xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision bb525f7c200aab0ba2ebff88031a636510e89b59)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CoverageMappingGen.h"
25 #include "CodeGenTBAA.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericItanium:
68     return CreateItaniumCXXABI(CGM);
69   case TargetCXXABI::Microsoft:
70     return CreateMicrosoftCXXABI(CGM);
71   }
72 
73   llvm_unreachable("invalid C++ ABI kind");
74 }
75 
76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
77                              llvm::Module &M, const llvm::DataLayout &TD,
78                              DiagnosticsEngine &diags,
79                              CoverageSourceInfo *CoverageInfo)
80     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
81       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
82       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
83       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
84       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
85       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
86       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
87       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
88       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
89       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
90       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
91       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
92       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108   Int8PtrTy = Int8Ty->getPointerTo(0);
109   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110 
111   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112 
113   if (LangOpts.ObjC1)
114     createObjCRuntime();
115   if (LangOpts.OpenCL)
116     createOpenCLRuntime();
117   if (LangOpts.OpenMP)
118     createOpenMPRuntime();
119   if (LangOpts.CUDA)
120     createCUDARuntime();
121 
122   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
123   if (LangOpts.Sanitize.Thread ||
124       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
125     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
126                            getCXXABI().getMangleContext());
127 
128   // If debug info or coverage generation is enabled, create the CGDebugInfo
129   // object.
130   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
131       CodeGenOpts.EmitGcovArcs ||
132       CodeGenOpts.EmitGcovNotes)
133     DebugInfo = new CGDebugInfo(*this);
134 
135   Block.GlobalUniqueCount = 0;
136 
137   if (C.getLangOpts().ObjCAutoRefCount)
138     ARCData = new ARCEntrypoints();
139   RRData = new RREntrypoints();
140 
141   if (!CodeGenOpts.InstrProfileInput.empty()) {
142     if (std::error_code EC = llvm::IndexedInstrProfReader::create(
143             CodeGenOpts.InstrProfileInput, PGOReader)) {
144       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
145                                               "Could not read profile: %0");
146       getDiags().Report(DiagID) << EC.message();
147     }
148   }
149 
150   // If coverage mapping generation is enabled, create the
151   // CoverageMappingModuleGen object.
152   if (CodeGenOpts.CoverageMapping)
153     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
154 }
155 
156 CodeGenModule::~CodeGenModule() {
157   delete ObjCRuntime;
158   delete OpenCLRuntime;
159   delete OpenMPRuntime;
160   delete CUDARuntime;
161   delete TheTargetCodeGenInfo;
162   delete TBAA;
163   delete DebugInfo;
164   delete ARCData;
165   delete RRData;
166 }
167 
168 void CodeGenModule::createObjCRuntime() {
169   // This is just isGNUFamily(), but we want to force implementors of
170   // new ABIs to decide how best to do this.
171   switch (LangOpts.ObjCRuntime.getKind()) {
172   case ObjCRuntime::GNUstep:
173   case ObjCRuntime::GCC:
174   case ObjCRuntime::ObjFW:
175     ObjCRuntime = CreateGNUObjCRuntime(*this);
176     return;
177 
178   case ObjCRuntime::FragileMacOSX:
179   case ObjCRuntime::MacOSX:
180   case ObjCRuntime::iOS:
181     ObjCRuntime = CreateMacObjCRuntime(*this);
182     return;
183   }
184   llvm_unreachable("bad runtime kind");
185 }
186 
187 void CodeGenModule::createOpenCLRuntime() {
188   OpenCLRuntime = new CGOpenCLRuntime(*this);
189 }
190 
191 void CodeGenModule::createOpenMPRuntime() {
192   OpenMPRuntime = new CGOpenMPRuntime(*this);
193 }
194 
195 void CodeGenModule::createCUDARuntime() {
196   CUDARuntime = CreateNVCUDARuntime(*this);
197 }
198 
199 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
200   Replacements[Name] = C;
201 }
202 
203 void CodeGenModule::applyReplacements() {
204   for (ReplacementsTy::iterator I = Replacements.begin(),
205                                 E = Replacements.end();
206        I != E; ++I) {
207     StringRef MangledName = I->first();
208     llvm::Constant *Replacement = I->second;
209     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
210     if (!Entry)
211       continue;
212     auto *OldF = cast<llvm::Function>(Entry);
213     auto *NewF = dyn_cast<llvm::Function>(Replacement);
214     if (!NewF) {
215       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
216         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
217       } else {
218         auto *CE = cast<llvm::ConstantExpr>(Replacement);
219         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
220                CE->getOpcode() == llvm::Instruction::GetElementPtr);
221         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
222       }
223     }
224 
225     // Replace old with new, but keep the old order.
226     OldF->replaceAllUsesWith(Replacement);
227     if (NewF) {
228       NewF->removeFromParent();
229       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
230     }
231     OldF->eraseFromParent();
232   }
233 }
234 
235 // This is only used in aliases that we created and we know they have a
236 // linear structure.
237 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
238   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
239   const llvm::Constant *C = &GA;
240   for (;;) {
241     C = C->stripPointerCasts();
242     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
243       return GO;
244     // stripPointerCasts will not walk over weak aliases.
245     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
246     if (!GA2)
247       return nullptr;
248     if (!Visited.insert(GA2))
249       return nullptr;
250     C = GA2->getAliasee();
251   }
252 }
253 
254 void CodeGenModule::checkAliases() {
255   // Check if the constructed aliases are well formed. It is really unfortunate
256   // that we have to do this in CodeGen, but we only construct mangled names
257   // and aliases during codegen.
258   bool Error = false;
259   DiagnosticsEngine &Diags = getDiags();
260   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
261          E = Aliases.end(); I != E; ++I) {
262     const GlobalDecl &GD = *I;
263     const auto *D = cast<ValueDecl>(GD.getDecl());
264     const AliasAttr *AA = D->getAttr<AliasAttr>();
265     StringRef MangledName = getMangledName(GD);
266     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
267     auto *Alias = cast<llvm::GlobalAlias>(Entry);
268     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
269     if (!GV) {
270       Error = true;
271       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
272     } else if (GV->isDeclaration()) {
273       Error = true;
274       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
275     }
276 
277     llvm::Constant *Aliasee = Alias->getAliasee();
278     llvm::GlobalValue *AliaseeGV;
279     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
280       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
281     else
282       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
283 
284     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
285       StringRef AliasSection = SA->getName();
286       if (AliasSection != AliaseeGV->getSection())
287         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
288             << AliasSection;
289     }
290 
291     // We have to handle alias to weak aliases in here. LLVM itself disallows
292     // this since the object semantics would not match the IL one. For
293     // compatibility with gcc we implement it by just pointing the alias
294     // to its aliasee's aliasee. We also warn, since the user is probably
295     // expecting the link to be weak.
296     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
297       if (GA->mayBeOverridden()) {
298         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
299             << GV->getName() << GA->getName();
300         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
301             GA->getAliasee(), Alias->getType());
302         Alias->setAliasee(Aliasee);
303       }
304     }
305   }
306   if (!Error)
307     return;
308 
309   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
310          E = Aliases.end(); I != E; ++I) {
311     const GlobalDecl &GD = *I;
312     StringRef MangledName = getMangledName(GD);
313     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
314     auto *Alias = cast<llvm::GlobalAlias>(Entry);
315     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
316     Alias->eraseFromParent();
317   }
318 }
319 
320 void CodeGenModule::clear() {
321   DeferredDeclsToEmit.clear();
322 }
323 
324 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
325                                        StringRef MainFile) {
326   if (!hasDiagnostics())
327     return;
328   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
329     if (MainFile.empty())
330       MainFile = "<stdin>";
331     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
332   } else
333     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
334                                                       << Mismatched;
335 }
336 
337 void CodeGenModule::Release() {
338   EmitDeferred();
339   applyReplacements();
340   checkAliases();
341   EmitCXXGlobalInitFunc();
342   EmitCXXGlobalDtorFunc();
343   EmitCXXThreadLocalInitFunc();
344   if (ObjCRuntime)
345     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
346       AddGlobalCtor(ObjCInitFunction);
347   if (getCodeGenOpts().ProfileInstrGenerate)
348     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
349       AddGlobalCtor(PGOInit, 0);
350   if (PGOReader && PGOStats.hasDiagnostics())
351     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
352   EmitCtorList(GlobalCtors, "llvm.global_ctors");
353   EmitCtorList(GlobalDtors, "llvm.global_dtors");
354   EmitGlobalAnnotations();
355   EmitStaticExternCAliases();
356   EmitDeferredUnusedCoverageMappings();
357   if (CoverageMapping)
358     CoverageMapping->emit();
359   emitLLVMUsed();
360 
361   if (CodeGenOpts.Autolink &&
362       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
363     EmitModuleLinkOptions();
364   }
365   if (CodeGenOpts.DwarfVersion)
366     // We actually want the latest version when there are conflicts.
367     // We can change from Warning to Latest if such mode is supported.
368     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
369                               CodeGenOpts.DwarfVersion);
370   if (DebugInfo)
371     // We support a single version in the linked module. The LLVM
372     // parser will drop debug info with a different version number
373     // (and warn about it, too).
374     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
375                               llvm::DEBUG_METADATA_VERSION);
376 
377   // We need to record the widths of enums and wchar_t, so that we can generate
378   // the correct build attributes in the ARM backend.
379   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
380   if (   Arch == llvm::Triple::arm
381       || Arch == llvm::Triple::armeb
382       || Arch == llvm::Triple::thumb
383       || Arch == llvm::Triple::thumbeb) {
384     // Width of wchar_t in bytes
385     uint64_t WCharWidth =
386         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
387     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
388 
389     // The minimum width of an enum in bytes
390     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
391     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
392   }
393 
394   SimplifyPersonality();
395 
396   if (getCodeGenOpts().EmitDeclMetadata)
397     EmitDeclMetadata();
398 
399   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
400     EmitCoverageFile();
401 
402   if (DebugInfo)
403     DebugInfo->finalize();
404 
405   EmitVersionIdentMetadata();
406 
407   EmitTargetMetadata();
408 }
409 
410 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
411   // Make sure that this type is translated.
412   Types.UpdateCompletedType(TD);
413 }
414 
415 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
416   if (!TBAA)
417     return nullptr;
418   return TBAA->getTBAAInfo(QTy);
419 }
420 
421 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
422   if (!TBAA)
423     return nullptr;
424   return TBAA->getTBAAInfoForVTablePtr();
425 }
426 
427 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
428   if (!TBAA)
429     return nullptr;
430   return TBAA->getTBAAStructInfo(QTy);
431 }
432 
433 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
434   if (!TBAA)
435     return nullptr;
436   return TBAA->getTBAAStructTypeInfo(QTy);
437 }
438 
439 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
440                                                   llvm::MDNode *AccessN,
441                                                   uint64_t O) {
442   if (!TBAA)
443     return nullptr;
444   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
445 }
446 
447 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
448 /// and struct-path aware TBAA, the tag has the same format:
449 /// base type, access type and offset.
450 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
451 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
452                                         llvm::MDNode *TBAAInfo,
453                                         bool ConvertTypeToTag) {
454   if (ConvertTypeToTag && TBAA)
455     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
456                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
457   else
458     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
459 }
460 
461 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
462   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
463   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
464 }
465 
466 /// ErrorUnsupported - Print out an error that codegen doesn't support the
467 /// specified stmt yet.
468 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
469   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
470                                                "cannot compile this %0 yet");
471   std::string Msg = Type;
472   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
473     << Msg << S->getSourceRange();
474 }
475 
476 /// ErrorUnsupported - Print out an error that codegen doesn't support the
477 /// specified decl yet.
478 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
479   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
480                                                "cannot compile this %0 yet");
481   std::string Msg = Type;
482   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
483 }
484 
485 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
486   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
487 }
488 
489 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
490                                         const NamedDecl *D) const {
491   // Internal definitions always have default visibility.
492   if (GV->hasLocalLinkage()) {
493     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
494     return;
495   }
496 
497   // Set visibility for definitions.
498   LinkageInfo LV = D->getLinkageAndVisibility();
499   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
500     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
501 }
502 
503 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
504   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
505       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
506       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
507       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
508       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
509 }
510 
511 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
512     CodeGenOptions::TLSModel M) {
513   switch (M) {
514   case CodeGenOptions::GeneralDynamicTLSModel:
515     return llvm::GlobalVariable::GeneralDynamicTLSModel;
516   case CodeGenOptions::LocalDynamicTLSModel:
517     return llvm::GlobalVariable::LocalDynamicTLSModel;
518   case CodeGenOptions::InitialExecTLSModel:
519     return llvm::GlobalVariable::InitialExecTLSModel;
520   case CodeGenOptions::LocalExecTLSModel:
521     return llvm::GlobalVariable::LocalExecTLSModel;
522   }
523   llvm_unreachable("Invalid TLS model!");
524 }
525 
526 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
527   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
528 
529   llvm::GlobalValue::ThreadLocalMode TLM;
530   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
531 
532   // Override the TLS model if it is explicitly specified.
