xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision bac84bef65868fbd1dc5db613a1d389e7322a253)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : BlockModule(C, M, TD, Types, *this), Context(C),
62     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0){
74 
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 }
92 
93 CodeGenModule::~CodeGenModule() {
94   delete Runtime;
95   delete &ABI;
96   delete TBAA;
97   delete DebugInfo;
98 }
99 
100 void CodeGenModule::createObjCRuntime() {
101   if (!Features.NeXTRuntime)
102     Runtime = CreateGNUObjCRuntime(*this);
103   else if (Features.ObjCNonFragileABI)
104     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105   else
106     Runtime = CreateMacObjCRuntime(*this);
107 }
108 
109 void CodeGenModule::Release() {
110   EmitDeferred();
111   EmitCXXGlobalInitFunc();
112   EmitCXXGlobalDtorFunc();
113   if (Runtime)
114     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115       AddGlobalCtor(ObjCInitFunction);
116   EmitCtorList(GlobalCtors, "llvm.global_ctors");
117   EmitCtorList(GlobalDtors, "llvm.global_dtors");
118   EmitAnnotations();
119   EmitLLVMUsed();
120 
121   SimplifyPersonality();
122 
123   if (getCodeGenOpts().EmitDeclMetadata)
124     EmitDeclMetadata();
125 }
126 
127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128   if (!TBAA)
129     return 0;
130   return TBAA->getTBAAInfo(QTy);
131 }
132 
133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                         llvm::MDNode *TBAAInfo) {
135   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136 }
137 
138 bool CodeGenModule::isTargetDarwin() const {
139   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140 }
141 
142 /// ErrorUnsupported - Print out an error that codegen doesn't support the
143 /// specified stmt yet.
144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                      bool OmitOnError) {
146   if (OmitOnError && getDiags().hasErrorOccurred())
147     return;
148   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                                "cannot compile this %0 yet");
150   std::string Msg = Type;
151   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152     << Msg << S->getSourceRange();
153 }
154 
155 /// ErrorUnsupported - Print out an error that codegen doesn't support the
156 /// specified decl yet.
157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                      bool OmitOnError) {
159   if (OmitOnError && getDiags().hasErrorOccurred())
160     return;
161   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                                "cannot compile this %0 yet");
163   std::string Msg = Type;
164   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165 }
166 
167 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
168                                         const NamedDecl *D) const {
169   // Internal definitions always have default visibility.
170   if (GV->hasLocalLinkage()) {
171     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
172     return;
173   }
174 
175   // Set visibility for definitions.
176   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
177   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
178     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
179 }
180 
181 /// Set the symbol visibility of type information (vtable and RTTI)
182 /// associated with the given type.
183 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
184                                       const CXXRecordDecl *RD,
185                                       TypeVisibilityKind TVK) const {
186   setGlobalVisibility(GV, RD);
187 
188   if (!CodeGenOpts.HiddenWeakVTables)
189     return;
190 
191   // We never want to drop the visibility for RTTI names.
192   if (TVK == TVK_ForRTTIName)
193     return;
194 
195   // We want to drop the visibility to hidden for weak type symbols.
196   // This isn't possible if there might be unresolved references
197   // elsewhere that rely on this symbol being visible.
198 
199   // This should be kept roughly in sync with setThunkVisibility
200   // in CGVTables.cpp.
201 
202   // Preconditions.
203   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
204       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
205     return;
206 
207   // Don't override an explicit visibility attribute.
208   if (RD->hasAttr<VisibilityAttr>())
209     return;
210 
211   switch (RD->getTemplateSpecializationKind()) {
212   // We have to disable the optimization if this is an EI definition
213   // because there might be EI declarations in other shared objects.
214   case TSK_ExplicitInstantiationDefinition:
215   case TSK_ExplicitInstantiationDeclaration:
216     return;
217 
218   // Every use of a non-template class's type information has to emit it.
219   case TSK_Undeclared:
220     break;
221 
222   // In theory, implicit instantiations can ignore the possibility of
223   // an explicit instantiation declaration because there necessarily
224   // must be an EI definition somewhere with default visibility.  In
225   // practice, it's possible to have an explicit instantiation for
226   // an arbitrary template class, and linkers aren't necessarily able
227   // to deal with mixed-visibility symbols.
228   case TSK_ExplicitSpecialization:
229   case TSK_ImplicitInstantiation:
230     if (!CodeGenOpts.HiddenWeakTemplateVTables)
231       return;
232     break;
233   }
234 
235   // If there's a key function, there may be translation units
236   // that don't have the key function's definition.  But ignore
237   // this if we're emitting RTTI under -fno-rtti.
238   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
239     if (Context.getKeyFunction(RD))
240       return;
241   }
242 
243   // Otherwise, drop the visibility to hidden.
244   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
245   GV->setUnnamedAddr(true);
246 }
247 
248 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
249   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
250 
251   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
252   if (!Str.empty())
253     return Str;
254 
255   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
256     IdentifierInfo *II = ND->getIdentifier();
257     assert(II && "Attempt to mangle unnamed decl.");
258 
259     Str = II->getName();
260     return Str;
261   }
262 
263   llvm::SmallString<256> Buffer;
264   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
265     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
266   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
267     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
268   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
269     getCXXABI().getMangleContext().mangleBlock(BD, Buffer);
270   else
271     getCXXABI().getMangleContext().mangleName(ND, Buffer);
272 
273   // Allocate space for the mangled name.
274   size_t Length = Buffer.size();
275   char *Name = MangledNamesAllocator.Allocate<char>(Length);
276   std::copy(Buffer.begin(), Buffer.end(), Name);
277 
278   Str = llvm::StringRef(Name, Length);
279 
280   return Str;
281 }
282 
283 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
284                                         const BlockDecl *BD) {
285   MangleContext &MangleCtx = getCXXABI().getMangleContext();
286   const Decl *D = GD.getDecl();
287   if (D == 0)
288     MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer());
289   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
290     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer());
291   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
292     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer());
293   else
294     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer());
295 }
296 
297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
298   return getModule().getNamedValue(Name);
299 }
300 
301 /// AddGlobalCtor - Add a function to the list that will be called before
302 /// main() runs.
303 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
304   // FIXME: Type coercion of void()* types.
305   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
306 }
307 
308 /// AddGlobalDtor - Add a function to the list that will be called
309 /// when the module is unloaded.
310 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
311   // FIXME: Type coercion of void()* types.
312   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
313 }
314 
315 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
316   // Ctor function type is void()*.
317   llvm::FunctionType* CtorFTy =
318     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
319   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
320 
321   // Get the type of a ctor entry, { i32, void ()* }.
322   llvm::StructType* CtorStructTy =
323     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
324                           llvm::PointerType::getUnqual(CtorFTy), NULL);
325 
326   // Construct the constructor and destructor arrays.
327   std::vector<llvm::Constant*> Ctors;
328   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
329     std::vector<llvm::Constant*> S;
330     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
331                 I->second, false));
332     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
333     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
334   }
335 
336   if (!Ctors.empty()) {
337     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
338     new llvm::GlobalVariable(TheModule, AT, false,
339                              llvm::GlobalValue::AppendingLinkage,
340                              llvm::ConstantArray::get(AT, Ctors),
341                              GlobalName);
342   }
343 }
344 
345 void CodeGenModule::EmitAnnotations() {
346   if (Annotations.empty())
347     return;
348 
349   // Create a new global variable for the ConstantStruct in the Module.
350   llvm::Constant *Array =
351   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
352                                                 Annotations.size()),
353                            Annotations);
354   llvm::GlobalValue *gv =
355   new llvm::GlobalVariable(TheModule, Array->getType(), false,
356                            llvm::GlobalValue::AppendingLinkage, Array,
357                            "llvm.global.annotations");
358   gv->setSection("llvm.metadata");
359 }
360 
361 llvm::GlobalValue::LinkageTypes
362 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
363   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
364 
365   if (Linkage == GVA_Internal)
366     return llvm::Function::InternalLinkage;
367 
368   if (D->hasAttr<DLLExportAttr>())
369     return llvm::Function::DLLExportLinkage;
370 
371   if (D->hasAttr<WeakAttr>())
372     return llvm::Function::WeakAnyLinkage;
373 
374   // In C99 mode, 'inline' functions are guaranteed to have a strong
375   // definition somewhere else, so we can use available_externally linkage.
