1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 168 const NamedDecl *D) const { 169 // Internal definitions always have default visibility. 170 if (GV->hasLocalLinkage()) { 171 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 172 return; 173 } 174 175 // Set visibility for definitions. 176 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 177 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 178 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 179 } 180 181 /// Set the symbol visibility of type information (vtable and RTTI) 182 /// associated with the given type. 183 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 184 const CXXRecordDecl *RD, 185 TypeVisibilityKind TVK) const { 186 setGlobalVisibility(GV, RD); 187 188 if (!CodeGenOpts.HiddenWeakVTables) 189 return; 190 191 // We never want to drop the visibility for RTTI names. 192 if (TVK == TVK_ForRTTIName) 193 return; 194 195 // We want to drop the visibility to hidden for weak type symbols. 196 // This isn't possible if there might be unresolved references 197 // elsewhere that rely on this symbol being visible. 198 199 // This should be kept roughly in sync with setThunkVisibility 200 // in CGVTables.cpp. 201 202 // Preconditions. 203 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 204 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 205 return; 206 207 // Don't override an explicit visibility attribute. 208 if (RD->hasAttr<VisibilityAttr>()) 209 return; 210 211 switch (RD->getTemplateSpecializationKind()) { 212 // We have to disable the optimization if this is an EI definition 213 // because there might be EI declarations in other shared objects. 214 case TSK_ExplicitInstantiationDefinition: 215 case TSK_ExplicitInstantiationDeclaration: 216 return; 217 218 // Every use of a non-template class's type information has to emit it. 219 case TSK_Undeclared: 220 break; 221 222 // In theory, implicit instantiations can ignore the possibility of 223 // an explicit instantiation declaration because there necessarily 224 // must be an EI definition somewhere with default visibility. In 225 // practice, it's possible to have an explicit instantiation for 226 // an arbitrary template class, and linkers aren't necessarily able 227 // to deal with mixed-visibility symbols. 228 case TSK_ExplicitSpecialization: 229 case TSK_ImplicitInstantiation: 230 if (!CodeGenOpts.HiddenWeakTemplateVTables) 231 return; 232 break; 233 } 234 235 // If there's a key function, there may be translation units 236 // that don't have the key function's definition. But ignore 237 // this if we're emitting RTTI under -fno-rtti. 238 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 239 if (Context.getKeyFunction(RD)) 240 return; 241 } 242 243 // Otherwise, drop the visibility to hidden. 244 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 245 GV->setUnnamedAddr(true); 246 } 247 248 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 249 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 250 251 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 252 if (!Str.empty()) 253 return Str; 254 255 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 256 IdentifierInfo *II = ND->getIdentifier(); 257 assert(II && "Attempt to mangle unnamed decl."); 258 259 Str = II->getName(); 260 return Str; 261 } 262 263 llvm::SmallString<256> Buffer; 264 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 265 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 266 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 267 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 268 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 269 getCXXABI().getMangleContext().mangleBlock(BD, Buffer); 270 else 271 getCXXABI().getMangleContext().mangleName(ND, Buffer); 272 273 // Allocate space for the mangled name. 274 size_t Length = Buffer.size(); 275 char *Name = MangledNamesAllocator.Allocate<char>(Length); 276 std::copy(Buffer.begin(), Buffer.end(), Name); 277 278 Str = llvm::StringRef(Name, Length); 279 280 return Str; 281 } 282 283 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 284 const BlockDecl *BD) { 285 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 286 const Decl *D = GD.getDecl(); 287 if (D == 0) 288 MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer()); 289 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 290 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer()); 291 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 292 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer()); 293 else 294 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer()); 295 } 296 297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 298 return getModule().getNamedValue(Name); 299 } 300 301 /// AddGlobalCtor - Add a function to the list that will be called before 302 /// main() runs. 303 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 304 // FIXME: Type coercion of void()* types. 305 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 306 } 307 308 /// AddGlobalDtor - Add a function to the list that will be called 309 /// when the module is unloaded. 310 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 311 // FIXME: Type coercion of void()* types. 312 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 313 } 314 315 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 316 // Ctor function type is void()*. 317 llvm::FunctionType* CtorFTy = 318 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 319 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 320 321 // Get the type of a ctor entry, { i32, void ()* }. 322 llvm::StructType* CtorStructTy = 323 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 324 llvm::PointerType::getUnqual(CtorFTy), NULL); 325 326 // Construct the constructor and destructor arrays. 327 std::vector<llvm::Constant*> Ctors; 328 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 329 std::vector<llvm::Constant*> S; 330 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 331 I->second, false)); 332 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 333 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 334 } 335 336 if (!Ctors.empty()) { 337 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 338 new llvm::GlobalVariable(TheModule, AT, false, 339 llvm::GlobalValue::AppendingLinkage, 340 llvm::ConstantArray::get(AT, Ctors), 341 GlobalName); 342 } 343 } 344 345 void CodeGenModule::EmitAnnotations() { 346 if (Annotations.empty()) 347 return; 348 349 // Create a new global variable for the ConstantStruct in the Module. 350 llvm::Constant *Array = 351 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 352 Annotations.size()), 353 Annotations); 354 llvm::GlobalValue *gv = 355 new llvm::GlobalVariable(TheModule, Array->getType(), false, 356 llvm::GlobalValue::AppendingLinkage, Array, 357 "llvm.global.annotations"); 358 gv->setSection("llvm.metadata"); 359 } 360 361 llvm::GlobalValue::LinkageTypes 362 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 363 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 364 365 if (Linkage == GVA_Internal) 366 return llvm::Function::InternalLinkage; 367 368 if (D->hasAttr<DLLExportAttr>()) 369 return llvm::Function::DLLExportLinkage; 370 371 if (D->hasAttr<WeakAttr>()) 372 return llvm::Function::WeakAnyLinkage; 373 374 // In C99 mode, 'inline' functions are guaranteed to have a strong 375 // definition somewhere else, so we can use available_externally linkage. 376 if (Linkage == GVA_C99Inline) 377 return llvm::Function::AvailableExternallyLinkage; 378 379 // In C++, the compiler has to emit a definition in every translation unit 380 // that references the function. We should use linkonce_odr because 381 // a) if all references in this translation unit are optimized away, we 382 // don't need to codegen it. b) if the function persists, it needs to be 383 // merged with other definitions. c) C++ has the ODR, so we know the 384 // definition is dependable. 385 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 386 return llvm::Function::LinkOnceODRLinkage; 387 388 // An explicit instantiation of a template has weak linkage, since 389 // explicit instantiations can occur in multiple translation units 390 // and must all be equivalent. However, we are not allowed to 391 // throw away these explicit instantiations. 392 if (Linkage == GVA_ExplicitTemplateInstantiation) 393 return llvm::Function::WeakODRLinkage; 394 395 // Otherwise, we have strong external linkage. 396 assert(Linkage == GVA_StrongExternal); 397 return llvm::Function::ExternalLinkage; 398 } 399 400 401 /// SetFunctionDefinitionAttributes - Set attributes for a global. 402 /// 403 /// FIXME: This is currently only done for aliases and functions, but not for 404 /// variables (these details are set in EmitGlobalVarDefinition for variables). 