xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b93ffa8e4a11b89a8da02f409139f2ea862aabf0)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CodeGenOptions.h"
42 #include "clang/Basic/Diagnostic.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/BinaryFormat/ELF.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/RISCVISAInfo.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include "llvm/TargetParser/X86TargetParser.h"
74 #include "llvm/Transforms/Utils/BuildLibCalls.h"
75 #include <optional>
76 #include <set>
77 
78 using namespace clang;
79 using namespace CodeGen;
80 
81 static llvm::cl::opt<bool> LimitedCoverage(
82     "limited-coverage-experimental", llvm::cl::Hidden,
83     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
84 
85 static const char AnnotationSection[] = "llvm.metadata";
86 
87 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
88   switch (CGM.getContext().getCXXABIKind()) {
89   case TargetCXXABI::AppleARM64:
90   case TargetCXXABI::Fuchsia:
91   case TargetCXXABI::GenericAArch64:
92   case TargetCXXABI::GenericARM:
93   case TargetCXXABI::iOS:
94   case TargetCXXABI::WatchOS:
95   case TargetCXXABI::GenericMIPS:
96   case TargetCXXABI::GenericItanium:
97   case TargetCXXABI::WebAssembly:
98   case TargetCXXABI::XL:
99     return CreateItaniumCXXABI(CGM);
100   case TargetCXXABI::Microsoft:
101     return CreateMicrosoftCXXABI(CGM);
102   }
103 
104   llvm_unreachable("invalid C++ ABI kind");
105 }
106 
107 static std::unique_ptr<TargetCodeGenInfo>
108 createTargetCodeGenInfo(CodeGenModule &CGM) {
109   const TargetInfo &Target = CGM.getTarget();
110   const llvm::Triple &Triple = Target.getTriple();
111   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
112 
113   switch (Triple.getArch()) {
114   default:
115     return createDefaultTargetCodeGenInfo(CGM);
116 
117   case llvm::Triple::m68k:
118     return createM68kTargetCodeGenInfo(CGM);
119   case llvm::Triple::mips:
120   case llvm::Triple::mipsel:
121     if (Triple.getOS() == llvm::Triple::NaCl)
122       return createPNaClTargetCodeGenInfo(CGM);
123     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
124 
125   case llvm::Triple::mips64:
126   case llvm::Triple::mips64el:
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
128 
129   case llvm::Triple::avr: {
130     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
131     // on avrtiny. For passing return value, R18~R25 are used on avr, and
132     // R22~R25 are used on avrtiny.
133     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
134     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
135     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
136   }
137 
138   case llvm::Triple::aarch64:
139   case llvm::Triple::aarch64_32:
140   case llvm::Triple::aarch64_be: {
141     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
142     if (Target.getABI() == "darwinpcs")
143       Kind = AArch64ABIKind::DarwinPCS;
144     else if (Triple.isOSWindows())
145       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
146     else if (Target.getABI() == "aapcs-soft")
147       Kind = AArch64ABIKind::AAPCSSoft;
148     else if (Target.getABI() == "pauthtest")
149       Kind = AArch64ABIKind::PAuthTest;
150 
151     return createAArch64TargetCodeGenInfo(CGM, Kind);
152   }
153 
154   case llvm::Triple::wasm32:
155   case llvm::Triple::wasm64: {
156     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
157     if (Target.getABI() == "experimental-mv")
158       Kind = WebAssemblyABIKind::ExperimentalMV;
159     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
160   }
161 
162   case llvm::Triple::arm:
163   case llvm::Triple::armeb:
164   case llvm::Triple::thumb:
165   case llvm::Triple::thumbeb: {
166     if (Triple.getOS() == llvm::Triple::Win32)
167       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
168 
169     ARMABIKind Kind = ARMABIKind::AAPCS;
170     StringRef ABIStr = Target.getABI();
171     if (ABIStr == "apcs-gnu")
172       Kind = ARMABIKind::APCS;
173     else if (ABIStr == "aapcs16")
174       Kind = ARMABIKind::AAPCS16_VFP;
175     else if (CodeGenOpts.FloatABI == "hard" ||
176              (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
177       Kind = ARMABIKind::AAPCS_VFP;
178 
179     return createARMTargetCodeGenInfo(CGM, Kind);
180   }
181 
182   case llvm::Triple::ppc: {
183     if (Triple.isOSAIX())
184       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
185 
186     bool IsSoftFloat =
187         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
188     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
189   }
190   case llvm::Triple::ppcle: {
191     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
192     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
193   }
194   case llvm::Triple::ppc64:
195     if (Triple.isOSAIX())
196       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
197 
198     if (Triple.isOSBinFormatELF()) {
199       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
200       if (Target.getABI() == "elfv2")
201         Kind = PPC64_SVR4_ABIKind::ELFv2;
202       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
203 
204       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
205     }
206     return createPPC64TargetCodeGenInfo(CGM);
207   case llvm::Triple::ppc64le: {
208     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
209     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
210     if (Target.getABI() == "elfv1")
211       Kind = PPC64_SVR4_ABIKind::ELFv1;
212     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
213 
214     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
215   }
216 
217   case llvm::Triple::nvptx:
218   case llvm::Triple::nvptx64:
219     return createNVPTXTargetCodeGenInfo(CGM);
220 
221   case llvm::Triple::msp430:
222     return createMSP430TargetCodeGenInfo(CGM);
223 
224   case llvm::Triple::riscv32:
225   case llvm::Triple::riscv64: {
226     StringRef ABIStr = Target.getABI();
227     unsigned XLen = Target.getPointerWidth(LangAS::Default);
228     unsigned ABIFLen = 0;
229     if (ABIStr.ends_with("f"))
230       ABIFLen = 32;
231     else if (ABIStr.ends_with("d"))
232       ABIFLen = 64;
233     bool EABI = ABIStr.ends_with("e");
234     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
235   }
236 
237   case llvm::Triple::systemz: {
238     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
239     bool HasVector = !SoftFloat && Target.getABI() == "vector";
240     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
241   }
242 
243   case llvm::Triple::tce:
244   case llvm::Triple::tcele:
245     return createTCETargetCodeGenInfo(CGM);
246 
247   case llvm::Triple::x86: {
248     bool IsDarwinVectorABI = Triple.isOSDarwin();
249     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
250 
251     if (Triple.getOS() == llvm::Triple::Win32) {
252       return createWinX86_32TargetCodeGenInfo(
253           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
254           CodeGenOpts.NumRegisterParameters);
255     }
256     return createX86_32TargetCodeGenInfo(
257         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
258         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
259   }
260 
261   case llvm::Triple::x86_64: {
262     StringRef ABI = Target.getABI();
263     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
264                                : ABI == "avx"  ? X86AVXABILevel::AVX
265                                                : X86AVXABILevel::None);
266 
267     switch (Triple.getOS()) {
268     case llvm::Triple::Win32:
269       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
270     default:
271       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
272     }
273   }
274   case llvm::Triple::hexagon:
275     return createHexagonTargetCodeGenInfo(CGM);
276   case llvm::Triple::lanai:
277     return createLanaiTargetCodeGenInfo(CGM);
278   case llvm::Triple::r600:
279     return createAMDGPUTargetCodeGenInfo(CGM);
280   case llvm::Triple::amdgcn:
281     return createAMDGPUTargetCodeGenInfo(CGM);
282   case llvm::Triple::sparc:
283     return createSparcV8TargetCodeGenInfo(CGM);
284   case llvm::Triple::sparcv9:
285     return createSparcV9TargetCodeGenInfo(CGM);
286   case llvm::Triple::xcore:
287     return createXCoreTargetCodeGenInfo(CGM);
288   case llvm::Triple::arc:
289     return createARCTargetCodeGenInfo(CGM);
290   case llvm::Triple::spir:
291   case llvm::Triple::spir64:
292     return createCommonSPIRTargetCodeGenInfo(CGM);
293   case llvm::Triple::spirv32:
294   case llvm::Triple::spirv64:
295   case llvm::Triple::spirv:
296     return createSPIRVTargetCodeGenInfo(CGM);
297   case llvm::Triple::dxil:
298     return createDirectXTargetCodeGenInfo(CGM);
299   case llvm::Triple::ve:
300     return createVETargetCodeGenInfo(CGM);
301   case llvm::Triple::csky: {
302     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
303     bool hasFP64 =
304         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
305     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
306                                             : hasFP64   ? 64
307                                                         : 32);
308   }
309   case llvm::Triple::bpfeb:
310   case llvm::Triple::bpfel:
311     return createBPFTargetCodeGenInfo(CGM);
312   case llvm::Triple::loongarch32:
313   case llvm::Triple::loongarch64: {
314     StringRef ABIStr = Target.getABI();
315     unsigned ABIFRLen = 0;
316     if (ABIStr.ends_with("f"))
317       ABIFRLen = 32;
318     else if (ABIStr.ends_with("d"))
319       ABIFRLen = 64;
320     return createLoongArchTargetCodeGenInfo(
321         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
322   }
323   }
324 }
325 
326 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
327   if (!TheTargetCodeGenInfo)
328     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
329   return *TheTargetCodeGenInfo;
330 }
331 
332 CodeGenModule::CodeGenModule(ASTContext &C,
333                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
334                              const HeaderSearchOptions &HSO,
335                              const PreprocessorOptions &PPO,
336                              const CodeGenOptions &CGO, llvm::Module &M,
337                              DiagnosticsEngine &diags,
338                              CoverageSourceInfo *CoverageInfo)
339     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
340       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
341       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
342       VMContext(M.getContext()), VTables(*this), StackHandler(diags),
343       SanitizerMD(new SanitizerMetadata(*this)) {
344 
345   // Initialize the type cache.
346   Types.reset(new CodeGenTypes(*this));
347   llvm::LLVMContext &LLVMContext = M.getContext();
348   VoidTy = llvm::Type::getVoidTy(LLVMContext);
349   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
350   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
351   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
352   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
353   HalfTy = llvm::Type::getHalfTy(LLVMContext);
354   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
355   FloatTy = llvm::Type::getFloatTy(LLVMContext);
356   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
357   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
358   PointerAlignInBytes =
359       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
360           .getQuantity();
361   SizeSizeInBytes =
362     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
363   IntAlignInBytes =
364     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
365   CharTy =
366     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
367   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
368   IntPtrTy = llvm::IntegerType::get(LLVMContext,
369     C.getTargetInfo().getMaxPointerWidth());
370   Int8PtrTy = llvm::PointerType::get(LLVMContext,
371                                      C.getTargetAddressSpace(LangAS::Default));
372   const llvm::DataLayout &DL = M.getDataLayout();
373   AllocaInt8PtrTy =
374       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
375   GlobalsInt8PtrTy =
376       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
377   ConstGlobalsPtrTy = llvm::PointerType::get(
378       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
379   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
380 
381   // Build C++20 Module initializers.
382   // TODO: Add Microsoft here once we know the mangling required for the
383   // initializers.
384   CXX20ModuleInits =
385       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
386                                        ItaniumMangleContext::MK_Itanium;
387 
388   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
389 
390   if (LangOpts.ObjC)
391     createObjCRuntime();
392   if (LangOpts.OpenCL)
393     createOpenCLRuntime();
394   if (LangOpts.OpenMP)
395     createOpenMPRuntime();
396   if (LangOpts.CUDA)
397     createCUDARuntime();
398   if (LangOpts.HLSL)
399     createHLSLRuntime();
400 
401   // Enable TBAA unless it's suppressed. TSan and TySan need TBAA even at O0.
402   if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Thread | SanitizerKind::Type) ||
403       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
404     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
405                                getLangOpts()));
406 
407   // If debug info or coverage generation is enabled, create the CGDebugInfo
408   // object.
409   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
410       CodeGenOpts.CoverageNotesFile.size() ||
411       CodeGenOpts.CoverageDataFile.size())
412     DebugInfo.reset(new CGDebugInfo(*this));
413 
414   Block.GlobalUniqueCount = 0;
415 
416   if (C.getLangOpts().ObjC)
417     ObjCData.reset(new ObjCEntrypoints());
418 
419   if (CodeGenOpts.hasProfileClangUse()) {
420     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
421         CodeGenOpts.ProfileInstrumentUsePath, *FS,
422         CodeGenOpts.ProfileRemappingFile);
423     // We're checking for profile read errors in CompilerInvocation, so if
424     // there was an error it should've already been caught. If it hasn't been
425     // somehow, trip an assertion.
426     assert(ReaderOrErr);
427     PGOReader = std::move(ReaderOrErr.get());
428   }
429 
430   // If coverage mapping generation is enabled, create the
431   // CoverageMappingModuleGen object.
432   if (CodeGenOpts.CoverageMapping)
433     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
434 
435   // Generate the module name hash here if needed.
436   if (CodeGenOpts.UniqueInternalLinkageNames &&
437       !getModule().getSourceFileName().empty()) {
438     std::string Path = getModule().getSourceFileName();
439     // Check if a path substitution is needed from the MacroPrefixMap.
440     for (const auto &Entry : LangOpts.MacroPrefixMap)
441       if (Path.rfind(Entry.first, 0) != std::string::npos) {
442         Path = Entry.second + Path.substr(Entry.first.size());
443         break;
444       }
445     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
446   }
447 
448   // Record mregparm value now so it is visible through all of codegen.
449   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
450     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
451                               CodeGenOpts.NumRegisterParameters);
452 }
453 
454 CodeGenModule::~CodeGenModule() {}
455 
456 void CodeGenModule::createObjCRuntime() {
457   // This is just isGNUFamily(), but we want to force implementors of
458   // new ABIs to decide how best to do this.
459   switch (LangOpts.ObjCRuntime.getKind()) {
460   case ObjCRuntime::GNUstep:
461   case ObjCRuntime::GCC:
462   case ObjCRuntime::ObjFW:
463     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
464     return;
465 
466   case ObjCRuntime::FragileMacOSX:
467   case ObjCRuntime::MacOSX:
468   case ObjCRuntime::iOS:
469   case ObjCRuntime::WatchOS:
470     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
471     return;
472   }
473   llvm_unreachable("bad runtime kind");
474 }
475 
476 void CodeGenModule::createOpenCLRuntime() {
477   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
478 }
479 
480 void CodeGenModule::createOpenMPRuntime() {
481   // Select a specialized code generation class based on the target, if any.
482   // If it does not exist use the default implementation.
483   switch (getTriple().getArch()) {
484   case llvm::Triple::nvptx:
485   case llvm::Triple::nvptx64:
486   case llvm::Triple::amdgcn:
487     assert(getLangOpts().OpenMPIsTargetDevice &&
488            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
489     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
490     break;
491   default:
492     if (LangOpts.OpenMPSimd)
493       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
494     else
495       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
496     break;
497   }
498 }
499 
500 void CodeGenModule::createCUDARuntime() {
501   CUDARuntime.reset(CreateNVCUDARuntime(*this));
502 }
503 
504 void CodeGenModule::createHLSLRuntime() {
505   HLSLRuntime.reset(new CGHLSLRuntime(*this));
506 }
507 
508 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
509   Replacements[Name] = C;
510 }
511 
512 void CodeGenModule::applyReplacements() {
513   for (auto &I : Replacements) {
514     StringRef MangledName = I.first;
515     llvm::Constant *Replacement = I.second;
516     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
517     if (!Entry)
518       continue;
519     auto *OldF = cast<llvm::Function>(Entry);
520     auto *NewF = dyn_cast<llvm::Function>(Replacement);
521     if (!NewF) {
522       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
523         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
524       } else {
525         auto *CE = cast<llvm::ConstantExpr>(Replacement);
526         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
527                CE->getOpcode() == llvm::Instruction::GetElementPtr);
528         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
529       }
530     }
531 
532     // Replace old with new, but keep the old order.
533     OldF->replaceAllUsesWith(Replacement);
534     if (NewF) {
535       NewF->removeFromParent();
536       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
537                                                        NewF);
538     }
539     OldF->eraseFromParent();
540   }
541 }
542 
543 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
544   GlobalValReplacements.push_back(std::make_pair(GV, C));
545 }
546 
547 void CodeGenModule::applyGlobalValReplacements() {
548   for (auto &I : GlobalValReplacements) {
549     llvm::GlobalValue *GV = I.first;
550     llvm::Constant *C = I.second;
551 
552     GV->replaceAllUsesWith(C);
553     GV->eraseFromParent();
554   }
555 }
556 
557 // This is only used in aliases that we created and we know they have a
558 // linear structure.
559 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
560   const llvm::Constant *C;
561   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
562     C = GA->getAliasee();
563   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
564     C = GI->getResolver();
565   else
566     return GV;
567 
568   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
569   if (!AliaseeGV)
570     return nullptr;
571 
572   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
573   if (FinalGV == GV)
574     return nullptr;
575 
576   return FinalGV;
577 }
578 
579 static bool checkAliasedGlobal(
580     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
581     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
582     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
583     SourceRange AliasRange) {
584   GV = getAliasedGlobal(Alias);
585   if (!GV) {
586     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
587     return false;
588   }
589 
590   if (GV->hasCommonLinkage()) {
591     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
592     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
593       Diags.Report(Location, diag::err_alias_to_common);
594       return false;
595     }
596   }
597 
598   if (GV->isDeclaration()) {
599     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
600     Diags.Report(Location, diag::note_alias_requires_mangled_name)
601         << IsIFunc << IsIFunc;
602     // Provide a note if the given function is not found and exists as a
603     // mangled name.
604     for (const auto &[Decl, Name] : MangledDeclNames) {
605       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
606         IdentifierInfo *II = ND->getIdentifier();
607         if (II && II->getName() == GV->getName()) {
608           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
609               << Name
610               << FixItHint::CreateReplacement(
611                      AliasRange,
612                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
613                          .str());
614         }
615       }
616     }
617     return false;
618   }
619 
620   if (IsIFunc) {
621     // Check resolver function type.
622     const auto *F = dyn_cast<llvm::Function>(GV);
623     if (!F) {
624       Diags.Report(Location, diag::err_alias_to_undefined)
625           << IsIFunc << IsIFunc;
626       return false;
627     }
628 
629     llvm::FunctionType *FTy = F->getFunctionType();
630     if (!FTy->getReturnType()->isPointerTy()) {
631       Diags.Report(Location, diag::err_ifunc_resolver_return);
632       return false;
633     }
634   }
635 
636   return true;
637 }
638 
639 // Emit a warning if toc-data attribute is requested for global variables that
640 // have aliases and remove the toc-data attribute.
641 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
642                                  const CodeGenOptions &CodeGenOpts,
643                                  DiagnosticsEngine &Diags,
644                                  SourceLocation Location) {
645   if (GVar->hasAttribute("toc-data")) {
646     auto GVId = GVar->getName();
647     // Is this a global variable specified by the user as local?
648     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
649       Diags.Report(Location, diag::warn_toc_unsupported_type)
650           << GVId << "the variable has an alias";
651     }
652     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
653     llvm::AttributeSet NewAttributes =
654         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
655     GVar->setAttributes(NewAttributes);
656   }
657 }
658 
659 void CodeGenModule::checkAliases() {
660   // Check if the constructed aliases are well formed. It is really unfortunate
661   // that we have to do this in CodeGen, but we only construct mangled names
662   // and aliases during codegen.
663   bool Error = false;
664   DiagnosticsEngine &Diags = getDiags();
665   for (const GlobalDecl &GD : Aliases) {
666     const auto *D = cast<ValueDecl>(GD.getDecl());
667     SourceLocation Location;
668     SourceRange Range;
669     bool IsIFunc = D->hasAttr<IFuncAttr>();
670     if (const Attr *A = D->getDefiningAttr()) {
671       Location = A->getLocation();
672       Range = A->getRange();
673     } else
674       llvm_unreachable("Not an alias or ifunc?");
675 
676     StringRef MangledName = getMangledName(GD);
677     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
678     const llvm::GlobalValue *GV = nullptr;
679     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
680                             MangledDeclNames, Range)) {
681       Error = true;
682       continue;
683     }
684 
685     if (getContext().getTargetInfo().getTriple().isOSAIX())
686       if (const llvm::GlobalVariable *GVar =
687               dyn_cast<const llvm::GlobalVariable>(GV))
688         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
689                              getCodeGenOpts(), Diags, Location);
690 
691     llvm::Constant *Aliasee =
692         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
693                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
694 
695     llvm::GlobalValue *AliaseeGV;
696     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
697       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
698     else
699       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
700 
701     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
702       StringRef AliasSection = SA->getName();
703       if (AliasSection != AliaseeGV->getSection())
704         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
705             << AliasSection << IsIFunc << IsIFunc;
706     }
707 
708     // We have to handle alias to weak aliases in here. LLVM itself disallows
709     // this since the object semantics would not match the IL one. For
710     // compatibility with gcc we implement it by just pointing the alias
711     // to its aliasee's aliasee. We also warn, since the user is probably
712     // expecting the link to be weak.
713     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
714       if (GA->isInterposable()) {
715         Diags.Report(Location, diag::warn_alias_to_weak_alias)
716             << GV->getName() << GA->getName() << IsIFunc;
717         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
718             GA->getAliasee(), Alias->getType());
719 
720         if (IsIFunc)
721           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
722         else
723           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
724       }
725     }
726     // ifunc resolvers are usually implemented to run before sanitizer
727     // initialization. Disable instrumentation to prevent the ordering issue.
728     if (IsIFunc)
729       cast<llvm::Function>(Aliasee)->addFnAttr(
730           llvm::Attribute::DisableSanitizerInstrumentation);
731   }
732   if (!Error)
733     return;
734 
735   for (const GlobalDecl &GD : Aliases) {
736     StringRef MangledName = getMangledName(GD);
737     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
738     Alias->replaceAllUsesWith(llvm::PoisonValue::get(Alias->getType()));
739     Alias->eraseFromParent();
740   }
741 }
742 
743 void CodeGenModule::clear() {
744   DeferredDeclsToEmit.clear();
745   EmittedDeferredDecls.clear();
746   DeferredAnnotations.clear();
747   if (OpenMPRuntime)
748     OpenMPRuntime->clear();
749 }
750 
751 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
752                                        StringRef MainFile) {
753   if (!hasDiagnostics())
754     return;
755   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
756     if (MainFile.empty())
757       MainFile = "<stdin>";
758     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
759   } else {
760     if (Mismatched > 0)
761       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
762 
763     if (Missing > 0)
764       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
765   }
766 }
767 
768 static std::optional<llvm::GlobalValue::VisibilityTypes>
769 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
770   // Map to LLVM visibility.
771   switch (K) {
772   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
773     return std::nullopt;
774   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
775     return llvm::GlobalValue::DefaultVisibility;
776   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
777     return llvm::GlobalValue::HiddenVisibility;
778   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
779     return llvm::GlobalValue::ProtectedVisibility;
780   }
781   llvm_unreachable("unknown option value!");
782 }
783 
784 static void
785 setLLVMVisibility(llvm::GlobalValue &GV,
786                   std::optional<llvm::GlobalValue::VisibilityTypes> V) {
787   if (!V)
788     return;
789 
790   // Reset DSO locality before setting the visibility. This removes
791   // any effects that visibility options and annotations may have
792   // had on the DSO locality. Setting the visibility will implicitly set
793   // appropriate globals to DSO Local; however, this will be pessimistic
794   // w.r.t. to the normal compiler IRGen.
795   GV.setDSOLocal(false);
796   GV.setVisibility(*V);
797 }
798 
799 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
800                                              llvm::Module &M) {
801   if (!LO.VisibilityFromDLLStorageClass)
802     return;
803 
804   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
805       getLLVMVisibility(LO.getDLLExportVisibility());
806 
807   std::optional<llvm::GlobalValue::VisibilityTypes>
808       NoDLLStorageClassVisibility =
809           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
810 
811   std::optional<llvm::GlobalValue::VisibilityTypes>
812       ExternDeclDLLImportVisibility =
813           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
814 
815   std::optional<llvm::GlobalValue::VisibilityTypes>
816       ExternDeclNoDLLStorageClassVisibility =
817           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
818 
819   for (llvm::GlobalValue &GV : M.global_values()) {
820     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
821       continue;
822 
823     if (GV.isDeclarationForLinker())
824       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
825                                     llvm::GlobalValue::DLLImportStorageClass
826                                 ? ExternDeclDLLImportVisibility
827                                 : ExternDeclNoDLLStorageClassVisibility);
828     else
829       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
830                                     llvm::GlobalValue::DLLExportStorageClass
831                                 ? DLLExportVisibility
832                                 : NoDLLStorageClassVisibility);
833 
834     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
835   }
836 }
837 
838 static bool isStackProtectorOn(const LangOptions &LangOpts,
839                                const llvm::Triple &Triple,
840                                clang::LangOptions::StackProtectorMode Mode) {
841   if (Triple.isAMDGPU() || Triple.isNVPTX())
842     return false;
843   return LangOpts.getStackProtector() == Mode;
844 }
845 
846 void CodeGenModule::Release() {
847   Module *Primary = getContext().getCurrentNamedModule();
848   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
849     EmitModuleInitializers(Primary);
850   EmitDeferred();
851   DeferredDecls.insert(EmittedDeferredDecls.begin(),
852                        EmittedDeferredDecls.end());
853   EmittedDeferredDecls.clear();
854   EmitVTablesOpportunistically();
855   applyGlobalValReplacements();
856   applyReplacements();
857   emitMultiVersionFunctions();
858 
859   if (Context.getLangOpts().IncrementalExtensions &&
860       GlobalTopLevelStmtBlockInFlight.first) {
861     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
862     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
863     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
864   }
865 
866   // Module implementations are initialized the same way as a regular TU that
867   // imports one or more modules.
