val, &getModule())); 2996 } 2997 } 2998 2999 /// Emits metadata nodes associating all the global values in the 3000 /// current module with the Decls they came from. This is useful for 3001 /// projects using IR gen as a subroutine. 3002 /// 3003 /// Since there's currently no way to associate an MDNode directly 3004 /// with an llvm::GlobalValue, we create a global named metadata 3005 /// with the name 'clang.global.decl.ptrs'. 3006 void CodeGenModule::EmitDeclMetadata() { 3007 llvm::NamedMDNode *GlobalMetadata = 0; 3008 3009 // StaticLocalDeclMap 3010 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3011 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3012 I != E; ++I) { 3013 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3014 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3015 } 3016 } 3017 3018 /// Emits metadata nodes for all the local variables in the current 3019 /// function. 3020 void CodeGenFunction::EmitDeclMetadata() { 3021 if (LocalDeclMap.empty()) return; 3022 3023 llvm::LLVMContext &Context = getLLVMContext(); 3024 3025 // Find the unique metadata ID for this name. 3026 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3027 3028 llvm::NamedMDNode *GlobalMetadata = 0; 3029 3030 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3031 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3032 const Decl *D = I->first; 3033 llvm::Value *Addr = I->second; 3034 3035 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3036 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3037 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3038 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3039 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3040 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3041 } 3042 } 3043 } 3044 3045 void CodeGenModule::EmitCoverageFile() { 3046 if (!getCodeGenOpts().CoverageFile.empty()) { 3047 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3048 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3049 llvm::LLVMContext &Ctx = TheModule.getContext(); 3050 llvm::MDString *CoverageFile = 3051 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3052 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3053 llvm::MDNode *CU = CUNode->getOperand(i); 3054 llvm::Value *node[] = { CoverageFile, CU }; 3055 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3056 GCov->addOperand(N); 3057 } 3058 } 3059 } 3060 } 3061 3062 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3063 QualType GuidType) { 3064 // Sema has checked that all uuid strings are of the form 3065 // "12345678-1234-1234-1234-1234567890ab". 3066 assert(Uuid.size() == 36); 3067 for (unsigned i = 0; i < 36; ++i) { 3068 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3069 else assert(isHexDigit(Uuid[i])); 3070 } 3071 3072 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3073 3074 llvm::Constant *Field3[8]; 3075 for (unsigned Idx = 0; Idx < 8; ++Idx) 3076 Field3[Idx] = llvm::ConstantInt::get( 3077 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3078 3079 llvm::Constant *Fields[4] = { 3080 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3081 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3082 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3083 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3084 }; 3085 3086 return llvm::ConstantStruct::getAnon(Fields); 3087 } 3088