1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/ADT/Triple.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/X86TargetParser.h" 71 #include "llvm/Support/xxhash.h" 72 73 using namespace clang; 74 using namespace CodeGen; 75 76 static llvm::cl::opt<bool> LimitedCoverage( 77 "limited-coverage-experimental", llvm::cl::Hidden, 78 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 79 80 static const char AnnotationSection[] = "llvm.metadata"; 81 82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 83 switch (CGM.getContext().getCXXABIKind()) { 84 case TargetCXXABI::AppleARM64: 85 case TargetCXXABI::Fuchsia: 86 case TargetCXXABI::GenericAArch64: 87 case TargetCXXABI::GenericARM: 88 case TargetCXXABI::iOS: 89 case TargetCXXABI::WatchOS: 90 case TargetCXXABI::GenericMIPS: 91 case TargetCXXABI::GenericItanium: 92 case TargetCXXABI::WebAssembly: 93 case TargetCXXABI::XL: 94 return CreateItaniumCXXABI(CGM); 95 case TargetCXXABI::Microsoft: 96 return CreateMicrosoftCXXABI(CGM); 97 } 98 99 llvm_unreachable("invalid C++ ABI kind"); 100 } 101 102 CodeGenModule::CodeGenModule(ASTContext &C, 103 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 104 const HeaderSearchOptions &HSO, 105 const PreprocessorOptions &PPO, 106 const CodeGenOptions &CGO, llvm::Module &M, 107 DiagnosticsEngine &diags, 108 CoverageSourceInfo *CoverageInfo) 109 : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)), 110 HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO), 111 TheModule(M), Diags(diags), Target(C.getTargetInfo()), 112 ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this), 113 VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) { 114 115 // Initialize the type cache. 116 llvm::LLVMContext &LLVMContext = M.getContext(); 117 VoidTy = llvm::Type::getVoidTy(LLVMContext); 118 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 119 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 120 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 121 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 122 HalfTy = llvm::Type::getHalfTy(LLVMContext); 123 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 124 FloatTy = llvm::Type::getFloatTy(LLVMContext); 125 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 126 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 127 PointerAlignInBytes = 128 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 129 .getQuantity(); 130 SizeSizeInBytes = 131 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 132 IntAlignInBytes = 133 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 134 CharTy = 135 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 136 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 137 IntPtrTy = llvm::IntegerType::get(LLVMContext, 138 C.getTargetInfo().getMaxPointerWidth()); 139 Int8PtrTy = Int8Ty->getPointerTo(0); 140 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 141 const llvm::DataLayout &DL = M.getDataLayout(); 142 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 143 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 144 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 145 146 // Build C++20 Module initializers. 147 // TODO: Add Microsoft here once we know the mangling required for the 148 // initializers. 149 CXX20ModuleInits = 150 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 151 ItaniumMangleContext::MK_Itanium; 152 153 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 154 155 if (LangOpts.ObjC) 156 createObjCRuntime(); 157 if (LangOpts.OpenCL) 158 createOpenCLRuntime(); 159 if (LangOpts.OpenMP) 160 createOpenMPRuntime(); 161 if (LangOpts.CUDA) 162 createCUDARuntime(); 163 if (LangOpts.HLSL) 164 createHLSLRuntime(); 165 166 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 167 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 168 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 169 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 170 getCXXABI().getMangleContext())); 171 172 // If debug info or coverage generation is enabled, create the CGDebugInfo 173 // object. 174 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 175 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 176 DebugInfo.reset(new CGDebugInfo(*this)); 177 178 Block.GlobalUniqueCount = 0; 179 180 if (C.getLangOpts().ObjC) 181 ObjCData.reset(new ObjCEntrypoints()); 182 183 if (CodeGenOpts.hasProfileClangUse()) { 184 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 185 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 186 // We're checking for profile read errors in CompilerInvocation, so if 187 // there was an error it should've already been caught. If it hasn't been 188 // somehow, trip an assertion. 189 assert(ReaderOrErr); 190 PGOReader = std::move(ReaderOrErr.get()); 191 } 192 193 // If coverage mapping generation is enabled, create the 194 // CoverageMappingModuleGen object. 195 if (CodeGenOpts.CoverageMapping) 196 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 197 198 // Generate the module name hash here if needed. 199 if (CodeGenOpts.UniqueInternalLinkageNames && 200 !getModule().getSourceFileName().empty()) { 201 std::string Path = getModule().getSourceFileName(); 202 // Check if a path substitution is needed from the MacroPrefixMap. 203 for (const auto &Entry : LangOpts.MacroPrefixMap) 204 if (Path.rfind(Entry.first, 0) != std::string::npos) { 205 Path = Entry.second + Path.substr(Entry.first.size()); 206 break; 207 } 208 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 209 } 210 } 211 212 CodeGenModule::~CodeGenModule() {} 213 214 void CodeGenModule::createObjCRuntime() { 215 // This is just isGNUFamily(), but we want to force implementors of 216 // new ABIs to decide how best to do this. 217 switch (LangOpts.ObjCRuntime.getKind()) { 218 case ObjCRuntime::GNUstep: 219 case ObjCRuntime::GCC: 220 case ObjCRuntime::ObjFW: 221 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 222 return; 223 224 case ObjCRuntime::FragileMacOSX: 225 case ObjCRuntime::MacOSX: 226 case ObjCRuntime::iOS: 227 case ObjCRuntime::WatchOS: 228 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 229 return; 230 } 231 llvm_unreachable("bad runtime kind"); 232 } 233 234 void CodeGenModule::createOpenCLRuntime() { 235 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 236 } 237 238 void CodeGenModule::createOpenMPRuntime() { 239 // Select a specialized code generation class based on the target, if any. 240 // If it does not exist use the default implementation. 241 switch (getTriple().getArch()) { 242 case llvm::Triple::nvptx: 243 case llvm::Triple::nvptx64: 244 case llvm::Triple::amdgcn: 245 assert(getLangOpts().OpenMPIsDevice && 246 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 247 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 248 break; 249 default: 250 if (LangOpts.OpenMPSimd) 251 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 252 else 253 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 254 break; 255 } 256 } 257 258 void CodeGenModule::createCUDARuntime() { 259 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 260 } 261 262 void CodeGenModule::createHLSLRuntime() { 263 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 264 } 265 266 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 267 Replacements[Name] = C; 268 } 269 270 void CodeGenModule::applyReplacements() { 271 for (auto &I : Replacements) { 272 StringRef MangledName = I.first(); 273 llvm::Constant *Replacement = I.second; 274 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 275 if (!Entry) 276 continue; 277 auto *OldF = cast<llvm::Function>(Entry); 278 auto *NewF = dyn_cast<llvm::Function>(Replacement); 279 if (!NewF) { 280 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 281 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 282 } else { 283 auto *CE = cast<llvm::ConstantExpr>(Replacement); 284 assert(CE->getOpcode() == llvm::Instruction::BitCast || 285 CE->getOpcode() == llvm::Instruction::GetElementPtr); 286 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 287 } 288 } 289 290 // Replace old with new, but keep the old order. 291 OldF->replaceAllUsesWith(Replacement); 292 if (NewF) { 293 NewF->removeFromParent(); 294 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 295 NewF); 296 } 297 OldF->eraseFromParent(); 298 } 299 } 300 301 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 302 GlobalValReplacements.push_back(std::make_pair(GV, C)); 303 } 304 305 void CodeGenModule::applyGlobalValReplacements() { 306 for (auto &I : GlobalValReplacements) { 307 llvm::GlobalValue *GV = I.first; 308 llvm::Constant *C = I.second; 309 310 GV->replaceAllUsesWith(C); 311 GV->eraseFromParent(); 312 } 313 } 314 315 // This is only used in aliases that we created and we know they have a 316 // linear structure. 317 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 318 const llvm::Constant *C; 319 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 320 C = GA->getAliasee(); 321 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 322 C = GI->getResolver(); 323 else 324 return GV; 325 326 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 327 if (!AliaseeGV) 328 return nullptr; 329 330 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 331 if (FinalGV == GV) 332 return nullptr; 333 334 return FinalGV; 335 } 336 337 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 338 SourceLocation Location, bool IsIFunc, 339 const llvm::GlobalValue *Alias, 340 const llvm::GlobalValue *&GV) { 341 GV = getAliasedGlobal(Alias); 342 if (!GV) { 343 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 344 return false; 345 } 346 347 if (GV->isDeclaration()) { 348 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 349 return false; 350 } 351 352 if (IsIFunc) { 353 // Check resolver function type. 354 const auto *F = dyn_cast<llvm::Function>(GV); 355 if (!F) { 356 Diags.Report(Location, diag::err_alias_to_undefined) 357 << IsIFunc << IsIFunc; 358 return false; 359 } 360 361 llvm::FunctionType *FTy = F->getFunctionType(); 362 if (!FTy->getReturnType()->isPointerTy()) { 363 Diags.Report(Location, diag::err_ifunc_resolver_return); 364 return false; 365 } 366 } 367 368 return true; 369 } 370 371 void CodeGenModule::checkAliases() { 372 // Check if the constructed aliases are well formed. It is really unfortunate 373 // that we have to do this in CodeGen, but we only construct mangled names 374 // and aliases during codegen. 375 bool Error = false; 376 DiagnosticsEngine &Diags = getDiags(); 377 for (const GlobalDecl &GD : Aliases) { 378 const auto *D = cast<ValueDecl>(GD.getDecl()); 379 SourceLocation Location; 380 bool IsIFunc = D->hasAttr<IFuncAttr>(); 381 if (const Attr *A = D->getDefiningAttr()) 382 Location = A->getLocation(); 383 else 384 llvm_unreachable("Not an alias or ifunc?"); 385 386 StringRef MangledName = getMangledName(GD); 387 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 388 const llvm::GlobalValue *GV = nullptr; 389 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 390 Error = true; 391 continue; 392 } 393 394 llvm::Constant *Aliasee = 395 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 396 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 397 398 llvm::GlobalValue *AliaseeGV; 399 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 400 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 401 else 402 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 403 404 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 405 StringRef AliasSection = SA->getName(); 406 if (AliasSection != AliaseeGV->getSection()) 407 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 408 << AliasSection << IsIFunc << IsIFunc; 409 } 410 411 // We have to handle alias to weak aliases in here. LLVM itself disallows 412 // this since the object semantics would not match the IL one. For 413 // compatibility with gcc we implement it by just pointing the alias 414 // to its aliasee's aliasee. We also warn, since the user is probably 415 // expecting the link to be weak. 416 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 417 if (GA->isInterposable()) { 418 Diags.Report(Location, diag::warn_alias_to_weak_alias) 419 << GV->getName() << GA->getName() << IsIFunc; 420 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 421 GA->getAliasee(), Alias->getType()); 422 423 if (IsIFunc) 424 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 425 else 426 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 427 } 428 } 429 } 430 if (!Error) 431 return; 432 433 for (const GlobalDecl &GD : Aliases) { 434 StringRef MangledName = getMangledName(GD); 435 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 436 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 437 Alias->eraseFromParent(); 438 } 439 } 440 441 void CodeGenModule::clear() { 442 DeferredDeclsToEmit.clear(); 443 EmittedDeferredDecls.clear(); 444 if (OpenMPRuntime) 445 OpenMPRuntime->clear(); 446 } 447 448 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 449 StringRef MainFile) { 450 if (!hasDiagnostics()) 451 return; 452 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 453 if (MainFile.empty()) 454 MainFile = "<stdin>"; 455 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 456 } else { 457 if (Mismatched > 0) 458 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 459 460 if (Missing > 0) 461 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 462 } 463 } 464 465 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 466 llvm::Module &M) { 467 if (!LO.VisibilityFromDLLStorageClass) 468 return; 469 470 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 471 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 472 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 473 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 474 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 475 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 476 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 477 CodeGenModule::GetLLVMVisibility( 478 LO.getExternDeclNoDLLStorageClassVisibility()); 479 480 for (llvm::GlobalValue &GV : M.global_values()) { 481 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 482 continue; 483 484 // Reset DSO locality before setting the visibility. This removes 485 // any effects that visibility options and annotations may have 486 // had on the DSO locality. Setting the visibility will implicitly set 487 // appropriate globals to DSO Local; however, this will be pessimistic 488 // w.r.t. to the normal compiler IRGen. 489 GV.setDSOLocal(false); 490 491 if (GV.isDeclarationForLinker()) { 492 GV.setVisibility(GV.getDLLStorageClass() == 493 llvm::GlobalValue::DLLImportStorageClass 494 ? ExternDeclDLLImportVisibility 495 : ExternDeclNoDLLStorageClassVisibility); 496 } else { 497 GV.setVisibility(GV.getDLLStorageClass() == 498 llvm::GlobalValue::DLLExportStorageClass 499 ? DLLExportVisibility 500 : NoDLLStorageClassVisibility); 501 } 502 503 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 504 } 505 } 506 507 void CodeGenModule::Release() { 508 Module *Primary = getContext().getModuleForCodeGen(); 509 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 510 EmitModuleInitializers(Primary); 511 EmitDeferred(); 512 DeferredDecls.insert(EmittedDeferredDecls.begin(), 513 EmittedDeferredDecls.end()); 514 EmittedDeferredDecls.clear(); 515 EmitVTablesOpportunistically(); 516 applyGlobalValReplacements(); 517 applyReplacements(); 518 emitMultiVersionFunctions(); 519 520 if (Context.getLangOpts().IncrementalExtensions && 521 GlobalTopLevelStmtBlockInFlight.first) { 522 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 523 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 524 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 525 } 526 527 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 528 EmitCXXModuleInitFunc(Primary); 529 else 530 EmitCXXGlobalInitFunc(); 531 EmitCXXGlobalCleanUpFunc(); 532 registerGlobalDtorsWithAtExit(); 533 EmitCXXThreadLocalInitFunc(); 534 if (ObjCRuntime) 535 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 536 AddGlobalCtor(ObjCInitFunction); 537 if (Context.getLangOpts().CUDA && CUDARuntime) { 538 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 539 AddGlobalCtor(CudaCtorFunction); 540 } 541 if (OpenMPRuntime) { 542 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 543 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 544 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 545 } 546 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 547 OpenMPRuntime->clear(); 548 } 549 if (PGOReader) { 550 getModule().setProfileSummary( 551 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 552 llvm::ProfileSummary::PSK_Instr); 553 if (PGOStats.hasDiagnostics()) 554 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 555 } 556 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 557 return L.LexOrder < R.LexOrder; 558 }); 559 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 560 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 561 EmitGlobalAnnotations(); 562 EmitStaticExternCAliases(); 563 checkAliases(); 564 EmitDeferredUnusedCoverageMappings(); 565 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 566 if (CoverageMapping) 567 CoverageMapping->emit(); 568 if (CodeGenOpts.SanitizeCfiCrossDso) { 569 CodeGenFunction(*this).EmitCfiCheckFail(); 570 CodeGenFunction(*this).EmitCfiCheckStub(); 571 } 572 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 573 finalizeKCFITypes(); 574 emitAtAvailableLinkGuard(); 575 if (Context.getTargetInfo().getTriple().isWasm()) 576 EmitMainVoidAlias(); 577 578 if (getTriple().isAMDGPU()) { 579 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 580 // preserve ASAN functions in bitcode libraries. 581 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 582 auto *FT = llvm::FunctionType::get(VoidTy, {}); 583 auto *F = llvm::Function::Create( 584 FT, llvm::GlobalValue::ExternalLinkage, 585 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 586 auto *Var = new llvm::GlobalVariable( 587 getModule(), FT->getPointerTo(), 588 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 589 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 590 llvm::GlobalVariable::NotThreadLocal); 591 addCompilerUsedGlobal(Var); 592 } 593 // Emit amdgpu_code_object_version module flag, which is code object version 594 // times 100. 595 if (getTarget().getTargetOpts().CodeObjectVersion != 596 TargetOptions::COV_None) { 597 getModule().addModuleFlag(llvm::Module::Error, 598 "amdgpu_code_object_version", 599 getTarget().getTargetOpts().CodeObjectVersion); 600 } 601 } 602 603 // Emit a global array containing all external kernels or device variables 604 // used by host functions and mark it as used for CUDA/HIP. This is necessary 605 // to get kernels or device variables in archives linked in even if these 606 // kernels or device variables are only used in host functions. 607 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 608 SmallVector<llvm::Constant *, 8> UsedArray; 609 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 610 GlobalDecl GD; 611 if (auto *FD = dyn_cast<FunctionDecl>(D)) 612 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 613 else 614 GD = GlobalDecl(D); 615 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 616 GetAddrOfGlobal(GD), Int8PtrTy)); 617 } 618 619 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 620 621 auto *GV = new llvm::GlobalVariable( 622 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 623 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 624 addCompilerUsedGlobal(GV); 625 } 626 627 emitLLVMUsed(); 628 if (SanStats) 629 SanStats->finish(); 630 631 if (CodeGenOpts.Autolink && 632 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 633 EmitModuleLinkOptions(); 634 } 635 636 // On ELF we pass the dependent library specifiers directly to the linker 637 // without manipulating them. This is in contrast to other platforms where 638 // they are mapped to a specific linker option by the compiler. This 639 // difference is a result of the greater variety of ELF linkers and the fact 640 // that ELF linkers tend to handle libraries in a more complicated fashion 641 // than on other platforms. This forces us to defer handling the dependent 642 // libs to the linker. 643 // 644 // CUDA/HIP device and host libraries are different. Currently there is no 645 // way to differentiate dependent libraries for host or device. Existing 646 // usage of #pragma comment(lib, *) is intended for host libraries on 647 // Windows. Therefore emit llvm.dependent-libraries only for host. 648 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 649 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 650 for (auto *MD : ELFDependentLibraries) 651 NMD->addOperand(MD); 652 } 653 654 // Record mregparm value now so it is visible through rest of codegen. 655 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 656 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 657 CodeGenOpts.NumRegisterParameters); 658 659 if (CodeGenOpts.DwarfVersion) { 660 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 661 CodeGenOpts.DwarfVersion); 662 } 663 664 if (CodeGenOpts.Dwarf64) 665 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 666 667 if (Context.getLangOpts().SemanticInterposition) 668 // Require various optimization to respect semantic interposition. 669 getModule().setSemanticInterposition(true); 670 671 if (CodeGenOpts.EmitCodeView) { 672 // Indicate that we want CodeView in the metadata. 673 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 674 } 675 if (CodeGenOpts.CodeViewGHash) { 676 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 677 } 678 if (CodeGenOpts.ControlFlowGuard) { 679 // Function ID tables and checks for Control Flow Guard (cfguard=2). 680 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 681 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 682 // Function ID tables for Control Flow Guard (cfguard=1). 683 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 684 } 685 if (CodeGenOpts.EHContGuard) { 686 // Function ID tables for EH Continuation Guard. 687 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 688 } 689 if (Context.getLangOpts().Kernel) { 690 // Note if we are compiling with /kernel. 691 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 692 } 693 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 694 // We don't support LTO with 2 with different StrictVTablePointers 695 // FIXME: we could support it by stripping all the information introduced 696 // by StrictVTablePointers. 697 698 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 699 700 llvm::Metadata *Ops[2] = { 701 llvm::MDString::get(VMContext, "StrictVTablePointers"), 702 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 703 llvm::Type::getInt32Ty(VMContext), 1))}; 704 705 getModule().addModuleFlag(llvm::Module::Require, 706 "StrictVTablePointersRequirement", 707 llvm::MDNode::get(VMContext, Ops)); 708 } 709 if (getModuleDebugInfo()) 710 // We support a single version in the linked module. The LLVM 711 // parser will drop debug info with a different version number 712 // (and warn about it, too). 713 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 714 llvm::DEBUG_METADATA_VERSION); 715 716 // We need to record the widths of enums and wchar_t, so that we can generate 717 // the correct build attributes in the ARM backend. wchar_size is also used by 718 // TargetLibraryInfo. 719 uint64_t WCharWidth = 720 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 721 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 722 723 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 724 if ( Arch == llvm::Triple::arm 725 || Arch == llvm::Triple::armeb 726 || Arch == llvm::Triple::thumb 727 || Arch == llvm::Triple::thumbeb) { 728 // The minimum width of an enum in bytes 729 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 730 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 731 } 732 733 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 734 StringRef ABIStr = Target.getABI(); 735 llvm::LLVMContext &Ctx = TheModule.getContext(); 736 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 737 llvm::MDString::get(Ctx, ABIStr)); 738 } 739 740 if (CodeGenOpts.SanitizeCfiCrossDso) { 741 // Indicate that we want cross-DSO control flow integrity checks. 742 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 743 } 744 745 if (CodeGenOpts.WholeProgramVTables) { 746 // Indicate whether VFE was enabled for this module, so that the 747 // vcall_visibility metadata added under whole program vtables is handled 748 // appropriately in the optimizer. 749 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 750 CodeGenOpts.VirtualFunctionElimination); 751 } 752 753 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 754 getModule().addModuleFlag(llvm::Module::Override, 755 "CFI Canonical Jump Tables", 756 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 757 } 758 759 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 760 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 761 762 if (CodeGenOpts.CFProtectionReturn && 763 Target.checkCFProtectionReturnSupported(getDiags())) { 764 // Indicate that we want to instrument return control flow protection. 765 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 766 1); 767 } 768 769 if (CodeGenOpts.CFProtectionBranch && 770 Target.checkCFProtectionBranchSupported(getDiags())) { 771 // Indicate that we want to instrument branch control flow protection. 772 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 773 1); 774 } 775 776 if (CodeGenOpts.IBTSeal) 777 getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1); 778 779 if (CodeGenOpts.FunctionReturnThunks) 780 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 781 782 if (CodeGenOpts.IndirectBranchCSPrefix) 783 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 784 785 // Add module metadata for return address signing (ignoring 786 // non-leaf/all) and stack tagging. These are actually turned on by function 787 // attributes, but we use module metadata to emit build attributes. This is 788 // needed for LTO, where the function attributes are inside bitcode 789 // serialised into a global variable by the time build attributes are 790 // emitted, so we can't access them. LTO objects could be compiled with 791 // different flags therefore module flags are set to "Min" behavior to achieve 792 // the same end result of the normal build where e.g BTI is off if any object 793 // doesn't support it. 794 if (Context.getTargetInfo().hasFeature("ptrauth") && 795 LangOpts.getSignReturnAddressScope() != 796 LangOptions::SignReturnAddressScopeKind::None) 797 getModule().addModuleFlag(llvm::Module::Override, 798 "sign-return-address-buildattr", 1); 799 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 800 getModule().addModuleFlag(llvm::Module::Override, 801 "tag-stack-memory-buildattr", 1); 802 803 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 804 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 805 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 806 Arch == llvm::Triple::aarch64_be) { 807 if (LangOpts.BranchTargetEnforcement) 808 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 809 1); 810 if (LangOpts.hasSignReturnAddress()) 811 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 812 if (LangOpts.isSignReturnAddressScopeAll()) 813 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 814 1); 815 if (!LangOpts.isSignReturnAddressWithAKey()) 816 getModule().addModuleFlag(llvm::Module::Min, 817 "sign-return-address-with-bkey", 1); 818 } 819 820 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 821 llvm::LLVMContext &Ctx = TheModule.getContext(); 822 getModule().addModuleFlag( 823 llvm::Module::Error, "MemProfProfileFilename", 824 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 825 } 826 827 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 828 // Indicate whether __nvvm_reflect should be configured to flush denormal 829 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 830 // property.) 831 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 832 CodeGenOpts.FP32DenormalMode.Output != 833 llvm::DenormalMode::IEEE); 834 } 835 836 if (LangOpts.EHAsynch) 837 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 838 839 // Indicate whether this Module was compiled with -fopenmp 840 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 841 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 842 if (getLangOpts().OpenMPIsDevice) 843 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 844 LangOpts.OpenMP); 845 846 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 847 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 848 EmitOpenCLMetadata(); 849 // Emit SPIR version. 850 if (getTriple().isSPIR()) { 851 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 852 // opencl.spir.version named metadata. 853 // C++ for OpenCL has a distinct mapping for version compatibility with 854 // OpenCL. 855 auto Version = LangOpts.getOpenCLCompatibleVersion(); 856 llvm::Metadata *SPIRVerElts[] = { 857 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 858 Int32Ty, Version / 100)), 859 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 860 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 861 llvm::NamedMDNode *SPIRVerMD = 862 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 863 llvm::LLVMContext &Ctx = TheModule.getContext(); 864 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 865 } 866 } 867 868 // HLSL related end of code gen work items. 869 if (LangOpts.HLSL) 870 getHLSLRuntime().finishCodeGen(); 871 872 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 873 assert(PLevel < 3 && "Invalid PIC Level"); 874 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 875 if (Context.getLangOpts().PIE) 876 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 877 } 878 879 if (getCodeGenOpts().CodeModel.size() > 0) { 880 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 881 .Case("tiny", llvm::CodeModel::Tiny) 882 .Case("small", llvm::CodeModel::Small) 883 .Case("kernel", llvm::CodeModel::Kernel) 884 .Case("medium", llvm::CodeModel::Medium) 885 .Case("large", llvm::CodeModel::Large) 886 .Default(~0u); 887 if (CM != ~0u) { 888 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 889 getModule().setCodeModel(codeModel); 890 } 891 } 892 893 if (CodeGenOpts.NoPLT) 894 getModule().setRtLibUseGOT(); 895 if (CodeGenOpts.UnwindTables) 896 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 897 898 switch (CodeGenOpts.getFramePointer()) { 899 case CodeGenOptions::FramePointerKind::None: 900 // 0 ("none") is the default. 901 break; 902 case CodeGenOptions::FramePointerKind::NonLeaf: 903 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 904 break; 905 case CodeGenOptions::FramePointerKind::All: 906 getModule().setFramePointer(llvm::FramePointerKind::All); 907 break; 908 } 909 910 SimplifyPersonality(); 911 912 if (getCodeGenOpts().EmitDeclMetadata) 913 EmitDeclMetadata(); 914 915 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 916 EmitCoverageFile(); 917 918 if (CGDebugInfo *DI = getModuleDebugInfo()) 919 DI->finalize(); 920 921 if (getCodeGenOpts().EmitVersionIdentMetadata) 922 EmitVersionIdentMetadata(); 923 924 if (!getCodeGenOpts().RecordCommandLine.empty()) 925 EmitCommandLineMetadata(); 926 927 if (!getCodeGenOpts().StackProtectorGuard.empty()) 928 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 929 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 930 getModule().setStackProtectorGuardReg( 931 getCodeGenOpts().StackProtectorGuardReg); 932 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 933 getModule().setStackProtectorGuardSymbol( 934 getCodeGenOpts().StackProtectorGuardSymbol); 935 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 936 getModule().setStackProtectorGuardOffset( 937 getCodeGenOpts().StackProtectorGuardOffset); 938 if (getCodeGenOpts().StackAlignment) 939 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 940 if (getCodeGenOpts().SkipRaxSetup) 941 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 942 943 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 944 945 EmitBackendOptionsMetadata(getCodeGenOpts()); 946 947 // If there is device offloading code embed it in the host now. 948 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 949 950 // Set visibility from DLL storage class 951 // We do this at the end of LLVM IR generation; after any operation 952 // that might affect the DLL storage class or the visibility, and 953 // before anything that might act on these. 