868   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
869     EmitCXXModuleInitFunc(Primary);
870   else
871     EmitCXXGlobalInitFunc();
872   EmitCXXGlobalCleanUpFunc();
873   registerGlobalDtorsWithAtExit();
874   EmitCXXThreadLocalInitFunc();
875   if (ObjCRuntime)
876     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
877       AddGlobalCtor(ObjCInitFunction);
878   if (Context.getLangOpts().CUDA && CUDARuntime) {
879     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
880       AddGlobalCtor(CudaCtorFunction);
881   }
882   if (OpenMPRuntime) {
883     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
884     OpenMPRuntime->clear();
885   }
886   if (PGOReader) {
887     getModule().setProfileSummary(
888         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
889         llvm::ProfileSummary::PSK_Instr);
890     if (PGOStats.hasDiagnostics())
891       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
892   }
893   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
894     return L.LexOrder < R.LexOrder;
895   });
896   EmitCtorList(GlobalCtors, "llvm.global_ctors");
897   EmitCtorList(GlobalDtors, "llvm.global_dtors");
898   EmitGlobalAnnotations();
899   EmitStaticExternCAliases();
900   checkAliases();
901   EmitDeferredUnusedCoverageMappings();
902   CodeGenPGO(*this).setValueProfilingFlag(getModule());
903   CodeGenPGO(*this).setProfileVersion(getModule());
904   if (CoverageMapping)
905     CoverageMapping->emit();
906   if (CodeGenOpts.SanitizeCfiCrossDso) {
907     CodeGenFunction(*this).EmitCfiCheckFail();
908     CodeGenFunction(*this).EmitCfiCheckStub();
909   }
910   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
911     finalizeKCFITypes();
912   emitAtAvailableLinkGuard();
913   if (Context.getTargetInfo().getTriple().isWasm())
914     EmitMainVoidAlias();
915 
916   if (getTriple().isAMDGPU() ||
917       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
918     // Emit amdhsa_code_object_version module flag, which is code object version
919     // times 100.
920     if (getTarget().getTargetOpts().CodeObjectVersion !=
921         llvm::CodeObjectVersionKind::COV_None) {
922       getModule().addModuleFlag(llvm::Module::Error,
923                                 "amdhsa_code_object_version",
924                                 getTarget().getTargetOpts().CodeObjectVersion);
925     }
926 
927     // Currently, "-mprintf-kind" option is only supported for HIP
928     if (LangOpts.HIP) {
929       auto *MDStr = llvm::MDString::get(
930           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
931                              TargetOptions::AMDGPUPrintfKind::Hostcall)
932                                 ? "hostcall"
933                                 : "buffered");
934       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
935                                 MDStr);
936     }
937   }
938 
939   // Emit a global array containing all external kernels or device variables
940   // used by host functions and mark it as used for CUDA/HIP. This is necessary
941   // to get kernels or device variables in archives linked in even if these
942   // kernels or device variables are only used in host functions.
943   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
944     SmallVector<llvm::Constant *, 8> UsedArray;
945     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
946       GlobalDecl GD;
947       if (auto *FD = dyn_cast<FunctionDecl>(D))
948         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
949       else
950         GD = GlobalDecl(D);
951       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
952           GetAddrOfGlobal(GD), Int8PtrTy));
953     }
954 
955     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
956 
957     auto *GV = new llvm::GlobalVariable(
958         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
959         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
960     addCompilerUsedGlobal(GV);
961   }
962   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
963     // Emit a unique ID so that host and device binaries from the same
964     // compilation unit can be associated.
965     auto *GV = new llvm::GlobalVariable(
966         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
967         llvm::Constant::getNullValue(Int8Ty),
968         "__hip_cuid_" + getContext().getCUIDHash());
969     addCompilerUsedGlobal(GV);
970   }
971   emitLLVMUsed();
972   if (SanStats)
973     SanStats->finish();
974 
975   if (CodeGenOpts.Autolink &&
976       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
977     EmitModuleLinkOptions();
978   }
979 
980   // On ELF we pass the dependent library specifiers directly to the linker
981   // without manipulating them. This is in contrast to other platforms where
982   // they are mapped to a specific linker option by the compiler. This
983   // difference is a result of the greater variety of ELF linkers and the fact
984   // that ELF linkers tend to handle libraries in a more complicated fashion
985   // than on other platforms. This forces us to defer handling the dependent
986   // libs to the linker.
987   //
988   // CUDA/HIP device and host libraries are different. Currently there is no
989   // way to differentiate dependent libraries for host or device. Existing
990   // usage of #pragma comment(lib, *) is intended for host libraries on
991   // Windows. Therefore emit llvm.dependent-libraries only for host.
992   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
993     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
994     for (auto *MD : ELFDependentLibraries)
995       NMD->addOperand(MD);
996   }
997 
998   if (CodeGenOpts.DwarfVersion) {
999     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
1000                               CodeGenOpts.DwarfVersion);
1001   }
1002 
1003   if (CodeGenOpts.Dwarf64)
1004     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1005 
1006   if (Context.getLangOpts().SemanticInterposition)
1007     // Require various optimization to respect semantic interposition.
1008     getModule().setSemanticInterposition(true);
1009 
1010   if (CodeGenOpts.EmitCodeView) {
1011     // Indicate that we want CodeView in the metadata.
1012     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1013   }
1014   if (CodeGenOpts.CodeViewGHash) {
1015     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1016   }
1017   if (CodeGenOpts.ControlFlowGuard) {
1018     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1019     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1020   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1021     // Function ID tables for Control Flow Guard (cfguard=1).
1022     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1023   }
1024   if (CodeGenOpts.EHContGuard) {
1025     // Function ID tables for EH Continuation Guard.
1026     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1027   }
1028   if (Context.getLangOpts().Kernel) {
1029     // Note if we are compiling with /kernel.
1030     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1031   }
1032   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1033     // We don't support LTO with 2 with different StrictVTablePointers
1034     // FIXME: we could support it by stripping all the information introduced
1035     // by StrictVTablePointers.
1036 
1037     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1038 
1039     llvm::Metadata *Ops[2] = {
1040               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1041               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1042                   llvm::Type::getInt32Ty(VMContext), 1))};
1043 
1044     getModule().addModuleFlag(llvm::Module::Require,
1045                               "StrictVTablePointersRequirement",
1046                               llvm::MDNode::get(VMContext, Ops));
1047   }
1048   if (getModuleDebugInfo())
1049     // We support a single version in the linked module. The LLVM
1050     // parser will drop debug info with a different version number
1051     // (and warn about it, too).
1052     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1053                               llvm::DEBUG_METADATA_VERSION);
1054 
1055   // We need to record the widths of enums and wchar_t, so that we can generate
1056   // the correct build attributes in the ARM backend. wchar_size is also used by
1057   // TargetLibraryInfo.
1058   uint64_t WCharWidth =
1059       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1060   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1061 
1062   if (getTriple().isOSzOS()) {
1063     getModule().addModuleFlag(llvm::Module::Warning,
1064                               "zos_product_major_version",
1065                               uint32_t(CLANG_VERSION_MAJOR));
1066     getModule().addModuleFlag(llvm::Module::Warning,
1067                               "zos_product_minor_version",
1068                               uint32_t(CLANG_VERSION_MINOR));
1069     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1070                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1071     std::string ProductId = getClangVendor() + "clang";
1072     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1073                               llvm::MDString::get(VMContext, ProductId));
1074 
1075     // Record the language because we need it for the PPA2.
1076     StringRef lang_str = languageToString(
1077         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1078     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1079                               llvm::MDString::get(VMContext, lang_str));
1080 
1081     time_t TT = PreprocessorOpts.SourceDateEpoch
1082                     ? *PreprocessorOpts.SourceDateEpoch
1083                     : std::time(nullptr);
1084     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1085                               static_cast<uint64_t>(TT));
1086 
1087     // Multiple modes will be supported here.
1088     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1089                               llvm::MDString::get(VMContext, "ascii"));
1090   }
1091 
1092   llvm::Triple T = Context.getTargetInfo().getTriple();
1093   if (T.isARM() || T.isThumb()) {
1094     // The minimum width of an enum in bytes
1095     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1096     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1097   }
1098 
1099   if (T.isRISCV()) {
1100     StringRef ABIStr = Target.getABI();
1101     llvm::LLVMContext &Ctx = TheModule.getContext();
1102     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1103                               llvm::MDString::get(Ctx, ABIStr));
1104 
1105     // Add the canonical ISA string as metadata so the backend can set the ELF
1106     // attributes correctly. We use AppendUnique so LTO will keep all of the
1107     // unique ISA strings that were linked together.
1108     const std::vector<std::string> &Features =
1109         getTarget().getTargetOpts().Features;
1110     auto ParseResult =
1111         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1112     if (!errorToBool(ParseResult.takeError()))
1113       getModule().addModuleFlag(
1114           llvm::Module::AppendUnique, "riscv-isa",
1115           llvm::MDNode::get(
1116               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1117   }
1118 
1119   if (CodeGenOpts.SanitizeCfiCrossDso) {
1120     // Indicate that we want cross-DSO control flow integrity checks.
1121     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1122   }
1123 
1124   if (CodeGenOpts.WholeProgramVTables) {
1125     // Indicate whether VFE was enabled for this module, so that the
1126     // vcall_visibility metadata added under whole program vtables is handled
1127     // appropriately in the optimizer.
1128     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1129                               CodeGenOpts.VirtualFunctionElimination);
1130   }
1131 
1132   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1133     getModule().addModuleFlag(llvm::Module::Override,
1134                               "CFI Canonical Jump Tables",
1135                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1136   }
1137 
1138   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1139     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1140                               1);
1141   }
1142 
1143   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1144     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1145     // KCFI assumes patchable-function-prefix is the same for all indirectly
1146     // called functions. Store the expected offset for code generation.
1147     if (CodeGenOpts.PatchableFunctionEntryOffset)
1148       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1149                                 CodeGenOpts.PatchableFunctionEntryOffset);
1150   }
1151 
1152   if (CodeGenOpts.CFProtectionReturn &&
1153       Target.checkCFProtectionReturnSupported(getDiags())) {
1154     // Indicate that we want to instrument return control flow protection.
1155     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1156                               1);
1157   }
1158 
1159   if (CodeGenOpts.CFProtectionBranch &&
1160       Target.checkCFProtectionBranchSupported(getDiags())) {
1161     // Indicate that we want to instrument branch control flow protection.
1162     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1163                               1);
1164 
1165     auto Scheme = CodeGenOpts.getCFBranchLabelScheme();
1166     if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) {
1167       if (Scheme == CFBranchLabelSchemeKind::Default)
1168         Scheme = Target.getDefaultCFBranchLabelScheme();
1169       getModule().addModuleFlag(
1170           llvm::Module::Error, "cf-branch-label-scheme",
1171           llvm::MDString::get(getLLVMContext(),
1172                               getCFBranchLabelSchemeFlagVal(Scheme)));
1173     }
1174   }
1175 
1176   if (CodeGenOpts.FunctionReturnThunks)
1177     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1178 
1179   if (CodeGenOpts.IndirectBranchCSPrefix)
1180     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1181 
1182   // Add module metadata for return address signing (ignoring
1183   // non-leaf/all) and stack tagging. These are actually turned on by function
1184   // attributes, but we use module metadata to emit build attributes. This is
1185   // needed for LTO, where the function attributes are inside bitcode
1186   // serialised into a global variable by the time build attributes are
1187   // emitted, so we can't access them. LTO objects could be compiled with
1188   // different flags therefore module flags are set to "Min" behavior to achieve
1189   // the same end result of the normal build where e.g BTI is off if any object
1190   // doesn't support it.
1191   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1192       LangOpts.getSignReturnAddressScope() !=
1193           LangOptions::SignReturnAddressScopeKind::None)
1194     getModule().addModuleFlag(llvm::Module::Override,
1195                               "sign-return-address-buildattr", 1);
1196   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1197     getModule().addModuleFlag(llvm::Module::Override,
1198                               "tag-stack-memory-buildattr", 1);
1199 
1200   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1201     if (LangOpts.BranchTargetEnforcement)
1202       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1203                                 1);
1204     if (LangOpts.BranchProtectionPAuthLR)
1205       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1206                                 1);
1207     if (LangOpts.GuardedControlStack)
1208       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1209     if (LangOpts.hasSignReturnAddress())
1210       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1211     if (LangOpts.isSignReturnAddressScopeAll())
1212       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1213                                 1);
1214     if (!LangOpts.isSignReturnAddressWithAKey())
1215       getModule().addModuleFlag(llvm::Module::Min,
1216                                 "sign-return-address-with-bkey", 1);
1217 
1218     if (LangOpts.PointerAuthELFGOT)
1219       getModule().addModuleFlag(llvm::Module::Min, "ptrauth-elf-got", 1);
1220 
1221     if (getTriple().isOSLinux()) {
1222       if (LangOpts.PointerAuthCalls)
1223         getModule().addModuleFlag(llvm::Module::Min, "ptrauth-sign-personality",
1224                                   1);
1225       assert(getTriple().isOSBinFormatELF());
1226       using namespace llvm::ELF;
1227       uint64_t PAuthABIVersion =
1228           (LangOpts.PointerAuthIntrinsics
1229            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1230           (LangOpts.PointerAuthCalls
1231            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1232           (LangOpts.PointerAuthReturns
1233            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1234           (LangOpts.PointerAuthAuthTraps
1235            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1236           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1237            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1238           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1239            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1240           (LangOpts.PointerAuthInitFini
1241            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1242           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1243            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1244           (LangOpts.PointerAuthELFGOT
1245            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1246           (LangOpts.PointerAuthIndirectGotos
1247            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1248           (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1249            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1250           (LangOpts.PointerAuthFunctionTypeDiscrimination
1251            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1252       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1253                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1254                     "Update when new enum items are defined");
1255       if (PAuthABIVersion != 0) {
1256         getModule().addModuleFlag(llvm::Module::Error,
1257                                   "aarch64-elf-pauthabi-platform",
1258                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1259         getModule().addModuleFlag(llvm::Module::Error,
1260                                   "aarch64-elf-pauthabi-version",
1261                                   PAuthABIVersion);
1262       }
1263     }
1264   }
1265 
1266   if (CodeGenOpts.StackClashProtector)
1267     getModule().addModuleFlag(
1268         llvm::Module::Override, "probe-stack",
1269         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1270 
1271   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1272     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1273                               CodeGenOpts.StackProbeSize);
1274 
1275   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1276     llvm::LLVMContext &Ctx = TheModule.getContext();
1277     getModule().addModuleFlag(
1278         llvm::Module::Error, "MemProfProfileFilename",
1279         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1280   }
1281 
1282   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1283     // Indicate whether __nvvm_reflect should be configured to flush denormal
1284     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1285     // property.)
1286     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1287                               CodeGenOpts.FP32DenormalMode.Output !=
1288                                   llvm::DenormalMode::IEEE);
1289   }
1290 
1291   if (LangOpts.EHAsynch)
1292     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1293 
1294   // Indicate whether this Module was compiled with -fopenmp
1295   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1296     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1297   if (getLangOpts().OpenMPIsTargetDevice)
1298     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1299                               LangOpts.OpenMP);
1300 
1301   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1302   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1303     EmitOpenCLMetadata();
1304     // Emit SPIR version.
1305     if (getTriple().isSPIR()) {
1306       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1307       // opencl.spir.version named metadata.
1308       // C++ for OpenCL has a distinct mapping for version compatibility with
1309       // OpenCL.
1310       auto Version = LangOpts.getOpenCLCompatibleVersion();
1311       llvm::Metadata *SPIRVerElts[] = {
1312           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1313               Int32Ty, Version / 100)),
1314           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1315               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1316       llvm::NamedMDNode *SPIRVerMD =
1317           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1318       llvm::LLVMContext &Ctx = TheModule.getContext();
1319       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1320     }
1321   }
1322 
1323   // HLSL related end of code gen work items.
1324   if (LangOpts.HLSL)
1325     getHLSLRuntime().finishCodeGen();
1326 
1327   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1328     assert(PLevel < 3 && "Invalid PIC Level");
1329     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1330     if (Context.getLangOpts().PIE)
1331       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1332   }
1333 
1334   if (getCodeGenOpts().CodeModel.size() > 0) {
1335     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1336                   .Case("tiny", llvm::CodeModel::Tiny)
1337                   .Case("small", llvm::CodeModel::Small)
1338                   .Case("kernel", llvm::CodeModel::Kernel)
1339                   .Case("medium", llvm::CodeModel::Medium)
1340                   .Case("large", llvm::CodeModel::Large)
1341                   .Default(~0u);
1342     if (CM != ~0u) {
1343       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1344       getModule().setCodeModel(codeModel);
1345 
1346       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1347           Context.getTargetInfo().getTriple().getArch() ==
1348               llvm::Triple::x86_64) {
1349         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1350       }
1351     }
1352   }
1353 
1354   if (CodeGenOpts.NoPLT)
1355     getModule().setRtLibUseGOT();
1356   if (getTriple().isOSBinFormatELF() &&
1357       CodeGenOpts.DirectAccessExternalData !=
1358           getModule().getDirectAccessExternalData()) {
1359     getModule().setDirectAccessExternalData(
1360         CodeGenOpts.DirectAccessExternalData);
1361   }
1362   if (CodeGenOpts.UnwindTables)
1363     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1364 
1365   switch (CodeGenOpts.getFramePointer()) {
1366   case CodeGenOptions::FramePointerKind::None:
1367     // 0 ("none") is the default.
1368     break;
1369   case CodeGenOptions::FramePointerKind::Reserved:
1370     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1371     break;
1372   case CodeGenOptions::FramePointerKind::NonLeaf:
1373     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1374     break;
1375   case CodeGenOptions::FramePointerKind::All:
1376     getModule().setFramePointer(llvm::FramePointerKind::All);
1377     break;
1378   }
1379 
1380   SimplifyPersonality();
1381 
1382   if (getCodeGenOpts().EmitDeclMetadata)
1383     EmitDeclMetadata();
1384 
1385   if (getCodeGenOpts().CoverageNotesFile.size() ||
1386       getCodeGenOpts().CoverageDataFile.size())
1387     EmitCoverageFile();
1388 
1389   if (CGDebugInfo *DI = getModuleDebugInfo())
1390     DI->finalize();
1391 
1392   if (getCodeGenOpts().EmitVersionIdentMetadata)
1393     EmitVersionIdentMetadata();
1394 
1395   if (!getCodeGenOpts().RecordCommandLine.empty())
1396     EmitCommandLineMetadata();
1397 
1398   if (!getCodeGenOpts().StackProtectorGuard.empty())
1399     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1400   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1401     getModule().setStackProtectorGuardReg(
1402         getCodeGenOpts().StackProtectorGuardReg);
1403   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1404     getModule().setStackProtectorGuardSymbol(
1405         getCodeGenOpts().StackProtectorGuardSymbol);
1406   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1407     getModule().setStackProtectorGuardOffset(
1408         getCodeGenOpts().StackProtectorGuardOffset);
1409   if (getCodeGenOpts().StackAlignment)
1410     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1411   if (getCodeGenOpts().SkipRaxSetup)
1412     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1413   if (getLangOpts().RegCall4)
1414     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1415 
1416   if (getContext().getTargetInfo().getMaxTLSAlign())
1417     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1418                               getContext().getTargetInfo().getMaxTLSAlign());
1419 
1420   getTargetCodeGenInfo().emitTargetGlobals(*this);
1421 
1422   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1423 
1424   EmitBackendOptionsMetadata(getCodeGenOpts());
1425 
1426   // If there is device offloading code embed it in the host now.
1427   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1428 
1429   // Set visibility from DLL storage class
1430   // We do this at the end of LLVM IR generation; after any operation
1431   // that might affect the DLL storage class or the visibility, and
1432   // before anything that might act on these.
1433   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1434 
1435   // Check the tail call symbols are truly undefined.
1436   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1437     for (auto &I : MustTailCallUndefinedGlobals) {
1438       if (!I.first->isDefined())
1439         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1440       else {
1441         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1442         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1443         if (!Entry || Entry->isWeakForLinker() ||
1444             Entry->isDeclarationForLinker())
1445           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1446       }
1447     }
1448   }
1449 }
1450 
1451 void CodeGenModule::EmitOpenCLMetadata() {
1452   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1453   // opencl.ocl.version named metadata node.
1454   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1455   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1456 
1457   auto EmitVersion = [this](StringRef MDName, int Version) {
1458     llvm::Metadata *OCLVerElts[] = {
1459         llvm::ConstantAsMetadata::get(
1460             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1461         llvm::ConstantAsMetadata::get(
1462             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1463     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1464     llvm::LLVMContext &Ctx = TheModule.getContext();
1465     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1466   };
1467 
1468   EmitVersion("opencl.ocl.version", CLVersion);
1469   if (LangOpts.OpenCLCPlusPlus) {
1470     // In addition to the OpenCL compatible version, emit the C++ version.
1471     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1472   }
1473 }
1474 
1475 void CodeGenModule::EmitBackendOptionsMetadata(
1476     const CodeGenOptions &CodeGenOpts) {
1477   if (getTriple().isRISCV()) {
1478     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1479                               CodeGenOpts.SmallDataLimit);
1480   }
1481 }
1482 
1483 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1484   // Make sure that this type is translated.
1485   getTypes().UpdateCompletedType(TD);
1486 }
1487 
1488 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1489   // Make sure that this type is translated.
1490   getTypes().RefreshTypeCacheForClass(RD);
1491 }
1492 
1493 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1494   if (!TBAA)
1495     return nullptr;
1496   return TBAA->getTypeInfo(QTy);
1497 }
1498 
1499 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1500   if (!TBAA)
1501     return TBAAAccessInfo();
1502   if (getLangOpts().CUDAIsDevice) {
1503     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1504     // access info.
1505     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1506       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1507           nullptr)
1508         return TBAAAccessInfo();
1509     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1510       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1511           nullptr)
1512         return TBAAAccessInfo();
1513     }
1514   }
1515   return TBAA->getAccessInfo(AccessType);
1516 }
1517 
1518 TBAAAccessInfo
1519 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1520   if (!TBAA)
1521     return TBAAAccessInfo();
1522   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1523 }
1524 
1525 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1526   if (!TBAA)
1527     return nullptr;
1528   return TBAA->getTBAAStructInfo(QTy);
1529 }
1530 
1531 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1532   if (!TBAA)
1533     return nullptr;
1534   return TBAA->getBaseTypeInfo(QTy);
1535 }
1536 
1537 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1538   if (!TBAA)
1539     return nullptr;
1540   return TBAA->getAccessTagInfo(Info);
1541 }
1542 
1543 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1544                                                    TBAAAccessInfo TargetInfo) {
1545   if (!TBAA)
1546     return TBAAAccessInfo();
1547   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1548 }
1549 
1550 TBAAAccessInfo
1551 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1552                                                    TBAAAccessInfo InfoB) {
1553   if (!TBAA)
1554     return TBAAAccessInfo();
1555   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1556 }
1557 
1558 TBAAAccessInfo
1559 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1560                                               TBAAAccessInfo SrcInfo) {
1561   if (!TBAA)
1562     return TBAAAccessInfo();
1563   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1564 }
1565 
1566 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1567                                                 TBAAAccessInfo TBAAInfo) {
1568   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1569     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1570 }
1571 
1572 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1573     llvm::Instruction *I, const CXXRecordDecl *RD) {
1574   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1575                  llvm::MDNode::get(getLLVMContext(), {}));
1576 }
1577 
1578 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1579   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1580   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1581 }
1582 
1583 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1584 /// specified stmt yet.