533   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
534     TLM = GetLLVMTLSModel(Attr->getModel());
535   }
536 
537   GV->setThreadLocalMode(TLM);
538 }
539 
540 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
541   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
542   if (!FoundStr.empty())
543     return FoundStr;
544 
545   const auto *ND = cast<NamedDecl>(GD.getDecl());
546   SmallString<256> Buffer;
547   StringRef Str;
548   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
549     llvm::raw_svector_ostream Out(Buffer);
550     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
551       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
552     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
553       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
554     else
555       getCXXABI().getMangleContext().mangleName(ND, Out);
556     Str = Out.str();
557   } else {
558     IdentifierInfo *II = ND->getIdentifier();
559     assert(II && "Attempt to mangle unnamed decl.");
560     Str = II->getName();
561   }
562 
563   // Keep the first result in the case of a mangling collision.
564   auto Result = Manglings.insert(std::make_pair(Str, GD));
565   return FoundStr = Result.first->first();
566 }
567 
568 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
569                                              const BlockDecl *BD) {
570   MangleContext &MangleCtx = getCXXABI().getMangleContext();
571   const Decl *D = GD.getDecl();
572 
573   SmallString<256> Buffer;
574   llvm::raw_svector_ostream Out(Buffer);
575   if (!D)
576     MangleCtx.mangleGlobalBlock(BD,
577       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
578   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
579     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
580   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
581     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
582   else
583     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
584 
585   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
586   return Result.first->first();
587 }
588 
589 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
590   return getModule().getNamedValue(Name);
591 }
592 
593 /// AddGlobalCtor - Add a function to the list that will be called before
594 /// main() runs.
595 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
596                                   llvm::Constant *AssociatedData) {
597   // FIXME: Type coercion of void()* types.
598   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
599 }
600 
601 /// AddGlobalDtor - Add a function to the list that will be called
602 /// when the module is unloaded.
603 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
604   // FIXME: Type coercion of void()* types.
605   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
606 }
607 
608 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
609   // Ctor function type is void()*.
610   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
611   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
612 
613   // Get the type of a ctor entry, { i32, void ()*, i8* }.
614   llvm::StructType *CtorStructTy = llvm::StructType::get(
615       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
616 
617   // Construct the constructor and destructor arrays.
618   SmallVector<llvm::Constant*, 8> Ctors;
619   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
620     llvm::Constant *S[] = {
621       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
622       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
623       (I->AssociatedData
624            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
625            : llvm::Constant::getNullValue(VoidPtrTy))
626     };
627     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
628   }
629 
630   if (!Ctors.empty()) {
631     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
632     new llvm::GlobalVariable(TheModule, AT, false,
633                              llvm::GlobalValue::AppendingLinkage,
634                              llvm::ConstantArray::get(AT, Ctors),
635                              GlobalName);
636   }
637 }
638 
639 llvm::GlobalValue::LinkageTypes
640 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
641   const auto *D = cast<FunctionDecl>(GD.getDecl());
642 
643   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
644 
645   if (isa<CXXDestructorDecl>(D) &&
646       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
647                                          GD.getDtorType())) {
648     // Destructor variants in the Microsoft C++ ABI are always internal or
649     // linkonce_odr thunks emitted on an as-needed basis.
650     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
651                                    : llvm::GlobalValue::LinkOnceODRLinkage;
652   }
653 
654   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
655 }
656 
657 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
658                                                     llvm::Function *F) {
659   setNonAliasAttributes(D, F);
660 }
661 
662 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
663                                               const CGFunctionInfo &Info,
664                                               llvm::Function *F) {
665   unsigned CallingConv;
666   AttributeListType AttributeList;
667   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
668   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
669   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
670 }
671 
672 /// Determines whether the language options require us to model
673 /// unwind exceptions.  We treat -fexceptions as mandating this
674 /// except under the fragile ObjC ABI with only ObjC exceptions
675 /// enabled.  This means, for example, that C with -fexceptions
676 /// enables this.
677 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
678   // If exceptions are completely disabled, obviously this is false.
679   if (!LangOpts.Exceptions) return false;
680 
681   // If C++ exceptions are enabled, this is true.
682   if (LangOpts.CXXExceptions) return true;
683 
684   // If ObjC exceptions are enabled, this depends on the ABI.
685   if (LangOpts.ObjCExceptions) {
686     return LangOpts.ObjCRuntime.hasUnwindExceptions();
687   }
688 
689   return true;
690 }
691 
692 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
693                                                            llvm::Function *F) {
694   llvm::AttrBuilder B;
695 
696   if (CodeGenOpts.UnwindTables)
697     B.addAttribute(llvm::Attribute::UWTable);
698 
699   if (!hasUnwindExceptions(LangOpts))
700     B.addAttribute(llvm::Attribute::NoUnwind);
701 
702   if (D->hasAttr<NakedAttr>()) {
703     // Naked implies noinline: we should not be inlining such functions.
704     B.addAttribute(llvm::Attribute::Naked);
705     B.addAttribute(llvm::Attribute::NoInline);
706   } else if (D->hasAttr<OptimizeNoneAttr>()) {
707     // OptimizeNone implies noinline; we should not be inlining such functions.
708     B.addAttribute(llvm::Attribute::OptimizeNone);
709     B.addAttribute(llvm::Attribute::NoInline);
710   } else if (D->hasAttr<NoDuplicateAttr>()) {
711     B.addAttribute(llvm::Attribute::NoDuplicate);
712   } else if (D->hasAttr<NoInlineAttr>()) {
713     B.addAttribute(llvm::Attribute::NoInline);
714   } else if (D->hasAttr<AlwaysInlineAttr>() &&
715              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
716                                               llvm::Attribute::NoInline)) {
717     // (noinline wins over always_inline, and we can't specify both in IR)
718     B.addAttribute(llvm::Attribute::AlwaysInline);
719   }
720 
721   if (D->hasAttr<ColdAttr>()) {
722     B.addAttribute(llvm::Attribute::OptimizeForSize);
723     B.addAttribute(llvm::Attribute::Cold);
724   }
725 
726   if (D->hasAttr<MinSizeAttr>())
727     B.addAttribute(llvm::Attribute::MinSize);
728 
729   if (D->hasAttr<OptimizeNoneAttr>()) {
730     // OptimizeNone wins over OptimizeForSize and MinSize.
731     B.removeAttribute(llvm::Attribute::OptimizeForSize);
732     B.removeAttribute(llvm::Attribute::MinSize);
733   }
734 
735   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
736     B.addAttribute(llvm::Attribute::StackProtect);
737   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
738     B.addAttribute(llvm::Attribute::StackProtectStrong);
739   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
740     B.addAttribute(llvm::Attribute::StackProtectReq);
741 
742   // Add sanitizer attributes if function is not blacklisted.
743   if (!getSanitizerBlacklist().isIn(*F)) {
744     // When AddressSanitizer is enabled, set SanitizeAddress attribute
745     // unless __attribute__((no_sanitize_address)) is used.
746     if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>())
747       B.addAttribute(llvm::Attribute::SanitizeAddress);
748     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
749     if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>())
750       B.addAttribute(llvm::Attribute::SanitizeThread);
751     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
752     if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
753       B.addAttribute(llvm::Attribute::SanitizeMemory);
754   }
755 
756   F->addAttributes(llvm::AttributeSet::FunctionIndex,
757                    llvm::AttributeSet::get(
758                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
759 
760   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
761     F->setUnnamedAddr(true);
762   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
763     if (MD->isVirtual())
764       F->setUnnamedAddr(true);
765 
766   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
767   if (alignment)
768     F->setAlignment(alignment);
769 
770   // C++ ABI requires 2-byte alignment for member functions.
771   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
772     F->setAlignment(2);
773 }
774 
775 void CodeGenModule::SetCommonAttributes(const Decl *D,
776                                         llvm::GlobalValue *GV) {
777   if (const auto *ND = dyn_cast<NamedDecl>(D))
778     setGlobalVisibility(GV, ND);
779   else
780     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
781 
782   if (D->hasAttr<UsedAttr>())
783     addUsedGlobal(GV);
784 }
785 
786 void CodeGenModule::setAliasAttributes(const Decl *D,
787                                        llvm::GlobalValue *GV) {
788   SetCommonAttributes(D, GV);
789 
790   // Process the dllexport attribute based on whether the original definition
791   // (not necessarily the aliasee) was exported.
792   if (D->hasAttr<DLLExportAttr>())
793     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
794 }
795 
796 void CodeGenModule::setNonAliasAttributes(const Decl *D,
797                                           llvm::GlobalObject *GO) {
798   SetCommonAttributes(D, GO);
799 
800   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
801     GO->setSection(SA->getName());
802 
803   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
804 }
805 
806 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
807                                                   llvm::Function *F,
808                                                   const CGFunctionInfo &FI) {
809   SetLLVMFunctionAttributes(D, FI, F);
810   SetLLVMFunctionAttributesForDefinition(D, F);
811 
812   F->setLinkage(llvm::Function::InternalLinkage);
813 
814   setNonAliasAttributes(D, F);
815 }
816 
817 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
818                                          const NamedDecl *ND) {
819   // Set linkage and visibility in case we never see a definition.
820   LinkageInfo LV = ND->getLinkageAndVisibility();
821   if (LV.getLinkage() != ExternalLinkage) {
822     // Don't set internal linkage on declarations.
823   } else {
824     if (ND->hasAttr<DLLImportAttr>()) {
825       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
826       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
827     } else if (ND->hasAttr<DLLExportAttr>()) {
828       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
829       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
830     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
831       // "extern_weak" is overloaded in LLVM; we probably should have
832       // separate linkage types for this.
833       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
834     }
835 
836     // Set visibility on a declaration only if it's explicit.
837     if (LV.isVisibilityExplicit())
838       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
839   }
840 }
841 
842 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
843                                           llvm::Function *F,
844                                           bool IsIncompleteFunction) {
845   if (unsigned IID = F->getIntrinsicID()) {
846     // If this is an intrinsic function, set the function's attributes
847     // to the intrinsic's attributes.
848     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
849                                                     (llvm::Intrinsic::ID)IID));
850     return;
851   }
852 
853   const auto *FD = cast<FunctionDecl>(GD.getDecl());
854 
855   if (!IsIncompleteFunction)
856     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
857 
858   // Add the Returned attribute for "this", except for iOS 5 and earlier
859   // where substantial code, including the libstdc++ dylib, was compiled with
860   // GCC and does not actually return "this".
861   if (getCXXABI().HasThisReturn(GD) &&
862       !(getTarget().getTriple().isiOS() &&
863         getTarget().getTriple().isOSVersionLT(6))) {
864     assert(!F->arg_empty() &&
865            F->arg_begin()->getType()
866              ->canLosslesslyBitCastTo(F->getReturnType()) &&
867            "unexpected this return");
868     F->addAttribute(1, llvm::Attribute::Returned);
869   }
870 
871   // Only a few attributes are set on declarations; these may later be
872   // overridden by a definition.
873 
874   setLinkageAndVisibilityForGV(F, FD);
875 
876   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
877     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
878       // Don't dllexport/import destructor thunks.
879       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
880     }
881   }
882 
883   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
884     F->setSection(SA->getName());
885 
886   // A replaceable global allocation function does not act like a builtin by
887   // default, only if it is invoked by a new-expression or delete-expression.
888   if (FD->isReplaceableGlobalAllocationFunction())
889     F->addAttribute(llvm::AttributeSet::FunctionIndex,
890                     llvm::Attribute::NoBuiltin);
891 }
892 
893 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
894   assert(!GV->isDeclaration() &&
895          "Only globals with definition can force usage.");
896   LLVMUsed.push_back(GV);
897 }
898 
899 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
900   assert(!GV->isDeclaration() &&
901          "Only globals with definition can force usage.");
902   LLVMCompilerUsed.push_back(GV);
903 }
904 
905 static void emitUsed(CodeGenModule &CGM, StringRef Name,
906                      std::vector<llvm::WeakVH> &List) {
907   // Don't create llvm.used if there is no need.
908   if (List.empty())
909     return;
910 
911   // Convert List to what ConstantArray needs.
912   SmallVector<llvm::Constant*, 8> UsedArray;
913   UsedArray.resize(List.size());
914   for (unsigned i = 0, e = List.size(); i != e; ++i) {
915     UsedArray[i] =
916      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
917                                     CGM.Int8PtrTy);
918   }
919 
920   if (UsedArray.empty())
921     return;
922   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
923 
924   auto *GV = new llvm::GlobalVariable(
925       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
926       llvm::ConstantArray::get(ATy, UsedArray), Name);
927 
928   GV->setSection("llvm.metadata");
929 }
930 
931 void CodeGenModule::emitLLVMUsed() {
932   emitUsed(*this, "llvm.used", LLVMUsed);
933   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
934 }
935 
936 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
937   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
938   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
939 }
940 
941 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
942   llvm::SmallString<32> Opt;
943   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
944   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
945   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
946 }
947 
948 void CodeGenModule::AddDependentLib(StringRef Lib) {
949   llvm::SmallString<24> Opt;
950   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
951   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
952   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
953 }
954 
955 /// \brief Add link options implied by the given module, including modules
956 /// it depends on, using a postorder walk.
957 static void addLinkOptionsPostorder(CodeGenModule &CGM,
958                                     Module *Mod,
959                                     SmallVectorImpl<llvm::Value *> &Metadata,
960                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
961   // Import this module's parent.
962   if (Mod->Parent && Visited.insert(Mod->Parent)) {
963     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
964   }
965 
966   // Import this module's dependencies.
