1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. 106 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 107 TBAA = new CodeGenTBAA(Context, VMContext, getLangOpts(), 108 ABI.getMangleContext()); 109 110 // If debug info or coverage generation is enabled, create the CGDebugInfo 111 // object. 112 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 113 CodeGenOpts.EmitGcovNotes) 114 DebugInfo = new CGDebugInfo(*this); 115 116 Block.GlobalUniqueCount = 0; 117 118 if (C.getLangOpts().ObjCAutoRefCount) 119 ARCData = new ARCEntrypoints(); 120 RRData = new RREntrypoints(); 121 } 122 123 CodeGenModule::~CodeGenModule() { 124 delete ObjCRuntime; 125 delete OpenCLRuntime; 126 delete CUDARuntime; 127 delete TheTargetCodeGenInfo; 128 delete &ABI; 129 delete TBAA; 130 delete DebugInfo; 131 delete ARCData; 132 delete RRData; 133 } 134 135 void CodeGenModule::createObjCRuntime() { 136 if (!LangOpts.NeXTRuntime) 137 ObjCRuntime = CreateGNUObjCRuntime(*this); 138 else 139 ObjCRuntime = CreateMacObjCRuntime(*this); 140 } 141 142 void CodeGenModule::createOpenCLRuntime() { 143 OpenCLRuntime = new CGOpenCLRuntime(*this); 144 } 145 146 void CodeGenModule::createCUDARuntime() { 147 CUDARuntime = CreateNVCUDARuntime(*this); 148 } 149 150 void CodeGenModule::Release() { 151 EmitDeferred(); 152 EmitCXXGlobalInitFunc(); 153 EmitCXXGlobalDtorFunc(); 154 if (ObjCRuntime) 155 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 156 AddGlobalCtor(ObjCInitFunction); 157 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 158 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 159 EmitGlobalAnnotations(); 160 EmitLLVMUsed(); 161 162 SimplifyPersonality(); 163 164 if (getCodeGenOpts().EmitDeclMetadata) 165 EmitDeclMetadata(); 166 167 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 168 EmitCoverageFile(); 169 170 if (DebugInfo) 171 DebugInfo->finalize(); 172 } 173 174 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 175 // Make sure that this type is translated. 176 Types.UpdateCompletedType(TD); 177 } 178 179 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 180 if (!TBAA) 181 return 0; 182 return TBAA->getTBAAInfo(QTy); 183 } 184 185 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 186 llvm::MDNode *TBAAInfo) { 187 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 188 } 189 190 bool CodeGenModule::isTargetDarwin() const { 191 return getContext().getTargetInfo().getTriple().isOSDarwin(); 192 } 193 194 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 195 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 196 getDiags().Report(Context.getFullLoc(loc), diagID); 197 } 198 199 /// ErrorUnsupported - Print out an error that codegen doesn't support the 200 /// specified stmt yet. 201 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 202 bool OmitOnError) { 203 if (OmitOnError && getDiags().hasErrorOccurred()) 204 return; 205 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 206 "cannot compile this %0 yet"); 207 std::string Msg = Type; 208 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 209 << Msg << S->getSourceRange(); 210 } 211 212 /// ErrorUnsupported - Print out an error that codegen doesn't support the 213 /// specified decl yet. 214 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 215 bool OmitOnError) { 216 if (OmitOnError && getDiags().hasErrorOccurred()) 217 return; 218 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 219 "cannot compile this %0 yet"); 220 std::string Msg = Type; 221 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 222 } 223 224 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 225 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 226 } 227 228 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 229 const NamedDecl *D) const { 230 // Internal definitions always have default visibility. 231 if (GV->hasLocalLinkage()) { 232 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 233 return; 234 } 235 236 // Set visibility for definitions. 237 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 238 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 239 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 240 } 241 242 /// Set the symbol visibility of type information (vtable and RTTI) 243 /// associated with the given type. 244 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 245 const CXXRecordDecl *RD, 246 TypeVisibilityKind TVK) const { 247 setGlobalVisibility(GV, RD); 248 249 if (!CodeGenOpts.HiddenWeakVTables) 250 return; 251 252 // We never want to drop the visibility for RTTI names. 253 if (TVK == TVK_ForRTTIName) 254 return; 255 256 // We want to drop the visibility to hidden for weak type symbols. 257 // This isn't possible if there might be unresolved references 258 // elsewhere that rely on this symbol being visible. 259 260 // This should be kept roughly in sync with setThunkVisibility 261 // in CGVTables.cpp. 262 263 // Preconditions. 264 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 265 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 266 return; 267 268 // Don't override an explicit visibility attribute. 269 if (RD->getExplicitVisibility()) 270 return; 271 272 switch (RD->getTemplateSpecializationKind()) { 273 // We have to disable the optimization if this is an EI definition 274 // because there might be EI declarations in other shared objects. 275 case TSK_ExplicitInstantiationDefinition: 276 case TSK_ExplicitInstantiationDeclaration: 277 return; 278 279 // Every use of a non-template class's type information has to emit it. 280 case TSK_Undeclared: 281 break; 282 283 // In theory, implicit instantiations can ignore the possibility of 284 // an explicit instantiation declaration because there necessarily 285 // must be an EI definition somewhere with default visibility. In 286 // practice, it's possible to have an explicit instantiation for 287 // an arbitrary template class, and linkers aren't necessarily able 288 // to deal with mixed-visibility symbols. 289 case TSK_ExplicitSpecialization: 290 case TSK_ImplicitInstantiation: 291 if (!CodeGenOpts.HiddenWeakTemplateVTables) 292 return; 293 break; 294 } 295 296 // If there's a key function, there may be translation units 297 // that don't have the key function's definition. But ignore 298 // this if we're emitting RTTI under -fno-rtti. 299 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 300 if (Context.getKeyFunction(RD)) 301 return; 302 } 303 304 // Otherwise, drop the visibility to hidden. 305 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 306 GV->setUnnamedAddr(true); 307 } 308 309 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 310 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 311 312 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 313 if (!Str.empty()) 314 return Str; 315 316 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 317 IdentifierInfo *II = ND->getIdentifier(); 318 assert(II && "Attempt to mangle unnamed decl."); 319 320 Str = II->getName(); 321 return Str; 322 } 323 324 SmallString<256> Buffer; 325 llvm::raw_svector_ostream Out(Buffer); 326 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 327 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 328 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 329 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 330 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 331 getCXXABI().getMangleContext().mangleBlock(BD, Out); 332 else 333 getCXXABI().getMangleContext().mangleName(ND, Out); 334 335 // Allocate space for the mangled name. 336 Out.flush(); 337 size_t Length = Buffer.size(); 338 char *Name = MangledNamesAllocator.Allocate<char>(Length); 339 std::copy(Buffer.begin(), Buffer.end(), Name); 340 341 Str = StringRef(Name, Length); 342 343 return Str; 344 } 345 346 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 347 const BlockDecl *BD) { 348 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 349 const Decl *D = GD.getDecl(); 350 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 351 if (D == 0) 352 MangleCtx.mangleGlobalBlock(BD, Out); 353 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 354 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 355 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 356 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 357 else 358 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 359 } 360 361 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 362 return getModule().getNamedValue(Name); 363 } 364 365 /// AddGlobalCtor - Add a function to the list that will be called before 366 /// main() runs. 367 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 368 // FIXME: Type coercion of void()* types. 369 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 370 } 371 372 /// AddGlobalDtor - Add a function to the list that will be called 373 /// when the module is unloaded. 374 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 375 // FIXME: Type coercion of void()* types. 376 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 377 } 378 379 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 380 // Ctor function type is void()*. 381 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 382 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 383 384 // Get the type of a ctor entry, { i32, void ()* }. 385 llvm::StructType *CtorStructTy = 386 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 387 388 // Construct the constructor and destructor arrays. 389 SmallVector<llvm::Constant*, 8> Ctors; 390 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 391 llvm::Constant *S[] = { 392 llvm::ConstantInt::get(Int32Ty, I->second, false), 393 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 394 }; 395 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 396 } 397 398 if (!Ctors.empty()) { 399 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 400 new llvm::GlobalVariable(TheModule, AT, false, 401 llvm::GlobalValue::AppendingLinkage, 402 llvm::ConstantArray::get(AT, Ctors), 403 GlobalName); 404 } 405 } 406 407 llvm::GlobalValue::LinkageTypes 408 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 409 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 410 411 if (Linkage == GVA_Internal) 412 return llvm::Function::InternalLinkage; 413 414 if (D->hasAttr<DLLExportAttr>()) 415 return llvm::Function::DLLExportLinkage; 416 417 if (D->hasAttr<WeakAttr>()) 418 return llvm::Function::WeakAnyLinkage; 419 420 // In C99 mode, 'inline' functions are guaranteed to have a strong 421 // definition somewhere else, so we can use available_externally linkage. 422 if (Linkage == GVA_C99Inline) 423 return llvm::Function::AvailableExternallyLinkage; 424 425 // Note that Apple's kernel linker doesn't support symbol 426 // coalescing, so we need to avoid linkonce and weak linkages there. 427 // Normally, this means we just map to internal, but for explicit 428 // instantiations we'll map to external. 429 430 // In C++, the compiler has to emit a definition in every translation unit 431 // that references the function. We should use linkonce_odr because 432 // a) if all references in this translation unit are optimized away, we 433 // don't need to codegen it. b) if the function persists, it needs to be 434 // merged with other definitions. c) C++ has the ODR, so we know the 435 // definition is dependable. 