1585 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1586   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1587                                                "cannot compile this %0 yet");
1588   std::string Msg = Type;
1589   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1590       << Msg << S->getSourceRange();
1591 }
1592 
1593 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1594 /// specified decl yet.
1595 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1596   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1597                                                "cannot compile this %0 yet");
1598   std::string Msg = Type;
1599   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1600 }
1601 
1602 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc,
1603                                                 llvm::function_ref<void()> Fn) {
1604   StackHandler.runWithSufficientStackSpace(Loc, Fn);
1605 }
1606 
1607 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1608   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1609 }
1610 
1611 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1612                                         const NamedDecl *D) const {
1613   // Internal definitions always have default visibility.
1614   if (GV->hasLocalLinkage()) {
1615     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1616     return;
1617   }
1618   if (!D)
1619     return;
1620 
1621   // Set visibility for definitions, and for declarations if requested globally
1622   // or set explicitly.
1623   LinkageInfo LV = D->getLinkageAndVisibility();
1624 
1625   // OpenMP declare target variables must be visible to the host so they can
1626   // be registered. We require protected visibility unless the variable has
1627   // the DT_nohost modifier and does not need to be registered.
1628   if (Context.getLangOpts().OpenMP &&
1629       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1630       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1631       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1632           OMPDeclareTargetDeclAttr::DT_NoHost &&
1633       LV.getVisibility() == HiddenVisibility) {
1634     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1635     return;
1636   }
1637 
1638   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1639     // Reject incompatible dlllstorage and visibility annotations.
1640     if (!LV.isVisibilityExplicit())
1641       return;
1642     if (GV->hasDLLExportStorageClass()) {
1643       if (LV.getVisibility() == HiddenVisibility)
1644         getDiags().Report(D->getLocation(),
1645                           diag::err_hidden_visibility_dllexport);
1646     } else if (LV.getVisibility() != DefaultVisibility) {
1647       getDiags().Report(D->getLocation(),
1648                         diag::err_non_default_visibility_dllimport);
1649     }
1650     return;
1651   }
1652 
1653   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1654       !GV->isDeclarationForLinker())
1655     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1656 }
1657 
1658 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1659                                  llvm::GlobalValue *GV) {
1660   if (GV->hasLocalLinkage())
1661     return true;
1662 
1663   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1664     return true;
1665 
1666   // DLLImport explicitly marks the GV as external.
1667   if (GV->hasDLLImportStorageClass())
1668     return false;
1669 
1670   const llvm::Triple &TT = CGM.getTriple();
1671   const auto &CGOpts = CGM.getCodeGenOpts();
1672   if (TT.isWindowsGNUEnvironment()) {
1673     // In MinGW, variables without DLLImport can still be automatically
1674     // imported from a DLL by the linker; don't mark variables that
1675     // potentially could come from another DLL as DSO local.
1676 
1677     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1678     // (and this actually happens in the public interface of libstdc++), so
1679     // such variables can't be marked as DSO local. (Native TLS variables
1680     // can't be dllimported at all, though.)
1681     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1682         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1683         CGOpts.AutoImport)
1684       return false;
1685   }
1686 
1687   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1688   // remain unresolved in the link, they can be resolved to zero, which is
1689   // outside the current DSO.
1690   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1691     return false;
1692 
1693   // Every other GV is local on COFF.
1694   // Make an exception for windows OS in the triple: Some firmware builds use
1695   // *-win32-macho triples. This (accidentally?) produced windows relocations
1696   // without GOT tables in older clang versions; Keep this behaviour.
1697   // FIXME: even thread local variables?
1698   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1699     return true;
1700 
1701   // Only handle COFF and ELF for now.
1702   if (!TT.isOSBinFormatELF())
1703     return false;
1704 
1705   // If this is not an executable, don't assume anything is local.
1706   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1707   const auto &LOpts = CGM.getLangOpts();
1708   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1709     // On ELF, if -fno-semantic-interposition is specified and the target
1710     // supports local aliases, there will be neither CC1
1711     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1712     // dso_local on the function if using a local alias is preferable (can avoid
1713     // PLT indirection).
1714     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1715       return false;
1716     return !(CGM.getLangOpts().SemanticInterposition ||
1717              CGM.getLangOpts().HalfNoSemanticInterposition);
1718   }
1719 
1720   // A definition cannot be preempted from an executable.
1721   if (!GV->isDeclarationForLinker())
1722     return true;
1723 
1724   // Most PIC code sequences that assume that a symbol is local cannot produce a
1725   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1726   // depended, it seems worth it to handle it here.
1727   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1728     return false;
1729 
1730   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1731   if (TT.isPPC64())
1732     return false;
1733 
1734   if (CGOpts.DirectAccessExternalData) {
1735     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1736     // for non-thread-local variables. If the symbol is not defined in the
1737     // executable, a copy relocation will be needed at link time. dso_local is
1738     // excluded for thread-local variables because they generally don't support
1739     // copy relocations.
1740     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1741       if (!Var->isThreadLocal())
1742         return true;
1743 
1744     // -fno-pic sets dso_local on a function declaration to allow direct
1745     // accesses when taking its address (similar to a data symbol). If the
1746     // function is not defined in the executable, a canonical PLT entry will be
1747     // needed at link time. -fno-direct-access-external-data can avoid the
1748     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1749     // it could just cause trouble without providing perceptible benefits.
1750     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1751       return true;
1752   }
1753 
1754   // If we can use copy relocations we can assume it is local.
1755 
1756   // Otherwise don't assume it is local.
1757   return false;
1758 }
1759 
1760 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1761   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1762 }
1763 
1764 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1765                                           GlobalDecl GD) const {
1766   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1767   // C++ destructors have a few C++ ABI specific special cases.
1768   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1769     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1770     return;
1771   }
1772   setDLLImportDLLExport(GV, D);
1773 }
1774 
1775 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1776                                           const NamedDecl *D) const {
1777   if (D && D->isExternallyVisible()) {
1778     if (D->hasAttr<DLLImportAttr>())
1779       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1780     else if ((D->hasAttr<DLLExportAttr>() ||
1781               shouldMapVisibilityToDLLExport(D)) &&
1782              !GV->isDeclarationForLinker())
1783       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1784   }
1785 }
1786 
1787 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1788                                     GlobalDecl GD) const {
1789   setDLLImportDLLExport(GV, GD);
1790   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1791 }
1792 
1793 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1794                                     const NamedDecl *D) const {
1795   setDLLImportDLLExport(GV, D);
1796   setGVPropertiesAux(GV, D);
1797 }
1798 
1799 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1800                                        const NamedDecl *D) const {
1801   setGlobalVisibility(GV, D);
1802   setDSOLocal(GV);
1803   GV->setPartition(CodeGenOpts.SymbolPartition);
1804 }
1805 
1806 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1807   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1808       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1809       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1810       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1811       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1812 }
1813 
1814 llvm::GlobalVariable::ThreadLocalMode
1815 CodeGenModule::GetDefaultLLVMTLSModel() const {
1816   switch (CodeGenOpts.getDefaultTLSModel()) {
1817   case CodeGenOptions::GeneralDynamicTLSModel:
1818     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1819   case CodeGenOptions::LocalDynamicTLSModel:
1820     return llvm::GlobalVariable::LocalDynamicTLSModel;
1821   case CodeGenOptions::InitialExecTLSModel:
1822     return llvm::GlobalVariable::InitialExecTLSModel;
1823   case CodeGenOptions::LocalExecTLSModel:
1824     return llvm::GlobalVariable::LocalExecTLSModel;
1825   }
1826   llvm_unreachable("Invalid TLS model!");
1827 }
1828 
1829 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1830   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1831 
1832   llvm::GlobalValue::ThreadLocalMode TLM;
1833   TLM = GetDefaultLLVMTLSModel();
1834 
1835   // Override the TLS model if it is explicitly specified.
1836   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1837     TLM = GetLLVMTLSModel(Attr->getModel());
1838   }
1839 
1840   GV->setThreadLocalMode(TLM);
1841 }
1842 
1843 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1844                                           StringRef Name) {
1845   const TargetInfo &Target = CGM.getTarget();
1846   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1847 }
1848 
1849 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1850                                                  const CPUSpecificAttr *Attr,
1851                                                  unsigned CPUIndex,
1852                                                  raw_ostream &Out) {
1853   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1854   // supported.
1855   if (Attr)
1856     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1857   else if (CGM.getTarget().supportsIFunc())
1858     Out << ".resolver";
1859 }
1860 
1861 // Returns true if GD is a function decl with internal linkage and
1862 // needs a unique suffix after the mangled name.
1863 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1864                                         CodeGenModule &CGM) {
1865   const Decl *D = GD.getDecl();
1866   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1867          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1868 }
1869 
1870 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1871                                       const NamedDecl *ND,
1872                                       bool OmitMultiVersionMangling = false) {
1873   SmallString<256> Buffer;
1874   llvm::raw_svector_ostream Out(Buffer);
1875   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1876   if (!CGM.getModuleNameHash().empty())
1877     MC.needsUniqueInternalLinkageNames();
1878   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1879   if (ShouldMangle)
1880     MC.mangleName(GD.getWithDecl(ND), Out);
1881   else {
1882     IdentifierInfo *II = ND->getIdentifier();
1883     assert(II && "Attempt to mangle unnamed decl.");
1884     const auto *FD = dyn_cast<FunctionDecl>(ND);
1885 
1886     if (FD &&
1887         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1888       if (CGM.getLangOpts().RegCall4)
1889         Out << "__regcall4__" << II->getName();
1890       else
1891         Out << "__regcall3__" << II->getName();
1892     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1893                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1894       Out << "__device_stub__" << II->getName();
1895     } else {
1896       Out << II->getName();
1897     }
1898   }
1899 
1900   // Check if the module name hash should be appended for internal linkage
1901   // symbols.   This should come before multi-version target suffixes are
1902   // appended. This is to keep the name and module hash suffix of the
1903   // internal linkage function together.  The unique suffix should only be
1904   // added when name mangling is done to make sure that the final name can
1905   // be properly demangled.  For example, for C functions without prototypes,
1906   // name mangling is not done and the unique suffix should not be appeneded
1907   // then.
1908   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1909     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1910            "Hash computed when not explicitly requested");
1911     Out << CGM.getModuleNameHash();
1912   }
1913 
1914   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1915     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1916       switch (FD->getMultiVersionKind()) {
1917       case MultiVersionKind::CPUDispatch:
1918       case MultiVersionKind::CPUSpecific:
1919         AppendCPUSpecificCPUDispatchMangling(CGM,
1920                                              FD->getAttr<CPUSpecificAttr>(),
1921                                              GD.getMultiVersionIndex(), Out);
1922         break;
1923       case MultiVersionKind::Target: {
1924         auto *Attr = FD->getAttr<TargetAttr>();
1925         assert(Attr && "Expected TargetAttr to be present "
1926                        "for attribute mangling");
1927         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1928         Info.appendAttributeMangling(Attr, Out);
1929         break;
1930       }
1931       case MultiVersionKind::TargetVersion: {
1932         auto *Attr = FD->getAttr<TargetVersionAttr>();
1933         assert(Attr && "Expected TargetVersionAttr to be present "
1934                        "for attribute mangling");
1935         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1936         Info.appendAttributeMangling(Attr, Out);
1937         break;
1938       }
1939       case MultiVersionKind::TargetClones: {
1940         auto *Attr = FD->getAttr<TargetClonesAttr>();
1941         assert(Attr && "Expected TargetClonesAttr to be present "
1942                        "for attribute mangling");
1943         unsigned Index = GD.getMultiVersionIndex();
1944         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1945         Info.appendAttributeMangling(Attr, Index, Out);
1946         break;
1947       }
1948       case MultiVersionKind::None:
1949         llvm_unreachable("None multiversion type isn't valid here");
1950       }
1951     }
1952 
1953   // Make unique name for device side static file-scope variable for HIP.
1954   if (CGM.getContext().shouldExternalize(ND) &&
1955       CGM.getLangOpts().GPURelocatableDeviceCode &&
1956       CGM.getLangOpts().CUDAIsDevice)
1957     CGM.printPostfixForExternalizedDecl(Out, ND);
1958 
1959   return std::string(Out.str());
1960 }
1961 
1962 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1963                                             const FunctionDecl *FD,
1964                                             StringRef &CurName) {
1965   if (!FD->isMultiVersion())
1966     return;
1967 
1968   // Get the name of what this would be without the 'target' attribute.  This
1969   // allows us to lookup the version that was emitted when this wasn't a
1970   // multiversion function.
1971   std::string NonTargetName =
1972       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1973   GlobalDecl OtherGD;
1974   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1975     assert(OtherGD.getCanonicalDecl()
1976                .getDecl()
1977                ->getAsFunction()
1978                ->isMultiVersion() &&
1979            "Other GD should now be a multiversioned function");
1980     // OtherFD is the version of this function that was mangled BEFORE
1981     // becoming a MultiVersion function.  It potentially needs to be updated.
1982     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1983                                       .getDecl()
1984                                       ->getAsFunction()
1985                                       ->getMostRecentDecl();
1986     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1987     // This is so that if the initial version was already the 'default'
1988     // version, we don't try to update it.
1989     if (OtherName != NonTargetName) {
1990       // Remove instead of erase, since others may have stored the StringRef
1991       // to this.
1992       const auto ExistingRecord = Manglings.find(NonTargetName);
1993       if (ExistingRecord != std::end(Manglings))
1994         Manglings.remove(&(*ExistingRecord));
1995       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1996       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1997           Result.first->first();
1998       // If this is the current decl is being created, make sure we update the name.
1999       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
2000         CurName = OtherNameRef;
2001       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
2002         Entry->setName(OtherName);
2003     }
2004   }
2005 }
2006 
2007 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
2008   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
2009 
2010   // Some ABIs don't have constructor variants.  Make sure that base and
2011   // complete constructors get mangled the same.
2012   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
2013     if (!getTarget().getCXXABI().hasConstructorVariants()) {
2014       CXXCtorType OrigCtorType = GD.getCtorType();
2015       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
2016       if (OrigCtorType == Ctor_Base)
2017         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
2018     }
2019   }
2020 
2021   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2022   // static device variable depends on whether the variable is referenced by
2023   // a host or device host function. Therefore the mangled name cannot be
2024   // cached.
2025   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2026     auto FoundName = MangledDeclNames.find(CanonicalGD);
2027     if (FoundName != MangledDeclNames.end())
2028       return FoundName->second;
2029   }
2030 
2031   // Keep the first result in the case of a mangling collision.
2032   const auto *ND = cast<NamedDecl>(GD.getDecl());
2033   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2034 
2035   // Ensure either we have different ABIs between host and device compilations,
2036   // says host compilation following MSVC ABI but device compilation follows
2037   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2038   // mangling should be the same after name stubbing. The later checking is
2039   // very important as the device kernel name being mangled in host-compilation
2040   // is used to resolve the device binaries to be executed. Inconsistent naming
2041   // result in undefined behavior. Even though we cannot check that naming
2042   // directly between host- and device-compilations, the host- and
2043   // device-mangling in host compilation could help catching certain ones.
2044   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2045          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2046          (getContext().getAuxTargetInfo() &&
2047           (getContext().getAuxTargetInfo()->getCXXABI() !=
2048            getContext().getTargetInfo().getCXXABI())) ||
2049          getCUDARuntime().getDeviceSideName(ND) ==
2050              getMangledNameImpl(
2051                  *this,
2052                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2053                  ND));
2054 
2055   // This invariant should hold true in the future.
2056   // Prior work:
2057   // https://discourse.llvm.org/t/rfc-clang-diagnostic-for-demangling-failures/82835/8
2058   // https://github.com/llvm/llvm-project/issues/111345
2059   // assert((MangledName.startswith("_Z") || MangledName.startswith("?")) &&
2060   //        !GD->hasAttr<AsmLabelAttr>() &&
2061   //        llvm::demangle(MangledName) != MangledName &&
2062   //        "LLVM demangler must demangle clang-generated names");
2063 
2064   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2065   return MangledDeclNames[CanonicalGD] = Result.first->first();
2066 }
2067 
2068 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2069                                              const BlockDecl *BD) {
2070   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2071   const Decl *D = GD.getDecl();
2072 
2073   SmallString<256> Buffer;
2074   llvm::raw_svector_ostream Out(Buffer);
2075   if (!D)
2076     MangleCtx.mangleGlobalBlock(BD,
2077       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2078   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2079     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2080   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2081     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2082   else
2083     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2084 
2085   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2086   return Result.first->first();
2087 }
2088 
2089 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2090   auto it = MangledDeclNames.begin();
2091   while (it != MangledDeclNames.end()) {
2092     if (it->second == Name)
2093       return it->first;
2094     it++;
2095   }
2096   return GlobalDecl();
2097 }
2098 
2099 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2100   return getModule().getNamedValue(Name);
2101 }
2102 
2103 /// AddGlobalCtor - Add a function to the list that will be called before
2104 /// main() runs.
2105 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2106                                   unsigned LexOrder,
2107                                   llvm::Constant *AssociatedData) {
2108   // FIXME: Type coercion of void()* types.
2109   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2110 }
2111 
2112 /// AddGlobalDtor - Add a function to the list that will be called
2113 /// when the module is unloaded.
2114 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2115                                   bool IsDtorAttrFunc) {
2116   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2117       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2118     DtorsUsingAtExit[Priority].push_back(Dtor);
2119     return;
2120   }
2121 
2122   // FIXME: Type coercion of void()* types.
2123   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2124 }
2125 
2126 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2127   if (Fns.empty()) return;
2128 
2129   const PointerAuthSchema &InitFiniAuthSchema =
2130       getCodeGenOpts().PointerAuth.InitFiniPointers;
2131 
2132   // Ctor function type is ptr.
2133   llvm::PointerType *PtrTy = llvm::PointerType::get(
2134       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2135 
2136   // Get the type of a ctor entry, { i32, ptr, ptr }.
2137   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2138 
2139   // Construct the constructor and destructor arrays.
2140   ConstantInitBuilder Builder(*this);
2141   auto Ctors = Builder.beginArray(CtorStructTy);
2142   for (const auto &I : Fns) {
2143     auto Ctor = Ctors.beginStruct(CtorStructTy);
2144     Ctor.addInt(Int32Ty, I.Priority);
2145     if (InitFiniAuthSchema) {
2146       llvm::Constant *StorageAddress =
2147           (InitFiniAuthSchema.isAddressDiscriminated()
2148                ? llvm::ConstantExpr::getIntToPtr(
2149                      llvm::ConstantInt::get(
2150                          IntPtrTy,
2151                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2152                      PtrTy)
2153                : nullptr);
2154       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2155           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2156           llvm::ConstantInt::get(
2157               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2158       Ctor.add(SignedCtorPtr);
2159     } else {
2160       Ctor.add(I.Initializer);
2161     }
2162     if (I.AssociatedData)
2163       Ctor.add(I.AssociatedData);
2164     else
2165       Ctor.addNullPointer(PtrTy);
2166     Ctor.finishAndAddTo(Ctors);
2167   }
2168 
2169   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2170                                           /*constant*/ false,
2171                                           llvm::GlobalValue::AppendingLinkage);
2172 
2173   // The LTO linker doesn't seem to like it when we set an alignment
2174   // on appending variables.  Take it off as a workaround.
2175   List->setAlignment(std::nullopt);
2176 
2177   Fns.clear();
2178 }
2179 
2180 llvm::GlobalValue::LinkageTypes
2181 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2182   const auto *D = cast<FunctionDecl>(GD.getDecl());
2183 
2184   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2185 
2186   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2187     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2188 
2189   return getLLVMLinkageForDeclarator(D, Linkage);
2190 }
2191 
2192 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2193   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2194   if (!MDS) return nullptr;
2195 
2196   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2197 }
2198 
2199 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2200   if (auto *FnType = T->getAs<FunctionProtoType>())
2201     T = getContext().getFunctionType(
2202         FnType->getReturnType(), FnType->getParamTypes(),
2203         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2204 
2205   std::string OutName;
2206   llvm::raw_string_ostream Out(OutName);
2207   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2208       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2209 
2210   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2211     Out << ".normalized";
2212 
2213   return llvm::ConstantInt::get(Int32Ty,
2214                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2215 }
2216 
2217 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2218                                               const CGFunctionInfo &Info,
2219                                               llvm::Function *F, bool IsThunk) {
2220   unsigned CallingConv;
2221   llvm::AttributeList PAL;
2222   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2223                          /*AttrOnCallSite=*/false, IsThunk);
2224   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2225       getTarget().getTriple().isWindowsArm64EC()) {
2226     SourceLocation Loc;
2227     if (const Decl *D = GD.getDecl())
2228       Loc = D->getLocation();
2229 
2230     Error(Loc, "__vectorcall calling convention is not currently supported");
2231   }
2232   F->setAttributes(PAL);
2233   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2234 }
2235 
2236 static void removeImageAccessQualifier(std::string& TyName) {
2237   std::string ReadOnlyQual("__read_only");
2238   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2239   if (ReadOnlyPos != std::string::npos)
2240     // "+ 1" for the space after access qualifier.
2241     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2242   else {
2243     std::string WriteOnlyQual("__write_only");
2244     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2245     if (WriteOnlyPos != std::string::npos)
2246       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2247     else {
2248       std::string ReadWriteQual("__read_write");
2249       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2250       if (ReadWritePos != std::string::npos)
2251         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2252     }
2253   }
2254 }
2255 
2256 // Returns the address space id that should be produced to the
2257 // kernel_arg_addr_space metadata. This is always fixed to the ids
2258 // as specified in the SPIR 2.0 specification in order to differentiate
2259 // for example in clGetKernelArgInfo() implementation between the address
2260 // spaces with targets without unique mapping to the OpenCL address spaces
2261 // (basically all single AS CPUs).
2262 static unsigned ArgInfoAddressSpace(LangAS AS) {
2263   switch (AS) {
2264   case LangAS::opencl_global:
2265     return 1;
2266   case LangAS::opencl_constant:
2267     return 2;
2268   case LangAS::opencl_local:
2269     return 3;
2270   case LangAS::opencl_generic:
2271     return 4; // Not in SPIR 2.0 specs.
2272   case LangAS::opencl_global_device:
2273     return 5;
2274   case LangAS::opencl_global_host:
2275     return 6;
2276   default:
2277     return 0; // Assume private.
2278   }
2279 }
2280 
2281 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2282                                          const FunctionDecl *FD,
2283                                          CodeGenFunction *CGF) {
2284   assert(((FD && CGF) || (!FD && !CGF)) &&
2285          "Incorrect use - FD and CGF should either be both null or not!");
2286   // Create MDNodes that represent the kernel arg metadata.
2287   // Each MDNode is a list in the form of "key", N number of values which is
2288   // the same number of values as their are kernel arguments.
2289 
2290   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2291 
2292   // MDNode for the kernel argument address space qualifiers.
2293   SmallVector<llvm::Metadata *, 8> addressQuals;
2294 
2295   // MDNode for the kernel argument access qualifiers (images only).
2296   SmallVector<llvm::Metadata *, 8> accessQuals;
2297 
2298   // MDNode for the kernel argument type names.
2299   SmallVector<llvm::Metadata *, 8> argTypeNames;
2300 
2301   // MDNode for the kernel argument base type names.
2302   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2303 
2304   // MDNode for the kernel argument type qualifiers.
2305   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2306 
2307   // MDNode for the kernel argument names.
2308   SmallVector<llvm::Metadata *, 8> argNames;
2309 
2310   if (FD && CGF)
2311     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2312       const ParmVarDecl *parm = FD->getParamDecl(i);
2313       // Get argument name.