376   if (Linkage == GVA_C99Inline)
377     return llvm::Function::AvailableExternallyLinkage;
378 
379   // In C++, the compiler has to emit a definition in every translation unit
380   // that references the function.  We should use linkonce_odr because
381   // a) if all references in this translation unit are optimized away, we
382   // don't need to codegen it.  b) if the function persists, it needs to be
383   // merged with other definitions. c) C++ has the ODR, so we know the
384   // definition is dependable.
385   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
386     return llvm::Function::LinkOnceODRLinkage;
387 
388   // An explicit instantiation of a template has weak linkage, since
389   // explicit instantiations can occur in multiple translation units
390   // and must all be equivalent. However, we are not allowed to
391   // throw away these explicit instantiations.
392   if (Linkage == GVA_ExplicitTemplateInstantiation)
393     return llvm::Function::WeakODRLinkage;
394 
395   // Otherwise, we have strong external linkage.
396   assert(Linkage == GVA_StrongExternal);
397   return llvm::Function::ExternalLinkage;
398 }
399 
400 
401 /// SetFunctionDefinitionAttributes - Set attributes for a global.
402 ///
403 /// FIXME: This is currently only done for aliases and functions, but not for
404 /// variables (these details are set in EmitGlobalVarDefinition for variables).
405 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
406                                                     llvm::GlobalValue *GV) {
407   SetCommonAttributes(D, GV);
408 }
409 
410 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
411                                               const CGFunctionInfo &Info,
412                                               llvm::Function *F) {
413   unsigned CallingConv;
414   AttributeListType AttributeList;
415   ConstructAttributeList(Info, D, AttributeList, CallingConv);
416   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
417                                           AttributeList.size()));
418   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
419 }
420 
421 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
422                                                            llvm::Function *F) {
423   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
424     F->addFnAttr(llvm::Attribute::NoUnwind);
425 
426   if (D->hasAttr<AlwaysInlineAttr>())
427     F->addFnAttr(llvm::Attribute::AlwaysInline);
428 
429   if (D->hasAttr<NakedAttr>())
430     F->addFnAttr(llvm::Attribute::Naked);
431 
432   if (D->hasAttr<NoInlineAttr>())
433     F->addFnAttr(llvm::Attribute::NoInline);
434 
435   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
436     F->setUnnamedAddr(true);
437 
438   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
439     F->addFnAttr(llvm::Attribute::StackProtect);
440   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
441     F->addFnAttr(llvm::Attribute::StackProtectReq);
442 
443   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
444   if (alignment)
445     F->setAlignment(alignment);
446 
447   // C++ ABI requires 2-byte alignment for member functions.
448   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
449     F->setAlignment(2);
450 }
451 
452 void CodeGenModule::SetCommonAttributes(const Decl *D,
453                                         llvm::GlobalValue *GV) {
454   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
455     setGlobalVisibility(GV, ND);
456   else
457     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
458 
459   if (D->hasAttr<UsedAttr>())
460     AddUsedGlobal(GV);
461 
462   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
463     GV->setSection(SA->getName());
464 
465   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
466 }
467 
468 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
469                                                   llvm::Function *F,
470                                                   const CGFunctionInfo &FI) {
471   SetLLVMFunctionAttributes(D, FI, F);
472   SetLLVMFunctionAttributesForDefinition(D, F);
473 
474   F->setLinkage(llvm::Function::InternalLinkage);
475 
476   SetCommonAttributes(D, F);
477 }
478 
479 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
480                                           llvm::Function *F,
481                                           bool IsIncompleteFunction) {
482   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
483 
484   if (!IsIncompleteFunction)
485     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
486 
487   // Only a few attributes are set on declarations; these may later be
488   // overridden by a definition.
489 
490   if (FD->hasAttr<DLLImportAttr>()) {
491     F->setLinkage(llvm::Function::DLLImportLinkage);
492   } else if (FD->hasAttr<WeakAttr>() ||
493              FD->hasAttr<WeakImportAttr>()) {
494     // "extern_weak" is overloaded in LLVM; we probably should have
495     // separate linkage types for this.
496     F->setLinkage(llvm::Function::ExternalWeakLinkage);
497   } else {
498     F->setLinkage(llvm::Function::ExternalLinkage);
499 
500     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
501     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
502       F->setVisibility(GetLLVMVisibility(LV.visibility()));
503     }
504   }
505 
506   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
507     F->setSection(SA->getName());
508 }
509 
510 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
511   assert(!GV->isDeclaration() &&
512          "Only globals with definition can force usage.");
513   LLVMUsed.push_back(GV);
514 }
515 
516 void CodeGenModule::EmitLLVMUsed() {
517   // Don't create llvm.used if there is no need.
518   if (LLVMUsed.empty())
519     return;
520 
521   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
522 
523   // Convert LLVMUsed to what ConstantArray needs.
524   std::vector<llvm::Constant*> UsedArray;
525   UsedArray.resize(LLVMUsed.size());
526   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
527     UsedArray[i] =
528      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
529                                       i8PTy);
530   }
531 
532   if (UsedArray.empty())
533     return;
534   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
535 
536   llvm::GlobalVariable *GV =
537     new llvm::GlobalVariable(getModule(), ATy, false,
538                              llvm::GlobalValue::AppendingLinkage,
539                              llvm::ConstantArray::get(ATy, UsedArray),
540                              "llvm.used");
541 
542   GV->setSection("llvm.metadata");
543 }
544 
545 void CodeGenModule::EmitDeferred() {
546   // Emit code for any potentially referenced deferred decls.  Since a
547   // previously unused static decl may become used during the generation of code
548   // for a static function, iterate until no  changes are made.
549 
550   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
551     if (!DeferredVTables.empty()) {
552       const CXXRecordDecl *RD = DeferredVTables.back();
553       DeferredVTables.pop_back();
554       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
555       continue;
556     }
557 
558     GlobalDecl D = DeferredDeclsToEmit.back();
559     DeferredDeclsToEmit.pop_back();
560 
561     // Check to see if we've already emitted this.  This is necessary
562     // for a couple of reasons: first, decls can end up in the
563     // deferred-decls queue multiple times, and second, decls can end
564     // up with definitions in unusual ways (e.g. by an extern inline
565     // function acquiring a strong function redefinition).  Just
566     // ignore these cases.
567     //
568     // TODO: That said, looking this up multiple times is very wasteful.
569     llvm::StringRef Name = getMangledName(D);
570     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
571     assert(CGRef && "Deferred decl wasn't referenced?");
572 
573     if (!CGRef->isDeclaration())
574       continue;
575 
576     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
577     // purposes an alias counts as a definition.
578     if (isa<llvm::GlobalAlias>(CGRef))
579       continue;
580 
581     // Otherwise, emit the definition and move on to the next one.
582     EmitGlobalDefinition(D);
583   }
584 }
585 
586 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
587 /// annotation information for a given GlobalValue.  The annotation struct is
588 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
589 /// GlobalValue being annotated.  The second field is the constant string
590 /// created from the AnnotateAttr's annotation.  The third field is a constant
591 /// string containing the name of the translation unit.  The fourth field is
592 /// the line number in the file of the annotated value declaration.
593 ///
594 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
595 ///        appears to.
596 ///
597 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
598                                                 const AnnotateAttr *AA,
599                                                 unsigned LineNo) {
600   llvm::Module *M = &getModule();
601 
602   // get [N x i8] constants for the annotation string, and the filename string
603   // which are the 2nd and 3rd elements of the global annotation structure.
604   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
605   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
606                                                   AA->getAnnotation(), true);
607   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
608                                                   M->getModuleIdentifier(),
609                                                   true);
610 
611   // Get the two global values corresponding to the ConstantArrays we just
612   // created to hold the bytes of the strings.
613   llvm::GlobalValue *annoGV =
614     new llvm::GlobalVariable(*M, anno->getType(), false,
615                              llvm::GlobalValue::PrivateLinkage, anno,
616                              GV->getName());
617   // translation unit name string, emitted into the llvm.metadata section.
618   llvm::GlobalValue *unitGV =
619     new llvm::GlobalVariable(*M, unit->getType(), false,
620                              llvm::GlobalValue::PrivateLinkage, unit,
621                              ".str");
622   unitGV->setUnnamedAddr(true);
623 
624   // Create the ConstantStruct for the global annotation.
625   llvm::Constant *Fields[4] = {
626     llvm::ConstantExpr::getBitCast(GV, SBP),
627     llvm::ConstantExpr::getBitCast(annoGV, SBP),
628     llvm::ConstantExpr::getBitCast(unitGV, SBP),
629     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
630   };
631   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
632 }
633 
634 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
635   // Never defer when EmitAllDecls is specified.