954 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 955 } 956 957 void CodeGenModule::EmitOpenCLMetadata() { 958 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 959 // opencl.ocl.version named metadata node. 960 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 961 auto Version = LangOpts.getOpenCLCompatibleVersion(); 962 llvm::Metadata *OCLVerElts[] = { 963 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 964 Int32Ty, Version / 100)), 965 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 966 Int32Ty, (Version % 100) / 10))}; 967 llvm::NamedMDNode *OCLVerMD = 968 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 969 llvm::LLVMContext &Ctx = TheModule.getContext(); 970 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 971 } 972 973 void CodeGenModule::EmitBackendOptionsMetadata( 974 const CodeGenOptions CodeGenOpts) { 975 if (getTriple().isRISCV()) { 976 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 977 CodeGenOpts.SmallDataLimit); 978 } 979 } 980 981 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 982 // Make sure that this type is translated. 983 Types.UpdateCompletedType(TD); 984 } 985 986 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 987 // Make sure that this type is translated. 988 Types.RefreshTypeCacheForClass(RD); 989 } 990 991 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 992 if (!TBAA) 993 return nullptr; 994 return TBAA->getTypeInfo(QTy); 995 } 996 997 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 998 if (!TBAA) 999 return TBAAAccessInfo(); 1000 if (getLangOpts().CUDAIsDevice) { 1001 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1002 // access info. 1003 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1004 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1005 nullptr) 1006 return TBAAAccessInfo(); 1007 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1008 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1009 nullptr) 1010 return TBAAAccessInfo(); 1011 } 1012 } 1013 return TBAA->getAccessInfo(AccessType); 1014 } 1015 1016 TBAAAccessInfo 1017 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1018 if (!TBAA) 1019 return TBAAAccessInfo(); 1020 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1021 } 1022 1023 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1024 if (!TBAA) 1025 return nullptr; 1026 return TBAA->getTBAAStructInfo(QTy); 1027 } 1028 1029 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1030 if (!TBAA) 1031 return nullptr; 1032 return TBAA->getBaseTypeInfo(QTy); 1033 } 1034 1035 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1036 if (!TBAA) 1037 return nullptr; 1038 return TBAA->getAccessTagInfo(Info); 1039 } 1040 1041 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1042 TBAAAccessInfo TargetInfo) { 1043 if (!TBAA) 1044 return TBAAAccessInfo(); 1045 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1046 } 1047 1048 TBAAAccessInfo 1049 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1050 TBAAAccessInfo InfoB) { 1051 if (!TBAA) 1052 return TBAAAccessInfo(); 1053 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1054 } 1055 1056 TBAAAccessInfo 1057 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1058 TBAAAccessInfo SrcInfo) { 1059 if (!TBAA) 1060 return TBAAAccessInfo(); 1061 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1062 } 1063 1064 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1065 TBAAAccessInfo TBAAInfo) { 1066 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1067 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1068 } 1069 1070 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1071 llvm::Instruction *I, const CXXRecordDecl *RD) { 1072 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1073 llvm::MDNode::get(getLLVMContext(), {})); 1074 } 1075 1076 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1077 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1078 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1079 } 1080 1081 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1082 /// specified stmt yet. 1083 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1084 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1085 "cannot compile this %0 yet"); 1086 std::string Msg = Type; 1087 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1088 << Msg << S->getSourceRange(); 1089 } 1090 1091 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1092 /// specified decl yet. 1093 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1094 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1095 "cannot compile this %0 yet"); 1096 std::string Msg = Type; 1097 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1098 } 1099 1100 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1101 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1102 } 1103 1104 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1105 const NamedDecl *D) const { 1106 // Internal definitions always have default visibility. 1107 if (GV->hasLocalLinkage()) { 1108 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1109 return; 1110 } 1111 if (!D) 1112 return; 1113 // Set visibility for definitions, and for declarations if requested globally 1114 // or set explicitly. 1115 LinkageInfo LV = D->getLinkageAndVisibility(); 1116 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1117 // Reject incompatible dlllstorage and visibility annotations. 1118 if (!LV.isVisibilityExplicit()) 1119 return; 1120 if (GV->hasDLLExportStorageClass()) { 1121 if (LV.getVisibility() == HiddenVisibility) 1122 getDiags().Report(D->getLocation(), 1123 diag::err_hidden_visibility_dllexport); 1124 } else if (LV.getVisibility() != DefaultVisibility) { 1125 getDiags().Report(D->getLocation(), 1126 diag::err_non_default_visibility_dllimport); 1127 } 1128 return; 1129 } 1130 1131 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1132 !GV->isDeclarationForLinker()) 1133 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1134 } 1135 1136 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1137 llvm::GlobalValue *GV) { 1138 if (GV->hasLocalLinkage()) 1139 return true; 1140 1141 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1142 return true; 1143 1144 // DLLImport explicitly marks the GV as external. 1145 if (GV->hasDLLImportStorageClass()) 1146 return false; 1147 1148 const llvm::Triple &TT = CGM.getTriple(); 1149 if (TT.isWindowsGNUEnvironment()) { 1150 // In MinGW, variables without DLLImport can still be automatically 1151 // imported from a DLL by the linker; don't mark variables that 1152 // potentially could come from another DLL as DSO local. 1153 1154 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1155 // (and this actually happens in the public interface of libstdc++), so 1156 // such variables can't be marked as DSO local. (Native TLS variables 1157 // can't be dllimported at all, though.) 1158 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1159 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1160 return false; 1161 } 1162 1163 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1164 // remain unresolved in the link, they can be resolved to zero, which is 1165 // outside the current DSO. 1166 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1167 return false; 1168 1169 // Every other GV is local on COFF. 1170 // Make an exception for windows OS in the triple: Some firmware builds use 1171 // *-win32-macho triples. This (accidentally?) produced windows relocations 1172 // without GOT tables in older clang versions; Keep this behaviour. 1173 // FIXME: even thread local variables? 1174 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1175 return true; 1176 1177 // Only handle COFF and ELF for now. 1178 if (!TT.isOSBinFormatELF()) 1179 return false; 1180 1181 // If this is not an executable, don't assume anything is local. 1182 const auto &CGOpts = CGM.getCodeGenOpts(); 1183 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1184 const auto &LOpts = CGM.getLangOpts(); 1185 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1186 // On ELF, if -fno-semantic-interposition is specified and the target 1187 // supports local aliases, there will be neither CC1 1188 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1189 // dso_local on the function if using a local alias is preferable (can avoid 1190 // PLT indirection). 1191 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1192 return false; 1193 return !(CGM.getLangOpts().SemanticInterposition || 1194 CGM.getLangOpts().HalfNoSemanticInterposition); 1195 } 1196 1197 // A definition cannot be preempted from an executable. 1198 if (!GV->isDeclarationForLinker()) 1199 return true; 1200 1201 // Most PIC code sequences that assume that a symbol is local cannot produce a 1202 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1203 // depended, it seems worth it to handle it here. 1204 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1205 return false; 1206 1207 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1208 if (TT.isPPC64()) 1209 return false; 1210 1211 if (CGOpts.DirectAccessExternalData) { 1212 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1213 // for non-thread-local variables. If the symbol is not defined in the 1214 // executable, a copy relocation will be needed at link time. dso_local is 1215 // excluded for thread-local variables because they generally don't support 1216 // copy relocations. 1217 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1218 if (!Var->isThreadLocal()) 1219 return true; 1220 1221 // -fno-pic sets dso_local on a function declaration to allow direct 1222 // accesses when taking its address (similar to a data symbol). If the 1223 // function is not defined in the executable, a canonical PLT entry will be 1224 // needed at link time. -fno-direct-access-external-data can avoid the 1225 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1226 // it could just cause trouble without providing perceptible benefits. 1227 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1228 return true; 1229 } 1230 1231 // If we can use copy relocations we can assume it is local. 1232 1233 // Otherwise don't assume it is local. 1234 return false; 1235 } 1236 1237 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1238 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1239 } 1240 1241 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1242 GlobalDecl GD) const { 1243 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1244 // C++ destructors have a few C++ ABI specific special cases. 1245 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1246 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1247 return; 1248 } 1249 setDLLImportDLLExport(GV, D); 1250 } 1251 1252 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1253 const NamedDecl *D) const { 1254 if (D && D->isExternallyVisible()) { 1255 if (D->hasAttr<DLLImportAttr>()) 1256 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1257 else if ((D->hasAttr<DLLExportAttr>() || 1258 shouldMapVisibilityToDLLExport(D)) && 1259 !GV->isDeclarationForLinker()) 1260 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1261 } 1262 } 1263 1264 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1265 GlobalDecl GD) const { 1266 setDLLImportDLLExport(GV, GD); 1267 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1268 } 1269 1270 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1271 const NamedDecl *D) const { 1272 setDLLImportDLLExport(GV, D); 1273 setGVPropertiesAux(GV, D); 1274 } 1275 1276 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1277 const NamedDecl *D) const { 1278 setGlobalVisibility(GV, D); 1279 setDSOLocal(GV); 1280 GV->setPartition(CodeGenOpts.SymbolPartition); 1281 } 1282 1283 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1284 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1285 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1286 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1287 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1288 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1289 } 1290 1291 llvm::GlobalVariable::ThreadLocalMode 1292 CodeGenModule::GetDefaultLLVMTLSModel() const { 1293 switch (CodeGenOpts.getDefaultTLSModel()) { 1294 case CodeGenOptions::GeneralDynamicTLSModel: 1295 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1296 case CodeGenOptions::LocalDynamicTLSModel: 1297 return llvm::GlobalVariable::LocalDynamicTLSModel; 1298 case CodeGenOptions::InitialExecTLSModel: 1299 return llvm::GlobalVariable::InitialExecTLSModel; 1300 case CodeGenOptions::LocalExecTLSModel: 1301 return llvm::GlobalVariable::LocalExecTLSModel; 1302 } 1303 llvm_unreachable("Invalid TLS model!"); 1304 } 1305 1306 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1307 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1308 1309 llvm::GlobalValue::ThreadLocalMode TLM; 1310 TLM = GetDefaultLLVMTLSModel(); 1311 1312 // Override the TLS model if it is explicitly specified. 1313 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1314 TLM = GetLLVMTLSModel(Attr->getModel()); 1315 } 1316 1317 GV->setThreadLocalMode(TLM); 1318 } 1319 1320 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1321 StringRef Name) { 1322 const TargetInfo &Target = CGM.getTarget(); 1323 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1324 } 1325 1326 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1327 const CPUSpecificAttr *Attr, 1328 unsigned CPUIndex, 1329 raw_ostream &Out) { 1330 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1331 // supported. 1332 if (Attr) 1333 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1334 else if (CGM.getTarget().supportsIFunc()) 1335 Out << ".resolver"; 1336 } 1337 1338 static void AppendTargetMangling(const CodeGenModule &CGM, 1339 const TargetAttr *Attr, raw_ostream &Out) { 1340 if (Attr->isDefaultVersion()) 1341 return; 1342 1343 Out << '.'; 1344 const TargetInfo &Target = CGM.getTarget(); 1345 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1346 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1347 // Multiversioning doesn't allow "no-${feature}", so we can 1348 // only have "+" prefixes here. 1349 assert(LHS.startswith("+") && RHS.startswith("+") && 1350 "Features should always have a prefix."); 1351 return Target.multiVersionSortPriority(LHS.substr(1)) > 1352 Target.multiVersionSortPriority(RHS.substr(1)); 1353 }); 1354 1355 bool IsFirst = true; 1356 1357 if (!Info.CPU.empty()) { 1358 IsFirst = false; 1359 Out << "arch_" << Info.CPU; 1360 } 1361 1362 for (StringRef Feat : Info.Features) { 1363 if (!IsFirst) 1364 Out << '_'; 1365 IsFirst = false; 1366 Out << Feat.substr(1); 1367 } 1368 } 1369 1370 // Returns true if GD is a function decl with internal linkage and 1371 // needs a unique suffix after the mangled name. 1372 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1373 CodeGenModule &CGM) { 1374 const Decl *D = GD.getDecl(); 1375 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1376 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1377 } 1378 1379 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1380 const TargetClonesAttr *Attr, 1381 unsigned VersionIndex, 1382 raw_ostream &Out) { 1383 Out << '.'; 1384 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1385 if (FeatureStr.startswith("arch=")) 1386 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1387 else 1388 Out << FeatureStr; 1389 1390 Out << '.' << Attr->getMangledIndex(VersionIndex); 1391 } 1392 1393 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1394 const NamedDecl *ND, 1395 bool OmitMultiVersionMangling = false) { 1396 SmallString<256> Buffer; 1397 llvm::raw_svector_ostream Out(Buffer); 1398 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1399 if (!CGM.getModuleNameHash().empty()) 1400 MC.needsUniqueInternalLinkageNames(); 1401 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1402 if (ShouldMangle) 1403 MC.mangleName(GD.getWithDecl(ND), Out); 1404 else { 1405 IdentifierInfo *II = ND->getIdentifier(); 1406 assert(II && "Attempt to mangle unnamed decl."); 1407 const auto *FD = dyn_cast<FunctionDecl>(ND); 1408 1409 if (FD && 1410 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1411 Out << "__regcall3__" << II->getName(); 1412 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1413 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1414 Out << "__device_stub__" << II->getName(); 1415 } else { 1416 Out << II->getName(); 1417 } 1418 } 1419 1420 // Check if the module name hash should be appended for internal linkage 1421 // symbols. This should come before multi-version target suffixes are 1422 // appended. This is to keep the name and module hash suffix of the 1423 // internal linkage function together. The unique suffix should only be 1424 // added when name mangling is done to make sure that the final name can 1425 // be properly demangled. For example, for C functions without prototypes, 1426 // name mangling is not done and the unique suffix should not be appeneded 1427 // then. 1428 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1429 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1430 "Hash computed when not explicitly requested"); 1431 Out << CGM.getModuleNameHash(); 1432 } 1433 1434 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1435 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1436 switch (FD->getMultiVersionKind()) { 1437 case MultiVersionKind::CPUDispatch: 1438 case MultiVersionKind::CPUSpecific: 1439 AppendCPUSpecificCPUDispatchMangling(CGM, 1440 FD->getAttr<CPUSpecificAttr>(), 1441 GD.getMultiVersionIndex(), Out); 1442 break; 1443 case MultiVersionKind::Target: 1444 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1445 break; 1446 case MultiVersionKind::TargetClones: 1447 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1448 GD.getMultiVersionIndex(), Out); 1449 break; 1450 case MultiVersionKind::None: 1451 llvm_unreachable("None multiversion type isn't valid here"); 1452 } 1453 } 1454 1455 // Make unique name for device side static file-scope variable for HIP. 1456 if (CGM.getContext().shouldExternalize(ND) && 1457 CGM.getLangOpts().GPURelocatableDeviceCode && 1458 CGM.getLangOpts().CUDAIsDevice) 1459 CGM.printPostfixForExternalizedDecl(Out, ND); 1460 1461 return std::string(Out.str()); 1462 } 1463 1464 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1465 const FunctionDecl *FD, 1466 StringRef &CurName) { 1467 if (!FD->isMultiVersion()) 1468 return; 1469 1470 // Get the name of what this would be without the 'target' attribute. This 1471 // allows us to lookup the version that was emitted when this wasn't a 1472 // multiversion function. 1473 std::string NonTargetName = 1474 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1475 GlobalDecl OtherGD; 1476 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1477 assert(OtherGD.getCanonicalDecl() 1478 .getDecl() 1479 ->getAsFunction() 1480 ->isMultiVersion() && 1481 "Other GD should now be a multiversioned function"); 1482 // OtherFD is the version of this function that was mangled BEFORE 1483 // becoming a MultiVersion function. It potentially needs to be updated. 1484 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1485 .getDecl() 1486 ->getAsFunction() 1487 ->getMostRecentDecl(); 1488 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1489 // This is so that if the initial version was already the 'default' 1490 // version, we don't try to update it. 1491 if (OtherName != NonTargetName) { 1492 // Remove instead of erase, since others may have stored the StringRef 1493 // to this. 1494 const auto ExistingRecord = Manglings.find(NonTargetName); 1495 if (ExistingRecord != std::end(Manglings)) 1496 Manglings.remove(&(*ExistingRecord)); 1497 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1498 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1499 Result.first->first(); 1500 // If this is the current decl is being created, make sure we update the name. 1501 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1502 CurName = OtherNameRef; 1503 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1504 Entry->setName(OtherName); 1505 } 1506 } 1507 } 1508 1509 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1510 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1511 1512 // Some ABIs don't have constructor variants. Make sure that base and 1513 // complete constructors get mangled the same. 1514 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1515 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1516 CXXCtorType OrigCtorType = GD.getCtorType(); 1517 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1518 if (OrigCtorType == Ctor_Base) 1519 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1520 } 1521 } 1522 1523 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1524 // static device variable depends on whether the variable is referenced by 1525 // a host or device host function. Therefore the mangled name cannot be 1526 // cached. 1527 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1528 auto FoundName = MangledDeclNames.find(CanonicalGD); 1529 if (FoundName != MangledDeclNames.end()) 1530 return FoundName->second; 1531 } 1532 1533 // Keep the first result in the case of a mangling collision. 1534 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1535 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1536 1537 // Ensure either we have different ABIs between host and device compilations, 1538 // says host compilation following MSVC ABI but device compilation follows 1539 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1540 // mangling should be the same after name stubbing. The later checking is 1541 // very important as the device kernel name being mangled in host-compilation 1542 // is used to resolve the device binaries to be executed. Inconsistent naming 1543 // result in undefined behavior. Even though we cannot check that naming 1544 // directly between host- and device-compilations, the host- and 1545 // device-mangling in host compilation could help catching certain ones. 1546 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1547 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1548 (getContext().getAuxTargetInfo() && 1549 (getContext().getAuxTargetInfo()->getCXXABI() != 1550 getContext().getTargetInfo().getCXXABI())) || 1551 getCUDARuntime().getDeviceSideName(ND) == 1552 getMangledNameImpl( 1553 *this, 1554 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1555 ND)); 1556 1557 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1558 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1559 } 1560 1561 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1562 const BlockDecl *BD) { 1563 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1564 const Decl *D = GD.getDecl(); 1565 1566 SmallString<256> Buffer; 1567 llvm::raw_svector_ostream Out(Buffer); 1568 if (!D) 1569 MangleCtx.mangleGlobalBlock(BD, 1570 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1571 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1572 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1573 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1574 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1575 else 1576 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1577 1578 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1579 return Result.first->first(); 1580 } 1581 1582 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1583 auto it = MangledDeclNames.begin(); 1584 while (it != MangledDeclNames.end()) { 1585 if (it->second == Name) 1586 return it->first; 1587 it++; 1588 } 1589 return GlobalDecl(); 1590 } 1591 1592 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1593 return getModule().getNamedValue(Name); 1594 } 1595 1596 /// AddGlobalCtor - Add a function to the list that will be called before 1597 /// main() runs. 1598 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1599 unsigned LexOrder, 1600 llvm::Constant *AssociatedData) { 1601 // FIXME: Type coercion of void()* types. 1602 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1603 } 1604 1605 /// AddGlobalDtor - Add a function to the list that will be called 1606 /// when the module is unloaded. 1607 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1608 bool IsDtorAttrFunc) { 1609 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1610 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1611 DtorsUsingAtExit[Priority].push_back(Dtor); 1612 return; 1613 } 1614 1615 // FIXME: Type coercion of void()* types. 1616 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1617 } 1618 1619 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1620 if (Fns.empty()) return; 1621 1622 // Ctor function type is void()*. 1623 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1624 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1625 TheModule.getDataLayout().getProgramAddressSpace()); 1626 1627 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1628 llvm::StructType *CtorStructTy = llvm::StructType::get( 1629 Int32Ty, CtorPFTy, VoidPtrTy); 1630 1631 // Construct the constructor and destructor arrays. 1632 ConstantInitBuilder builder(*this); 1633 auto ctors = builder.beginArray(CtorStructTy); 1634 for (const auto &I : Fns) { 1635 auto ctor = ctors.beginStruct(CtorStructTy); 1636 ctor.addInt(Int32Ty, I.Priority); 1637 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1638 if (I.AssociatedData) 1639 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1640 else 1641 ctor.addNullPointer(VoidPtrTy); 1642 ctor.finishAndAddTo(ctors); 1643 } 1644 1645 auto list = 1646 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1647 /*constant*/ false, 1648 llvm::GlobalValue::AppendingLinkage); 1649 1650 // The LTO linker doesn't seem to like it when we set an alignment 1651 // on appending variables. Take it off as a workaround. 1652 list->setAlignment(std::nullopt); 1653 1654 Fns.clear(); 1655 } 1656 1657 llvm::GlobalValue::LinkageTypes 1658 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1659 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1660 1661 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1662 1663 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1664 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1665 1666 if (isa<CXXConstructorDecl>(D) && 1667 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1668 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1669 // Our approach to inheriting constructors is fundamentally different from 1670 // that used by the MS ABI, so keep our inheriting constructor thunks 1671 // internal rather than trying to pick an unambiguous mangling for them. 1672 return llvm::GlobalValue::InternalLinkage; 1673 } 1674 1675 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1676 } 1677 1678 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1679 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1680 if (!MDS) return nullptr; 1681 1682 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1683 } 1684 1685 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1686 if (auto *FnType = T->getAs<FunctionProtoType>()) 1687 T = getContext().getFunctionType( 1688 FnType->getReturnType(), FnType->getParamTypes(), 1689 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1690 1691 std::string OutName; 1692 llvm::raw_string_ostream Out(OutName); 1693 getCXXABI().getMangleContext().mangleTypeName(T, Out); 1694 1695 return llvm::ConstantInt::get(Int32Ty, 1696 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1697 } 1698 1699 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1700 const CGFunctionInfo &Info, 1701 llvm::Function *F, bool IsThunk) { 1702 unsigned CallingConv; 1703 llvm::AttributeList PAL; 1704 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1705 /*AttrOnCallSite=*/false, IsThunk); 1706 F->setAttributes(PAL); 1707 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1708 } 1709 1710 static void removeImageAccessQualifier(std::string& TyName) { 1711 std::string ReadOnlyQual("__read_only"); 1712 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1713 if (ReadOnlyPos != std::string::npos) 1714 // "+ 1" for the space after access qualifier. 1715 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1716 else { 1717 std::string WriteOnlyQual("__write_only"); 1718 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1719 if (WriteOnlyPos != std::string::npos) 1720 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1721 else { 1722 std::string ReadWriteQual("__read_write"); 1723 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1724 if (ReadWritePos != std::string::npos) 1725 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1726 } 1727 } 1728 } 1729 1730 // Returns the address space id that should be produced to the 1731 // kernel_arg_addr_space metadata. This is always fixed to the ids 1732 // as specified in the SPIR 2.0 specification in order to differentiate 1733 // for example in clGetKernelArgInfo() implementation between the address 1734 // spaces with targets without unique mapping to the OpenCL address spaces 1735 // (basically all single AS CPUs). 1736 static unsigned ArgInfoAddressSpace(LangAS AS) { 1737 switch (AS) { 1738 case LangAS::opencl_global: 1739 return 1; 1740 case LangAS::opencl_constant: 1741 return 2; 1742 case LangAS::opencl_local: 1743 return 3; 1744 case LangAS::opencl_generic: 1745 return 4; // Not in SPIR 2.0 specs. 1746 case LangAS::opencl_global_device: 1747 return 5; 1748 case LangAS::opencl_global_host: 1749 return 6; 1750 default: 1751 return 0; // Assume private. 1752 } 1753 } 1754 1755 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1756 const FunctionDecl *FD, 1757 CodeGenFunction *CGF) { 1758 assert(((FD && CGF) || (!FD && !CGF)) && 1759 "Incorrect use - FD and CGF should either be both null or not!"); 1760 // Create MDNodes that represent the kernel arg metadata. 1761 // Each MDNode is a list in the form of "key", N number of values which is 1762 // the same number of values as their are kernel arguments. 1763 1764 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1765 1766 // MDNode for the kernel argument address space qualifiers. 1767 SmallVector<llvm::Metadata *, 8> addressQuals; 1768 1769 // MDNode for the kernel argument access qualifiers (images only). 1770 SmallVector<llvm::Metadata *, 8> accessQuals; 1771 1772 // MDNode for the kernel argument type names. 1773 SmallVector<llvm::Metadata *, 8> argTypeNames; 1774 1775 // MDNode for the kernel argument base type names. 1776 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1777 1778 // MDNode for the kernel argument type qualifiers. 1779 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1780 1781 // MDNode for the kernel argument names. 1782 SmallVector<llvm::Metadata *, 8> argNames; 1783 1784 if (FD && CGF) 1785 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1786 const ParmVarDecl *parm = FD->getParamDecl(i); 1787 // Get argument name. 1788 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1789 1790 if (!getLangOpts().OpenCL) 1791 continue; 1792 QualType ty = parm->getType(); 1793 std::string typeQuals; 1794 1795 // Get image and pipe access qualifier: 1796 if (ty->isImageType() || ty->isPipeType()) { 1797 const Decl *PDecl = parm; 1798 if (const auto *TD = ty->getAs<TypedefType>()) 1799 PDecl = TD->getDecl(); 1800 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1801 if (A && A->isWriteOnly()) 1802 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1803 else if (A && A->isReadWrite()) 1804 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1805 else 1806 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1807 } else 1808 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1809 1810 auto getTypeSpelling = [&](QualType Ty) { 1811 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1812 1813 if (Ty.isCanonical()) { 1814 StringRef typeNameRef = typeName; 1815 // Turn "unsigned type" to "utype" 1816 if (typeNameRef.consume_front("unsigned ")) 1817 return std::string("u") + typeNameRef.str(); 1818 if (typeNameRef.consume_front("signed ")) 1819 return typeNameRef.str(); 1820 } 1821 1822 return typeName; 1823 }; 1824 1825 if (ty->isPointerType()) { 1826 QualType pointeeTy = ty->getPointeeType(); 1827 1828 // Get address qualifier. 