2314       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2315 
2316       if (!getLangOpts().OpenCL)
2317         continue;
2318       QualType ty = parm->getType();
2319       std::string typeQuals;
2320 
2321       // Get image and pipe access qualifier:
2322       if (ty->isImageType() || ty->isPipeType()) {
2323         const Decl *PDecl = parm;
2324         if (const auto *TD = ty->getAs<TypedefType>())
2325           PDecl = TD->getDecl();
2326         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2327         if (A && A->isWriteOnly())
2328           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2329         else if (A && A->isReadWrite())
2330           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2331         else
2332           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2333       } else
2334         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2335 
2336       auto getTypeSpelling = [&](QualType Ty) {
2337         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2338 
2339         if (Ty.isCanonical()) {
2340           StringRef typeNameRef = typeName;
2341           // Turn "unsigned type" to "utype"
2342           if (typeNameRef.consume_front("unsigned "))
2343             return std::string("u") + typeNameRef.str();
2344           if (typeNameRef.consume_front("signed "))
2345             return typeNameRef.str();
2346         }
2347 
2348         return typeName;
2349       };
2350 
2351       if (ty->isPointerType()) {
2352         QualType pointeeTy = ty->getPointeeType();
2353 
2354         // Get address qualifier.
2355         addressQuals.push_back(
2356             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2357                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2358 
2359         // Get argument type name.
2360         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2361         std::string baseTypeName =
2362             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2363         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2364         argBaseTypeNames.push_back(
2365             llvm::MDString::get(VMContext, baseTypeName));
2366 
2367         // Get argument type qualifiers:
2368         if (ty.isRestrictQualified())
2369           typeQuals = "restrict";
2370         if (pointeeTy.isConstQualified() ||
2371             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2372           typeQuals += typeQuals.empty() ? "const" : " const";
2373         if (pointeeTy.isVolatileQualified())
2374           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2375       } else {
2376         uint32_t AddrSpc = 0;
2377         bool isPipe = ty->isPipeType();
2378         if (ty->isImageType() || isPipe)
2379           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2380 
2381         addressQuals.push_back(
2382             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2383 
2384         // Get argument type name.
2385         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2386         std::string typeName = getTypeSpelling(ty);
2387         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2388 
2389         // Remove access qualifiers on images
2390         // (as they are inseparable from type in clang implementation,
2391         // but OpenCL spec provides a special query to get access qualifier
2392         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2393         if (ty->isImageType()) {
2394           removeImageAccessQualifier(typeName);
2395           removeImageAccessQualifier(baseTypeName);
2396         }
2397 
2398         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2399         argBaseTypeNames.push_back(
2400             llvm::MDString::get(VMContext, baseTypeName));
2401 
2402         if (isPipe)
2403           typeQuals = "pipe";
2404       }
2405       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2406     }
2407 
2408   if (getLangOpts().OpenCL) {
2409     Fn->setMetadata("kernel_arg_addr_space",
2410                     llvm::MDNode::get(VMContext, addressQuals));
2411     Fn->setMetadata("kernel_arg_access_qual",
2412                     llvm::MDNode::get(VMContext, accessQuals));
2413     Fn->setMetadata("kernel_arg_type",
2414                     llvm::MDNode::get(VMContext, argTypeNames));
2415     Fn->setMetadata("kernel_arg_base_type",
2416                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2417     Fn->setMetadata("kernel_arg_type_qual",
2418                     llvm::MDNode::get(VMContext, argTypeQuals));
2419   }
2420   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2421       getCodeGenOpts().HIPSaveKernelArgName)
2422     Fn->setMetadata("kernel_arg_name",
2423                     llvm::MDNode::get(VMContext, argNames));
2424 }
2425 
2426 /// Determines whether the language options require us to model
2427 /// unwind exceptions.  We treat -fexceptions as mandating this
2428 /// except under the fragile ObjC ABI with only ObjC exceptions
2429 /// enabled.  This means, for example, that C with -fexceptions
2430 /// enables this.
2431 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2432   // If exceptions are completely disabled, obviously this is false.
2433   if (!LangOpts.Exceptions) return false;
2434 
2435   // If C++ exceptions are enabled, this is true.
2436   if (LangOpts.CXXExceptions) return true;
2437 
2438   // If ObjC exceptions are enabled, this depends on the ABI.
2439   if (LangOpts.ObjCExceptions) {
2440     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2441   }
2442 
2443   return true;
2444 }
2445 
2446 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2447                                                       const CXXMethodDecl *MD) {
2448   // Check that the type metadata can ever actually be used by a call.
2449   if (!CGM.getCodeGenOpts().LTOUnit ||
2450       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2451     return false;
2452 
2453   // Only functions whose address can be taken with a member function pointer
2454   // need this sort of type metadata.
2455   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2456          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2457 }
2458 
2459 SmallVector<const CXXRecordDecl *, 0>
2460 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2461   llvm::SetVector<const CXXRecordDecl *> MostBases;
2462 
2463   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2464   CollectMostBases = [&](const CXXRecordDecl *RD) {
2465     if (RD->getNumBases() == 0)
2466       MostBases.insert(RD);
2467     for (const CXXBaseSpecifier &B : RD->bases())
2468       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2469   };
2470   CollectMostBases(RD);
2471   return MostBases.takeVector();
2472 }
2473 
2474 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2475                                                            llvm::Function *F) {
2476   llvm::AttrBuilder B(F->getContext());
2477 
2478   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2479     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2480 
2481   if (CodeGenOpts.StackClashProtector)
2482     B.addAttribute("probe-stack", "inline-asm");
2483 
2484   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2485     B.addAttribute("stack-probe-size",
2486                    std::to_string(CodeGenOpts.StackProbeSize));
2487 
2488   if (!hasUnwindExceptions(LangOpts))
2489     B.addAttribute(llvm::Attribute::NoUnwind);
2490 
2491   if (D && D->hasAttr<NoStackProtectorAttr>())
2492     ; // Do nothing.
2493   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2494            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2495     B.addAttribute(llvm::Attribute::StackProtectStrong);
2496   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2497     B.addAttribute(llvm::Attribute::StackProtect);
2498   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2499     B.addAttribute(llvm::Attribute::StackProtectStrong);
2500   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2501     B.addAttribute(llvm::Attribute::StackProtectReq);
2502 
2503   if (!D) {
2504     // Non-entry HLSL functions must always be inlined.
2505     if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline))
2506       B.addAttribute(llvm::Attribute::AlwaysInline);
2507     // If we don't have a declaration to control inlining, the function isn't
2508     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2509     // disabled, mark the function as noinline.
2510     else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2511              CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2512       B.addAttribute(llvm::Attribute::NoInline);
2513 
2514     F->addFnAttrs(B);
2515     return;
2516   }
2517 
2518   // Handle SME attributes that apply to function definitions,
2519   // rather than to function prototypes.
2520   if (D->hasAttr<ArmLocallyStreamingAttr>())
2521     B.addAttribute("aarch64_pstate_sm_body");
2522 
2523   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2524     if (Attr->isNewZA())
2525       B.addAttribute("aarch64_new_za");
2526     if (Attr->isNewZT0())
2527       B.addAttribute("aarch64_new_zt0");
2528   }
2529 
2530   // Track whether we need to add the optnone LLVM attribute,
2531   // starting with the default for this optimization level.
2532   bool ShouldAddOptNone =
2533       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2534   // We can't add optnone in the following cases, it won't pass the verifier.
2535   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2536   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2537 
2538   // Non-entry HLSL functions must always be inlined.
2539   if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) &&
2540       !D->hasAttr<NoInlineAttr>()) {
2541     B.addAttribute(llvm::Attribute::AlwaysInline);
2542   } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2543              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2544     // Add optnone, but do so only if the function isn't always_inline.
2545     B.addAttribute(llvm::Attribute::OptimizeNone);
2546 
2547     // OptimizeNone implies noinline; we should not be inlining such functions.
2548     B.addAttribute(llvm::Attribute::NoInline);
2549 
2550     // We still need to handle naked functions even though optnone subsumes
2551     // much of their semantics.
2552     if (D->hasAttr<NakedAttr>())
2553       B.addAttribute(llvm::Attribute::Naked);
2554 
2555     // OptimizeNone wins over OptimizeForSize and MinSize.
2556     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2557     F->removeFnAttr(llvm::Attribute::MinSize);
2558   } else if (D->hasAttr<NakedAttr>()) {
2559     // Naked implies noinline: we should not be inlining such functions.
2560     B.addAttribute(llvm::Attribute::Naked);
2561     B.addAttribute(llvm::Attribute::NoInline);
2562   } else if (D->hasAttr<NoDuplicateAttr>()) {
2563     B.addAttribute(llvm::Attribute::NoDuplicate);
2564   } else if (D->hasAttr<NoInlineAttr>() &&
2565              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2566     // Add noinline if the function isn't always_inline.
2567     B.addAttribute(llvm::Attribute::NoInline);
2568   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2569              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2570     // (noinline wins over always_inline, and we can't specify both in IR)
2571     B.addAttribute(llvm::Attribute::AlwaysInline);
2572   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2573     // If we're not inlining, then force everything that isn't always_inline to
2574     // carry an explicit noinline attribute.
2575     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2576       B.addAttribute(llvm::Attribute::NoInline);
2577   } else {
2578     // Otherwise, propagate the inline hint attribute and potentially use its
2579     // absence to mark things as noinline.
2580     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2581       // Search function and template pattern redeclarations for inline.
2582       auto CheckForInline = [](const FunctionDecl *FD) {
2583         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2584           return Redecl->isInlineSpecified();
2585         };
2586         if (any_of(FD->redecls(), CheckRedeclForInline))
2587           return true;
2588         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2589         if (!Pattern)
2590           return false;
2591         return any_of(Pattern->redecls(), CheckRedeclForInline);
2592       };
2593       if (CheckForInline(FD)) {
2594         B.addAttribute(llvm::Attribute::InlineHint);
2595       } else if (CodeGenOpts.getInlining() ==
2596                      CodeGenOptions::OnlyHintInlining &&
2597                  !FD->isInlined() &&
2598                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2599         B.addAttribute(llvm::Attribute::NoInline);
2600       }
2601     }
2602   }
2603 
2604   // Add other optimization related attributes if we are optimizing this
2605   // function.
2606   if (!D->hasAttr<OptimizeNoneAttr>()) {
2607     if (D->hasAttr<ColdAttr>()) {
2608       if (!ShouldAddOptNone)
2609         B.addAttribute(llvm::Attribute::OptimizeForSize);
2610       B.addAttribute(llvm::Attribute::Cold);
2611     }
2612     if (D->hasAttr<HotAttr>())
2613       B.addAttribute(llvm::Attribute::Hot);
2614     if (D->hasAttr<MinSizeAttr>())
2615       B.addAttribute(llvm::Attribute::MinSize);
2616   }
2617 
2618   F->addFnAttrs(B);
2619 
2620   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2621   if (alignment)
2622     F->setAlignment(llvm::Align(alignment));
2623 
2624   if (!D->hasAttr<AlignedAttr>())
2625     if (LangOpts.FunctionAlignment)
2626       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2627 
2628   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2629   // reserve a bit for differentiating between virtual and non-virtual member
2630   // functions. If the current target's C++ ABI requires this and this is a
2631   // member function, set its alignment accordingly.
2632   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2633     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2634       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2635   }
2636 
2637   // In the cross-dso CFI mode with canonical jump tables, we want !type
2638   // attributes on definitions only.
2639   if (CodeGenOpts.SanitizeCfiCrossDso &&
2640       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2641     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2642       // Skip available_externally functions. They won't be codegen'ed in the
2643       // current module anyway.
2644       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2645         CreateFunctionTypeMetadataForIcall(FD, F);
2646     }
2647   }
2648 
2649   // Emit type metadata on member functions for member function pointer checks.
2650   // These are only ever necessary on definitions; we're guaranteed that the
2651   // definition will be present in the LTO unit as a result of LTO visibility.
2652   auto *MD = dyn_cast<CXXMethodDecl>(D);
2653   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2654     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2655       llvm::Metadata *Id =
2656           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2657               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2658       F->addTypeMetadata(0, Id);
2659     }
2660   }
2661 }
2662 
2663 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2664   const Decl *D = GD.getDecl();
2665   if (isa_and_nonnull<NamedDecl>(D))
2666     setGVProperties(GV, GD);
2667   else
2668     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2669 
2670   if (D && D->hasAttr<UsedAttr>())
2671     addUsedOrCompilerUsedGlobal(GV);
2672 
2673   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2674       VD &&
2675       ((CodeGenOpts.KeepPersistentStorageVariables &&
2676         (VD->getStorageDuration() == SD_Static ||
2677          VD->getStorageDuration() == SD_Thread)) ||
2678        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2679         VD->getType().isConstQualified())))
2680     addUsedOrCompilerUsedGlobal(GV);
2681 }
2682 
2683 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2684                                                 llvm::AttrBuilder &Attrs,
2685                                                 bool SetTargetFeatures) {
2686   // Add target-cpu and target-features attributes to functions. If
2687   // we have a decl for the function and it has a target attribute then
2688   // parse that and add it to the feature set.
2689   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2690   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2691   std::vector<std::string> Features;
2692   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2693   FD = FD ? FD->getMostRecentDecl() : FD;
2694   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2695   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2696   assert((!TD || !TV) && "both target_version and target specified");
2697   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2698   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2699   bool AddedAttr = false;
2700   if (TD || TV || SD || TC) {
2701     llvm::StringMap<bool> FeatureMap;
2702     getContext().getFunctionFeatureMap(FeatureMap, GD);
2703 
2704     // Produce the canonical string for this set of features.
2705     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2706       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2707 
2708     // Now add the target-cpu and target-features to the function.
2709     // While we populated the feature map above, we still need to
2710     // get and parse the target attribute so we can get the cpu for
2711     // the function.
2712     if (TD) {
2713       ParsedTargetAttr ParsedAttr =
2714           Target.parseTargetAttr(TD->getFeaturesStr());
2715       if (!ParsedAttr.CPU.empty() &&
2716           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2717         TargetCPU = ParsedAttr.CPU;
2718         TuneCPU = ""; // Clear the tune CPU.
2719       }
2720       if (!ParsedAttr.Tune.empty() &&
2721           getTarget().isValidCPUName(ParsedAttr.Tune))
2722         TuneCPU = ParsedAttr.Tune;
2723     }
2724 
2725     if (SD) {
2726       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2727       // favor this processor.
2728       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2729     }
2730   } else {
2731     // Otherwise just add the existing target cpu and target features to the
2732     // function.
2733     Features = getTarget().getTargetOpts().Features;
2734   }
2735 
2736   if (!TargetCPU.empty()) {
2737     Attrs.addAttribute("target-cpu", TargetCPU);
2738     AddedAttr = true;
2739   }
2740   if (!TuneCPU.empty()) {
2741     Attrs.addAttribute("tune-cpu", TuneCPU);
2742     AddedAttr = true;
2743   }
2744   if (!Features.empty() && SetTargetFeatures) {
2745     llvm::erase_if(Features, [&](const std::string& F) {
2746        return getTarget().isReadOnlyFeature(F.substr(1));
2747     });
2748     llvm::sort(Features);
2749     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2750     AddedAttr = true;
2751   }
2752   // Add metadata for AArch64 Function Multi Versioning.
2753   if (getTarget().getTriple().isAArch64()) {
2754     llvm::SmallVector<StringRef, 8> Feats;
2755     bool IsDefault = false;
2756     if (TV) {
2757       IsDefault = TV->isDefaultVersion();
2758       TV->getFeatures(Feats);
2759     } else if (TC) {
2760       IsDefault = TC->isDefaultVersion(GD.getMultiVersionIndex());
2761       TC->getFeatures(Feats, GD.getMultiVersionIndex());
2762     }
2763     if (IsDefault) {
2764       Attrs.addAttribute("fmv-features");
2765       AddedAttr = true;
2766     } else if (!Feats.empty()) {
2767       // Sort features and remove duplicates.
2768       std::set<StringRef> OrderedFeats(Feats.begin(), Feats.end());
2769       std::string FMVFeatures;
2770       for (StringRef F : OrderedFeats)
2771         FMVFeatures.append("," + F.str());
2772       Attrs.addAttribute("fmv-features", FMVFeatures.substr(1));
2773       AddedAttr = true;
2774     }
2775   }
2776   return AddedAttr;
2777 }
2778 
2779 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2780                                           llvm::GlobalObject *GO) {
2781   const Decl *D = GD.getDecl();
2782   SetCommonAttributes(GD, GO);
2783 
2784   if (D) {
2785     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2786       if (D->hasAttr<RetainAttr>())
2787         addUsedGlobal(GV);
2788       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2789         GV->addAttribute("bss-section", SA->getName());
2790       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2791         GV->addAttribute("data-section", SA->getName());
2792       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2793         GV->addAttribute("rodata-section", SA->getName());
2794       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2795         GV->addAttribute("relro-section", SA->getName());
2796     }
2797 
2798     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2799       if (D->hasAttr<RetainAttr>())
2800         addUsedGlobal(F);
2801       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2802         if (!D->getAttr<SectionAttr>())
2803           F->setSection(SA->getName());
2804 
2805       llvm::AttrBuilder Attrs(F->getContext());
2806       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2807         // We know that GetCPUAndFeaturesAttributes will always have the
2808         // newest set, since it has the newest possible FunctionDecl, so the
2809         // new ones should replace the old.
2810         llvm::AttributeMask RemoveAttrs;
2811         RemoveAttrs.addAttribute("target-cpu");
2812         RemoveAttrs.addAttribute("target-features");
2813         RemoveAttrs.addAttribute("fmv-features");
2814         RemoveAttrs.addAttribute("tune-cpu");
2815         F->removeFnAttrs(RemoveAttrs);
2816         F->addFnAttrs(Attrs);
2817       }
2818     }
2819 
2820     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2821       GO->setSection(CSA->getName());
2822     else if (const auto *SA = D->getAttr<SectionAttr>())
2823       GO->setSection(SA->getName());
2824   }
2825 
2826   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2827 }
2828 
2829 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2830                                                   llvm::Function *F,
2831                                                   const CGFunctionInfo &FI) {
2832   const Decl *D = GD.getDecl();
2833   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2834   SetLLVMFunctionAttributesForDefinition(D, F);
2835 
2836   F->setLinkage(llvm::Function::InternalLinkage);
2837 
2838   setNonAliasAttributes(GD, F);
2839 }
2840 
2841 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2842   // Set linkage and visibility in case we never see a definition.
2843   LinkageInfo LV = ND->getLinkageAndVisibility();
2844   // Don't set internal linkage on declarations.
2845   // "extern_weak" is overloaded in LLVM; we probably should have
2846   // separate linkage types for this.
2847   if (isExternallyVisible(LV.getLinkage()) &&
2848       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2849     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2850 }
2851 
2852 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2853                                                        llvm::Function *F) {
2854   // Only if we are checking indirect calls.
2855   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2856     return;
2857 
2858   // Non-static class methods are handled via vtable or member function pointer
2859   // checks elsewhere.
2860   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2861     return;
2862 
2863   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2864   F->addTypeMetadata(0, MD);
2865   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2866 
2867   // Emit a hash-based bit set entry for cross-DSO calls.
2868   if (CodeGenOpts.SanitizeCfiCrossDso)
2869     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2870       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2871 }
2872 
2873 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2874   llvm::LLVMContext &Ctx = F->getContext();
2875   llvm::MDBuilder MDB(Ctx);
2876   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2877                  llvm::MDNode::get(
2878                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2879 }
2880 
2881 static bool allowKCFIIdentifier(StringRef Name) {
2882   // KCFI type identifier constants are only necessary for external assembly
2883   // functions, which means it's safe to skip unusual names. Subset of
2884   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2885   return llvm::all_of(Name, [](const char &C) {
2886     return llvm::isAlnum(C) || C == '_' || C == '.';
2887   });
2888 }
2889 
2890 void CodeGenModule::finalizeKCFITypes() {
2891   llvm::Module &M = getModule();
2892   for (auto &F : M.functions()) {
2893     // Remove KCFI type metadata from non-address-taken local functions.
2894     bool AddressTaken = F.hasAddressTaken();
2895     if (!AddressTaken && F.hasLocalLinkage())
2896       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2897 
2898     // Generate a constant with the expected KCFI type identifier for all
2899     // address-taken function declarations to support annotating indirectly
2900     // called assembly functions.
2901     if (!AddressTaken || !F.isDeclaration())
2902       continue;
2903 
2904     const llvm::ConstantInt *Type;
2905     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2906       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2907     else
2908       continue;
2909 
2910     StringRef Name = F.getName();
2911     if (!allowKCFIIdentifier(Name))
2912       continue;
2913 
2914     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2915                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2916                           .str();
2917     M.appendModuleInlineAsm(Asm);
2918   }
2919 }
2920 
2921 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2922                                           bool IsIncompleteFunction,
2923                                           bool IsThunk) {
2924 
2925   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2926     // If this is an intrinsic function, set the function's attributes
2927     // to the intrinsic's attributes.
2928     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2929     return;
2930   }
2931 
2932   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2933 
2934   if (!IsIncompleteFunction)
2935     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2936                               IsThunk);
2937 
2938   // Add the Returned attribute for "this", except for iOS 5 and earlier
2939   // where substantial code, including the libstdc++ dylib, was compiled with
2940   // GCC and does not actually return "this".
2941   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2942       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2943     assert(!F->arg_empty() &&
2944            F->arg_begin()->getType()
2945              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2946            "unexpected this return");
2947     F->addParamAttr(0, llvm::Attribute::Returned);
2948   }
2949 
2950   // Only a few attributes are set on declarations; these may later be
2951   // overridden by a definition.
2952 
2953   setLinkageForGV(F, FD);
2954   setGVProperties(F, FD);
2955 
2956   // Setup target-specific attributes.
2957   if (!IsIncompleteFunction && F->isDeclaration())
2958     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2959 
2960   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2961     F->setSection(CSA->getName());
2962   else if (const auto *SA = FD->getAttr<SectionAttr>())
2963      F->setSection(SA->getName());
2964 
2965   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2966     if (EA->isError())
2967       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2968     else if (EA->isWarning())
2969       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2970   }
2971 
2972   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2973   if (FD->isInlineBuiltinDeclaration()) {
2974     const FunctionDecl *FDBody;
2975     bool HasBody = FD->hasBody(FDBody);
2976     (void)HasBody;
2977     assert(HasBody && "Inline builtin declarations should always have an "
2978                       "available body!");
2979     if (shouldEmitFunction(FDBody))
2980       F->addFnAttr(llvm::Attribute::NoBuiltin);
2981   }
2982 
2983   if (FD->isReplaceableGlobalAllocationFunction()) {
2984     // A replaceable global allocation function does not act like a builtin by
2985     // default, only if it is invoked by a new-expression or delete-expression.
2986     F->addFnAttr(llvm::Attribute::NoBuiltin);
2987   }
2988 
2989   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2990     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2991   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2992     if (MD->isVirtual())
2993       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2994 
2995   // Don't emit entries for function declarations in the cross-DSO mode. This
2996   // is handled with better precision by the receiving DSO. But if jump tables
2997   // are non-canonical then we need type metadata in order to produce the local
2998   // jump table.
2999   if (!CodeGenOpts.SanitizeCfiCrossDso ||
3000       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
3001     CreateFunctionTypeMetadataForIcall(FD, F);
3002 
3003   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
3004     setKCFIType(FD, F);
3005 
3006   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
3007     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
3008 
3009   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
3010     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
3011 
3012   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
3013     // Annotate the callback behavior as metadata:
3014     //  - The callback callee (as argument number).
3015     //  - The callback payloads (as argument numbers).
3016     llvm::LLVMContext &Ctx = F->getContext();
3017     llvm::MDBuilder MDB(Ctx);
3018 
3019     // The payload indices are all but the first one in the encoding. The first
3020     // identifies the callback callee.
3021     int CalleeIdx = *CB->encoding_begin();
3022     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
3023     F->addMetadata(llvm::LLVMContext::MD_callback,
3024                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
3025                                                CalleeIdx, PayloadIndices,
3026                                                /* VarArgsArePassed */ false)}));
3027   }
3028 }
3029 
3030 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
3031   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3032          "Only globals with definition can force usage.");
3033   LLVMUsed.emplace_back(GV);
3034 }
3035 
3036 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
3037   assert(!GV->isDeclaration() &&
3038          "Only globals with definition can force usage.");
3039   LLVMCompilerUsed.emplace_back(GV);
3040 }
3041 
3042 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
3043   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3044          "Only globals with definition can force usage.");
3045   if (getTriple().isOSBinFormatELF())
3046     LLVMCompilerUsed.emplace_back(GV);
3047   else
3048     LLVMUsed.emplace_back(GV);
3049 }
3050 
3051 static void emitUsed(CodeGenModule &CGM, StringRef Name,
3052                      std::vector<llvm::WeakTrackingVH> &List) {
3053   // Don't create llvm.used if there is no need.
3054   if (List.empty())
3055     return;
3056 
3057   // Convert List to what ConstantArray needs.