636   if (Features.EmitAllDecls)
637     return false;
638 
639   return !getContext().DeclMustBeEmitted(Global);
640 }
641 
642 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
643   const AliasAttr *AA = VD->getAttr<AliasAttr>();
644   assert(AA && "No alias?");
645 
646   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
647 
648   // See if there is already something with the target's name in the module.
649   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
650 
651   llvm::Constant *Aliasee;
652   if (isa<llvm::FunctionType>(DeclTy))
653     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
654                                       /*ForVTable=*/false);
655   else
656     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
657                                     llvm::PointerType::getUnqual(DeclTy), 0);
658   if (!Entry) {
659     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
660     F->setLinkage(llvm::Function::ExternalWeakLinkage);
661     WeakRefReferences.insert(F);
662   }
663 
664   return Aliasee;
665 }
666 
667 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
668   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
669 
670   // Weak references don't produce any output by themselves.
671   if (Global->hasAttr<WeakRefAttr>())
672     return;
673 
674   // If this is an alias definition (which otherwise looks like a declaration)
675   // emit it now.
676   if (Global->hasAttr<AliasAttr>())
677     return EmitAliasDefinition(GD);
678 
679   // Ignore declarations, they will be emitted on their first use.
680   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
681     if (FD->getIdentifier()) {
682       llvm::StringRef Name = FD->getName();
683       if (Name == "_Block_object_assign") {
684         BlockObjectAssignDecl = FD;
685       } else if (Name == "_Block_object_dispose") {
686         BlockObjectDisposeDecl = FD;
687       }
688     }
689 
690     // Forward declarations are emitted lazily on first use.
691     if (!FD->isThisDeclarationADefinition())
692       return;
693   } else {
694     const VarDecl *VD = cast<VarDecl>(Global);
695     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
696 
697     if (VD->getIdentifier()) {
698       llvm::StringRef Name = VD->getName();
699       if (Name == "_NSConcreteGlobalBlock") {
700         NSConcreteGlobalBlockDecl = VD;
701       } else if (Name == "_NSConcreteStackBlock") {
702         NSConcreteStackBlockDecl = VD;
703       }
704     }
705 
706 
707     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
708       return;
709   }
710 
711   // Defer code generation when possible if this is a static definition, inline
712   // function etc.  These we only want to emit if they are used.
713   if (!MayDeferGeneration(Global)) {
714     // Emit the definition if it can't be deferred.
715     EmitGlobalDefinition(GD);
716     return;
717   }
718 
719   // If we're deferring emission of a C++ variable with an
720   // initializer, remember the order in which it appeared in the file.
721   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
722       cast<VarDecl>(Global)->hasInit()) {
723     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
724     CXXGlobalInits.push_back(0);
725   }
726 
727   // If the value has already been used, add it directly to the
728   // DeferredDeclsToEmit list.
729   llvm::StringRef MangledName = getMangledName(GD);
730   if (GetGlobalValue(MangledName))
731     DeferredDeclsToEmit.push_back(GD);
732   else {
733     // Otherwise, remember that we saw a deferred decl with this name.  The
734     // first use of the mangled name will cause it to move into
735     // DeferredDeclsToEmit.
736     DeferredDecls[MangledName] = GD;
737   }
738 }
739 
740 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
741   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
742 
743   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
744                                  Context.getSourceManager(),
745                                  "Generating code for declaration");
746 
747   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
748     // At -O0, don't generate IR for functions with available_externally
749     // linkage.
750     if (CodeGenOpts.OptimizationLevel == 0 &&
751         !Function->hasAttr<AlwaysInlineAttr>() &&
752         getFunctionLinkage(Function)
753                                   == llvm::Function::AvailableExternallyLinkage)
754       return;
755 
756     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
757       if (Method->isVirtual())
758         getVTables().EmitThunks(GD);
759 
760       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
761         return EmitCXXConstructor(CD, GD.getCtorType());
762 
763       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
764         return EmitCXXDestructor(DD, GD.getDtorType());
765     }
766 
767     return EmitGlobalFunctionDefinition(GD);
768   }
769 
770   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
771     return EmitGlobalVarDefinition(VD);
772 
773   assert(0 && "Invalid argument to EmitGlobalDefinition()");
774 }
775 
776 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
777 /// module, create and return an llvm Function with the specified type. If there
778 /// is something in the module with the specified name, return it potentially
779 /// bitcasted to the right type.
780 ///
781 /// If D is non-null, it specifies a decl that correspond to this.  This is used
782 /// to set the attributes on the function when it is first created.
783 llvm::Constant *
784 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
785                                        const llvm::Type *Ty,
786                                        GlobalDecl D, bool ForVTable) {
787   // Lookup the entry, lazily creating it if necessary.
788   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
789   if (Entry) {
790     if (WeakRefReferences.count(Entry)) {
791       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
792       if (FD && !FD->hasAttr<WeakAttr>())
793         Entry->setLinkage(llvm::Function::ExternalLinkage);
794 
795       WeakRefReferences.erase(Entry);
796     }
797 
798     if (Entry->getType()->getElementType() == Ty)
799       return Entry;
800 
801     // Make sure the result is of the correct type.
802     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
803     return llvm::ConstantExpr::getBitCast(Entry, PTy);
804   }
805 
806   // This function doesn't have a complete type (for example, the return
807   // type is an incomplete struct). Use a fake type instead, and make
808   // sure not to try to set attributes.
809   bool IsIncompleteFunction = false;
810 
811   const llvm::FunctionType *FTy;
812   if (isa<llvm::FunctionType>(Ty)) {
813     FTy = cast<llvm::FunctionType>(Ty);
814   } else {
815     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
816     IsIncompleteFunction = true;
817   }
818 
819   llvm::Function *F = llvm::Function::Create(FTy,
820                                              llvm::Function::ExternalLinkage,
821                                              MangledName, &getModule());
822   assert(F->getName() == MangledName && "name was uniqued!");
823   if (D.getDecl())
824     SetFunctionAttributes(D, F, IsIncompleteFunction);
825 
826   // This is the first use or definition of a mangled name.  If there is a
827   // deferred decl with this name, remember that we need to emit it at the end
828   // of the file.
829   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
830   if (DDI != DeferredDecls.end()) {
831     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
832     // list, and remove it from DeferredDecls (since we don't need it anymore).
833     DeferredDeclsToEmit.push_back(DDI->second);
834     DeferredDecls.erase(DDI);
835 
836   // Otherwise, there are cases we have to worry about where we're
837   // using a declaration for which we must emit a definition but where
838   // we might not find a top-level definition:
839   //   - member functions defined inline in their classes
840   //   - friend functions defined inline in some class
841   //   - special member functions with implicit definitions
842   // If we ever change our AST traversal to walk into class methods,
843   // this will be unnecessary.
844   //
845   // We also don't emit a definition for a function if it's going to be an entry
846   // in a vtable, unless it's already marked as used.
847   } else if (getLangOptions().CPlusPlus && D.getDecl() &&
848              !(ForVTable && !D.getDecl()->isUsed())) {
849     // Look for a declaration that's lexically in a record.
850     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
851     do {
852       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
853         if (FD->isImplicit()) {
854           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
855           DeferredDeclsToEmit.push_back(D);
856           break;
857         } else if (FD->isThisDeclarationADefinition()) {
858           DeferredDeclsToEmit.push_back(D);
859           break;
860         }
861       }
862       FD = FD->getPreviousDeclaration();
863     } while (FD);
864   }
865 
866   // Make sure the result is of the requested type.
867   if (!IsIncompleteFunction) {
868     assert(F->getType()->getElementType() == Ty);
869     return F;
870   }
871 
872   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
873   return llvm::ConstantExpr::getBitCast(F, PTy);
874 }
875 
876 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
877 /// non-null, then this function will use the specified type if it has to
878 /// create it (this occurs when we see a definition of the function).
879 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
880                                                  const llvm::Type *Ty,
881                                                  bool ForVTable) {
882   // If there was no specific requested type, just convert it now.
883   if (!Ty)
884     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
885 
886   llvm::StringRef MangledName = getMangledName(GD);
887   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
888 }
889 
890 /// CreateRuntimeFunction - Create a new runtime function with the specified
891 /// type and name.
892 llvm::Constant *
893 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
894                                      llvm::StringRef Name) {
895   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
896 }
897 
898 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
899   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
900     return false;
901   if (Context.getLangOptions().CPlusPlus &&
902       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
903     // FIXME: We should do something fancier here!