967   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
968     if (Visited.insert(Mod->Imports[I-1]))
969       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
970   }
971 
972   // Add linker options to link against the libraries/frameworks
973   // described by this module.
974   llvm::LLVMContext &Context = CGM.getLLVMContext();
975   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
976     // Link against a framework.  Frameworks are currently Darwin only, so we
977     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
978     if (Mod->LinkLibraries[I-1].IsFramework) {
979       llvm::Value *Args[2] = {
980         llvm::MDString::get(Context, "-framework"),
981         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
982       };
983 
984       Metadata.push_back(llvm::MDNode::get(Context, Args));
985       continue;
986     }
987 
988     // Link against a library.
989     llvm::SmallString<24> Opt;
990     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
991       Mod->LinkLibraries[I-1].Library, Opt);
992     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
993     Metadata.push_back(llvm::MDNode::get(Context, OptString));
994   }
995 }
996 
997 void CodeGenModule::EmitModuleLinkOptions() {
998   // Collect the set of all of the modules we want to visit to emit link
999   // options, which is essentially the imported modules and all of their
1000   // non-explicit child modules.
1001   llvm::SetVector<clang::Module *> LinkModules;
1002   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1003   SmallVector<clang::Module *, 16> Stack;
1004 
1005   // Seed the stack with imported modules.
1006   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1007                                                MEnd = ImportedModules.end();
1008        M != MEnd; ++M) {
1009     if (Visited.insert(*M))
1010       Stack.push_back(*M);
1011   }
1012 
1013   // Find all of the modules to import, making a little effort to prune
1014   // non-leaf modules.
1015   while (!Stack.empty()) {
1016     clang::Module *Mod = Stack.pop_back_val();
1017 
1018     bool AnyChildren = false;
1019 
1020     // Visit the submodules of this module.
1021     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1022                                         SubEnd = Mod->submodule_end();
1023          Sub != SubEnd; ++Sub) {
1024       // Skip explicit children; they need to be explicitly imported to be
1025       // linked against.
1026       if ((*Sub)->IsExplicit)
1027         continue;
1028 
1029       if (Visited.insert(*Sub)) {
1030         Stack.push_back(*Sub);
1031         AnyChildren = true;
1032       }
1033     }
1034 
1035     // We didn't find any children, so add this module to the list of
1036     // modules to link against.
1037     if (!AnyChildren) {
1038       LinkModules.insert(Mod);
1039     }
1040   }
1041 
1042   // Add link options for all of the imported modules in reverse topological
1043   // order.  We don't do anything to try to order import link flags with respect
1044   // to linker options inserted by things like #pragma comment().
1045   SmallVector<llvm::Value *, 16> MetadataArgs;
1046   Visited.clear();
1047   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1048                                                MEnd = LinkModules.end();
1049        M != MEnd; ++M) {
1050     if (Visited.insert(*M))
1051       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1052   }
1053   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1054   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1055 
1056   // Add the linker options metadata flag.
1057   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1058                             llvm::MDNode::get(getLLVMContext(),
1059                                               LinkerOptionsMetadata));
1060 }
1061 
1062 void CodeGenModule::EmitDeferred() {
1063   // Emit code for any potentially referenced deferred decls.  Since a
1064   // previously unused static decl may become used during the generation of code
1065   // for a static function, iterate until no changes are made.
1066 
1067   while (true) {
1068     if (!DeferredVTables.empty()) {
1069       EmitDeferredVTables();
1070 
1071       // Emitting a v-table doesn't directly cause more v-tables to
1072       // become deferred, although it can cause functions to be
1073       // emitted that then need those v-tables.
1074       assert(DeferredVTables.empty());
1075     }
1076 
1077     // Stop if we're out of both deferred v-tables and deferred declarations.
1078     if (DeferredDeclsToEmit.empty()) break;
1079 
1080     DeferredGlobal &G = DeferredDeclsToEmit.back();
1081     GlobalDecl D = G.GD;
1082     llvm::GlobalValue *GV = G.GV;
1083     DeferredDeclsToEmit.pop_back();
1084 
1085     assert(GV == GetGlobalValue(getMangledName(D)));
1086     // Check to see if we've already emitted this.  This is necessary
1087     // for a couple of reasons: first, decls can end up in the
1088     // deferred-decls queue multiple times, and second, decls can end
1089     // up with definitions in unusual ways (e.g. by an extern inline
1090     // function acquiring a strong function redefinition).  Just
1091     // ignore these cases.
1092     if(!GV->isDeclaration())
1093       continue;
1094 
1095     // Otherwise, emit the definition and move on to the next one.
1096     EmitGlobalDefinition(D, GV);
1097   }
1098 }
1099 
1100 void CodeGenModule::EmitGlobalAnnotations() {
1101   if (Annotations.empty())
1102     return;
1103 
1104   // Create a new global variable for the ConstantStruct in the Module.
1105   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1106     Annotations[0]->getType(), Annotations.size()), Annotations);
1107   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1108                                       llvm::GlobalValue::AppendingLinkage,
1109                                       Array, "llvm.global.annotations");
1110   gv->setSection(AnnotationSection);
1111 }
1112 
1113 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1114   llvm::Constant *&AStr = AnnotationStrings[Str];
1115   if (AStr)
1116     return AStr;
1117 
1118   // Not found yet, create a new global.
1119   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1120   auto *gv =
1121       new llvm::GlobalVariable(getModule(), s->getType(), true,
1122                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1123   gv->setSection(AnnotationSection);
1124   gv->setUnnamedAddr(true);
1125   AStr = gv;
1126   return gv;
1127 }
1128 
1129 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1130   SourceManager &SM = getContext().getSourceManager();
1131   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1132   if (PLoc.isValid())
1133     return EmitAnnotationString(PLoc.getFilename());
1134   return EmitAnnotationString(SM.getBufferName(Loc));
1135 }
1136 
1137 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1138   SourceManager &SM = getContext().getSourceManager();
1139   PresumedLoc PLoc = SM.getPresumedLoc(L);
1140   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1141     SM.getExpansionLineNumber(L);
1142   return llvm::ConstantInt::get(Int32Ty, LineNo);
1143 }
1144 
1145 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1146                                                 const AnnotateAttr *AA,
1147                                                 SourceLocation L) {
1148   // Get the globals for file name, annotation, and the line number.
1149   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1150                  *UnitGV = EmitAnnotationUnit(L),
1151                  *LineNoCst = EmitAnnotationLineNo(L);
1152 
1153   // Create the ConstantStruct for the global annotation.
1154   llvm::Constant *Fields[4] = {
1155     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1156     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1157     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1158     LineNoCst
1159   };
1160   return llvm::ConstantStruct::getAnon(Fields);
1161 }
1162 
1163 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1164                                          llvm::GlobalValue *GV) {
1165   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1166   // Get the struct elements for these annotations.
1167   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1168     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1169 }
1170 
1171 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1172   // Never defer when EmitAllDecls is specified.
1173   if (LangOpts.EmitAllDecls)
1174     return false;
1175 
1176   return !getContext().DeclMustBeEmitted(Global);
1177 }
1178 
1179 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1180     const CXXUuidofExpr* E) {
1181   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1182   // well-formed.
1183   StringRef Uuid = E->getUuidAsStringRef(Context);
1184   std::string Name = "_GUID_" + Uuid.lower();
1185   std::replace(Name.begin(), Name.end(), '-', '_');
1186 
1187   // Look for an existing global.
1188   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1189     return GV;
1190 
1191   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1192   assert(Init && "failed to initialize as constant");
1193 
1194   auto *GV = new llvm::GlobalVariable(
1195       getModule(), Init->getType(),
1196       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1197   return GV;
1198 }
1199 
1200 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1201   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1202   assert(AA && "No alias?");
1203 
1204   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1205 
1206   // See if there is already something with the target's name in the module.
1207   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1208   if (Entry) {
1209     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1210     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1211   }
1212 
1213   llvm::Constant *Aliasee;
1214   if (isa<llvm::FunctionType>(DeclTy))
1215     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1216                                       GlobalDecl(cast<FunctionDecl>(VD)),
1217                                       /*ForVTable=*/false);
1218   else
1219     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1220                                     llvm::PointerType::getUnqual(DeclTy),
1221                                     nullptr);
1222 
1223   auto *F = cast<llvm::GlobalValue>(Aliasee);
1224   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1225   WeakRefReferences.insert(F);
1226 
1227   return Aliasee;
1228 }
1229 
1230 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1231   const auto *Global = cast<ValueDecl>(GD.getDecl());
1232 
1233   // Weak references don't produce any output by themselves.
1234   if (Global->hasAttr<WeakRefAttr>())
1235     return;
1236 
1237   // If this is an alias definition (which otherwise looks like a declaration)
1238   // emit it now.
1239   if (Global->hasAttr<AliasAttr>())
1240     return EmitAliasDefinition(GD);
1241 
1242   // If this is CUDA, be selective about which declarations we emit.
1243   if (LangOpts.CUDA) {
1244     if (CodeGenOpts.CUDAIsDevice) {
1245       if (!Global->hasAttr<CUDADeviceAttr>() &&
1246           !Global->hasAttr<CUDAGlobalAttr>() &&
1247           !Global->hasAttr<CUDAConstantAttr>() &&
1248           !Global->hasAttr<CUDASharedAttr>())
1249         return;
1250     } else {
1251       if (!Global->hasAttr<CUDAHostAttr>() && (
1252             Global->hasAttr<CUDADeviceAttr>() ||
1253             Global->hasAttr<CUDAConstantAttr>() ||
1254             Global->hasAttr<CUDASharedAttr>()))
1255         return;
1256     }
1257   }
1258 
1259   // Ignore declarations, they will be emitted on their first use.
1260   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1261     // Forward declarations are emitted lazily on first use.
1262     if (!FD->doesThisDeclarationHaveABody()) {
1263       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1264         return;
1265 
1266       StringRef MangledName = getMangledName(GD);
1267 
1268       // Compute the function info and LLVM type.
1269       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1270       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1271 
1272       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1273                               /*DontDefer=*/false);
1274       return;
1275     }
1276   } else {
1277     const auto *VD = cast<VarDecl>(Global);
1278     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1279 
1280     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1281         !Context.isMSStaticDataMemberInlineDefinition(VD))
1282       return;
1283   }
1284 
1285   // Defer code generation when possible if this is a static definition, inline
1286   // function etc.  These we only want to emit if they are used.
1287   if (!MayDeferGeneration(Global)) {
1288     // Emit the definition if it can't be deferred.
1289     EmitGlobalDefinition(GD);
1290     return;
1291   }
1292 
1293   // If we're deferring emission of a C++ variable with an
1294   // initializer, remember the order in which it appeared in the file.
1295   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1296       cast<VarDecl>(Global)->hasInit()) {
1297     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1298     CXXGlobalInits.push_back(nullptr);
1299   }
1300 
1301   // If the value has already been used, add it directly to the
1302   // DeferredDeclsToEmit list.
1303   StringRef MangledName = getMangledName(GD);
1304   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1305     addDeferredDeclToEmit(GV, GD);
1306   else {
1307     // Otherwise, remember that we saw a deferred decl with this name.  The
1308     // first use of the mangled name will cause it to move into
1309     // DeferredDeclsToEmit.
1310     DeferredDecls[MangledName] = GD;
1311   }
1312 }
1313 
1314 namespace {
1315   struct FunctionIsDirectlyRecursive :
1316     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1317     const StringRef Name;
1318     const Builtin::Context &BI;
1319     bool Result;
1320     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1321       Name(N), BI(C), Result(false) {
1322     }
1323     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1324 
1325     bool TraverseCallExpr(CallExpr *E) {
1326       const FunctionDecl *FD = E->getDirectCallee();
1327       if (!FD)
1328         return true;
1329       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1330       if (Attr && Name == Attr->getLabel()) {
1331         Result = true;
1332         return false;
1333       }
1334       unsigned BuiltinID = FD->getBuiltinID();
1335       if (!BuiltinID)
1336         return true;
1337       StringRef BuiltinName = BI.GetName(BuiltinID);
1338       if (BuiltinName.startswith("__builtin_") &&
1339           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1340         Result = true;
1341         return false;
1342       }
1343       return true;
1344     }
1345   };
1346 }
1347 
1348 // isTriviallyRecursive - Check if this function calls another
1349 // decl that, because of the asm attribute or the other decl being a builtin,
1350 // ends up pointing to itself.
1351 bool
1352 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1353   StringRef Name;
1354   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1355     // asm labels are a special kind of mangling we have to support.
1356     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1357     if (!Attr)
1358       return false;
1359     Name = Attr->getLabel();
1360   } else {
1361     Name = FD->getName();
1362   }
1363 
1364   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1365   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1366   return Walker.Result;
1367 }
1368 
1369 bool
1370 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1371   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1372     return true;
1373   const auto *F = cast<FunctionDecl>(GD.getDecl());
1374   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1375     return false;
1376   // PR9614. Avoid cases where the source code is lying to us. An available
1377   // externally function should have an equivalent function somewhere else,
1378   // but a function that calls itself is clearly not equivalent to the real
1379   // implementation.
1380   // This happens in glibc's btowc and in some configure checks.