1829 addressQuals.push_back( 1830 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1831 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1832 1833 // Get argument type name. 1834 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1835 std::string baseTypeName = 1836 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1837 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1838 argBaseTypeNames.push_back( 1839 llvm::MDString::get(VMContext, baseTypeName)); 1840 1841 // Get argument type qualifiers: 1842 if (ty.isRestrictQualified()) 1843 typeQuals = "restrict"; 1844 if (pointeeTy.isConstQualified() || 1845 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1846 typeQuals += typeQuals.empty() ? "const" : " const"; 1847 if (pointeeTy.isVolatileQualified()) 1848 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1849 } else { 1850 uint32_t AddrSpc = 0; 1851 bool isPipe = ty->isPipeType(); 1852 if (ty->isImageType() || isPipe) 1853 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1854 1855 addressQuals.push_back( 1856 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1857 1858 // Get argument type name. 1859 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1860 std::string typeName = getTypeSpelling(ty); 1861 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1862 1863 // Remove access qualifiers on images 1864 // (as they are inseparable from type in clang implementation, 1865 // but OpenCL spec provides a special query to get access qualifier 1866 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1867 if (ty->isImageType()) { 1868 removeImageAccessQualifier(typeName); 1869 removeImageAccessQualifier(baseTypeName); 1870 } 1871 1872 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1873 argBaseTypeNames.push_back( 1874 llvm::MDString::get(VMContext, baseTypeName)); 1875 1876 if (isPipe) 1877 typeQuals = "pipe"; 1878 } 1879 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1880 } 1881 1882 if (getLangOpts().OpenCL) { 1883 Fn->setMetadata("kernel_arg_addr_space", 1884 llvm::MDNode::get(VMContext, addressQuals)); 1885 Fn->setMetadata("kernel_arg_access_qual", 1886 llvm::MDNode::get(VMContext, accessQuals)); 1887 Fn->setMetadata("kernel_arg_type", 1888 llvm::MDNode::get(VMContext, argTypeNames)); 1889 Fn->setMetadata("kernel_arg_base_type", 1890 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1891 Fn->setMetadata("kernel_arg_type_qual", 1892 llvm::MDNode::get(VMContext, argTypeQuals)); 1893 } 1894 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1895 getCodeGenOpts().HIPSaveKernelArgName) 1896 Fn->setMetadata("kernel_arg_name", 1897 llvm::MDNode::get(VMContext, argNames)); 1898 } 1899 1900 /// Determines whether the language options require us to model 1901 /// unwind exceptions. We treat -fexceptions as mandating this 1902 /// except under the fragile ObjC ABI with only ObjC exceptions 1903 /// enabled. This means, for example, that C with -fexceptions 1904 /// enables this. 1905 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1906 // If exceptions are completely disabled, obviously this is false. 1907 if (!LangOpts.Exceptions) return false; 1908 1909 // If C++ exceptions are enabled, this is true. 1910 if (LangOpts.CXXExceptions) return true; 1911 1912 // If ObjC exceptions are enabled, this depends on the ABI. 1913 if (LangOpts.ObjCExceptions) { 1914 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1915 } 1916 1917 return true; 1918 } 1919 1920 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1921 const CXXMethodDecl *MD) { 1922 // Check that the type metadata can ever actually be used by a call. 1923 if (!CGM.getCodeGenOpts().LTOUnit || 1924 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1925 return false; 1926 1927 // Only functions whose address can be taken with a member function pointer 1928 // need this sort of type metadata. 1929 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1930 !isa<CXXDestructorDecl>(MD); 1931 } 1932 1933 std::vector<const CXXRecordDecl *> 1934 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1935 llvm::SetVector<const CXXRecordDecl *> MostBases; 1936 1937 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1938 CollectMostBases = [&](const CXXRecordDecl *RD) { 1939 if (RD->getNumBases() == 0) 1940 MostBases.insert(RD); 1941 for (const CXXBaseSpecifier &B : RD->bases()) 1942 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1943 }; 1944 CollectMostBases(RD); 1945 return MostBases.takeVector(); 1946 } 1947 1948 llvm::GlobalVariable * 1949 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1950 auto It = RTTIProxyMap.find(Addr); 1951 if (It != RTTIProxyMap.end()) 1952 return It->second; 1953 1954 auto *FTRTTIProxy = new llvm::GlobalVariable( 1955 TheModule, Addr->getType(), 1956 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1957 "__llvm_rtti_proxy"); 1958 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1959 1960 RTTIProxyMap[Addr] = FTRTTIProxy; 1961 return FTRTTIProxy; 1962 } 1963 1964 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1965 llvm::Function *F) { 1966 llvm::AttrBuilder B(F->getContext()); 1967 1968 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 1969 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1970 1971 if (CodeGenOpts.StackClashProtector) 1972 B.addAttribute("probe-stack", "inline-asm"); 1973 1974 if (!hasUnwindExceptions(LangOpts)) 1975 B.addAttribute(llvm::Attribute::NoUnwind); 1976 1977 if (D && D->hasAttr<NoStackProtectorAttr>()) 1978 ; // Do nothing. 1979 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 1980 LangOpts.getStackProtector() == LangOptions::SSPOn) 1981 B.addAttribute(llvm::Attribute::StackProtectStrong); 1982 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1983 B.addAttribute(llvm::Attribute::StackProtect); 1984 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1985 B.addAttribute(llvm::Attribute::StackProtectStrong); 1986 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1987 B.addAttribute(llvm::Attribute::StackProtectReq); 1988 1989 if (!D) { 1990 // If we don't have a declaration to control inlining, the function isn't 1991 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1992 // disabled, mark the function as noinline. 1993 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1994 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1995 B.addAttribute(llvm::Attribute::NoInline); 1996 1997 F->addFnAttrs(B); 1998 return; 1999 } 2000 2001 // Track whether we need to add the optnone LLVM attribute, 2002 // starting with the default for this optimization level. 2003 bool ShouldAddOptNone = 2004 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2005 // We can't add optnone in the following cases, it won't pass the verifier. 2006 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2007 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2008 2009 // Add optnone, but do so only if the function isn't always_inline. 2010 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2011 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2012 B.addAttribute(llvm::Attribute::OptimizeNone); 2013 2014 // OptimizeNone implies noinline; we should not be inlining such functions. 2015 B.addAttribute(llvm::Attribute::NoInline); 2016 2017 // We still need to handle naked functions even though optnone subsumes 2018 // much of their semantics. 2019 if (D->hasAttr<NakedAttr>()) 2020 B.addAttribute(llvm::Attribute::Naked); 2021 2022 // OptimizeNone wins over OptimizeForSize and MinSize. 2023 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2024 F->removeFnAttr(llvm::Attribute::MinSize); 2025 } else if (D->hasAttr<NakedAttr>()) { 2026 // Naked implies noinline: we should not be inlining such functions. 2027 B.addAttribute(llvm::Attribute::Naked); 2028 B.addAttribute(llvm::Attribute::NoInline); 2029 } else if (D->hasAttr<NoDuplicateAttr>()) { 2030 B.addAttribute(llvm::Attribute::NoDuplicate); 2031 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2032 // Add noinline if the function isn't always_inline. 2033 B.addAttribute(llvm::Attribute::NoInline); 2034 } else if (D->hasAttr<AlwaysInlineAttr>() && 2035 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2036 // (noinline wins over always_inline, and we can't specify both in IR) 2037 B.addAttribute(llvm::Attribute::AlwaysInline); 2038 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2039 // If we're not inlining, then force everything that isn't always_inline to 2040 // carry an explicit noinline attribute. 2041 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2042 B.addAttribute(llvm::Attribute::NoInline); 2043 } else { 2044 // Otherwise, propagate the inline hint attribute and potentially use its 2045 // absence to mark things as noinline. 2046 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2047 // Search function and template pattern redeclarations for inline. 2048 auto CheckForInline = [](const FunctionDecl *FD) { 2049 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2050 return Redecl->isInlineSpecified(); 2051 }; 2052 if (any_of(FD->redecls(), CheckRedeclForInline)) 2053 return true; 2054 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2055 if (!Pattern) 2056 return false; 2057 return any_of(Pattern->redecls(), CheckRedeclForInline); 2058 }; 2059 if (CheckForInline(FD)) { 2060 B.addAttribute(llvm::Attribute::InlineHint); 2061 } else if (CodeGenOpts.getInlining() == 2062 CodeGenOptions::OnlyHintInlining && 2063 !FD->isInlined() && 2064 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2065 B.addAttribute(llvm::Attribute::NoInline); 2066 } 2067 } 2068 } 2069 2070 // Add other optimization related attributes if we are optimizing this 2071 // function. 2072 if (!D->hasAttr<OptimizeNoneAttr>()) { 2073 if (D->hasAttr<ColdAttr>()) { 2074 if (!ShouldAddOptNone) 2075 B.addAttribute(llvm::Attribute::OptimizeForSize); 2076 B.addAttribute(llvm::Attribute::Cold); 2077 } 2078 if (D->hasAttr<HotAttr>()) 2079 B.addAttribute(llvm::Attribute::Hot); 2080 if (D->hasAttr<MinSizeAttr>()) 2081 B.addAttribute(llvm::Attribute::MinSize); 2082 } 2083 2084 F->addFnAttrs(B); 2085 2086 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2087 if (alignment) 2088 F->setAlignment(llvm::Align(alignment)); 2089 2090 if (!D->hasAttr<AlignedAttr>()) 2091 if (LangOpts.FunctionAlignment) 2092 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2093 2094 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2095 // reserve a bit for differentiating between virtual and non-virtual member 2096 // functions. If the current target's C++ ABI requires this and this is a 2097 // member function, set its alignment accordingly. 2098 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2099 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2100 F->setAlignment(llvm::Align(2)); 2101 } 2102 2103 // In the cross-dso CFI mode with canonical jump tables, we want !type 2104 // attributes on definitions only. 2105 if (CodeGenOpts.SanitizeCfiCrossDso && 2106 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2107 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2108 // Skip available_externally functions. They won't be codegen'ed in the 2109 // current module anyway. 2110 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2111 CreateFunctionTypeMetadataForIcall(FD, F); 2112 } 2113 } 2114 2115 // Emit type metadata on member functions for member function pointer checks. 2116 // These are only ever necessary on definitions; we're guaranteed that the 2117 // definition will be present in the LTO unit as a result of LTO visibility. 2118 auto *MD = dyn_cast<CXXMethodDecl>(D); 2119 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2120 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2121 llvm::Metadata *Id = 2122 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2123 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2124 F->addTypeMetadata(0, Id); 2125 } 2126 } 2127 } 2128 2129 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2130 llvm::Function *F) { 2131 if (D->hasAttr<StrictFPAttr>()) { 2132 llvm::AttrBuilder FuncAttrs(F->getContext()); 2133 FuncAttrs.addAttribute("strictfp"); 2134 F->addFnAttrs(FuncAttrs); 2135 } 2136 } 2137 2138 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2139 const Decl *D = GD.getDecl(); 2140 if (isa_and_nonnull<NamedDecl>(D)) 2141 setGVProperties(GV, GD); 2142 else 2143 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2144 2145 if (D && D->hasAttr<UsedAttr>()) 2146 addUsedOrCompilerUsedGlobal(GV); 2147 2148 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2149 const auto *VD = cast<VarDecl>(D); 2150 if (VD->getType().isConstQualified() && 2151 VD->getStorageDuration() == SD_Static) 2152 addUsedOrCompilerUsedGlobal(GV); 2153 } 2154 } 2155 2156 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2157 llvm::AttrBuilder &Attrs) { 2158 // Add target-cpu and target-features attributes to functions. If 2159 // we have a decl for the function and it has a target attribute then 2160 // parse that and add it to the feature set. 2161 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2162 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2163 std::vector<std::string> Features; 2164 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2165 FD = FD ? FD->getMostRecentDecl() : FD; 2166 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2167 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2168 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2169 bool AddedAttr = false; 2170 if (TD || SD || TC) { 2171 llvm::StringMap<bool> FeatureMap; 2172 getContext().getFunctionFeatureMap(FeatureMap, GD); 2173 2174 // Produce the canonical string for this set of features. 2175 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2176 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2177 2178 // Now add the target-cpu and target-features to the function. 2179 // While we populated the feature map above, we still need to 2180 // get and parse the target attribute so we can get the cpu for 2181 // the function. 2182 if (TD) { 2183 ParsedTargetAttr ParsedAttr = 2184 Target.parseTargetAttr(TD->getFeaturesStr()); 2185 if (!ParsedAttr.CPU.empty() && 2186 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2187 TargetCPU = ParsedAttr.CPU; 2188 TuneCPU = ""; // Clear the tune CPU. 2189 } 2190 if (!ParsedAttr.Tune.empty() && 2191 getTarget().isValidCPUName(ParsedAttr.Tune)) 2192 TuneCPU = ParsedAttr.Tune; 2193 } 2194 2195 if (SD) { 2196 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2197 // favor this processor. 2198 TuneCPU = getTarget().getCPUSpecificTuneName( 2199 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2200 } 2201 } else { 2202 // Otherwise just add the existing target cpu and target features to the 2203 // function. 2204 Features = getTarget().getTargetOpts().Features; 2205 } 2206 2207 if (!TargetCPU.empty()) { 2208 Attrs.addAttribute("target-cpu", TargetCPU); 2209 AddedAttr = true; 2210 } 2211 if (!TuneCPU.empty()) { 2212 Attrs.addAttribute("tune-cpu", TuneCPU); 2213 AddedAttr = true; 2214 } 2215 if (!Features.empty()) { 2216 llvm::sort(Features); 2217 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2218 AddedAttr = true; 2219 } 2220 2221 return AddedAttr; 2222 } 2223 2224 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2225 llvm::GlobalObject *GO) { 2226 const Decl *D = GD.getDecl(); 2227 SetCommonAttributes(GD, GO); 2228 2229 if (D) { 2230 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2231 if (D->hasAttr<RetainAttr>()) 2232 addUsedGlobal(GV); 2233 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2234 GV->addAttribute("bss-section", SA->getName()); 2235 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2236 GV->addAttribute("data-section", SA->getName()); 2237 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2238 GV->addAttribute("rodata-section", SA->getName()); 2239 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2240 GV->addAttribute("relro-section", SA->getName()); 2241 } 2242 2243 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2244 if (D->hasAttr<RetainAttr>()) 2245 addUsedGlobal(F); 2246 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2247 if (!D->getAttr<SectionAttr>()) 2248 F->addFnAttr("implicit-section-name", SA->getName()); 2249 2250 llvm::AttrBuilder Attrs(F->getContext()); 2251 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2252 // We know that GetCPUAndFeaturesAttributes will always have the 2253 // newest set, since it has the newest possible FunctionDecl, so the 2254 // new ones should replace the old. 2255 llvm::AttributeMask RemoveAttrs; 2256 RemoveAttrs.addAttribute("target-cpu"); 2257 RemoveAttrs.addAttribute("target-features"); 2258 RemoveAttrs.addAttribute("tune-cpu"); 2259 F->removeFnAttrs(RemoveAttrs); 2260 F->addFnAttrs(Attrs); 2261 } 2262 } 2263 2264 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2265 GO->setSection(CSA->getName()); 2266 else if (const auto *SA = D->getAttr<SectionAttr>()) 2267 GO->setSection(SA->getName()); 2268 } 2269 2270 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2271 } 2272 2273 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2274 llvm::Function *F, 2275 const CGFunctionInfo &FI) { 2276 const Decl *D = GD.getDecl(); 2277 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2278 SetLLVMFunctionAttributesForDefinition(D, F); 2279 2280 F->setLinkage(llvm::Function::InternalLinkage); 2281 2282 setNonAliasAttributes(GD, F); 2283 } 2284 2285 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2286 // Set linkage and visibility in case we never see a definition. 2287 LinkageInfo LV = ND->getLinkageAndVisibility(); 2288 // Don't set internal linkage on declarations. 2289 // "extern_weak" is overloaded in LLVM; we probably should have 2290 // separate linkage types for this. 2291 if (isExternallyVisible(LV.getLinkage()) && 2292 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2293 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2294 } 2295 2296 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2297 llvm::Function *F) { 2298 // Only if we are checking indirect calls. 2299 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2300 return; 2301 2302 // Non-static class methods are handled via vtable or member function pointer 2303 // checks elsewhere. 2304 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2305 return; 2306 2307 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2308 F->addTypeMetadata(0, MD); 2309 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2310 2311 // Emit a hash-based bit set entry for cross-DSO calls. 2312 if (CodeGenOpts.SanitizeCfiCrossDso) 2313 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2314 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2315 } 2316 2317 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2318 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2319 return; 2320 2321 llvm::LLVMContext &Ctx = F->getContext(); 2322 llvm::MDBuilder MDB(Ctx); 2323 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2324 llvm::MDNode::get( 2325 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2326 } 2327 2328 static bool allowKCFIIdentifier(StringRef Name) { 2329 // KCFI type identifier constants are only necessary for external assembly 2330 // functions, which means it's safe to skip unusual names. Subset of 2331 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2332 return llvm::all_of(Name, [](const char &C) { 2333 return llvm::isAlnum(C) || C == '_' || C == '.'; 2334 }); 2335 } 2336 2337 void CodeGenModule::finalizeKCFITypes() { 2338 llvm::Module &M = getModule(); 2339 for (auto &F : M.functions()) { 2340 // Remove KCFI type metadata from non-address-taken local functions. 2341 bool AddressTaken = F.hasAddressTaken(); 2342 if (!AddressTaken && F.hasLocalLinkage()) 2343 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2344 2345 // Generate a constant with the expected KCFI type identifier for all 2346 // address-taken function declarations to support annotating indirectly 2347 // called assembly functions. 2348 if (!AddressTaken || !F.isDeclaration()) 2349 continue; 2350 2351 const llvm::ConstantInt *Type; 2352 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2353 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2354 else 2355 continue; 2356 2357 StringRef Name = F.getName(); 2358 if (!allowKCFIIdentifier(Name)) 2359 continue; 2360 2361 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2362 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2363 .str(); 2364 M.appendModuleInlineAsm(Asm); 2365 } 2366 } 2367 2368 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2369 bool IsIncompleteFunction, 2370 bool IsThunk) { 2371 2372 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2373 // If this is an intrinsic function, set the function's attributes 2374 // to the intrinsic's attributes. 2375 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2376 return; 2377 } 2378 2379 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2380 2381 if (!IsIncompleteFunction) 2382 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2383 IsThunk); 2384 2385 // Add the Returned attribute for "this", except for iOS 5 and earlier 2386 // where substantial code, including the libstdc++ dylib, was compiled with 2387 // GCC and does not actually return "this". 2388 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2389 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2390 assert(!F->arg_empty() && 2391 F->arg_begin()->getType() 2392 ->canLosslesslyBitCastTo(F->getReturnType()) && 2393 "unexpected this return"); 2394 F->addParamAttr(0, llvm::Attribute::Returned); 2395 } 2396 2397 // Only a few attributes are set on declarations; these may later be 2398 // overridden by a definition. 2399 2400 setLinkageForGV(F, FD); 2401 setGVProperties(F, FD); 2402 2403 // Setup target-specific attributes. 2404 if (!IsIncompleteFunction && F->isDeclaration()) 2405 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2406 2407 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2408 F->setSection(CSA->getName()); 2409 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2410 F->setSection(SA->getName()); 2411 2412 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2413 if (EA->isError()) 2414 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2415 else if (EA->isWarning()) 2416 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2417 } 2418 2419 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2420 if (FD->isInlineBuiltinDeclaration()) { 2421 const FunctionDecl *FDBody; 2422 bool HasBody = FD->hasBody(FDBody); 2423 (void)HasBody; 2424 assert(HasBody && "Inline builtin declarations should always have an " 2425 "available body!"); 2426 if (shouldEmitFunction(FDBody)) 2427 F->addFnAttr(llvm::Attribute::NoBuiltin); 2428 } 2429 2430 if (FD->isReplaceableGlobalAllocationFunction()) { 2431 // A replaceable global allocation function does not act like a builtin by 2432 // default, only if it is invoked by a new-expression or delete-expression. 2433 F->addFnAttr(llvm::Attribute::NoBuiltin); 2434 } 2435 2436 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2437 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2438 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2439 if (MD->isVirtual()) 2440 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2441 2442 // Don't emit entries for function declarations in the cross-DSO mode. This 2443 // is handled with better precision by the receiving DSO. But if jump tables 2444 // are non-canonical then we need type metadata in order to produce the local 2445 // jump table. 2446 if (!CodeGenOpts.SanitizeCfiCrossDso || 2447 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2448 CreateFunctionTypeMetadataForIcall(FD, F); 2449 2450 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2451 setKCFIType(FD, F); 2452 2453 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2454 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2455 2456 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2457 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2458 2459 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2460 // Annotate the callback behavior as metadata: 2461 // - The callback callee (as argument number). 2462 // - The callback payloads (as argument numbers). 2463 llvm::LLVMContext &Ctx = F->getContext(); 2464 llvm::MDBuilder MDB(Ctx); 2465 2466 // The payload indices are all but the first one in the encoding. The first 2467 // identifies the callback callee. 2468 int CalleeIdx = *CB->encoding_begin(); 2469 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2470 F->addMetadata(llvm::LLVMContext::MD_callback, 2471 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2472 CalleeIdx, PayloadIndices, 2473 /* VarArgsArePassed */ false)})); 2474 } 2475 } 2476 2477 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2478 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2479 "Only globals with definition can force usage."); 2480 LLVMUsed.emplace_back(GV); 2481 } 2482 2483 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2484 assert(!GV->isDeclaration() && 2485 "Only globals with definition can force usage."); 2486 LLVMCompilerUsed.emplace_back(GV); 2487 } 2488 2489 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2490 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2491 "Only globals with definition can force usage."); 2492 if (getTriple().isOSBinFormatELF()) 2493 LLVMCompilerUsed.emplace_back(GV); 2494 else 2495 LLVMUsed.emplace_back(GV); 2496 } 2497 2498 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2499 std::vector<llvm::WeakTrackingVH> &List) { 2500 // Don't create llvm.used if there is no need. 2501 if (List.empty()) 2502 return; 2503 2504 // Convert List to what ConstantArray needs. 2505 SmallVector<llvm::Constant*, 8> UsedArray; 2506 UsedArray.resize(List.size()); 2507 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2508 UsedArray[i] = 2509 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2510 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2511 } 2512 2513 if (UsedArray.empty()) 2514 return; 2515 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2516 2517 auto *GV = new llvm::GlobalVariable( 2518 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2519 llvm::ConstantArray::get(ATy, UsedArray), Name); 2520 2521 GV->setSection("llvm.metadata"); 2522 } 2523 2524 void CodeGenModule::emitLLVMUsed() { 2525 emitUsed(*this, "llvm.used", LLVMUsed); 2526 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2527 } 2528 2529 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2530 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2531 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2532 } 2533 2534 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2535 llvm::SmallString<32> Opt; 2536 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2537 if (Opt.empty()) 2538 return; 2539 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2540 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2541 } 2542 2543 void CodeGenModule::AddDependentLib(StringRef Lib) { 2544 auto &C = getLLVMContext(); 2545 if (getTarget().getTriple().isOSBinFormatELF()) { 2546 ELFDependentLibraries.push_back( 2547 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2548 return; 2549 } 2550 2551 llvm::SmallString<24> Opt; 2552 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2553 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2554 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2555 } 2556 2557 /// Add link options implied by the given module, including modules 2558 /// it depends on, using a postorder walk. 2559 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2560 SmallVectorImpl<llvm::MDNode *> &Metadata, 2561 llvm::SmallPtrSet<Module *, 16> &Visited) { 2562 // Import this module's parent. 2563 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2564 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2565 } 2566 2567 // Import this module's dependencies. 2568 for (Module *Import : llvm::reverse(Mod->Imports)) { 2569 if (Visited.insert(Import).second) 2570 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2571 } 2572 2573 // Add linker options to link against the libraries/frameworks 2574 // described by this module. 2575 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2576 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2577 2578 // For modules that use export_as for linking, use that module 2579 // name instead. 2580 if (Mod->UseExportAsModuleLinkName) 2581 return; 2582 2583 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2584 // Link against a framework. Frameworks are currently Darwin only, so we 2585 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2586 if (LL.IsFramework) { 2587 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2588 llvm::MDString::get(Context, LL.Library)}; 2589 2590 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2591 continue; 2592 } 2593 2594 // Link against a library. 2595 if (IsELF) { 2596 llvm::Metadata *Args[2] = { 2597 llvm::MDString::get(Context, "lib"), 2598 llvm::MDString::get(Context, LL.Library), 2599 }; 2600 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2601 } else { 2602 llvm::SmallString<24> Opt; 2603 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2604 auto *OptString = llvm::MDString::get(Context, Opt); 2605 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2606 } 2607 } 2608 } 2609 2610 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2611 // Emit the initializers in the order that sub-modules appear in the 2612 // source, first Global Module Fragments, if present. 2613 if (auto GMF = Primary->getGlobalModuleFragment()) { 2614 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2615 if (isa<ImportDecl>(D)) 2616 continue; 2617 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2618 EmitTopLevelDecl(D); 2619 } 2620 } 2621 // Second any associated with the module, itself. 2622 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2623 // Skip import decls, the inits for those are called explicitly. 2624 if (isa<ImportDecl>(D)) 2625 continue; 2626 EmitTopLevelDecl(D); 2627 } 2628 // Third any associated with the Privat eMOdule Fragment, if present. 2629 if (auto PMF = Primary->getPrivateModuleFragment()) { 2630 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2631 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2632 EmitTopLevelDecl(D); 2633 } 2634 } 2635 } 2636 2637 void CodeGenModule::EmitModuleLinkOptions() { 2638 // Collect the set of all of the modules we want to visit to emit link 2639 // options, which is essentially the imported modules and all of their 2640 // non-explicit child modules. 2641 llvm::SetVector<clang::Module *> LinkModules; 2642 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2643 SmallVector<clang::Module *, 16> Stack; 2644 2645 // Seed the stack with imported modules. 2646 for (Module *M : ImportedModules) { 2647 // Do not add any link flags when an implementation TU of a module imports 2648 // a header of that same module. 2649 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2650 !getLangOpts().isCompilingModule()) 2651 continue; 2652 if (Visited.insert(M).second) 2653 Stack.push_back(M); 2654 } 2655 2656 // Find all of the modules to import, making a little effort to prune 2657 // non-leaf modules. 2658 while (!Stack.empty()) { 2659 clang::Module *Mod = Stack.pop_back_val(); 2660 2661 bool AnyChildren = false; 2662 2663 // Visit the submodules of this module. 2664 for (const auto &SM : Mod->submodules()) { 2665 // Skip explicit children; they need to be explicitly imported to be 2666 // linked against. 2667 if (SM->IsExplicit) 2668 continue; 2669 2670 if (Visited.insert(SM).second) { 2671 Stack.push_back(SM); 2672 AnyChildren = true; 2673 } 2674 } 2675 2676 // We didn't find any children, so add this module to the list of 2677 // modules to link against. 2678 if (!AnyChildren) { 2679 LinkModules.insert(Mod); 2680 } 2681 } 2682 2683 // Add link options for all of the imported modules in reverse topological 2684 // order. We don't do anything to try to order import link flags with respect 2685 // to linker options inserted by things like #pragma comment(). 2686 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2687 Visited.clear(); 2688 for (Module *M : LinkModules) 2689 if (Visited.insert(M).second) 2690 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2691 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2692 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2693 2694 // Add the linker options metadata flag. 2695 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2696 for (auto *MD : LinkerOptionsMetadata) 2697 NMD->addOperand(MD); 2698 } 2699 2700 void CodeGenModule::EmitDeferred() { 2701 // Emit deferred declare target declarations. 2702 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2703 getOpenMPRuntime().emitDeferredTargetDecls(); 2704 2705 // Emit code for any potentially referenced deferred decls. Since a 2706 // previously unused static decl may become used during the generation of code 2707 // for a static function, iterate until no changes are made. 2708 2709 if (!DeferredVTables.empty()) { 2710 EmitDeferredVTables(); 2711 2712 // Emitting a vtable doesn't directly cause more vtables to 2713 // become deferred, although it can cause functions to be 2714 // emitted that then need those vtables. 