904     return false;
905   }
906   return true;
907 }
908 
909 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
910 /// create and return an llvm GlobalVariable with the specified type.  If there
911 /// is something in the module with the specified name, return it potentially
912 /// bitcasted to the right type.
913 ///
914 /// If D is non-null, it specifies a decl that correspond to this.  This is used
915 /// to set the attributes on the global when it is first created.
916 llvm::Constant *
917 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
918                                      const llvm::PointerType *Ty,
919                                      const VarDecl *D,
920                                      bool UnnamedAddr) {
921   // Lookup the entry, lazily creating it if necessary.
922   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
923   if (Entry) {
924     if (WeakRefReferences.count(Entry)) {
925       if (D && !D->hasAttr<WeakAttr>())
926         Entry->setLinkage(llvm::Function::ExternalLinkage);
927 
928       WeakRefReferences.erase(Entry);
929     }
930 
931     if (UnnamedAddr)
932       Entry->setUnnamedAddr(true);
933 
934     if (Entry->getType() == Ty)
935       return Entry;
936 
937     // Make sure the result is of the correct type.
938     return llvm::ConstantExpr::getBitCast(Entry, Ty);
939   }
940 
941   // This is the first use or definition of a mangled name.  If there is a
942   // deferred decl with this name, remember that we need to emit it at the end
943   // of the file.
944   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
945   if (DDI != DeferredDecls.end()) {
946     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
947     // list, and remove it from DeferredDecls (since we don't need it anymore).
948     DeferredDeclsToEmit.push_back(DDI->second);
949     DeferredDecls.erase(DDI);
950   }
951 
952   llvm::GlobalVariable *GV =
953     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
954                              llvm::GlobalValue::ExternalLinkage,
955                              0, MangledName, 0,
956                              false, Ty->getAddressSpace());
957 
958   // Handle things which are present even on external declarations.
959   if (D) {
960     // FIXME: This code is overly simple and should be merged with other global
961     // handling.
962     GV->setConstant(DeclIsConstantGlobal(Context, D));
963 
964     // Set linkage and visibility in case we never see a definition.
965     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
966     if (LV.linkage() != ExternalLinkage) {
967       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
968     } else {
969       if (D->hasAttr<DLLImportAttr>())
970         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
971       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
972         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
973 
974       // Set visibility on a declaration only if it's explicit.
975       if (LV.visibilityExplicit())
976         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
977     }
978 
979     GV->setThreadLocal(D->isThreadSpecified());
980   }
981 
982   return GV;
983 }
984 
985 
986 llvm::GlobalVariable *
987 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
988                                       const llvm::Type *Ty,
989                                       llvm::GlobalValue::LinkageTypes Linkage) {
990   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
991   llvm::GlobalVariable *OldGV = 0;
992 
993 
994   if (GV) {
995     // Check if the variable has the right type.
996     if (GV->getType()->getElementType() == Ty)
997       return GV;
998 
999     // Because C++ name mangling, the only way we can end up with an already
1000     // existing global with the same name is if it has been declared extern "C".
1001       assert(GV->isDeclaration() && "Declaration has wrong type!");
1002     OldGV = GV;
1003   }
1004 
1005   // Create a new variable.
1006   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1007                                 Linkage, 0, Name);
1008 
1009   if (OldGV) {
1010     // Replace occurrences of the old variable if needed.
1011     GV->takeName(OldGV);
1012 
1013     if (!OldGV->use_empty()) {
1014       llvm::Constant *NewPtrForOldDecl =
1015       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1016       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1017     }
1018 
1019     OldGV->eraseFromParent();
1020   }
1021 
1022   return GV;
1023 }
1024 
1025 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1026 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1027 /// then it will be greated with the specified type instead of whatever the
1028 /// normal requested type would be.
1029 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1030                                                   const llvm::Type *Ty) {
1031   assert(D->hasGlobalStorage() && "Not a global variable");
1032   QualType ASTTy = D->getType();
1033   if (Ty == 0)
1034     Ty = getTypes().ConvertTypeForMem(ASTTy);
1035 
1036   const llvm::PointerType *PTy =
1037     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1038 
1039   llvm::StringRef MangledName = getMangledName(D);
1040   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1041 }
1042 
1043 /// CreateRuntimeVariable - Create a new runtime global variable with the
1044 /// specified type and name.
1045 llvm::Constant *
1046 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1047                                      llvm::StringRef Name) {
1048   return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1049                                true);
1050 }
1051 
1052 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1053   assert(!D->getInit() && "Cannot emit definite definitions here!");
1054 
1055   if (MayDeferGeneration(D)) {
1056     // If we have not seen a reference to this variable yet, place it
1057     // into the deferred declarations table to be emitted if needed
1058     // later.
1059     llvm::StringRef MangledName = getMangledName(D);
1060     if (!GetGlobalValue(MangledName)) {
1061       DeferredDecls[MangledName] = D;
1062       return;
1063     }
1064   }
1065 
1066   // The tentative definition is the only definition.
1067   EmitGlobalVarDefinition(D);
1068 }
1069 
1070 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1071   if (DefinitionRequired)
1072     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1073 }
1074 
1075 llvm::GlobalVariable::LinkageTypes
1076 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1077   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1078     return llvm::GlobalVariable::InternalLinkage;
1079 
1080   if (const CXXMethodDecl *KeyFunction
1081                                     = RD->getASTContext().getKeyFunction(RD)) {
1082     // If this class has a key function, use that to determine the linkage of
1083     // the vtable.
1084     const FunctionDecl *Def = 0;
1085     if (KeyFunction->hasBody(Def))
1086       KeyFunction = cast<CXXMethodDecl>(Def);
1087 
1088     switch (KeyFunction->getTemplateSpecializationKind()) {
1089       case TSK_Undeclared:
1090       case TSK_ExplicitSpecialization:
1091         // When compiling with optimizations turned on, we emit all vtables,
1092         // even if the key function is not defined in the current translation
1093         // unit. If this is the case, use available_externally linkage.
1094         if (!Def && CodeGenOpts.OptimizationLevel)
1095           return llvm::GlobalVariable::AvailableExternallyLinkage;
1096 
1097         if (KeyFunction->isInlined())
1098           return llvm::GlobalVariable::LinkOnceODRLinkage;
1099 
1100         return llvm::GlobalVariable::ExternalLinkage;
1101 
1102       case TSK_ImplicitInstantiation:
1103         return llvm::GlobalVariable::LinkOnceODRLinkage;
1104 
1105       case TSK_ExplicitInstantiationDefinition:
1106         return llvm::GlobalVariable::WeakODRLinkage;
1107 
1108       case TSK_ExplicitInstantiationDeclaration:
1109         // FIXME: Use available_externally linkage. However, this currently
1110         // breaks LLVM's build due to undefined symbols.
1111         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1112         return llvm::GlobalVariable::LinkOnceODRLinkage;
1113     }
1114   }
1115 
1116   switch (RD->getTemplateSpecializationKind()) {
1117   case TSK_Undeclared:
1118   case TSK_ExplicitSpecialization:
1119   case TSK_ImplicitInstantiation:
1120     return llvm::GlobalVariable::LinkOnceODRLinkage;
1121 
1122   case TSK_ExplicitInstantiationDefinition:
1123     return llvm::GlobalVariable::WeakODRLinkage;
1124 
1125   case TSK_ExplicitInstantiationDeclaration:
1126     // FIXME: Use available_externally linkage. However, this currently
1127     // breaks LLVM's build due to undefined symbols.
1128     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1129     return llvm::GlobalVariable::LinkOnceODRLinkage;
1130   }
1131 
1132   // Silence GCC warning.
1133   return llvm::GlobalVariable::LinkOnceODRLinkage;
1134 }
1135 
1136 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1137     return Context.toCharUnitsFromBits(
1138       TheTargetData.getTypeStoreSizeInBits(Ty));
1139 }
1140 
1141 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1142   llvm::Constant *Init = 0;
1143   QualType ASTTy = D->getType();
1144   bool NonConstInit = false;
1145 
1146   const Expr *InitExpr = D->getAnyInitializer();
1147 
1148   if (!InitExpr) {
1149     // This is a tentative definition; tentative definitions are
1150     // implicitly initialized with { 0 }.
1151     //
1152     // Note that tentative definitions are only emitted at the end of
1153     // a translation unit, so they should never have incomplete
1154     // type. In addition, EmitTentativeDefinition makes sure that we
1155     // never attempt to emit a tentative definition if a real one
1156     // exists. A use may still exists, however, so we still may need
1157     // to do a RAUW.