1381   return !isTriviallyRecursive(F);
1382 }
1383 
1384 /// If the type for the method's class was generated by
1385 /// CGDebugInfo::createContextChain(), the cache contains only a
1386 /// limited DIType without any declarations. Since EmitFunctionStart()
1387 /// needs to find the canonical declaration for each method, we need
1388 /// to construct the complete type prior to emitting the method.
1389 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1390   if (!D->isInstance())
1391     return;
1392 
1393   if (CGDebugInfo *DI = getModuleDebugInfo())
1394     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1395       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1396       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1397     }
1398 }
1399 
1400 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1401   const auto *D = cast<ValueDecl>(GD.getDecl());
1402 
1403   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1404                                  Context.getSourceManager(),
1405                                  "Generating code for declaration");
1406 
1407   if (isa<FunctionDecl>(D)) {
1408     // At -O0, don't generate IR for functions with available_externally
1409     // linkage.
1410     if (!shouldEmitFunction(GD))
1411       return;
1412 
1413     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1414       CompleteDIClassType(Method);
1415       // Make sure to emit the definition(s) before we emit the thunks.
1416       // This is necessary for the generation of certain thunks.
1417       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1418         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1419       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1420         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1421       else
1422         EmitGlobalFunctionDefinition(GD, GV);
1423 
1424       if (Method->isVirtual())
1425         getVTables().EmitThunks(GD);
1426 
1427       return;
1428     }
1429 
1430     return EmitGlobalFunctionDefinition(GD, GV);
1431   }
1432 
1433   if (const auto *VD = dyn_cast<VarDecl>(D))
1434     return EmitGlobalVarDefinition(VD);
1435 
1436   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1437 }
1438 
1439 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1440 /// module, create and return an llvm Function with the specified type. If there
1441 /// is something in the module with the specified name, return it potentially
1442 /// bitcasted to the right type.
1443 ///
1444 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1445 /// to set the attributes on the function when it is first created.
1446 llvm::Constant *
1447 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1448                                        llvm::Type *Ty,
1449                                        GlobalDecl GD, bool ForVTable,
1450                                        bool DontDefer,
1451                                        llvm::AttributeSet ExtraAttrs) {
1452   const Decl *D = GD.getDecl();
1453 
1454   // Lookup the entry, lazily creating it if necessary.
1455   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1456   if (Entry) {
1457     if (WeakRefReferences.erase(Entry)) {
1458       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1459       if (FD && !FD->hasAttr<WeakAttr>())
1460         Entry->setLinkage(llvm::Function::ExternalLinkage);
1461     }
1462 
1463     // Handle dropped DLL attributes.
1464     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1465       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1466 
1467     if (Entry->getType()->getElementType() == Ty)
1468       return Entry;
1469 
1470     // Make sure the result is of the correct type.
1471     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1472   }
1473 
1474   // This function doesn't have a complete type (for example, the return
1475   // type is an incomplete struct). Use a fake type instead, and make
1476   // sure not to try to set attributes.
1477   bool IsIncompleteFunction = false;
1478 
1479   llvm::FunctionType *FTy;
1480   if (isa<llvm::FunctionType>(Ty)) {
1481     FTy = cast<llvm::FunctionType>(Ty);
1482   } else {
1483     FTy = llvm::FunctionType::get(VoidTy, false);
1484     IsIncompleteFunction = true;
1485   }
1486 
1487   llvm::Function *F = llvm::Function::Create(FTy,
1488                                              llvm::Function::ExternalLinkage,
1489                                              MangledName, &getModule());
1490   assert(F->getName() == MangledName && "name was uniqued!");
1491   if (D)
1492     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1493   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1494     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1495     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1496                      llvm::AttributeSet::get(VMContext,
1497                                              llvm::AttributeSet::FunctionIndex,
1498                                              B));
1499   }
1500 
1501   if (!DontDefer) {
1502     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1503     // each other bottoming out with the base dtor.  Therefore we emit non-base
1504     // dtors on usage, even if there is no dtor definition in the TU.
1505     if (D && isa<CXXDestructorDecl>(D) &&
1506         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1507                                            GD.getDtorType()))
1508       addDeferredDeclToEmit(F, GD);
1509 
1510     // This is the first use or definition of a mangled name.  If there is a
1511     // deferred decl with this name, remember that we need to emit it at the end
1512     // of the file.
1513     auto DDI = DeferredDecls.find(MangledName);
1514     if (DDI != DeferredDecls.end()) {
1515       // Move the potentially referenced deferred decl to the
1516       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1517       // don't need it anymore).
1518       addDeferredDeclToEmit(F, DDI->second);
1519       DeferredDecls.erase(DDI);
1520 
1521       // Otherwise, if this is a sized deallocation function, emit a weak
1522       // definition
1523       // for it at the end of the translation unit.
1524     } else if (D && cast<FunctionDecl>(D)
1525                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1526       addDeferredDeclToEmit(F, GD);
1527 
1528       // Otherwise, there are cases we have to worry about where we're
1529       // using a declaration for which we must emit a definition but where
1530       // we might not find a top-level definition:
1531       //   - member functions defined inline in their classes
1532       //   - friend functions defined inline in some class
1533       //   - special member functions with implicit definitions
1534       // If we ever change our AST traversal to walk into class methods,
1535       // this will be unnecessary.
1536       //
1537       // We also don't emit a definition for a function if it's going to be an
1538       // entry in a vtable, unless it's already marked as used.
1539     } else if (getLangOpts().CPlusPlus && D) {
1540       // Look for a declaration that's lexically in a record.
1541       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1542            FD = FD->getPreviousDecl()) {
1543         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1544           if (FD->doesThisDeclarationHaveABody()) {
1545             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1546             break;
1547           }
1548         }
1549       }
1550     }
1551   }
1552 
1553   // Make sure the result is of the requested type.
1554   if (!IsIncompleteFunction) {
1555     assert(F->getType()->getElementType() == Ty);
1556     return F;
1557   }
1558 
1559   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1560   return llvm::ConstantExpr::getBitCast(F, PTy);
1561 }
1562 
1563 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1564 /// non-null, then this function will use the specified type if it has to
1565 /// create it (this occurs when we see a definition of the function).
1566 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1567                                                  llvm::Type *Ty,
1568                                                  bool ForVTable,
1569                                                  bool DontDefer) {
1570   // If there was no specific requested type, just convert it now.
1571   if (!Ty)
1572     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1573 
1574   StringRef MangledName = getMangledName(GD);
1575   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1576 }
1577 
1578 /// CreateRuntimeFunction - Create a new runtime function with the specified
1579 /// type and name.
1580 llvm::Constant *
1581 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1582                                      StringRef Name,
1583                                      llvm::AttributeSet ExtraAttrs) {
1584   llvm::Constant *C =
1585       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1586                               /*DontDefer=*/false, ExtraAttrs);
1587   if (auto *F = dyn_cast<llvm::Function>(C))
1588     if (F->empty())
1589       F->setCallingConv(getRuntimeCC());
1590   return C;
1591 }
1592 
1593 /// isTypeConstant - Determine whether an object of this type can be emitted
1594 /// as a constant.
1595 ///
1596 /// If ExcludeCtor is true, the duration when the object's constructor runs
1597 /// will not be considered. The caller will need to verify that the object is
1598 /// not written to during its construction.
1599 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1600   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1601     return false;
1602 
1603   if (Context.getLangOpts().CPlusPlus) {
1604     if (const CXXRecordDecl *Record
1605           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1606       return ExcludeCtor && !Record->hasMutableFields() &&
1607              Record->hasTrivialDestructor();
1608   }
1609 
1610   return true;
1611 }
1612 
1613 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1614 /// create and return an llvm GlobalVariable with the specified type.  If there
1615 /// is something in the module with the specified name, return it potentially
1616 /// bitcasted to the right type.
1617 ///
1618 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1619 /// to set the attributes on the global when it is first created.
1620 llvm::Constant *
1621 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1622                                      llvm::PointerType *Ty,
1623                                      const VarDecl *D) {
1624   // Lookup the entry, lazily creating it if necessary.
1625   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1626   if (Entry) {
1627     if (WeakRefReferences.erase(Entry)) {
1628       if (D && !D->hasAttr<WeakAttr>())
1629         Entry->setLinkage(llvm::Function::ExternalLinkage);
1630     }
1631 
1632     // Handle dropped DLL attributes.
1633     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1634       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1635 
1636     if (Entry->getType() == Ty)
1637       return Entry;
1638 
1639     // Make sure the result is of the correct type.
1640     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1641       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1642 
1643     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1644   }
1645 
1646   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1647   auto *GV = new llvm::GlobalVariable(
1648       getModule(), Ty->getElementType(), false,
1649       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1650       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1651 
1652   // This is the first use or definition of a mangled name.  If there is a
1653   // deferred decl with this name, remember that we need to emit it at the end
1654   // of the file.
1655   auto DDI = DeferredDecls.find(MangledName);
1656   if (DDI != DeferredDecls.end()) {
1657     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1658     // list, and remove it from DeferredDecls (since we don't need it anymore).
1659     addDeferredDeclToEmit(GV, DDI->second);
1660     DeferredDecls.erase(DDI);
1661   }
1662 
1663   // Handle things which are present even on external declarations.
1664   if (D) {
1665     // FIXME: This code is overly simple and should be merged with other global
1666     // handling.
1667     GV->setConstant(isTypeConstant(D->getType(), false));
1668 
1669     setLinkageAndVisibilityForGV(GV, D);
1670 
1671     if (D->getTLSKind()) {
1672       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1673         CXXThreadLocals.push_back(std::make_pair(D, GV));
1674       setTLSMode(GV, *D);
1675     }
1676 
1677     // If required by the ABI, treat declarations of static data members with
1678     // inline initializers as definitions.
1679     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1680       EmitGlobalVarDefinition(D);
1681     }
1682 
1683     // Handle XCore specific ABI requirements.
1684     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1685         D->getLanguageLinkage() == CLanguageLinkage &&
1686         D->getType().isConstant(Context) &&
1687         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1688       GV->setSection(".cp.rodata");
1689   }
1690 
1691   if (AddrSpace != Ty->getAddressSpace())
1692     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1693 
1694   return GV;
1695 }
1696 
1697 
1698 llvm::GlobalVariable *
1699 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1700                                       llvm::Type *Ty,
1701                                       llvm::GlobalValue::LinkageTypes Linkage) {
1702   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1703   llvm::GlobalVariable *OldGV = nullptr;
1704 
1705   if (GV) {
1706     // Check if the variable has the right type.
1707     if (GV->getType()->getElementType() == Ty)
1708       return GV;
1709 
1710     // Because C++ name mangling, the only way we can end up with an already
1711     // existing global with the same name is if it has been declared extern "C".
1712     assert(GV->isDeclaration() && "Declaration has wrong type!");
1713     OldGV = GV;
1714   }
1715 
1716   // Create a new variable.
1717   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1718                                 Linkage, nullptr, Name);
1719 
1720   if (OldGV) {
1721     // Replace occurrences of the old variable if needed.
1722     GV->takeName(OldGV);
1723 
1724     if (!OldGV->use_empty()) {
1725       llvm::Constant *NewPtrForOldDecl =
1726       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1727       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1728     }
1729 
1730     OldGV->eraseFromParent();
1731   }
1732 
1733   return GV;
1734 }
1735 
1736 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1737 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1738 /// then it will be created with the specified type instead of whatever the
1739 /// normal requested type would be.
1740 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1741                                                   llvm::Type *Ty) {
1742   assert(D->hasGlobalStorage() && "Not a global variable");
1743   QualType ASTTy = D->getType();
1744   if (!Ty)
1745     Ty = getTypes().ConvertTypeForMem(ASTTy);
1746 
1747   llvm::PointerType *PTy =
1748     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1749 
1750   StringRef MangledName = getMangledName(D);
1751   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1752 }
1753 
1754 /// CreateRuntimeVariable - Create a new runtime global variable with the
1755 /// specified type and name.
1756 llvm::Constant *
1757 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1758                                      StringRef Name) {
1759   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1760 }
1761 
1762 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1763   assert(!D->getInit() && "Cannot emit definite definitions here!");
1764 
1765   if (MayDeferGeneration(D)) {
1766     // If we have not seen a reference to this variable yet, place it
1767     // into the deferred declarations table to be emitted if needed
1768     // later.
1769     StringRef MangledName = getMangledName(D);
1770     if (!GetGlobalValue(MangledName)) {
1771       DeferredDecls[MangledName] = D;
1772       return;
1773     }
1774   }
1775 
1776   // The tentative definition is the only definition.
1777   EmitGlobalVarDefinition(D);
1778 }
1779 
1780 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1781     return Context.toCharUnitsFromBits(
1782       TheDataLayout.getTypeStoreSizeInBits(Ty));
1783 }
1784 
1785 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1786                                                  unsigned AddrSpace) {
1787   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1788     if (D->hasAttr<CUDAConstantAttr>())
1789       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1790     else if (D->hasAttr<CUDASharedAttr>())
1791       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1792     else
1793       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1794   }
1795 
1796   return AddrSpace;
1797 }
1798 
1799 template<typename SomeDecl>
1800 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1801                                                llvm::GlobalValue *GV) {
1802   if (!getLangOpts().CPlusPlus)
1803     return;
1804 
1805   // Must have 'used' attribute, or else inline assembly can't rely on
1806   // the name existing.