436 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 437 return !Context.getLangOpts().AppleKext 438 ? llvm::Function::LinkOnceODRLinkage 439 : llvm::Function::InternalLinkage; 440 441 // An explicit instantiation of a template has weak linkage, since 442 // explicit instantiations can occur in multiple translation units 443 // and must all be equivalent. However, we are not allowed to 444 // throw away these explicit instantiations. 445 if (Linkage == GVA_ExplicitTemplateInstantiation) 446 return !Context.getLangOpts().AppleKext 447 ? llvm::Function::WeakODRLinkage 448 : llvm::Function::ExternalLinkage; 449 450 // Otherwise, we have strong external linkage. 451 assert(Linkage == GVA_StrongExternal); 452 return llvm::Function::ExternalLinkage; 453 } 454 455 456 /// SetFunctionDefinitionAttributes - Set attributes for a global. 457 /// 458 /// FIXME: This is currently only done for aliases and functions, but not for 459 /// variables (these details are set in EmitGlobalVarDefinition for variables). 460 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 461 llvm::GlobalValue *GV) { 462 SetCommonAttributes(D, GV); 463 } 464 465 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 466 const CGFunctionInfo &Info, 467 llvm::Function *F) { 468 unsigned CallingConv; 469 AttributeListType AttributeList; 470 ConstructAttributeList(Info, D, AttributeList, CallingConv); 471 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 472 AttributeList.size())); 473 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 474 } 475 476 /// Determines whether the language options require us to model 477 /// unwind exceptions. We treat -fexceptions as mandating this 478 /// except under the fragile ObjC ABI with only ObjC exceptions 479 /// enabled. This means, for example, that C with -fexceptions 480 /// enables this. 481 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 482 // If exceptions are completely disabled, obviously this is false. 483 if (!LangOpts.Exceptions) return false; 484 485 // If C++ exceptions are enabled, this is true. 486 if (LangOpts.CXXExceptions) return true; 487 488 // If ObjC exceptions are enabled, this depends on the ABI. 489 if (LangOpts.ObjCExceptions) { 490 if (!LangOpts.ObjCNonFragileABI) return false; 491 } 492 493 return true; 494 } 495 496 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 497 llvm::Function *F) { 498 if (CodeGenOpts.UnwindTables) 499 F->setHasUWTable(); 500 501 if (!hasUnwindExceptions(LangOpts)) 502 F->addFnAttr(llvm::Attribute::NoUnwind); 503 504 if (D->hasAttr<NakedAttr>()) { 505 // Naked implies noinline: we should not be inlining such functions. 506 F->addFnAttr(llvm::Attribute::Naked); 507 F->addFnAttr(llvm::Attribute::NoInline); 508 } 509 510 if (D->hasAttr<NoInlineAttr>()) 511 F->addFnAttr(llvm::Attribute::NoInline); 512 513 // (noinline wins over always_inline, and we can't specify both in IR) 514 if (D->hasAttr<AlwaysInlineAttr>() && 515 !F->hasFnAttr(llvm::Attribute::NoInline)) 516 F->addFnAttr(llvm::Attribute::AlwaysInline); 517 518 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 519 F->setUnnamedAddr(true); 520 521 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 522 F->addFnAttr(llvm::Attribute::StackProtect); 523 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 524 F->addFnAttr(llvm::Attribute::StackProtectReq); 525 526 if (LangOpts.AddressSanitizer) { 527 // When AddressSanitizer is enabled, set AddressSafety attribute 528 // unless __attribute__((no_address_safety_analysis)) is used. 529 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 530 F->addFnAttr(llvm::Attribute::AddressSafety); 531 } 532 533 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 534 if (alignment) 535 F->setAlignment(alignment); 536 537 // C++ ABI requires 2-byte alignment for member functions. 538 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 539 F->setAlignment(2); 540 } 541 542 void CodeGenModule::SetCommonAttributes(const Decl *D, 543 llvm::GlobalValue *GV) { 544 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 545 setGlobalVisibility(GV, ND); 546 else 547 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 548 549 if (D->hasAttr<UsedAttr>()) 550 AddUsedGlobal(GV); 551 552 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 553 GV->setSection(SA->getName()); 554 555 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 556 } 557 558 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 559 llvm::Function *F, 560 const CGFunctionInfo &FI) { 561 SetLLVMFunctionAttributes(D, FI, F); 562 SetLLVMFunctionAttributesForDefinition(D, F); 563 564 F->setLinkage(llvm::Function::InternalLinkage); 565 566 SetCommonAttributes(D, F); 567 } 568 569 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 570 llvm::Function *F, 571 bool IsIncompleteFunction) { 572 if (unsigned IID = F->getIntrinsicID()) { 573 // If this is an intrinsic function, set the function's attributes 574 // to the intrinsic's attributes. 575 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 576 return; 577 } 578 579 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 580 581 if (!IsIncompleteFunction) 582 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 583 584 // Only a few attributes are set on declarations; these may later be 585 // overridden by a definition. 586 587 if (FD->hasAttr<DLLImportAttr>()) { 588 F->setLinkage(llvm::Function::DLLImportLinkage); 589 } else if (FD->hasAttr<WeakAttr>() || 590 FD->isWeakImported()) { 591 // "extern_weak" is overloaded in LLVM; we probably should have 592 // separate linkage types for this. 593 F->setLinkage(llvm::Function::ExternalWeakLinkage); 594 } else { 595 F->setLinkage(llvm::Function::ExternalLinkage); 596 597 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 598 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 599 F->setVisibility(GetLLVMVisibility(LV.visibility())); 600 } 601 } 602 603 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 604 F->setSection(SA->getName()); 605 } 606 607 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 608 assert(!GV->isDeclaration() && 609 "Only globals with definition can force usage."); 610 LLVMUsed.push_back(GV); 611 } 612 613 void CodeGenModule::EmitLLVMUsed() { 614 // Don't create llvm.used if there is no need. 615 if (LLVMUsed.empty()) 616 return; 617 618 // Convert LLVMUsed to what ConstantArray needs. 619 SmallVector<llvm::Constant*, 8> UsedArray; 620 UsedArray.resize(LLVMUsed.size()); 621 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 622 UsedArray[i] = 623 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 624 Int8PtrTy); 625 } 626 627 if (UsedArray.empty()) 628 return; 629 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 630 631 llvm::GlobalVariable *GV = 632 new llvm::GlobalVariable(getModule(), ATy, false, 633 llvm::GlobalValue::AppendingLinkage, 634 llvm::ConstantArray::get(ATy, UsedArray), 635 "llvm.used"); 636 637 GV->setSection("llvm.metadata"); 638 } 639 640 void CodeGenModule::EmitDeferred() { 641 // Emit code for any potentially referenced deferred decls. Since a 642 // previously unused static decl may become used during the generation of code 643 // for a static function, iterate until no changes are made. 644 645 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 646 if (!DeferredVTables.empty()) { 647 const CXXRecordDecl *RD = DeferredVTables.back(); 648 DeferredVTables.pop_back(); 649 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 650 continue; 651 } 652 653 GlobalDecl D = DeferredDeclsToEmit.back(); 654 DeferredDeclsToEmit.pop_back(); 655 656 // Check to see if we've already emitted this. This is necessary 657 // for a couple of reasons: first, decls can end up in the 658 // deferred-decls queue multiple times, and second, decls can end 659 // up with definitions in unusual ways (e.g. by an extern inline 660 // function acquiring a strong function redefinition). Just 661 // ignore these cases. 662 // 663 // TODO: That said, looking this up multiple times is very wasteful. 664 StringRef Name = getMangledName(D); 665 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 666 assert(CGRef && "Deferred decl wasn't referenced?"); 667 668 if (!CGRef->isDeclaration()) 669 continue; 670 671 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 672 // purposes an alias counts as a definition. 673 if (isa<llvm::GlobalAlias>(CGRef)) 674 continue; 675 676 // Otherwise, emit the definition and move on to the next one. 677 EmitGlobalDefinition(D); 678 } 679 } 680 681 void CodeGenModule::EmitGlobalAnnotations() { 682 if (Annotations.empty()) 683 return; 684 685 // Create a new global variable for the ConstantStruct in the Module. 686 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 687 Annotations[0]->getType(), Annotations.size()), Annotations); 688 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 689 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 690 "llvm.global.annotations"); 691 gv->setSection(AnnotationSection); 692 } 693 694 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 695 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 696 if (i != AnnotationStrings.end()) 697 return i->second; 698 699 // Not found yet, create a new global. 700 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 701 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 702 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 703 gv->setSection(AnnotationSection); 704 gv->setUnnamedAddr(true); 705 AnnotationStrings[Str] = gv; 706 return gv; 707 } 708 709 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 710 SourceManager &SM = getContext().getSourceManager(); 711 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 712 if (PLoc.isValid()) 713 return EmitAnnotationString(PLoc.getFilename()); 714 return EmitAnnotationString(SM.getBufferName(Loc)); 715 } 716 717 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 718 SourceManager &SM = getContext().getSourceManager(); 719 PresumedLoc PLoc = SM.getPresumedLoc(L); 720 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 721 SM.getExpansionLineNumber(L); 722 return llvm::ConstantInt::get(Int32Ty, LineNo); 723 } 724 725 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 726 const AnnotateAttr *AA, 727 SourceLocation L) { 728 // Get the globals for file name, annotation, and the line number. 729 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 730 *UnitGV = EmitAnnotationUnit(L), 731 *LineNoCst = EmitAnnotationLineNo(L); 732 733 // Create the ConstantStruct for the global annotation. 734 llvm::Constant *Fields[4] = { 735 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 736 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 737 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 738 LineNoCst 739 }; 740 return llvm::ConstantStruct::getAnon(Fields); 741 } 742 743 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 744 llvm::GlobalValue *GV) { 745 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 746 // Get the struct elements for these annotations. 747 for (specific_attr_iterator<AnnotateAttr> 748 ai = D->specific_attr_begin<AnnotateAttr>(), 749 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 750 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 751 } 752 753 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 754 // Never defer when EmitAllDecls is specified. 