405 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 406 llvm::GlobalValue *GV) { 407 SetCommonAttributes(D, GV); 408 } 409 410 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 411 const CGFunctionInfo &Info, 412 llvm::Function *F) { 413 unsigned CallingConv; 414 AttributeListType AttributeList; 415 ConstructAttributeList(Info, D, AttributeList, CallingConv); 416 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 417 AttributeList.size())); 418 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 419 } 420 421 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 422 llvm::Function *F) { 423 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 424 F->addFnAttr(llvm::Attribute::NoUnwind); 425 426 if (D->hasAttr<AlwaysInlineAttr>()) 427 F->addFnAttr(llvm::Attribute::AlwaysInline); 428 429 if (D->hasAttr<NakedAttr>()) 430 F->addFnAttr(llvm::Attribute::Naked); 431 432 if (D->hasAttr<NoInlineAttr>()) 433 F->addFnAttr(llvm::Attribute::NoInline); 434 435 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 436 F->setUnnamedAddr(true); 437 438 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 439 F->addFnAttr(llvm::Attribute::StackProtect); 440 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 441 F->addFnAttr(llvm::Attribute::StackProtectReq); 442 443 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 444 if (alignment) 445 F->setAlignment(alignment); 446 447 // C++ ABI requires 2-byte alignment for member functions. 448 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 449 F->setAlignment(2); 450 } 451 452 void CodeGenModule::SetCommonAttributes(const Decl *D, 453 llvm::GlobalValue *GV) { 454 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 455 setGlobalVisibility(GV, ND); 456 else 457 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 458 459 if (D->hasAttr<UsedAttr>()) 460 AddUsedGlobal(GV); 461 462 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 463 GV->setSection(SA->getName()); 464 465 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 466 } 467 468 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 469 llvm::Function *F, 470 const CGFunctionInfo &FI) { 471 SetLLVMFunctionAttributes(D, FI, F); 472 SetLLVMFunctionAttributesForDefinition(D, F); 473 474 F->setLinkage(llvm::Function::InternalLinkage); 475 476 SetCommonAttributes(D, F); 477 } 478 479 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 480 llvm::Function *F, 481 bool IsIncompleteFunction) { 482 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 483 484 if (!IsIncompleteFunction) 485 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 486 487 // Only a few attributes are set on declarations; these may later be 488 // overridden by a definition. 489 490 if (FD->hasAttr<DLLImportAttr>()) { 491 F->setLinkage(llvm::Function::DLLImportLinkage); 492 } else if (FD->hasAttr<WeakAttr>() || 493 FD->hasAttr<WeakImportAttr>()) { 494 // "extern_weak" is overloaded in LLVM; we probably should have 495 // separate linkage types for this. 496 F->setLinkage(llvm::Function::ExternalWeakLinkage); 497 } else { 498 F->setLinkage(llvm::Function::ExternalLinkage); 499 500 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 501 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 502 F->setVisibility(GetLLVMVisibility(LV.visibility())); 503 } 504 } 505 506 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 507 F->setSection(SA->getName()); 508 } 509 510 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 511 assert(!GV->isDeclaration() && 512 "Only globals with definition can force usage."); 513 LLVMUsed.push_back(GV); 514 } 515 516 void CodeGenModule::EmitLLVMUsed() { 517 // Don't create llvm.used if there is no need. 518 if (LLVMUsed.empty()) 519 return; 520 521 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 522 523 // Convert LLVMUsed to what ConstantArray needs. 524 std::vector<llvm::Constant*> UsedArray; 525 UsedArray.resize(LLVMUsed.size()); 526 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 527 UsedArray[i] = 528 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 529 i8PTy); 530 } 531 532 if (UsedArray.empty()) 533 return; 534 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 535 536 llvm::GlobalVariable *GV = 537 new llvm::GlobalVariable(getModule(), ATy, false, 538 llvm::GlobalValue::AppendingLinkage, 539 llvm::ConstantArray::get(ATy, UsedArray), 540 "llvm.used"); 541 542 GV->setSection("llvm.metadata"); 543 } 544 545 void CodeGenModule::EmitDeferred() { 546 // Emit code for any potentially referenced deferred decls. Since a 547 // previously unused static decl may become used during the generation of code 548 // for a static function, iterate until no changes are made. 549 550 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 551 if (!DeferredVTables.empty()) { 552 const CXXRecordDecl *RD = DeferredVTables.back(); 553 DeferredVTables.pop_back(); 554 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 555 continue; 556 } 557 558 GlobalDecl D = DeferredDeclsToEmit.back(); 559 DeferredDeclsToEmit.pop_back(); 560 561 // Check to see if we've already emitted this. This is necessary 562 // for a couple of reasons: first, decls can end up in the 563 // deferred-decls queue multiple times, and second, decls can end 564 // up with definitions in unusual ways (e.g. by an extern inline 565 // function acquiring a strong function redefinition). Just 566 // ignore these cases. 567 // 568 // TODO: That said, looking this up multiple times is very wasteful. 569 llvm::StringRef Name = getMangledName(D); 570 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 571 assert(CGRef && "Deferred decl wasn't referenced?"); 572 573 if (!CGRef->isDeclaration()) 574 continue; 575 576 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 577 // purposes an alias counts as a definition. 578 if (isa<llvm::GlobalAlias>(CGRef)) 579 continue; 580 581 // Otherwise, emit the definition and move on to the next one. 582 EmitGlobalDefinition(D); 583 } 584 } 585 586 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 587 /// annotation information for a given GlobalValue. The annotation struct is 588 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 589 /// GlobalValue being annotated. The second field is the constant string 590 /// created from the AnnotateAttr's annotation. The third field is a constant 591 /// string containing the name of the translation unit. The fourth field is 592 /// the line number in the file of the annotated value declaration. 593 /// 594 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 595 /// appears to. 596 /// 597 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 598 const AnnotateAttr *AA, 599 unsigned LineNo) { 600 llvm::Module *M = &getModule(); 601 602 // get [N x i8] constants for the annotation string, and the filename string 603 // which are the 2nd and 3rd elements of the global annotation structure. 604 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 605 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 606 AA->getAnnotation(), true); 607 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 608 M->getModuleIdentifier(), 609 true); 610 611 // Get the two global values corresponding to the ConstantArrays we just 612 // created to hold the bytes of the strings. 613 llvm::GlobalValue *annoGV = 614 new llvm::GlobalVariable(*M, anno->getType(), false, 615 llvm::GlobalValue::PrivateLinkage, anno, 616 GV->getName()); 617 // translation unit name string, emitted into the llvm.metadata section. 618 llvm::GlobalValue *unitGV = 619 new llvm::GlobalVariable(*M, unit->getType(), false, 620 llvm::GlobalValue::PrivateLinkage, unit, 621 ".str"); 622 unitGV->setUnnamedAddr(true); 623 624 // Create the ConstantStruct for the global annotation. 625 llvm::Constant *Fields[4] = { 626 llvm::ConstantExpr::getBitCast(GV, SBP), 627 llvm::ConstantExpr::getBitCast(annoGV, SBP), 628 llvm::ConstantExpr::getBitCast(unitGV, SBP), 629 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 630 }; 631 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 632 } 633 634 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 635 // Never defer when EmitAllDecls is specified. 636 if (Features.EmitAllDecls) 637 return false; 638 639 return !getContext().DeclMustBeEmitted(Global); 640 } 641 642 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 643 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 644 assert(AA && "No alias?"); 645 646 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 647 648 // See if there is already something with the target's name in the module. 649 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 650 651 llvm::Constant *Aliasee; 652 if (isa<llvm::FunctionType>(DeclTy)) 653 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 654 /*ForVTable=*/false); 655 else 656 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 657 llvm::PointerType::getUnqual(DeclTy), 0); 658 if (!Entry) { 659 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 660 F->setLinkage(llvm::Function::ExternalWeakLinkage); 661 WeakRefReferences.insert(F); 662 } 663 664 return Aliasee; 665 } 666 667 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 668 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 669 670 // Weak references don't produce any output by themselves. 