2715 assert(DeferredVTables.empty()); 2716 } 2717 2718 // Emit CUDA/HIP static device variables referenced by host code only. 2719 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2720 // needed for further handling. 2721 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2722 llvm::append_range(DeferredDeclsToEmit, 2723 getContext().CUDADeviceVarODRUsedByHost); 2724 2725 // Stop if we're out of both deferred vtables and deferred declarations. 2726 if (DeferredDeclsToEmit.empty()) 2727 return; 2728 2729 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2730 // work, it will not interfere with this. 2731 std::vector<GlobalDecl> CurDeclsToEmit; 2732 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2733 2734 for (GlobalDecl &D : CurDeclsToEmit) { 2735 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2736 // to get GlobalValue with exactly the type we need, not something that 2737 // might had been created for another decl with the same mangled name but 2738 // different type. 2739 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2740 GetAddrOfGlobal(D, ForDefinition)); 2741 2742 // In case of different address spaces, we may still get a cast, even with 2743 // IsForDefinition equal to true. Query mangled names table to get 2744 // GlobalValue. 2745 if (!GV) 2746 GV = GetGlobalValue(getMangledName(D)); 2747 2748 // Make sure GetGlobalValue returned non-null. 2749 assert(GV); 2750 2751 // Check to see if we've already emitted this. This is necessary 2752 // for a couple of reasons: first, decls can end up in the 2753 // deferred-decls queue multiple times, and second, decls can end 2754 // up with definitions in unusual ways (e.g. by an extern inline 2755 // function acquiring a strong function redefinition). Just 2756 // ignore these cases. 2757 if (!GV->isDeclaration()) 2758 continue; 2759 2760 // If this is OpenMP, check if it is legal to emit this global normally. 2761 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2762 continue; 2763 2764 // Otherwise, emit the definition and move on to the next one. 2765 EmitGlobalDefinition(D, GV); 2766 2767 // If we found out that we need to emit more decls, do that recursively. 2768 // This has the advantage that the decls are emitted in a DFS and related 2769 // ones are close together, which is convenient for testing. 2770 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2771 EmitDeferred(); 2772 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2773 } 2774 } 2775 } 2776 2777 void CodeGenModule::EmitVTablesOpportunistically() { 2778 // Try to emit external vtables as available_externally if they have emitted 2779 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2780 // is not allowed to create new references to things that need to be emitted 2781 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2782 2783 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2784 && "Only emit opportunistic vtables with optimizations"); 2785 2786 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2787 assert(getVTables().isVTableExternal(RD) && 2788 "This queue should only contain external vtables"); 2789 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2790 VTables.GenerateClassData(RD); 2791 } 2792 OpportunisticVTables.clear(); 2793 } 2794 2795 void CodeGenModule::EmitGlobalAnnotations() { 2796 if (Annotations.empty()) 2797 return; 2798 2799 // Create a new global variable for the ConstantStruct in the Module. 2800 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2801 Annotations[0]->getType(), Annotations.size()), Annotations); 2802 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2803 llvm::GlobalValue::AppendingLinkage, 2804 Array, "llvm.global.annotations"); 2805 gv->setSection(AnnotationSection); 2806 } 2807 2808 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2809 llvm::Constant *&AStr = AnnotationStrings[Str]; 2810 if (AStr) 2811 return AStr; 2812 2813 // Not found yet, create a new global. 2814 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2815 auto *gv = 2816 new llvm::GlobalVariable(getModule(), s->getType(), true, 2817 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2818 gv->setSection(AnnotationSection); 2819 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2820 AStr = gv; 2821 return gv; 2822 } 2823 2824 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2825 SourceManager &SM = getContext().getSourceManager(); 2826 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2827 if (PLoc.isValid()) 2828 return EmitAnnotationString(PLoc.getFilename()); 2829 return EmitAnnotationString(SM.getBufferName(Loc)); 2830 } 2831 2832 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2833 SourceManager &SM = getContext().getSourceManager(); 2834 PresumedLoc PLoc = SM.getPresumedLoc(L); 2835 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2836 SM.getExpansionLineNumber(L); 2837 return llvm::ConstantInt::get(Int32Ty, LineNo); 2838 } 2839 2840 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2841 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2842 if (Exprs.empty()) 2843 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2844 2845 llvm::FoldingSetNodeID ID; 2846 for (Expr *E : Exprs) { 2847 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2848 } 2849 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2850 if (Lookup) 2851 return Lookup; 2852 2853 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2854 LLVMArgs.reserve(Exprs.size()); 2855 ConstantEmitter ConstEmiter(*this); 2856 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2857 const auto *CE = cast<clang::ConstantExpr>(E); 2858 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2859 CE->getType()); 2860 }); 2861 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2862 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2863 llvm::GlobalValue::PrivateLinkage, Struct, 2864 ".args"); 2865 GV->setSection(AnnotationSection); 2866 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2867 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2868 2869 Lookup = Bitcasted; 2870 return Bitcasted; 2871 } 2872 2873 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2874 const AnnotateAttr *AA, 2875 SourceLocation L) { 2876 // Get the globals for file name, annotation, and the line number. 2877 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2878 *UnitGV = EmitAnnotationUnit(L), 2879 *LineNoCst = EmitAnnotationLineNo(L), 2880 *Args = EmitAnnotationArgs(AA); 2881 2882 llvm::Constant *GVInGlobalsAS = GV; 2883 if (GV->getAddressSpace() != 2884 getDataLayout().getDefaultGlobalsAddressSpace()) { 2885 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2886 GV, GV->getValueType()->getPointerTo( 2887 getDataLayout().getDefaultGlobalsAddressSpace())); 2888 } 2889 2890 // Create the ConstantStruct for the global annotation. 2891 llvm::Constant *Fields[] = { 2892 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2893 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2894 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2895 LineNoCst, 2896 Args, 2897 }; 2898 return llvm::ConstantStruct::getAnon(Fields); 2899 } 2900 2901 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2902 llvm::GlobalValue *GV) { 2903 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2904 // Get the struct elements for these annotations. 2905 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2906 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2907 } 2908 2909 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2910 SourceLocation Loc) const { 2911 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2912 // NoSanitize by function name. 2913 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2914 return true; 2915 // NoSanitize by location. Check "mainfile" prefix. 2916 auto &SM = Context.getSourceManager(); 2917 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2918 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2919 return true; 2920 2921 // Check "src" prefix. 2922 if (Loc.isValid()) 2923 return NoSanitizeL.containsLocation(Kind, Loc); 2924 // If location is unknown, this may be a compiler-generated function. Assume 2925 // it's located in the main file. 2926 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2927 } 2928 2929 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2930 llvm::GlobalVariable *GV, 2931 SourceLocation Loc, QualType Ty, 2932 StringRef Category) const { 2933 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2934 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2935 return true; 2936 auto &SM = Context.getSourceManager(); 2937 if (NoSanitizeL.containsMainFile( 2938 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2939 return true; 2940 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2941 return true; 2942 2943 // Check global type. 2944 if (!Ty.isNull()) { 2945 // Drill down the array types: if global variable of a fixed type is 2946 // not sanitized, we also don't instrument arrays of them. 2947 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2948 Ty = AT->getElementType(); 2949 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2950 // Only record types (classes, structs etc.) are ignored. 2951 if (Ty->isRecordType()) { 2952 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2953 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2954 return true; 2955 } 2956 } 2957 return false; 2958 } 2959 2960 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2961 StringRef Category) const { 2962 const auto &XRayFilter = getContext().getXRayFilter(); 2963 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2964 auto Attr = ImbueAttr::NONE; 2965 if (Loc.isValid()) 2966 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2967 if (Attr == ImbueAttr::NONE) 2968 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2969 switch (Attr) { 2970 case ImbueAttr::NONE: 2971 return false; 2972 case ImbueAttr::ALWAYS: 2973 Fn->addFnAttr("function-instrument", "xray-always"); 2974 break; 2975 case ImbueAttr::ALWAYS_ARG1: 2976 Fn->addFnAttr("function-instrument", "xray-always"); 2977 Fn->addFnAttr("xray-log-args", "1"); 2978 break; 2979 case ImbueAttr::NEVER: 2980 Fn->addFnAttr("function-instrument", "xray-never"); 2981 break; 2982 } 2983 return true; 2984 } 2985 2986 ProfileList::ExclusionType 2987 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 2988 SourceLocation Loc) const { 2989 const auto &ProfileList = getContext().getProfileList(); 2990 // If the profile list is empty, then instrument everything. 2991 if (ProfileList.isEmpty()) 2992 return ProfileList::Allow; 2993 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2994 // First, check the function name. 2995 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 2996 return *V; 2997 // Next, check the source location. 2998 if (Loc.isValid()) 2999 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3000 return *V; 3001 // If location is unknown, this may be a compiler-generated function. Assume 3002 // it's located in the main file. 3003 auto &SM = Context.getSourceManager(); 3004 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3005 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3006 return *V; 3007 return ProfileList.getDefault(Kind); 3008 } 3009 3010 ProfileList::ExclusionType 3011 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3012 SourceLocation Loc) const { 3013 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3014 if (V != ProfileList::Allow) 3015 return V; 3016 3017 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3018 if (NumGroups > 1) { 3019 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3020 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3021 return ProfileList::Skip; 3022 } 3023 return ProfileList::Allow; 3024 } 3025 3026 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3027 // Never defer when EmitAllDecls is specified. 3028 if (LangOpts.EmitAllDecls) 3029 return true; 3030 3031 if (CodeGenOpts.KeepStaticConsts) { 3032 const auto *VD = dyn_cast<VarDecl>(Global); 3033 if (VD && VD->getType().isConstQualified() && 3034 VD->getStorageDuration() == SD_Static) 3035 return true; 3036 } 3037 3038 return getContext().DeclMustBeEmitted(Global); 3039 } 3040 3041 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3042 // In OpenMP 5.0 variables and function may be marked as 3043 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3044 // that they must be emitted on the host/device. To be sure we need to have 3045 // seen a declare target with an explicit mentioning of the function, we know 3046 // we have if the level of the declare target attribute is -1. Note that we 3047 // check somewhere else if we should emit this at all. 3048 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3049 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3050 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3051 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3052 return false; 3053 } 3054 3055 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3056 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3057 // Implicit template instantiations may change linkage if they are later 3058 // explicitly instantiated, so they should not be emitted eagerly. 3059 return false; 3060 } 3061 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3062 if (Context.getInlineVariableDefinitionKind(VD) == 3063 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3064 // A definition of an inline constexpr static data member may change 3065 // linkage later if it's redeclared outside the class. 3066 return false; 3067 if (CXX20ModuleInits && VD->getOwningModule() && 3068 !VD->getOwningModule()->isModuleMapModule()) { 3069 // For CXX20, module-owned initializers need to be deferred, since it is 3070 // not known at this point if they will be run for the current module or 3071 // as part of the initializer for an imported one. 3072 return false; 3073 } 3074 } 3075 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3076 // codegen for global variables, because they may be marked as threadprivate. 3077 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3078 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3079 !isTypeConstant(Global->getType(), false) && 3080 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3081 return false; 3082 3083 return true; 3084 } 3085 3086 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3087 StringRef Name = getMangledName(GD); 3088 3089 // The UUID descriptor should be pointer aligned. 3090 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3091 3092 // Look for an existing global. 3093 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3094 return ConstantAddress(GV, GV->getValueType(), Alignment); 3095 3096 ConstantEmitter Emitter(*this); 3097 llvm::Constant *Init; 3098 3099 APValue &V = GD->getAsAPValue(); 3100 if (!V.isAbsent()) { 3101 // If possible, emit the APValue version of the initializer. In particular, 3102 // this gets the type of the constant right. 3103 Init = Emitter.emitForInitializer( 3104 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3105 } else { 3106 // As a fallback, directly construct the constant. 3107 // FIXME: This may get padding wrong under esoteric struct layout rules. 3108 // MSVC appears to create a complete type 'struct __s_GUID' that it 3109 // presumably uses to represent these constants. 3110 MSGuidDecl::Parts Parts = GD->getParts(); 3111 llvm::Constant *Fields[4] = { 3112 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3113 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3114 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3115 llvm::ConstantDataArray::getRaw( 3116 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3117 Int8Ty)}; 3118 Init = llvm::ConstantStruct::getAnon(Fields); 3119 } 3120 3121 auto *GV = new llvm::GlobalVariable( 3122 getModule(), Init->getType(), 3123 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3124 if (supportsCOMDAT()) 3125 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3126 setDSOLocal(GV); 3127 3128 if (!V.isAbsent()) { 3129 Emitter.finalize(GV); 3130 return ConstantAddress(GV, GV->getValueType(), Alignment); 3131 } 3132 3133 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3134 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3135 GV, Ty->getPointerTo(GV->getAddressSpace())); 3136 return ConstantAddress(Addr, Ty, Alignment); 3137 } 3138 3139 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3140 const UnnamedGlobalConstantDecl *GCD) { 3141 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3142 3143 llvm::GlobalVariable **Entry = nullptr; 3144 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3145 if (*Entry) 3146 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3147 3148 ConstantEmitter Emitter(*this); 3149 llvm::Constant *Init; 3150 3151 const APValue &V = GCD->getValue(); 3152 3153 assert(!V.isAbsent()); 3154 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3155 GCD->getType()); 3156 3157 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3158 /*isConstant=*/true, 3159 llvm::GlobalValue::PrivateLinkage, Init, 3160 ".constant"); 3161 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3162 GV->setAlignment(Alignment.getAsAlign()); 3163 3164 Emitter.finalize(GV); 3165 3166 *Entry = GV; 3167 return ConstantAddress(GV, GV->getValueType(), Alignment); 3168 } 3169 3170 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3171 const TemplateParamObjectDecl *TPO) { 3172 StringRef Name = getMangledName(TPO); 3173 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3174 3175 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3176 return ConstantAddress(GV, GV->getValueType(), Alignment); 3177 3178 ConstantEmitter Emitter(*this); 3179 llvm::Constant *Init = Emitter.emitForInitializer( 3180 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3181 3182 if (!Init) { 3183 ErrorUnsupported(TPO, "template parameter object"); 3184 return ConstantAddress::invalid(); 3185 } 3186 3187 auto *GV = new llvm::GlobalVariable( 3188 getModule(), Init->getType(), 3189 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3190 if (supportsCOMDAT()) 3191 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3192 Emitter.finalize(GV); 3193 3194 return ConstantAddress(GV, GV->getValueType(), Alignment); 3195 } 3196 3197 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3198 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3199 assert(AA && "No alias?"); 3200 3201 CharUnits Alignment = getContext().getDeclAlign(VD); 3202 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3203 3204 // See if there is already something with the target's name in the module. 3205 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3206 if (Entry) { 3207 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3208 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3209 return ConstantAddress(Ptr, DeclTy, Alignment); 3210 } 3211 3212 llvm::Constant *Aliasee; 3213 if (isa<llvm::FunctionType>(DeclTy)) 3214 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3215 GlobalDecl(cast<FunctionDecl>(VD)), 3216 /*ForVTable=*/false); 3217 else 3218 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3219 nullptr); 3220 3221 auto *F = cast<llvm::GlobalValue>(Aliasee); 3222 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3223 WeakRefReferences.insert(F); 3224 3225 return ConstantAddress(Aliasee, DeclTy, Alignment); 3226 } 3227 3228 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3229 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3230 3231 // Weak references don't produce any output by themselves. 3232 if (Global->hasAttr<WeakRefAttr>()) 3233 return; 3234 3235 // If this is an alias definition (which otherwise looks like a declaration) 3236 // emit it now. 3237 if (Global->hasAttr<AliasAttr>()) 3238 return EmitAliasDefinition(GD); 3239 3240 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3241 if (Global->hasAttr<IFuncAttr>()) 3242 return emitIFuncDefinition(GD); 3243 3244 // If this is a cpu_dispatch multiversion function, emit the resolver. 3245 if (Global->hasAttr<CPUDispatchAttr>()) 3246 return emitCPUDispatchDefinition(GD); 3247 3248 // If this is CUDA, be selective about which declarations we emit. 3249 if (LangOpts.CUDA) { 3250 if (LangOpts.CUDAIsDevice) { 3251 if (!Global->hasAttr<CUDADeviceAttr>() && 3252 !Global->hasAttr<CUDAGlobalAttr>() && 3253 !Global->hasAttr<CUDAConstantAttr>() && 3254 !Global->hasAttr<CUDASharedAttr>() && 3255 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3256 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3257 return; 3258 } else { 3259 // We need to emit host-side 'shadows' for all global 3260 // device-side variables because the CUDA runtime needs their 3261 // size and host-side address in order to provide access to 3262 // their device-side incarnations. 3263 3264 // So device-only functions are the only things we skip. 3265 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3266 Global->hasAttr<CUDADeviceAttr>()) 3267 return; 3268 3269 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3270 "Expected Variable or Function"); 3271 } 3272 } 3273 3274 if (LangOpts.OpenMP) { 3275 // If this is OpenMP, check if it is legal to emit this global normally. 3276 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3277 return; 3278 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3279 if (MustBeEmitted(Global)) 3280 EmitOMPDeclareReduction(DRD); 3281 return; 3282 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3283 if (MustBeEmitted(Global)) 3284 EmitOMPDeclareMapper(DMD); 3285 return; 3286 } 3287 } 3288 3289 // Ignore declarations, they will be emitted on their first use. 3290 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3291 // Forward declarations are emitted lazily on first use. 3292 if (!FD->doesThisDeclarationHaveABody()) { 3293 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3294 return; 3295 3296 StringRef MangledName = getMangledName(GD); 3297 3298 // Compute the function info and LLVM type. 3299 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3300 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3301 3302 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3303 /*DontDefer=*/false); 3304 return; 3305 } 3306 } else { 3307 const auto *VD = cast<VarDecl>(Global); 3308 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3309 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3310 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3311 if (LangOpts.OpenMP) { 3312 // Emit declaration of the must-be-emitted declare target variable. 3313 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3314 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3315 bool UnifiedMemoryEnabled = 3316 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3317 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3318 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3319 !UnifiedMemoryEnabled) { 3320 (void)GetAddrOfGlobalVar(VD); 3321 } else { 3322 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3323 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3324 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3325 UnifiedMemoryEnabled)) && 3326 "Link clause or to clause with unified memory expected."); 3327 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3328 } 3329 3330 return; 3331 } 3332 } 3333 // If this declaration may have caused an inline variable definition to 3334 // change linkage, make sure that it's emitted. 3335 if (Context.getInlineVariableDefinitionKind(VD) == 3336 ASTContext::InlineVariableDefinitionKind::Strong) 3337 GetAddrOfGlobalVar(VD); 3338 return; 3339 } 3340 } 3341 3342 // Defer code generation to first use when possible, e.g. if this is an inline 3343 // function. If the global must always be emitted, do it eagerly if possible 3344 // to benefit from cache locality. 3345 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3346 // Emit the definition if it can't be deferred. 3347 EmitGlobalDefinition(GD); 3348 return; 3349 } 3350 3351 // If we're deferring emission of a C++ variable with an 3352 // initializer, remember the order in which it appeared in the file. 3353 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3354 cast<VarDecl>(Global)->hasInit()) { 3355 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3356 CXXGlobalInits.push_back(nullptr); 3357 } 3358 3359 StringRef MangledName = getMangledName(GD); 3360 if (GetGlobalValue(MangledName) != nullptr) { 3361 // The value has already been used and should therefore be emitted. 3362 addDeferredDeclToEmit(GD); 3363 } else if (MustBeEmitted(Global)) { 3364 // The value must be emitted, but cannot be emitted eagerly. 3365 assert(!MayBeEmittedEagerly(Global)); 3366 addDeferredDeclToEmit(GD); 3367 EmittedDeferredDecls[MangledName] = GD; 3368 } else { 3369 // Otherwise, remember that we saw a deferred decl with this name. The 3370 // first use of the mangled name will cause it to move into 3371 // DeferredDeclsToEmit. 3372 DeferredDecls[MangledName] = GD; 3373 } 3374 } 3375 3376 // Check if T is a class type with a destructor that's not dllimport. 3377 static bool HasNonDllImportDtor(QualType T) { 3378 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3379 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3380 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3381 return true; 3382 3383 return false; 3384 } 3385 3386 namespace { 3387 struct FunctionIsDirectlyRecursive 3388 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3389 const StringRef Name; 3390 const Builtin::Context &BI; 3391 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3392 : Name(N), BI(C) {} 3393 3394 bool VisitCallExpr(const CallExpr *E) { 3395 const FunctionDecl *FD = E->getDirectCallee(); 3396 if (!FD) 3397 return false; 3398 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3399 if (Attr && Name == Attr->getLabel()) 3400 return true; 3401 unsigned BuiltinID = FD->getBuiltinID(); 3402 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3403 return false; 3404 StringRef BuiltinName = BI.getName(BuiltinID); 3405 if (BuiltinName.startswith("__builtin_") && 3406 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3407 return true; 3408 } 3409 return false; 3410 } 3411 3412 bool VisitStmt(const Stmt *S) { 3413 for (const Stmt *Child : S->children()) 3414 if (Child && this->Visit(Child)) 3415 return true; 3416 return false; 3417 } 3418 }; 3419 3420 // Make sure we're not referencing non-imported vars or functions. 3421 struct DLLImportFunctionVisitor 3422 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3423 bool SafeToInline = true; 3424 3425 bool shouldVisitImplicitCode() const { return true; } 3426 3427 bool VisitVarDecl(VarDecl *VD) { 3428 if (VD->getTLSKind()) { 3429 // A thread-local variable cannot be imported. 3430 SafeToInline = false; 3431 return SafeToInline; 3432 } 3433 3434 // A variable definition might imply a destructor call. 3435 if (VD->isThisDeclarationADefinition()) 3436 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3437 3438 return SafeToInline; 3439 } 3440 3441 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3442 if (const auto *D = E->getTemporary()->getDestructor()) 3443 SafeToInline = D->hasAttr<DLLImportAttr>(); 3444 return SafeToInline; 3445 } 3446 3447 bool VisitDeclRefExpr(DeclRefExpr *E) { 3448 ValueDecl *VD = E->getDecl(); 3449 if (isa<FunctionDecl>(VD)) 3450 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3451 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3452 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3453 return SafeToInline; 3454 } 3455 3456 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3457 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3458 return SafeToInline; 3459 } 3460 3461 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3462 CXXMethodDecl *M = E->getMethodDecl(); 3463 if (!M) { 3464 // Call through a pointer to member function. This is safe to inline. 3465 SafeToInline = true; 3466 } else { 3467 SafeToInline = M->hasAttr<DLLImportAttr>(); 3468 } 3469 return SafeToInline; 3470 } 3471 3472 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3473 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3474 return SafeToInline; 3475 } 3476 3477 bool VisitCXXNewExpr(CXXNewExpr *E) { 3478 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3479 return SafeToInline; 3480 } 3481 }; 3482 } 3483 3484 // isTriviallyRecursive - Check if this function calls another 3485 // decl that, because of the asm attribute or the other decl being a builtin, 3486 // ends up pointing to itself. 3487 bool 3488 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3489 StringRef Name; 3490 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3491 // asm labels are a special kind of mangling we have to support. 3492 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3493 if (!Attr) 3494 return false; 3495 Name = Attr->getLabel(); 3496 } else { 3497 Name = FD->getName(); 3498 } 3499 3500 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3501 const Stmt *Body = FD->getBody(); 3502 return Body ? Walker.Visit(Body) : false; 3503 } 3504 3505 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3506 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3507 return true; 3508 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3509 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3510 return false; 3511 3512 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3513 // Check whether it would be safe to inline this dllimport function. 3514 DLLImportFunctionVisitor Visitor; 3515 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3516 if (!Visitor.SafeToInline) 3517 return false; 3518 3519 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3520 // Implicit destructor invocations aren't captured in the AST, so the 3521 // check above can't see them. Check for them manually here. 3522 for (const Decl *Member : Dtor->getParent()->decls()) 3523 if (isa<FieldDecl>(Member)) 3524 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3525 return false; 3526 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3527 if (HasNonDllImportDtor(B.getType())) 3528 return false; 3529 } 3530 } 3531 3532 // Inline builtins declaration must be emitted. They often are fortified 3533 // functions. 3534 if (F->isInlineBuiltinDeclaration()) 3535 return true; 3536 3537 // PR9614. Avoid cases where the source code is lying to us. An available 3538 // externally function should have an equivalent function somewhere else, 3539 // but a function that calls itself through asm label/`__builtin_` trickery is 3540 // clearly not equivalent to the real implementation. 3541 // This happens in glibc's btowc and in some configure checks. 3542 return !isTriviallyRecursive(F); 3543 } 3544 3545 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3546 return CodeGenOpts.OptimizationLevel > 0; 3547 } 3548 3549 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3550 llvm::GlobalValue *GV) { 3551 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3552 3553 if (FD->isCPUSpecificMultiVersion()) { 3554 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3555 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3556 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3557 } else if (FD->isTargetClonesMultiVersion()) { 3558 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3559 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3560 if (Clone->isFirstOfVersion(I)) 3561 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3562 // Ensure that the resolver function is also emitted. 3563 GetOrCreateMultiVersionResolver(GD); 3564 } else 3565 EmitGlobalFunctionDefinition(GD, GV); 3566 } 3567 3568 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3569 const auto *D = cast<ValueDecl>(GD.getDecl()); 3570 3571 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3572 Context.getSourceManager(), 3573 "Generating code for declaration"); 3574 3575 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3576 // At -O0, don't generate IR for functions with available_externally 3577 // linkage. 3578 if (!shouldEmitFunction(GD)) 3579 return; 3580 3581 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3582 std::string Name; 3583 llvm::raw_string_ostream OS(Name); 3584 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3585 /*Qualified=*/true); 3586 return Name; 3587 }); 3588 3589 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3590 // Make sure to emit the definition(s) before we emit the thunks. 3591 // This is necessary for the generation of certain thunks. 