755 if (LangOpts.EmitAllDecls) 756 return false; 757 758 return !getContext().DeclMustBeEmitted(Global); 759 } 760 761 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 762 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 763 assert(AA && "No alias?"); 764 765 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 766 767 // See if there is already something with the target's name in the module. 768 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 769 770 llvm::Constant *Aliasee; 771 if (isa<llvm::FunctionType>(DeclTy)) 772 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 773 /*ForVTable=*/false); 774 else 775 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 776 llvm::PointerType::getUnqual(DeclTy), 0); 777 if (!Entry) { 778 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 779 F->setLinkage(llvm::Function::ExternalWeakLinkage); 780 WeakRefReferences.insert(F); 781 } 782 783 return Aliasee; 784 } 785 786 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 787 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 788 789 // Weak references don't produce any output by themselves. 790 if (Global->hasAttr<WeakRefAttr>()) 791 return; 792 793 // If this is an alias definition (which otherwise looks like a declaration) 794 // emit it now. 795 if (Global->hasAttr<AliasAttr>()) 796 return EmitAliasDefinition(GD); 797 798 // If this is CUDA, be selective about which declarations we emit. 799 if (LangOpts.CUDA) { 800 if (CodeGenOpts.CUDAIsDevice) { 801 if (!Global->hasAttr<CUDADeviceAttr>() && 802 !Global->hasAttr<CUDAGlobalAttr>() && 803 !Global->hasAttr<CUDAConstantAttr>() && 804 !Global->hasAttr<CUDASharedAttr>()) 805 return; 806 } else { 807 if (!Global->hasAttr<CUDAHostAttr>() && ( 808 Global->hasAttr<CUDADeviceAttr>() || 809 Global->hasAttr<CUDAConstantAttr>() || 810 Global->hasAttr<CUDASharedAttr>())) 811 return; 812 } 813 } 814 815 // Ignore declarations, they will be emitted on their first use. 816 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 817 // Forward declarations are emitted lazily on first use. 818 if (!FD->doesThisDeclarationHaveABody()) { 819 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 820 return; 821 822 const FunctionDecl *InlineDefinition = 0; 823 FD->getBody(InlineDefinition); 824 825 StringRef MangledName = getMangledName(GD); 826 llvm::StringMap<GlobalDecl>::iterator DDI = 827 DeferredDecls.find(MangledName); 828 if (DDI != DeferredDecls.end()) 829 DeferredDecls.erase(DDI); 830 EmitGlobalDefinition(InlineDefinition); 831 return; 832 } 833 } else { 834 const VarDecl *VD = cast<VarDecl>(Global); 835 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 836 837 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 838 return; 839 } 840 841 // Defer code generation when possible if this is a static definition, inline 842 // function etc. These we only want to emit if they are used. 843 if (!MayDeferGeneration(Global)) { 844 // Emit the definition if it can't be deferred. 845 EmitGlobalDefinition(GD); 846 return; 847 } 848 849 // If we're deferring emission of a C++ variable with an 850 // initializer, remember the order in which it appeared in the file. 851 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 852 cast<VarDecl>(Global)->hasInit()) { 853 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 854 CXXGlobalInits.push_back(0); 855 } 856 857 // If the value has already been used, add it directly to the 858 // DeferredDeclsToEmit list. 859 StringRef MangledName = getMangledName(GD); 860 if (GetGlobalValue(MangledName)) 861 DeferredDeclsToEmit.push_back(GD); 862 else { 863 // Otherwise, remember that we saw a deferred decl with this name. The 864 // first use of the mangled name will cause it to move into 865 // DeferredDeclsToEmit. 866 DeferredDecls[MangledName] = GD; 867 } 868 } 869 870 namespace { 871 struct FunctionIsDirectlyRecursive : 872 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 873 const StringRef Name; 874 const Builtin::Context &BI; 875 bool Result; 876 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 877 Name(N), BI(C), Result(false) { 878 } 879 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 880 881 bool TraverseCallExpr(CallExpr *E) { 882 const FunctionDecl *FD = E->getDirectCallee(); 883 if (!FD) 884 return true; 885 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 886 if (Attr && Name == Attr->getLabel()) { 887 Result = true; 888 return false; 889 } 890 unsigned BuiltinID = FD->getBuiltinID(); 891 if (!BuiltinID) 892 return true; 893 StringRef BuiltinName = BI.GetName(BuiltinID); 894 if (BuiltinName.startswith("__builtin_") && 895 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 896 Result = true; 897 return false; 898 } 899 return true; 900 } 901 }; 902 } 903 904 // isTriviallyRecursive - Check if this function calls another 905 // decl that, because of the asm attribute or the other decl being a builtin, 906 // ends up pointing to itself. 907 bool 908 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 909 StringRef Name; 910 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 911 // asm labels are a special kind of mangling we have to support. 912 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 913 if (!Attr) 914 return false; 915 Name = Attr->getLabel(); 916 } else { 917 Name = FD->getName(); 918 } 919 920 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 921 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 922 return Walker.Result; 923 } 924 925 bool 926 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 927 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 928 return true; 929 if (CodeGenOpts.OptimizationLevel == 0 && 930 !F->hasAttr<AlwaysInlineAttr>()) 931 return false; 932 // PR9614. Avoid cases where the source code is lying to us. An available 933 // externally function should have an equivalent function somewhere else, 934 // but a function that calls itself is clearly not equivalent to the real 935 // implementation. 936 // This happens in glibc's btowc and in some configure checks. 937 return !isTriviallyRecursive(F); 938 } 939 940 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 941 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 942 943 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 944 Context.getSourceManager(), 945 "Generating code for declaration"); 946 947 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 948 // At -O0, don't generate IR for functions with available_externally 949 // linkage. 950 if (!shouldEmitFunction(Function)) 951 return; 952 953 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 954 // Make sure to emit the definition(s) before we emit the thunks. 955 // This is necessary for the generation of certain thunks. 956 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 957 EmitCXXConstructor(CD, GD.getCtorType()); 958 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 959 EmitCXXDestructor(DD, GD.getDtorType()); 960 else 961 EmitGlobalFunctionDefinition(GD); 962 963 if (Method->isVirtual()) 964 getVTables().EmitThunks(GD); 965 966 return; 967 } 968 969 return EmitGlobalFunctionDefinition(GD); 970 } 971 972 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 973 return EmitGlobalVarDefinition(VD); 974 975 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 976 } 977 978 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 979 /// module, create and return an llvm Function with the specified type. If there 980 /// is something in the module with the specified name, return it potentially 981 /// bitcasted to the right type. 982 /// 983 /// If D is non-null, it specifies a decl that correspond to this. This is used 984 /// to set the attributes on the function when it is first created. 985 llvm::Constant * 986 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 987 llvm::Type *Ty, 988 GlobalDecl D, bool ForVTable, 989 llvm::Attributes ExtraAttrs) { 990 // Lookup the entry, lazily creating it if necessary. 991 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 992 if (Entry) { 993 if (WeakRefReferences.count(Entry)) { 994 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 995 if (FD && !FD->hasAttr<WeakAttr>()) 996 Entry->setLinkage(llvm::Function::ExternalLinkage); 997 998 WeakRefReferences.erase(Entry); 999 } 1000 1001 if (Entry->getType()->getElementType() == Ty) 1002 return Entry; 1003 1004 // Make sure the result is of the correct type. 1005 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1006 } 1007 1008 // This function doesn't have a complete type (for example, the return 1009 // type is an incomplete struct). Use a fake type instead, and make 1010 // sure not to try to set attributes. 1011 bool IsIncompleteFunction = false; 1012 1013 llvm::FunctionType *FTy; 1014 if (isa<llvm::FunctionType>(Ty)) { 1015 FTy = cast<llvm::FunctionType>(Ty); 1016 } else { 1017 FTy = llvm::FunctionType::get(VoidTy, false); 1018 IsIncompleteFunction = true; 1019 } 1020 1021 llvm::Function *F = llvm::Function::Create(FTy, 1022 llvm::Function::ExternalLinkage, 1023 MangledName, &getModule()); 1024 assert(F->getName() == MangledName && "name was uniqued!"); 1025 if (D.getDecl()) 1026 SetFunctionAttributes(D, F, IsIncompleteFunction); 1027 if (ExtraAttrs != llvm::Attribute::None) 1028 F->addFnAttr(ExtraAttrs); 1029 1030 // This is the first use or definition of a mangled name. If there is a 1031 // deferred decl with this name, remember that we need to emit it at the end 1032 // of the file. 1033 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1034 if (DDI != DeferredDecls.end()) { 1035 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1036 // list, and remove it from DeferredDecls (since we don't need it anymore). 1037 DeferredDeclsToEmit.push_back(DDI->second); 1038 DeferredDecls.erase(DDI); 1039 1040 // Otherwise, there are cases we have to worry about where we're 1041 // using a declaration for which we must emit a definition but where 1042 // we might not find a top-level definition: 1043 // - member functions defined inline in their classes 1044 // - friend functions defined inline in some class 1045 // - special member functions with implicit definitions 1046 // If we ever change our AST traversal to walk into class methods, 1047 // this will be unnecessary. 1048 // 1049 // We also don't emit a definition for a function if it's going to be an entry 1050 // in a vtable, unless it's already marked as used. 1051 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1052 // Look for a declaration that's lexically in a record. 1053 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1054 do { 1055 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1056 if (FD->isImplicit() && !ForVTable) { 1057 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1058 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1059 break; 1060 } else if (FD->doesThisDeclarationHaveABody()) { 1061 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1062 break; 1063 } 1064 } 1065 FD = FD->getPreviousDecl(); 1066 } while (FD); 1067 } 1068 1069 // Make sure the result is of the requested type. 1070 if (!IsIncompleteFunction) { 1071 assert(F->getType()->getElementType() == Ty); 1072 return F; 1073 } 1074 1075 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1076 return llvm::ConstantExpr::getBitCast(F, PTy); 1077 } 1078 1079 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1080 /// non-null, then this function will use the specified type if it has to 1081 /// create it (this occurs when we see a definition of the function). 