671 if (Global->hasAttr<WeakRefAttr>()) 672 return; 673 674 // If this is an alias definition (which otherwise looks like a declaration) 675 // emit it now. 676 if (Global->hasAttr<AliasAttr>()) 677 return EmitAliasDefinition(GD); 678 679 // Ignore declarations, they will be emitted on their first use. 680 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 681 if (FD->getIdentifier()) { 682 llvm::StringRef Name = FD->getName(); 683 if (Name == "_Block_object_assign") { 684 BlockObjectAssignDecl = FD; 685 } else if (Name == "_Block_object_dispose") { 686 BlockObjectDisposeDecl = FD; 687 } 688 } 689 690 // Forward declarations are emitted lazily on first use. 691 if (!FD->isThisDeclarationADefinition()) 692 return; 693 } else { 694 const VarDecl *VD = cast<VarDecl>(Global); 695 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 696 697 if (VD->getIdentifier()) { 698 llvm::StringRef Name = VD->getName(); 699 if (Name == "_NSConcreteGlobalBlock") { 700 NSConcreteGlobalBlockDecl = VD; 701 } else if (Name == "_NSConcreteStackBlock") { 702 NSConcreteStackBlockDecl = VD; 703 } 704 } 705 706 707 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 708 return; 709 } 710 711 // Defer code generation when possible if this is a static definition, inline 712 // function etc. These we only want to emit if they are used. 713 if (!MayDeferGeneration(Global)) { 714 // Emit the definition if it can't be deferred. 715 EmitGlobalDefinition(GD); 716 return; 717 } 718 719 // If we're deferring emission of a C++ variable with an 720 // initializer, remember the order in which it appeared in the file. 721 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 722 cast<VarDecl>(Global)->hasInit()) { 723 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 724 CXXGlobalInits.push_back(0); 725 } 726 727 // If the value has already been used, add it directly to the 728 // DeferredDeclsToEmit list. 729 llvm::StringRef MangledName = getMangledName(GD); 730 if (GetGlobalValue(MangledName)) 731 DeferredDeclsToEmit.push_back(GD); 732 else { 733 // Otherwise, remember that we saw a deferred decl with this name. The 734 // first use of the mangled name will cause it to move into 735 // DeferredDeclsToEmit. 736 DeferredDecls[MangledName] = GD; 737 } 738 } 739 740 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 741 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 742 743 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 744 Context.getSourceManager(), 745 "Generating code for declaration"); 746 747 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 748 // At -O0, don't generate IR for functions with available_externally 749 // linkage. 750 if (CodeGenOpts.OptimizationLevel == 0 && 751 !Function->hasAttr<AlwaysInlineAttr>() && 752 getFunctionLinkage(Function) 753 == llvm::Function::AvailableExternallyLinkage) 754 return; 755 756 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 757 if (Method->isVirtual()) 758 getVTables().EmitThunks(GD); 759 760 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 761 return EmitCXXConstructor(CD, GD.getCtorType()); 762 763 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 764 return EmitCXXDestructor(DD, GD.getDtorType()); 765 } 766 767 return EmitGlobalFunctionDefinition(GD); 768 } 769 770 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 771 return EmitGlobalVarDefinition(VD); 772 773 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 774 } 775 776 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 777 /// module, create and return an llvm Function with the specified type. If there 778 /// is something in the module with the specified name, return it potentially 779 /// bitcasted to the right type. 780 /// 781 /// If D is non-null, it specifies a decl that correspond to this. This is used 782 /// to set the attributes on the function when it is first created. 783 llvm::Constant * 784 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 785 const llvm::Type *Ty, 786 GlobalDecl D, bool ForVTable) { 787 // Lookup the entry, lazily creating it if necessary. 788 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 789 if (Entry) { 790 if (WeakRefReferences.count(Entry)) { 791 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 792 if (FD && !FD->hasAttr<WeakAttr>()) 793 Entry->setLinkage(llvm::Function::ExternalLinkage); 794 795 WeakRefReferences.erase(Entry); 796 } 797 798 if (Entry->getType()->getElementType() == Ty) 799 return Entry; 800 801 // Make sure the result is of the correct type. 802 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 803 return llvm::ConstantExpr::getBitCast(Entry, PTy); 804 } 805 806 // This function doesn't have a complete type (for example, the return 807 // type is an incomplete struct). Use a fake type instead, and make 808 // sure not to try to set attributes. 809 bool IsIncompleteFunction = false; 810 811 const llvm::FunctionType *FTy; 812 if (isa<llvm::FunctionType>(Ty)) { 813 FTy = cast<llvm::FunctionType>(Ty); 814 } else { 815 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 816 IsIncompleteFunction = true; 817 } 818 819 llvm::Function *F = llvm::Function::Create(FTy, 820 llvm::Function::ExternalLinkage, 821 MangledName, &getModule()); 822 assert(F->getName() == MangledName && "name was uniqued!"); 823 if (D.getDecl()) 824 SetFunctionAttributes(D, F, IsIncompleteFunction); 825 826 // This is the first use or definition of a mangled name. If there is a 827 // deferred decl with this name, remember that we need to emit it at the end 828 // of the file. 829 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 830 if (DDI != DeferredDecls.end()) { 831 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 832 // list, and remove it from DeferredDecls (since we don't need it anymore). 833 DeferredDeclsToEmit.push_back(DDI->second); 834 DeferredDecls.erase(DDI); 835 836 // Otherwise, there are cases we have to worry about where we're 837 // using a declaration for which we must emit a definition but where 838 // we might not find a top-level definition: 839 // - member functions defined inline in their classes 840 // - friend functions defined inline in some class 841 // - special member functions with implicit definitions 842 // If we ever change our AST traversal to walk into class methods, 843 // this will be unnecessary. 844 // 845 // We also don't emit a definition for a function if it's going to be an entry 846 // in a vtable, unless it's already marked as used. 847 } else if (getLangOptions().CPlusPlus && D.getDecl() && 848 !(ForVTable && !D.getDecl()->isUsed())) { 849 // Look for a declaration that's lexically in a record. 850 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 851 do { 852 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 853 if (FD->isImplicit()) { 854 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 855 DeferredDeclsToEmit.push_back(D); 856 break; 857 } else if (FD->isThisDeclarationADefinition()) { 858 DeferredDeclsToEmit.push_back(D); 859 break; 860 } 861 } 862 FD = FD->getPreviousDeclaration(); 863 } while (FD); 864 } 865 866 // Make sure the result is of the requested type. 867 if (!IsIncompleteFunction) { 868 assert(F->getType()->getElementType() == Ty); 869 return F; 870 } 871 872 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 873 return llvm::ConstantExpr::getBitCast(F, PTy); 874 } 875 876 /// GetAddrOfFunction - Return the address of the given function. If Ty is 877 /// non-null, then this function will use the specified type if it has to 878 /// create it (this occurs when we see a definition of the function). 879 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 880 const llvm::Type *Ty, 881 bool ForVTable) { 882 // If there was no specific requested type, just convert it now. 883 if (!Ty) 884 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 885 886 llvm::StringRef MangledName = getMangledName(GD); 887 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 888 } 889 890 /// CreateRuntimeFunction - Create a new runtime function with the specified 891 /// type and name. 892 llvm::Constant * 893 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 894 llvm::StringRef Name) { 895 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false); 896 } 897 898 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 899 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 900 return false; 901 if (Context.getLangOptions().CPlusPlus && 902 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 903 // FIXME: We should do something fancier here! 904 return false; 905 } 906 return true; 907 } 908 909 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 910 /// create and return an llvm GlobalVariable with the specified type. If there 911 /// is something in the module with the specified name, return it potentially 912 /// bitcasted to the right type. 913 /// 914 /// If D is non-null, it specifies a decl that correspond to this. This is used 915 /// to set the attributes on the global when it is first created. 916 llvm::Constant * 917 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 918 const llvm::PointerType *Ty, 919 const VarDecl *D, 920 bool UnnamedAddr) { 921 // Lookup the entry, lazily creating it if necessary. 