1158     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1159     Init = EmitNullConstant(D->getType());
1160   } else {
1161     Init = EmitConstantExpr(InitExpr, D->getType());
1162     if (!Init) {
1163       QualType T = InitExpr->getType();
1164       if (D->getType()->isReferenceType())
1165         T = D->getType();
1166 
1167       if (getLangOptions().CPlusPlus) {
1168         Init = EmitNullConstant(T);
1169         NonConstInit = true;
1170       } else {
1171         ErrorUnsupported(D, "static initializer");
1172         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1173       }
1174     } else {
1175       // We don't need an initializer, so remove the entry for the delayed
1176       // initializer position (just in case this entry was delayed).
1177       if (getLangOptions().CPlusPlus)
1178         DelayedCXXInitPosition.erase(D);
1179     }
1180   }
1181 
1182   const llvm::Type* InitType = Init->getType();
1183   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1184 
1185   // Strip off a bitcast if we got one back.
1186   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1187     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1188            // all zero index gep.
1189            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1190     Entry = CE->getOperand(0);
1191   }
1192 
1193   // Entry is now either a Function or GlobalVariable.
1194   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1195 
1196   // We have a definition after a declaration with the wrong type.
1197   // We must make a new GlobalVariable* and update everything that used OldGV
1198   // (a declaration or tentative definition) with the new GlobalVariable*
1199   // (which will be a definition).
1200   //
1201   // This happens if there is a prototype for a global (e.g.
1202   // "extern int x[];") and then a definition of a different type (e.g.
1203   // "int x[10];"). This also happens when an initializer has a different type
1204   // from the type of the global (this happens with unions).
1205   if (GV == 0 ||
1206       GV->getType()->getElementType() != InitType ||
1207       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1208 
1209     // Move the old entry aside so that we'll create a new one.
1210     Entry->setName(llvm::StringRef());
1211 
1212     // Make a new global with the correct type, this is now guaranteed to work.
1213     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1214 
1215     // Replace all uses of the old global with the new global
1216     llvm::Constant *NewPtrForOldDecl =
1217         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1218     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1219 
1220     // Erase the old global, since it is no longer used.
1221     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1222   }
1223 
1224   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1225     SourceManager &SM = Context.getSourceManager();
1226     AddAnnotation(EmitAnnotateAttr(GV, AA,
1227                               SM.getInstantiationLineNumber(D->getLocation())));
1228   }
1229 
1230   GV->setInitializer(Init);
1231 
1232   // If it is safe to mark the global 'constant', do so now.
1233   GV->setConstant(false);
1234   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1235     GV->setConstant(true);
1236 
1237   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1238 
1239   // Set the llvm linkage type as appropriate.
1240   llvm::GlobalValue::LinkageTypes Linkage =
1241     GetLLVMLinkageVarDefinition(D, GV);
1242   GV->setLinkage(Linkage);
1243   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1244     // common vars aren't constant even if declared const.
1245     GV->setConstant(false);
1246 
1247   SetCommonAttributes(D, GV);
1248 
1249   // Emit the initializer function if necessary.
1250   if (NonConstInit)
1251     EmitCXXGlobalVarDeclInitFunc(D, GV);
1252 
1253   // Emit global variable debug information.
1254   if (CGDebugInfo *DI = getDebugInfo()) {
1255     DI->setLocation(D->getLocation());
1256     DI->EmitGlobalVariable(GV, D);
1257   }
1258 }
1259 
1260 llvm::GlobalValue::LinkageTypes
1261 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1262                                            llvm::GlobalVariable *GV) {
1263   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1264   if (Linkage == GVA_Internal)
1265     return llvm::Function::InternalLinkage;
1266   else if (D->hasAttr<DLLImportAttr>())
1267     return llvm::Function::DLLImportLinkage;
1268   else if (D->hasAttr<DLLExportAttr>())
1269     return llvm::Function::DLLExportLinkage;
1270   else if (D->hasAttr<WeakAttr>()) {
1271     if (GV->isConstant())
1272       return llvm::GlobalVariable::WeakODRLinkage;
1273     else
1274       return llvm::GlobalVariable::WeakAnyLinkage;
1275   } else if (Linkage == GVA_TemplateInstantiation ||
1276              Linkage == GVA_ExplicitTemplateInstantiation)
1277     // FIXME: It seems like we can provide more specific linkage here
1278     // (LinkOnceODR, WeakODR).
1279     return llvm::GlobalVariable::WeakAnyLinkage;
1280   else if (!getLangOptions().CPlusPlus &&
1281            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1282              D->getAttr<CommonAttr>()) &&
1283            !D->hasExternalStorage() && !D->getInit() &&
1284            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1285     // Thread local vars aren't considered common linkage.
1286     return llvm::GlobalVariable::CommonLinkage;
1287   }
1288   return llvm::GlobalVariable::ExternalLinkage;
1289 }
1290 
1291 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1292 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1293 /// existing call uses of the old function in the module, this adjusts them to
1294 /// call the new function directly.
1295 ///
1296 /// This is not just a cleanup: the always_inline pass requires direct calls to
1297 /// functions to be able to inline them.  If there is a bitcast in the way, it
1298 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1299 /// run at -O0.
1300 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1301                                                       llvm::Function *NewFn) {
1302   // If we're redefining a global as a function, don't transform it.
1303   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1304   if (OldFn == 0) return;
1305 
1306   const llvm::Type *NewRetTy = NewFn->getReturnType();
1307   llvm::SmallVector<llvm::Value*, 4> ArgList;
1308 
1309   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1310        UI != E; ) {
1311     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1312     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1313     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1314     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1315     llvm::CallSite CS(CI);
1316     if (!CI || !CS.isCallee(I)) continue;
1317 
1318     // If the return types don't match exactly, and if the call isn't dead, then
1319     // we can't transform this call.
1320     if (CI->getType() != NewRetTy && !CI->use_empty())
1321       continue;
1322 
1323     // If the function was passed too few arguments, don't transform.  If extra
1324     // arguments were passed, we silently drop them.  If any of the types
1325     // mismatch, we don't transform.
1326     unsigned ArgNo = 0;
1327     bool DontTransform = false;
1328     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1329          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1330       if (CS.arg_size() == ArgNo ||
1331           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1332         DontTransform = true;
1333         break;
1334       }
1335     }
1336     if (DontTransform)
1337       continue;
1338 
1339     // Okay, we can transform this.  Create the new call instruction and copy
1340     // over the required information.
1341     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1342     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1343                                                      ArgList.end(), "", CI);
1344     ArgList.clear();
1345     if (!NewCall->getType()->isVoidTy())
1346       NewCall->takeName(CI);
1347     NewCall->setAttributes(CI->getAttributes());
1348     NewCall->setCallingConv(CI->getCallingConv());
1349 
1350     // Finally, remove the old call, replacing any uses with the new one.
1351     if (!CI->use_empty())
1352       CI->replaceAllUsesWith(NewCall);
1353 
1354     // Copy debug location attached to CI.
1355     if (!CI->getDebugLoc().isUnknown())
1356       NewCall->setDebugLoc(CI->getDebugLoc());
1357     CI->eraseFromParent();
1358   }
1359 }
1360 
1361 
1362 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1363   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1364   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1365   // Get or create the prototype for the function.
1366   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1367 
1368   // Strip off a bitcast if we got one back.
1369   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1370     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1371     Entry = CE->getOperand(0);
1372   }
1373 
1374 
1375   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1376     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1377 
1378     // If the types mismatch then we have to rewrite the definition.
1379     assert(OldFn->isDeclaration() &&
1380            "Shouldn't replace non-declaration");
1381 
1382     // F is the Function* for the one with the wrong type, we must make a new
1383     // Function* and update everything that used F (a declaration) with the new
1384     // Function* (which will be a definition).
1385     //
1386     // This happens if there is a prototype for a function
1387     // (e.g. "int f()") and then a definition of a different type
1388     // (e.g. "int f(int x)").  Move the old function aside so that it
1389     // doesn't interfere with GetAddrOfFunction.
1390     OldFn->setName(llvm::StringRef());
1391     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1392 
1393     // If this is an implementation of a function without a prototype, try to
1394     // replace any existing uses of the function (which may be calls) with uses
1395     // of the new function
1396     if (D->getType()->isFunctionNoProtoType()) {
1397       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1398       OldFn->removeDeadConstantUsers();
1399     }
1400 
1401     // Replace uses of F with the Function we will endow with a body.