1082 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1083 llvm::Type *Ty, 1084 bool ForVTable) { 1085 // If there was no specific requested type, just convert it now. 1086 if (!Ty) 1087 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1088 1089 StringRef MangledName = getMangledName(GD); 1090 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1091 } 1092 1093 /// CreateRuntimeFunction - Create a new runtime function with the specified 1094 /// type and name. 1095 llvm::Constant * 1096 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1097 StringRef Name, 1098 llvm::Attributes ExtraAttrs) { 1099 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1100 ExtraAttrs); 1101 } 1102 1103 /// isTypeConstant - Determine whether an object of this type can be emitted 1104 /// as a constant. 1105 /// 1106 /// If ExcludeCtor is true, the duration when the object's constructor runs 1107 /// will not be considered. The caller will need to verify that the object is 1108 /// not written to during its construction. 1109 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1110 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1111 return false; 1112 1113 if (Context.getLangOpts().CPlusPlus) { 1114 if (const CXXRecordDecl *Record 1115 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1116 return ExcludeCtor && !Record->hasMutableFields() && 1117 Record->hasTrivialDestructor(); 1118 } 1119 1120 return true; 1121 } 1122 1123 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1124 /// create and return an llvm GlobalVariable with the specified type. If there 1125 /// is something in the module with the specified name, return it potentially 1126 /// bitcasted to the right type. 1127 /// 1128 /// If D is non-null, it specifies a decl that correspond to this. This is used 1129 /// to set the attributes on the global when it is first created. 1130 llvm::Constant * 1131 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1132 llvm::PointerType *Ty, 1133 const VarDecl *D, 1134 bool UnnamedAddr) { 1135 // Lookup the entry, lazily creating it if necessary. 1136 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1137 if (Entry) { 1138 if (WeakRefReferences.count(Entry)) { 1139 if (D && !D->hasAttr<WeakAttr>()) 1140 Entry->setLinkage(llvm::Function::ExternalLinkage); 1141 1142 WeakRefReferences.erase(Entry); 1143 } 1144 1145 if (UnnamedAddr) 1146 Entry->setUnnamedAddr(true); 1147 1148 if (Entry->getType() == Ty) 1149 return Entry; 1150 1151 // Make sure the result is of the correct type. 1152 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1153 } 1154 1155 // This is the first use or definition of a mangled name. If there is a 1156 // deferred decl with this name, remember that we need to emit it at the end 1157 // of the file. 1158 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1159 if (DDI != DeferredDecls.end()) { 1160 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1161 // list, and remove it from DeferredDecls (since we don't need it anymore). 1162 DeferredDeclsToEmit.push_back(DDI->second); 1163 DeferredDecls.erase(DDI); 1164 } 1165 1166 llvm::GlobalVariable *GV = 1167 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1168 llvm::GlobalValue::ExternalLinkage, 1169 0, MangledName, 0, 1170 false, Ty->getAddressSpace()); 1171 1172 // Handle things which are present even on external declarations. 1173 if (D) { 1174 // FIXME: This code is overly simple and should be merged with other global 1175 // handling. 1176 GV->setConstant(isTypeConstant(D->getType(), false)); 1177 1178 // Set linkage and visibility in case we never see a definition. 1179 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1180 if (LV.linkage() != ExternalLinkage) { 1181 // Don't set internal linkage on declarations. 1182 } else { 1183 if (D->hasAttr<DLLImportAttr>()) 1184 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1185 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1186 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1187 1188 // Set visibility on a declaration only if it's explicit. 1189 if (LV.visibilityExplicit()) 1190 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1191 } 1192 1193 GV->setThreadLocal(D->isThreadSpecified()); 1194 } 1195 1196 return GV; 1197 } 1198 1199 1200 llvm::GlobalVariable * 1201 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1202 llvm::Type *Ty, 1203 llvm::GlobalValue::LinkageTypes Linkage) { 1204 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1205 llvm::GlobalVariable *OldGV = 0; 1206 1207 1208 if (GV) { 1209 // Check if the variable has the right type. 1210 if (GV->getType()->getElementType() == Ty) 1211 return GV; 1212 1213 // Because C++ name mangling, the only way we can end up with an already 1214 // existing global with the same name is if it has been declared extern "C". 1215 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1216 OldGV = GV; 1217 } 1218 1219 // Create a new variable. 1220 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1221 Linkage, 0, Name); 1222 1223 if (OldGV) { 1224 // Replace occurrences of the old variable if needed. 1225 GV->takeName(OldGV); 1226 1227 if (!OldGV->use_empty()) { 1228 llvm::Constant *NewPtrForOldDecl = 1229 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1230 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1231 } 1232 1233 OldGV->eraseFromParent(); 1234 } 1235 1236 return GV; 1237 } 1238 1239 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1240 /// given global variable. If Ty is non-null and if the global doesn't exist, 1241 /// then it will be greated with the specified type instead of whatever the 1242 /// normal requested type would be. 1243 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1244 llvm::Type *Ty) { 1245 assert(D->hasGlobalStorage() && "Not a global variable"); 1246 QualType ASTTy = D->getType(); 1247 if (Ty == 0) 1248 Ty = getTypes().ConvertTypeForMem(ASTTy); 1249 1250 llvm::PointerType *PTy = 1251 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1252 1253 StringRef MangledName = getMangledName(D); 1254 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1255 } 1256 1257 /// CreateRuntimeVariable - Create a new runtime global variable with the 1258 /// specified type and name. 1259 llvm::Constant * 1260 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1261 StringRef Name) { 1262 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1263 true); 1264 } 1265 1266 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1267 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1268 1269 if (MayDeferGeneration(D)) { 1270 // If we have not seen a reference to this variable yet, place it 1271 // into the deferred declarations table to be emitted if needed 1272 // later. 1273 StringRef MangledName = getMangledName(D); 1274 if (!GetGlobalValue(MangledName)) { 1275 DeferredDecls[MangledName] = D; 1276 return; 1277 } 1278 } 1279 1280 // The tentative definition is the only definition. 1281 EmitGlobalVarDefinition(D); 1282 } 1283 1284 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1285 if (DefinitionRequired) 1286 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1287 } 1288 1289 llvm::GlobalVariable::LinkageTypes 1290 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1291 if (RD->getLinkage() != ExternalLinkage) 1292 return llvm::GlobalVariable::InternalLinkage; 1293 1294 if (const CXXMethodDecl *KeyFunction 1295 = RD->getASTContext().getKeyFunction(RD)) { 1296 // If this class has a key function, use that to determine the linkage of 1297 // the vtable. 1298 const FunctionDecl *Def = 0; 1299 if (KeyFunction->hasBody(Def)) 1300 KeyFunction = cast<CXXMethodDecl>(Def); 1301 1302 switch (KeyFunction->getTemplateSpecializationKind()) { 1303 case TSK_Undeclared: 1304 case TSK_ExplicitSpecialization: 1305 // When compiling with optimizations turned on, we emit all vtables, 1306 // even if the key function is not defined in the current translation 1307 // unit. If this is the case, use available_externally linkage. 1308 if (!Def && CodeGenOpts.OptimizationLevel) 1309 return llvm::GlobalVariable::AvailableExternallyLinkage; 1310 1311 if (KeyFunction->isInlined()) 1312 return !Context.getLangOpts().AppleKext ? 1313 llvm::GlobalVariable::LinkOnceODRLinkage : 1314 llvm::Function::InternalLinkage; 1315 1316 return llvm::GlobalVariable::ExternalLinkage; 1317 1318 case TSK_ImplicitInstantiation: 1319 return !Context.getLangOpts().AppleKext ? 1320 llvm::GlobalVariable::LinkOnceODRLinkage : 1321 llvm::Function::InternalLinkage; 1322 1323 case TSK_ExplicitInstantiationDefinition: 1324 return !Context.getLangOpts().AppleKext ? 1325 llvm::GlobalVariable::WeakODRLinkage : 1326 llvm::Function::InternalLinkage; 1327 1328 case TSK_ExplicitInstantiationDeclaration: 1329 // FIXME: Use available_externally linkage. However, this currently 1330 // breaks LLVM's build due to undefined symbols. 1331 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1332 return !Context.getLangOpts().AppleKext ? 1333 llvm::GlobalVariable::LinkOnceODRLinkage : 1334 llvm::Function::InternalLinkage; 1335 } 1336 } 1337 1338 if (Context.getLangOpts().AppleKext) 1339 return llvm::Function::InternalLinkage; 1340 1341 switch (RD->getTemplateSpecializationKind()) { 1342 case TSK_Undeclared: 1343 case TSK_ExplicitSpecialization: 1344 case TSK_ImplicitInstantiation: 1345 // FIXME: Use available_externally linkage. However, this currently 1346 // breaks LLVM's build due to undefined symbols. 1347 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1348 case TSK_ExplicitInstantiationDeclaration: 1349 return llvm::GlobalVariable::LinkOnceODRLinkage; 1350 1351 case TSK_ExplicitInstantiationDefinition: 1352 return llvm::GlobalVariable::WeakODRLinkage; 1353 } 1354 1355 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1356 } 1357 1358 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1359 return Context.toCharUnitsFromBits( 1360 TheTargetData.getTypeStoreSizeInBits(Ty)); 1361 } 1362 1363 llvm::Constant * 1364 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1365 const Expr *rawInit) { 1366 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1367 if (const ExprWithCleanups *withCleanups = 1368 dyn_cast<ExprWithCleanups>(rawInit)) { 1369 cleanups = withCleanups->getObjects(); 1370 rawInit = withCleanups->getSubExpr(); 1371 } 1372 1373 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1374 if (!init || !init->initializesStdInitializerList() || 1375 init->getNumInits() == 0) 1376 return 0; 1377 1378 ASTContext &ctx = getContext(); 1379 unsigned numInits = init->getNumInits(); 1380 // FIXME: This check is here because we would otherwise silently miscompile 1381 // nested global std::initializer_lists. Better would be to have a real 1382 // implementation. 1383 for (unsigned i = 0; i < numInits; ++i) { 1384 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1385 if (inner && inner->initializesStdInitializerList()) { 1386 ErrorUnsupported(inner, "nested global std::initializer_list"); 1387 return 0; 1388 } 1389 } 1390 1391 // Synthesize a fake VarDecl for the array and initialize that. 1392 QualType elementType = init->getInit(0)->getType(); 1393 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1394 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1395 ArrayType::Normal, 0); 1396 1397 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1398 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1399 arrayType, D->getLocation()); 1400 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1401 D->getDeclContext()), 1402 D->getLocStart(), D->getLocation(), 1403 name, arrayType, sourceInfo, 1404 SC_Static, SC_Static); 1405 1406 // Now clone the InitListExpr to initialize the array instead. 