922 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 923 if (Entry) { 924 if (WeakRefReferences.count(Entry)) { 925 if (D && !D->hasAttr<WeakAttr>()) 926 Entry->setLinkage(llvm::Function::ExternalLinkage); 927 928 WeakRefReferences.erase(Entry); 929 } 930 931 if (UnnamedAddr) 932 Entry->setUnnamedAddr(true); 933 934 if (Entry->getType() == Ty) 935 return Entry; 936 937 // Make sure the result is of the correct type. 938 return llvm::ConstantExpr::getBitCast(Entry, Ty); 939 } 940 941 // This is the first use or definition of a mangled name. If there is a 942 // deferred decl with this name, remember that we need to emit it at the end 943 // of the file. 944 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 945 if (DDI != DeferredDecls.end()) { 946 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 947 // list, and remove it from DeferredDecls (since we don't need it anymore). 948 DeferredDeclsToEmit.push_back(DDI->second); 949 DeferredDecls.erase(DDI); 950 } 951 952 llvm::GlobalVariable *GV = 953 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 954 llvm::GlobalValue::ExternalLinkage, 955 0, MangledName, 0, 956 false, Ty->getAddressSpace()); 957 958 // Handle things which are present even on external declarations. 959 if (D) { 960 // FIXME: This code is overly simple and should be merged with other global 961 // handling. 962 GV->setConstant(DeclIsConstantGlobal(Context, D)); 963 964 // Set linkage and visibility in case we never see a definition. 965 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 966 if (LV.linkage() != ExternalLinkage) { 967 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 968 } else { 969 if (D->hasAttr<DLLImportAttr>()) 970 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 971 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 972 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 973 974 // Set visibility on a declaration only if it's explicit. 975 if (LV.visibilityExplicit()) 976 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 977 } 978 979 GV->setThreadLocal(D->isThreadSpecified()); 980 } 981 982 return GV; 983 } 984 985 986 llvm::GlobalVariable * 987 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 988 const llvm::Type *Ty, 989 llvm::GlobalValue::LinkageTypes Linkage) { 990 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 991 llvm::GlobalVariable *OldGV = 0; 992 993 994 if (GV) { 995 // Check if the variable has the right type. 996 if (GV->getType()->getElementType() == Ty) 997 return GV; 998 999 // Because C++ name mangling, the only way we can end up with an already 1000 // existing global with the same name is if it has been declared extern "C". 1001 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1002 OldGV = GV; 1003 } 1004 1005 // Create a new variable. 1006 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1007 Linkage, 0, Name); 1008 1009 if (OldGV) { 1010 // Replace occurrences of the old variable if needed. 1011 GV->takeName(OldGV); 1012 1013 if (!OldGV->use_empty()) { 1014 llvm::Constant *NewPtrForOldDecl = 1015 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1016 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1017 } 1018 1019 OldGV->eraseFromParent(); 1020 } 1021 1022 return GV; 1023 } 1024 1025 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1026 /// given global variable. If Ty is non-null and if the global doesn't exist, 1027 /// then it will be greated with the specified type instead of whatever the 1028 /// normal requested type would be. 1029 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1030 const llvm::Type *Ty) { 1031 assert(D->hasGlobalStorage() && "Not a global variable"); 1032 QualType ASTTy = D->getType(); 1033 if (Ty == 0) 1034 Ty = getTypes().ConvertTypeForMem(ASTTy); 1035 1036 const llvm::PointerType *PTy = 1037 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1038 1039 llvm::StringRef MangledName = getMangledName(D); 1040 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1041 } 1042 1043 /// CreateRuntimeVariable - Create a new runtime global variable with the 1044 /// specified type and name. 1045 llvm::Constant * 1046 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1047 llvm::StringRef Name) { 1048 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1049 true); 1050 } 1051 1052 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1053 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1054 1055 if (MayDeferGeneration(D)) { 1056 // If we have not seen a reference to this variable yet, place it 1057 // into the deferred declarations table to be emitted if needed 1058 // later. 1059 llvm::StringRef MangledName = getMangledName(D); 1060 if (!GetGlobalValue(MangledName)) { 1061 DeferredDecls[MangledName] = D; 1062 return; 1063 } 1064 } 1065 1066 // The tentative definition is the only definition. 1067 EmitGlobalVarDefinition(D); 1068 } 1069 1070 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1071 if (DefinitionRequired) 1072 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1073 } 1074 1075 llvm::GlobalVariable::LinkageTypes 1076 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1077 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1078 return llvm::GlobalVariable::InternalLinkage; 1079 1080 if (const CXXMethodDecl *KeyFunction 1081 = RD->getASTContext().getKeyFunction(RD)) { 1082 // If this class has a key function, use that to determine the linkage of 1083 // the vtable. 1084 const FunctionDecl *Def = 0; 1085 if (KeyFunction->hasBody(Def)) 1086 KeyFunction = cast<CXXMethodDecl>(Def); 1087 1088 switch (KeyFunction->getTemplateSpecializationKind()) { 1089 case TSK_Undeclared: 1090 case TSK_ExplicitSpecialization: 1091 // When compiling with optimizations turned on, we emit all vtables, 1092 // even if the key function is not defined in the current translation 1093 // unit. If this is the case, use available_externally linkage. 1094 if (!Def && CodeGenOpts.OptimizationLevel) 1095 return llvm::GlobalVariable::AvailableExternallyLinkage; 1096 1097 if (KeyFunction->isInlined()) 1098 return llvm::GlobalVariable::LinkOnceODRLinkage; 1099 1100 return llvm::GlobalVariable::ExternalLinkage; 1101 1102 case TSK_ImplicitInstantiation: 1103 return llvm::GlobalVariable::LinkOnceODRLinkage; 1104 1105 case TSK_ExplicitInstantiationDefinition: 1106 return llvm::GlobalVariable::WeakODRLinkage; 1107 1108 case TSK_ExplicitInstantiationDeclaration: 1109 // FIXME: Use available_externally linkage. However, this currently 1110 // breaks LLVM's build due to undefined symbols. 1111 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1112 return llvm::GlobalVariable::LinkOnceODRLinkage; 1113 } 1114 } 1115 1116 switch (RD->getTemplateSpecializationKind()) { 1117 case TSK_Undeclared: 1118 case TSK_ExplicitSpecialization: 1119 case TSK_ImplicitInstantiation: 1120 return llvm::GlobalVariable::LinkOnceODRLinkage; 1121 1122 case TSK_ExplicitInstantiationDefinition: 1123 return llvm::GlobalVariable::WeakODRLinkage; 1124 1125 case TSK_ExplicitInstantiationDeclaration: 1126 // FIXME: Use available_externally linkage. However, this currently 1127 // breaks LLVM's build due to undefined symbols. 1128 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1129 return llvm::GlobalVariable::LinkOnceODRLinkage; 1130 } 1131 1132 // Silence GCC warning. 1133 return llvm::GlobalVariable::LinkOnceODRLinkage; 1134 } 1135 1136 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1137 return Context.toCharUnitsFromBits( 1138 TheTargetData.getTypeStoreSizeInBits(Ty)); 1139 } 1140 1141 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1142 llvm::Constant *Init = 0; 1143 QualType ASTTy = D->getType(); 1144 bool NonConstInit = false; 1145 1146 const Expr *InitExpr = D->getAnyInitializer(); 1147 1148 if (!InitExpr) { 1149 // This is a tentative definition; tentative definitions are 1150 // implicitly initialized with { 0 }. 1151 // 1152 // Note that tentative definitions are only emitted at the end of 1153 // a translation unit, so they should never have incomplete 1154 // type. In addition, EmitTentativeDefinition makes sure that we 1155 // never attempt to emit a tentative definition if a real one 1156 // exists. A use may still exists, however, so we still may need 1157 // to do a RAUW. 1158 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1159 Init = EmitNullConstant(D->getType()); 1160 } else { 1161 Init = EmitConstantExpr(InitExpr, D->getType()); 1162 if (!Init) { 1163 QualType T = InitExpr->getType(); 1164 if (D->getType()->isReferenceType()) 1165 T = D->getType(); 1166 1167 if (getLangOptions().CPlusPlus) { 1168 Init = EmitNullConstant(T); 1169 NonConstInit = true; 1170 } else { 1171 ErrorUnsupported(D, "static initializer"); 1172 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1173 } 1174 } else { 1175 // We don't need an initializer, so remove the entry for the delayed 1176 // initializer position (just in case this entry was delayed). 1177 if (getLangOptions().CPlusPlus) 1178 DelayedCXXInitPosition.erase(D); 1179 } 1180 } 1181 1182 const llvm::Type* InitType = Init->getType(); 1183 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1184 1185 // Strip off a bitcast if we got one back. 1186 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1187 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1188 // all zero index gep. 1189 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1190 Entry = CE->getOperand(0); 1191 } 1192 1193 // Entry is now either a Function or GlobalVariable. 