1807   if (!D->template hasAttr<UsedAttr>())
1808     return;
1809 
1810   // Must have internal linkage and an ordinary name.
1811   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1812     return;
1813 
1814   // Must be in an extern "C" context. Entities declared directly within
1815   // a record are not extern "C" even if the record is in such a context.
1816   const SomeDecl *First = D->getFirstDecl();
1817   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1818     return;
1819 
1820   // OK, this is an internal linkage entity inside an extern "C" linkage
1821   // specification. Make a note of that so we can give it the "expected"
1822   // mangled name if nothing else is using that name.
1823   std::pair<StaticExternCMap::iterator, bool> R =
1824       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1825 
1826   // If we have multiple internal linkage entities with the same name
1827   // in extern "C" regions, none of them gets that name.
1828   if (!R.second)
1829     R.first->second = nullptr;
1830 }
1831 
1832 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1833   llvm::Constant *Init = nullptr;
1834   QualType ASTTy = D->getType();
1835   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1836   bool NeedsGlobalCtor = false;
1837   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1838 
1839   const VarDecl *InitDecl;
1840   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1841 
1842   if (!InitExpr) {
1843     // This is a tentative definition; tentative definitions are
1844     // implicitly initialized with { 0 }.
1845     //
1846     // Note that tentative definitions are only emitted at the end of
1847     // a translation unit, so they should never have incomplete
1848     // type. In addition, EmitTentativeDefinition makes sure that we
1849     // never attempt to emit a tentative definition if a real one
1850     // exists. A use may still exists, however, so we still may need
1851     // to do a RAUW.
1852     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1853     Init = EmitNullConstant(D->getType());
1854   } else {
1855     initializedGlobalDecl = GlobalDecl(D);
1856     Init = EmitConstantInit(*InitDecl);
1857 
1858     if (!Init) {
1859       QualType T = InitExpr->getType();
1860       if (D->getType()->isReferenceType())
1861         T = D->getType();
1862 
1863       if (getLangOpts().CPlusPlus) {
1864         Init = EmitNullConstant(T);
1865         NeedsGlobalCtor = true;
1866       } else {
1867         ErrorUnsupported(D, "static initializer");
1868         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1869       }
1870     } else {
1871       // We don't need an initializer, so remove the entry for the delayed
1872       // initializer position (just in case this entry was delayed) if we
1873       // also don't need to register a destructor.
1874       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1875         DelayedCXXInitPosition.erase(D);
1876     }
1877   }
1878 
1879   llvm::Type* InitType = Init->getType();
1880   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1881 
1882   // Strip off a bitcast if we got one back.
1883   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1884     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1885            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1886            // All zero index gep.
1887            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1888     Entry = CE->getOperand(0);
1889   }
1890 
1891   // Entry is now either a Function or GlobalVariable.
1892   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1893 
1894   // We have a definition after a declaration with the wrong type.
1895   // We must make a new GlobalVariable* and update everything that used OldGV
1896   // (a declaration or tentative definition) with the new GlobalVariable*
1897   // (which will be a definition).
1898   //
1899   // This happens if there is a prototype for a global (e.g.
1900   // "extern int x[];") and then a definition of a different type (e.g.
1901   // "int x[10];"). This also happens when an initializer has a different type
1902   // from the type of the global (this happens with unions).
1903   if (!GV ||
1904       GV->getType()->getElementType() != InitType ||
1905       GV->getType()->getAddressSpace() !=
1906        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1907 
1908     // Move the old entry aside so that we'll create a new one.
1909     Entry->setName(StringRef());
1910 
1911     // Make a new global with the correct type, this is now guaranteed to work.
1912     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1913 
1914     // Replace all uses of the old global with the new global
1915     llvm::Constant *NewPtrForOldDecl =
1916         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1917     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1918 
1919     // Erase the old global, since it is no longer used.
1920     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1921   }
1922 
1923   MaybeHandleStaticInExternC(D, GV);
1924 
1925   if (D->hasAttr<AnnotateAttr>())
1926     AddGlobalAnnotations(D, GV);
1927 
1928   GV->setInitializer(Init);
1929 
1930   // If it is safe to mark the global 'constant', do so now.
1931   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1932                   isTypeConstant(D->getType(), true));
1933 
1934   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1935 
1936   // Set the llvm linkage type as appropriate.
1937   llvm::GlobalValue::LinkageTypes Linkage =
1938       getLLVMLinkageVarDefinition(D, GV->isConstant());
1939 
1940   // On Darwin, the backing variable for a C++11 thread_local variable always
1941   // has internal linkage; all accesses should just be calls to the
1942   // Itanium-specified entry point, which has the normal linkage of the
1943   // variable.
1944   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
1945       Context.getTargetInfo().getTriple().isMacOSX())
1946     Linkage = llvm::GlobalValue::InternalLinkage;
1947 
1948   GV->setLinkage(Linkage);
1949   if (D->hasAttr<DLLImportAttr>())
1950     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1951   else if (D->hasAttr<DLLExportAttr>())
1952     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1953 
1954   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1955     // common vars aren't constant even if declared const.
1956     GV->setConstant(false);
1957 
1958   setNonAliasAttributes(D, GV);
1959 
1960   if (D->getTLSKind() && !GV->isThreadLocal()) {
1961     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1962       CXXThreadLocals.push_back(std::make_pair(D, GV));
1963     setTLSMode(GV, *D);
1964   }
1965 
1966   // Emit the initializer function if necessary.
1967   if (NeedsGlobalCtor || NeedsGlobalDtor)
1968     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1969 
1970   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
1971 
1972   // Emit global variable debug information.
1973   if (CGDebugInfo *DI = getModuleDebugInfo())
1974     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1975       DI->EmitGlobalVariable(GV, D);
1976 }
1977 
1978 static bool isVarDeclStrongDefinition(const ASTContext &Context,
1979                                       const VarDecl *D, bool NoCommon) {
1980   // Don't give variables common linkage if -fno-common was specified unless it
1981   // was overridden by a NoCommon attribute.
1982   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1983     return true;
1984 
1985   // C11 6.9.2/2:
1986   //   A declaration of an identifier for an object that has file scope without
1987   //   an initializer, and without a storage-class specifier or with the
1988   //   storage-class specifier static, constitutes a tentative definition.
1989   if (D->getInit() || D->hasExternalStorage())
1990     return true;
1991 
1992   // A variable cannot be both common and exist in a section.
1993   if (D->hasAttr<SectionAttr>())
1994     return true;
1995 
1996   // Thread local vars aren't considered common linkage.
1997   if (D->getTLSKind())
1998     return true;
1999 
2000   // Tentative definitions marked with WeakImportAttr are true definitions.
2001   if (D->hasAttr<WeakImportAttr>())
2002     return true;
2003 
2004   // Declarations with a required alignment do not have common linakge in MSVC
2005   // mode.
2006   if (Context.getLangOpts().MSVCCompat &&
2007       (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>()))
2008     return true;
2009 
2010   return false;
2011 }
2012 
2013 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2014     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2015   if (Linkage == GVA_Internal)
2016     return llvm::Function::InternalLinkage;
2017 
2018   if (D->hasAttr<WeakAttr>()) {
2019     if (IsConstantVariable)
2020       return llvm::GlobalVariable::WeakODRLinkage;
2021     else
2022       return llvm::GlobalVariable::WeakAnyLinkage;
2023   }
2024 
2025   // We are guaranteed to have a strong definition somewhere else,
2026   // so we can use available_externally linkage.
2027   if (Linkage == GVA_AvailableExternally)
2028     return llvm::Function::AvailableExternallyLinkage;
2029 
2030   // Note that Apple's kernel linker doesn't support symbol
2031   // coalescing, so we need to avoid linkonce and weak linkages there.
2032   // Normally, this means we just map to internal, but for explicit
2033   // instantiations we'll map to external.
2034 
2035   // In C++, the compiler has to emit a definition in every translation unit
2036   // that references the function.  We should use linkonce_odr because
2037   // a) if all references in this translation unit are optimized away, we
2038   // don't need to codegen it.  b) if the function persists, it needs to be
2039   // merged with other definitions. c) C++ has the ODR, so we know the
2040   // definition is dependable.
2041   if (Linkage == GVA_DiscardableODR)
2042     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2043                                             : llvm::Function::InternalLinkage;
2044 
2045   // An explicit instantiation of a template has weak linkage, since
2046   // explicit instantiations can occur in multiple translation units
2047   // and must all be equivalent. However, we are not allowed to
2048   // throw away these explicit instantiations.
2049   if (Linkage == GVA_StrongODR)
2050     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2051                                             : llvm::Function::ExternalLinkage;
2052 
2053   // C++ doesn't have tentative definitions and thus cannot have common
2054   // linkage.
2055   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2056       !isVarDeclStrongDefinition(Context, cast<VarDecl>(D),
2057                                  CodeGenOpts.NoCommon))
2058     return llvm::GlobalVariable::CommonLinkage;
2059 
2060   // selectany symbols are externally visible, so use weak instead of
2061   // linkonce.  MSVC optimizes away references to const selectany globals, so
2062   // all definitions should be the same and ODR linkage should be used.
2063   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2064   if (D->hasAttr<SelectAnyAttr>())
2065     return llvm::GlobalVariable::WeakODRLinkage;
2066 
2067   // Otherwise, we have strong external linkage.
2068   assert(Linkage == GVA_StrongExternal);
2069   return llvm::GlobalVariable::ExternalLinkage;
2070 }
2071 
2072 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2073     const VarDecl *VD, bool IsConstant) {
2074   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2075   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2076 }
2077 
2078 /// Replace the uses of a function that was declared with a non-proto type.
2079 /// We want to silently drop extra arguments from call sites
2080 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2081                                           llvm::Function *newFn) {
2082   // Fast path.
2083   if (old->use_empty()) return;
2084 
2085   llvm::Type *newRetTy = newFn->getReturnType();
2086   SmallVector<llvm::Value*, 4> newArgs;
2087 
2088   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2089          ui != ue; ) {
2090     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2091     llvm::User *user = use->getUser();
2092 
2093     // Recognize and replace uses of bitcasts.  Most calls to
2094     // unprototyped functions will use bitcasts.
2095     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2096       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2097         replaceUsesOfNonProtoConstant(bitcast, newFn);
2098       continue;
2099     }
2100 
2101     // Recognize calls to the function.
2102     llvm::CallSite callSite(user);
2103     if (!callSite) continue;
2104     if (!callSite.isCallee(&*use)) continue;
2105 
2106     // If the return types don't match exactly, then we can't
2107     // transform this call unless it's dead.
2108     if (callSite->getType() != newRetTy && !callSite->use_empty())
2109       continue;
2110 
2111     // Get the call site's attribute list.
2112     SmallVector<llvm::AttributeSet, 8> newAttrs;
2113     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2114 
2115     // Collect any return attributes from the call.
2116     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2117       newAttrs.push_back(
2118         llvm::AttributeSet::get(newFn->getContext(),
2119                                 oldAttrs.getRetAttributes()));
2120 
2121     // If the function was passed too few arguments, don't transform.
2122     unsigned newNumArgs = newFn->arg_size();
2123     if (callSite.arg_size() < newNumArgs) continue;
2124 
2125     // If extra arguments were passed, we silently drop them.
2126     // If any of the types mismatch, we don't transform.
2127     unsigned argNo = 0;
2128     bool dontTransform = false;
2129     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2130            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2131       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2132         dontTransform = true;
2133         break;
2134       }
2135 
2136       // Add any parameter attributes.
2137       if (oldAttrs.hasAttributes(argNo + 1))
2138         newAttrs.
2139           push_back(llvm::
2140                     AttributeSet::get(newFn->getContext(),
2141                                       oldAttrs.getParamAttributes(argNo + 1)));
2142     }
2143     if (dontTransform)
2144       continue;
2145 
2146     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2147       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2148                                                  oldAttrs.getFnAttributes()));
2149 
2150     // Okay, we can transform this.  Create the new call instruction and copy
2151     // over the required information.
2152     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2153 
2154     llvm::CallSite newCall;
2155     if (callSite.isCall()) {
2156       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2157                                        callSite.getInstruction());
2158     } else {
2159       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2160       newCall = llvm::InvokeInst::Create(newFn,
2161                                          oldInvoke->getNormalDest(),
2162                                          oldInvoke->getUnwindDest(),
2163                                          newArgs, "",
2164                                          callSite.getInstruction());
2165     }
2166     newArgs.clear(); // for the next iteration
2167 
2168     if (!newCall->getType()->isVoidTy())
2169       newCall->takeName(callSite.getInstruction());
2170     newCall.setAttributes(
2171                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2172     newCall.setCallingConv(callSite.getCallingConv());
2173 
2174     // Finally, remove the old call, replacing any uses with the new one.
2175     if (!callSite->use_empty())
2176       callSite->replaceAllUsesWith(newCall.getInstruction());
2177 
2178     // Copy debug location attached to CI.
2179     if (!callSite->getDebugLoc().isUnknown())
2180       newCall->setDebugLoc(callSite->getDebugLoc());
2181     callSite->eraseFromParent();
2182   }
2183 }
2184 
2185 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2186 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2187 /// existing call uses of the old function in the module, this adjusts them to
2188 /// call the new function directly.