1402     if (!Entry->use_empty()) {
1403       llvm::Constant *NewPtrForOldDecl =
1404         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1405       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1406     }
1407 
1408     // Ok, delete the old function now, which is dead.
1409     OldFn->eraseFromParent();
1410 
1411     Entry = NewFn;
1412   }
1413 
1414   // We need to set linkage and visibility on the function before
1415   // generating code for it because various parts of IR generation
1416   // want to propagate this information down (e.g. to local static
1417   // declarations).
1418   llvm::Function *Fn = cast<llvm::Function>(Entry);
1419   setFunctionLinkage(D, Fn);
1420 
1421   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1422   setGlobalVisibility(Fn, D);
1423 
1424   CodeGenFunction(*this).GenerateCode(D, Fn);
1425 
1426   SetFunctionDefinitionAttributes(D, Fn);
1427   SetLLVMFunctionAttributesForDefinition(D, Fn);
1428 
1429   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1430     AddGlobalCtor(Fn, CA->getPriority());
1431   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1432     AddGlobalDtor(Fn, DA->getPriority());
1433 }
1434 
1435 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1436   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1437   const AliasAttr *AA = D->getAttr<AliasAttr>();
1438   assert(AA && "Not an alias?");
1439 
1440   llvm::StringRef MangledName = getMangledName(GD);
1441 
1442   // If there is a definition in the module, then it wins over the alias.
1443   // This is dubious, but allow it to be safe.  Just ignore the alias.
1444   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1445   if (Entry && !Entry->isDeclaration())
1446     return;
1447 
1448   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1449 
1450   // Create a reference to the named value.  This ensures that it is emitted
1451   // if a deferred decl.
1452   llvm::Constant *Aliasee;
1453   if (isa<llvm::FunctionType>(DeclTy))
1454     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1455                                       /*ForVTable=*/false);
1456   else
1457     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1458                                     llvm::PointerType::getUnqual(DeclTy), 0);
1459 
1460   // Create the new alias itself, but don't set a name yet.
1461   llvm::GlobalValue *GA =
1462     new llvm::GlobalAlias(Aliasee->getType(),
1463                           llvm::Function::ExternalLinkage,
1464                           "", Aliasee, &getModule());
1465 
1466   if (Entry) {
1467     assert(Entry->isDeclaration());
1468 
1469     // If there is a declaration in the module, then we had an extern followed
1470     // by the alias, as in:
1471     //   extern int test6();
1472     //   ...
1473     //   int test6() __attribute__((alias("test7")));
1474     //
1475     // Remove it and replace uses of it with the alias.
1476     GA->takeName(Entry);
1477 
1478     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1479                                                           Entry->getType()));
1480     Entry->eraseFromParent();
1481   } else {
1482     GA->setName(MangledName);
1483   }
1484 
1485   // Set attributes which are particular to an alias; this is a
1486   // specialization of the attributes which may be set on a global
1487   // variable/function.
1488   if (D->hasAttr<DLLExportAttr>()) {
1489     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1490       // The dllexport attribute is ignored for undefined symbols.
1491       if (FD->hasBody())
1492         GA->setLinkage(llvm::Function::DLLExportLinkage);
1493     } else {
1494       GA->setLinkage(llvm::Function::DLLExportLinkage);
1495     }
1496   } else if (D->hasAttr<WeakAttr>() ||
1497              D->hasAttr<WeakRefAttr>() ||
1498              D->hasAttr<WeakImportAttr>()) {
1499     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1500   }
1501 
1502   SetCommonAttributes(D, GA);
1503 }
1504 
1505 /// getBuiltinLibFunction - Given a builtin id for a function like
1506 /// "__builtin_fabsf", return a Function* for "fabsf".
1507 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1508                                                   unsigned BuiltinID) {
1509   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1510           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1511          "isn't a lib fn");
1512 
1513   // Get the name, skip over the __builtin_ prefix (if necessary).
1514   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1515   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1516     Name += 10;
1517 
1518   const llvm::FunctionType *Ty =
1519     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1520 
1521   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1522 }
1523 
1524 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1525                                             unsigned NumTys) {
1526   return llvm::Intrinsic::getDeclaration(&getModule(),
1527                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1528 }
1529 
1530 static llvm::StringMapEntry<llvm::Constant*> &
1531 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1532                          const StringLiteral *Literal,
1533                          bool TargetIsLSB,
1534                          bool &IsUTF16,
1535                          unsigned &StringLength) {
1536   llvm::StringRef String = Literal->getString();
1537   unsigned NumBytes = String.size();
1538 
1539   // Check for simple case.
1540   if (!Literal->containsNonAsciiOrNull()) {
1541     StringLength = NumBytes;
1542     return Map.GetOrCreateValue(String);
1543   }
1544 
1545   // Otherwise, convert the UTF8 literals into a byte string.
1546   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1547   const UTF8 *FromPtr = (UTF8 *)String.data();
1548   UTF16 *ToPtr = &ToBuf[0];
1549 
1550   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1551                            &ToPtr, ToPtr + NumBytes,
1552                            strictConversion);
1553 
1554   // ConvertUTF8toUTF16 returns the length in ToPtr.
1555   StringLength = ToPtr - &ToBuf[0];
1556 
1557   // Render the UTF-16 string into a byte array and convert to the target byte
1558   // order.
1559   //
1560   // FIXME: This isn't something we should need to do here.
1561   llvm::SmallString<128> AsBytes;
1562   AsBytes.reserve(StringLength * 2);
1563   for (unsigned i = 0; i != StringLength; ++i) {
1564     unsigned short Val = ToBuf[i];
1565     if (TargetIsLSB) {
1566       AsBytes.push_back(Val & 0xFF);
1567       AsBytes.push_back(Val >> 8);
1568     } else {
1569       AsBytes.push_back(Val >> 8);
1570       AsBytes.push_back(Val & 0xFF);
1571     }
1572   }
1573   // Append one extra null character, the second is automatically added by our
1574   // caller.
1575   AsBytes.push_back(0);
1576 
1577   IsUTF16 = true;
1578   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1579 }
1580 
1581 llvm::Constant *
1582 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1583   unsigned StringLength = 0;
1584   bool isUTF16 = false;
1585   llvm::StringMapEntry<llvm::Constant*> &Entry =
1586     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1587                              getTargetData().isLittleEndian(),
1588                              isUTF16, StringLength);
1589 
1590   if (llvm::Constant *C = Entry.getValue())
1591     return C;
1592 
1593   llvm::Constant *Zero =
1594       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1595   llvm::Constant *Zeros[] = { Zero, Zero };
1596 
1597   // If we don't already have it, get __CFConstantStringClassReference.
1598   if (!CFConstantStringClassRef) {
1599     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1600     Ty = llvm::ArrayType::get(Ty, 0);
1601     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1602                                            "__CFConstantStringClassReference");
1603     // Decay array -> ptr
1604     CFConstantStringClassRef =
1605       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1606   }
1607 
1608   QualType CFTy = getContext().getCFConstantStringType();
1609 
1610   const llvm::StructType *STy =
1611     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1612 
1613   std::vector<llvm::Constant*> Fields(4);
1614 
1615   // Class pointer.
1616   Fields[0] = CFConstantStringClassRef;
1617 
1618   // Flags.
1619   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1620   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1621     llvm::ConstantInt::get(Ty, 0x07C8);
1622 
1623   // String pointer.
1624   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1625 
1626   llvm::GlobalValue::LinkageTypes Linkage;
1627   bool isConstant;
1628   if (isUTF16) {
1629     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1630     Linkage = llvm::GlobalValue::InternalLinkage;
1631     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1632     // does make plain ascii ones writable.
1633     isConstant = true;
1634   } else {
1635     Linkage = llvm::GlobalValue::PrivateLinkage;
1636     isConstant = !Features.WritableStrings;
1637   }
1638 
1639   llvm::GlobalVariable *GV =
1640     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1641                              ".str");
1642   GV->setUnnamedAddr(true);
1643   if (isUTF16) {
1644     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1645     GV->setAlignment(Align.getQuantity());
1646   }
1647   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1648 
1649   // String length.
1650   Ty = getTypes().ConvertType(getContext().LongTy);
1651   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1652 
1653   // The struct.