1194 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1195 1196 // We have a definition after a declaration with the wrong type. 1197 // We must make a new GlobalVariable* and update everything that used OldGV 1198 // (a declaration or tentative definition) with the new GlobalVariable* 1199 // (which will be a definition). 1200 // 1201 // This happens if there is a prototype for a global (e.g. 1202 // "extern int x[];") and then a definition of a different type (e.g. 1203 // "int x[10];"). This also happens when an initializer has a different type 1204 // from the type of the global (this happens with unions). 1205 if (GV == 0 || 1206 GV->getType()->getElementType() != InitType || 1207 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1208 1209 // Move the old entry aside so that we'll create a new one. 1210 Entry->setName(llvm::StringRef()); 1211 1212 // Make a new global with the correct type, this is now guaranteed to work. 1213 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1214 1215 // Replace all uses of the old global with the new global 1216 llvm::Constant *NewPtrForOldDecl = 1217 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1218 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1219 1220 // Erase the old global, since it is no longer used. 1221 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1222 } 1223 1224 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1225 SourceManager &SM = Context.getSourceManager(); 1226 AddAnnotation(EmitAnnotateAttr(GV, AA, 1227 SM.getInstantiationLineNumber(D->getLocation()))); 1228 } 1229 1230 GV->setInitializer(Init); 1231 1232 // If it is safe to mark the global 'constant', do so now. 1233 GV->setConstant(false); 1234 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1235 GV->setConstant(true); 1236 1237 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1238 1239 // Set the llvm linkage type as appropriate. 1240 llvm::GlobalValue::LinkageTypes Linkage = 1241 GetLLVMLinkageVarDefinition(D, GV); 1242 GV->setLinkage(Linkage); 1243 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1244 // common vars aren't constant even if declared const. 1245 GV->setConstant(false); 1246 1247 SetCommonAttributes(D, GV); 1248 1249 // Emit the initializer function if necessary. 1250 if (NonConstInit) 1251 EmitCXXGlobalVarDeclInitFunc(D, GV); 1252 1253 // Emit global variable debug information. 1254 if (CGDebugInfo *DI = getDebugInfo()) { 1255 DI->setLocation(D->getLocation()); 1256 DI->EmitGlobalVariable(GV, D); 1257 } 1258 } 1259 1260 llvm::GlobalValue::LinkageTypes 1261 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1262 llvm::GlobalVariable *GV) { 1263 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1264 if (Linkage == GVA_Internal) 1265 return llvm::Function::InternalLinkage; 1266 else if (D->hasAttr<DLLImportAttr>()) 1267 return llvm::Function::DLLImportLinkage; 1268 else if (D->hasAttr<DLLExportAttr>()) 1269 return llvm::Function::DLLExportLinkage; 1270 else if (D->hasAttr<WeakAttr>()) { 1271 if (GV->isConstant()) 1272 return llvm::GlobalVariable::WeakODRLinkage; 1273 else 1274 return llvm::GlobalVariable::WeakAnyLinkage; 1275 } else if (Linkage == GVA_TemplateInstantiation || 1276 Linkage == GVA_ExplicitTemplateInstantiation) 1277 // FIXME: It seems like we can provide more specific linkage here 1278 // (LinkOnceODR, WeakODR). 1279 return llvm::GlobalVariable::WeakAnyLinkage; 1280 else if (!getLangOptions().CPlusPlus && 1281 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1282 D->getAttr<CommonAttr>()) && 1283 !D->hasExternalStorage() && !D->getInit() && 1284 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1285 // Thread local vars aren't considered common linkage. 1286 return llvm::GlobalVariable::CommonLinkage; 1287 } 1288 return llvm::GlobalVariable::ExternalLinkage; 1289 } 1290 1291 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1292 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1293 /// existing call uses of the old function in the module, this adjusts them to 1294 /// call the new function directly. 1295 /// 1296 /// This is not just a cleanup: the always_inline pass requires direct calls to 1297 /// functions to be able to inline them. If there is a bitcast in the way, it 1298 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1299 /// run at -O0. 1300 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1301 llvm::Function *NewFn) { 1302 // If we're redefining a global as a function, don't transform it. 1303 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1304 if (OldFn == 0) return; 1305 1306 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1307 llvm::SmallVector<llvm::Value*, 4> ArgList; 1308 1309 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1310 UI != E; ) { 1311 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1312 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1313 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1314 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1315 llvm::CallSite CS(CI); 1316 if (!CI || !CS.isCallee(I)) continue; 1317 1318 // If the return types don't match exactly, and if the call isn't dead, then 1319 // we can't transform this call. 1320 if (CI->getType() != NewRetTy && !CI->use_empty()) 1321 continue; 1322 1323 // If the function was passed too few arguments, don't transform. If extra 1324 // arguments were passed, we silently drop them. If any of the types 1325 // mismatch, we don't transform. 1326 unsigned ArgNo = 0; 1327 bool DontTransform = false; 1328 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1329 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1330 if (CS.arg_size() == ArgNo || 1331 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1332 DontTransform = true; 1333 break; 1334 } 1335 } 1336 if (DontTransform) 1337 continue; 1338 1339 // Okay, we can transform this. Create the new call instruction and copy 1340 // over the required information. 1341 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1342 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1343 ArgList.end(), "", CI); 1344 ArgList.clear(); 1345 if (!NewCall->getType()->isVoidTy()) 1346 NewCall->takeName(CI); 1347 NewCall->setAttributes(CI->getAttributes()); 1348 NewCall->setCallingConv(CI->getCallingConv()); 1349 1350 // Finally, remove the old call, replacing any uses with the new one. 1351 if (!CI->use_empty()) 1352 CI->replaceAllUsesWith(NewCall); 1353 1354 // Copy debug location attached to CI. 1355 if (!CI->getDebugLoc().isUnknown()) 1356 NewCall->setDebugLoc(CI->getDebugLoc()); 1357 CI->eraseFromParent(); 1358 } 1359 } 1360 1361 1362 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1363 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1364 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1365 // Get or create the prototype for the function. 1366 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1367 1368 // Strip off a bitcast if we got one back. 1369 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1370 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1371 Entry = CE->getOperand(0); 1372 } 1373 1374 1375 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1376 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1377 1378 // If the types mismatch then we have to rewrite the definition. 1379 assert(OldFn->isDeclaration() && 1380 "Shouldn't replace non-declaration"); 1381 1382 // F is the Function* for the one with the wrong type, we must make a new 1383 // Function* and update everything that used F (a declaration) with the new 1384 // Function* (which will be a definition). 1385 // 1386 // This happens if there is a prototype for a function 1387 // (e.g. "int f()") and then a definition of a different type 1388 // (e.g. "int f(int x)"). Move the old function aside so that it 1389 // doesn't interfere with GetAddrOfFunction. 1390 OldFn->setName(llvm::StringRef()); 1391 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1392 1393 // If this is an implementation of a function without a prototype, try to 1394 // replace any existing uses of the function (which may be calls) with uses 1395 // of the new function 1396 if (D->getType()->isFunctionNoProtoType()) { 1397 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1398 OldFn->removeDeadConstantUsers(); 1399 } 1400 1401 // Replace uses of F with the Function we will endow with a body. 1402 if (!Entry->use_empty()) { 1403 llvm::Constant *NewPtrForOldDecl = 1404 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1405 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1406 } 1407 1408 // Ok, delete the old function now, which is dead. 1409 OldFn->eraseFromParent(); 1410 1411 Entry = NewFn; 1412 } 1413 1414 // We need to set linkage and visibility on the function before 1415 // generating code for it because various parts of IR generation 1416 // want to propagate this information down (e.g. to local static 1417 // declarations). 