3592 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3593 ABI->emitCXXStructor(GD); 3594 else if (FD->isMultiVersion()) 3595 EmitMultiVersionFunctionDefinition(GD, GV); 3596 else 3597 EmitGlobalFunctionDefinition(GD, GV); 3598 3599 if (Method->isVirtual()) 3600 getVTables().EmitThunks(GD); 3601 3602 return; 3603 } 3604 3605 if (FD->isMultiVersion()) 3606 return EmitMultiVersionFunctionDefinition(GD, GV); 3607 return EmitGlobalFunctionDefinition(GD, GV); 3608 } 3609 3610 if (const auto *VD = dyn_cast<VarDecl>(D)) 3611 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3612 3613 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3614 } 3615 3616 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3617 llvm::Function *NewFn); 3618 3619 static unsigned 3620 TargetMVPriority(const TargetInfo &TI, 3621 const CodeGenFunction::MultiVersionResolverOption &RO) { 3622 unsigned Priority = 0; 3623 for (StringRef Feat : RO.Conditions.Features) 3624 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3625 3626 if (!RO.Conditions.Architecture.empty()) 3627 Priority = std::max( 3628 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3629 return Priority; 3630 } 3631 3632 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3633 // TU can forward declare the function without causing problems. Particularly 3634 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3635 // work with internal linkage functions, so that the same function name can be 3636 // used with internal linkage in multiple TUs. 3637 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3638 GlobalDecl GD) { 3639 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3640 if (FD->getFormalLinkage() == InternalLinkage) 3641 return llvm::GlobalValue::InternalLinkage; 3642 return llvm::GlobalValue::WeakODRLinkage; 3643 } 3644 3645 void CodeGenModule::emitMultiVersionFunctions() { 3646 std::vector<GlobalDecl> MVFuncsToEmit; 3647 MultiVersionFuncs.swap(MVFuncsToEmit); 3648 for (GlobalDecl GD : MVFuncsToEmit) { 3649 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3650 assert(FD && "Expected a FunctionDecl"); 3651 3652 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3653 if (FD->isTargetMultiVersion()) { 3654 getContext().forEachMultiversionedFunctionVersion( 3655 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3656 GlobalDecl CurGD{ 3657 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3658 StringRef MangledName = getMangledName(CurGD); 3659 llvm::Constant *Func = GetGlobalValue(MangledName); 3660 if (!Func) { 3661 if (CurFD->isDefined()) { 3662 EmitGlobalFunctionDefinition(CurGD, nullptr); 3663 Func = GetGlobalValue(MangledName); 3664 } else { 3665 const CGFunctionInfo &FI = 3666 getTypes().arrangeGlobalDeclaration(GD); 3667 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3668 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3669 /*DontDefer=*/false, ForDefinition); 3670 } 3671 assert(Func && "This should have just been created"); 3672 } 3673 3674 const auto *TA = CurFD->getAttr<TargetAttr>(); 3675 llvm::SmallVector<StringRef, 8> Feats; 3676 TA->getAddedFeatures(Feats); 3677 3678 Options.emplace_back(cast<llvm::Function>(Func), 3679 TA->getArchitecture(), Feats); 3680 }); 3681 } else if (FD->isTargetClonesMultiVersion()) { 3682 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3683 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3684 ++VersionIndex) { 3685 if (!TC->isFirstOfVersion(VersionIndex)) 3686 continue; 3687 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3688 VersionIndex}; 3689 StringRef Version = TC->getFeatureStr(VersionIndex); 3690 StringRef MangledName = getMangledName(CurGD); 3691 llvm::Constant *Func = GetGlobalValue(MangledName); 3692 if (!Func) { 3693 if (FD->isDefined()) { 3694 EmitGlobalFunctionDefinition(CurGD, nullptr); 3695 Func = GetGlobalValue(MangledName); 3696 } else { 3697 const CGFunctionInfo &FI = 3698 getTypes().arrangeGlobalDeclaration(CurGD); 3699 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3700 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3701 /*DontDefer=*/false, ForDefinition); 3702 } 3703 assert(Func && "This should have just been created"); 3704 } 3705 3706 StringRef Architecture; 3707 llvm::SmallVector<StringRef, 1> Feature; 3708 3709 if (Version.startswith("arch=")) 3710 Architecture = Version.drop_front(sizeof("arch=") - 1); 3711 else if (Version != "default") 3712 Feature.push_back(Version); 3713 3714 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3715 } 3716 } else { 3717 assert(0 && "Expected a target or target_clones multiversion function"); 3718 continue; 3719 } 3720 3721 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3722 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3723 ResolverConstant = IFunc->getResolver(); 3724 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3725 3726 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3727 3728 if (supportsCOMDAT()) 3729 ResolverFunc->setComdat( 3730 getModule().getOrInsertComdat(ResolverFunc->getName())); 3731 3732 const TargetInfo &TI = getTarget(); 3733 llvm::stable_sort( 3734 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3735 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3736 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3737 }); 3738 CodeGenFunction CGF(*this); 3739 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3740 } 3741 3742 // Ensure that any additions to the deferred decls list caused by emitting a 3743 // variant are emitted. This can happen when the variant itself is inline and 3744 // calls a function without linkage. 3745 if (!MVFuncsToEmit.empty()) 3746 EmitDeferred(); 3747 3748 // Ensure that any additions to the multiversion funcs list from either the 3749 // deferred decls or the multiversion functions themselves are emitted. 3750 if (!MultiVersionFuncs.empty()) 3751 emitMultiVersionFunctions(); 3752 } 3753 3754 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3755 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3756 assert(FD && "Not a FunctionDecl?"); 3757 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3758 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3759 assert(DD && "Not a cpu_dispatch Function?"); 3760 3761 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3762 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3763 3764 StringRef ResolverName = getMangledName(GD); 3765 UpdateMultiVersionNames(GD, FD, ResolverName); 3766 3767 llvm::Type *ResolverType; 3768 GlobalDecl ResolverGD; 3769 if (getTarget().supportsIFunc()) { 3770 ResolverType = llvm::FunctionType::get( 3771 llvm::PointerType::get(DeclTy, 3772 getTypes().getTargetAddressSpace(FD->getType())), 3773 false); 3774 } 3775 else { 3776 ResolverType = DeclTy; 3777 ResolverGD = GD; 3778 } 3779 3780 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3781 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3782 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3783 if (supportsCOMDAT()) 3784 ResolverFunc->setComdat( 3785 getModule().getOrInsertComdat(ResolverFunc->getName())); 3786 3787 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3788 const TargetInfo &Target = getTarget(); 3789 unsigned Index = 0; 3790 for (const IdentifierInfo *II : DD->cpus()) { 3791 // Get the name of the target function so we can look it up/create it. 3792 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3793 getCPUSpecificMangling(*this, II->getName()); 3794 3795 llvm::Constant *Func = GetGlobalValue(MangledName); 3796 3797 if (!Func) { 3798 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3799 if (ExistingDecl.getDecl() && 3800 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3801 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3802 Func = GetGlobalValue(MangledName); 3803 } else { 3804 if (!ExistingDecl.getDecl()) 3805 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3806 3807 Func = GetOrCreateLLVMFunction( 3808 MangledName, DeclTy, ExistingDecl, 3809 /*ForVTable=*/false, /*DontDefer=*/true, 3810 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3811 } 3812 } 3813 3814 llvm::SmallVector<StringRef, 32> Features; 3815 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3816 llvm::transform(Features, Features.begin(), 3817 [](StringRef Str) { return Str.substr(1); }); 3818 llvm::erase_if(Features, [&Target](StringRef Feat) { 3819 return !Target.validateCpuSupports(Feat); 3820 }); 3821 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3822 ++Index; 3823 } 3824 3825 llvm::stable_sort( 3826 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3827 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3828 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3829 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3830 }); 3831 3832 // If the list contains multiple 'default' versions, such as when it contains 3833 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3834 // always run on at least a 'pentium'). We do this by deleting the 'least 3835 // advanced' (read, lowest mangling letter). 3836 while (Options.size() > 1 && 3837 llvm::X86::getCpuSupportsMask( 3838 (Options.end() - 2)->Conditions.Features) == 0) { 3839 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3840 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3841 if (LHSName.compare(RHSName) < 0) 3842 Options.erase(Options.end() - 2); 3843 else 3844 Options.erase(Options.end() - 1); 3845 } 3846 3847 CodeGenFunction CGF(*this); 3848 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3849 3850 if (getTarget().supportsIFunc()) { 3851 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3852 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3853 3854 // Fix up function declarations that were created for cpu_specific before 3855 // cpu_dispatch was known 3856 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3857 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3858 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3859 &getModule()); 3860 GI->takeName(IFunc); 3861 IFunc->replaceAllUsesWith(GI); 3862 IFunc->eraseFromParent(); 3863 IFunc = GI; 3864 } 3865 3866 std::string AliasName = getMangledNameImpl( 3867 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3868 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3869 if (!AliasFunc) { 3870 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3871 &getModule()); 3872 SetCommonAttributes(GD, GA); 3873 } 3874 } 3875 } 3876 3877 /// If a dispatcher for the specified mangled name is not in the module, create 3878 /// and return an llvm Function with the specified type. 3879 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3880 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3881 assert(FD && "Not a FunctionDecl?"); 3882 3883 std::string MangledName = 3884 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3885 3886 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3887 // a separate resolver). 3888 std::string ResolverName = MangledName; 3889 if (getTarget().supportsIFunc()) 3890 ResolverName += ".ifunc"; 3891 else if (FD->isTargetMultiVersion()) 3892 ResolverName += ".resolver"; 3893 3894 // If the resolver has already been created, just return it. 3895 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3896 return ResolverGV; 3897 3898 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3899 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3900 3901 // The resolver needs to be created. For target and target_clones, defer 3902 // creation until the end of the TU. 3903 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3904 MultiVersionFuncs.push_back(GD); 3905 3906 // For cpu_specific, don't create an ifunc yet because we don't know if the 3907 // cpu_dispatch will be emitted in this translation unit. 3908 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3909 llvm::Type *ResolverType = llvm::FunctionType::get( 3910 llvm::PointerType::get(DeclTy, 3911 getTypes().getTargetAddressSpace(FD->getType())), 3912 false); 3913 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3914 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3915 /*ForVTable=*/false); 3916 llvm::GlobalIFunc *GIF = 3917 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3918 "", Resolver, &getModule()); 3919 GIF->setName(ResolverName); 3920 SetCommonAttributes(FD, GIF); 3921 3922 return GIF; 3923 } 3924 3925 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3926 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3927 assert(isa<llvm::GlobalValue>(Resolver) && 3928 "Resolver should be created for the first time"); 3929 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3930 return Resolver; 3931 } 3932 3933 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3934 /// module, create and return an llvm Function with the specified type. If there 3935 /// is something in the module with the specified name, return it potentially 3936 /// bitcasted to the right type. 3937 /// 3938 /// If D is non-null, it specifies a decl that correspond to this. This is used 3939 /// to set the attributes on the function when it is first created. 3940 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3941 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3942 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3943 ForDefinition_t IsForDefinition) { 3944 const Decl *D = GD.getDecl(); 3945 3946 // Any attempts to use a MultiVersion function should result in retrieving 3947 // the iFunc instead. Name Mangling will handle the rest of the changes. 3948 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3949 // For the device mark the function as one that should be emitted. 3950 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3951 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3952 !DontDefer && !IsForDefinition) { 3953 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3954 GlobalDecl GDDef; 3955 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3956 GDDef = GlobalDecl(CD, GD.getCtorType()); 3957 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3958 GDDef = GlobalDecl(DD, GD.getDtorType()); 3959 else 3960 GDDef = GlobalDecl(FDDef); 3961 EmitGlobal(GDDef); 3962 } 3963 } 3964 3965 if (FD->isMultiVersion()) { 3966 UpdateMultiVersionNames(GD, FD, MangledName); 3967 if (!IsForDefinition) 3968 return GetOrCreateMultiVersionResolver(GD); 3969 } 3970 } 3971 3972 // Lookup the entry, lazily creating it if necessary. 3973 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3974 if (Entry) { 3975 if (WeakRefReferences.erase(Entry)) { 3976 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3977 if (FD && !FD->hasAttr<WeakAttr>()) 3978 Entry->setLinkage(llvm::Function::ExternalLinkage); 3979 } 3980 3981 // Handle dropped DLL attributes. 3982 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 3983 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 3984 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3985 setDSOLocal(Entry); 3986 } 3987 3988 // If there are two attempts to define the same mangled name, issue an 3989 // error. 3990 if (IsForDefinition && !Entry->isDeclaration()) { 3991 GlobalDecl OtherGD; 3992 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3993 // to make sure that we issue an error only once. 3994 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3995 (GD.getCanonicalDecl().getDecl() != 3996 OtherGD.getCanonicalDecl().getDecl()) && 3997 DiagnosedConflictingDefinitions.insert(GD).second) { 3998 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3999 << MangledName; 4000 getDiags().Report(OtherGD.getDecl()->getLocation(), 4001 diag::note_previous_definition); 4002 } 4003 } 4004 4005 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4006 (Entry->getValueType() == Ty)) { 4007 return Entry; 4008 } 4009 4010 // Make sure the result is of the correct type. 4011 // (If function is requested for a definition, we always need to create a new 4012 // function, not just return a bitcast.) 4013 if (!IsForDefinition) 4014 return llvm::ConstantExpr::getBitCast( 4015 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4016 } 4017 4018 // This function doesn't have a complete type (for example, the return 4019 // type is an incomplete struct). Use a fake type instead, and make 4020 // sure not to try to set attributes. 4021 bool IsIncompleteFunction = false; 4022 4023 llvm::FunctionType *FTy; 4024 if (isa<llvm::FunctionType>(Ty)) { 4025 FTy = cast<llvm::FunctionType>(Ty); 4026 } else { 4027 FTy = llvm::FunctionType::get(VoidTy, false); 4028 IsIncompleteFunction = true; 4029 } 4030 4031 llvm::Function *F = 4032 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4033 Entry ? StringRef() : MangledName, &getModule()); 4034 4035 // If we already created a function with the same mangled name (but different 4036 // type) before, take its name and add it to the list of functions to be 4037 // replaced with F at the end of CodeGen. 4038 // 4039 // This happens if there is a prototype for a function (e.g. "int f()") and 4040 // then a definition of a different type (e.g. "int f(int x)"). 4041 if (Entry) { 4042 F->takeName(Entry); 4043 4044 // This might be an implementation of a function without a prototype, in 4045 // which case, try to do special replacement of calls which match the new 4046 // prototype. The really key thing here is that we also potentially drop 4047 // arguments from the call site so as to make a direct call, which makes the 4048 // inliner happier and suppresses a number of optimizer warnings (!) about 4049 // dropping arguments. 4050 if (!Entry->use_empty()) { 4051 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4052 Entry->removeDeadConstantUsers(); 4053 } 4054 4055 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4056 F, Entry->getValueType()->getPointerTo()); 4057 addGlobalValReplacement(Entry, BC); 4058 } 4059 4060 assert(F->getName() == MangledName && "name was uniqued!"); 4061 if (D) 4062 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4063 if (ExtraAttrs.hasFnAttrs()) { 4064 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4065 F->addFnAttrs(B); 4066 } 4067 4068 if (!DontDefer) { 4069 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4070 // each other bottoming out with the base dtor. Therefore we emit non-base 4071 // dtors on usage, even if there is no dtor definition in the TU. 4072 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4073 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4074 GD.getDtorType())) 4075 addDeferredDeclToEmit(GD); 4076 4077 // This is the first use or definition of a mangled name. If there is a 4078 // deferred decl with this name, remember that we need to emit it at the end 4079 // of the file. 4080 auto DDI = DeferredDecls.find(MangledName); 4081 if (DDI != DeferredDecls.end()) { 4082 // Move the potentially referenced deferred decl to the 4083 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4084 // don't need it anymore). 4085 addDeferredDeclToEmit(DDI->second); 4086 EmittedDeferredDecls[DDI->first] = DDI->second; 4087 DeferredDecls.erase(DDI); 4088 4089 // Otherwise, there are cases we have to worry about where we're 4090 // using a declaration for which we must emit a definition but where 4091 // we might not find a top-level definition: 4092 // - member functions defined inline in their classes 4093 // - friend functions defined inline in some class 4094 // - special member functions with implicit definitions 4095 // If we ever change our AST traversal to walk into class methods, 4096 // this will be unnecessary. 4097 // 4098 // We also don't emit a definition for a function if it's going to be an 4099 // entry in a vtable, unless it's already marked as used. 4100 } else if (getLangOpts().CPlusPlus && D) { 4101 // Look for a declaration that's lexically in a record. 4102 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4103 FD = FD->getPreviousDecl()) { 4104 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4105 if (FD->doesThisDeclarationHaveABody()) { 4106 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4107 break; 4108 } 4109 } 4110 } 4111 } 4112 } 4113 4114 // Make sure the result is of the requested type. 4115 if (!IsIncompleteFunction) { 4116 assert(F->getFunctionType() == Ty); 4117 return F; 4118 } 4119 4120 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 4121 return llvm::ConstantExpr::getBitCast(F, PTy); 4122 } 4123 4124 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4125 /// non-null, then this function will use the specified type if it has to 4126 /// create it (this occurs when we see a definition of the function). 4127 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4128 llvm::Type *Ty, 4129 bool ForVTable, 4130 bool DontDefer, 4131 ForDefinition_t IsForDefinition) { 4132 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4133 "consteval function should never be emitted"); 4134 // If there was no specific requested type, just convert it now. 4135 if (!Ty) { 4136 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4137 Ty = getTypes().ConvertType(FD->getType()); 4138 } 4139 4140 // Devirtualized destructor calls may come through here instead of via 4141 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4142 // of the complete destructor when necessary. 4143 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4144 if (getTarget().getCXXABI().isMicrosoft() && 4145 GD.getDtorType() == Dtor_Complete && 4146 DD->getParent()->getNumVBases() == 0) 4147 GD = GlobalDecl(DD, Dtor_Base); 4148 } 4149 4150 StringRef MangledName = getMangledName(GD); 4151 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4152 /*IsThunk=*/false, llvm::AttributeList(), 4153 IsForDefinition); 4154 // Returns kernel handle for HIP kernel stub function. 4155 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4156 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4157 auto *Handle = getCUDARuntime().getKernelHandle( 4158 cast<llvm::Function>(F->stripPointerCasts()), GD); 4159 if (IsForDefinition) 4160 return F; 4161 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4162 } 4163 return F; 4164 } 4165 4166 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4167 llvm::GlobalValue *F = 4168 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4169 4170 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 4171 llvm::Type::getInt8PtrTy(VMContext)); 4172 } 4173 4174 static const FunctionDecl * 4175 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4176 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4177 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4178 4179 IdentifierInfo &CII = C.Idents.get(Name); 4180 for (const auto *Result : DC->lookup(&CII)) 4181 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4182 return FD; 4183 4184 if (!C.getLangOpts().CPlusPlus) 4185 return nullptr; 4186 4187 // Demangle the premangled name from getTerminateFn() 4188 IdentifierInfo &CXXII = 4189 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4190 ? C.Idents.get("terminate") 4191 : C.Idents.get(Name); 4192 4193 for (const auto &N : {"__cxxabiv1", "std"}) { 4194 IdentifierInfo &NS = C.Idents.get(N); 4195 for (const auto *Result : DC->lookup(&NS)) { 4196 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4197 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4198 for (const auto *Result : LSD->lookup(&NS)) 4199 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4200 break; 4201 4202 if (ND) 4203 for (const auto *Result : ND->lookup(&CXXII)) 4204 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4205 return FD; 4206 } 4207 } 4208 4209 return nullptr; 4210 } 4211 4212 /// CreateRuntimeFunction - Create a new runtime function with the specified 4213 /// type and name. 4214 llvm::FunctionCallee 4215 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4216 llvm::AttributeList ExtraAttrs, bool Local, 4217 bool AssumeConvergent) { 4218 if (AssumeConvergent) { 4219 ExtraAttrs = 4220 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4221 } 4222 4223 llvm::Constant *C = 4224 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4225 /*DontDefer=*/false, /*IsThunk=*/false, 4226 ExtraAttrs); 4227 4228 if (auto *F = dyn_cast<llvm::Function>(C)) { 4229 if (F->empty()) { 4230 F->setCallingConv(getRuntimeCC()); 4231 4232 // In Windows Itanium environments, try to mark runtime functions 4233 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4234 // will link their standard library statically or dynamically. Marking 4235 // functions imported when they are not imported can cause linker errors 4236 // and warnings. 4237 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4238 !getCodeGenOpts().LTOVisibilityPublicStd) { 4239 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4240 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4241 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4242 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4243 } 4244 } 4245 setDSOLocal(F); 4246 } 4247 } 4248 4249 return {FTy, C}; 4250 } 4251 4252 /// isTypeConstant - Determine whether an object of this type can be emitted 4253 /// as a constant. 4254 /// 4255 /// If ExcludeCtor is true, the duration when the object's constructor runs 4256 /// will not be considered. The caller will need to verify that the object is 4257 /// not written to during its construction. 4258 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4259 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4260 return false; 4261 4262 if (Context.getLangOpts().CPlusPlus) { 4263 if (const CXXRecordDecl *Record 4264 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4265 return ExcludeCtor && !Record->hasMutableFields() && 4266 Record->hasTrivialDestructor(); 4267 } 4268 4269 return true; 4270 } 4271 4272 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4273 /// create and return an llvm GlobalVariable with the specified type and address 4274 /// space. If there is something in the module with the specified name, return 4275 /// it potentially bitcasted to the right type. 4276 /// 4277 /// If D is non-null, it specifies a decl that correspond to this. This is used 4278 /// to set the attributes on the global when it is first created. 4279 /// 4280 /// If IsForDefinition is true, it is guaranteed that an actual global with 4281 /// type Ty will be returned, not conversion of a variable with the same 4282 /// mangled name but some other type. 4283 llvm::Constant * 4284 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4285 LangAS AddrSpace, const VarDecl *D, 4286 ForDefinition_t IsForDefinition) { 4287 // Lookup the entry, lazily creating it if necessary. 4288 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4289 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4290 if (Entry) { 4291 if (WeakRefReferences.erase(Entry)) { 4292 if (D && !D->hasAttr<WeakAttr>()) 4293 Entry->setLinkage(llvm::Function::ExternalLinkage); 4294 } 4295 4296 // Handle dropped DLL attributes. 4297 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4298 !shouldMapVisibilityToDLLExport(D)) 4299 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4300 4301 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4302 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4303 4304 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4305 return Entry; 4306 4307 // If there are two attempts to define the same mangled name, issue an 4308 // error. 4309 if (IsForDefinition && !Entry->isDeclaration()) { 4310 GlobalDecl OtherGD; 4311 const VarDecl *OtherD; 4312 4313 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4314 // to make sure that we issue an error only once. 4315 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4316 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4317 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4318 OtherD->hasInit() && 4319 DiagnosedConflictingDefinitions.insert(D).second) { 4320 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4321 << MangledName; 4322 getDiags().Report(OtherGD.getDecl()->getLocation(), 4323 diag::note_previous_definition); 4324 } 4325 } 4326 4327 // Make sure the result is of the correct type. 4328 if (Entry->getType()->getAddressSpace() != TargetAS) { 4329 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4330 Ty->getPointerTo(TargetAS)); 4331 } 4332 4333 // (If global is requested for a definition, we always need to create a new 4334 // global, not just return a bitcast.) 4335 if (!IsForDefinition) 4336 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4337 } 4338 4339 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4340 4341 auto *GV = new llvm::GlobalVariable( 4342 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4343 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4344 getContext().getTargetAddressSpace(DAddrSpace)); 4345 4346 // If we already created a global with the same mangled name (but different 4347 // type) before, take its name and remove it from its parent. 4348 if (Entry) { 4349 GV->takeName(Entry); 4350 4351 if (!Entry->use_empty()) { 4352 llvm::Constant *NewPtrForOldDecl = 4353 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4354 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4355 } 4356 4357 Entry->eraseFromParent(); 4358 } 4359 4360 // This is the first use or definition of a mangled name. If there is a 4361 // deferred decl with this name, remember that we need to emit it at the end 4362 // of the file. 4363 auto DDI = DeferredDecls.find(MangledName); 4364 if (DDI != DeferredDecls.end()) { 4365 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4366 // list, and remove it from DeferredDecls (since we don't need it anymore). 4367 addDeferredDeclToEmit(DDI->second); 4368 EmittedDeferredDecls[DDI->first] = DDI->second; 4369 DeferredDecls.erase(DDI); 4370 } 4371 4372 // Handle things which are present even on external declarations. 4373 if (D) { 4374 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4375 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4376 4377 // FIXME: This code is overly simple and should be merged with other global 4378 // handling. 4379 GV->setConstant(isTypeConstant(D->getType(), false)); 4380 4381 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4382 4383 setLinkageForGV(GV, D); 4384 4385 if (D->getTLSKind()) { 4386 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4387 CXXThreadLocals.push_back(D); 4388 setTLSMode(GV, *D); 4389 } 4390 4391 setGVProperties(GV, D); 4392 4393 // If required by the ABI, treat declarations of static data members with 4394 // inline initializers as definitions. 4395 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4396 EmitGlobalVarDefinition(D); 4397 } 4398 4399 // Emit section information for extern variables. 4400 if (D->hasExternalStorage()) { 4401 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4402 GV->setSection(SA->getName()); 4403 } 4404 4405 // Handle XCore specific ABI requirements. 4406 if (getTriple().getArch() == llvm::Triple::xcore && 4407 D->getLanguageLinkage() == CLanguageLinkage && 4408 D->getType().isConstant(Context) && 4409 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4410 GV->setSection(".cp.rodata"); 4411 4412 // Check if we a have a const declaration with an initializer, we may be 4413 // able to emit it as available_externally to expose it's value to the 4414 // optimizer. 4415 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4416 D->getType().isConstQualified() && !GV->hasInitializer() && 4417 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4418 const auto *Record = 4419 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4420 bool HasMutableFields = Record && Record->hasMutableFields(); 4421 if (!HasMutableFields) { 4422 const VarDecl *InitDecl; 4423 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4424 if (InitExpr) { 4425 ConstantEmitter emitter(*this); 4426 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4427 if (Init) { 4428 auto *InitType = Init->getType(); 4429 if (GV->getValueType() != InitType) { 4430 // The type of the initializer does not match the definition. 4431 // This happens when an initializer has a different type from 4432 // the type of the global (because of padding at the end of a 4433 // structure for instance). 4434 GV->setName(StringRef()); 4435 // Make a new global with the correct type, this is now guaranteed 4436 // to work. 4437 auto *NewGV = cast<llvm::GlobalVariable>( 4438 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4439 ->stripPointerCasts()); 4440 4441 // Erase the old global, since it is no longer used. 4442 GV->eraseFromParent(); 4443 GV = NewGV; 4444 } else { 4445 GV->setInitializer(Init); 4446 GV->setConstant(true); 4447 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4448 } 4449 emitter.finalize(GV); 4450 } 4451 } 4452 } 4453 } 4454 } 4455 4456 if (GV->isDeclaration()) { 4457 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4458 // External HIP managed variables needed to be recorded for transformation 4459 // in both device and host compilations. 