3058   SmallVector<llvm::Constant*, 8> UsedArray;
3059   UsedArray.resize(List.size());
3060   for (unsigned i = 0, e = List.size(); i != e; ++i) {
3061     UsedArray[i] =
3062         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3063             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3064   }
3065 
3066   if (UsedArray.empty())
3067     return;
3068   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3069 
3070   auto *GV = new llvm::GlobalVariable(
3071       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3072       llvm::ConstantArray::get(ATy, UsedArray), Name);
3073 
3074   GV->setSection("llvm.metadata");
3075 }
3076 
3077 void CodeGenModule::emitLLVMUsed() {
3078   emitUsed(*this, "llvm.used", LLVMUsed);
3079   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3080 }
3081 
3082 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3083   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3084   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3085 }
3086 
3087 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3088   llvm::SmallString<32> Opt;
3089   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3090   if (Opt.empty())
3091     return;
3092   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3093   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3094 }
3095 
3096 void CodeGenModule::AddDependentLib(StringRef Lib) {
3097   auto &C = getLLVMContext();
3098   if (getTarget().getTriple().isOSBinFormatELF()) {
3099       ELFDependentLibraries.push_back(
3100         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3101     return;
3102   }
3103 
3104   llvm::SmallString<24> Opt;
3105   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3106   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3107   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3108 }
3109 
3110 /// Add link options implied by the given module, including modules
3111 /// it depends on, using a postorder walk.
3112 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3113                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3114                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3115   // Import this module's parent.
3116   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3117     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3118   }
3119 
3120   // Import this module's dependencies.
3121   for (Module *Import : llvm::reverse(Mod->Imports)) {
3122     if (Visited.insert(Import).second)
3123       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3124   }
3125 
3126   // Add linker options to link against the libraries/frameworks
3127   // described by this module.
3128   llvm::LLVMContext &Context = CGM.getLLVMContext();
3129   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3130 
3131   // For modules that use export_as for linking, use that module
3132   // name instead.
3133   if (Mod->UseExportAsModuleLinkName)
3134     return;
3135 
3136   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3137     // Link against a framework.  Frameworks are currently Darwin only, so we
3138     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3139     if (LL.IsFramework) {
3140       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3141                                  llvm::MDString::get(Context, LL.Library)};
3142 
3143       Metadata.push_back(llvm::MDNode::get(Context, Args));
3144       continue;
3145     }
3146 
3147     // Link against a library.
3148     if (IsELF) {
3149       llvm::Metadata *Args[2] = {
3150           llvm::MDString::get(Context, "lib"),
3151           llvm::MDString::get(Context, LL.Library),
3152       };
3153       Metadata.push_back(llvm::MDNode::get(Context, Args));
3154     } else {
3155       llvm::SmallString<24> Opt;
3156       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3157       auto *OptString = llvm::MDString::get(Context, Opt);
3158       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3159     }
3160   }
3161 }
3162 
3163 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3164   assert(Primary->isNamedModuleUnit() &&
3165          "We should only emit module initializers for named modules.");
3166 
3167   // Emit the initializers in the order that sub-modules appear in the
3168   // source, first Global Module Fragments, if present.
3169   if (auto GMF = Primary->getGlobalModuleFragment()) {
3170     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3171       if (isa<ImportDecl>(D))
3172         continue;
3173       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3174       EmitTopLevelDecl(D);
3175     }
3176   }
3177   // Second any associated with the module, itself.
3178   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3179     // Skip import decls, the inits for those are called explicitly.
3180     if (isa<ImportDecl>(D))
3181       continue;
3182     EmitTopLevelDecl(D);
3183   }
3184   // Third any associated with the Privat eMOdule Fragment, if present.
3185   if (auto PMF = Primary->getPrivateModuleFragment()) {
3186     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3187       // Skip import decls, the inits for those are called explicitly.
3188       if (isa<ImportDecl>(D))
3189         continue;
3190       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3191       EmitTopLevelDecl(D);
3192     }
3193   }
3194 }
3195 
3196 void CodeGenModule::EmitModuleLinkOptions() {
3197   // Collect the set of all of the modules we want to visit to emit link
3198   // options, which is essentially the imported modules and all of their
3199   // non-explicit child modules.
3200   llvm::SetVector<clang::Module *> LinkModules;
3201   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3202   SmallVector<clang::Module *, 16> Stack;
3203 
3204   // Seed the stack with imported modules.
3205   for (Module *M : ImportedModules) {
3206     // Do not add any link flags when an implementation TU of a module imports
3207     // a header of that same module.
3208     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3209         !getLangOpts().isCompilingModule())
3210       continue;
3211     if (Visited.insert(M).second)
3212       Stack.push_back(M);
3213   }
3214 
3215   // Find all of the modules to import, making a little effort to prune
3216   // non-leaf modules.
3217   while (!Stack.empty()) {
3218     clang::Module *Mod = Stack.pop_back_val();
3219 
3220     bool AnyChildren = false;
3221 
3222     // Visit the submodules of this module.
3223     for (const auto &SM : Mod->submodules()) {
3224       // Skip explicit children; they need to be explicitly imported to be
3225       // linked against.
3226       if (SM->IsExplicit)
3227         continue;
3228 
3229       if (Visited.insert(SM).second) {
3230         Stack.push_back(SM);
3231         AnyChildren = true;
3232       }
3233     }
3234 
3235     // We didn't find any children, so add this module to the list of
3236     // modules to link against.
3237     if (!AnyChildren) {
3238       LinkModules.insert(Mod);
3239     }
3240   }
3241 
3242   // Add link options for all of the imported modules in reverse topological
3243   // order.  We don't do anything to try to order import link flags with respect
3244   // to linker options inserted by things like #pragma comment().
3245   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3246   Visited.clear();
3247   for (Module *M : LinkModules)
3248     if (Visited.insert(M).second)
3249       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3250   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3251   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3252 
3253   // Add the linker options metadata flag.
3254   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3255   for (auto *MD : LinkerOptionsMetadata)
3256     NMD->addOperand(MD);
3257 }
3258 
3259 void CodeGenModule::EmitDeferred() {
3260   // Emit deferred declare target declarations.
3261   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3262     getOpenMPRuntime().emitDeferredTargetDecls();
3263 
3264   // Emit code for any potentially referenced deferred decls.  Since a
3265   // previously unused static decl may become used during the generation of code
3266   // for a static function, iterate until no changes are made.
3267 
3268   if (!DeferredVTables.empty()) {
3269     EmitDeferredVTables();
3270 
3271     // Emitting a vtable doesn't directly cause more vtables to
3272     // become deferred, although it can cause functions to be
3273     // emitted that then need those vtables.
3274     assert(DeferredVTables.empty());
3275   }
3276 
3277   // Emit CUDA/HIP static device variables referenced by host code only.
3278   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3279   // needed for further handling.
3280   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3281     llvm::append_range(DeferredDeclsToEmit,
3282                        getContext().CUDADeviceVarODRUsedByHost);
3283 
3284   // Stop if we're out of both deferred vtables and deferred declarations.
3285   if (DeferredDeclsToEmit.empty())
3286     return;
3287 
3288   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3289   // work, it will not interfere with this.
3290   std::vector<GlobalDecl> CurDeclsToEmit;
3291   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3292 
3293   for (GlobalDecl &D : CurDeclsToEmit) {
3294     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3295     // to get GlobalValue with exactly the type we need, not something that
3296     // might had been created for another decl with the same mangled name but
3297     // different type.
3298     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3299         GetAddrOfGlobal(D, ForDefinition));
3300 
3301     // In case of different address spaces, we may still get a cast, even with
3302     // IsForDefinition equal to true. Query mangled names table to get
3303     // GlobalValue.
3304     if (!GV)
3305       GV = GetGlobalValue(getMangledName(D));
3306 
3307     // Make sure GetGlobalValue returned non-null.
3308     assert(GV);
3309 
3310     // Check to see if we've already emitted this.  This is necessary
3311     // for a couple of reasons: first, decls can end up in the
3312     // deferred-decls queue multiple times, and second, decls can end
3313     // up with definitions in unusual ways (e.g. by an extern inline
3314     // function acquiring a strong function redefinition).  Just
3315     // ignore these cases.
3316     if (!GV->isDeclaration())
3317       continue;
3318 
3319     // If this is OpenMP, check if it is legal to emit this global normally.
3320     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3321       continue;
3322 
3323     // Otherwise, emit the definition and move on to the next one.
3324     EmitGlobalDefinition(D, GV);
3325 
3326     // If we found out that we need to emit more decls, do that recursively.
3327     // This has the advantage that the decls are emitted in a DFS and related
3328     // ones are close together, which is convenient for testing.
3329     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3330       EmitDeferred();
3331       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3332     }
3333   }
3334 }
3335 
3336 void CodeGenModule::EmitVTablesOpportunistically() {
3337   // Try to emit external vtables as available_externally if they have emitted
3338   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3339   // is not allowed to create new references to things that need to be emitted
3340   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3341 
3342   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3343          && "Only emit opportunistic vtables with optimizations");
3344 
3345   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3346     assert(getVTables().isVTableExternal(RD) &&
3347            "This queue should only contain external vtables");
3348     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3349       VTables.GenerateClassData(RD);
3350   }
3351   OpportunisticVTables.clear();
3352 }
3353 
3354 void CodeGenModule::EmitGlobalAnnotations() {
3355   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3356     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3357     if (GV)
3358       AddGlobalAnnotations(VD, GV);
3359   }
3360   DeferredAnnotations.clear();
3361 
3362   if (Annotations.empty())
3363     return;
3364 
3365   // Create a new global variable for the ConstantStruct in the Module.
3366   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3367     Annotations[0]->getType(), Annotations.size()), Annotations);
3368   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3369                                       llvm::GlobalValue::AppendingLinkage,
3370                                       Array, "llvm.global.annotations");
3371   gv->setSection(AnnotationSection);
3372 }
3373 
3374 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3375   llvm::Constant *&AStr = AnnotationStrings[Str];
3376   if (AStr)
3377     return AStr;
3378 
3379   // Not found yet, create a new global.
3380   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3381   auto *gv = new llvm::GlobalVariable(
3382       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3383       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3384       ConstGlobalsPtrTy->getAddressSpace());
3385   gv->setSection(AnnotationSection);
3386   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3387   AStr = gv;
3388   return gv;
3389 }
3390 
3391 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3392   SourceManager &SM = getContext().getSourceManager();
3393   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3394   if (PLoc.isValid())
3395     return EmitAnnotationString(PLoc.getFilename());
3396   return EmitAnnotationString(SM.getBufferName(Loc));
3397 }
3398 
3399 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3400   SourceManager &SM = getContext().getSourceManager();
3401   PresumedLoc PLoc = SM.getPresumedLoc(L);
3402   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3403     SM.getExpansionLineNumber(L);
3404   return llvm::ConstantInt::get(Int32Ty, LineNo);
3405 }
3406 
3407 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3408   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3409   if (Exprs.empty())
3410     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3411 
3412   llvm::FoldingSetNodeID ID;
3413   for (Expr *E : Exprs) {
3414     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3415   }
3416   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3417   if (Lookup)
3418     return Lookup;
3419 
3420   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3421   LLVMArgs.reserve(Exprs.size());
3422   ConstantEmitter ConstEmiter(*this);
3423   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3424     const auto *CE = cast<clang::ConstantExpr>(E);
3425     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3426                                     CE->getType());
3427   });
3428   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3429   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3430                                       llvm::GlobalValue::PrivateLinkage, Struct,
3431                                       ".args");
3432   GV->setSection(AnnotationSection);
3433   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3434 
3435   Lookup = GV;
3436   return GV;
3437 }
3438 
3439 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3440                                                 const AnnotateAttr *AA,
3441                                                 SourceLocation L) {
3442   // Get the globals for file name, annotation, and the line number.
3443   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3444                  *UnitGV = EmitAnnotationUnit(L),
3445                  *LineNoCst = EmitAnnotationLineNo(L),
3446                  *Args = EmitAnnotationArgs(AA);
3447 
3448   llvm::Constant *GVInGlobalsAS = GV;
3449   if (GV->getAddressSpace() !=
3450       getDataLayout().getDefaultGlobalsAddressSpace()) {
3451     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3452         GV,
3453         llvm::PointerType::get(
3454             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3455   }
3456 
3457   // Create the ConstantStruct for the global annotation.
3458   llvm::Constant *Fields[] = {
3459       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3460   };
3461   return llvm::ConstantStruct::getAnon(Fields);
3462 }
3463 
3464 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3465                                          llvm::GlobalValue *GV) {
3466   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3467   // Get the struct elements for these annotations.
3468   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3469     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3470 }
3471 
3472 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3473                                        SourceLocation Loc) const {
3474   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3475   // NoSanitize by function name.
3476   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3477     return true;
3478   // NoSanitize by location. Check "mainfile" prefix.
3479   auto &SM = Context.getSourceManager();
3480   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3481   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3482     return true;
3483 
3484   // Check "src" prefix.
3485   if (Loc.isValid())
3486     return NoSanitizeL.containsLocation(Kind, Loc);
3487   // If location is unknown, this may be a compiler-generated function. Assume
3488   // it's located in the main file.
3489   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3490 }
3491 
3492 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3493                                        llvm::GlobalVariable *GV,
3494                                        SourceLocation Loc, QualType Ty,
3495                                        StringRef Category) const {
3496   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3497   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3498     return true;
3499   auto &SM = Context.getSourceManager();
3500   if (NoSanitizeL.containsMainFile(
3501           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3502           Category))
3503     return true;
3504   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3505     return true;
3506 
3507   // Check global type.
3508   if (!Ty.isNull()) {
3509     // Drill down the array types: if global variable of a fixed type is
3510     // not sanitized, we also don't instrument arrays of them.
3511     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3512       Ty = AT->getElementType();
3513     Ty = Ty.getCanonicalType().getUnqualifiedType();
3514     // Only record types (classes, structs etc.) are ignored.
3515     if (Ty->isRecordType()) {
3516       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3517       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3518         return true;
3519     }
3520   }
3521   return false;
3522 }
3523 
3524 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3525                                    StringRef Category) const {
3526   const auto &XRayFilter = getContext().getXRayFilter();
3527   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3528   auto Attr = ImbueAttr::NONE;
3529   if (Loc.isValid())
3530     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3531   if (Attr == ImbueAttr::NONE)
3532     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3533   switch (Attr) {
3534   case ImbueAttr::NONE:
3535     return false;
3536   case ImbueAttr::ALWAYS:
3537     Fn->addFnAttr("function-instrument", "xray-always");
3538     break;
3539   case ImbueAttr::ALWAYS_ARG1:
3540     Fn->addFnAttr("function-instrument", "xray-always");
3541     Fn->addFnAttr("xray-log-args", "1");
3542     break;
3543   case ImbueAttr::NEVER:
3544     Fn->addFnAttr("function-instrument", "xray-never");
3545     break;
3546   }
3547   return true;
3548 }
3549 
3550 ProfileList::ExclusionType
3551 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3552                                               SourceLocation Loc) const {
3553   const auto &ProfileList = getContext().getProfileList();
3554   // If the profile list is empty, then instrument everything.
3555   if (ProfileList.isEmpty())
3556     return ProfileList::Allow;
3557   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3558   // First, check the function name.
3559   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3560     return *V;
3561   // Next, check the source location.
3562   if (Loc.isValid())
3563     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3564       return *V;
3565   // If location is unknown, this may be a compiler-generated function. Assume
3566   // it's located in the main file.
3567   auto &SM = Context.getSourceManager();
3568   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3569     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3570       return *V;
3571   return ProfileList.getDefault(Kind);
3572 }
3573 
3574 ProfileList::ExclusionType
3575 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3576                                                  SourceLocation Loc) const {
3577   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3578   if (V != ProfileList::Allow)
3579     return V;
3580 
3581   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3582   if (NumGroups > 1) {
3583     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3584     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3585       return ProfileList::Skip;
3586   }
3587   return ProfileList::Allow;
3588 }
3589 
3590 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3591   // Never defer when EmitAllDecls is specified.
3592   if (LangOpts.EmitAllDecls)
3593     return true;
3594 
3595   const auto *VD = dyn_cast<VarDecl>(Global);
3596   if (VD &&
3597       ((CodeGenOpts.KeepPersistentStorageVariables &&
3598         (VD->getStorageDuration() == SD_Static ||
3599          VD->getStorageDuration() == SD_Thread)) ||
3600        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3601         VD->getType().isConstQualified())))
3602     return true;
3603 
3604   return getContext().DeclMustBeEmitted(Global);
3605 }
3606 
3607 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3608   // In OpenMP 5.0 variables and function may be marked as
3609   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3610   // that they must be emitted on the host/device. To be sure we need to have
3611   // seen a declare target with an explicit mentioning of the function, we know
3612   // we have if the level of the declare target attribute is -1. Note that we
3613   // check somewhere else if we should emit this at all.
3614   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3615     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3616         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3617     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3618       return false;
3619   }
3620 
3621   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3622     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3623       // Implicit template instantiations may change linkage if they are later
3624       // explicitly instantiated, so they should not be emitted eagerly.
3625       return false;
3626     // Defer until all versions have been semantically checked.
3627     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3628       return false;
3629   }
3630   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3631     if (Context.getInlineVariableDefinitionKind(VD) ==
3632         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3633       // A definition of an inline constexpr static data member may change
3634       // linkage later if it's redeclared outside the class.
3635       return false;
3636     if (CXX20ModuleInits && VD->getOwningModule() &&
3637         !VD->getOwningModule()->isModuleMapModule()) {
3638       // For CXX20, module-owned initializers need to be deferred, since it is
3639       // not known at this point if they will be run for the current module or
3640       // as part of the initializer for an imported one.
3641       return false;
3642     }
3643   }
3644   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3645   // codegen for global variables, because they may be marked as threadprivate.
3646   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3647       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3648       !Global->getType().isConstantStorage(getContext(), false, false) &&
3649       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3650     return false;
3651 
3652   return true;
3653 }
3654 
3655 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3656   StringRef Name = getMangledName(GD);
3657 
3658   // The UUID descriptor should be pointer aligned.
3659   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3660 
3661   // Look for an existing global.
3662   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3663     return ConstantAddress(GV, GV->getValueType(), Alignment);
3664 
3665   ConstantEmitter Emitter(*this);
3666   llvm::Constant *Init;
3667 
3668   APValue &V = GD->getAsAPValue();
3669   if (!V.isAbsent()) {
3670     // If possible, emit the APValue version of the initializer. In particular,
3671     // this gets the type of the constant right.
3672     Init = Emitter.emitForInitializer(
3673         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3674   } else {
3675     // As a fallback, directly construct the constant.
3676     // FIXME: This may get padding wrong under esoteric struct layout rules.
3677     // MSVC appears to create a complete type 'struct __s_GUID' that it
3678     // presumably uses to represent these constants.
3679     MSGuidDecl::Parts Parts = GD->getParts();
3680     llvm::Constant *Fields[4] = {
3681         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3682         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3683         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3684         llvm::ConstantDataArray::getRaw(
3685             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3686             Int8Ty)};
3687     Init = llvm::ConstantStruct::getAnon(Fields);
3688   }
3689 
3690   auto *GV = new llvm::GlobalVariable(
3691       getModule(), Init->getType(),
3692       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3693   if (supportsCOMDAT())
3694     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3695   setDSOLocal(GV);
3696 
3697   if (!V.isAbsent()) {
3698     Emitter.finalize(GV);
3699     return ConstantAddress(GV, GV->getValueType(), Alignment);
3700   }
3701 
3702   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3703   return ConstantAddress(GV, Ty, Alignment);
3704 }
3705 
3706 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3707     const UnnamedGlobalConstantDecl *GCD) {
3708   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3709 
3710   llvm::GlobalVariable **Entry = nullptr;
3711   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3712   if (*Entry)
3713     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3714 
3715   ConstantEmitter Emitter(*this);
3716   llvm::Constant *Init;
3717 
3718   const APValue &V = GCD->getValue();
3719 
3720   assert(!V.isAbsent());
3721   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3722                                     GCD->getType());
3723 
3724   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3725                                       /*isConstant=*/true,
3726                                       llvm::GlobalValue::PrivateLinkage, Init,
3727                                       ".constant");
3728   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3729   GV->setAlignment(Alignment.getAsAlign());
3730 
3731   Emitter.finalize(GV);
3732 
3733   *Entry = GV;
3734   return ConstantAddress(GV, GV->getValueType(), Alignment);
3735 }
3736 
3737 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3738     const TemplateParamObjectDecl *TPO) {
3739   StringRef Name = getMangledName(TPO);
3740   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3741 
3742   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3743     return ConstantAddress(GV, GV->getValueType(), Alignment);
3744 
3745   ConstantEmitter Emitter(*this);
3746   llvm::Constant *Init = Emitter.emitForInitializer(
3747         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3748 
3749   if (!Init) {
3750     ErrorUnsupported(TPO, "template parameter object");
3751     return ConstantAddress::invalid();
3752   }
3753 
3754   llvm::GlobalValue::LinkageTypes Linkage =
3755       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3756           ? llvm::GlobalValue::LinkOnceODRLinkage
3757           : llvm::GlobalValue::InternalLinkage;
3758   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3759                                       /*isConstant=*/true, Linkage, Init, Name);
3760   setGVProperties(GV, TPO);
3761   if (supportsCOMDAT())
3762     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3763   Emitter.finalize(GV);
3764 
3765     return ConstantAddress(GV, GV->getValueType(), Alignment);
3766 }
3767 
3768 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3769   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3770   assert(AA && "No alias?");
3771 
3772   CharUnits Alignment = getContext().getDeclAlign(VD);
3773   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3774 
3775   // See if there is already something with the target's name in the module.
3776   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3777   if (Entry)
3778     return ConstantAddress(Entry, DeclTy, Alignment);
3779 
3780   llvm::Constant *Aliasee;
3781   if (isa<llvm::FunctionType>(DeclTy))
3782     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3783                                       GlobalDecl(cast<FunctionDecl>(VD)),
3784                                       /*ForVTable=*/false);
3785   else
3786     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3787                                     nullptr);
3788 
3789   auto *F = cast<llvm::GlobalValue>(Aliasee);
3790   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3791   WeakRefReferences.insert(F);
3792 
3793   return ConstantAddress(Aliasee, DeclTy, Alignment);
3794 }
3795 
3796 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3797   if (!D)
3798     return false;
3799   if (auto *A = D->getAttr<AttrT>())
3800     return A->isImplicit();
3801   return D->isImplicit();
3802 }
3803 
3804 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3805   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3806   // We need to emit host-side 'shadows' for all global
3807   // device-side variables because the CUDA runtime needs their
3808   // size and host-side address in order to provide access to
3809   // their device-side incarnations.
3810   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3811          Global->hasAttr<CUDAConstantAttr>() ||
3812          Global->hasAttr<CUDASharedAttr>() ||
3813          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3814          Global->getType()->isCUDADeviceBuiltinTextureType();
3815 }
3816 
3817 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3818   const auto *Global = cast<ValueDecl>(GD.getDecl());
3819 
3820   // Weak references don't produce any output by themselves.
3821   if (Global->hasAttr<WeakRefAttr>())
3822     return;
3823 
3824   // If this is an alias definition (which otherwise looks like a declaration)
3825   // emit it now.
3826   if (Global->hasAttr<AliasAttr>())
3827     return EmitAliasDefinition(GD);
3828 
3829   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3830   if (Global->hasAttr<IFuncAttr>())
3831     return emitIFuncDefinition(GD);
3832 
3833   // If this is a cpu_dispatch multiversion function, emit the resolver.
3834   if (Global->hasAttr<CPUDispatchAttr>())
3835     return emitCPUDispatchDefinition(GD);
3836 
3837   // If this is CUDA, be selective about which declarations we emit.
3838   // Non-constexpr non-lambda implicit host device functions are not emitted
3839   // unless they are used on device side.
3840   if (LangOpts.CUDA) {
3841     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3842            "Expected Variable or Function");
3843     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3844       if (!shouldEmitCUDAGlobalVar(VD))
3845         return;
3846     } else if (LangOpts.CUDAIsDevice) {
3847       const auto *FD = dyn_cast<FunctionDecl>(Global);
3848       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3849            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3850             hasImplicitAttr<CUDAHostAttr>(FD) &&
3851             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3852             !isLambdaCallOperator(FD) &&
3853             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3854           !Global->hasAttr<CUDAGlobalAttr>() &&
3855           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3856             !Global->hasAttr<CUDAHostAttr>()))
3857         return;
3858       // Device-only functions are the only things we skip.