1418 llvm::Function *Fn = cast<llvm::Function>(Entry); 1419 setFunctionLinkage(D, Fn); 1420 1421 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1422 setGlobalVisibility(Fn, D); 1423 1424 CodeGenFunction(*this).GenerateCode(D, Fn); 1425 1426 SetFunctionDefinitionAttributes(D, Fn); 1427 SetLLVMFunctionAttributesForDefinition(D, Fn); 1428 1429 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1430 AddGlobalCtor(Fn, CA->getPriority()); 1431 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1432 AddGlobalDtor(Fn, DA->getPriority()); 1433 } 1434 1435 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1436 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1437 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1438 assert(AA && "Not an alias?"); 1439 1440 llvm::StringRef MangledName = getMangledName(GD); 1441 1442 // If there is a definition in the module, then it wins over the alias. 1443 // This is dubious, but allow it to be safe. Just ignore the alias. 1444 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1445 if (Entry && !Entry->isDeclaration()) 1446 return; 1447 1448 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1449 1450 // Create a reference to the named value. This ensures that it is emitted 1451 // if a deferred decl. 1452 llvm::Constant *Aliasee; 1453 if (isa<llvm::FunctionType>(DeclTy)) 1454 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1455 /*ForVTable=*/false); 1456 else 1457 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1458 llvm::PointerType::getUnqual(DeclTy), 0); 1459 1460 // Create the new alias itself, but don't set a name yet. 1461 llvm::GlobalValue *GA = 1462 new llvm::GlobalAlias(Aliasee->getType(), 1463 llvm::Function::ExternalLinkage, 1464 "", Aliasee, &getModule()); 1465 1466 if (Entry) { 1467 assert(Entry->isDeclaration()); 1468 1469 // If there is a declaration in the module, then we had an extern followed 1470 // by the alias, as in: 1471 // extern int test6(); 1472 // ... 1473 // int test6() __attribute__((alias("test7"))); 1474 // 1475 // Remove it and replace uses of it with the alias. 1476 GA->takeName(Entry); 1477 1478 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1479 Entry->getType())); 1480 Entry->eraseFromParent(); 1481 } else { 1482 GA->setName(MangledName); 1483 } 1484 1485 // Set attributes which are particular to an alias; this is a 1486 // specialization of the attributes which may be set on a global 1487 // variable/function. 1488 if (D->hasAttr<DLLExportAttr>()) { 1489 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1490 // The dllexport attribute is ignored for undefined symbols. 1491 if (FD->hasBody()) 1492 GA->setLinkage(llvm::Function::DLLExportLinkage); 1493 } else { 1494 GA->setLinkage(llvm::Function::DLLExportLinkage); 1495 } 1496 } else if (D->hasAttr<WeakAttr>() || 1497 D->hasAttr<WeakRefAttr>() || 1498 D->hasAttr<WeakImportAttr>()) { 1499 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1500 } 1501 1502 SetCommonAttributes(D, GA); 1503 } 1504 1505 /// getBuiltinLibFunction - Given a builtin id for a function like 1506 /// "__builtin_fabsf", return a Function* for "fabsf". 1507 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1508 unsigned BuiltinID) { 1509 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1510 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1511 "isn't a lib fn"); 1512 1513 // Get the name, skip over the __builtin_ prefix (if necessary). 1514 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1515 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1516 Name += 10; 1517 1518 const llvm::FunctionType *Ty = 1519 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1520 1521 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false); 1522 } 1523 1524 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1525 unsigned NumTys) { 1526 return llvm::Intrinsic::getDeclaration(&getModule(), 1527 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1528 } 1529 1530 static llvm::StringMapEntry<llvm::Constant*> & 1531 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1532 const StringLiteral *Literal, 1533 bool TargetIsLSB, 1534 bool &IsUTF16, 1535 unsigned &StringLength) { 1536 llvm::StringRef String = Literal->getString(); 1537 unsigned NumBytes = String.size(); 1538 1539 // Check for simple case. 1540 if (!Literal->containsNonAsciiOrNull()) { 1541 StringLength = NumBytes; 1542 return Map.GetOrCreateValue(String); 1543 } 1544 1545 // Otherwise, convert the UTF8 literals into a byte string. 1546 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1547 const UTF8 *FromPtr = (UTF8 *)String.data(); 1548 UTF16 *ToPtr = &ToBuf[0]; 1549 1550 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1551 &ToPtr, ToPtr + NumBytes, 1552 strictConversion); 1553 1554 // ConvertUTF8toUTF16 returns the length in ToPtr. 1555 StringLength = ToPtr - &ToBuf[0]; 1556 1557 // Render the UTF-16 string into a byte array and convert to the target byte 1558 // order. 1559 // 1560 // FIXME: This isn't something we should need to do here. 1561 llvm::SmallString<128> AsBytes; 1562 AsBytes.reserve(StringLength * 2); 1563 for (unsigned i = 0; i != StringLength; ++i) { 1564 unsigned short Val = ToBuf[i]; 1565 if (TargetIsLSB) { 1566 AsBytes.push_back(Val & 0xFF); 1567 AsBytes.push_back(Val >> 8); 1568 } else { 1569 AsBytes.push_back(Val >> 8); 1570 AsBytes.push_back(Val & 0xFF); 1571 } 1572 } 1573 // Append one extra null character, the second is automatically added by our 1574 // caller. 1575 AsBytes.push_back(0); 1576 1577 IsUTF16 = true; 1578 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1579 } 1580 1581 llvm::Constant * 1582 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1583 unsigned StringLength = 0; 1584 bool isUTF16 = false; 1585 llvm::StringMapEntry<llvm::Constant*> &Entry = 1586 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1587 getTargetData().isLittleEndian(), 1588 isUTF16, StringLength); 1589 1590 if (llvm::Constant *C = Entry.getValue()) 1591 return C; 1592 1593 llvm::Constant *Zero = 1594 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1595 llvm::Constant *Zeros[] = { Zero, Zero }; 1596 1597 // If we don't already have it, get __CFConstantStringClassReference. 1598 if (!CFConstantStringClassRef) { 1599 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1600 Ty = llvm::ArrayType::get(Ty, 0); 1601 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1602 "__CFConstantStringClassReference"); 1603 // Decay array -> ptr 1604 CFConstantStringClassRef = 1605 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1606 } 1607 1608 QualType CFTy = getContext().getCFConstantStringType(); 1609 1610 const llvm::StructType *STy = 1611 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1612 1613 std::vector<llvm::Constant*> Fields(4); 1614 1615 // Class pointer. 1616 Fields[0] = CFConstantStringClassRef; 1617 1618 // Flags. 1619 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1620 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1621 llvm::ConstantInt::get(Ty, 0x07C8); 1622 1623 // String pointer. 1624 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1625 1626 llvm::GlobalValue::LinkageTypes Linkage; 1627 bool isConstant; 1628 if (isUTF16) { 1629 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1630 Linkage = llvm::GlobalValue::InternalLinkage; 1631 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1632 // does make plain ascii ones writable. 1633 isConstant = true; 1634 } else { 1635 Linkage = llvm::GlobalValue::PrivateLinkage; 1636 isConstant = !Features.WritableStrings; 1637 } 1638 1639 llvm::GlobalVariable *GV = 1640 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1641 ".str"); 1642 GV->setUnnamedAddr(true); 1643 if (isUTF16) { 1644 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1645 GV->setAlignment(Align.getQuantity()); 1646 } 1647 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1648 1649 // String length. 1650 Ty = getTypes().ConvertType(getContext().LongTy); 1651 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1652 1653 // The struct. 1654 C = llvm::ConstantStruct::get(STy, Fields); 1655 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1656 llvm::GlobalVariable::PrivateLinkage, C, 1657 "_unnamed_cfstring_"); 1658 if (const char *Sect = getContext().Target.getCFStringSection()) 1659 GV->setSection(Sect); 1660 Entry.setValue(GV); 1661 1662 return GV; 1663 } 1664 1665 llvm::Constant * 1666 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1667 unsigned StringLength = 0; 1668 bool isUTF16 = false; 1669 llvm::StringMapEntry<llvm::Constant*> &Entry = 1670 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1671 getTargetData().isLittleEndian(), 1672 isUTF16, StringLength); 1673 1674 if (llvm::Constant *C = Entry.getValue()) 1675 return C; 1676 1677 llvm::Constant *Zero = 1678 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1679 llvm::Constant *Zeros[] = { Zero, Zero }; 1680 1681 // If we don't already have it, get _NSConstantStringClassReference. 1682 if (!ConstantStringClassRef) { 1683 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1684 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1685 Ty = llvm::ArrayType::get(Ty, 0); 1686 llvm::Constant *GV; 1687 if (StringClass.empty()) 1688 GV = CreateRuntimeVariable(Ty, 1689 Features.ObjCNonFragileABI ? 