2189 ///
2190 /// This is not just a cleanup: the always_inline pass requires direct calls to
2191 /// functions to be able to inline them.  If there is a bitcast in the way, it
2192 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2193 /// run at -O0.
2194 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2195                                                       llvm::Function *NewFn) {
2196   // If we're redefining a global as a function, don't transform it.
2197   if (!isa<llvm::Function>(Old)) return;
2198 
2199   replaceUsesOfNonProtoConstant(Old, NewFn);
2200 }
2201 
2202 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2203   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2204   // If we have a definition, this might be a deferred decl. If the
2205   // instantiation is explicit, make sure we emit it at the end.
2206   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2207     GetAddrOfGlobalVar(VD);
2208 
2209   EmitTopLevelDecl(VD);
2210 }
2211 
2212 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2213                                                  llvm::GlobalValue *GV) {
2214   const auto *D = cast<FunctionDecl>(GD.getDecl());
2215 
2216   // Compute the function info and LLVM type.
2217   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2218   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2219 
2220   // Get or create the prototype for the function.
2221   if (!GV) {
2222     llvm::Constant *C =
2223         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2224 
2225     // Strip off a bitcast if we got one back.
2226     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2227       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2228       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2229     } else {
2230       GV = cast<llvm::GlobalValue>(C);
2231     }
2232   }
2233 
2234   if (!GV->isDeclaration()) {
2235     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2236     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2237     if (auto *Prev = OldGD.getDecl())
2238       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2239     return;
2240   }
2241 
2242   if (GV->getType()->getElementType() != Ty) {
2243     // If the types mismatch then we have to rewrite the definition.
2244     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2245 
2246     // F is the Function* for the one with the wrong type, we must make a new
2247     // Function* and update everything that used F (a declaration) with the new
2248     // Function* (which will be a definition).
2249     //
2250     // This happens if there is a prototype for a function
2251     // (e.g. "int f()") and then a definition of a different type
2252     // (e.g. "int f(int x)").  Move the old function aside so that it
2253     // doesn't interfere with GetAddrOfFunction.
2254     GV->setName(StringRef());
2255     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2256 
2257     // This might be an implementation of a function without a
2258     // prototype, in which case, try to do special replacement of
2259     // calls which match the new prototype.  The really key thing here
2260     // is that we also potentially drop arguments from the call site
2261     // so as to make a direct call, which makes the inliner happier
2262     // and suppresses a number of optimizer warnings (!) about
2263     // dropping arguments.
2264     if (!GV->use_empty()) {
2265       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2266       GV->removeDeadConstantUsers();
2267     }
2268 
2269     // Replace uses of F with the Function we will endow with a body.
2270     if (!GV->use_empty()) {
2271       llvm::Constant *NewPtrForOldDecl =
2272           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2273       GV->replaceAllUsesWith(NewPtrForOldDecl);
2274     }
2275 
2276     // Ok, delete the old function now, which is dead.
2277     GV->eraseFromParent();
2278 
2279     GV = NewFn;
2280   }
2281 
2282   // We need to set linkage and visibility on the function before
2283   // generating code for it because various parts of IR generation
2284   // want to propagate this information down (e.g. to local static
2285   // declarations).
2286   auto *Fn = cast<llvm::Function>(GV);
2287   setFunctionLinkage(GD, Fn);
2288 
2289   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2290   setGlobalVisibility(Fn, D);
2291 
2292   MaybeHandleStaticInExternC(D, Fn);
2293 
2294   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2295 
2296   setFunctionDefinitionAttributes(D, Fn);
2297   SetLLVMFunctionAttributesForDefinition(D, Fn);
2298 
2299   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2300     AddGlobalCtor(Fn, CA->getPriority());
2301   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2302     AddGlobalDtor(Fn, DA->getPriority());
2303   if (D->hasAttr<AnnotateAttr>())
2304     AddGlobalAnnotations(D, Fn);
2305 }
2306 
2307 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2308   const auto *D = cast<ValueDecl>(GD.getDecl());
2309   const AliasAttr *AA = D->getAttr<AliasAttr>();
2310   assert(AA && "Not an alias?");
2311 
2312   StringRef MangledName = getMangledName(GD);
2313 
2314   // If there is a definition in the module, then it wins over the alias.
2315   // This is dubious, but allow it to be safe.  Just ignore the alias.
2316   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2317   if (Entry && !Entry->isDeclaration())
2318     return;
2319 
2320   Aliases.push_back(GD);
2321 
2322   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2323 
2324   // Create a reference to the named value.  This ensures that it is emitted
2325   // if a deferred decl.
2326   llvm::Constant *Aliasee;
2327   if (isa<llvm::FunctionType>(DeclTy))
2328     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2329                                       /*ForVTable=*/false);
2330   else
2331     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2332                                     llvm::PointerType::getUnqual(DeclTy),
2333                                     /*D=*/nullptr);
2334 
2335   // Create the new alias itself, but don't set a name yet.
2336   auto *GA = llvm::GlobalAlias::create(
2337       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2338       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2339 
2340   if (Entry) {
2341     if (GA->getAliasee() == Entry) {
2342       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2343       return;
2344     }
2345 
2346     assert(Entry->isDeclaration());
2347 
2348     // If there is a declaration in the module, then we had an extern followed
2349     // by the alias, as in:
2350     //   extern int test6();
2351     //   ...
2352     //   int test6() __attribute__((alias("test7")));
2353     //
2354     // Remove it and replace uses of it with the alias.
2355     GA->takeName(Entry);
2356 
2357     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2358                                                           Entry->getType()));
2359     Entry->eraseFromParent();
2360   } else {
2361     GA->setName(MangledName);
2362   }
2363 
2364   // Set attributes which are particular to an alias; this is a
2365   // specialization of the attributes which may be set on a global
2366   // variable/function.
2367   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2368       D->isWeakImported()) {
2369     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2370   }
2371 
2372   if (const auto *VD = dyn_cast<VarDecl>(D))
2373     if (VD->getTLSKind())
2374       setTLSMode(GA, *VD);
2375 
2376   setAliasAttributes(D, GA);
2377 }
2378 
2379 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2380                                             ArrayRef<llvm::Type*> Tys) {
2381   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2382                                          Tys);
2383 }
2384 
2385 static llvm::StringMapEntry<llvm::Constant*> &
2386 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2387                          const StringLiteral *Literal,
2388                          bool TargetIsLSB,
2389                          bool &IsUTF16,
2390                          unsigned &StringLength) {
2391   StringRef String = Literal->getString();
2392   unsigned NumBytes = String.size();
2393 
2394   // Check for simple case.
2395   if (!Literal->containsNonAsciiOrNull()) {
2396     StringLength = NumBytes;
2397     return Map.GetOrCreateValue(String);
2398   }
2399 
2400   // Otherwise, convert the UTF8 literals into a string of shorts.
2401   IsUTF16 = true;
2402 
2403   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2404   const UTF8 *FromPtr = (const UTF8 *)String.data();
2405   UTF16 *ToPtr = &ToBuf[0];
2406 
2407   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2408                            &ToPtr, ToPtr + NumBytes,
2409                            strictConversion);
2410 
2411   // ConvertUTF8toUTF16 returns the length in ToPtr.
2412   StringLength = ToPtr - &ToBuf[0];
2413 
2414   // Add an explicit null.
2415   *ToPtr = 0;
2416   return Map.
2417     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2418                                (StringLength + 1) * 2));
2419 }
2420 
2421 static llvm::StringMapEntry<llvm::Constant*> &
2422 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2423                        const StringLiteral *Literal,
2424                        unsigned &StringLength) {
2425   StringRef String = Literal->getString();
2426   StringLength = String.size();
2427   return Map.GetOrCreateValue(String);
2428 }
2429 
2430 llvm::Constant *
2431 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2432   unsigned StringLength = 0;
2433   bool isUTF16 = false;
2434   llvm::StringMapEntry<llvm::Constant*> &Entry =
2435     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2436                              getDataLayout().isLittleEndian(),
2437                              isUTF16, StringLength);
2438 
2439   if (llvm::Constant *C = Entry.getValue())
2440     return C;
2441 
2442   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2443   llvm::Constant *Zeros[] = { Zero, Zero };
2444   llvm::Value *V;
2445 
2446   // If we don't already have it, get __CFConstantStringClassReference.
2447   if (!CFConstantStringClassRef) {
2448     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2449     Ty = llvm::ArrayType::get(Ty, 0);
2450     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2451                                            "__CFConstantStringClassReference");
2452     // Decay array -> ptr
2453     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2454     CFConstantStringClassRef = V;
2455   }
2456   else
2457     V = CFConstantStringClassRef;
2458 
2459   QualType CFTy = getContext().getCFConstantStringType();
2460 
2461   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2462 
2463   llvm::Constant *Fields[4];
2464 
2465   // Class pointer.
2466   Fields[0] = cast<llvm::ConstantExpr>(V);
2467 
2468   // Flags.
2469   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2470   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2471     llvm::ConstantInt::get(Ty, 0x07C8);
2472 
2473   // String pointer.
2474   llvm::Constant *C = nullptr;
2475   if (isUTF16) {
2476     ArrayRef<uint16_t> Arr =
2477       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2478                                      const_cast<char *>(Entry.getKey().data())),
2479                                    Entry.getKey().size() / 2);
2480     C = llvm::ConstantDataArray::get(VMContext, Arr);
2481   } else {
2482     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2483   }
2484 
2485   // Note: -fwritable-strings doesn't make the backing store strings of
2486   // CFStrings writable. (See <rdar://problem/10657500>)
2487   auto *GV =
2488       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2489                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2490   GV->setUnnamedAddr(true);
2491   // Don't enforce the target's minimum global alignment, since the only use
2492   // of the string is via this class initializer.
2493   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2494   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2495   // that changes the section it ends in, which surprises ld64.
2496   if (isUTF16) {
2497     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2498     GV->setAlignment(Align.getQuantity());
2499     GV->setSection("__TEXT,__ustring");
2500   } else {
2501     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2502     GV->setAlignment(Align.getQuantity());
2503     GV->setSection("__TEXT,__cstring,cstring_literals");
2504   }
2505 
2506   // String.
2507   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2508 
2509   if (isUTF16)
2510     // Cast the UTF16 string to the correct type.
2511     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2512 
2513   // String length.
2514   Ty = getTypes().ConvertType(getContext().LongTy);
2515   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2516 
2517   // The struct.
2518   C = llvm::ConstantStruct::get(STy, Fields);
2519   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2520                                 llvm::GlobalVariable::PrivateLinkage, C,
2521                                 "_unnamed_cfstring_");
2522   GV->setSection("__DATA,__cfstring");
2523   Entry.setValue(GV);
2524 
2525   return GV;
2526 }
2527 
2528 llvm::Constant *
2529 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2530   unsigned StringLength = 0;
2531   llvm::StringMapEntry<llvm::Constant*> &Entry =
2532     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2533 
2534   if (llvm::Constant *C = Entry.getValue())
2535     return C;
2536 
2537   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2538   llvm::Constant *Zeros[] = { Zero, Zero };
2539   llvm::Value *V;
2540   // If we don't already have it, get _NSConstantStringClassReference.
2541   if (!ConstantStringClassRef) {
2542     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2543     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2544     llvm::Constant *GV;
2545     if (LangOpts.ObjCRuntime.isNonFragile()) {
2546       std::string str =
2547         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2548                             : "OBJC_CLASS_$_" + StringClass;
2549       GV = getObjCRuntime().GetClassGlobal(str);
2550       // Make sure the result is of the correct type.
2551       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2552       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2553       ConstantStringClassRef = V;
2554     } else {
2555       std::string str =
2556         StringClass.empty() ? "_NSConstantStringClassReference"
2557                             : "_" + StringClass + "ClassReference";
2558       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2559       GV = CreateRuntimeVariable(PTy, str);
2560       // Decay array -> ptr
2561       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2562       ConstantStringClassRef = V;
2563     }
2564   }
2565   else
2566     V = ConstantStringClassRef;
2567 
2568   if (!NSConstantStringType) {
2569     // Construct the type for a constant NSString.
2570     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2571     D->startDefinition();
2572 
2573     QualType FieldTypes[3];
2574 
2575     // const int *isa;
2576     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2577     // const char *str;
2578     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2579     // unsigned int length;
2580     FieldTypes[2] = Context.UnsignedIntTy;
2581 
2582     // Create fields
2583     for (unsigned i = 0; i < 3; ++i) {
2584       FieldDecl *Field = FieldDecl::Create(Context, D,
2585                                            SourceLocation(),
2586                                            SourceLocation(), nullptr,
2587                                            FieldTypes[i], /*TInfo=*/nullptr,
2588                                            /*BitWidth=*/nullptr,
2589                                            /*Mutable=*/false,
2590                                            ICIS_NoInit);
2591       Field->setAccess(AS_public);
2592       D->addDecl(Field);
2593     }
2594 
2595     D->completeDefinition();
2596     QualType NSTy = Context.getTagDeclType(D);
2597     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2598   }
2599 
2600   llvm::Constant *Fields[3];
2601 
2602   // Class pointer.
2603   Fields[0] = cast<llvm::ConstantExpr>(V);
2604 
2605   // String pointer.