3859     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3860                Global->hasAttr<CUDADeviceAttr>())
3861       return;
3862   }
3863 
3864   if (LangOpts.OpenMP) {
3865     // If this is OpenMP, check if it is legal to emit this global normally.
3866     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3867       return;
3868     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3869       if (MustBeEmitted(Global))
3870         EmitOMPDeclareReduction(DRD);
3871       return;
3872     }
3873     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3874       if (MustBeEmitted(Global))
3875         EmitOMPDeclareMapper(DMD);
3876       return;
3877     }
3878   }
3879 
3880   // Ignore declarations, they will be emitted on their first use.
3881   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3882     // Update deferred annotations with the latest declaration if the function
3883     // function was already used or defined.
3884     if (FD->hasAttr<AnnotateAttr>()) {
3885       StringRef MangledName = getMangledName(GD);
3886       if (GetGlobalValue(MangledName))
3887         DeferredAnnotations[MangledName] = FD;
3888     }
3889 
3890     // Forward declarations are emitted lazily on first use.
3891     if (!FD->doesThisDeclarationHaveABody()) {
3892       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3893           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3894         return;
3895 
3896       StringRef MangledName = getMangledName(GD);
3897 
3898       // Compute the function info and LLVM type.
3899       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3900       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3901 
3902       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3903                               /*DontDefer=*/false);
3904       return;
3905     }
3906   } else {
3907     const auto *VD = cast<VarDecl>(Global);
3908     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3909     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3910         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3911       if (LangOpts.OpenMP) {
3912         // Emit declaration of the must-be-emitted declare target variable.
3913         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3914                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3915 
3916           // If this variable has external storage and doesn't require special
3917           // link handling we defer to its canonical definition.
3918           if (VD->hasExternalStorage() &&
3919               Res != OMPDeclareTargetDeclAttr::MT_Link)
3920             return;
3921 
3922           bool UnifiedMemoryEnabled =
3923               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3924           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3925                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3926               !UnifiedMemoryEnabled) {
3927             (void)GetAddrOfGlobalVar(VD);
3928           } else {
3929             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3930                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3931                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3932                      UnifiedMemoryEnabled)) &&
3933                    "Link clause or to clause with unified memory expected.");
3934             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3935           }
3936 
3937           return;
3938         }
3939       }
3940       // If this declaration may have caused an inline variable definition to
3941       // change linkage, make sure that it's emitted.
3942       if (Context.getInlineVariableDefinitionKind(VD) ==
3943           ASTContext::InlineVariableDefinitionKind::Strong)
3944         GetAddrOfGlobalVar(VD);
3945       return;
3946     }
3947   }
3948 
3949   // Defer code generation to first use when possible, e.g. if this is an inline
3950   // function. If the global must always be emitted, do it eagerly if possible
3951   // to benefit from cache locality.
3952   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3953     // Emit the definition if it can't be deferred.
3954     EmitGlobalDefinition(GD);
3955     addEmittedDeferredDecl(GD);
3956     return;
3957   }
3958 
3959   // If we're deferring emission of a C++ variable with an
3960   // initializer, remember the order in which it appeared in the file.
3961   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3962       cast<VarDecl>(Global)->hasInit()) {
3963     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3964     CXXGlobalInits.push_back(nullptr);
3965   }
3966 
3967   StringRef MangledName = getMangledName(GD);
3968   if (GetGlobalValue(MangledName) != nullptr) {
3969     // The value has already been used and should therefore be emitted.
3970     addDeferredDeclToEmit(GD);
3971   } else if (MustBeEmitted(Global)) {
3972     // The value must be emitted, but cannot be emitted eagerly.
3973     assert(!MayBeEmittedEagerly(Global));
3974     addDeferredDeclToEmit(GD);
3975   } else {
3976     // Otherwise, remember that we saw a deferred decl with this name.  The
3977     // first use of the mangled name will cause it to move into
3978     // DeferredDeclsToEmit.
3979     DeferredDecls[MangledName] = GD;
3980   }
3981 }
3982 
3983 // Check if T is a class type with a destructor that's not dllimport.
3984 static bool HasNonDllImportDtor(QualType T) {
3985   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3986     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3987       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3988         return true;
3989 
3990   return false;
3991 }
3992 
3993 namespace {
3994   struct FunctionIsDirectlyRecursive
3995       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3996     const StringRef Name;
3997     const Builtin::Context &BI;
3998     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3999         : Name(N), BI(C) {}
4000 
4001     bool VisitCallExpr(const CallExpr *E) {
4002       const FunctionDecl *FD = E->getDirectCallee();
4003       if (!FD)
4004         return false;
4005       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4006       if (Attr && Name == Attr->getLabel())
4007         return true;
4008       unsigned BuiltinID = FD->getBuiltinID();
4009       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
4010         return false;
4011       StringRef BuiltinName = BI.getName(BuiltinID);
4012       if (BuiltinName.starts_with("__builtin_") &&
4013           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
4014         return true;
4015       }
4016       return false;
4017     }
4018 
4019     bool VisitStmt(const Stmt *S) {
4020       for (const Stmt *Child : S->children())
4021         if (Child && this->Visit(Child))
4022           return true;
4023       return false;
4024     }
4025   };
4026 
4027   // Make sure we're not referencing non-imported vars or functions.
4028   struct DLLImportFunctionVisitor
4029       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
4030     bool SafeToInline = true;
4031 
4032     bool shouldVisitImplicitCode() const { return true; }
4033 
4034     bool VisitVarDecl(VarDecl *VD) {
4035       if (VD->getTLSKind()) {
4036         // A thread-local variable cannot be imported.
4037         SafeToInline = false;
4038         return SafeToInline;
4039       }
4040 
4041       // A variable definition might imply a destructor call.
4042       if (VD->isThisDeclarationADefinition())
4043         SafeToInline = !HasNonDllImportDtor(VD->getType());
4044 
4045       return SafeToInline;
4046     }
4047 
4048     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
4049       if (const auto *D = E->getTemporary()->getDestructor())
4050         SafeToInline = D->hasAttr<DLLImportAttr>();
4051       return SafeToInline;
4052     }
4053 
4054     bool VisitDeclRefExpr(DeclRefExpr *E) {
4055       ValueDecl *VD = E->getDecl();
4056       if (isa<FunctionDecl>(VD))
4057         SafeToInline = VD->hasAttr<DLLImportAttr>();
4058       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
4059         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4060       return SafeToInline;
4061     }
4062 
4063     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4064       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4065       return SafeToInline;
4066     }
4067 
4068     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4069       CXXMethodDecl *M = E->getMethodDecl();
4070       if (!M) {
4071         // Call through a pointer to member function. This is safe to inline.
4072         SafeToInline = true;
4073       } else {
4074         SafeToInline = M->hasAttr<DLLImportAttr>();
4075       }
4076       return SafeToInline;
4077     }
4078 
4079     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4080       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4081       return SafeToInline;
4082     }
4083 
4084     bool VisitCXXNewExpr(CXXNewExpr *E) {
4085       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4086       return SafeToInline;
4087     }
4088   };
4089 }
4090 
4091 // isTriviallyRecursive - Check if this function calls another
4092 // decl that, because of the asm attribute or the other decl being a builtin,
4093 // ends up pointing to itself.
4094 bool
4095 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4096   StringRef Name;
4097   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4098     // asm labels are a special kind of mangling we have to support.
4099     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4100     if (!Attr)
4101       return false;
4102     Name = Attr->getLabel();
4103   } else {
4104     Name = FD->getName();
4105   }
4106 
4107   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4108   const Stmt *Body = FD->getBody();
4109   return Body ? Walker.Visit(Body) : false;
4110 }
4111 
4112 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4113   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4114     return true;
4115 
4116   const auto *F = cast<FunctionDecl>(GD.getDecl());
4117   // Inline builtins declaration must be emitted. They often are fortified
4118   // functions.
4119   if (F->isInlineBuiltinDeclaration())
4120     return true;
4121 
4122   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4123     return false;
4124 
4125   // We don't import function bodies from other named module units since that
4126   // behavior may break ABI compatibility of the current unit.
4127   if (const Module *M = F->getOwningModule();
4128       M && M->getTopLevelModule()->isNamedModule() &&
4129       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4130     // There are practices to mark template member function as always-inline
4131     // and mark the template as extern explicit instantiation but not give
4132     // the definition for member function. So we have to emit the function
4133     // from explicitly instantiation with always-inline.
4134     //
4135     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4136     //
4137     // TODO: Maybe it is better to give it a warning if we call a non-inline
4138     // function from other module units which is marked as always-inline.
4139     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4140       return false;
4141     }
4142   }
4143 
4144   if (F->hasAttr<NoInlineAttr>())
4145     return false;
4146 
4147   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4148     // Check whether it would be safe to inline this dllimport function.
4149     DLLImportFunctionVisitor Visitor;
4150     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4151     if (!Visitor.SafeToInline)
4152       return false;
4153 
4154     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4155       // Implicit destructor invocations aren't captured in the AST, so the
4156       // check above can't see them. Check for them manually here.
4157       for (const Decl *Member : Dtor->getParent()->decls())
4158         if (isa<FieldDecl>(Member))
4159           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4160             return false;
4161       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4162         if (HasNonDllImportDtor(B.getType()))
4163           return false;
4164     }
4165   }
4166 
4167   // PR9614. Avoid cases where the source code is lying to us. An available
4168   // externally function should have an equivalent function somewhere else,
4169   // but a function that calls itself through asm label/`__builtin_` trickery is
4170   // clearly not equivalent to the real implementation.
4171   // This happens in glibc's btowc and in some configure checks.
4172   return !isTriviallyRecursive(F);
4173 }
4174 
4175 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4176   return CodeGenOpts.OptimizationLevel > 0;
4177 }
4178 
4179 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4180                                                        llvm::GlobalValue *GV) {
4181   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4182 
4183   if (FD->isCPUSpecificMultiVersion()) {
4184     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4185     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4186       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4187   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4188     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4189       // AArch64 favors the default target version over the clone if any.
4190       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4191           TC->isFirstOfVersion(I))
4192         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4193     // Ensure that the resolver function is also emitted.
4194     GetOrCreateMultiVersionResolver(GD);
4195   } else
4196     EmitGlobalFunctionDefinition(GD, GV);
4197 
4198   // Defer the resolver emission until we can reason whether the TU
4199   // contains a default target version implementation.
4200   if (FD->isTargetVersionMultiVersion())
4201     AddDeferredMultiVersionResolverToEmit(GD);
4202 }
4203 
4204 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4205   const auto *D = cast<ValueDecl>(GD.getDecl());
4206 
4207   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4208                                  Context.getSourceManager(),
4209                                  "Generating code for declaration");
4210 
4211   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4212     // At -O0, don't generate IR for functions with available_externally
4213     // linkage.
4214     if (!shouldEmitFunction(GD))
4215       return;
4216 
4217     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4218       std::string Name;
4219       llvm::raw_string_ostream OS(Name);
4220       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4221                                /*Qualified=*/true);
4222       return Name;
4223     });
4224 
4225     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4226       // Make sure to emit the definition(s) before we emit the thunks.
4227       // This is necessary for the generation of certain thunks.
4228       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4229         ABI->emitCXXStructor(GD);
4230       else if (FD->isMultiVersion())
4231         EmitMultiVersionFunctionDefinition(GD, GV);
4232       else
4233         EmitGlobalFunctionDefinition(GD, GV);
4234 
4235       if (Method->isVirtual())
4236         getVTables().EmitThunks(GD);
4237 
4238       return;
4239     }
4240 
4241     if (FD->isMultiVersion())
4242       return EmitMultiVersionFunctionDefinition(GD, GV);
4243     return EmitGlobalFunctionDefinition(GD, GV);
4244   }
4245 
4246   if (const auto *VD = dyn_cast<VarDecl>(D))
4247     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4248 
4249   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4250 }
4251 
4252 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4253                                                       llvm::Function *NewFn);
4254 
4255 static uint64_t getFMVPriority(const TargetInfo &TI,
4256                                const CodeGenFunction::FMVResolverOption &RO) {
4257   llvm::SmallVector<StringRef, 8> Features{RO.Features};
4258   if (RO.Architecture)
4259     Features.push_back(*RO.Architecture);
4260   return TI.getFMVPriority(Features);
4261 }
4262 
4263 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4264 // TU can forward declare the function without causing problems.  Particularly
4265 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4266 // work with internal linkage functions, so that the same function name can be
4267 // used with internal linkage in multiple TUs.
4268 static llvm::GlobalValue::LinkageTypes
4269 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) {
4270   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4271   if (FD->getFormalLinkage() == Linkage::Internal)
4272     return llvm::GlobalValue::InternalLinkage;
4273   return llvm::GlobalValue::WeakODRLinkage;
4274 }
4275 
4276 void CodeGenModule::emitMultiVersionFunctions() {
4277   std::vector<GlobalDecl> MVFuncsToEmit;
4278   MultiVersionFuncs.swap(MVFuncsToEmit);
4279   for (GlobalDecl GD : MVFuncsToEmit) {
4280     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4281     assert(FD && "Expected a FunctionDecl");
4282 
4283     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4284       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4285       StringRef MangledName = getMangledName(CurGD);
4286       llvm::Constant *Func = GetGlobalValue(MangledName);
4287       if (!Func) {
4288         if (Decl->isDefined()) {
4289           EmitGlobalFunctionDefinition(CurGD, nullptr);
4290           Func = GetGlobalValue(MangledName);
4291         } else {
4292           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4293           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4294           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4295                                    /*DontDefer=*/false, ForDefinition);
4296         }
4297         assert(Func && "This should have just been created");
4298       }
4299       return cast<llvm::Function>(Func);
4300     };
4301 
4302     // For AArch64, a resolver is only emitted if a function marked with
4303     // target_version("default")) or target_clones() is present and defined
4304     // in this TU. For other architectures it is always emitted.
4305     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4306     SmallVector<CodeGenFunction::FMVResolverOption, 10> Options;
4307 
4308     getContext().forEachMultiversionedFunctionVersion(
4309         FD, [&](const FunctionDecl *CurFD) {
4310           llvm::SmallVector<StringRef, 8> Feats;
4311           bool IsDefined = CurFD->getDefinition() != nullptr;
4312 
4313           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4314             assert(getTarget().getTriple().isX86() && "Unsupported target");
4315             TA->getX86AddedFeatures(Feats);
4316             llvm::Function *Func = createFunction(CurFD);
4317             Options.emplace_back(Func, Feats, TA->getX86Architecture());
4318           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4319             if (TVA->isDefaultVersion() && IsDefined)
4320               ShouldEmitResolver = true;
4321             llvm::Function *Func = createFunction(CurFD);
4322             char Delim = getTarget().getTriple().isAArch64() ? '+' : ',';
4323             TVA->getFeatures(Feats, Delim);
4324             Options.emplace_back(Func, Feats);
4325           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4326             if (IsDefined)
4327               ShouldEmitResolver = true;
4328             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4329               if (!TC->isFirstOfVersion(I))
4330                 continue;
4331 
4332               llvm::Function *Func = createFunction(CurFD, I);
4333               Feats.clear();
4334               if (getTarget().getTriple().isX86()) {
4335                 TC->getX86Feature(Feats, I);
4336                 Options.emplace_back(Func, Feats, TC->getX86Architecture(I));
4337               } else {
4338                 char Delim = getTarget().getTriple().isAArch64() ? '+' : ',';
4339                 TC->getFeatures(Feats, I, Delim);
4340                 Options.emplace_back(Func, Feats);
4341               }
4342             }
4343           } else
4344             llvm_unreachable("unexpected MultiVersionKind");
4345         });
4346 
4347     if (!ShouldEmitResolver)
4348       continue;
4349 
4350     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4351     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4352       ResolverConstant = IFunc->getResolver();
4353       if (FD->isTargetClonesMultiVersion() &&
4354           !getTarget().getTriple().isAArch64()) {
4355         std::string MangledName = getMangledNameImpl(
4356             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4357         if (!GetGlobalValue(MangledName + ".ifunc")) {
4358           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4359           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4360           // In prior versions of Clang, the mangling for ifuncs incorrectly
4361           // included an .ifunc suffix. This alias is generated for backward
4362           // compatibility. It is deprecated, and may be removed in the future.
4363           auto *Alias = llvm::GlobalAlias::create(
4364               DeclTy, 0, getMultiversionLinkage(*this, GD),
4365               MangledName + ".ifunc", IFunc, &getModule());
4366           SetCommonAttributes(FD, Alias);
4367         }
4368       }
4369     }
4370     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4371 
4372     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4373 
4374     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4375       ResolverFunc->setComdat(
4376           getModule().getOrInsertComdat(ResolverFunc->getName()));
4377 
4378     const TargetInfo &TI = getTarget();
4379     llvm::stable_sort(
4380         Options, [&TI](const CodeGenFunction::FMVResolverOption &LHS,
4381                        const CodeGenFunction::FMVResolverOption &RHS) {
4382           return getFMVPriority(TI, LHS) > getFMVPriority(TI, RHS);
4383         });
4384     CodeGenFunction CGF(*this);
4385     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4386   }
4387 
4388   // Ensure that any additions to the deferred decls list caused by emitting a
4389   // variant are emitted.  This can happen when the variant itself is inline and
4390   // calls a function without linkage.
4391   if (!MVFuncsToEmit.empty())
4392     EmitDeferred();
4393 
4394   // Ensure that any additions to the multiversion funcs list from either the
4395   // deferred decls or the multiversion functions themselves are emitted.
4396   if (!MultiVersionFuncs.empty())
4397     emitMultiVersionFunctions();
4398 }
4399 
4400 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4401                                    llvm::Constant *New) {
4402   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4403   New->takeName(Old);
4404   Old->replaceAllUsesWith(New);
4405   Old->eraseFromParent();
4406 }
4407 
4408 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4409   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4410   assert(FD && "Not a FunctionDecl?");
4411   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4412   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4413   assert(DD && "Not a cpu_dispatch Function?");
4414 
4415   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4416   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4417 
4418   StringRef ResolverName = getMangledName(GD);
4419   UpdateMultiVersionNames(GD, FD, ResolverName);
4420 
4421   llvm::Type *ResolverType;
4422   GlobalDecl ResolverGD;
4423   if (getTarget().supportsIFunc()) {
4424     ResolverType = llvm::FunctionType::get(
4425         llvm::PointerType::get(DeclTy,
4426                                getTypes().getTargetAddressSpace(FD->getType())),
4427         false);
4428   }
4429   else {
4430     ResolverType = DeclTy;
4431     ResolverGD = GD;
4432   }
4433 
4434   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4435       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4436   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4437   if (supportsCOMDAT())
4438     ResolverFunc->setComdat(
4439         getModule().getOrInsertComdat(ResolverFunc->getName()));
4440 
4441   SmallVector<CodeGenFunction::FMVResolverOption, 10> Options;
4442   const TargetInfo &Target = getTarget();
4443   unsigned Index = 0;
4444   for (const IdentifierInfo *II : DD->cpus()) {
4445     // Get the name of the target function so we can look it up/create it.
4446     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4447                               getCPUSpecificMangling(*this, II->getName());
4448 
4449     llvm::Constant *Func = GetGlobalValue(MangledName);
4450 
4451     if (!Func) {
4452       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4453       if (ExistingDecl.getDecl() &&
4454           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4455         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4456         Func = GetGlobalValue(MangledName);
4457       } else {
4458         if (!ExistingDecl.getDecl())
4459           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4460 
4461       Func = GetOrCreateLLVMFunction(
4462           MangledName, DeclTy, ExistingDecl,
4463           /*ForVTable=*/false, /*DontDefer=*/true,
4464           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4465       }
4466     }
4467 
4468     llvm::SmallVector<StringRef, 32> Features;
4469     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4470     llvm::transform(Features, Features.begin(),
4471                     [](StringRef Str) { return Str.substr(1); });
4472     llvm::erase_if(Features, [&Target](StringRef Feat) {
4473       return !Target.validateCpuSupports(Feat);
4474     });
4475     Options.emplace_back(cast<llvm::Function>(Func), Features);
4476     ++Index;
4477   }
4478 
4479   llvm::stable_sort(Options, [](const CodeGenFunction::FMVResolverOption &LHS,
4480                                 const CodeGenFunction::FMVResolverOption &RHS) {
4481     return llvm::X86::getCpuSupportsMask(LHS.Features) >
4482            llvm::X86::getCpuSupportsMask(RHS.Features);
4483   });
4484 
4485   // If the list contains multiple 'default' versions, such as when it contains
4486   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4487   // always run on at least a 'pentium'). We do this by deleting the 'least
4488   // advanced' (read, lowest mangling letter).
4489   while (Options.size() > 1 && llvm::all_of(llvm::X86::getCpuSupportsMask(
4490                                                 (Options.end() - 2)->Features),
4491                                             [](auto X) { return X == 0; })) {
4492     StringRef LHSName = (Options.end() - 2)->Function->getName();
4493     StringRef RHSName = (Options.end() - 1)->Function->getName();
4494     if (LHSName.compare(RHSName) < 0)
4495       Options.erase(Options.end() - 2);
4496     else
4497       Options.erase(Options.end() - 1);
4498   }
4499 
4500   CodeGenFunction CGF(*this);
4501   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4502 
4503   if (getTarget().supportsIFunc()) {
4504     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4505     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4506     unsigned AS = IFunc->getType()->getPointerAddressSpace();
4507 
4508     // Fix up function declarations that were created for cpu_specific before
4509     // cpu_dispatch was known
4510     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4511       auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4512                                            ResolverFunc, &getModule());
4513       replaceDeclarationWith(IFunc, GI);
4514       IFunc = GI;
4515     }
4516 
4517     std::string AliasName = getMangledNameImpl(
4518         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4519     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4520     if (!AliasFunc) {
4521       auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4522                                            IFunc, &getModule());
4523       SetCommonAttributes(GD, GA);
4524     }
4525   }
4526 }
4527 
4528 /// Adds a declaration to the list of multi version functions if not present.
4529 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4530   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4531   assert(FD && "Not a FunctionDecl?");
4532 
4533   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4534     std::string MangledName =
4535         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4536     if (!DeferredResolversToEmit.insert(MangledName).second)
4537       return;
4538   }
4539   MultiVersionFuncs.push_back(GD);
4540 }
4541 
4542 /// If a dispatcher for the specified mangled name is not in the module, create
4543 /// and return it. The dispatcher is either an llvm Function with the specified
4544 /// type, or a global ifunc.
4545 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4546   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4547   assert(FD && "Not a FunctionDecl?");
4548 
4549   std::string MangledName =
4550       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4551 
4552   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4553   // a separate resolver).
4554   std::string ResolverName = MangledName;
4555   if (getTarget().supportsIFunc()) {
4556     switch (FD->getMultiVersionKind()) {
4557     case MultiVersionKind::None:
4558       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4559     case MultiVersionKind::Target:
4560     case MultiVersionKind::CPUSpecific:
4561     case MultiVersionKind::CPUDispatch:
4562       ResolverName += ".ifunc";
4563       break;
4564     case MultiVersionKind::TargetClones:
4565     case MultiVersionKind::TargetVersion:
4566       break;
4567     }
4568   } else if (FD->isTargetMultiVersion()) {
4569     ResolverName += ".resolver";
4570   }
4571 
4572   bool ShouldReturnIFunc =
4573       getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion();
4574 
4575   // If the resolver has already been created, just return it. This lookup may
4576   // yield a function declaration instead of a resolver on AArch64. That is
4577   // because we didn't know whether a resolver will be generated when we first
4578   // encountered a use of the symbol named after this resolver. Therefore,
4579   // targets which support ifuncs should not return here unless we actually
4580   // found an ifunc.
4581   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4582   if (ResolverGV && (isa<llvm::GlobalIFunc>(ResolverGV) || !ShouldReturnIFunc))
4583     return ResolverGV;
4584 
4585   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4586   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4587 
4588   // The resolver needs to be created. For target and target_clones, defer
4589   // creation until the end of the TU.
4590   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4591     AddDeferredMultiVersionResolverToEmit(GD);
4592 
4593   // For cpu_specific, don't create an ifunc yet because we don't know if the
4594   // cpu_dispatch will be emitted in this translation unit.