1407 // Incredible hack: we want to use the existing InitListExpr here, so we need 1408 // to tell it that it no longer initializes a std::initializer_list. 1409 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1410 const_cast<InitListExpr*>(init)->getInits(), 1411 init->getNumInits(), 1412 init->getRBraceLoc()); 1413 arrayInit->setType(arrayType); 1414 1415 if (!cleanups.empty()) 1416 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1417 1418 backingArray->setInit(arrayInit); 1419 1420 // Emit the definition of the array. 1421 EmitGlobalVarDefinition(backingArray); 1422 1423 // Inspect the initializer list to validate it and determine its type. 1424 // FIXME: doing this every time is probably inefficient; caching would be nice 1425 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1426 RecordDecl::field_iterator field = record->field_begin(); 1427 if (field == record->field_end()) { 1428 ErrorUnsupported(D, "weird std::initializer_list"); 1429 return 0; 1430 } 1431 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1432 // Start pointer. 1433 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1434 ErrorUnsupported(D, "weird std::initializer_list"); 1435 return 0; 1436 } 1437 ++field; 1438 if (field == record->field_end()) { 1439 ErrorUnsupported(D, "weird std::initializer_list"); 1440 return 0; 1441 } 1442 bool isStartEnd = false; 1443 if (ctx.hasSameType(field->getType(), elementPtr)) { 1444 // End pointer. 1445 isStartEnd = true; 1446 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1447 ErrorUnsupported(D, "weird std::initializer_list"); 1448 return 0; 1449 } 1450 1451 // Now build an APValue representing the std::initializer_list. 1452 APValue initListValue(APValue::UninitStruct(), 0, 2); 1453 APValue &startField = initListValue.getStructField(0); 1454 APValue::LValuePathEntry startOffsetPathEntry; 1455 startOffsetPathEntry.ArrayIndex = 0; 1456 startField = APValue(APValue::LValueBase(backingArray), 1457 CharUnits::fromQuantity(0), 1458 llvm::makeArrayRef(startOffsetPathEntry), 1459 /*IsOnePastTheEnd=*/false, 0); 1460 1461 if (isStartEnd) { 1462 APValue &endField = initListValue.getStructField(1); 1463 APValue::LValuePathEntry endOffsetPathEntry; 1464 endOffsetPathEntry.ArrayIndex = numInits; 1465 endField = APValue(APValue::LValueBase(backingArray), 1466 ctx.getTypeSizeInChars(elementType) * numInits, 1467 llvm::makeArrayRef(endOffsetPathEntry), 1468 /*IsOnePastTheEnd=*/true, 0); 1469 } else { 1470 APValue &sizeField = initListValue.getStructField(1); 1471 sizeField = APValue(llvm::APSInt(numElements)); 1472 } 1473 1474 // Emit the constant for the initializer_list. 1475 llvm::Constant *llvmInit = 1476 EmitConstantValueForMemory(initListValue, D->getType()); 1477 assert(llvmInit && "failed to initialize as constant"); 1478 return llvmInit; 1479 } 1480 1481 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1482 llvm::Constant *Init = 0; 1483 QualType ASTTy = D->getType(); 1484 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1485 bool NeedsGlobalCtor = false; 1486 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1487 1488 const VarDecl *InitDecl; 1489 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1490 1491 if (!InitExpr) { 1492 // This is a tentative definition; tentative definitions are 1493 // implicitly initialized with { 0 }. 1494 // 1495 // Note that tentative definitions are only emitted at the end of 1496 // a translation unit, so they should never have incomplete 1497 // type. In addition, EmitTentativeDefinition makes sure that we 1498 // never attempt to emit a tentative definition if a real one 1499 // exists. A use may still exists, however, so we still may need 1500 // to do a RAUW. 1501 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1502 Init = EmitNullConstant(D->getType()); 1503 } else { 1504 // If this is a std::initializer_list, emit the special initializer. 1505 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1506 // An empty init list will perform zero-initialization, which happens 1507 // to be exactly what we want. 1508 // FIXME: It does so in a global constructor, which is *not* what we 1509 // want. 1510 1511 if (!Init) 1512 Init = EmitConstantInit(*InitDecl); 1513 if (!Init) { 1514 QualType T = InitExpr->getType(); 1515 if (D->getType()->isReferenceType()) 1516 T = D->getType(); 1517 1518 if (getLangOpts().CPlusPlus) { 1519 Init = EmitNullConstant(T); 1520 NeedsGlobalCtor = true; 1521 } else { 1522 ErrorUnsupported(D, "static initializer"); 1523 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1524 } 1525 } else { 1526 // We don't need an initializer, so remove the entry for the delayed 1527 // initializer position (just in case this entry was delayed) if we 1528 // also don't need to register a destructor. 1529 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1530 DelayedCXXInitPosition.erase(D); 1531 } 1532 } 1533 1534 llvm::Type* InitType = Init->getType(); 1535 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1536 1537 // Strip off a bitcast if we got one back. 1538 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1539 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1540 // all zero index gep. 1541 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1542 Entry = CE->getOperand(0); 1543 } 1544 1545 // Entry is now either a Function or GlobalVariable. 1546 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1547 1548 // We have a definition after a declaration with the wrong type. 1549 // We must make a new GlobalVariable* and update everything that used OldGV 1550 // (a declaration or tentative definition) with the new GlobalVariable* 1551 // (which will be a definition). 1552 // 1553 // This happens if there is a prototype for a global (e.g. 1554 // "extern int x[];") and then a definition of a different type (e.g. 1555 // "int x[10];"). This also happens when an initializer has a different type 1556 // from the type of the global (this happens with unions). 1557 if (GV == 0 || 1558 GV->getType()->getElementType() != InitType || 1559 GV->getType()->getAddressSpace() != 1560 getContext().getTargetAddressSpace(ASTTy)) { 1561 1562 // Move the old entry aside so that we'll create a new one. 1563 Entry->setName(StringRef()); 1564 1565 // Make a new global with the correct type, this is now guaranteed to work. 1566 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1567 1568 // Replace all uses of the old global with the new global 1569 llvm::Constant *NewPtrForOldDecl = 1570 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1571 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1572 1573 // Erase the old global, since it is no longer used. 1574 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1575 } 1576 1577 if (D->hasAttr<AnnotateAttr>()) 1578 AddGlobalAnnotations(D, GV); 1579 1580 GV->setInitializer(Init); 1581 1582 // If it is safe to mark the global 'constant', do so now. 1583 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1584 isTypeConstant(D->getType(), true)); 1585 1586 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1587 1588 // Set the llvm linkage type as appropriate. 1589 llvm::GlobalValue::LinkageTypes Linkage = 1590 GetLLVMLinkageVarDefinition(D, GV); 1591 GV->setLinkage(Linkage); 1592 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1593 // common vars aren't constant even if declared const. 1594 GV->setConstant(false); 1595 1596 SetCommonAttributes(D, GV); 1597 1598 // Emit the initializer function if necessary. 1599 if (NeedsGlobalCtor || NeedsGlobalDtor) 1600 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1601 1602 // Emit global variable debug information. 1603 if (CGDebugInfo *DI = getModuleDebugInfo()) 1604 DI->EmitGlobalVariable(GV, D); 1605 } 1606 1607 llvm::GlobalValue::LinkageTypes 1608 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1609 llvm::GlobalVariable *GV) { 1610 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1611 if (Linkage == GVA_Internal) 1612 return llvm::Function::InternalLinkage; 1613 else if (D->hasAttr<DLLImportAttr>()) 1614 return llvm::Function::DLLImportLinkage; 1615 else if (D->hasAttr<DLLExportAttr>()) 1616 return llvm::Function::DLLExportLinkage; 1617 else if (D->hasAttr<WeakAttr>()) { 1618 if (GV->isConstant()) 1619 return llvm::GlobalVariable::WeakODRLinkage; 1620 else 1621 return llvm::GlobalVariable::WeakAnyLinkage; 1622 } else if (Linkage == GVA_TemplateInstantiation || 1623 Linkage == GVA_ExplicitTemplateInstantiation) 1624 return llvm::GlobalVariable::WeakODRLinkage; 1625 else if (!getLangOpts().CPlusPlus && 1626 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1627 D->getAttr<CommonAttr>()) && 1628 !D->hasExternalStorage() && !D->getInit() && 1629 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1630 !D->getAttr<WeakImportAttr>()) { 1631 // Thread local vars aren't considered common linkage. 1632 return llvm::GlobalVariable::CommonLinkage; 1633 } 1634 return llvm::GlobalVariable::ExternalLinkage; 1635 } 1636 1637 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1638 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1639 /// existing call uses of the old function in the module, this adjusts them to 1640 /// call the new function directly. 1641 /// 1642 /// This is not just a cleanup: the always_inline pass requires direct calls to 1643 /// functions to be able to inline them. If there is a bitcast in the way, it 1644 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1645 /// run at -O0. 1646 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1647 llvm::Function *NewFn) { 1648 // If we're redefining a global as a function, don't transform it. 1649 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1650 if (OldFn == 0) return; 1651 1652 llvm::Type *NewRetTy = NewFn->getReturnType(); 1653 SmallVector<llvm::Value*, 4> ArgList; 1654 1655 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1656 UI != E; ) { 1657 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1658 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1659 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1660 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1661 llvm::CallSite CS(CI); 1662 if (!CI || !CS.isCallee(I)) continue; 1663 1664 // If the return types don't match exactly, and if the call isn't dead, then 1665 // we can't transform this call. 1666 if (CI->getType() != NewRetTy && !CI->use_empty()) 1667 continue; 1668 1669 // Get the attribute list. 1670 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1671 llvm::AttrListPtr AttrList = CI->getAttributes(); 1672 1673 // Get any return attributes. 1674 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1675 1676 // Add the return attributes. 1677 if (RAttrs) 1678 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1679 1680 // If the function was passed too few arguments, don't transform. If extra 1681 // arguments were passed, we silently drop them. If any of the types 1682 // mismatch, we don't transform. 