2606   llvm::Constant *C =
2607     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2608 
2609   llvm::GlobalValue::LinkageTypes Linkage;
2610   bool isConstant;
2611   Linkage = llvm::GlobalValue::PrivateLinkage;
2612   isConstant = !LangOpts.WritableStrings;
2613 
2614   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2615                                       Linkage, C, ".str");
2616   GV->setUnnamedAddr(true);
2617   // Don't enforce the target's minimum global alignment, since the only use
2618   // of the string is via this class initializer.
2619   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2620   GV->setAlignment(Align.getQuantity());
2621   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2622 
2623   // String length.
2624   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2625   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2626 
2627   // The struct.
2628   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2629   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2630                                 llvm::GlobalVariable::PrivateLinkage, C,
2631                                 "_unnamed_nsstring_");
2632   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2633   const char *NSStringNonFragileABISection =
2634       "__DATA,__objc_stringobj,regular,no_dead_strip";
2635   // FIXME. Fix section.
2636   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2637                      ? NSStringNonFragileABISection
2638                      : NSStringSection);
2639   Entry.setValue(GV);
2640 
2641   return GV;
2642 }
2643 
2644 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2645   if (ObjCFastEnumerationStateType.isNull()) {
2646     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2647     D->startDefinition();
2648 
2649     QualType FieldTypes[] = {
2650       Context.UnsignedLongTy,
2651       Context.getPointerType(Context.getObjCIdType()),
2652       Context.getPointerType(Context.UnsignedLongTy),
2653       Context.getConstantArrayType(Context.UnsignedLongTy,
2654                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2655     };
2656 
2657     for (size_t i = 0; i < 4; ++i) {
2658       FieldDecl *Field = FieldDecl::Create(Context,
2659                                            D,
2660                                            SourceLocation(),
2661                                            SourceLocation(), nullptr,
2662                                            FieldTypes[i], /*TInfo=*/nullptr,
2663                                            /*BitWidth=*/nullptr,
2664                                            /*Mutable=*/false,
2665                                            ICIS_NoInit);
2666       Field->setAccess(AS_public);
2667       D->addDecl(Field);
2668     }
2669 
2670     D->completeDefinition();
2671     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2672   }
2673 
2674   return ObjCFastEnumerationStateType;
2675 }
2676 
2677 llvm::Constant *
2678 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2679   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2680 
2681   // Don't emit it as the address of the string, emit the string data itself
2682   // as an inline array.
2683   if (E->getCharByteWidth() == 1) {
2684     SmallString<64> Str(E->getString());
2685 
2686     // Resize the string to the right size, which is indicated by its type.
2687     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2688     Str.resize(CAT->getSize().getZExtValue());
2689     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2690   }
2691 
2692   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2693   llvm::Type *ElemTy = AType->getElementType();
2694   unsigned NumElements = AType->getNumElements();
2695 
2696   // Wide strings have either 2-byte or 4-byte elements.
2697   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2698     SmallVector<uint16_t, 32> Elements;
2699     Elements.reserve(NumElements);
2700 
2701     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2702       Elements.push_back(E->getCodeUnit(i));
2703     Elements.resize(NumElements);
2704     return llvm::ConstantDataArray::get(VMContext, Elements);
2705   }
2706 
2707   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2708   SmallVector<uint32_t, 32> Elements;
2709   Elements.reserve(NumElements);
2710 
2711   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2712     Elements.push_back(E->getCodeUnit(i));
2713   Elements.resize(NumElements);
2714   return llvm::ConstantDataArray::get(VMContext, Elements);
2715 }
2716 
2717 static llvm::GlobalVariable *
2718 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2719                       CodeGenModule &CGM, StringRef GlobalName,
2720                       unsigned Alignment) {
2721   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2722   unsigned AddrSpace = 0;
2723   if (CGM.getLangOpts().OpenCL)
2724     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2725 
2726   // Create a global variable for this string
2727   auto *GV = new llvm::GlobalVariable(
2728       CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C,
2729       GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2730   GV->setAlignment(Alignment);
2731   GV->setUnnamedAddr(true);
2732   return GV;
2733 }
2734 
2735 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2736 /// constant array for the given string literal.
2737 llvm::GlobalVariable *
2738 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
2739                                                   StringRef Name) {
2740   auto Alignment =
2741       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2742 
2743   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2744   llvm::GlobalVariable **Entry = nullptr;
2745   if (!LangOpts.WritableStrings) {
2746     Entry = &ConstantStringMap[C];
2747     if (auto GV = *Entry) {
2748       if (Alignment > GV->getAlignment())
2749         GV->setAlignment(Alignment);
2750       return GV;
2751     }
2752   }
2753 
2754   SmallString<256> MangledNameBuffer;
2755   StringRef GlobalVariableName;
2756   llvm::GlobalValue::LinkageTypes LT;
2757 
2758   // Mangle the string literal if the ABI allows for it.  However, we cannot
2759   // do this if  we are compiling with ASan or -fwritable-strings because they
2760   // rely on strings having normal linkage.
2761   if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address &&
2762       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2763     llvm::raw_svector_ostream Out(MangledNameBuffer);
2764     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2765     Out.flush();
2766 
2767     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2768     GlobalVariableName = MangledNameBuffer;
2769   } else {
2770     LT = llvm::GlobalValue::PrivateLinkage;
2771     GlobalVariableName = Name;
2772   }
2773 
2774   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2775   if (Entry)
2776     *Entry = GV;
2777 
2778   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>");
2779   return GV;
2780 }
2781 
2782 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2783 /// array for the given ObjCEncodeExpr node.
2784 llvm::GlobalVariable *
2785 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2786   std::string Str;
2787   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2788 
2789   return GetAddrOfConstantCString(Str);
2790 }
2791 
2792 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2793 /// the literal and a terminating '\0' character.
2794 /// The result has pointer to array type.
2795 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2796     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2797   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2798   if (Alignment == 0) {
2799     Alignment = getContext()
2800                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2801                     .getQuantity();
2802   }
2803 
2804   llvm::Constant *C =
2805       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2806 
2807   // Don't share any string literals if strings aren't constant.
2808   llvm::GlobalVariable **Entry = nullptr;
2809   if (!LangOpts.WritableStrings) {
2810     Entry = &ConstantStringMap[C];
2811     if (auto GV = *Entry) {
2812       if (Alignment > GV->getAlignment())
2813         GV->setAlignment(Alignment);
2814       return GV;
2815     }
2816   }
2817 
2818   // Get the default prefix if a name wasn't specified.
2819   if (!GlobalName)
2820     GlobalName = ".str";
2821   // Create a global variable for this.
2822   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
2823                                   GlobalName, Alignment);
2824   if (Entry)
2825     *Entry = GV;
2826   return GV;
2827 }
2828 
2829 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2830     const MaterializeTemporaryExpr *E, const Expr *Init) {
2831   assert((E->getStorageDuration() == SD_Static ||
2832           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2833   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2834 
2835   // If we're not materializing a subobject of the temporary, keep the
2836   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2837   QualType MaterializedType = Init->getType();
2838   if (Init == E->GetTemporaryExpr())
2839     MaterializedType = E->getType();
2840 
2841   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2842   if (Slot)
2843     return Slot;
2844 
2845   // FIXME: If an externally-visible declaration extends multiple temporaries,
2846   // we need to give each temporary the same name in every translation unit (and
2847   // we also need to make the temporaries externally-visible).
2848   SmallString<256> Name;
2849   llvm::raw_svector_ostream Out(Name);
2850   getCXXABI().getMangleContext().mangleReferenceTemporary(
2851       VD, E->getManglingNumber(), Out);
2852   Out.flush();
2853 
2854   APValue *Value = nullptr;
2855   if (E->getStorageDuration() == SD_Static) {
2856     // We might have a cached constant initializer for this temporary. Note
2857     // that this might have a different value from the value computed by
2858     // evaluating the initializer if the surrounding constant expression
2859     // modifies the temporary.
2860     Value = getContext().getMaterializedTemporaryValue(E, false);
2861     if (Value && Value->isUninit())
2862       Value = nullptr;
2863   }
2864 
2865   // Try evaluating it now, it might have a constant initializer.
2866   Expr::EvalResult EvalResult;
2867   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2868       !EvalResult.hasSideEffects())
2869     Value = &EvalResult.Val;
2870 
2871   llvm::Constant *InitialValue = nullptr;
2872   bool Constant = false;
2873   llvm::Type *Type;
2874   if (Value) {
2875     // The temporary has a constant initializer, use it.
2876     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2877     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2878     Type = InitialValue->getType();
2879   } else {
2880     // No initializer, the initialization will be provided when we
2881     // initialize the declaration which performed lifetime extension.
2882     Type = getTypes().ConvertTypeForMem(MaterializedType);
2883   }
2884 
2885   // Create a global variable for this lifetime-extended temporary.
2886   llvm::GlobalValue::LinkageTypes Linkage =
2887       getLLVMLinkageVarDefinition(VD, Constant);
2888   // There is no need for this temporary to have global linkage if the global
2889   // variable has external linkage.
2890   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2891     Linkage = llvm::GlobalVariable::PrivateLinkage;
2892   unsigned AddrSpace = GetGlobalVarAddressSpace(
2893       VD, getContext().getTargetAddressSpace(MaterializedType));
2894   auto *GV = new llvm::GlobalVariable(
2895       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2896       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2897       AddrSpace);
2898   setGlobalVisibility(GV, VD);
2899   GV->setAlignment(
2900       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2901   if (VD->getTLSKind())
2902     setTLSMode(GV, *VD);
2903   Slot = GV;
2904   return GV;
2905 }
2906 
2907 /// EmitObjCPropertyImplementations - Emit information for synthesized
2908 /// properties for an implementation.
2909 void CodeGenModule::EmitObjCPropertyImplementations(const
2910                                                     ObjCImplementationDecl *D) {
2911   for (const auto *PID : D->property_impls()) {
2912     // Dynamic is just for type-checking.
2913     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2914       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2915 
2916       // Determine which methods need to be implemented, some may have
2917       // been overridden. Note that ::isPropertyAccessor is not the method
2918       // we want, that just indicates if the decl came from a
2919       // property. What we want to know is if the method is defined in
2920       // this implementation.
2921       if (!D->getInstanceMethod(PD->getGetterName()))
2922         CodeGenFunction(*this).GenerateObjCGetter(
2923                                  const_cast<ObjCImplementationDecl *>(D), PID);
2924       if (!PD->isReadOnly() &&
2925           !D->getInstanceMethod(PD->getSetterName()))
2926         CodeGenFunction(*this).GenerateObjCSetter(
2927                                  const_cast<ObjCImplementationDecl *>(D), PID);
2928     }
2929   }
2930 }
2931 
2932 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2933   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2934   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2935        ivar; ivar = ivar->getNextIvar())
2936     if (ivar->getType().isDestructedType())
2937       return true;
2938 
2939   return false;
2940 }
2941 
2942 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2943 /// for an implementation.
2944 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2945   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2946   if (needsDestructMethod(D)) {
2947     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2948     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2949     ObjCMethodDecl *DTORMethod =
2950       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2951                              cxxSelector, getContext().VoidTy, nullptr, D,
2952                              /*isInstance=*/true, /*isVariadic=*/false,
2953                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2954                              /*isDefined=*/false, ObjCMethodDecl::Required);
2955     D->addInstanceMethod(DTORMethod);
2956     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2957     D->setHasDestructors(true);
2958   }
2959 
2960   // If the implementation doesn't have any ivar initializers, we don't need
2961   // a .cxx_construct.
2962   if (D->getNumIvarInitializers() == 0)
2963     return;
2964 
2965   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2966   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2967   // The constructor returns 'self'.
2968   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2969                                                 D->getLocation(),
2970                                                 D->getLocation(),
2971                                                 cxxSelector,
2972                                                 getContext().getObjCIdType(),
2973                                                 nullptr, D, /*isInstance=*/true,
2974                                                 /*isVariadic=*/false,
2975                                                 /*isPropertyAccessor=*/true,
2976                                                 /*isImplicitlyDeclared=*/true,
2977                                                 /*isDefined=*/false,
2978                                                 ObjCMethodDecl::Required);
2979   D->addInstanceMethod(CTORMethod);
2980   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2981   D->setHasNonZeroConstructors(true);
2982 }
2983 
2984 /// EmitNamespace - Emit all declarations in a namespace.
2985 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2986   for (auto *I : ND->decls()) {
2987     if (const auto *VD = dyn_cast<VarDecl>(I))
2988       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2989           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2990         continue;
2991     EmitTopLevelDecl(I);
2992   }
2993 }
2994 
2995 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2996 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2997   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2998       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2999     ErrorUnsupported(LSD, "linkage spec");
3000     return;
3001   }
3002 
3003   for (auto *I : LSD->decls()) {
3004     // Meta-data for ObjC class includes references to implemented methods.
3005     // Generate class's method definitions first.
3006     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3007       for (auto *M : OID->methods())
3008         EmitTopLevelDecl(M);
3009     }
3010     EmitTopLevelDecl(I);
3011   }
3012 }
3013 
3014 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3015 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3016   // Ignore dependent declarations.