1654   C = llvm::ConstantStruct::get(STy, Fields);
1655   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1656                                 llvm::GlobalVariable::PrivateLinkage, C,
1657                                 "_unnamed_cfstring_");
1658   if (const char *Sect = getContext().Target.getCFStringSection())
1659     GV->setSection(Sect);
1660   Entry.setValue(GV);
1661 
1662   return GV;
1663 }
1664 
1665 llvm::Constant *
1666 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1667   unsigned StringLength = 0;
1668   bool isUTF16 = false;
1669   llvm::StringMapEntry<llvm::Constant*> &Entry =
1670     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1671                              getTargetData().isLittleEndian(),
1672                              isUTF16, StringLength);
1673 
1674   if (llvm::Constant *C = Entry.getValue())
1675     return C;
1676 
1677   llvm::Constant *Zero =
1678   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1679   llvm::Constant *Zeros[] = { Zero, Zero };
1680 
1681   // If we don't already have it, get _NSConstantStringClassReference.
1682   if (!ConstantStringClassRef) {
1683     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1684     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1685     Ty = llvm::ArrayType::get(Ty, 0);
1686     llvm::Constant *GV;
1687     if (StringClass.empty())
1688       GV = CreateRuntimeVariable(Ty,
1689                                  Features.ObjCNonFragileABI ?
1690                                  "OBJC_CLASS_$_NSConstantString" :
1691                                  "_NSConstantStringClassReference");
1692     else {
1693       std::string str;
1694       if (Features.ObjCNonFragileABI)
1695         str = "OBJC_CLASS_$_" + StringClass;
1696       else
1697         str = "_" + StringClass + "ClassReference";
1698       GV = CreateRuntimeVariable(Ty, str);
1699     }
1700     // Decay array -> ptr
1701     ConstantStringClassRef =
1702     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1703   }
1704 
1705   QualType NSTy = getContext().getNSConstantStringType();
1706 
1707   const llvm::StructType *STy =
1708   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1709 
1710   std::vector<llvm::Constant*> Fields(3);
1711 
1712   // Class pointer.
1713   Fields[0] = ConstantStringClassRef;
1714 
1715   // String pointer.
1716   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1717 
1718   llvm::GlobalValue::LinkageTypes Linkage;
1719   bool isConstant;
1720   if (isUTF16) {
1721     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1722     Linkage = llvm::GlobalValue::InternalLinkage;
1723     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1724     // does make plain ascii ones writable.
1725     isConstant = true;
1726   } else {
1727     Linkage = llvm::GlobalValue::PrivateLinkage;
1728     isConstant = !Features.WritableStrings;
1729   }
1730 
1731   llvm::GlobalVariable *GV =
1732   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1733                            ".str");
1734   GV->setUnnamedAddr(true);
1735   if (isUTF16) {
1736     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1737     GV->setAlignment(Align.getQuantity());
1738   }
1739   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1740 
1741   // String length.
1742   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1743   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1744 
1745   // The struct.
1746   C = llvm::ConstantStruct::get(STy, Fields);
1747   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1748                                 llvm::GlobalVariable::PrivateLinkage, C,
1749                                 "_unnamed_nsstring_");
1750   // FIXME. Fix section.
1751   if (const char *Sect =
1752         Features.ObjCNonFragileABI
1753           ? getContext().Target.getNSStringNonFragileABISection()
1754           : getContext().Target.getNSStringSection())
1755     GV->setSection(Sect);
1756   Entry.setValue(GV);
1757 
1758   return GV;
1759 }
1760 
1761 /// GetStringForStringLiteral - Return the appropriate bytes for a
1762 /// string literal, properly padded to match the literal type.
1763 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1764   const ASTContext &Context = getContext();
1765   const ConstantArrayType *CAT =
1766     Context.getAsConstantArrayType(E->getType());
1767   assert(CAT && "String isn't pointer or array!");
1768 
1769   // Resize the string to the right size.
1770   uint64_t RealLen = CAT->getSize().getZExtValue();
1771 
1772   if (E->isWide())
1773     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1774 
1775   std::string Str = E->getString().str();
1776   Str.resize(RealLen, '\0');
1777 
1778   return Str;
1779 }
1780 
1781 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1782 /// constant array for the given string literal.
1783 llvm::Constant *
1784 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1785   // FIXME: This can be more efficient.
1786   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1787   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1788   if (S->isWide()) {
1789     llvm::Type *DestTy =
1790         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1791     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1792   }
1793   return C;
1794 }
1795 
1796 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1797 /// array for the given ObjCEncodeExpr node.
1798 llvm::Constant *
1799 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1800   std::string Str;
1801   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1802 
1803   return GetAddrOfConstantCString(Str);
1804 }
1805 
1806 
1807 /// GenerateWritableString -- Creates storage for a string literal.
1808 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1809                                              bool constant,
1810                                              CodeGenModule &CGM,
1811                                              const char *GlobalName) {
1812   // Create Constant for this string literal. Don't add a '\0'.
1813   llvm::Constant *C =
1814       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1815 
1816   // Create a global variable for this string
1817   llvm::GlobalVariable *GV =
1818     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1819                              llvm::GlobalValue::PrivateLinkage,
1820                              C, GlobalName);
1821   GV->setUnnamedAddr(true);
1822   return GV;
1823 }
1824 
1825 /// GetAddrOfConstantString - Returns a pointer to a character array
1826 /// containing the literal. This contents are exactly that of the
1827 /// given string, i.e. it will not be null terminated automatically;
1828 /// see GetAddrOfConstantCString. Note that whether the result is
1829 /// actually a pointer to an LLVM constant depends on
1830 /// Feature.WriteableStrings.
1831 ///
1832 /// The result has pointer to array type.
1833 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1834                                                        const char *GlobalName) {
1835   bool IsConstant = !Features.WritableStrings;
1836 
1837   // Get the default prefix if a name wasn't specified.
1838   if (!GlobalName)
1839     GlobalName = ".str";
1840 
1841   // Don't share any string literals if strings aren't constant.
1842   if (!IsConstant)
1843     return GenerateStringLiteral(str, false, *this, GlobalName);
1844 
1845   llvm::StringMapEntry<llvm::Constant *> &Entry =
1846     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1847 
1848   if (Entry.getValue())
1849     return Entry.getValue();
1850 
1851   // Create a global variable for this.
1852   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1853   Entry.setValue(C);
1854   return C;
1855 }
1856 
1857 /// GetAddrOfConstantCString - Returns a pointer to a character
1858 /// array containing the literal and a terminating '\-'
1859 /// character. The result has pointer to array type.
1860 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1861                                                         const char *GlobalName){
1862   return GetAddrOfConstantString(str + '\0', GlobalName);
1863 }
1864 
1865 /// EmitObjCPropertyImplementations - Emit information for synthesized
1866 /// properties for an implementation.
1867 void CodeGenModule::EmitObjCPropertyImplementations(const
1868                                                     ObjCImplementationDecl *D) {
1869   for (ObjCImplementationDecl::propimpl_iterator
1870          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1871     ObjCPropertyImplDecl *PID = *i;
1872 
1873     // Dynamic is just for type-checking.
1874     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1875       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1876 
1877       // Determine which methods need to be implemented, some may have
1878       // been overridden. Note that ::isSynthesized is not the method
1879       // we want, that just indicates if the decl came from a
1880       // property. What we want to know is if the method is defined in
1881       // this implementation.
1882       if (!D->getInstanceMethod(PD->getGetterName()))
1883         CodeGenFunction(*this).GenerateObjCGetter(
1884                                  const_cast<ObjCImplementationDecl *>(D), PID);
1885       if (!PD->isReadOnly() &&
1886           !D->getInstanceMethod(PD->getSetterName()))
1887         CodeGenFunction(*this).GenerateObjCSetter(
1888                                  const_cast<ObjCImplementationDecl *>(D), PID);
1889     }
1890   }
1891 }
1892 
1893 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1894 /// for an implementation.
1895 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1896   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1897     return;
1898   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1899   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1900   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1901   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1902   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1903                                                   D->getLocation(),
1904                                                   D->getLocation(), cxxSelector,
1905                                                   getContext().VoidTy, 0,
1906                                                   DC, true, false, true, false,
1907                                                   ObjCMethodDecl::Required);
1908   D->addInstanceMethod(DTORMethod);
1909   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1910 
1911   II = &getContext().Idents.get(".cxx_construct");
1912   cxxSelector = getContext().Selectors.getSelector(0, &II);
1913   // The constructor returns 'self'.
1914   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1915                                                 D->getLocation(),
1916                                                 D->getLocation(), cxxSelector,
1917                                                 getContext().getObjCIdType(), 0,
1918                                                 DC, true, false, true, false,
1919                                                 ObjCMethodDecl::Required);
1920   D->addInstanceMethod(CTORMethod);
1921   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1922 
1923 
1924 }
1925 
1926 /// EmitNamespace - Emit all declarations in a namespace.