4595   if (ShouldReturnIFunc) {
4596     unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4597     llvm::Type *ResolverType =
4598         llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4599     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4600         MangledName + ".resolver", ResolverType, GlobalDecl{},
4601         /*ForVTable=*/false);
4602     llvm::GlobalIFunc *GIF =
4603         llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4604                                   "", Resolver, &getModule());
4605     GIF->setName(ResolverName);
4606     SetCommonAttributes(FD, GIF);
4607     if (ResolverGV)
4608       replaceDeclarationWith(ResolverGV, GIF);
4609     return GIF;
4610   }
4611 
4612   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4613       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4614   assert(isa<llvm::GlobalValue>(Resolver) && !ResolverGV &&
4615          "Resolver should be created for the first time");
4616   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4617   return Resolver;
4618 }
4619 
4620 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4621                                            const llvm::GlobalValue *GV) const {
4622   auto SC = GV->getDLLStorageClass();
4623   if (SC == llvm::GlobalValue::DefaultStorageClass)
4624     return false;
4625   const Decl *MRD = D->getMostRecentDecl();
4626   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4627             !MRD->hasAttr<DLLImportAttr>()) ||
4628            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4629             !MRD->hasAttr<DLLExportAttr>())) &&
4630           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4631 }
4632 
4633 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4634 /// module, create and return an llvm Function with the specified type. If there
4635 /// is something in the module with the specified name, return it potentially
4636 /// bitcasted to the right type.
4637 ///
4638 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4639 /// to set the attributes on the function when it is first created.
4640 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4641     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4642     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4643     ForDefinition_t IsForDefinition) {
4644   const Decl *D = GD.getDecl();
4645 
4646   std::string NameWithoutMultiVersionMangling;
4647   // Any attempts to use a MultiVersion function should result in retrieving
4648   // the iFunc instead. Name Mangling will handle the rest of the changes.
4649   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4650     // For the device mark the function as one that should be emitted.
4651     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4652         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4653         !DontDefer && !IsForDefinition) {
4654       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4655         GlobalDecl GDDef;
4656         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4657           GDDef = GlobalDecl(CD, GD.getCtorType());
4658         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4659           GDDef = GlobalDecl(DD, GD.getDtorType());
4660         else
4661           GDDef = GlobalDecl(FDDef);
4662         EmitGlobal(GDDef);
4663       }
4664     }
4665 
4666     if (FD->isMultiVersion()) {
4667       UpdateMultiVersionNames(GD, FD, MangledName);
4668       if (!IsForDefinition) {
4669         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4670         // function is used. Instead we defer the emission until we see a
4671         // default definition. In the meantime we just reference the symbol
4672         // without FMV mangling (it may or may not be replaced later).
4673         if (getTarget().getTriple().isAArch64()) {
4674           AddDeferredMultiVersionResolverToEmit(GD);
4675           NameWithoutMultiVersionMangling = getMangledNameImpl(
4676               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4677         } else
4678           return GetOrCreateMultiVersionResolver(GD);
4679       }
4680     }
4681   }
4682 
4683   if (!NameWithoutMultiVersionMangling.empty())
4684     MangledName = NameWithoutMultiVersionMangling;
4685 
4686   // Lookup the entry, lazily creating it if necessary.
4687   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4688   if (Entry) {
4689     if (WeakRefReferences.erase(Entry)) {
4690       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4691       if (FD && !FD->hasAttr<WeakAttr>())
4692         Entry->setLinkage(llvm::Function::ExternalLinkage);
4693     }
4694 
4695     // Handle dropped DLL attributes.
4696     if (D && shouldDropDLLAttribute(D, Entry)) {
4697       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4698       setDSOLocal(Entry);
4699     }
4700 
4701     // If there are two attempts to define the same mangled name, issue an
4702     // error.
4703     if (IsForDefinition && !Entry->isDeclaration()) {
4704       GlobalDecl OtherGD;
4705       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4706       // to make sure that we issue an error only once.
4707       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4708           (GD.getCanonicalDecl().getDecl() !=
4709            OtherGD.getCanonicalDecl().getDecl()) &&
4710           DiagnosedConflictingDefinitions.insert(GD).second) {
4711         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4712             << MangledName;
4713         getDiags().Report(OtherGD.getDecl()->getLocation(),
4714                           diag::note_previous_definition);
4715       }
4716     }
4717 
4718     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4719         (Entry->getValueType() == Ty)) {
4720       return Entry;
4721     }
4722 
4723     // Make sure the result is of the correct type.
4724     // (If function is requested for a definition, we always need to create a new
4725     // function, not just return a bitcast.)
4726     if (!IsForDefinition)
4727       return Entry;
4728   }
4729 
4730   // This function doesn't have a complete type (for example, the return
4731   // type is an incomplete struct). Use a fake type instead, and make
4732   // sure not to try to set attributes.
4733   bool IsIncompleteFunction = false;
4734 
4735   llvm::FunctionType *FTy;
4736   if (isa<llvm::FunctionType>(Ty)) {
4737     FTy = cast<llvm::FunctionType>(Ty);
4738   } else {
4739     FTy = llvm::FunctionType::get(VoidTy, false);
4740     IsIncompleteFunction = true;
4741   }
4742 
4743   llvm::Function *F =
4744       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4745                              Entry ? StringRef() : MangledName, &getModule());
4746 
4747   // Store the declaration associated with this function so it is potentially
4748   // updated by further declarations or definitions and emitted at the end.
4749   if (D && D->hasAttr<AnnotateAttr>())
4750     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4751 
4752   // If we already created a function with the same mangled name (but different
4753   // type) before, take its name and add it to the list of functions to be
4754   // replaced with F at the end of CodeGen.
4755   //
4756   // This happens if there is a prototype for a function (e.g. "int f()") and
4757   // then a definition of a different type (e.g. "int f(int x)").
4758   if (Entry) {
4759     F->takeName(Entry);
4760 
4761     // This might be an implementation of a function without a prototype, in
4762     // which case, try to do special replacement of calls which match the new
4763     // prototype.  The really key thing here is that we also potentially drop
4764     // arguments from the call site so as to make a direct call, which makes the
4765     // inliner happier and suppresses a number of optimizer warnings (!) about
4766     // dropping arguments.
4767     if (!Entry->use_empty()) {
4768       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4769       Entry->removeDeadConstantUsers();
4770     }
4771 
4772     addGlobalValReplacement(Entry, F);
4773   }
4774 
4775   assert(F->getName() == MangledName && "name was uniqued!");
4776   if (D)
4777     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4778   if (ExtraAttrs.hasFnAttrs()) {
4779     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4780     F->addFnAttrs(B);
4781   }
4782 
4783   if (!DontDefer) {
4784     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4785     // each other bottoming out with the base dtor.  Therefore we emit non-base
4786     // dtors on usage, even if there is no dtor definition in the TU.
4787     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4788         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4789                                            GD.getDtorType()))
4790       addDeferredDeclToEmit(GD);
4791 
4792     // This is the first use or definition of a mangled name.  If there is a
4793     // deferred decl with this name, remember that we need to emit it at the end
4794     // of the file.
4795     auto DDI = DeferredDecls.find(MangledName);
4796     if (DDI != DeferredDecls.end()) {
4797       // Move the potentially referenced deferred decl to the
4798       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4799       // don't need it anymore).
4800       addDeferredDeclToEmit(DDI->second);
4801       DeferredDecls.erase(DDI);
4802 
4803       // Otherwise, there are cases we have to worry about where we're
4804       // using a declaration for which we must emit a definition but where
4805       // we might not find a top-level definition:
4806       //   - member functions defined inline in their classes
4807       //   - friend functions defined inline in some class
4808       //   - special member functions with implicit definitions
4809       // If we ever change our AST traversal to walk into class methods,
4810       // this will be unnecessary.
4811       //
4812       // We also don't emit a definition for a function if it's going to be an
4813       // entry in a vtable, unless it's already marked as used.
4814     } else if (getLangOpts().CPlusPlus && D) {
4815       // Look for a declaration that's lexically in a record.
4816       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4817            FD = FD->getPreviousDecl()) {
4818         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4819           if (FD->doesThisDeclarationHaveABody()) {
4820             addDeferredDeclToEmit(GD.getWithDecl(FD));
4821             break;
4822           }
4823         }
4824       }
4825     }
4826   }
4827 
4828   // Make sure the result is of the requested type.
4829   if (!IsIncompleteFunction) {
4830     assert(F->getFunctionType() == Ty);
4831     return F;
4832   }
4833 
4834   return F;
4835 }
4836 
4837 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4838 /// non-null, then this function will use the specified type if it has to
4839 /// create it (this occurs when we see a definition of the function).
4840 llvm::Constant *
4841 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4842                                  bool DontDefer,
4843                                  ForDefinition_t IsForDefinition) {
4844   // If there was no specific requested type, just convert it now.
4845   if (!Ty) {
4846     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4847     Ty = getTypes().ConvertType(FD->getType());
4848   }
4849 
4850   // Devirtualized destructor calls may come through here instead of via
4851   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4852   // of the complete destructor when necessary.
4853   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4854     if (getTarget().getCXXABI().isMicrosoft() &&
4855         GD.getDtorType() == Dtor_Complete &&
4856         DD->getParent()->getNumVBases() == 0)
4857       GD = GlobalDecl(DD, Dtor_Base);
4858   }
4859 
4860   StringRef MangledName = getMangledName(GD);
4861   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4862                                     /*IsThunk=*/false, llvm::AttributeList(),
4863                                     IsForDefinition);
4864   // Returns kernel handle for HIP kernel stub function.
4865   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4866       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4867     auto *Handle = getCUDARuntime().getKernelHandle(
4868         cast<llvm::Function>(F->stripPointerCasts()), GD);
4869     if (IsForDefinition)
4870       return F;
4871     return Handle;
4872   }
4873   return F;
4874 }
4875 
4876 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4877   llvm::GlobalValue *F =
4878       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4879 
4880   return llvm::NoCFIValue::get(F);
4881 }
4882 
4883 static const FunctionDecl *
4884 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4885   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4886   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4887 
4888   IdentifierInfo &CII = C.Idents.get(Name);
4889   for (const auto *Result : DC->lookup(&CII))
4890     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4891       return FD;
4892 
4893   if (!C.getLangOpts().CPlusPlus)
4894     return nullptr;
4895 
4896   // Demangle the premangled name from getTerminateFn()
4897   IdentifierInfo &CXXII =
4898       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4899           ? C.Idents.get("terminate")
4900           : C.Idents.get(Name);
4901 
4902   for (const auto &N : {"__cxxabiv1", "std"}) {
4903     IdentifierInfo &NS = C.Idents.get(N);
4904     for (const auto *Result : DC->lookup(&NS)) {
4905       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4906       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4907         for (const auto *Result : LSD->lookup(&NS))
4908           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4909             break;
4910 
4911       if (ND)
4912         for (const auto *Result : ND->lookup(&CXXII))
4913           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4914             return FD;
4915     }
4916   }
4917 
4918   return nullptr;
4919 }
4920 
4921 static void setWindowsItaniumDLLImport(CodeGenModule &CGM, bool Local,
4922                                        llvm::Function *F, StringRef Name) {
4923   // In Windows Itanium environments, try to mark runtime functions
4924   // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4925   // will link their standard library statically or dynamically. Marking
4926   // functions imported when they are not imported can cause linker errors
4927   // and warnings.
4928   if (!Local && CGM.getTriple().isWindowsItaniumEnvironment() &&
4929       !CGM.getCodeGenOpts().LTOVisibilityPublicStd) {
4930     const FunctionDecl *FD = GetRuntimeFunctionDecl(CGM.getContext(), Name);
4931     if (!FD || FD->hasAttr<DLLImportAttr>()) {
4932       F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4933       F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4934     }
4935   }
4936 }
4937 
4938 llvm::FunctionCallee CodeGenModule::CreateRuntimeFunction(
4939     QualType ReturnTy, ArrayRef<QualType> ArgTys, StringRef Name,
4940     llvm::AttributeList ExtraAttrs, bool Local, bool AssumeConvergent) {
4941   if (AssumeConvergent) {
4942     ExtraAttrs =
4943         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4944   }
4945 
4946   QualType FTy = Context.getFunctionType(ReturnTy, ArgTys,
4947                                          FunctionProtoType::ExtProtoInfo());
4948   const CGFunctionInfo &Info = getTypes().arrangeFreeFunctionType(
4949       Context.getCanonicalType(FTy).castAs<FunctionProtoType>());
4950   auto *ConvTy = getTypes().GetFunctionType(Info);
4951   llvm::Constant *C = GetOrCreateLLVMFunction(
4952       Name, ConvTy, GlobalDecl(), /*ForVTable=*/false,
4953       /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
4954 
4955   if (auto *F = dyn_cast<llvm::Function>(C)) {
4956     if (F->empty()) {
4957       SetLLVMFunctionAttributes(GlobalDecl(), Info, F, /*IsThunk*/ false);
4958       // FIXME: Set calling-conv properly in ExtProtoInfo
4959       F->setCallingConv(getRuntimeCC());
4960       setWindowsItaniumDLLImport(*this, Local, F, Name);
4961       setDSOLocal(F);
4962     }
4963   }
4964   return {ConvTy, C};
4965 }
4966 
4967 /// CreateRuntimeFunction - Create a new runtime function with the specified
4968 /// type and name.
4969 llvm::FunctionCallee
4970 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4971                                      llvm::AttributeList ExtraAttrs, bool Local,
4972                                      bool AssumeConvergent) {
4973   if (AssumeConvergent) {
4974     ExtraAttrs =
4975         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4976   }
4977 
4978   llvm::Constant *C =
4979       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4980                               /*DontDefer=*/false, /*IsThunk=*/false,
4981                               ExtraAttrs);
4982 
4983   if (auto *F = dyn_cast<llvm::Function>(C)) {
4984     if (F->empty()) {
4985       F->setCallingConv(getRuntimeCC());
4986       setWindowsItaniumDLLImport(*this, Local, F, Name);
4987       setDSOLocal(F);
4988       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4989       // of trying to approximate the attributes using the LLVM function
4990       // signature.  The other overload of CreateRuntimeFunction does this; it
4991       // should be used for new code.
4992       markRegisterParameterAttributes(F);
4993     }
4994   }
4995 
4996   return {FTy, C};
4997 }
4998 
4999 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
5000 /// create and return an llvm GlobalVariable with the specified type and address
5001 /// space. If there is something in the module with the specified name, return
5002 /// it potentially bitcasted to the right type.
5003 ///
5004 /// If D is non-null, it specifies a decl that correspond to this.  This is used
5005 /// to set the attributes on the global when it is first created.
5006 ///
5007 /// If IsForDefinition is true, it is guaranteed that an actual global with
5008 /// type Ty will be returned, not conversion of a variable with the same
5009 /// mangled name but some other type.
5010 llvm::Constant *
5011 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
5012                                      LangAS AddrSpace, const VarDecl *D,
5013                                      ForDefinition_t IsForDefinition) {
5014   // Lookup the entry, lazily creating it if necessary.
5015   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5016   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5017   if (Entry) {
5018     if (WeakRefReferences.erase(Entry)) {
5019       if (D && !D->hasAttr<WeakAttr>())
5020         Entry->setLinkage(llvm::Function::ExternalLinkage);
5021     }
5022 
5023     // Handle dropped DLL attributes.
5024     if (D && shouldDropDLLAttribute(D, Entry))
5025       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
5026 
5027     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
5028       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
5029 
5030     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
5031       return Entry;
5032 
5033     // If there are two attempts to define the same mangled name, issue an
5034     // error.
5035     if (IsForDefinition && !Entry->isDeclaration()) {
5036       GlobalDecl OtherGD;
5037       const VarDecl *OtherD;
5038 
5039       // Check that D is not yet in DiagnosedConflictingDefinitions is required
5040       // to make sure that we issue an error only once.
5041       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
5042           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
5043           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
5044           OtherD->hasInit() &&
5045           DiagnosedConflictingDefinitions.insert(D).second) {
5046         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
5047             << MangledName;
5048         getDiags().Report(OtherGD.getDecl()->getLocation(),
5049                           diag::note_previous_definition);
5050       }
5051     }
5052 
5053     // Make sure the result is of the correct type.
5054     if (Entry->getType()->getAddressSpace() != TargetAS)
5055       return llvm::ConstantExpr::getAddrSpaceCast(
5056           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
5057 
5058     // (If global is requested for a definition, we always need to create a new
5059     // global, not just return a bitcast.)
5060     if (!IsForDefinition)
5061       return Entry;
5062   }
5063 
5064   auto DAddrSpace = GetGlobalVarAddressSpace(D);
5065 
5066   auto *GV = new llvm::GlobalVariable(
5067       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
5068       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
5069       getContext().getTargetAddressSpace(DAddrSpace));
5070 
5071   // If we already created a global with the same mangled name (but different
5072   // type) before, take its name and remove it from its parent.
5073   if (Entry) {
5074     GV->takeName(Entry);
5075 
5076     if (!Entry->use_empty()) {
5077       Entry->replaceAllUsesWith(GV);
5078     }
5079 
5080     Entry->eraseFromParent();
5081   }
5082 
5083   // This is the first use or definition of a mangled name.  If there is a
5084   // deferred decl with this name, remember that we need to emit it at the end
5085   // of the file.
5086   auto DDI = DeferredDecls.find(MangledName);
5087   if (DDI != DeferredDecls.end()) {
5088     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5089     // list, and remove it from DeferredDecls (since we don't need it anymore).
5090     addDeferredDeclToEmit(DDI->second);
5091     DeferredDecls.erase(DDI);
5092   }
5093 
5094   // Handle things which are present even on external declarations.
5095   if (D) {
5096     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5097       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5098 
5099     // FIXME: This code is overly simple and should be merged with other global
5100     // handling.
5101     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5102 
5103     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5104 
5105     setLinkageForGV(GV, D);
5106 
5107     if (D->getTLSKind()) {
5108       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5109         CXXThreadLocals.push_back(D);
5110       setTLSMode(GV, *D);
5111     }
5112 
5113     setGVProperties(GV, D);
5114 
5115     // If required by the ABI, treat declarations of static data members with
5116     // inline initializers as definitions.
5117     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5118       EmitGlobalVarDefinition(D);
5119     }
5120 
5121     // Emit section information for extern variables.
5122     if (D->hasExternalStorage()) {
5123       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5124         GV->setSection(SA->getName());
5125     }
5126 
5127     // Handle XCore specific ABI requirements.
5128     if (getTriple().getArch() == llvm::Triple::xcore &&
5129         D->getLanguageLinkage() == CLanguageLinkage &&
5130         D->getType().isConstant(Context) &&
5131         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5132       GV->setSection(".cp.rodata");
5133 
5134     // Handle code model attribute
5135     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5136       GV->setCodeModel(CMA->getModel());
5137 
5138     // Check if we a have a const declaration with an initializer, we may be
5139     // able to emit it as available_externally to expose it's value to the
5140     // optimizer.
5141     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5142         D->getType().isConstQualified() && !GV->hasInitializer() &&
5143         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5144       const auto *Record =
5145           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5146       bool HasMutableFields = Record && Record->hasMutableFields();
5147       if (!HasMutableFields) {
5148         const VarDecl *InitDecl;
5149         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5150         if (InitExpr) {
5151           ConstantEmitter emitter(*this);
5152           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5153           if (Init) {
5154             auto *InitType = Init->getType();
5155             if (GV->getValueType() != InitType) {
5156               // The type of the initializer does not match the definition.
5157               // This happens when an initializer has a different type from
5158               // the type of the global (because of padding at the end of a
5159               // structure for instance).
5160               GV->setName(StringRef());
5161               // Make a new global with the correct type, this is now guaranteed
5162               // to work.
5163               auto *NewGV = cast<llvm::GlobalVariable>(
5164                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5165                       ->stripPointerCasts());
5166 
5167               // Erase the old global, since it is no longer used.
5168               GV->eraseFromParent();
5169               GV = NewGV;
5170             } else {
5171               GV->setInitializer(Init);
5172               GV->setConstant(true);
5173               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5174             }
5175             emitter.finalize(GV);
5176           }
5177         }
5178       }
5179     }
5180   }
5181 
5182   if (D &&
5183       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5184     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5185     // External HIP managed variables needed to be recorded for transformation
5186     // in both device and host compilations.
5187     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5188         D->hasExternalStorage())
5189       getCUDARuntime().handleVarRegistration(D, *GV);
5190   }
5191 
5192   if (D)
5193     SanitizerMD->reportGlobal(GV, *D);
5194 
5195   LangAS ExpectedAS =
5196       D ? D->getType().getAddressSpace()
5197         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5198   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5199   if (DAddrSpace != ExpectedAS) {
5200     return getTargetCodeGenInfo().performAddrSpaceCast(
5201         *this, GV, DAddrSpace, ExpectedAS,
5202         llvm::PointerType::get(getLLVMContext(), TargetAS));
5203   }
5204 
5205   return GV;
5206 }
5207 
5208 llvm::Constant *
5209 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5210   const Decl *D = GD.getDecl();
5211 
5212   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5213     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5214                                 /*DontDefer=*/false, IsForDefinition);
5215 
5216   if (isa<CXXMethodDecl>(D)) {
5217     auto FInfo =
5218         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5219     auto Ty = getTypes().GetFunctionType(*FInfo);
5220     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5221                              IsForDefinition);
5222   }
5223 
5224   if (isa<FunctionDecl>(D)) {
5225     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5226     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5227     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5228                              IsForDefinition);
5229   }
5230 
5231   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5232 }
5233 
5234 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5235     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5236     llvm::Align Alignment) {
5237   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5238   llvm::GlobalVariable *OldGV = nullptr;
5239 
5240   if (GV) {
5241     // Check if the variable has the right type.
5242     if (GV->getValueType() == Ty)
5243       return GV;
5244 
5245     // Because C++ name mangling, the only way we can end up with an already
5246     // existing global with the same name is if it has been declared extern "C".
5247     assert(GV->isDeclaration() && "Declaration has wrong type!");
5248     OldGV = GV;
5249   }
5250 
5251   // Create a new variable.
5252   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5253                                 Linkage, nullptr, Name);
5254 
5255   if (OldGV) {
5256     // Replace occurrences of the old variable if needed.
5257     GV->takeName(OldGV);
5258 
5259     if (!OldGV->use_empty()) {
5260       OldGV->replaceAllUsesWith(GV);
5261     }
5262 
5263     OldGV->eraseFromParent();
5264   }
5265 
5266   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5267       !GV->hasAvailableExternallyLinkage())
5268     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5269 
5270   GV->setAlignment(Alignment);
5271 
5272   return GV;
5273 }
5274 
5275 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5276 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5277 /// then it will be created with the specified type instead of whatever the
5278 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5279 /// that an actual global with type Ty will be returned, not conversion of a
5280 /// variable with the same mangled name but some other type.
5281 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5282                                                   llvm::Type *Ty,
5283                                            ForDefinition_t IsForDefinition) {
5284   assert(D->hasGlobalStorage() && "Not a global variable");
5285   QualType ASTTy = D->getType();
5286   if (!Ty)
5287     Ty = getTypes().ConvertTypeForMem(ASTTy);
5288 
5289   StringRef MangledName = getMangledName(D);
5290   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5291                                IsForDefinition);
5292 }
5293 
5294 /// CreateRuntimeVariable - Create a new runtime global variable with the
5295 /// specified type and name.
5296 llvm::Constant *
5297 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5298                                      StringRef Name) {
5299   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5300                                                        : LangAS::Default;
5301   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5302   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5303   return Ret;
5304 }
5305 
5306 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5307   assert(!D->getInit() && "Cannot emit definite definitions here!");
5308 
5309   StringRef MangledName = getMangledName(D);
5310   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5311 
5312   // We already have a definition, not declaration, with the same mangled name.
5313   // Emitting of declaration is not required (and actually overwrites emitted
5314   // definition).
5315   if (GV && !GV->isDeclaration())
5316     return;
5317 
5318   // If we have not seen a reference to this variable yet, place it into the
5319   // deferred declarations table to be emitted if needed later.
5320   if (!MustBeEmitted(D) && !GV) {
5321       DeferredDecls[MangledName] = D;
5322       return;
5323   }
5324 
5325   // The tentative definition is the only definition.