3017   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3018     return;
3019 
3020   switch (D->getKind()) {
3021   case Decl::CXXConversion:
3022   case Decl::CXXMethod:
3023   case Decl::Function:
3024     // Skip function templates
3025     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3026         cast<FunctionDecl>(D)->isLateTemplateParsed())
3027       return;
3028 
3029     EmitGlobal(cast<FunctionDecl>(D));
3030     // Always provide some coverage mapping
3031     // even for the functions that aren't emitted.
3032     AddDeferredUnusedCoverageMapping(D);
3033     break;
3034 
3035   case Decl::Var:
3036     // Skip variable templates
3037     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3038       return;
3039   case Decl::VarTemplateSpecialization:
3040     EmitGlobal(cast<VarDecl>(D));
3041     break;
3042 
3043   // Indirect fields from global anonymous structs and unions can be
3044   // ignored; only the actual variable requires IR gen support.
3045   case Decl::IndirectField:
3046     break;
3047 
3048   // C++ Decls
3049   case Decl::Namespace:
3050     EmitNamespace(cast<NamespaceDecl>(D));
3051     break;
3052     // No code generation needed.
3053   case Decl::UsingShadow:
3054   case Decl::ClassTemplate:
3055   case Decl::VarTemplate:
3056   case Decl::VarTemplatePartialSpecialization:
3057   case Decl::FunctionTemplate:
3058   case Decl::TypeAliasTemplate:
3059   case Decl::Block:
3060   case Decl::Empty:
3061     break;
3062   case Decl::Using:          // using X; [C++]
3063     if (CGDebugInfo *DI = getModuleDebugInfo())
3064         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3065     return;
3066   case Decl::NamespaceAlias:
3067     if (CGDebugInfo *DI = getModuleDebugInfo())
3068         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3069     return;
3070   case Decl::UsingDirective: // using namespace X; [C++]
3071     if (CGDebugInfo *DI = getModuleDebugInfo())
3072       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3073     return;
3074   case Decl::CXXConstructor:
3075     // Skip function templates
3076     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3077         cast<FunctionDecl>(D)->isLateTemplateParsed())
3078       return;
3079 
3080     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3081     break;
3082   case Decl::CXXDestructor:
3083     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3084       return;
3085     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3086     break;
3087 
3088   case Decl::StaticAssert:
3089     // Nothing to do.
3090     break;
3091 
3092   // Objective-C Decls
3093 
3094   // Forward declarations, no (immediate) code generation.
3095   case Decl::ObjCInterface:
3096   case Decl::ObjCCategory:
3097     break;
3098 
3099   case Decl::ObjCProtocol: {
3100     auto *Proto = cast<ObjCProtocolDecl>(D);
3101     if (Proto->isThisDeclarationADefinition())
3102       ObjCRuntime->GenerateProtocol(Proto);
3103     break;
3104   }
3105 
3106   case Decl::ObjCCategoryImpl:
3107     // Categories have properties but don't support synthesize so we
3108     // can ignore them here.
3109     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3110     break;
3111 
3112   case Decl::ObjCImplementation: {
3113     auto *OMD = cast<ObjCImplementationDecl>(D);
3114     EmitObjCPropertyImplementations(OMD);
3115     EmitObjCIvarInitializations(OMD);
3116     ObjCRuntime->GenerateClass(OMD);
3117     // Emit global variable debug information.
3118     if (CGDebugInfo *DI = getModuleDebugInfo())
3119       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3120         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3121             OMD->getClassInterface()), OMD->getLocation());
3122     break;
3123   }
3124   case Decl::ObjCMethod: {
3125     auto *OMD = cast<ObjCMethodDecl>(D);
3126     // If this is not a prototype, emit the body.
3127     if (OMD->getBody())
3128       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3129     break;
3130   }
3131   case Decl::ObjCCompatibleAlias:
3132     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3133     break;
3134 
3135   case Decl::LinkageSpec:
3136     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3137     break;
3138 
3139   case Decl::FileScopeAsm: {
3140     auto *AD = cast<FileScopeAsmDecl>(D);
3141     StringRef AsmString = AD->getAsmString()->getString();
3142 
3143     const std::string &S = getModule().getModuleInlineAsm();
3144     if (S.empty())
3145       getModule().setModuleInlineAsm(AsmString);
3146     else if (S.end()[-1] == '\n')
3147       getModule().setModuleInlineAsm(S + AsmString.str());
3148     else
3149       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3150     break;
3151   }
3152 
3153   case Decl::Import: {
3154     auto *Import = cast<ImportDecl>(D);
3155 
3156     // Ignore import declarations that come from imported modules.
3157     if (clang::Module *Owner = Import->getOwningModule()) {
3158       if (getLangOpts().CurrentModule.empty() ||
3159           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3160         break;
3161     }
3162 
3163     ImportedModules.insert(Import->getImportedModule());
3164     break;
3165   }
3166 
3167   case Decl::ClassTemplateSpecialization: {
3168     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3169     if (DebugInfo &&
3170         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3171       DebugInfo->completeTemplateDefinition(*Spec);
3172   }
3173 
3174   default:
3175     // Make sure we handled everything we should, every other kind is a
3176     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3177     // function. Need to recode Decl::Kind to do that easily.
3178     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3179   }
3180 }
3181 
3182 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3183   // Do we need to generate coverage mapping?
3184   if (!CodeGenOpts.CoverageMapping)
3185     return;
3186   switch (D->getKind()) {
3187   case Decl::CXXConversion:
3188   case Decl::CXXMethod:
3189   case Decl::Function:
3190   case Decl::ObjCMethod:
3191   case Decl::CXXConstructor:
3192   case Decl::CXXDestructor: {
3193     if (!cast<FunctionDecl>(D)->hasBody())
3194       return;
3195     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3196     if (I == DeferredEmptyCoverageMappingDecls.end())
3197       DeferredEmptyCoverageMappingDecls[D] = true;
3198     break;
3199   }
3200   default:
3201     break;
3202   };
3203 }
3204 
3205 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3206   // Do we need to generate coverage mapping?
3207   if (!CodeGenOpts.CoverageMapping)
3208     return;
3209   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3210     if (Fn->isTemplateInstantiation())
3211       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3212   }
3213   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3214   if (I == DeferredEmptyCoverageMappingDecls.end())
3215     DeferredEmptyCoverageMappingDecls[D] = false;
3216   else
3217     I->second = false;
3218 }
3219 
3220 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3221   std::vector<const Decl *> DeferredDecls;
3222   for (const auto I : DeferredEmptyCoverageMappingDecls) {
3223     if (!I.second)
3224       continue;
3225     DeferredDecls.push_back(I.first);
3226   }
3227   // Sort the declarations by their location to make sure that the tests get a
3228   // predictable order for the coverage mapping for the unused declarations.
3229   if (CodeGenOpts.DumpCoverageMapping)
3230     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3231               [] (const Decl *LHS, const Decl *RHS) {
3232       return LHS->getLocStart() < RHS->getLocStart();
3233     });
3234   for (const auto *D : DeferredDecls) {
3235     switch (D->getKind()) {
3236     case Decl::CXXConversion:
3237     case Decl::CXXMethod:
3238     case Decl::Function:
3239     case Decl::ObjCMethod: {
3240       CodeGenPGO PGO(*this);
3241       GlobalDecl GD(cast<FunctionDecl>(D));
3242       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3243                                   getFunctionLinkage(GD));
3244       break;
3245     }
3246     case Decl::CXXConstructor: {
3247       CodeGenPGO PGO(*this);
3248       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3249       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3250                                   getFunctionLinkage(GD));
3251       break;
3252     }
3253     case Decl::CXXDestructor: {
3254       CodeGenPGO PGO(*this);
3255       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3256       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3257                                   getFunctionLinkage(GD));
3258       break;
3259     }
3260     default:
3261       break;
3262     };
3263   }
3264 }
3265 
3266 /// Turns the given pointer into a constant.
3267 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3268                                           const void *Ptr) {
3269   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3270   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3271   return llvm::ConstantInt::get(i64, PtrInt);
3272 }
3273 
3274 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3275                                    llvm::NamedMDNode *&GlobalMetadata,
3276                                    GlobalDecl D,
3277                                    llvm::GlobalValue *Addr) {
3278   if (!GlobalMetadata)
3279     GlobalMetadata =
3280       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3281 
3282   // TODO: should we report variant information for ctors/dtors?
3283   llvm::Value *Ops[] = {
3284     Addr,
3285     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3286   };
3287   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3288 }
3289 
3290 /// For each function which is declared within an extern "C" region and marked
3291 /// as 'used', but has internal linkage, create an alias from the unmangled
3292 /// name to the mangled name if possible. People expect to be able to refer
3293 /// to such functions with an unmangled name from inline assembly within the
3294 /// same translation unit.
3295 void CodeGenModule::EmitStaticExternCAliases() {
3296   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3297                                   E = StaticExternCValues.end();
3298        I != E; ++I) {
3299     IdentifierInfo *Name = I->first;
3300     llvm::GlobalValue *Val = I->second;
3301     if (Val && !getModule().getNamedValue(Name->getName()))
3302       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3303   }
3304 }
3305 
3306 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3307                                              GlobalDecl &Result) const {
3308   auto Res = Manglings.find(MangledName);
3309   if (Res == Manglings.end())
3310     return false;
3311   Result = Res->getValue();
3312   return true;
3313 }
3314 
3315 /// Emits metadata nodes associating all the global values in the
3316 /// current module with the Decls they came from.  This is useful for
3317 /// projects using IR gen as a subroutine.
3318 ///
3319 /// Since there's currently no way to associate an MDNode directly
3320 /// with an llvm::GlobalValue, we create a global named metadata
3321 /// with the name 'clang.global.decl.ptrs'.
3322 void CodeGenModule::EmitDeclMetadata() {
3323   llvm::NamedMDNode *GlobalMetadata = nullptr;
3324 
3325   // StaticLocalDeclMap
3326   for (auto &I : MangledDeclNames) {
3327     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3328     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3329   }
3330 }
3331 
3332 /// Emits metadata nodes for all the local variables in the current
3333 /// function.
3334 void CodeGenFunction::EmitDeclMetadata() {
3335   if (LocalDeclMap.empty()) return;
3336 
3337   llvm::LLVMContext &Context = getLLVMContext();
3338 
3339   // Find the unique metadata ID for this name.
3340   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3341 
3342   llvm::NamedMDNode *GlobalMetadata = nullptr;
3343 
3344   for (auto &I : LocalDeclMap) {
3345     const Decl *D = I.first;
3346     llvm::Value *Addr = I.second;
3347     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3348       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3349       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3350     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3351       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3352       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3353     }
3354   }
3355 }
3356 
3357 void CodeGenModule::EmitVersionIdentMetadata() {
3358   llvm::NamedMDNode *IdentMetadata =
3359     TheModule.getOrInsertNamedMetadata("llvm.ident");
3360   std::string Version = getClangFullVersion();
3361   llvm::LLVMContext &Ctx = TheModule.getContext();
3362 
3363   llvm::Value *IdentNode[] = {
3364     llvm::MDString::get(Ctx, Version)
3365   };
3366   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3367 }
3368 
3369 void CodeGenModule::EmitTargetMetadata() {
3370   // Warning, new MangledDeclNames may be appended within this loop.
3371   // We rely on MapVector insertions adding new elements to the end
3372   // of the container.
3373   // FIXME: Move this loop into the one target that needs it, and only
3374   // loop over those declarations for which we couldn't emit the target
3375   // metadata when we emitted the declaration.
3376   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3377     auto Val = *(MangledDeclNames.begin() + I);
3378     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3379     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3380     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3381   }
3382 }
3383 
3384 void CodeGenModule::EmitCoverageFile() {
3385   if (!getCodeGenOpts().CoverageFile.empty()) {
3386     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3387       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3388       llvm::LLVMContext &Ctx = TheModule.getContext();
3389       llvm::MDString *CoverageFile =
3390           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3391       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3392         llvm::MDNode *CU = CUNode->getOperand(i);
3393         llvm::Value *node[] = { CoverageFile, CU };
3394         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3395         GCov->addOperand(N);
3396       }
3397     }
3398   }
3399 }
3400 
3401 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3402   // Sema has checked that all uuid strings are of the form
3403   // "12345678-1234-1234-1234-1234567890ab".
3404   assert(Uuid.size() == 36);
3405   for (unsigned i = 0; i < 36; ++i) {
3406     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3407     else                                         assert(isHexDigit(Uuid[i]));
3408   }
3409 
3410   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3411   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3412 
3413   llvm::Constant *Field3[8];
3414   for (unsigned Idx = 0; Idx < 8; ++Idx)
3415     Field3[Idx] = llvm::ConstantInt::get(
3416         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3417 
3418   llvm::Constant *Fields[4] = {
3419     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3420     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3421     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3422     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3423   };
3424 
3425   return llvm::ConstantStruct::getAnon(Fields);
3426 }
3427 
3428 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3429                                                        bool ForEH) {
3430   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3431   // FIXME: should we even be calling this method if RTTI is disabled
3432   // and it's not for EH?
3433   if (!ForEH && !getLangOpts().RTTI)
3434     return llvm::Constant::getNullValue(Int8PtrTy);
3435 
3436   if (ForEH && Ty->isObjCObjectPointerType() &&
3437       LangOpts.ObjCRuntime.isGNUFamily())
3438     return ObjCRuntime->GetEHType(Ty);
3439 
3440   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3441 }
3442 
3443