1927 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1928   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1929        I != E; ++I)
1930     EmitTopLevelDecl(*I);
1931 }
1932 
1933 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1934 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1935   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1936       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1937     ErrorUnsupported(LSD, "linkage spec");
1938     return;
1939   }
1940 
1941   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1942        I != E; ++I)
1943     EmitTopLevelDecl(*I);
1944 }
1945 
1946 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1947 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1948   // If an error has occurred, stop code generation, but continue
1949   // parsing and semantic analysis (to ensure all warnings and errors
1950   // are emitted).
1951   if (Diags.hasErrorOccurred())
1952     return;
1953 
1954   // Ignore dependent declarations.
1955   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1956     return;
1957 
1958   switch (D->getKind()) {
1959   case Decl::CXXConversion:
1960   case Decl::CXXMethod:
1961   case Decl::Function:
1962     // Skip function templates
1963     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1964       return;
1965 
1966     EmitGlobal(cast<FunctionDecl>(D));
1967     break;
1968 
1969   case Decl::Var:
1970     EmitGlobal(cast<VarDecl>(D));
1971     break;
1972 
1973   // C++ Decls
1974   case Decl::Namespace:
1975     EmitNamespace(cast<NamespaceDecl>(D));
1976     break;
1977     // No code generation needed.
1978   case Decl::UsingShadow:
1979   case Decl::Using:
1980   case Decl::UsingDirective:
1981   case Decl::ClassTemplate:
1982   case Decl::FunctionTemplate:
1983   case Decl::NamespaceAlias:
1984     break;
1985   case Decl::CXXConstructor:
1986     // Skip function templates
1987     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1988       return;
1989 
1990     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1991     break;
1992   case Decl::CXXDestructor:
1993     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1994     break;
1995 
1996   case Decl::StaticAssert:
1997     // Nothing to do.
1998     break;
1999 
2000   // Objective-C Decls
2001 
2002   // Forward declarations, no (immediate) code generation.
2003   case Decl::ObjCClass:
2004   case Decl::ObjCForwardProtocol:
2005   case Decl::ObjCInterface:
2006     break;
2007 
2008     case Decl::ObjCCategory: {
2009       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2010       if (CD->IsClassExtension() && CD->hasSynthBitfield())
2011         Context.ResetObjCLayout(CD->getClassInterface());
2012       break;
2013     }
2014 
2015 
2016   case Decl::ObjCProtocol:
2017     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2018     break;
2019 
2020   case Decl::ObjCCategoryImpl:
2021     // Categories have properties but don't support synthesize so we
2022     // can ignore them here.
2023     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2024     break;
2025 
2026   case Decl::ObjCImplementation: {
2027     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2028     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2029       Context.ResetObjCLayout(OMD->getClassInterface());
2030     EmitObjCPropertyImplementations(OMD);
2031     EmitObjCIvarInitializations(OMD);
2032     Runtime->GenerateClass(OMD);
2033     break;
2034   }
2035   case Decl::ObjCMethod: {
2036     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2037     // If this is not a prototype, emit the body.
2038     if (OMD->getBody())
2039       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2040     break;
2041   }
2042   case Decl::ObjCCompatibleAlias:
2043     // compatibility-alias is a directive and has no code gen.
2044     break;
2045 
2046   case Decl::LinkageSpec:
2047     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2048     break;
2049 
2050   case Decl::FileScopeAsm: {
2051     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2052     llvm::StringRef AsmString = AD->getAsmString()->getString();
2053 
2054     const std::string &S = getModule().getModuleInlineAsm();
2055     if (S.empty())
2056       getModule().setModuleInlineAsm(AsmString);
2057     else
2058       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2059     break;
2060   }
2061 
2062   default:
2063     // Make sure we handled everything we should, every other kind is a
2064     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2065     // function. Need to recode Decl::Kind to do that easily.
2066     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2067   }
2068 }
2069 
2070 /// Turns the given pointer into a constant.
2071 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2072                                           const void *Ptr) {
2073   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2074   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2075   return llvm::ConstantInt::get(i64, PtrInt);
2076 }
2077 
2078 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2079                                    llvm::NamedMDNode *&GlobalMetadata,
2080                                    GlobalDecl D,
2081                                    llvm::GlobalValue *Addr) {
2082   if (!GlobalMetadata)
2083     GlobalMetadata =
2084       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2085 
2086   // TODO: should we report variant information for ctors/dtors?
2087   llvm::Value *Ops[] = {
2088     Addr,
2089     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2090   };
2091   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2092 }
2093 
2094 /// Emits metadata nodes associating all the global values in the
2095 /// current module with the Decls they came from.  This is useful for
2096 /// projects using IR gen as a subroutine.
2097 ///
2098 /// Since there's currently no way to associate an MDNode directly
2099 /// with an llvm::GlobalValue, we create a global named metadata
2100 /// with the name 'clang.global.decl.ptrs'.
2101 void CodeGenModule::EmitDeclMetadata() {
2102   llvm::NamedMDNode *GlobalMetadata = 0;
2103 
2104   // StaticLocalDeclMap
2105   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2106          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2107        I != E; ++I) {
2108     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2109     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2110   }
2111 }
2112 
2113 /// Emits metadata nodes for all the local variables in the current
2114 /// function.
2115 void CodeGenFunction::EmitDeclMetadata() {
2116   if (LocalDeclMap.empty()) return;
2117 
2118   llvm::LLVMContext &Context = getLLVMContext();
2119 
2120   // Find the unique metadata ID for this name.
2121   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2122 
2123   llvm::NamedMDNode *GlobalMetadata = 0;
2124 
2125   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2126          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2127     const Decl *D = I->first;
2128     llvm::Value *Addr = I->second;
2129 
2130     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2131       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2132       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2133     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2134       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2135       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2136     }
2137   }
2138 }
2139 
2140 ///@name Custom Runtime Function Interfaces
2141 ///@{
2142 //
2143 // FIXME: These can be eliminated once we can have clients just get the required
2144 // AST nodes from the builtin tables.
2145 
2146 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2147   if (BlockObjectDispose)
2148     return BlockObjectDispose;
2149 
2150   // If we saw an explicit decl, use that.
2151   if (BlockObjectDisposeDecl) {
2152     return BlockObjectDispose = GetAddrOfFunction(
2153       BlockObjectDisposeDecl,
2154       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2155   }
2156 
2157   // Otherwise construct the function by hand.
2158   const llvm::FunctionType *FTy;
2159   std::vector<const llvm::Type*> ArgTys;
2160   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2161   ArgTys.push_back(PtrToInt8Ty);
2162   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2163   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2164   return BlockObjectDispose =
2165     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2166 }
2167 
2168 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2169   if (BlockObjectAssign)
2170     return BlockObjectAssign;
2171 
2172   // If we saw an explicit decl, use that.
2173   if (BlockObjectAssignDecl) {
2174     return BlockObjectAssign = GetAddrOfFunction(
2175       BlockObjectAssignDecl,
2176       getTypes().GetFunctionType(BlockObjectAssignDecl));
2177   }
2178 
2179   // Otherwise construct the function by hand.
2180   const llvm::FunctionType *FTy;
2181   std::vector<const llvm::Type*> ArgTys;
2182   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2183   ArgTys.push_back(PtrToInt8Ty);
2184   ArgTys.push_back(PtrToInt8Ty);
2185   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2186   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2187   return BlockObjectAssign =
2188     CreateRuntimeFunction(FTy, "_Block_object_assign");
2189 }
2190 
2191 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2192   if (NSConcreteGlobalBlock)
2193     return NSConcreteGlobalBlock;
2194 
2195   // If we saw an explicit decl, use that.
2196   if (NSConcreteGlobalBlockDecl) {
2197     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2198       NSConcreteGlobalBlockDecl,
2199       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2200   }
2201 
2202   // Otherwise construct the variable by hand.
2203   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2204     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2205 }
2206 
2207 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2208   if (NSConcreteStackBlock)
2209     return NSConcreteStackBlock;
2210 
2211   // If we saw an explicit decl, use that.
2212   if (NSConcreteStackBlockDecl) {
2213     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2214       NSConcreteStackBlockDecl,
2215       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2216   }
2217 
2218   // Otherwise construct the variable by hand.
2219   return NSConcreteStackBlock = CreateRuntimeVariable(
2220     PtrToInt8Ty, "_NSConcreteStackBlock");
2221 }
2222 
2223 ///@}
2224