4460 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4461 D->hasExternalStorage()) 4462 getCUDARuntime().handleVarRegistration(D, *GV); 4463 } 4464 4465 if (D) 4466 SanitizerMD->reportGlobal(GV, *D); 4467 4468 LangAS ExpectedAS = 4469 D ? D->getType().getAddressSpace() 4470 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4471 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4472 if (DAddrSpace != ExpectedAS) { 4473 return getTargetCodeGenInfo().performAddrSpaceCast( 4474 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4475 } 4476 4477 return GV; 4478 } 4479 4480 llvm::Constant * 4481 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4482 const Decl *D = GD.getDecl(); 4483 4484 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4485 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4486 /*DontDefer=*/false, IsForDefinition); 4487 4488 if (isa<CXXMethodDecl>(D)) { 4489 auto FInfo = 4490 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4491 auto Ty = getTypes().GetFunctionType(*FInfo); 4492 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4493 IsForDefinition); 4494 } 4495 4496 if (isa<FunctionDecl>(D)) { 4497 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4498 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4499 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4500 IsForDefinition); 4501 } 4502 4503 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4504 } 4505 4506 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4507 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4508 unsigned Alignment) { 4509 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4510 llvm::GlobalVariable *OldGV = nullptr; 4511 4512 if (GV) { 4513 // Check if the variable has the right type. 4514 if (GV->getValueType() == Ty) 4515 return GV; 4516 4517 // Because C++ name mangling, the only way we can end up with an already 4518 // existing global with the same name is if it has been declared extern "C". 4519 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4520 OldGV = GV; 4521 } 4522 4523 // Create a new variable. 4524 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4525 Linkage, nullptr, Name); 4526 4527 if (OldGV) { 4528 // Replace occurrences of the old variable if needed. 4529 GV->takeName(OldGV); 4530 4531 if (!OldGV->use_empty()) { 4532 llvm::Constant *NewPtrForOldDecl = 4533 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4534 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4535 } 4536 4537 OldGV->eraseFromParent(); 4538 } 4539 4540 if (supportsCOMDAT() && GV->isWeakForLinker() && 4541 !GV->hasAvailableExternallyLinkage()) 4542 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4543 4544 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4545 4546 return GV; 4547 } 4548 4549 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4550 /// given global variable. If Ty is non-null and if the global doesn't exist, 4551 /// then it will be created with the specified type instead of whatever the 4552 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4553 /// that an actual global with type Ty will be returned, not conversion of a 4554 /// variable with the same mangled name but some other type. 4555 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4556 llvm::Type *Ty, 4557 ForDefinition_t IsForDefinition) { 4558 assert(D->hasGlobalStorage() && "Not a global variable"); 4559 QualType ASTTy = D->getType(); 4560 if (!Ty) 4561 Ty = getTypes().ConvertTypeForMem(ASTTy); 4562 4563 StringRef MangledName = getMangledName(D); 4564 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4565 IsForDefinition); 4566 } 4567 4568 /// CreateRuntimeVariable - Create a new runtime global variable with the 4569 /// specified type and name. 4570 llvm::Constant * 4571 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4572 StringRef Name) { 4573 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4574 : LangAS::Default; 4575 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4576 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4577 return Ret; 4578 } 4579 4580 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4581 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4582 4583 StringRef MangledName = getMangledName(D); 4584 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4585 4586 // We already have a definition, not declaration, with the same mangled name. 4587 // Emitting of declaration is not required (and actually overwrites emitted 4588 // definition). 4589 if (GV && !GV->isDeclaration()) 4590 return; 4591 4592 // If we have not seen a reference to this variable yet, place it into the 4593 // deferred declarations table to be emitted if needed later. 4594 if (!MustBeEmitted(D) && !GV) { 4595 DeferredDecls[MangledName] = D; 4596 return; 4597 } 4598 4599 // The tentative definition is the only definition. 4600 EmitGlobalVarDefinition(D); 4601 } 4602 4603 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4604 EmitExternalVarDeclaration(D); 4605 } 4606 4607 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4608 return Context.toCharUnitsFromBits( 4609 getDataLayout().getTypeStoreSizeInBits(Ty)); 4610 } 4611 4612 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4613 if (LangOpts.OpenCL) { 4614 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4615 assert(AS == LangAS::opencl_global || 4616 AS == LangAS::opencl_global_device || 4617 AS == LangAS::opencl_global_host || 4618 AS == LangAS::opencl_constant || 4619 AS == LangAS::opencl_local || 4620 AS >= LangAS::FirstTargetAddressSpace); 4621 return AS; 4622 } 4623 4624 if (LangOpts.SYCLIsDevice && 4625 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4626 return LangAS::sycl_global; 4627 4628 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4629 if (D && D->hasAttr<CUDAConstantAttr>()) 4630 return LangAS::cuda_constant; 4631 else if (D && D->hasAttr<CUDASharedAttr>()) 4632 return LangAS::cuda_shared; 4633 else if (D && D->hasAttr<CUDADeviceAttr>()) 4634 return LangAS::cuda_device; 4635 else if (D && D->getType().isConstQualified()) 4636 return LangAS::cuda_constant; 4637 else 4638 return LangAS::cuda_device; 4639 } 4640 4641 if (LangOpts.OpenMP) { 4642 LangAS AS; 4643 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4644 return AS; 4645 } 4646 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4647 } 4648 4649 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4650 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4651 if (LangOpts.OpenCL) 4652 return LangAS::opencl_constant; 4653 if (LangOpts.SYCLIsDevice) 4654 return LangAS::sycl_global; 4655 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4656 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4657 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4658 // with OpVariable instructions with Generic storage class which is not 4659 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4660 // UniformConstant storage class is not viable as pointers to it may not be 4661 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4662 return LangAS::cuda_device; 4663 if (auto AS = getTarget().getConstantAddressSpace()) 4664 return *AS; 4665 return LangAS::Default; 4666 } 4667 4668 // In address space agnostic languages, string literals are in default address 4669 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4670 // emitted in constant address space in LLVM IR. To be consistent with other 4671 // parts of AST, string literal global variables in constant address space 4672 // need to be casted to default address space before being put into address 4673 // map and referenced by other part of CodeGen. 4674 // In OpenCL, string literals are in constant address space in AST, therefore 4675 // they should not be casted to default address space. 4676 static llvm::Constant * 4677 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4678 llvm::GlobalVariable *GV) { 4679 llvm::Constant *Cast = GV; 4680 if (!CGM.getLangOpts().OpenCL) { 4681 auto AS = CGM.GetGlobalConstantAddressSpace(); 4682 if (AS != LangAS::Default) 4683 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4684 CGM, GV, AS, LangAS::Default, 4685 GV->getValueType()->getPointerTo( 4686 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4687 } 4688 return Cast; 4689 } 4690 4691 template<typename SomeDecl> 4692 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4693 llvm::GlobalValue *GV) { 4694 if (!getLangOpts().CPlusPlus) 4695 return; 4696 4697 // Must have 'used' attribute, or else inline assembly can't rely on 4698 // the name existing. 4699 if (!D->template hasAttr<UsedAttr>()) 4700 return; 4701 4702 // Must have internal linkage and an ordinary name. 4703 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4704 return; 4705 4706 // Must be in an extern "C" context. Entities declared directly within 4707 // a record are not extern "C" even if the record is in such a context. 4708 const SomeDecl *First = D->getFirstDecl(); 4709 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4710 return; 4711 4712 // OK, this is an internal linkage entity inside an extern "C" linkage 4713 // specification. Make a note of that so we can give it the "expected" 4714 // mangled name if nothing else is using that name. 4715 std::pair<StaticExternCMap::iterator, bool> R = 4716 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4717 4718 // If we have multiple internal linkage entities with the same name 4719 // in extern "C" regions, none of them gets that name. 4720 if (!R.second) 4721 R.first->second = nullptr; 4722 } 4723 4724 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4725 if (!CGM.supportsCOMDAT()) 4726 return false; 4727 4728 if (D.hasAttr<SelectAnyAttr>()) 4729 return true; 4730 4731 GVALinkage Linkage; 4732 if (auto *VD = dyn_cast<VarDecl>(&D)) 4733 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4734 else 4735 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4736 4737 switch (Linkage) { 4738 case GVA_Internal: 4739 case GVA_AvailableExternally: 4740 case GVA_StrongExternal: 4741 return false; 4742 case GVA_DiscardableODR: 4743 case GVA_StrongODR: 4744 return true; 4745 } 4746 llvm_unreachable("No such linkage"); 4747 } 4748 4749 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4750 llvm::GlobalObject &GO) { 4751 if (!shouldBeInCOMDAT(*this, D)) 4752 return; 4753 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4754 } 4755 4756 /// Pass IsTentative as true if you want to create a tentative definition. 4757 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4758 bool IsTentative) { 4759 // OpenCL global variables of sampler type are translated to function calls, 4760 // therefore no need to be translated. 4761 QualType ASTTy = D->getType(); 4762 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4763 return; 4764 4765 // If this is OpenMP device, check if it is legal to emit this global 4766 // normally. 4767 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4768 OpenMPRuntime->emitTargetGlobalVariable(D)) 4769 return; 4770 4771 llvm::TrackingVH<llvm::Constant> Init; 4772 bool NeedsGlobalCtor = false; 4773 bool NeedsGlobalDtor = 4774 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4775 4776 const VarDecl *InitDecl; 4777 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4778 4779 Optional<ConstantEmitter> emitter; 4780 4781 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4782 // as part of their declaration." Sema has already checked for 4783 // error cases, so we just need to set Init to UndefValue. 4784 bool IsCUDASharedVar = 4785 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4786 // Shadows of initialized device-side global variables are also left 4787 // undefined. 4788 // Managed Variables should be initialized on both host side and device side. 4789 bool IsCUDAShadowVar = 4790 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4791 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4792 D->hasAttr<CUDASharedAttr>()); 4793 bool IsCUDADeviceShadowVar = 4794 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4795 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4796 D->getType()->isCUDADeviceBuiltinTextureType()); 4797 if (getLangOpts().CUDA && 4798 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4799 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4800 else if (D->hasAttr<LoaderUninitializedAttr>()) 4801 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4802 else if (!InitExpr) { 4803 // This is a tentative definition; tentative definitions are 4804 // implicitly initialized with { 0 }. 4805 // 4806 // Note that tentative definitions are only emitted at the end of 4807 // a translation unit, so they should never have incomplete 4808 // type. In addition, EmitTentativeDefinition makes sure that we 4809 // never attempt to emit a tentative definition if a real one 4810 // exists. A use may still exists, however, so we still may need 4811 // to do a RAUW. 4812 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4813 Init = EmitNullConstant(D->getType()); 4814 } else { 4815 initializedGlobalDecl = GlobalDecl(D); 4816 emitter.emplace(*this); 4817 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4818 if (!Initializer) { 4819 QualType T = InitExpr->getType(); 4820 if (D->getType()->isReferenceType()) 4821 T = D->getType(); 4822 4823 if (getLangOpts().CPlusPlus) { 4824 if (InitDecl->hasFlexibleArrayInit(getContext())) 4825 ErrorUnsupported(D, "flexible array initializer"); 4826 Init = EmitNullConstant(T); 4827 NeedsGlobalCtor = true; 4828 } else { 4829 ErrorUnsupported(D, "static initializer"); 4830 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4831 } 4832 } else { 4833 Init = Initializer; 4834 // We don't need an initializer, so remove the entry for the delayed 4835 // initializer position (just in case this entry was delayed) if we 4836 // also don't need to register a destructor. 4837 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4838 DelayedCXXInitPosition.erase(D); 4839 4840 #ifndef NDEBUG 4841 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4842 InitDecl->getFlexibleArrayInitChars(getContext()); 4843 CharUnits CstSize = CharUnits::fromQuantity( 4844 getDataLayout().getTypeAllocSize(Init->getType())); 4845 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4846 #endif 4847 } 4848 } 4849 4850 llvm::Type* InitType = Init->getType(); 4851 llvm::Constant *Entry = 4852 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4853 4854 // Strip off pointer casts if we got them. 4855 Entry = Entry->stripPointerCasts(); 4856 4857 // Entry is now either a Function or GlobalVariable. 4858 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4859 4860 // We have a definition after a declaration with the wrong type. 4861 // We must make a new GlobalVariable* and update everything that used OldGV 4862 // (a declaration or tentative definition) with the new GlobalVariable* 4863 // (which will be a definition). 4864 // 4865 // This happens if there is a prototype for a global (e.g. 4866 // "extern int x[];") and then a definition of a different type (e.g. 4867 // "int x[10];"). This also happens when an initializer has a different type 4868 // from the type of the global (this happens with unions). 4869 if (!GV || GV->getValueType() != InitType || 4870 GV->getType()->getAddressSpace() != 4871 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4872 4873 // Move the old entry aside so that we'll create a new one. 4874 Entry->setName(StringRef()); 4875 4876 // Make a new global with the correct type, this is now guaranteed to work. 4877 GV = cast<llvm::GlobalVariable>( 4878 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4879 ->stripPointerCasts()); 4880 4881 // Replace all uses of the old global with the new global 4882 llvm::Constant *NewPtrForOldDecl = 4883 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4884 Entry->getType()); 4885 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4886 4887 // Erase the old global, since it is no longer used. 4888 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4889 } 4890 4891 MaybeHandleStaticInExternC(D, GV); 4892 4893 if (D->hasAttr<AnnotateAttr>()) 4894 AddGlobalAnnotations(D, GV); 4895 4896 // Set the llvm linkage type as appropriate. 4897 llvm::GlobalValue::LinkageTypes Linkage = 4898 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4899 4900 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4901 // the device. [...]" 4902 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4903 // __device__, declares a variable that: [...] 4904 // Is accessible from all the threads within the grid and from the host 4905 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4906 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4907 if (GV && LangOpts.CUDA) { 4908 if (LangOpts.CUDAIsDevice) { 4909 if (Linkage != llvm::GlobalValue::InternalLinkage && 4910 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4911 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4912 D->getType()->isCUDADeviceBuiltinTextureType())) 4913 GV->setExternallyInitialized(true); 4914 } else { 4915 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4916 } 4917 getCUDARuntime().handleVarRegistration(D, *GV); 4918 } 4919 4920 GV->setInitializer(Init); 4921 if (emitter) 4922 emitter->finalize(GV); 4923 4924 // If it is safe to mark the global 'constant', do so now. 4925 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4926 isTypeConstant(D->getType(), true)); 4927 4928 // If it is in a read-only section, mark it 'constant'. 4929 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4930 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4931 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4932 GV->setConstant(true); 4933 } 4934 4935 CharUnits AlignVal = getContext().getDeclAlign(D); 4936 // Check for alignment specifed in an 'omp allocate' directive. 4937 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4938 getOMPAllocateAlignment(D)) 4939 AlignVal = *AlignValFromAllocate; 4940 GV->setAlignment(AlignVal.getAsAlign()); 4941 4942 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4943 // function is only defined alongside the variable, not also alongside 4944 // callers. Normally, all accesses to a thread_local go through the 4945 // thread-wrapper in order to ensure initialization has occurred, underlying 4946 // variable will never be used other than the thread-wrapper, so it can be 4947 // converted to internal linkage. 4948 // 4949 // However, if the variable has the 'constinit' attribute, it _can_ be 4950 // referenced directly, without calling the thread-wrapper, so the linkage 4951 // must not be changed. 4952 // 4953 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4954 // weak or linkonce, the de-duplication semantics are important to preserve, 4955 // so we don't change the linkage. 4956 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4957 Linkage == llvm::GlobalValue::ExternalLinkage && 4958 Context.getTargetInfo().getTriple().isOSDarwin() && 4959 !D->hasAttr<ConstInitAttr>()) 4960 Linkage = llvm::GlobalValue::InternalLinkage; 4961 4962 GV->setLinkage(Linkage); 4963 if (D->hasAttr<DLLImportAttr>()) 4964 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4965 else if (D->hasAttr<DLLExportAttr>()) 4966 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4967 else 4968 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4969 4970 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4971 // common vars aren't constant even if declared const. 4972 GV->setConstant(false); 4973 // Tentative definition of global variables may be initialized with 4974 // non-zero null pointers. In this case they should have weak linkage 4975 // since common linkage must have zero initializer and must not have 4976 // explicit section therefore cannot have non-zero initial value. 4977 if (!GV->getInitializer()->isNullValue()) 4978 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4979 } 4980 4981 setNonAliasAttributes(D, GV); 4982 4983 if (D->getTLSKind() && !GV->isThreadLocal()) { 4984 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4985 CXXThreadLocals.push_back(D); 4986 setTLSMode(GV, *D); 4987 } 4988 4989 maybeSetTrivialComdat(*D, *GV); 4990 4991 // Emit the initializer function if necessary. 4992 if (NeedsGlobalCtor || NeedsGlobalDtor) 4993 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4994 4995 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 4996 4997 // Emit global variable debug information. 4998 if (CGDebugInfo *DI = getModuleDebugInfo()) 4999 if (getCodeGenOpts().hasReducedDebugInfo()) 5000 DI->EmitGlobalVariable(GV, D); 5001 } 5002 5003 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5004 if (CGDebugInfo *DI = getModuleDebugInfo()) 5005 if (getCodeGenOpts().hasReducedDebugInfo()) { 5006 QualType ASTTy = D->getType(); 5007 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5008 llvm::Constant *GV = 5009 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5010 DI->EmitExternalVariable( 5011 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5012 } 5013 } 5014 5015 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5016 CodeGenModule &CGM, const VarDecl *D, 5017 bool NoCommon) { 5018 // Don't give variables common linkage if -fno-common was specified unless it 5019 // was overridden by a NoCommon attribute. 5020 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5021 return true; 5022 5023 // C11 6.9.2/2: 5024 // A declaration of an identifier for an object that has file scope without 5025 // an initializer, and without a storage-class specifier or with the 5026 // storage-class specifier static, constitutes a tentative definition. 5027 if (D->getInit() || D->hasExternalStorage()) 5028 return true; 5029 5030 // A variable cannot be both common and exist in a section. 5031 if (D->hasAttr<SectionAttr>()) 5032 return true; 5033 5034 // A variable cannot be both common and exist in a section. 5035 // We don't try to determine which is the right section in the front-end. 5036 // If no specialized section name is applicable, it will resort to default. 5037 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5038 D->hasAttr<PragmaClangDataSectionAttr>() || 5039 D->hasAttr<PragmaClangRelroSectionAttr>() || 5040 D->hasAttr<PragmaClangRodataSectionAttr>()) 5041 return true; 5042 5043 // Thread local vars aren't considered common linkage. 5044 if (D->getTLSKind()) 5045 return true; 5046 5047 // Tentative definitions marked with WeakImportAttr are true definitions. 5048 if (D->hasAttr<WeakImportAttr>()) 5049 return true; 5050 5051 // A variable cannot be both common and exist in a comdat. 5052 if (shouldBeInCOMDAT(CGM, *D)) 5053 return true; 5054 5055 // Declarations with a required alignment do not have common linkage in MSVC 5056 // mode. 5057 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5058 if (D->hasAttr<AlignedAttr>()) 5059 return true; 5060 QualType VarType = D->getType(); 5061 if (Context.isAlignmentRequired(VarType)) 5062 return true; 5063 5064 if (const auto *RT = VarType->getAs<RecordType>()) { 5065 const RecordDecl *RD = RT->getDecl(); 5066 for (const FieldDecl *FD : RD->fields()) { 5067 if (FD->isBitField()) 5068 continue; 5069 if (FD->hasAttr<AlignedAttr>()) 5070 return true; 5071 if (Context.isAlignmentRequired(FD->getType())) 5072 return true; 5073 } 5074 } 5075 } 5076 5077 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5078 // common symbols, so symbols with greater alignment requirements cannot be 5079 // common. 5080 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5081 // alignments for common symbols via the aligncomm directive, so this 5082 // restriction only applies to MSVC environments. 5083 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5084 Context.getTypeAlignIfKnown(D->getType()) > 5085 Context.toBits(CharUnits::fromQuantity(32))) 5086 return true; 5087 5088 return false; 5089 } 5090 5091 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5092 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5093 if (Linkage == GVA_Internal) 5094 return llvm::Function::InternalLinkage; 5095 5096 if (D->hasAttr<WeakAttr>()) 5097 return llvm::GlobalVariable::WeakAnyLinkage; 5098 5099 if (const auto *FD = D->getAsFunction()) 5100 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5101 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5102 5103 // We are guaranteed to have a strong definition somewhere else, 5104 // so we can use available_externally linkage. 5105 if (Linkage == GVA_AvailableExternally) 5106 return llvm::GlobalValue::AvailableExternallyLinkage; 5107 5108 // Note that Apple's kernel linker doesn't support symbol 5109 // coalescing, so we need to avoid linkonce and weak linkages there. 5110 // Normally, this means we just map to internal, but for explicit 5111 // instantiations we'll map to external. 5112 5113 // In C++, the compiler has to emit a definition in every translation unit 5114 // that references the function. We should use linkonce_odr because 5115 // a) if all references in this translation unit are optimized away, we 5116 // don't need to codegen it. b) if the function persists, it needs to be 5117 // merged with other definitions. c) C++ has the ODR, so we know the 5118 // definition is dependable. 5119 if (Linkage == GVA_DiscardableODR) 5120 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5121 : llvm::Function::InternalLinkage; 5122 5123 // An explicit instantiation of a template has weak linkage, since 5124 // explicit instantiations can occur in multiple translation units 5125 // and must all be equivalent. However, we are not allowed to 5126 // throw away these explicit instantiations. 5127 // 5128 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5129 // so say that CUDA templates are either external (for kernels) or internal. 5130 // This lets llvm perform aggressive inter-procedural optimizations. For 5131 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5132 // therefore we need to follow the normal linkage paradigm. 5133 if (Linkage == GVA_StrongODR) { 5134 if (getLangOpts().AppleKext) 5135 return llvm::Function::ExternalLinkage; 5136 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5137 !getLangOpts().GPURelocatableDeviceCode) 5138 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5139 : llvm::Function::InternalLinkage; 5140 return llvm::Function::WeakODRLinkage; 5141 } 5142 5143 // C++ doesn't have tentative definitions and thus cannot have common 5144 // linkage. 5145 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5146 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5147 CodeGenOpts.NoCommon)) 5148 return llvm::GlobalVariable::CommonLinkage; 5149 5150 // selectany symbols are externally visible, so use weak instead of 5151 // linkonce. MSVC optimizes away references to const selectany globals, so 5152 // all definitions should be the same and ODR linkage should be used. 5153 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5154 if (D->hasAttr<SelectAnyAttr>()) 5155 return llvm::GlobalVariable::WeakODRLinkage; 5156 5157 // Otherwise, we have strong external linkage. 5158 assert(Linkage == GVA_StrongExternal); 5159 return llvm::GlobalVariable::ExternalLinkage; 5160 } 5161 5162 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5163 const VarDecl *VD, bool IsConstant) { 5164 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5165 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5166 } 5167 5168 /// Replace the uses of a function that was declared with a non-proto type. 5169 /// We want to silently drop extra arguments from call sites 5170 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5171 llvm::Function *newFn) { 5172 // Fast path. 5173 if (old->use_empty()) return; 5174 5175 llvm::Type *newRetTy = newFn->getReturnType(); 5176 SmallVector<llvm::Value*, 4> newArgs; 5177 5178 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5179 ui != ue; ) { 5180 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5181 llvm::User *user = use->getUser(); 5182 5183 // Recognize and replace uses of bitcasts. Most calls to 5184 // unprototyped functions will use bitcasts. 5185 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5186 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5187 replaceUsesOfNonProtoConstant(bitcast, newFn); 5188 continue; 5189 } 5190 5191 // Recognize calls to the function. 5192 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5193 if (!callSite) continue; 5194 if (!callSite->isCallee(&*use)) 5195 continue; 5196 5197 // If the return types don't match exactly, then we can't 5198 // transform this call unless it's dead. 5199 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5200 continue; 5201 5202 // Get the call site's attribute list. 5203 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5204 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5205 5206 // If the function was passed too few arguments, don't transform. 5207 unsigned newNumArgs = newFn->arg_size(); 5208 if (callSite->arg_size() < newNumArgs) 5209 continue; 5210 5211 // If extra arguments were passed, we silently drop them. 5212 // If any of the types mismatch, we don't transform. 5213 unsigned argNo = 0; 5214 bool dontTransform = false; 5215 for (llvm::Argument &A : newFn->args()) { 5216 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5217 dontTransform = true; 5218 break; 5219 } 5220 5221 // Add any parameter attributes. 5222 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5223 argNo++; 5224 } 5225 if (dontTransform) 5226 continue; 5227 5228 // Okay, we can transform this. Create the new call instruction and copy 5229 // over the required information. 5230 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5231 5232 // Copy over any operand bundles. 5233 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5234 callSite->getOperandBundlesAsDefs(newBundles); 5235 5236 llvm::CallBase *newCall; 5237 if (isa<llvm::CallInst>(callSite)) { 5238 newCall = 5239 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5240 } else { 5241 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5242 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5243 oldInvoke->getUnwindDest(), newArgs, 5244 newBundles, "", callSite); 5245 } 5246 newArgs.clear(); // for the next iteration 5247 5248 if (!newCall->getType()->isVoidTy()) 5249 newCall->takeName(callSite); 5250 newCall->setAttributes( 5251 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5252 oldAttrs.getRetAttrs(), newArgAttrs)); 5253 newCall->setCallingConv(callSite->getCallingConv()); 5254 5255 // Finally, remove the old call, replacing any uses with the new one. 5256 if (!callSite->use_empty()) 5257 callSite->replaceAllUsesWith(newCall); 5258 5259 // Copy debug location attached to CI. 5260 if (callSite->getDebugLoc()) 5261 newCall->setDebugLoc(callSite->getDebugLoc()); 5262 5263 callSite->eraseFromParent(); 5264 } 5265 } 5266 5267 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5268 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5269 /// existing call uses of the old function in the module, this adjusts them to 5270 /// call the new function directly. 5271 /// 5272 /// This is not just a cleanup: the always_inline pass requires direct calls to 5273 /// functions to be able to inline them. If there is a bitcast in the way, it 5274 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5275 /// run at -O0. 5276 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5277 llvm::Function *NewFn) { 5278 // If we're redefining a global as a function, don't transform it. 5279 if (!isa<llvm::Function>(Old)) return; 5280 5281 replaceUsesOfNonProtoConstant(Old, NewFn); 5282 } 5283 5284 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5285 auto DK = VD->isThisDeclarationADefinition(); 5286 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5287 return; 5288 5289 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5290 // If we have a definition, this might be a deferred decl. If the 5291 // instantiation is explicit, make sure we emit it at the end. 5292 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5293 GetAddrOfGlobalVar(VD); 5294 5295 EmitTopLevelDecl(VD); 5296 } 5297 5298 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5299 llvm::GlobalValue *GV) { 5300 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5301 5302 // Compute the function info and LLVM type. 5303 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5304 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5305 5306 // Get or create the prototype for the function. 5307 if (!GV || (GV->getValueType() != Ty)) 5308 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5309 /*DontDefer=*/true, 5310 ForDefinition)); 5311 5312 // Already emitted. 5313 if (!GV->isDeclaration()) 5314 return; 5315 5316 // We need to set linkage and visibility on the function before 5317 // generating code for it because various parts of IR generation 5318 // want to propagate this information down (e.g. to local static 5319 // declarations). 