1683 unsigned ArgNo = 0; 1684 bool DontTransform = false; 1685 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1686 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1687 if (CS.arg_size() == ArgNo || 1688 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1689 DontTransform = true; 1690 break; 1691 } 1692 1693 // Add any parameter attributes. 1694 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1695 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1696 } 1697 if (DontTransform) 1698 continue; 1699 1700 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1701 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1702 1703 // Okay, we can transform this. Create the new call instruction and copy 1704 // over the required information. 1705 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1706 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1707 ArgList.clear(); 1708 if (!NewCall->getType()->isVoidTy()) 1709 NewCall->takeName(CI); 1710 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1711 AttrVec.end())); 1712 NewCall->setCallingConv(CI->getCallingConv()); 1713 1714 // Finally, remove the old call, replacing any uses with the new one. 1715 if (!CI->use_empty()) 1716 CI->replaceAllUsesWith(NewCall); 1717 1718 // Copy debug location attached to CI. 1719 if (!CI->getDebugLoc().isUnknown()) 1720 NewCall->setDebugLoc(CI->getDebugLoc()); 1721 CI->eraseFromParent(); 1722 } 1723 } 1724 1725 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1726 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1727 // If we have a definition, this might be a deferred decl. If the 1728 // instantiation is explicit, make sure we emit it at the end. 1729 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1730 GetAddrOfGlobalVar(VD); 1731 } 1732 1733 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1734 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1735 1736 // Compute the function info and LLVM type. 1737 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1738 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1739 1740 // Get or create the prototype for the function. 1741 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1742 1743 // Strip off a bitcast if we got one back. 1744 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1745 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1746 Entry = CE->getOperand(0); 1747 } 1748 1749 1750 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1751 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1752 1753 // If the types mismatch then we have to rewrite the definition. 1754 assert(OldFn->isDeclaration() && 1755 "Shouldn't replace non-declaration"); 1756 1757 // F is the Function* for the one with the wrong type, we must make a new 1758 // Function* and update everything that used F (a declaration) with the new 1759 // Function* (which will be a definition). 1760 // 1761 // This happens if there is a prototype for a function 1762 // (e.g. "int f()") and then a definition of a different type 1763 // (e.g. "int f(int x)"). Move the old function aside so that it 1764 // doesn't interfere with GetAddrOfFunction. 1765 OldFn->setName(StringRef()); 1766 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1767 1768 // If this is an implementation of a function without a prototype, try to 1769 // replace any existing uses of the function (which may be calls) with uses 1770 // of the new function 1771 if (D->getType()->isFunctionNoProtoType()) { 1772 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1773 OldFn->removeDeadConstantUsers(); 1774 } 1775 1776 // Replace uses of F with the Function we will endow with a body. 1777 if (!Entry->use_empty()) { 1778 llvm::Constant *NewPtrForOldDecl = 1779 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1780 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1781 } 1782 1783 // Ok, delete the old function now, which is dead. 1784 OldFn->eraseFromParent(); 1785 1786 Entry = NewFn; 1787 } 1788 1789 // We need to set linkage and visibility on the function before 1790 // generating code for it because various parts of IR generation 1791 // want to propagate this information down (e.g. to local static 1792 // declarations). 1793 llvm::Function *Fn = cast<llvm::Function>(Entry); 1794 setFunctionLinkage(D, Fn); 1795 1796 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1797 setGlobalVisibility(Fn, D); 1798 1799 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1800 1801 SetFunctionDefinitionAttributes(D, Fn); 1802 SetLLVMFunctionAttributesForDefinition(D, Fn); 1803 1804 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1805 AddGlobalCtor(Fn, CA->getPriority()); 1806 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1807 AddGlobalDtor(Fn, DA->getPriority()); 1808 if (D->hasAttr<AnnotateAttr>()) 1809 AddGlobalAnnotations(D, Fn); 1810 } 1811 1812 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1813 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1814 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1815 assert(AA && "Not an alias?"); 1816 1817 StringRef MangledName = getMangledName(GD); 1818 1819 // If there is a definition in the module, then it wins over the alias. 1820 // This is dubious, but allow it to be safe. Just ignore the alias. 1821 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1822 if (Entry && !Entry->isDeclaration()) 1823 return; 1824 1825 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1826 1827 // Create a reference to the named value. This ensures that it is emitted 1828 // if a deferred decl. 1829 llvm::Constant *Aliasee; 1830 if (isa<llvm::FunctionType>(DeclTy)) 1831 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1832 /*ForVTable=*/false); 1833 else 1834 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1835 llvm::PointerType::getUnqual(DeclTy), 0); 1836 1837 // Create the new alias itself, but don't set a name yet. 1838 llvm::GlobalValue *GA = 1839 new llvm::GlobalAlias(Aliasee->getType(), 1840 llvm::Function::ExternalLinkage, 1841 "", Aliasee, &getModule()); 1842 1843 if (Entry) { 1844 assert(Entry->isDeclaration()); 1845 1846 // If there is a declaration in the module, then we had an extern followed 1847 // by the alias, as in: 1848 // extern int test6(); 1849 // ... 1850 // int test6() __attribute__((alias("test7"))); 1851 // 1852 // Remove it and replace uses of it with the alias. 1853 GA->takeName(Entry); 1854 1855 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1856 Entry->getType())); 1857 Entry->eraseFromParent(); 1858 } else { 1859 GA->setName(MangledName); 1860 } 1861 1862 // Set attributes which are particular to an alias; this is a 1863 // specialization of the attributes which may be set on a global 1864 // variable/function. 1865 if (D->hasAttr<DLLExportAttr>()) { 1866 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1867 // The dllexport attribute is ignored for undefined symbols. 1868 if (FD->hasBody()) 1869 GA->setLinkage(llvm::Function::DLLExportLinkage); 1870 } else { 1871 GA->setLinkage(llvm::Function::DLLExportLinkage); 1872 } 1873 } else if (D->hasAttr<WeakAttr>() || 1874 D->hasAttr<WeakRefAttr>() || 1875 D->isWeakImported()) { 1876 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1877 } 1878 1879 SetCommonAttributes(D, GA); 1880 } 1881 1882 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1883 ArrayRef<llvm::Type*> Tys) { 1884 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1885 Tys); 1886 } 1887 1888 static llvm::StringMapEntry<llvm::Constant*> & 1889 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1890 const StringLiteral *Literal, 1891 bool TargetIsLSB, 1892 bool &IsUTF16, 1893 unsigned &StringLength) { 1894 StringRef String = Literal->getString(); 1895 unsigned NumBytes = String.size(); 1896 1897 // Check for simple case. 1898 if (!Literal->containsNonAsciiOrNull()) { 1899 StringLength = NumBytes; 1900 return Map.GetOrCreateValue(String); 1901 } 1902 1903 // Otherwise, convert the UTF8 literals into a byte string. 1904 SmallVector<UTF16, 128> ToBuf(NumBytes); 1905 const UTF8 *FromPtr = (UTF8 *)String.data(); 1906 UTF16 *ToPtr = &ToBuf[0]; 1907 1908 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1909 &ToPtr, ToPtr + NumBytes, 1910 strictConversion); 1911 1912 // ConvertUTF8toUTF16 returns the length in ToPtr. 1913 StringLength = ToPtr - &ToBuf[0]; 1914 1915 // Render the UTF-16 string into a byte array and convert to the target byte 1916 // order. 1917 // 1918 // FIXME: This isn't something we should need to do here. 1919 SmallString<128> AsBytes; 1920 AsBytes.reserve(StringLength * 2); 1921 for (unsigned i = 0; i != StringLength; ++i) { 1922 unsigned short Val = ToBuf[i]; 1923 if (TargetIsLSB) { 1924 AsBytes.push_back(Val & 0xFF); 1925 AsBytes.push_back(Val >> 8); 1926 } else { 1927 AsBytes.push_back(Val >> 8); 1928 AsBytes.push_back(Val & 0xFF); 1929 } 1930 } 1931 // Append one extra null character, the second is automatically added by our 1932 // caller. 1933 AsBytes.push_back(0); 1934 1935 IsUTF16 = true; 1936 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1937 } 1938 1939 static llvm::StringMapEntry<llvm::Constant*> & 1940 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1941 const StringLiteral *Literal, 1942 unsigned &StringLength) 1943 { 1944 StringRef String = Literal->getString(); 1945 StringLength = String.size(); 1946 return Map.GetOrCreateValue(String); 1947 } 1948 1949 llvm::Constant * 1950 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1951 unsigned StringLength = 0; 1952 bool isUTF16 = false; 1953 llvm::StringMapEntry<llvm::Constant*> &Entry = 1954 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1955 getTargetData().isLittleEndian(), 1956 isUTF16, StringLength); 1957 1958 if (llvm::Constant *C = Entry.getValue()) 1959 return C; 1960 1961 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1962 llvm::Constant *Zeros[] = { Zero, Zero }; 1963 1964 // If we don't already have it, get __CFConstantStringClassReference. 1965 if (!CFConstantStringClassRef) { 1966 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1967 Ty = llvm::ArrayType::get(Ty, 0); 1968 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1969 "__CFConstantStringClassReference"); 1970 // Decay array -> ptr 1971 CFConstantStringClassRef = 1972 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1973 } 1974 1975 QualType CFTy = getContext().getCFConstantStringType(); 1976 1977 llvm::StructType *STy = 1978 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1979 1980 llvm::Constant *Fields[4]; 1981 1982 // Class pointer. 1983 Fields[0] = CFConstantStringClassRef; 1984 1985 // Flags. 1986 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1987 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1988 llvm::ConstantInt::get(Ty, 0x07C8); 1989 1990 // String pointer. 1991 llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext, 1992 Entry.getKey()); 1993 1994 llvm::GlobalValue::LinkageTypes Linkage; 1995 if (isUTF16) 1996 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1997 Linkage = llvm::GlobalValue::InternalLinkage; 1998 else 1999 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2000 // when using private linkage. It is not clear if this is a bug in ld 2001 // or a reasonable new restriction. 