1690 "OBJC_CLASS_$_NSConstantString" : 1691 "_NSConstantStringClassReference"); 1692 else { 1693 std::string str; 1694 if (Features.ObjCNonFragileABI) 1695 str = "OBJC_CLASS_$_" + StringClass; 1696 else 1697 str = "_" + StringClass + "ClassReference"; 1698 GV = CreateRuntimeVariable(Ty, str); 1699 } 1700 // Decay array -> ptr 1701 ConstantStringClassRef = 1702 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1703 } 1704 1705 QualType NSTy = getContext().getNSConstantStringType(); 1706 1707 const llvm::StructType *STy = 1708 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1709 1710 std::vector<llvm::Constant*> Fields(3); 1711 1712 // Class pointer. 1713 Fields[0] = ConstantStringClassRef; 1714 1715 // String pointer. 1716 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1717 1718 llvm::GlobalValue::LinkageTypes Linkage; 1719 bool isConstant; 1720 if (isUTF16) { 1721 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1722 Linkage = llvm::GlobalValue::InternalLinkage; 1723 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1724 // does make plain ascii ones writable. 1725 isConstant = true; 1726 } else { 1727 Linkage = llvm::GlobalValue::PrivateLinkage; 1728 isConstant = !Features.WritableStrings; 1729 } 1730 1731 llvm::GlobalVariable *GV = 1732 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1733 ".str"); 1734 GV->setUnnamedAddr(true); 1735 if (isUTF16) { 1736 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1737 GV->setAlignment(Align.getQuantity()); 1738 } 1739 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1740 1741 // String length. 1742 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1743 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1744 1745 // The struct. 1746 C = llvm::ConstantStruct::get(STy, Fields); 1747 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1748 llvm::GlobalVariable::PrivateLinkage, C, 1749 "_unnamed_nsstring_"); 1750 // FIXME. Fix section. 1751 if (const char *Sect = 1752 Features.ObjCNonFragileABI 1753 ? getContext().Target.getNSStringNonFragileABISection() 1754 : getContext().Target.getNSStringSection()) 1755 GV->setSection(Sect); 1756 Entry.setValue(GV); 1757 1758 return GV; 1759 } 1760 1761 /// GetStringForStringLiteral - Return the appropriate bytes for a 1762 /// string literal, properly padded to match the literal type. 1763 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1764 const ASTContext &Context = getContext(); 1765 const ConstantArrayType *CAT = 1766 Context.getAsConstantArrayType(E->getType()); 1767 assert(CAT && "String isn't pointer or array!"); 1768 1769 // Resize the string to the right size. 1770 uint64_t RealLen = CAT->getSize().getZExtValue(); 1771 1772 if (E->isWide()) 1773 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1774 1775 std::string Str = E->getString().str(); 1776 Str.resize(RealLen, '\0'); 1777 1778 return Str; 1779 } 1780 1781 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1782 /// constant array for the given string literal. 1783 llvm::Constant * 1784 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1785 // FIXME: This can be more efficient. 1786 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1787 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1788 if (S->isWide()) { 1789 llvm::Type *DestTy = 1790 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1791 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1792 } 1793 return C; 1794 } 1795 1796 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1797 /// array for the given ObjCEncodeExpr node. 1798 llvm::Constant * 1799 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1800 std::string Str; 1801 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1802 1803 return GetAddrOfConstantCString(Str); 1804 } 1805 1806 1807 /// GenerateWritableString -- Creates storage for a string literal. 1808 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1809 bool constant, 1810 CodeGenModule &CGM, 1811 const char *GlobalName) { 1812 // Create Constant for this string literal. Don't add a '\0'. 1813 llvm::Constant *C = 1814 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1815 1816 // Create a global variable for this string 1817 llvm::GlobalVariable *GV = 1818 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1819 llvm::GlobalValue::PrivateLinkage, 1820 C, GlobalName); 1821 GV->setUnnamedAddr(true); 1822 return GV; 1823 } 1824 1825 /// GetAddrOfConstantString - Returns a pointer to a character array 1826 /// containing the literal. This contents are exactly that of the 1827 /// given string, i.e. it will not be null terminated automatically; 1828 /// see GetAddrOfConstantCString. Note that whether the result is 1829 /// actually a pointer to an LLVM constant depends on 1830 /// Feature.WriteableStrings. 1831 /// 1832 /// The result has pointer to array type. 1833 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1834 const char *GlobalName) { 1835 bool IsConstant = !Features.WritableStrings; 1836 1837 // Get the default prefix if a name wasn't specified. 1838 if (!GlobalName) 1839 GlobalName = ".str"; 1840 1841 // Don't share any string literals if strings aren't constant. 1842 if (!IsConstant) 1843 return GenerateStringLiteral(str, false, *this, GlobalName); 1844 1845 llvm::StringMapEntry<llvm::Constant *> &Entry = 1846 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1847 1848 if (Entry.getValue()) 1849 return Entry.getValue(); 1850 1851 // Create a global variable for this. 1852 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1853 Entry.setValue(C); 1854 return C; 1855 } 1856 1857 /// GetAddrOfConstantCString - Returns a pointer to a character 1858 /// array containing the literal and a terminating '\-' 1859 /// character. The result has pointer to array type. 1860 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1861 const char *GlobalName){ 1862 return GetAddrOfConstantString(str + '\0', GlobalName); 1863 } 1864 1865 /// EmitObjCPropertyImplementations - Emit information for synthesized 1866 /// properties for an implementation. 1867 void CodeGenModule::EmitObjCPropertyImplementations(const 1868 ObjCImplementationDecl *D) { 1869 for (ObjCImplementationDecl::propimpl_iterator 1870 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1871 ObjCPropertyImplDecl *PID = *i; 1872 1873 // Dynamic is just for type-checking. 1874 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1875 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1876 1877 // Determine which methods need to be implemented, some may have 1878 // been overridden. Note that ::isSynthesized is not the method 1879 // we want, that just indicates if the decl came from a 1880 // property. What we want to know is if the method is defined in 1881 // this implementation. 1882 if (!D->getInstanceMethod(PD->getGetterName())) 1883 CodeGenFunction(*this).GenerateObjCGetter( 1884 const_cast<ObjCImplementationDecl *>(D), PID); 1885 if (!PD->isReadOnly() && 1886 !D->getInstanceMethod(PD->getSetterName())) 1887 CodeGenFunction(*this).GenerateObjCSetter( 1888 const_cast<ObjCImplementationDecl *>(D), PID); 1889 } 1890 } 1891 } 1892 1893 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1894 /// for an implementation. 1895 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1896 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1897 return; 1898 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1899 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1900 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1901 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1902 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1903 D->getLocation(), 1904 D->getLocation(), cxxSelector, 1905 getContext().VoidTy, 0, 1906 DC, true, false, true, false, 1907 ObjCMethodDecl::Required); 1908 D->addInstanceMethod(DTORMethod); 1909 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1910 1911 II = &getContext().Idents.get(".cxx_construct"); 1912 cxxSelector = getContext().Selectors.getSelector(0, &II); 1913 // The constructor returns 'self'. 1914 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1915 D->getLocation(), 1916 D->getLocation(), cxxSelector, 1917 getContext().getObjCIdType(), 0, 1918 DC, true, false, true, false, 1919 ObjCMethodDecl::Required); 1920 D->addInstanceMethod(CTORMethod); 1921 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1922 1923 1924 } 1925 1926 /// EmitNamespace - Emit all declarations in a namespace. 1927 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1928 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1929 I != E; ++I) 1930 EmitTopLevelDecl(*I); 1931 } 1932 1933 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1934 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1935 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1936 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1937 ErrorUnsupported(LSD, "linkage spec"); 1938 return; 1939 } 1940 1941 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1942 I != E; ++I) 1943 EmitTopLevelDecl(*I); 1944 } 1945 1946 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1947 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1948 // If an error has occurred, stop code generation, but continue 1949 // parsing and semantic analysis (to ensure all warnings and errors 1950 // are emitted). 