5320 auto *Fn = cast<llvm::Function>(GV); 5321 setFunctionLinkage(GD, Fn); 5322 5323 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5324 setGVProperties(Fn, GD); 5325 5326 MaybeHandleStaticInExternC(D, Fn); 5327 5328 maybeSetTrivialComdat(*D, *Fn); 5329 5330 // Set CodeGen attributes that represent floating point environment. 5331 setLLVMFunctionFEnvAttributes(D, Fn); 5332 5333 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5334 5335 setNonAliasAttributes(GD, Fn); 5336 SetLLVMFunctionAttributesForDefinition(D, Fn); 5337 5338 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5339 AddGlobalCtor(Fn, CA->getPriority()); 5340 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5341 AddGlobalDtor(Fn, DA->getPriority(), true); 5342 if (D->hasAttr<AnnotateAttr>()) 5343 AddGlobalAnnotations(D, Fn); 5344 } 5345 5346 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5347 const auto *D = cast<ValueDecl>(GD.getDecl()); 5348 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5349 assert(AA && "Not an alias?"); 5350 5351 StringRef MangledName = getMangledName(GD); 5352 5353 if (AA->getAliasee() == MangledName) { 5354 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5355 return; 5356 } 5357 5358 // If there is a definition in the module, then it wins over the alias. 5359 // This is dubious, but allow it to be safe. Just ignore the alias. 5360 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5361 if (Entry && !Entry->isDeclaration()) 5362 return; 5363 5364 Aliases.push_back(GD); 5365 5366 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5367 5368 // Create a reference to the named value. This ensures that it is emitted 5369 // if a deferred decl. 5370 llvm::Constant *Aliasee; 5371 llvm::GlobalValue::LinkageTypes LT; 5372 if (isa<llvm::FunctionType>(DeclTy)) { 5373 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5374 /*ForVTable=*/false); 5375 LT = getFunctionLinkage(GD); 5376 } else { 5377 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5378 /*D=*/nullptr); 5379 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5380 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5381 else 5382 LT = getFunctionLinkage(GD); 5383 } 5384 5385 // Create the new alias itself, but don't set a name yet. 5386 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5387 auto *GA = 5388 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5389 5390 if (Entry) { 5391 if (GA->getAliasee() == Entry) { 5392 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5393 return; 5394 } 5395 5396 assert(Entry->isDeclaration()); 5397 5398 // If there is a declaration in the module, then we had an extern followed 5399 // by the alias, as in: 5400 // extern int test6(); 5401 // ... 5402 // int test6() __attribute__((alias("test7"))); 5403 // 5404 // Remove it and replace uses of it with the alias. 5405 GA->takeName(Entry); 5406 5407 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5408 Entry->getType())); 5409 Entry->eraseFromParent(); 5410 } else { 5411 GA->setName(MangledName); 5412 } 5413 5414 // Set attributes which are particular to an alias; this is a 5415 // specialization of the attributes which may be set on a global 5416 // variable/function. 5417 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5418 D->isWeakImported()) { 5419 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5420 } 5421 5422 if (const auto *VD = dyn_cast<VarDecl>(D)) 5423 if (VD->getTLSKind()) 5424 setTLSMode(GA, *VD); 5425 5426 SetCommonAttributes(GD, GA); 5427 5428 // Emit global alias debug information. 5429 if (isa<VarDecl>(D)) 5430 if (CGDebugInfo *DI = getModuleDebugInfo()) 5431 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5432 } 5433 5434 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5435 const auto *D = cast<ValueDecl>(GD.getDecl()); 5436 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5437 assert(IFA && "Not an ifunc?"); 5438 5439 StringRef MangledName = getMangledName(GD); 5440 5441 if (IFA->getResolver() == MangledName) { 5442 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5443 return; 5444 } 5445 5446 // Report an error if some definition overrides ifunc. 5447 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5448 if (Entry && !Entry->isDeclaration()) { 5449 GlobalDecl OtherGD; 5450 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5451 DiagnosedConflictingDefinitions.insert(GD).second) { 5452 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5453 << MangledName; 5454 Diags.Report(OtherGD.getDecl()->getLocation(), 5455 diag::note_previous_definition); 5456 } 5457 return; 5458 } 5459 5460 Aliases.push_back(GD); 5461 5462 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5463 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5464 llvm::Constant *Resolver = 5465 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5466 /*ForVTable=*/false); 5467 llvm::GlobalIFunc *GIF = 5468 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5469 "", Resolver, &getModule()); 5470 if (Entry) { 5471 if (GIF->getResolver() == Entry) { 5472 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5473 return; 5474 } 5475 assert(Entry->isDeclaration()); 5476 5477 // If there is a declaration in the module, then we had an extern followed 5478 // by the ifunc, as in: 5479 // extern int test(); 5480 // ... 5481 // int test() __attribute__((ifunc("resolver"))); 5482 // 5483 // Remove it and replace uses of it with the ifunc. 5484 GIF->takeName(Entry); 5485 5486 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5487 Entry->getType())); 5488 Entry->eraseFromParent(); 5489 } else 5490 GIF->setName(MangledName); 5491 5492 SetCommonAttributes(GD, GIF); 5493 } 5494 5495 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5496 ArrayRef<llvm::Type*> Tys) { 5497 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5498 Tys); 5499 } 5500 5501 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5502 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5503 const StringLiteral *Literal, bool TargetIsLSB, 5504 bool &IsUTF16, unsigned &StringLength) { 5505 StringRef String = Literal->getString(); 5506 unsigned NumBytes = String.size(); 5507 5508 // Check for simple case. 5509 if (!Literal->containsNonAsciiOrNull()) { 5510 StringLength = NumBytes; 5511 return *Map.insert(std::make_pair(String, nullptr)).first; 5512 } 5513 5514 // Otherwise, convert the UTF8 literals into a string of shorts. 5515 IsUTF16 = true; 5516 5517 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5518 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5519 llvm::UTF16 *ToPtr = &ToBuf[0]; 5520 5521 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5522 ToPtr + NumBytes, llvm::strictConversion); 5523 5524 // ConvertUTF8toUTF16 returns the length in ToPtr. 5525 StringLength = ToPtr - &ToBuf[0]; 5526 5527 // Add an explicit null. 5528 *ToPtr = 0; 5529 return *Map.insert(std::make_pair( 5530 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5531 (StringLength + 1) * 2), 5532 nullptr)).first; 5533 } 5534 5535 ConstantAddress 5536 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5537 unsigned StringLength = 0; 5538 bool isUTF16 = false; 5539 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5540 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5541 getDataLayout().isLittleEndian(), isUTF16, 5542 StringLength); 5543 5544 if (auto *C = Entry.second) 5545 return ConstantAddress( 5546 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5547 5548 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5549 llvm::Constant *Zeros[] = { Zero, Zero }; 5550 5551 const ASTContext &Context = getContext(); 5552 const llvm::Triple &Triple = getTriple(); 5553 5554 const auto CFRuntime = getLangOpts().CFRuntime; 5555 const bool IsSwiftABI = 5556 static_cast<unsigned>(CFRuntime) >= 5557 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5558 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5559 5560 // If we don't already have it, get __CFConstantStringClassReference. 5561 if (!CFConstantStringClassRef) { 5562 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5563 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5564 Ty = llvm::ArrayType::get(Ty, 0); 5565 5566 switch (CFRuntime) { 5567 default: break; 5568 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5569 case LangOptions::CoreFoundationABI::Swift5_0: 5570 CFConstantStringClassName = 5571 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5572 : "$s10Foundation19_NSCFConstantStringCN"; 5573 Ty = IntPtrTy; 5574 break; 5575 case LangOptions::CoreFoundationABI::Swift4_2: 5576 CFConstantStringClassName = 5577 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5578 : "$S10Foundation19_NSCFConstantStringCN"; 5579 Ty = IntPtrTy; 5580 break; 5581 case LangOptions::CoreFoundationABI::Swift4_1: 5582 CFConstantStringClassName = 5583 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5584 : "__T010Foundation19_NSCFConstantStringCN"; 5585 Ty = IntPtrTy; 5586 break; 5587 } 5588 5589 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5590 5591 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5592 llvm::GlobalValue *GV = nullptr; 5593 5594 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5595 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5596 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5597 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5598 5599 const VarDecl *VD = nullptr; 5600 for (const auto *Result : DC->lookup(&II)) 5601 if ((VD = dyn_cast<VarDecl>(Result))) 5602 break; 5603 5604 if (Triple.isOSBinFormatELF()) { 5605 if (!VD) 5606 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5607 } else { 5608 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5609 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5610 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5611 else 5612 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5613 } 5614 5615 setDSOLocal(GV); 5616 } 5617 } 5618 5619 // Decay array -> ptr 5620 CFConstantStringClassRef = 5621 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5622 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5623 } 5624 5625 QualType CFTy = Context.getCFConstantStringType(); 5626 5627 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5628 5629 ConstantInitBuilder Builder(*this); 5630 auto Fields = Builder.beginStruct(STy); 5631 5632 // Class pointer. 5633 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5634 5635 // Flags. 5636 if (IsSwiftABI) { 5637 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5638 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5639 } else { 5640 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5641 } 5642 5643 // String pointer. 5644 llvm::Constant *C = nullptr; 5645 if (isUTF16) { 5646 auto Arr = llvm::makeArrayRef( 5647 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5648 Entry.first().size() / 2); 5649 C = llvm::ConstantDataArray::get(VMContext, Arr); 5650 } else { 5651 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5652 } 5653 5654 // Note: -fwritable-strings doesn't make the backing store strings of 5655 // CFStrings writable. (See <rdar://problem/10657500>) 5656 auto *GV = 5657 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5658 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5659 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5660 // Don't enforce the target's minimum global alignment, since the only use 5661 // of the string is via this class initializer. 5662 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5663 : Context.getTypeAlignInChars(Context.CharTy); 5664 GV->setAlignment(Align.getAsAlign()); 5665 5666 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5667 // Without it LLVM can merge the string with a non unnamed_addr one during 5668 // LTO. Doing that changes the section it ends in, which surprises ld64. 5669 if (Triple.isOSBinFormatMachO()) 5670 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5671 : "__TEXT,__cstring,cstring_literals"); 5672 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5673 // the static linker to adjust permissions to read-only later on. 5674 else if (Triple.isOSBinFormatELF()) 5675 GV->setSection(".rodata"); 5676 5677 // String. 5678 llvm::Constant *Str = 5679 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5680 5681 if (isUTF16) 5682 // Cast the UTF16 string to the correct type. 5683 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5684 Fields.add(Str); 5685 5686 // String length. 5687 llvm::IntegerType *LengthTy = 5688 llvm::IntegerType::get(getModule().getContext(), 5689 Context.getTargetInfo().getLongWidth()); 5690 if (IsSwiftABI) { 5691 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5692 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5693 LengthTy = Int32Ty; 5694 else 5695 LengthTy = IntPtrTy; 5696 } 5697 Fields.addInt(LengthTy, StringLength); 5698 5699 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5700 // properly aligned on 32-bit platforms. 5701 CharUnits Alignment = 5702 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5703 5704 // The struct. 5705 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5706 /*isConstant=*/false, 5707 llvm::GlobalVariable::PrivateLinkage); 5708 GV->addAttribute("objc_arc_inert"); 5709 switch (Triple.getObjectFormat()) { 5710 case llvm::Triple::UnknownObjectFormat: 5711 llvm_unreachable("unknown file format"); 5712 case llvm::Triple::DXContainer: 5713 case llvm::Triple::GOFF: 5714 case llvm::Triple::SPIRV: 5715 case llvm::Triple::XCOFF: 5716 llvm_unreachable("unimplemented"); 5717 case llvm::Triple::COFF: 5718 case llvm::Triple::ELF: 5719 case llvm::Triple::Wasm: 5720 GV->setSection("cfstring"); 5721 break; 5722 case llvm::Triple::MachO: 5723 GV->setSection("__DATA,__cfstring"); 5724 break; 5725 } 5726 Entry.second = GV; 5727 5728 return ConstantAddress(GV, GV->getValueType(), Alignment); 5729 } 5730 5731 bool CodeGenModule::getExpressionLocationsEnabled() const { 5732 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5733 } 5734 5735 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5736 if (ObjCFastEnumerationStateType.isNull()) { 5737 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5738 D->startDefinition(); 5739 5740 QualType FieldTypes[] = { 5741 Context.UnsignedLongTy, 5742 Context.getPointerType(Context.getObjCIdType()), 5743 Context.getPointerType(Context.UnsignedLongTy), 5744 Context.getConstantArrayType(Context.UnsignedLongTy, 5745 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5746 }; 5747 5748 for (size_t i = 0; i < 4; ++i) { 5749 FieldDecl *Field = FieldDecl::Create(Context, 5750 D, 5751 SourceLocation(), 5752 SourceLocation(), nullptr, 5753 FieldTypes[i], /*TInfo=*/nullptr, 5754 /*BitWidth=*/nullptr, 5755 /*Mutable=*/false, 5756 ICIS_NoInit); 5757 Field->setAccess(AS_public); 5758 D->addDecl(Field); 5759 } 5760 5761 D->completeDefinition(); 5762 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5763 } 5764 5765 return ObjCFastEnumerationStateType; 5766 } 5767 5768 llvm::Constant * 5769 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5770 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5771 5772 // Don't emit it as the address of the string, emit the string data itself 5773 // as an inline array. 5774 if (E->getCharByteWidth() == 1) { 5775 SmallString<64> Str(E->getString()); 5776 5777 // Resize the string to the right size, which is indicated by its type. 5778 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5779 Str.resize(CAT->getSize().getZExtValue()); 5780 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5781 } 5782 5783 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5784 llvm::Type *ElemTy = AType->getElementType(); 5785 unsigned NumElements = AType->getNumElements(); 5786 5787 // Wide strings have either 2-byte or 4-byte elements. 5788 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5789 SmallVector<uint16_t, 32> Elements; 5790 Elements.reserve(NumElements); 5791 5792 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5793 Elements.push_back(E->getCodeUnit(i)); 5794 Elements.resize(NumElements); 5795 return llvm::ConstantDataArray::get(VMContext, Elements); 5796 } 5797 5798 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5799 SmallVector<uint32_t, 32> Elements; 5800 Elements.reserve(NumElements); 5801 5802 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5803 Elements.push_back(E->getCodeUnit(i)); 5804 Elements.resize(NumElements); 5805 return llvm::ConstantDataArray::get(VMContext, Elements); 5806 } 5807 5808 static llvm::GlobalVariable * 5809 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5810 CodeGenModule &CGM, StringRef GlobalName, 5811 CharUnits Alignment) { 5812 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5813 CGM.GetGlobalConstantAddressSpace()); 5814 5815 llvm::Module &M = CGM.getModule(); 5816 // Create a global variable for this string 5817 auto *GV = new llvm::GlobalVariable( 5818 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5819 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5820 GV->setAlignment(Alignment.getAsAlign()); 5821 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5822 if (GV->isWeakForLinker()) { 5823 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5824 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5825 } 5826 CGM.setDSOLocal(GV); 5827 5828 return GV; 5829 } 5830 5831 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5832 /// constant array for the given string literal. 5833 ConstantAddress 5834 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5835 StringRef Name) { 5836 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5837 5838 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5839 llvm::GlobalVariable **Entry = nullptr; 5840 if (!LangOpts.WritableStrings) { 5841 Entry = &ConstantStringMap[C]; 5842 if (auto GV = *Entry) { 5843 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5844 GV->setAlignment(Alignment.getAsAlign()); 5845 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5846 GV->getValueType(), Alignment); 5847 } 5848 } 5849 5850 SmallString<256> MangledNameBuffer; 5851 StringRef GlobalVariableName; 5852 llvm::GlobalValue::LinkageTypes LT; 5853 5854 // Mangle the string literal if that's how the ABI merges duplicate strings. 5855 // Don't do it if they are writable, since we don't want writes in one TU to 5856 // affect strings in another. 5857 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5858 !LangOpts.WritableStrings) { 5859 llvm::raw_svector_ostream Out(MangledNameBuffer); 5860 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5861 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5862 GlobalVariableName = MangledNameBuffer; 5863 } else { 5864 LT = llvm::GlobalValue::PrivateLinkage; 5865 GlobalVariableName = Name; 5866 } 5867 5868 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5869 5870 CGDebugInfo *DI = getModuleDebugInfo(); 5871 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5872 DI->AddStringLiteralDebugInfo(GV, S); 5873 5874 if (Entry) 5875 *Entry = GV; 5876 5877 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5878 5879 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5880 GV->getValueType(), Alignment); 5881 } 5882 5883 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5884 /// array for the given ObjCEncodeExpr node. 5885 ConstantAddress 5886 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5887 std::string Str; 5888 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5889 5890 return GetAddrOfConstantCString(Str); 5891 } 5892 5893 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5894 /// the literal and a terminating '\0' character. 5895 /// The result has pointer to array type. 5896 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5897 const std::string &Str, const char *GlobalName) { 5898 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5899 CharUnits Alignment = 5900 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5901 5902 llvm::Constant *C = 5903 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5904 5905 // Don't share any string literals if strings aren't constant. 5906 llvm::GlobalVariable **Entry = nullptr; 5907 if (!LangOpts.WritableStrings) { 5908 Entry = &ConstantStringMap[C]; 5909 if (auto GV = *Entry) { 5910 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5911 GV->setAlignment(Alignment.getAsAlign()); 5912 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5913 GV->getValueType(), Alignment); 5914 } 5915 } 5916 5917 // Get the default prefix if a name wasn't specified. 5918 if (!GlobalName) 5919 GlobalName = ".str"; 5920 // Create a global variable for this. 5921 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5922 GlobalName, Alignment); 5923 if (Entry) 5924 *Entry = GV; 5925 5926 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5927 GV->getValueType(), Alignment); 5928 } 5929 5930 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5931 const MaterializeTemporaryExpr *E, const Expr *Init) { 5932 assert((E->getStorageDuration() == SD_Static || 5933 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5934 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5935 5936 // If we're not materializing a subobject of the temporary, keep the 5937 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5938 QualType MaterializedType = Init->getType(); 5939 if (Init == E->getSubExpr()) 5940 MaterializedType = E->getType(); 5941 5942 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5943 5944 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5945 if (!InsertResult.second) { 5946 // We've seen this before: either we already created it or we're in the 5947 // process of doing so. 5948 if (!InsertResult.first->second) { 5949 // We recursively re-entered this function, probably during emission of 5950 // the initializer. Create a placeholder. We'll clean this up in the 5951 // outer call, at the end of this function. 5952 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5953 InsertResult.first->second = new llvm::GlobalVariable( 5954 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5955 nullptr); 5956 } 5957 return ConstantAddress(InsertResult.first->second, 5958 llvm::cast<llvm::GlobalVariable>( 5959 InsertResult.first->second->stripPointerCasts()) 5960 ->getValueType(), 5961 Align); 5962 } 5963 5964 // FIXME: If an externally-visible declaration extends multiple temporaries, 5965 // we need to give each temporary the same name in every translation unit (and 5966 // we also need to make the temporaries externally-visible). 5967 SmallString<256> Name; 5968 llvm::raw_svector_ostream Out(Name); 5969 getCXXABI().getMangleContext().mangleReferenceTemporary( 5970 VD, E->getManglingNumber(), Out); 5971 5972 APValue *Value = nullptr; 5973 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5974 // If the initializer of the extending declaration is a constant 5975 // initializer, we should have a cached constant initializer for this 5976 // temporary. Note that this might have a different value from the value 5977 // computed by evaluating the initializer if the surrounding constant 5978 // expression modifies the temporary. 5979 Value = E->getOrCreateValue(false); 5980 } 5981 5982 // Try evaluating it now, it might have a constant initializer. 5983 Expr::EvalResult EvalResult; 5984 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5985 !EvalResult.hasSideEffects()) 5986 Value = &EvalResult.Val; 5987 5988 LangAS AddrSpace = 5989 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5990 5991 Optional<ConstantEmitter> emitter; 5992 llvm::Constant *InitialValue = nullptr; 5993 bool Constant = false; 5994 llvm::Type *Type; 5995 if (Value) { 5996 // The temporary has a constant initializer, use it. 5997 emitter.emplace(*this); 5998 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5999 MaterializedType); 6000 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 6001 Type = InitialValue->getType(); 6002 } else { 6003 // No initializer, the initialization will be provided when we 6004 // initialize the declaration which performed lifetime extension. 6005 Type = getTypes().ConvertTypeForMem(MaterializedType); 6006 } 6007 6008 // Create a global variable for this lifetime-extended temporary. 6009 llvm::GlobalValue::LinkageTypes Linkage = 6010 getLLVMLinkageVarDefinition(VD, Constant); 6011 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6012 const VarDecl *InitVD; 6013 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6014 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6015 // Temporaries defined inside a class get linkonce_odr linkage because the 6016 // class can be defined in multiple translation units. 6017 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6018 } else { 6019 // There is no need for this temporary to have external linkage if the 6020 // VarDecl has external linkage. 6021 Linkage = llvm::GlobalVariable::InternalLinkage; 6022 } 6023 } 6024 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6025 auto *GV = new llvm::GlobalVariable( 6026 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6027 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6028 if (emitter) emitter->finalize(GV); 6029 // Don't assign dllimport or dllexport to local linkage globals. 6030 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6031 setGVProperties(GV, VD); 6032 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6033 // The reference temporary should never be dllexport. 6034 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6035 } 6036 GV->setAlignment(Align.getAsAlign()); 6037 if (supportsCOMDAT() && GV->isWeakForLinker()) 6038 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6039 if (VD->getTLSKind()) 6040 setTLSMode(GV, *VD); 6041 llvm::Constant *CV = GV; 6042 if (AddrSpace != LangAS::Default) 6043 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6044 *this, GV, AddrSpace, LangAS::Default, 6045 Type->getPointerTo( 6046 getContext().getTargetAddressSpace(LangAS::Default))); 6047 6048 // Update the map with the new temporary. If we created a placeholder above, 6049 // replace it with the new global now. 6050 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6051 if (Entry) { 6052 Entry->replaceAllUsesWith( 6053 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6054 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6055 } 6056 Entry = CV; 6057 6058 return ConstantAddress(CV, Type, Align); 6059 } 6060 6061 /// EmitObjCPropertyImplementations - Emit information for synthesized 6062 /// properties for an implementation. 6063 void CodeGenModule::EmitObjCPropertyImplementations(const 6064 ObjCImplementationDecl *D) { 6065 for (const auto *PID : D->property_impls()) { 6066 // Dynamic is just for type-checking. 6067 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6068 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6069 6070 // Determine which methods need to be implemented, some may have 6071 // been overridden. Note that ::isPropertyAccessor is not the method 6072 // we want, that just indicates if the decl came from a 6073 // property. What we want to know is if the method is defined in 6074 // this implementation. 6075 auto *Getter = PID->getGetterMethodDecl(); 6076 if (!Getter || Getter->isSynthesizedAccessorStub()) 6077 CodeGenFunction(*this).GenerateObjCGetter( 6078 const_cast<ObjCImplementationDecl *>(D), PID); 6079 auto *Setter = PID->getSetterMethodDecl(); 6080 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6081 CodeGenFunction(*this).GenerateObjCSetter( 6082 const_cast<ObjCImplementationDecl *>(D), PID); 6083 } 6084 } 6085 } 6086 6087 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6088 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6089 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6090 ivar; ivar = ivar->getNextIvar()) 6091 if (ivar->getType().isDestructedType()) 6092 return true; 6093 6094 return false; 6095 } 6096 6097 static bool AllTrivialInitializers(CodeGenModule &CGM, 6098 ObjCImplementationDecl *D) { 6099 CodeGenFunction CGF(CGM); 6100 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6101 E = D->init_end(); B != E; ++B) { 6102 CXXCtorInitializer *CtorInitExp = *B; 6103 Expr *Init = CtorInitExp->getInit(); 6104 if (!CGF.isTrivialInitializer(Init)) 6105 return false; 6106 } 6107 return true; 6108 } 6109 6110 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6111 /// for an implementation. 6112 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6113 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6114 if (needsDestructMethod(D)) { 6115 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6116 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6117 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6118 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6119 getContext().VoidTy, nullptr, D, 6120 /*isInstance=*/true, /*isVariadic=*/false, 6121 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6122 /*isImplicitlyDeclared=*/true, 6123 /*isDefined=*/false, ObjCMethodDecl::Required); 6124 D->addInstanceMethod(DTORMethod); 6125 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6126 D->setHasDestructors(true); 6127 } 6128 6129 // If the implementation doesn't have any ivar initializers, we don't need 6130 // a .cxx_construct. 6131 if (D->getNumIvarInitializers() == 0 || 6132 AllTrivialInitializers(*this, D)) 6133 return; 6134 6135 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6136 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6137 // The constructor returns 'self'. 6138 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6139 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6140 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6141 /*isVariadic=*/false, 6142 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6143 /*isImplicitlyDeclared=*/true, 6144 /*isDefined=*/false, ObjCMethodDecl::Required); 6145 D->addInstanceMethod(CTORMethod); 6146 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6147 D->setHasNonZeroConstructors(true); 6148 } 6149 6150 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6151 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6152 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6153 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6154 ErrorUnsupported(LSD, "linkage spec"); 6155 return; 6156 } 6157 6158 EmitDeclContext(LSD); 6159 } 6160 6161 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6162 std::unique_ptr<CodeGenFunction> &CurCGF = 6163 GlobalTopLevelStmtBlockInFlight.first; 6164 6165 // We emitted a top-level stmt but after it there is initialization. 6166 // Stop squashing the top-level stmts into a single function. 6167 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6168 CurCGF->FinishFunction(D->getEndLoc()); 6169 CurCGF = nullptr; 6170 } 6171 6172 if (!CurCGF) { 6173 // void __stmts__N(void) 6174 // FIXME: Ask the ABI name mangler to pick a name. 6175 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6176 FunctionArgList Args; 6177 QualType RetTy = getContext().VoidTy; 6178 const CGFunctionInfo &FnInfo = 6179 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6180 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6181 llvm::Function *Fn = llvm::Function::Create( 6182 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6183 6184 CurCGF.reset(new CodeGenFunction(*this)); 6185 GlobalTopLevelStmtBlockInFlight.second = D; 6186 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6187 D->getBeginLoc(), D->getBeginLoc()); 6188 CXXGlobalInits.push_back(Fn); 6189 } 6190 6191 CurCGF->EmitStmt(D->getStmt()); 6192 } 6193 6194 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6195 for (auto *I : DC->decls()) { 6196 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6197 // are themselves considered "top-level", so EmitTopLevelDecl on an 6198 // ObjCImplDecl does not recursively visit them. We need to do that in 6199 // case they're nested inside another construct (LinkageSpecDecl / 6200 // ExportDecl) that does stop them from being considered "top-level". 6201 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6202 for (auto *M : OID->methods()) 6203 EmitTopLevelDecl(M); 6204 } 6205 6206 EmitTopLevelDecl(I); 6207 } 6208 } 6209 6210 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6211 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6212 // Ignore dependent declarations. 6213 if (D->isTemplated()) 6214 return; 6215 6216 // Consteval function shouldn't be emitted. 6217 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6218 if (FD->isConsteval()) 6219 return; 6220 6221 switch (D->getKind()) { 6222 case Decl::CXXConversion: 6223 case Decl::CXXMethod: 6224 case Decl::Function: 6225 EmitGlobal(cast<FunctionDecl>(D)); 6226 // Always provide some coverage mapping 6227 // even for the functions that aren't emitted. 