2002 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2003 2004 // Note: -fwritable-strings doesn't make the backing store strings of 2005 // CFStrings writable. (See <rdar://problem/10657500>) 2006 llvm::GlobalVariable *GV = 2007 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2008 Linkage, C, ".str"); 2009 GV->setUnnamedAddr(true); 2010 if (isUTF16) { 2011 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2012 GV->setAlignment(Align.getQuantity()); 2013 } else { 2014 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2015 GV->setAlignment(Align.getQuantity()); 2016 } 2017 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2018 2019 // String length. 2020 Ty = getTypes().ConvertType(getContext().LongTy); 2021 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2022 2023 // The struct. 2024 C = llvm::ConstantStruct::get(STy, Fields); 2025 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2026 llvm::GlobalVariable::PrivateLinkage, C, 2027 "_unnamed_cfstring_"); 2028 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2029 GV->setSection(Sect); 2030 Entry.setValue(GV); 2031 2032 return GV; 2033 } 2034 2035 static RecordDecl * 2036 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2037 DeclContext *DC, IdentifierInfo *Id) { 2038 SourceLocation Loc; 2039 if (Ctx.getLangOpts().CPlusPlus) 2040 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2041 else 2042 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2043 } 2044 2045 llvm::Constant * 2046 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2047 unsigned StringLength = 0; 2048 llvm::StringMapEntry<llvm::Constant*> &Entry = 2049 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2050 2051 if (llvm::Constant *C = Entry.getValue()) 2052 return C; 2053 2054 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2055 llvm::Constant *Zeros[] = { Zero, Zero }; 2056 2057 // If we don't already have it, get _NSConstantStringClassReference. 2058 if (!ConstantStringClassRef) { 2059 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2060 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2061 llvm::Constant *GV; 2062 if (LangOpts.ObjCNonFragileABI) { 2063 std::string str = 2064 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2065 : "OBJC_CLASS_$_" + StringClass; 2066 GV = getObjCRuntime().GetClassGlobal(str); 2067 // Make sure the result is of the correct type. 2068 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2069 ConstantStringClassRef = 2070 llvm::ConstantExpr::getBitCast(GV, PTy); 2071 } else { 2072 std::string str = 2073 StringClass.empty() ? "_NSConstantStringClassReference" 2074 : "_" + StringClass + "ClassReference"; 2075 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2076 GV = CreateRuntimeVariable(PTy, str); 2077 // Decay array -> ptr 2078 ConstantStringClassRef = 2079 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2080 } 2081 } 2082 2083 if (!NSConstantStringType) { 2084 // Construct the type for a constant NSString. 2085 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2086 Context.getTranslationUnitDecl(), 2087 &Context.Idents.get("__builtin_NSString")); 2088 D->startDefinition(); 2089 2090 QualType FieldTypes[3]; 2091 2092 // const int *isa; 2093 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2094 // const char *str; 2095 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2096 // unsigned int length; 2097 FieldTypes[2] = Context.UnsignedIntTy; 2098 2099 // Create fields 2100 for (unsigned i = 0; i < 3; ++i) { 2101 FieldDecl *Field = FieldDecl::Create(Context, D, 2102 SourceLocation(), 2103 SourceLocation(), 0, 2104 FieldTypes[i], /*TInfo=*/0, 2105 /*BitWidth=*/0, 2106 /*Mutable=*/false, 2107 /*HasInit=*/false); 2108 Field->setAccess(AS_public); 2109 D->addDecl(Field); 2110 } 2111 2112 D->completeDefinition(); 2113 QualType NSTy = Context.getTagDeclType(D); 2114 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2115 } 2116 2117 llvm::Constant *Fields[3]; 2118 2119 // Class pointer. 2120 Fields[0] = ConstantStringClassRef; 2121 2122 // String pointer. 2123 llvm::Constant *C = 2124 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2125 2126 llvm::GlobalValue::LinkageTypes Linkage; 2127 bool isConstant; 2128 Linkage = llvm::GlobalValue::PrivateLinkage; 2129 isConstant = !LangOpts.WritableStrings; 2130 2131 llvm::GlobalVariable *GV = 2132 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2133 ".str"); 2134 GV->setUnnamedAddr(true); 2135 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2136 GV->setAlignment(Align.getQuantity()); 2137 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2138 2139 // String length. 2140 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2141 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2142 2143 // The struct. 2144 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2145 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2146 llvm::GlobalVariable::PrivateLinkage, C, 2147 "_unnamed_nsstring_"); 2148 // FIXME. Fix section. 2149 if (const char *Sect = 2150 LangOpts.ObjCNonFragileABI 2151 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2152 : getContext().getTargetInfo().getNSStringSection()) 2153 GV->setSection(Sect); 2154 Entry.setValue(GV); 2155 2156 return GV; 2157 } 2158 2159 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2160 if (ObjCFastEnumerationStateType.isNull()) { 2161 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2162 Context.getTranslationUnitDecl(), 2163 &Context.Idents.get("__objcFastEnumerationState")); 2164 D->startDefinition(); 2165 2166 QualType FieldTypes[] = { 2167 Context.UnsignedLongTy, 2168 Context.getPointerType(Context.getObjCIdType()), 2169 Context.getPointerType(Context.UnsignedLongTy), 2170 Context.getConstantArrayType(Context.UnsignedLongTy, 2171 llvm::APInt(32, 5), ArrayType::Normal, 0) 2172 }; 2173 2174 for (size_t i = 0; i < 4; ++i) { 2175 FieldDecl *Field = FieldDecl::Create(Context, 2176 D, 2177 SourceLocation(), 2178 SourceLocation(), 0, 2179 FieldTypes[i], /*TInfo=*/0, 2180 /*BitWidth=*/0, 2181 /*Mutable=*/false, 2182 /*HasInit=*/false); 2183 Field->setAccess(AS_public); 2184 D->addDecl(Field); 2185 } 2186 2187 D->completeDefinition(); 2188 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2189 } 2190 2191 return ObjCFastEnumerationStateType; 2192 } 2193 2194 llvm::Constant * 2195 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2196 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2197 2198 // Don't emit it as the address of the string, emit the string data itself 2199 // as an inline array. 2200 if (E->getCharByteWidth() == 1) { 2201 SmallString<64> Str(E->getString()); 2202 2203 // Resize the string to the right size, which is indicated by its type. 2204 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2205 Str.resize(CAT->getSize().getZExtValue()); 2206 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2207 } 2208 2209 llvm::ArrayType *AType = 2210 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2211 llvm::Type *ElemTy = AType->getElementType(); 2212 unsigned NumElements = AType->getNumElements(); 2213 2214 // Wide strings have either 2-byte or 4-byte elements. 2215 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2216 SmallVector<uint16_t, 32> Elements; 2217 Elements.reserve(NumElements); 2218 2219 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2220 Elements.push_back(E->getCodeUnit(i)); 2221 Elements.resize(NumElements); 2222 return llvm::ConstantDataArray::get(VMContext, Elements); 2223 } 2224 2225 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2226 SmallVector<uint32_t, 32> Elements; 2227 Elements.reserve(NumElements); 2228 2229 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2230 Elements.push_back(E->getCodeUnit(i)); 2231 Elements.resize(NumElements); 2232 return llvm::ConstantDataArray::get(VMContext, Elements); 2233 } 2234 2235 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2236 /// constant array for the given string literal. 2237 llvm::Constant * 2238 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2239 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2240 if (S->isAscii() || S->isUTF8()) { 2241 SmallString<64> Str(S->getString()); 2242 2243 // Resize the string to the right size, which is indicated by its type. 2244 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2245 Str.resize(CAT->getSize().getZExtValue()); 2246 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2247 } 2248 2249 // FIXME: the following does not memoize wide strings. 2250 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2251 llvm::GlobalVariable *GV = 2252 new llvm::GlobalVariable(getModule(),C->getType(), 2253 !LangOpts.WritableStrings, 2254 llvm::GlobalValue::PrivateLinkage, 2255 C,".str"); 2256 2257 GV->setAlignment(Align.getQuantity()); 2258 GV->setUnnamedAddr(true); 2259 return GV; 2260 } 2261 2262 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2263 /// array for the given ObjCEncodeExpr node. 2264 llvm::Constant * 2265 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2266 std::string Str; 2267 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2268 2269 return GetAddrOfConstantCString(Str); 2270 } 2271 2272 2273 /// GenerateWritableString -- Creates storage for a string literal. 2274 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2275 bool constant, 2276 CodeGenModule &CGM, 2277 const char *GlobalName, 2278 unsigned Alignment) { 2279 // Create Constant for this string literal. Don't add a '\0'. 2280 llvm::Constant *C = 2281 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2282 2283 // Create a global variable for this string 2284 llvm::GlobalVariable *GV = 2285 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2286 llvm::GlobalValue::PrivateLinkage, 2287 C, GlobalName); 2288 GV->setAlignment(Alignment); 2289 GV->setUnnamedAddr(true); 2290 return GV; 2291 } 2292 2293 /// GetAddrOfConstantString - Returns a pointer to a character array 2294 /// containing the literal. This contents are exactly that of the 2295 /// given string, i.e. it will not be null terminated automatically; 2296 /// see GetAddrOfConstantCString. Note that whether the result is 2297 /// actually a pointer to an LLVM constant depends on 2298 /// Feature.WriteableStrings. 2299 /// 2300 /// The result has pointer to array type. 2301 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2302 const char *GlobalName, 2303 unsigned Alignment) { 2304 // Get the default prefix if a name wasn't specified. 2305 if (!GlobalName) 2306 GlobalName = ".str"; 2307 2308 // Don't share any string literals if strings aren't constant. 2309 if (LangOpts.WritableStrings) 2310 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2311 2312 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2313 ConstantStringMap.GetOrCreateValue(Str); 2314 2315 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2316 if (Alignment > GV->getAlignment()) { 2317 GV->setAlignment(Alignment); 2318 } 2319 return GV; 2320 } 2321 2322 // Create a global variable for this. 2323 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2324 Alignment); 2325 Entry.setValue(GV); 2326 return GV; 2327 } 2328 2329 /// GetAddrOfConstantCString - Returns a pointer to a character 2330 /// array containing the literal and a terminating '\0' 2331 /// character. The result has pointer to array type. 2332 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2333 const char *GlobalName, 2334 unsigned Alignment) { 2335 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2336 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2337 } 2338 2339 /// EmitObjCPropertyImplementations - Emit information for synthesized 2340 /// properties for an implementation. 