1951 if (Diags.hasErrorOccurred()) 1952 return; 1953 1954 // Ignore dependent declarations. 1955 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1956 return; 1957 1958 switch (D->getKind()) { 1959 case Decl::CXXConversion: 1960 case Decl::CXXMethod: 1961 case Decl::Function: 1962 // Skip function templates 1963 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1964 return; 1965 1966 EmitGlobal(cast<FunctionDecl>(D)); 1967 break; 1968 1969 case Decl::Var: 1970 EmitGlobal(cast<VarDecl>(D)); 1971 break; 1972 1973 // C++ Decls 1974 case Decl::Namespace: 1975 EmitNamespace(cast<NamespaceDecl>(D)); 1976 break; 1977 // No code generation needed. 1978 case Decl::UsingShadow: 1979 case Decl::Using: 1980 case Decl::UsingDirective: 1981 case Decl::ClassTemplate: 1982 case Decl::FunctionTemplate: 1983 case Decl::NamespaceAlias: 1984 break; 1985 case Decl::CXXConstructor: 1986 // Skip function templates 1987 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1988 return; 1989 1990 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1991 break; 1992 case Decl::CXXDestructor: 1993 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1994 break; 1995 1996 case Decl::StaticAssert: 1997 // Nothing to do. 1998 break; 1999 2000 // Objective-C Decls 2001 2002 // Forward declarations, no (immediate) code generation. 2003 case Decl::ObjCClass: 2004 case Decl::ObjCForwardProtocol: 2005 case Decl::ObjCInterface: 2006 break; 2007 2008 case Decl::ObjCCategory: { 2009 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2010 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2011 Context.ResetObjCLayout(CD->getClassInterface()); 2012 break; 2013 } 2014 2015 2016 case Decl::ObjCProtocol: 2017 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2018 break; 2019 2020 case Decl::ObjCCategoryImpl: 2021 // Categories have properties but don't support synthesize so we 2022 // can ignore them here. 2023 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2024 break; 2025 2026 case Decl::ObjCImplementation: { 2027 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2028 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2029 Context.ResetObjCLayout(OMD->getClassInterface()); 2030 EmitObjCPropertyImplementations(OMD); 2031 EmitObjCIvarInitializations(OMD); 2032 Runtime->GenerateClass(OMD); 2033 break; 2034 } 2035 case Decl::ObjCMethod: { 2036 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2037 // If this is not a prototype, emit the body. 2038 if (OMD->getBody()) 2039 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2040 break; 2041 } 2042 case Decl::ObjCCompatibleAlias: 2043 // compatibility-alias is a directive and has no code gen. 2044 break; 2045 2046 case Decl::LinkageSpec: 2047 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2048 break; 2049 2050 case Decl::FileScopeAsm: { 2051 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2052 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2053 2054 const std::string &S = getModule().getModuleInlineAsm(); 2055 if (S.empty()) 2056 getModule().setModuleInlineAsm(AsmString); 2057 else 2058 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2059 break; 2060 } 2061 2062 default: 2063 // Make sure we handled everything we should, every other kind is a 2064 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2065 // function. Need to recode Decl::Kind to do that easily. 2066 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2067 } 2068 } 2069 2070 /// Turns the given pointer into a constant. 2071 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2072 const void *Ptr) { 2073 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2074 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2075 return llvm::ConstantInt::get(i64, PtrInt); 2076 } 2077 2078 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2079 llvm::NamedMDNode *&GlobalMetadata, 2080 GlobalDecl D, 2081 llvm::GlobalValue *Addr) { 2082 if (!GlobalMetadata) 2083 GlobalMetadata = 2084 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2085 2086 // TODO: should we report variant information for ctors/dtors? 2087 llvm::Value *Ops[] = { 2088 Addr, 2089 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2090 }; 2091 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2092 } 2093 2094 /// Emits metadata nodes associating all the global values in the 2095 /// current module with the Decls they came from. This is useful for 2096 /// projects using IR gen as a subroutine. 2097 /// 2098 /// Since there's currently no way to associate an MDNode directly 2099 /// with an llvm::GlobalValue, we create a global named metadata 2100 /// with the name 'clang.global.decl.ptrs'. 2101 void CodeGenModule::EmitDeclMetadata() { 2102 llvm::NamedMDNode *GlobalMetadata = 0; 2103 2104 // StaticLocalDeclMap 2105 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2106 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2107 I != E; ++I) { 2108 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2109 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2110 } 2111 } 2112 2113 /// Emits metadata nodes for all the local variables in the current 2114 /// function. 2115 void CodeGenFunction::EmitDeclMetadata() { 2116 if (LocalDeclMap.empty()) return; 2117 2118 llvm::LLVMContext &Context = getLLVMContext(); 2119 2120 // Find the unique metadata ID for this name. 2121 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2122 2123 llvm::NamedMDNode *GlobalMetadata = 0; 2124 2125 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2126 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2127 const Decl *D = I->first; 2128 llvm::Value *Addr = I->second; 2129 2130 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2131 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2132 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2133 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2134 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2135 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2136 } 2137 } 2138 } 2139 2140 ///@name Custom Runtime Function Interfaces 2141 ///@{ 2142 // 2143 // FIXME: These can be eliminated once we can have clients just get the required 2144 // AST nodes from the builtin tables. 2145 2146 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2147 if (BlockObjectDispose) 2148 return BlockObjectDispose; 2149 2150 // If we saw an explicit decl, use that. 2151 if (BlockObjectDisposeDecl) { 2152 return BlockObjectDispose = GetAddrOfFunction( 2153 BlockObjectDisposeDecl, 2154 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2155 } 2156 2157 // Otherwise construct the function by hand. 2158 const llvm::FunctionType *FTy; 2159 std::vector<const llvm::Type*> ArgTys; 2160 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2161 ArgTys.push_back(PtrToInt8Ty); 2162 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2163 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2164 return BlockObjectDispose = 2165 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2166 } 2167 2168 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2169 if (BlockObjectAssign) 2170 return BlockObjectAssign; 2171 2172 // If we saw an explicit decl, use that. 2173 if (BlockObjectAssignDecl) { 2174 return BlockObjectAssign = GetAddrOfFunction( 2175 BlockObjectAssignDecl, 2176 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2177 } 2178 2179 // Otherwise construct the function by hand. 2180 const llvm::FunctionType *FTy; 2181 std::vector<const llvm::Type*> ArgTys; 2182 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2183 ArgTys.push_back(PtrToInt8Ty); 2184 ArgTys.push_back(PtrToInt8Ty); 2185 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2186 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2187 return BlockObjectAssign = 2188 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2189 } 2190 2191 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2192 if (NSConcreteGlobalBlock) 2193 return NSConcreteGlobalBlock; 2194 2195 // If we saw an explicit decl, use that. 2196 if (NSConcreteGlobalBlockDecl) { 2197 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2198 NSConcreteGlobalBlockDecl, 2199 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2200 } 2201 2202 // Otherwise construct the variable by hand. 2203 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2204 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2205 } 2206 2207 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2208 if (NSConcreteStackBlock) 2209 return NSConcreteStackBlock; 2210 2211 // If we saw an explicit decl, use that. 2212 if (NSConcreteStackBlockDecl) { 2213 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2214 NSConcreteStackBlockDecl, 2215 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2216 } 2217 2218 // Otherwise construct the variable by hand. 2219 return NSConcreteStackBlock = CreateRuntimeVariable( 2220 PtrToInt8Ty, "_NSConcreteStackBlock"); 2221 } 2222 2223 ///@} 2224