6228 AddDeferredUnusedCoverageMapping(D); 6229 break; 6230 6231 case Decl::CXXDeductionGuide: 6232 // Function-like, but does not result in code emission. 6233 break; 6234 6235 case Decl::Var: 6236 case Decl::Decomposition: 6237 case Decl::VarTemplateSpecialization: 6238 EmitGlobal(cast<VarDecl>(D)); 6239 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6240 for (auto *B : DD->bindings()) 6241 if (auto *HD = B->getHoldingVar()) 6242 EmitGlobal(HD); 6243 break; 6244 6245 // Indirect fields from global anonymous structs and unions can be 6246 // ignored; only the actual variable requires IR gen support. 6247 case Decl::IndirectField: 6248 break; 6249 6250 // C++ Decls 6251 case Decl::Namespace: 6252 EmitDeclContext(cast<NamespaceDecl>(D)); 6253 break; 6254 case Decl::ClassTemplateSpecialization: { 6255 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6256 if (CGDebugInfo *DI = getModuleDebugInfo()) 6257 if (Spec->getSpecializationKind() == 6258 TSK_ExplicitInstantiationDefinition && 6259 Spec->hasDefinition()) 6260 DI->completeTemplateDefinition(*Spec); 6261 } [[fallthrough]]; 6262 case Decl::CXXRecord: { 6263 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6264 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6265 if (CRD->hasDefinition()) 6266 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6267 if (auto *ES = D->getASTContext().getExternalSource()) 6268 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6269 DI->completeUnusedClass(*CRD); 6270 } 6271 // Emit any static data members, they may be definitions. 6272 for (auto *I : CRD->decls()) 6273 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6274 EmitTopLevelDecl(I); 6275 break; 6276 } 6277 // No code generation needed. 6278 case Decl::UsingShadow: 6279 case Decl::ClassTemplate: 6280 case Decl::VarTemplate: 6281 case Decl::Concept: 6282 case Decl::VarTemplatePartialSpecialization: 6283 case Decl::FunctionTemplate: 6284 case Decl::TypeAliasTemplate: 6285 case Decl::Block: 6286 case Decl::Empty: 6287 case Decl::Binding: 6288 break; 6289 case Decl::Using: // using X; [C++] 6290 if (CGDebugInfo *DI = getModuleDebugInfo()) 6291 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6292 break; 6293 case Decl::UsingEnum: // using enum X; [C++] 6294 if (CGDebugInfo *DI = getModuleDebugInfo()) 6295 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6296 break; 6297 case Decl::NamespaceAlias: 6298 if (CGDebugInfo *DI = getModuleDebugInfo()) 6299 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6300 break; 6301 case Decl::UsingDirective: // using namespace X; [C++] 6302 if (CGDebugInfo *DI = getModuleDebugInfo()) 6303 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6304 break; 6305 case Decl::CXXConstructor: 6306 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6307 break; 6308 case Decl::CXXDestructor: 6309 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6310 break; 6311 6312 case Decl::StaticAssert: 6313 // Nothing to do. 6314 break; 6315 6316 // Objective-C Decls 6317 6318 // Forward declarations, no (immediate) code generation. 6319 case Decl::ObjCInterface: 6320 case Decl::ObjCCategory: 6321 break; 6322 6323 case Decl::ObjCProtocol: { 6324 auto *Proto = cast<ObjCProtocolDecl>(D); 6325 if (Proto->isThisDeclarationADefinition()) 6326 ObjCRuntime->GenerateProtocol(Proto); 6327 break; 6328 } 6329 6330 case Decl::ObjCCategoryImpl: 6331 // Categories have properties but don't support synthesize so we 6332 // can ignore them here. 6333 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6334 break; 6335 6336 case Decl::ObjCImplementation: { 6337 auto *OMD = cast<ObjCImplementationDecl>(D); 6338 EmitObjCPropertyImplementations(OMD); 6339 EmitObjCIvarInitializations(OMD); 6340 ObjCRuntime->GenerateClass(OMD); 6341 // Emit global variable debug information. 6342 if (CGDebugInfo *DI = getModuleDebugInfo()) 6343 if (getCodeGenOpts().hasReducedDebugInfo()) 6344 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6345 OMD->getClassInterface()), OMD->getLocation()); 6346 break; 6347 } 6348 case Decl::ObjCMethod: { 6349 auto *OMD = cast<ObjCMethodDecl>(D); 6350 // If this is not a prototype, emit the body. 6351 if (OMD->getBody()) 6352 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6353 break; 6354 } 6355 case Decl::ObjCCompatibleAlias: 6356 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6357 break; 6358 6359 case Decl::PragmaComment: { 6360 const auto *PCD = cast<PragmaCommentDecl>(D); 6361 switch (PCD->getCommentKind()) { 6362 case PCK_Unknown: 6363 llvm_unreachable("unexpected pragma comment kind"); 6364 case PCK_Linker: 6365 AppendLinkerOptions(PCD->getArg()); 6366 break; 6367 case PCK_Lib: 6368 AddDependentLib(PCD->getArg()); 6369 break; 6370 case PCK_Compiler: 6371 case PCK_ExeStr: 6372 case PCK_User: 6373 break; // We ignore all of these. 6374 } 6375 break; 6376 } 6377 6378 case Decl::PragmaDetectMismatch: { 6379 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6380 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6381 break; 6382 } 6383 6384 case Decl::LinkageSpec: 6385 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6386 break; 6387 6388 case Decl::FileScopeAsm: { 6389 // File-scope asm is ignored during device-side CUDA compilation. 6390 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6391 break; 6392 // File-scope asm is ignored during device-side OpenMP compilation. 6393 if (LangOpts.OpenMPIsDevice) 6394 break; 6395 // File-scope asm is ignored during device-side SYCL compilation. 6396 if (LangOpts.SYCLIsDevice) 6397 break; 6398 auto *AD = cast<FileScopeAsmDecl>(D); 6399 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6400 break; 6401 } 6402 6403 case Decl::TopLevelStmt: 6404 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6405 break; 6406 6407 case Decl::Import: { 6408 auto *Import = cast<ImportDecl>(D); 6409 6410 // If we've already imported this module, we're done. 6411 if (!ImportedModules.insert(Import->getImportedModule())) 6412 break; 6413 6414 // Emit debug information for direct imports. 6415 if (!Import->getImportedOwningModule()) { 6416 if (CGDebugInfo *DI = getModuleDebugInfo()) 6417 DI->EmitImportDecl(*Import); 6418 } 6419 6420 // For C++ standard modules we are done - we will call the module 6421 // initializer for imported modules, and that will likewise call those for 6422 // any imports it has. 6423 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6424 !Import->getImportedOwningModule()->isModuleMapModule()) 6425 break; 6426 6427 // For clang C++ module map modules the initializers for sub-modules are 6428 // emitted here. 6429 6430 // Find all of the submodules and emit the module initializers. 6431 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6432 SmallVector<clang::Module *, 16> Stack; 6433 Visited.insert(Import->getImportedModule()); 6434 Stack.push_back(Import->getImportedModule()); 6435 6436 while (!Stack.empty()) { 6437 clang::Module *Mod = Stack.pop_back_val(); 6438 if (!EmittedModuleInitializers.insert(Mod).second) 6439 continue; 6440 6441 for (auto *D : Context.getModuleInitializers(Mod)) 6442 EmitTopLevelDecl(D); 6443 6444 // Visit the submodules of this module. 6445 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6446 SubEnd = Mod->submodule_end(); 6447 Sub != SubEnd; ++Sub) { 6448 // Skip explicit children; they need to be explicitly imported to emit 6449 // the initializers. 6450 if ((*Sub)->IsExplicit) 6451 continue; 6452 6453 if (Visited.insert(*Sub).second) 6454 Stack.push_back(*Sub); 6455 } 6456 } 6457 break; 6458 } 6459 6460 case Decl::Export: 6461 EmitDeclContext(cast<ExportDecl>(D)); 6462 break; 6463 6464 case Decl::OMPThreadPrivate: 6465 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6466 break; 6467 6468 case Decl::OMPAllocate: 6469 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6470 break; 6471 6472 case Decl::OMPDeclareReduction: 6473 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6474 break; 6475 6476 case Decl::OMPDeclareMapper: 6477 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6478 break; 6479 6480 case Decl::OMPRequires: 6481 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6482 break; 6483 6484 case Decl::Typedef: 6485 case Decl::TypeAlias: // using foo = bar; [C++11] 6486 if (CGDebugInfo *DI = getModuleDebugInfo()) 6487 DI->EmitAndRetainType( 6488 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6489 break; 6490 6491 case Decl::Record: 6492 if (CGDebugInfo *DI = getModuleDebugInfo()) 6493 if (cast<RecordDecl>(D)->getDefinition()) 6494 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6495 break; 6496 6497 case Decl::Enum: 6498 if (CGDebugInfo *DI = getModuleDebugInfo()) 6499 if (cast<EnumDecl>(D)->getDefinition()) 6500 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6501 break; 6502 6503 case Decl::HLSLBuffer: 6504 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6505 break; 6506 6507 default: 6508 // Make sure we handled everything we should, every other kind is a 6509 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6510 // function. Need to recode Decl::Kind to do that easily. 6511 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6512 break; 6513 } 6514 } 6515 6516 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6517 // Do we need to generate coverage mapping? 6518 if (!CodeGenOpts.CoverageMapping) 6519 return; 6520 switch (D->getKind()) { 6521 case Decl::CXXConversion: 6522 case Decl::CXXMethod: 6523 case Decl::Function: 6524 case Decl::ObjCMethod: 6525 case Decl::CXXConstructor: 6526 case Decl::CXXDestructor: { 6527 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6528 break; 6529 SourceManager &SM = getContext().getSourceManager(); 6530 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6531 break; 6532 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6533 if (I == DeferredEmptyCoverageMappingDecls.end()) 6534 DeferredEmptyCoverageMappingDecls[D] = true; 6535 break; 6536 } 6537 default: 6538 break; 6539 }; 6540 } 6541 6542 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6543 // Do we need to generate coverage mapping? 6544 if (!CodeGenOpts.CoverageMapping) 6545 return; 6546 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6547 if (Fn->isTemplateInstantiation()) 6548 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6549 } 6550 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6551 if (I == DeferredEmptyCoverageMappingDecls.end()) 6552 DeferredEmptyCoverageMappingDecls[D] = false; 6553 else 6554 I->second = false; 6555 } 6556 6557 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6558 // We call takeVector() here to avoid use-after-free. 6559 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6560 // we deserialize function bodies to emit coverage info for them, and that 6561 // deserializes more declarations. How should we handle that case? 6562 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6563 if (!Entry.second) 6564 continue; 6565 const Decl *D = Entry.first; 6566 switch (D->getKind()) { 6567 case Decl::CXXConversion: 6568 case Decl::CXXMethod: 6569 case Decl::Function: 6570 case Decl::ObjCMethod: { 6571 CodeGenPGO PGO(*this); 6572 GlobalDecl GD(cast<FunctionDecl>(D)); 6573 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6574 getFunctionLinkage(GD)); 6575 break; 6576 } 6577 case Decl::CXXConstructor: { 6578 CodeGenPGO PGO(*this); 6579 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6580 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6581 getFunctionLinkage(GD)); 6582 break; 6583 } 6584 case Decl::CXXDestructor: { 6585 CodeGenPGO PGO(*this); 6586 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6587 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6588 getFunctionLinkage(GD)); 6589 break; 6590 } 6591 default: 6592 break; 6593 }; 6594 } 6595 } 6596 6597 void CodeGenModule::EmitMainVoidAlias() { 6598 // In order to transition away from "__original_main" gracefully, emit an 6599 // alias for "main" in the no-argument case so that libc can detect when 6600 // new-style no-argument main is in used. 6601 if (llvm::Function *F = getModule().getFunction("main")) { 6602 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6603 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6604 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6605 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6606 } 6607 } 6608 } 6609 6610 /// Turns the given pointer into a constant. 6611 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6612 const void *Ptr) { 6613 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6614 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6615 return llvm::ConstantInt::get(i64, PtrInt); 6616 } 6617 6618 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6619 llvm::NamedMDNode *&GlobalMetadata, 6620 GlobalDecl D, 6621 llvm::GlobalValue *Addr) { 6622 if (!GlobalMetadata) 6623 GlobalMetadata = 6624 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6625 6626 // TODO: should we report variant information for ctors/dtors? 6627 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6628 llvm::ConstantAsMetadata::get(GetPointerConstant( 6629 CGM.getLLVMContext(), D.getDecl()))}; 6630 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6631 } 6632 6633 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6634 llvm::GlobalValue *CppFunc) { 6635 // Store the list of ifuncs we need to replace uses in. 6636 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6637 // List of ConstantExprs that we should be able to delete when we're done 6638 // here. 6639 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6640 6641 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6642 if (Elem == CppFunc) 6643 return false; 6644 6645 // First make sure that all users of this are ifuncs (or ifuncs via a 6646 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6647 // later. 6648 for (llvm::User *User : Elem->users()) { 6649 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6650 // ifunc directly. In any other case, just give up, as we don't know what we 6651 // could break by changing those. 6652 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6653 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6654 return false; 6655 6656 for (llvm::User *CEUser : ConstExpr->users()) { 6657 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6658 IFuncs.push_back(IFunc); 6659 } else { 6660 return false; 6661 } 6662 } 6663 CEs.push_back(ConstExpr); 6664 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6665 IFuncs.push_back(IFunc); 6666 } else { 6667 // This user is one we don't know how to handle, so fail redirection. This 6668 // will result in an ifunc retaining a resolver name that will ultimately 6669 // fail to be resolved to a defined function. 6670 return false; 6671 } 6672 } 6673 6674 // Now we know this is a valid case where we can do this alias replacement, we 6675 // need to remove all of the references to Elem (and the bitcasts!) so we can 6676 // delete it. 6677 for (llvm::GlobalIFunc *IFunc : IFuncs) 6678 IFunc->setResolver(nullptr); 6679 for (llvm::ConstantExpr *ConstExpr : CEs) 6680 ConstExpr->destroyConstant(); 6681 6682 // We should now be out of uses for the 'old' version of this function, so we 6683 // can erase it as well. 6684 Elem->eraseFromParent(); 6685 6686 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6687 // The type of the resolver is always just a function-type that returns the 6688 // type of the IFunc, so create that here. If the type of the actual 6689 // resolver doesn't match, it just gets bitcast to the right thing. 6690 auto *ResolverTy = 6691 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6692 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6693 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6694 IFunc->setResolver(Resolver); 6695 } 6696 return true; 6697 } 6698 6699 /// For each function which is declared within an extern "C" region and marked 6700 /// as 'used', but has internal linkage, create an alias from the unmangled 6701 /// name to the mangled name if possible. People expect to be able to refer 6702 /// to such functions with an unmangled name from inline assembly within the 6703 /// same translation unit. 6704 void CodeGenModule::EmitStaticExternCAliases() { 6705 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6706 return; 6707 for (auto &I : StaticExternCValues) { 6708 IdentifierInfo *Name = I.first; 6709 llvm::GlobalValue *Val = I.second; 6710 6711 // If Val is null, that implies there were multiple declarations that each 6712 // had a claim to the unmangled name. In this case, generation of the alias 6713 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6714 if (!Val) 6715 break; 6716 6717 llvm::GlobalValue *ExistingElem = 6718 getModule().getNamedValue(Name->getName()); 6719 6720 // If there is either not something already by this name, or we were able to 6721 // replace all uses from IFuncs, create the alias. 6722 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6723 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6724 } 6725 } 6726 6727 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6728 GlobalDecl &Result) const { 6729 auto Res = Manglings.find(MangledName); 6730 if (Res == Manglings.end()) 6731 return false; 6732 Result = Res->getValue(); 6733 return true; 6734 } 6735 6736 /// Emits metadata nodes associating all the global values in the 6737 /// current module with the Decls they came from. This is useful for 6738 /// projects using IR gen as a subroutine. 6739 /// 6740 /// Since there's currently no way to associate an MDNode directly 6741 /// with an llvm::GlobalValue, we create a global named metadata 6742 /// with the name 'clang.global.decl.ptrs'. 6743 void CodeGenModule::EmitDeclMetadata() { 6744 llvm::NamedMDNode *GlobalMetadata = nullptr; 6745 6746 for (auto &I : MangledDeclNames) { 6747 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6748 // Some mangled names don't necessarily have an associated GlobalValue 6749 // in this module, e.g. if we mangled it for DebugInfo. 6750 if (Addr) 6751 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6752 } 6753 } 6754 6755 /// Emits metadata nodes for all the local variables in the current 6756 /// function. 6757 void CodeGenFunction::EmitDeclMetadata() { 6758 if (LocalDeclMap.empty()) return; 6759 6760 llvm::LLVMContext &Context = getLLVMContext(); 6761 6762 // Find the unique metadata ID for this name. 6763 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6764 6765 llvm::NamedMDNode *GlobalMetadata = nullptr; 6766 6767 for (auto &I : LocalDeclMap) { 6768 const Decl *D = I.first; 6769 llvm::Value *Addr = I.second.getPointer(); 6770 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6771 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6772 Alloca->setMetadata( 6773 DeclPtrKind, llvm::MDNode::get( 6774 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6775 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6776 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6777 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6778 } 6779 } 6780 } 6781 6782 void CodeGenModule::EmitVersionIdentMetadata() { 6783 llvm::NamedMDNode *IdentMetadata = 6784 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6785 std::string Version = getClangFullVersion(); 6786 llvm::LLVMContext &Ctx = TheModule.getContext(); 6787 6788 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6789 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6790 } 6791 6792 void CodeGenModule::EmitCommandLineMetadata() { 6793 llvm::NamedMDNode *CommandLineMetadata = 6794 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6795 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6796 llvm::LLVMContext &Ctx = TheModule.getContext(); 6797 6798 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6799 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6800 } 6801 6802 void CodeGenModule::EmitCoverageFile() { 6803 if (getCodeGenOpts().CoverageDataFile.empty() && 6804 getCodeGenOpts().CoverageNotesFile.empty()) 6805 return; 6806 6807 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6808 if (!CUNode) 6809 return; 6810 6811 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6812 llvm::LLVMContext &Ctx = TheModule.getContext(); 6813 auto *CoverageDataFile = 6814 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6815 auto *CoverageNotesFile = 6816 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6817 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6818 llvm::MDNode *CU = CUNode->getOperand(i); 6819 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6820 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6821 } 6822 } 6823 6824 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6825 bool ForEH) { 6826 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6827 // FIXME: should we even be calling this method if RTTI is disabled 6828 // and it's not for EH? 6829 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6830 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6831 getTriple().isNVPTX())) 6832 return llvm::Constant::getNullValue(Int8PtrTy); 6833 6834 if (ForEH && Ty->isObjCObjectPointerType() && 6835 LangOpts.ObjCRuntime.isGNUFamily()) 6836 return ObjCRuntime->GetEHType(Ty); 6837 6838 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6839 } 6840 6841 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6842 // Do not emit threadprivates in simd-only mode. 6843 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6844 return; 6845 for (auto RefExpr : D->varlists()) { 6846 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6847 bool PerformInit = 6848 VD->getAnyInitializer() && 6849 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6850 /*ForRef=*/false); 6851 6852 Address Addr(GetAddrOfGlobalVar(VD), 6853 getTypes().ConvertTypeForMem(VD->getType()), 6854 getContext().getDeclAlign(VD)); 6855 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6856 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6857 CXXGlobalInits.push_back(InitFunction); 6858 } 6859 } 6860 6861 llvm::Metadata * 6862 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6863 StringRef Suffix) { 6864 if (auto *FnType = T->getAs<FunctionProtoType>()) 6865 T = getContext().getFunctionType( 6866 FnType->getReturnType(), FnType->getParamTypes(), 6867 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6868 6869 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6870 if (InternalId) 6871 return InternalId; 6872 6873 if (isExternallyVisible(T->getLinkage())) { 6874 std::string OutName; 6875 llvm::raw_string_ostream Out(OutName); 6876 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6877 Out << Suffix; 6878 6879 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6880 } else { 6881 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6882 llvm::ArrayRef<llvm::Metadata *>()); 6883 } 6884 6885 return InternalId; 6886 } 6887 6888 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6889 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6890 } 6891 6892 llvm::Metadata * 6893 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6894 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6895 } 6896 6897 // Generalize pointer types to a void pointer with the qualifiers of the 6898 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6899 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6900 // 'void *'. 6901 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6902 if (!Ty->isPointerType()) 6903 return Ty; 6904 6905 return Ctx.getPointerType( 6906 QualType(Ctx.VoidTy).withCVRQualifiers( 6907 Ty->getPointeeType().getCVRQualifiers())); 6908 } 6909 6910 // Apply type generalization to a FunctionType's return and argument types 6911 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6912 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6913 SmallVector<QualType, 8> GeneralizedParams; 6914 for (auto &Param : FnType->param_types()) 6915 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6916 6917 return Ctx.getFunctionType( 6918 GeneralizeType(Ctx, FnType->getReturnType()), 6919 GeneralizedParams, FnType->getExtProtoInfo()); 6920 } 6921 6922 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6923 return Ctx.getFunctionNoProtoType( 6924 GeneralizeType(Ctx, FnType->getReturnType())); 6925 6926 llvm_unreachable("Encountered unknown FunctionType"); 6927 } 6928 6929 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6930 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6931 GeneralizedMetadataIdMap, ".generalized"); 6932 } 6933 6934 /// Returns whether this module needs the "all-vtables" type identifier. 6935 bool CodeGenModule::NeedAllVtablesTypeId() const { 6936 // Returns true if at least one of vtable-based CFI checkers is enabled and 6937 // is not in the trapping mode. 6938 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6939 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6940 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6941 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6942 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6943 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6944 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6945 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6946 } 6947 6948 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6949 CharUnits Offset, 6950 const CXXRecordDecl *RD) { 6951 llvm::Metadata *MD = 6952 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6953 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6954 6955 if (CodeGenOpts.SanitizeCfiCrossDso) 6956 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6957 VTable->addTypeMetadata(Offset.getQuantity(), 6958 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6959 6960 if (NeedAllVtablesTypeId()) { 6961 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6962 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6963 } 6964 } 6965 6966 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6967 if (!SanStats) 6968 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6969 6970 return *SanStats; 6971 } 6972 6973 llvm::Value * 6974 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6975 CodeGenFunction &CGF) { 6976 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6977 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6978 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6979 auto *Call = CGF.EmitRuntimeCall( 6980 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6981 return Call; 6982 } 6983 6984 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6985 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6986 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6987 /* forPointeeType= */ true); 6988 } 6989 6990 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6991 LValueBaseInfo *BaseInfo, 6992 TBAAAccessInfo *TBAAInfo, 6993 bool forPointeeType) { 6994 if (TBAAInfo) 6995 *TBAAInfo = getTBAAAccessInfo(T); 6996 6997 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6998 // that doesn't return the information we need to compute BaseInfo. 6999 7000 // Honor alignment typedef attributes even on incomplete types. 7001 // We also honor them straight for C++ class types, even as pointees; 7002 // there's an expressivity gap here. 7003 if (auto TT = T->getAs<TypedefType>()) { 7004 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7005 if (BaseInfo) 7006 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7007 return getContext().toCharUnitsFromBits(Align); 7008 } 7009 } 7010 7011 bool AlignForArray = T->isArrayType(); 7012 7013 // Analyze the base element type, so we don't get confused by incomplete 7014 // array types. 7015 T = getContext().getBaseElementType(T); 7016 7017 if (T->isIncompleteType()) { 7018 // We could try to replicate the logic from 7019 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7020 // type is incomplete, so it's impossible to test. We could try to reuse 7021 // getTypeAlignIfKnown, but that doesn't return the information we need 7022 // to set BaseInfo. So just ignore the possibility that the alignment is 7023 // greater than one. 7024 if (BaseInfo) 7025 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7026 return CharUnits::One(); 7027 } 7028 7029 if (BaseInfo) 7030 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7031 7032 CharUnits Alignment; 7033 const CXXRecordDecl *RD; 7034 if (T.getQualifiers().hasUnaligned()) { 7035 Alignment = CharUnits::One(); 7036 } else if (forPointeeType && !AlignForArray && 7037 (RD = T->getAsCXXRecordDecl())) { 7038 // For C++ class pointees, we don't know whether we're pointing at a 7039 // base or a complete object, so we generally need to use the 7040 // non-virtual alignment. 7041 Alignment = getClassPointerAlignment(RD); 7042 } else { 7043 Alignment = getContext().getTypeAlignInChars(T); 7044 } 7045 7046 // Cap to the global maximum type alignment unless the alignment 7047 // was somehow explicit on the type. 7048 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7049 if (Alignment.getQuantity() > MaxAlign && 7050 !getContext().isAlignmentRequired(T)) 7051 Alignment = CharUnits::fromQuantity(MaxAlign); 7052 } 7053 return Alignment; 7054 } 7055 7056 bool CodeGenModule::stopAutoInit() { 7057 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7058 if (StopAfter) { 7059 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7060 // used 7061 if (NumAutoVarInit >= StopAfter) { 7062 return true; 7063 } 7064 if (!NumAutoVarInit) { 7065 unsigned DiagID = getDiags().getCustomDiagID( 7066 DiagnosticsEngine::Warning, 7067 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7068 "number of times ftrivial-auto-var-init=%1 gets applied."); 7069 getDiags().Report(DiagID) 7070 << StopAfter 7071 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7072 LangOptions::TrivialAutoVarInitKind::Zero 7073 ? "zero" 7074 : "pattern"); 7075 } 7076 ++NumAutoVarInit; 7077 } 7078 return false; 7079 } 7080 7081 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7082 const Decl *D) const { 7083 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7084 // postfix beginning with '.' since the symbol name can be demangled. 7085 if (LangOpts.HIP) 7086 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7087 else 7088 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7089 7090 // If the CUID is not specified we try to generate a unique postfix. 7091 if (getLangOpts().CUID.empty()) { 7092 SourceManager &SM = getContext().getSourceManager(); 7093 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7094 assert(PLoc.isValid() && "Source location is expected to be valid."); 7095 7096 // Get the hash of the user defined macros. 7097 llvm::MD5 Hash; 7098 llvm::MD5::MD5Result Result; 7099 for (const auto &Arg : PreprocessorOpts.Macros) 7100 Hash.update(Arg.first); 7101 Hash.final(Result); 7102 7103 // Get the UniqueID for the file containing the decl. 7104 llvm::sys::fs::UniqueID ID; 7105 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7106 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7107 assert(PLoc.isValid() && "Source location is expected to be valid."); 7108 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7109 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7110 << PLoc.getFilename() << EC.message(); 7111 } 7112 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7113 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7114 } else { 7115 OS << getContext().getCUIDHash(); 7116 } 7117 } 7118 7119 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7120 assert(DeferredDeclsToEmit.empty() && 7121 "Should have emitted all decls deferred to emit."); 7122 assert(NewBuilder->DeferredDecls.empty() && 7123 "Newly created module should not have deferred decls"); 7124 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7125 7126 assert(NewBuilder->DeferredVTables.empty() && 7127 "Newly created module should not have deferred vtables"); 7128 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7129 7130 assert(NewBuilder->MangledDeclNames.empty() && 7131 "Newly created module should not have mangled decl names"); 7132 assert(NewBuilder->Manglings.empty() && 7133 "Newly created module should not have manglings"); 7134 NewBuilder->Manglings = std::move(Manglings); 7135 7136 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); 7137 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7138 7139 NewBuilder->TBAA = std::move(TBAA); 7140 7141 assert(NewBuilder->EmittedDeferredDecls.empty() && 7142 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7143 7144 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7145 7146 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7147 } 7148