2341 void CodeGenModule::EmitObjCPropertyImplementations(const 2342 ObjCImplementationDecl *D) { 2343 for (ObjCImplementationDecl::propimpl_iterator 2344 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2345 ObjCPropertyImplDecl *PID = *i; 2346 2347 // Dynamic is just for type-checking. 2348 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2349 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2350 2351 // Determine which methods need to be implemented, some may have 2352 // been overridden. Note that ::isSynthesized is not the method 2353 // we want, that just indicates if the decl came from a 2354 // property. What we want to know is if the method is defined in 2355 // this implementation. 2356 if (!D->getInstanceMethod(PD->getGetterName())) 2357 CodeGenFunction(*this).GenerateObjCGetter( 2358 const_cast<ObjCImplementationDecl *>(D), PID); 2359 if (!PD->isReadOnly() && 2360 !D->getInstanceMethod(PD->getSetterName())) 2361 CodeGenFunction(*this).GenerateObjCSetter( 2362 const_cast<ObjCImplementationDecl *>(D), PID); 2363 } 2364 } 2365 } 2366 2367 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2368 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2369 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2370 ivar; ivar = ivar->getNextIvar()) 2371 if (ivar->getType().isDestructedType()) 2372 return true; 2373 2374 return false; 2375 } 2376 2377 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2378 /// for an implementation. 2379 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2380 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2381 if (needsDestructMethod(D)) { 2382 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2383 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2384 ObjCMethodDecl *DTORMethod = 2385 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2386 cxxSelector, getContext().VoidTy, 0, D, 2387 /*isInstance=*/true, /*isVariadic=*/false, 2388 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2389 /*isDefined=*/false, ObjCMethodDecl::Required); 2390 D->addInstanceMethod(DTORMethod); 2391 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2392 D->setHasCXXStructors(true); 2393 } 2394 2395 // If the implementation doesn't have any ivar initializers, we don't need 2396 // a .cxx_construct. 2397 if (D->getNumIvarInitializers() == 0) 2398 return; 2399 2400 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2401 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2402 // The constructor returns 'self'. 2403 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2404 D->getLocation(), 2405 D->getLocation(), 2406 cxxSelector, 2407 getContext().getObjCIdType(), 0, 2408 D, /*isInstance=*/true, 2409 /*isVariadic=*/false, 2410 /*isSynthesized=*/true, 2411 /*isImplicitlyDeclared=*/true, 2412 /*isDefined=*/false, 2413 ObjCMethodDecl::Required); 2414 D->addInstanceMethod(CTORMethod); 2415 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2416 D->setHasCXXStructors(true); 2417 } 2418 2419 /// EmitNamespace - Emit all declarations in a namespace. 2420 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2421 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2422 I != E; ++I) 2423 EmitTopLevelDecl(*I); 2424 } 2425 2426 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2427 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2428 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2429 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2430 ErrorUnsupported(LSD, "linkage spec"); 2431 return; 2432 } 2433 2434 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2435 I != E; ++I) 2436 EmitTopLevelDecl(*I); 2437 } 2438 2439 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2440 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2441 // If an error has occurred, stop code generation, but continue 2442 // parsing and semantic analysis (to ensure all warnings and errors 2443 // are emitted). 2444 if (Diags.hasErrorOccurred()) 2445 return; 2446 2447 // Ignore dependent declarations. 2448 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2449 return; 2450 2451 switch (D->getKind()) { 2452 case Decl::CXXConversion: 2453 case Decl::CXXMethod: 2454 case Decl::Function: 2455 // Skip function templates 2456 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2457 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2458 return; 2459 2460 EmitGlobal(cast<FunctionDecl>(D)); 2461 break; 2462 2463 case Decl::Var: 2464 EmitGlobal(cast<VarDecl>(D)); 2465 break; 2466 2467 // Indirect fields from global anonymous structs and unions can be 2468 // ignored; only the actual variable requires IR gen support. 2469 case Decl::IndirectField: 2470 break; 2471 2472 // C++ Decls 2473 case Decl::Namespace: 2474 EmitNamespace(cast<NamespaceDecl>(D)); 2475 break; 2476 // No code generation needed. 2477 case Decl::UsingShadow: 2478 case Decl::Using: 2479 case Decl::UsingDirective: 2480 case Decl::ClassTemplate: 2481 case Decl::FunctionTemplate: 2482 case Decl::TypeAliasTemplate: 2483 case Decl::NamespaceAlias: 2484 case Decl::Block: 2485 case Decl::Import: 2486 break; 2487 case Decl::CXXConstructor: 2488 // Skip function templates 2489 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2490 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2491 return; 2492 2493 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2494 break; 2495 case Decl::CXXDestructor: 2496 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2497 return; 2498 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2499 break; 2500 2501 case Decl::StaticAssert: 2502 // Nothing to do. 2503 break; 2504 2505 // Objective-C Decls 2506 2507 // Forward declarations, no (immediate) code generation. 2508 case Decl::ObjCInterface: 2509 break; 2510 2511 case Decl::ObjCCategory: { 2512 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2513 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2514 Context.ResetObjCLayout(CD->getClassInterface()); 2515 break; 2516 } 2517 2518 case Decl::ObjCProtocol: { 2519 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2520 if (Proto->isThisDeclarationADefinition()) 2521 ObjCRuntime->GenerateProtocol(Proto); 2522 break; 2523 } 2524 2525 case Decl::ObjCCategoryImpl: 2526 // Categories have properties but don't support synthesize so we 2527 // can ignore them here. 2528 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2529 break; 2530 2531 case Decl::ObjCImplementation: { 2532 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2533 if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2534 Context.ResetObjCLayout(OMD->getClassInterface()); 2535 EmitObjCPropertyImplementations(OMD); 2536 EmitObjCIvarInitializations(OMD); 2537 ObjCRuntime->GenerateClass(OMD); 2538 break; 2539 } 2540 case Decl::ObjCMethod: { 2541 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2542 // If this is not a prototype, emit the body. 2543 if (OMD->getBody()) 2544 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2545 break; 2546 } 2547 case Decl::ObjCCompatibleAlias: 2548 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2549 break; 2550 2551 case Decl::LinkageSpec: 2552 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2553 break; 2554 2555 case Decl::FileScopeAsm: { 2556 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2557 StringRef AsmString = AD->getAsmString()->getString(); 2558 2559 const std::string &S = getModule().getModuleInlineAsm(); 2560 if (S.empty()) 2561 getModule().setModuleInlineAsm(AsmString); 2562 else if (*--S.end() == '\n') 2563 getModule().setModuleInlineAsm(S + AsmString.str()); 2564 else 2565 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2566 break; 2567 } 2568 2569 default: 2570 // Make sure we handled everything we should, every other kind is a 2571 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2572 // function. Need to recode Decl::Kind to do that easily. 2573 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2574 } 2575 } 2576 2577 /// Turns the given pointer into a constant. 2578 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2579 const void *Ptr) { 2580 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2581 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2582 return llvm::ConstantInt::get(i64, PtrInt); 2583 } 2584 2585 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2586 llvm::NamedMDNode *&GlobalMetadata, 2587 GlobalDecl D, 2588 llvm::GlobalValue *Addr) { 2589 if (!GlobalMetadata) 2590 GlobalMetadata = 2591 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2592 2593 // TODO: should we report variant information for ctors/dtors? 2594 llvm::Value *Ops[] = { 2595 Addr, 2596 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2597 }; 2598 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2599 } 2600 2601 /// Emits metadata nodes associating all the global values in the 2602 /// current module with the Decls they came from. This is useful for 2603 /// projects using IR gen as a subroutine. 2604 /// 2605 /// Since there's currently no way to associate an MDNode directly 2606 /// with an llvm::GlobalValue, we create a global named metadata 2607 /// with the name 'clang.global.decl.ptrs'. 2608 void CodeGenModule::EmitDeclMetadata() { 2609 llvm::NamedMDNode *GlobalMetadata = 0; 2610 2611 // StaticLocalDeclMap 2612 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2613 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2614 I != E; ++I) { 2615 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2616 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2617 } 2618 } 2619 2620 /// Emits metadata nodes for all the local variables in the current 2621 /// function. 2622 void CodeGenFunction::EmitDeclMetadata() { 2623 if (LocalDeclMap.empty()) return; 2624 2625 llvm::LLVMContext &Context = getLLVMContext(); 2626 2627 // Find the unique metadata ID for this name. 2628 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2629 2630 llvm::NamedMDNode *GlobalMetadata = 0; 2631 2632 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2633 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2634 const Decl *D = I->first; 2635 llvm::Value *Addr = I->second; 2636 2637 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2638 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2639 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2640 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2641 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2642 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2643 } 2644 } 2645 } 2646 2647 void CodeGenModule::EmitCoverageFile() { 2648 if (!getCodeGenOpts().CoverageFile.empty()) { 2649 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2650 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2651 llvm::LLVMContext &Ctx = TheModule.getContext(); 2652 llvm::MDString *CoverageFile = 2653 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2654 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2655 llvm::MDNode *CU = CUNode->getOperand(i); 2656 llvm::Value *node[] = { CoverageFile, CU }; 2657 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2658 GCov->addOperand(N); 2659 } 2660 } 2661 } 2662 } 2663