5326   EmitGlobalVarDefinition(D);
5327 }
5328 
5329 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5330   if (auto const *V = dyn_cast<const VarDecl>(D))
5331     EmitExternalVarDeclaration(V);
5332   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5333     EmitExternalFunctionDeclaration(FD);
5334 }
5335 
5336 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5337   return Context.toCharUnitsFromBits(
5338       getDataLayout().getTypeStoreSizeInBits(Ty));
5339 }
5340 
5341 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5342   if (LangOpts.OpenCL) {
5343     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5344     assert(AS == LangAS::opencl_global ||
5345            AS == LangAS::opencl_global_device ||
5346            AS == LangAS::opencl_global_host ||
5347            AS == LangAS::opencl_constant ||
5348            AS == LangAS::opencl_local ||
5349            AS >= LangAS::FirstTargetAddressSpace);
5350     return AS;
5351   }
5352 
5353   if (LangOpts.SYCLIsDevice &&
5354       (!D || D->getType().getAddressSpace() == LangAS::Default))
5355     return LangAS::sycl_global;
5356 
5357   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5358     if (D) {
5359       if (D->hasAttr<CUDAConstantAttr>())
5360         return LangAS::cuda_constant;
5361       if (D->hasAttr<CUDASharedAttr>())
5362         return LangAS::cuda_shared;
5363       if (D->hasAttr<CUDADeviceAttr>())
5364         return LangAS::cuda_device;
5365       if (D->getType().isConstQualified())
5366         return LangAS::cuda_constant;
5367     }
5368     return LangAS::cuda_device;
5369   }
5370 
5371   if (LangOpts.OpenMP) {
5372     LangAS AS;
5373     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5374       return AS;
5375   }
5376   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5377 }
5378 
5379 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5380   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5381   if (LangOpts.OpenCL)
5382     return LangAS::opencl_constant;
5383   if (LangOpts.SYCLIsDevice)
5384     return LangAS::sycl_global;
5385   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5386     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5387     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5388     // with OpVariable instructions with Generic storage class which is not
5389     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5390     // UniformConstant storage class is not viable as pointers to it may not be
5391     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5392     return LangAS::cuda_device;
5393   if (auto AS = getTarget().getConstantAddressSpace())
5394     return *AS;
5395   return LangAS::Default;
5396 }
5397 
5398 // In address space agnostic languages, string literals are in default address
5399 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5400 // emitted in constant address space in LLVM IR. To be consistent with other
5401 // parts of AST, string literal global variables in constant address space
5402 // need to be casted to default address space before being put into address
5403 // map and referenced by other part of CodeGen.
5404 // In OpenCL, string literals are in constant address space in AST, therefore
5405 // they should not be casted to default address space.
5406 static llvm::Constant *
5407 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5408                                        llvm::GlobalVariable *GV) {
5409   llvm::Constant *Cast = GV;
5410   if (!CGM.getLangOpts().OpenCL) {
5411     auto AS = CGM.GetGlobalConstantAddressSpace();
5412     if (AS != LangAS::Default)
5413       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5414           CGM, GV, AS, LangAS::Default,
5415           llvm::PointerType::get(
5416               CGM.getLLVMContext(),
5417               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5418   }
5419   return Cast;
5420 }
5421 
5422 template<typename SomeDecl>
5423 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5424                                                llvm::GlobalValue *GV) {
5425   if (!getLangOpts().CPlusPlus)
5426     return;
5427 
5428   // Must have 'used' attribute, or else inline assembly can't rely on
5429   // the name existing.
5430   if (!D->template hasAttr<UsedAttr>())
5431     return;
5432 
5433   // Must have internal linkage and an ordinary name.
5434   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5435     return;
5436 
5437   // Must be in an extern "C" context. Entities declared directly within
5438   // a record are not extern "C" even if the record is in such a context.
5439   const SomeDecl *First = D->getFirstDecl();
5440   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5441     return;
5442 
5443   // OK, this is an internal linkage entity inside an extern "C" linkage
5444   // specification. Make a note of that so we can give it the "expected"
5445   // mangled name if nothing else is using that name.
5446   std::pair<StaticExternCMap::iterator, bool> R =
5447       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5448 
5449   // If we have multiple internal linkage entities with the same name
5450   // in extern "C" regions, none of them gets that name.
5451   if (!R.second)
5452     R.first->second = nullptr;
5453 }
5454 
5455 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5456   if (!CGM.supportsCOMDAT())
5457     return false;
5458 
5459   if (D.hasAttr<SelectAnyAttr>())
5460     return true;
5461 
5462   GVALinkage Linkage;
5463   if (auto *VD = dyn_cast<VarDecl>(&D))
5464     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5465   else
5466     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5467 
5468   switch (Linkage) {
5469   case GVA_Internal:
5470   case GVA_AvailableExternally:
5471   case GVA_StrongExternal:
5472     return false;
5473   case GVA_DiscardableODR:
5474   case GVA_StrongODR:
5475     return true;
5476   }
5477   llvm_unreachable("No such linkage");
5478 }
5479 
5480 bool CodeGenModule::supportsCOMDAT() const {
5481   return getTriple().supportsCOMDAT();
5482 }
5483 
5484 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5485                                           llvm::GlobalObject &GO) {
5486   if (!shouldBeInCOMDAT(*this, D))
5487     return;
5488   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5489 }
5490 
5491 const ABIInfo &CodeGenModule::getABIInfo() {
5492   return getTargetCodeGenInfo().getABIInfo();
5493 }
5494 
5495 /// Pass IsTentative as true if you want to create a tentative definition.
5496 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5497                                             bool IsTentative) {
5498   // OpenCL global variables of sampler type are translated to function calls,
5499   // therefore no need to be translated.
5500   QualType ASTTy = D->getType();
5501   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5502     return;
5503 
5504   // If this is OpenMP device, check if it is legal to emit this global
5505   // normally.
5506   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5507       OpenMPRuntime->emitTargetGlobalVariable(D))
5508     return;
5509 
5510   llvm::TrackingVH<llvm::Constant> Init;
5511   bool NeedsGlobalCtor = false;
5512   // Whether the definition of the variable is available externally.
5513   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5514   // since this is the job for its original source.
5515   bool IsDefinitionAvailableExternally =
5516       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5517   bool NeedsGlobalDtor =
5518       !IsDefinitionAvailableExternally &&
5519       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5520 
5521   // It is helpless to emit the definition for an available_externally variable
5522   // which can't be marked as const.
5523   // We don't need to check if it needs global ctor or dtor. See the above
5524   // comment for ideas.
5525   if (IsDefinitionAvailableExternally &&
5526       (!D->hasConstantInitialization() ||
5527        // TODO: Update this when we have interface to check constexpr
5528        // destructor.
5529        D->needsDestruction(getContext()) ||
5530        !D->getType().isConstantStorage(getContext(), true, true)))
5531     return;
5532 
5533   const VarDecl *InitDecl;
5534   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5535 
5536   std::optional<ConstantEmitter> emitter;
5537 
5538   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5539   // as part of their declaration."  Sema has already checked for
5540   // error cases, so we just need to set Init to UndefValue.
5541   bool IsCUDASharedVar =
5542       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5543   // Shadows of initialized device-side global variables are also left
5544   // undefined.
5545   // Managed Variables should be initialized on both host side and device side.
5546   bool IsCUDAShadowVar =
5547       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5548       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5549        D->hasAttr<CUDASharedAttr>());
5550   bool IsCUDADeviceShadowVar =
5551       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5552       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5553        D->getType()->isCUDADeviceBuiltinTextureType());
5554   if (getLangOpts().CUDA &&
5555       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5556     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5557   else if (D->hasAttr<LoaderUninitializedAttr>())
5558     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5559   else if (!InitExpr) {
5560     // This is a tentative definition; tentative definitions are
5561     // implicitly initialized with { 0 }.
5562     //
5563     // Note that tentative definitions are only emitted at the end of
5564     // a translation unit, so they should never have incomplete
5565     // type. In addition, EmitTentativeDefinition makes sure that we
5566     // never attempt to emit a tentative definition if a real one
5567     // exists. A use may still exists, however, so we still may need
5568     // to do a RAUW.
5569     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5570     Init = EmitNullConstant(D->getType());
5571   } else {
5572     initializedGlobalDecl = GlobalDecl(D);
5573     emitter.emplace(*this);
5574     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5575     if (!Initializer) {
5576       QualType T = InitExpr->getType();
5577       if (D->getType()->isReferenceType())
5578         T = D->getType();
5579 
5580       if (getLangOpts().CPlusPlus) {
5581         Init = EmitNullConstant(T);
5582         if (!IsDefinitionAvailableExternally)
5583           NeedsGlobalCtor = true;
5584         if (InitDecl->hasFlexibleArrayInit(getContext())) {
5585           ErrorUnsupported(D, "flexible array initializer");
5586           // We cannot create ctor for flexible array initializer
5587           NeedsGlobalCtor = false;
5588         }
5589       } else {
5590         ErrorUnsupported(D, "static initializer");
5591         Init = llvm::PoisonValue::get(getTypes().ConvertType(T));
5592       }
5593     } else {
5594       Init = Initializer;
5595       // We don't need an initializer, so remove the entry for the delayed
5596       // initializer position (just in case this entry was delayed) if we
5597       // also don't need to register a destructor.
5598       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5599         DelayedCXXInitPosition.erase(D);
5600 
5601 #ifndef NDEBUG
5602       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5603                           InitDecl->getFlexibleArrayInitChars(getContext());
5604       CharUnits CstSize = CharUnits::fromQuantity(
5605           getDataLayout().getTypeAllocSize(Init->getType()));
5606       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5607 #endif
5608     }
5609   }
5610 
5611   llvm::Type* InitType = Init->getType();
5612   llvm::Constant *Entry =
5613       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5614 
5615   // Strip off pointer casts if we got them.
5616   Entry = Entry->stripPointerCasts();
5617 
5618   // Entry is now either a Function or GlobalVariable.
5619   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5620 
5621   // We have a definition after a declaration with the wrong type.
5622   // We must make a new GlobalVariable* and update everything that used OldGV
5623   // (a declaration or tentative definition) with the new GlobalVariable*
5624   // (which will be a definition).
5625   //
5626   // This happens if there is a prototype for a global (e.g.
5627   // "extern int x[];") and then a definition of a different type (e.g.
5628   // "int x[10];"). This also happens when an initializer has a different type
5629   // from the type of the global (this happens with unions).
5630   if (!GV || GV->getValueType() != InitType ||
5631       GV->getType()->getAddressSpace() !=
5632           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5633 
5634     // Move the old entry aside so that we'll create a new one.
5635     Entry->setName(StringRef());
5636 
5637     // Make a new global with the correct type, this is now guaranteed to work.
5638     GV = cast<llvm::GlobalVariable>(
5639         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5640             ->stripPointerCasts());
5641 
5642     // Replace all uses of the old global with the new global
5643     llvm::Constant *NewPtrForOldDecl =
5644         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5645                                                              Entry->getType());
5646     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5647 
5648     // Erase the old global, since it is no longer used.
5649     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5650   }
5651 
5652   MaybeHandleStaticInExternC(D, GV);
5653 
5654   if (D->hasAttr<AnnotateAttr>())
5655     AddGlobalAnnotations(D, GV);
5656 
5657   // Set the llvm linkage type as appropriate.
5658   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5659 
5660   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5661   // the device. [...]"
5662   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5663   // __device__, declares a variable that: [...]
5664   // Is accessible from all the threads within the grid and from the host
5665   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5666   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5667   if (LangOpts.CUDA) {
5668     if (LangOpts.CUDAIsDevice) {
5669       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5670           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5671            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5672            D->getType()->isCUDADeviceBuiltinTextureType()))
5673         GV->setExternallyInitialized(true);
5674     } else {
5675       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5676     }
5677     getCUDARuntime().handleVarRegistration(D, *GV);
5678   }
5679 
5680   if (LangOpts.HLSL)
5681     getHLSLRuntime().handleGlobalVarDefinition(D, GV);
5682 
5683   GV->setInitializer(Init);
5684   if (emitter)
5685     emitter->finalize(GV);
5686 
5687   // If it is safe to mark the global 'constant', do so now.
5688   GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) ||
5689                   (!NeedsGlobalCtor && !NeedsGlobalDtor &&
5690                    D->getType().isConstantStorage(getContext(), true, true)));
5691 
5692   // If it is in a read-only section, mark it 'constant'.
5693   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5694     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5695     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5696       GV->setConstant(true);
5697   }
5698 
5699   CharUnits AlignVal = getContext().getDeclAlign(D);
5700   // Check for alignment specifed in an 'omp allocate' directive.
5701   if (std::optional<CharUnits> AlignValFromAllocate =
5702           getOMPAllocateAlignment(D))
5703     AlignVal = *AlignValFromAllocate;
5704   GV->setAlignment(AlignVal.getAsAlign());
5705 
5706   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5707   // function is only defined alongside the variable, not also alongside
5708   // callers. Normally, all accesses to a thread_local go through the
5709   // thread-wrapper in order to ensure initialization has occurred, underlying
5710   // variable will never be used other than the thread-wrapper, so it can be
5711   // converted to internal linkage.
5712   //
5713   // However, if the variable has the 'constinit' attribute, it _can_ be
5714   // referenced directly, without calling the thread-wrapper, so the linkage
5715   // must not be changed.
5716   //
5717   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5718   // weak or linkonce, the de-duplication semantics are important to preserve,
5719   // so we don't change the linkage.
5720   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5721       Linkage == llvm::GlobalValue::ExternalLinkage &&
5722       Context.getTargetInfo().getTriple().isOSDarwin() &&
5723       !D->hasAttr<ConstInitAttr>())
5724     Linkage = llvm::GlobalValue::InternalLinkage;
5725 
5726   GV->setLinkage(Linkage);
5727   if (D->hasAttr<DLLImportAttr>())
5728     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5729   else if (D->hasAttr<DLLExportAttr>())
5730     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5731   else
5732     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5733 
5734   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5735     // common vars aren't constant even if declared const.
5736     GV->setConstant(false);
5737     // Tentative definition of global variables may be initialized with
5738     // non-zero null pointers. In this case they should have weak linkage
5739     // since common linkage must have zero initializer and must not have
5740     // explicit section therefore cannot have non-zero initial value.
5741     if (!GV->getInitializer()->isNullValue())
5742       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5743   }
5744 
5745   setNonAliasAttributes(D, GV);
5746 
5747   if (D->getTLSKind() && !GV->isThreadLocal()) {
5748     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5749       CXXThreadLocals.push_back(D);
5750     setTLSMode(GV, *D);
5751   }
5752 
5753   maybeSetTrivialComdat(*D, *GV);
5754 
5755   // Emit the initializer function if necessary.
5756   if (NeedsGlobalCtor || NeedsGlobalDtor)
5757     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5758 
5759   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5760 
5761   // Emit global variable debug information.
5762   if (CGDebugInfo *DI = getModuleDebugInfo())
5763     if (getCodeGenOpts().hasReducedDebugInfo())
5764       DI->EmitGlobalVariable(GV, D);
5765 }
5766 
5767 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5768   if (CGDebugInfo *DI = getModuleDebugInfo())
5769     if (getCodeGenOpts().hasReducedDebugInfo()) {
5770       QualType ASTTy = D->getType();
5771       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5772       llvm::Constant *GV =
5773           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5774       DI->EmitExternalVariable(
5775           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5776     }
5777 }
5778 
5779 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5780   if (CGDebugInfo *DI = getModuleDebugInfo())
5781     if (getCodeGenOpts().hasReducedDebugInfo()) {
5782       auto *Ty = getTypes().ConvertType(FD->getType());
5783       StringRef MangledName = getMangledName(FD);
5784       auto *Fn = cast<llvm::Function>(
5785           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5786       if (!Fn->getSubprogram())
5787         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5788     }
5789 }
5790 
5791 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5792                                       CodeGenModule &CGM, const VarDecl *D,
5793                                       bool NoCommon) {
5794   // Don't give variables common linkage if -fno-common was specified unless it
5795   // was overridden by a NoCommon attribute.
5796   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5797     return true;
5798 
5799   // C11 6.9.2/2:
5800   //   A declaration of an identifier for an object that has file scope without
5801   //   an initializer, and without a storage-class specifier or with the
5802   //   storage-class specifier static, constitutes a tentative definition.
5803   if (D->getInit() || D->hasExternalStorage())
5804     return true;
5805 
5806   // A variable cannot be both common and exist in a section.
5807   if (D->hasAttr<SectionAttr>())
5808     return true;
5809 
5810   // A variable cannot be both common and exist in a section.
5811   // We don't try to determine which is the right section in the front-end.
5812   // If no specialized section name is applicable, it will resort to default.
5813   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5814       D->hasAttr<PragmaClangDataSectionAttr>() ||
5815       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5816       D->hasAttr<PragmaClangRodataSectionAttr>())
5817     return true;
5818 
5819   // Thread local vars aren't considered common linkage.
5820   if (D->getTLSKind())
5821     return true;
5822 
5823   // Tentative definitions marked with WeakImportAttr are true definitions.
5824   if (D->hasAttr<WeakImportAttr>())
5825     return true;
5826 
5827   // A variable cannot be both common and exist in a comdat.
5828   if (shouldBeInCOMDAT(CGM, *D))
5829     return true;
5830 
5831   // Declarations with a required alignment do not have common linkage in MSVC
5832   // mode.
5833   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5834     if (D->hasAttr<AlignedAttr>())
5835       return true;
5836     QualType VarType = D->getType();
5837     if (Context.isAlignmentRequired(VarType))
5838       return true;
5839 
5840     if (const auto *RT = VarType->getAs<RecordType>()) {
5841       const RecordDecl *RD = RT->getDecl();
5842       for (const FieldDecl *FD : RD->fields()) {
5843         if (FD->isBitField())
5844           continue;
5845         if (FD->hasAttr<AlignedAttr>())
5846           return true;
5847         if (Context.isAlignmentRequired(FD->getType()))
5848           return true;
5849       }
5850     }
5851   }
5852 
5853   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5854   // common symbols, so symbols with greater alignment requirements cannot be
5855   // common.
5856   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5857   // alignments for common symbols via the aligncomm directive, so this
5858   // restriction only applies to MSVC environments.
5859   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5860       Context.getTypeAlignIfKnown(D->getType()) >
5861           Context.toBits(CharUnits::fromQuantity(32)))
5862     return true;
5863 
5864   return false;
5865 }
5866 
5867 llvm::GlobalValue::LinkageTypes
5868 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5869                                            GVALinkage Linkage) {
5870   if (Linkage == GVA_Internal)
5871     return llvm::Function::InternalLinkage;
5872 
5873   if (D->hasAttr<WeakAttr>())
5874     return llvm::GlobalVariable::WeakAnyLinkage;
5875 
5876   if (const auto *FD = D->getAsFunction())
5877     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5878       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5879 
5880   // We are guaranteed to have a strong definition somewhere else,
5881   // so we can use available_externally linkage.
5882   if (Linkage == GVA_AvailableExternally)
5883     return llvm::GlobalValue::AvailableExternallyLinkage;
5884 
5885   // Note that Apple's kernel linker doesn't support symbol
5886   // coalescing, so we need to avoid linkonce and weak linkages there.
5887   // Normally, this means we just map to internal, but for explicit
5888   // instantiations we'll map to external.
5889 
5890   // In C++, the compiler has to emit a definition in every translation unit
5891   // that references the function.  We should use linkonce_odr because
5892   // a) if all references in this translation unit are optimized away, we
5893   // don't need to codegen it.  b) if the function persists, it needs to be
5894   // merged with other definitions. c) C++ has the ODR, so we know the
5895   // definition is dependable.
5896   if (Linkage == GVA_DiscardableODR)
5897     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5898                                             : llvm::Function::InternalLinkage;
5899 
5900   // An explicit instantiation of a template has weak linkage, since
5901   // explicit instantiations can occur in multiple translation units
5902   // and must all be equivalent. However, we are not allowed to
5903   // throw away these explicit instantiations.
5904   //
5905   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5906   // so say that CUDA templates are either external (for kernels) or internal.
5907   // This lets llvm perform aggressive inter-procedural optimizations. For
5908   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5909   // therefore we need to follow the normal linkage paradigm.
5910   if (Linkage == GVA_StrongODR) {
5911     if (getLangOpts().AppleKext)
5912       return llvm::Function::ExternalLinkage;
5913     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5914         !getLangOpts().GPURelocatableDeviceCode)
5915       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5916                                           : llvm::Function::InternalLinkage;
5917     return llvm::Function::WeakODRLinkage;
5918   }
5919 
5920   // C++ doesn't have tentative definitions and thus cannot have common
5921   // linkage.
5922   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5923       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5924                                  CodeGenOpts.NoCommon))
5925     return llvm::GlobalVariable::CommonLinkage;
5926 
5927   // selectany symbols are externally visible, so use weak instead of
5928   // linkonce.  MSVC optimizes away references to const selectany globals, so
5929   // all definitions should be the same and ODR linkage should be used.
5930   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5931   if (D->hasAttr<SelectAnyAttr>())
5932     return llvm::GlobalVariable::WeakODRLinkage;
5933 
5934   // Otherwise, we have strong external linkage.
5935   assert(Linkage == GVA_StrongExternal);
5936   return llvm::GlobalVariable::ExternalLinkage;
5937 }
5938 
5939 llvm::GlobalValue::LinkageTypes
5940 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5941   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5942   return getLLVMLinkageForDeclarator(VD, Linkage);
5943 }
5944 
5945 /// Replace the uses of a function that was declared with a non-proto type.
5946 /// We want to silently drop extra arguments from call sites
5947 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5948                                           llvm::Function *newFn) {
5949   // Fast path.
5950   if (old->use_empty())
5951     return;
5952 
5953   llvm::Type *newRetTy = newFn->getReturnType();
5954   SmallVector<llvm::Value *, 4> newArgs;
5955 
5956   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5957 
5958   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5959        ui != ue; ui++) {
5960     llvm::User *user = ui->getUser();
5961 
5962     // Recognize and replace uses of bitcasts.  Most calls to
5963     // unprototyped functions will use bitcasts.
5964     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5965       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5966         replaceUsesOfNonProtoConstant(bitcast, newFn);
5967       continue;
5968     }
5969 
5970     // Recognize calls to the function.
5971     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5972     if (!callSite)
5973       continue;
5974     if (!callSite->isCallee(&*ui))
5975       continue;
5976 
5977     // If the return types don't match exactly, then we can't
5978     // transform this call unless it's dead.
5979     if (callSite->getType() != newRetTy && !callSite->use_empty())
5980       continue;
5981 
5982     // Get the call site's attribute list.
5983     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5984     llvm::AttributeList oldAttrs = callSite->getAttributes();
5985 
5986     // If the function was passed too few arguments, don't transform.
5987     unsigned newNumArgs = newFn->arg_size();
5988     if (callSite->arg_size() < newNumArgs)
5989       continue;
5990 
5991     // If extra arguments were passed, we silently drop them.
5992     // If any of the types mismatch, we don't transform.
5993     unsigned argNo = 0;
5994     bool dontTransform = false;
5995     for (llvm::Argument &A : newFn->args()) {
5996       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5997         dontTransform = true;
5998         break;
5999       }
6000 
6001       // Add any parameter attributes.
6002       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
6003       argNo++;
6004     }
6005     if (dontTransform)
6006       continue;
6007 
6008     // Okay, we can transform this.  Create the new call instruction and copy
6009     // over the required information.
6010     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
6011 
6012     // Copy over any operand bundles.
6013     SmallVector<llvm::OperandBundleDef, 1> newBundles;
6014     callSite->getOperandBundlesAsDefs(newBundles);
6015 
6016     llvm::CallBase *newCall;
6017     if (isa<llvm::CallInst>(callSite)) {
6018       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
6019                                        callSite->getIterator());
6020     } else {
6021       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
6022       newCall = llvm::InvokeInst::Create(
6023           newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
6024           newArgs, newBundles, "", callSite->getIterator());
6025     }
6026     newArgs.clear(); // for the next iteration
6027 
6028     if (!newCall->getType()->isVoidTy())
6029       newCall->takeName(callSite);
6030     newCall->setAttributes(
6031         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
6032                                  oldAttrs.getRetAttrs(), newArgAttrs));
6033     newCall->setCallingConv(callSite->getCallingConv());
6034 
6035     // Finally, remove the old call, replacing any uses with the new one.
6036     if (!callSite->use_empty())
6037       callSite->replaceAllUsesWith(newCall);
6038 
6039     // Copy debug location attached to CI.
6040     if (callSite->getDebugLoc())
6041       newCall->setDebugLoc(callSite->getDebugLoc());
6042 
6043     callSitesToBeRemovedFromParent.push_back(callSite);
6044   }
6045 
6046   for (auto *callSite : callSitesToBeRemovedFromParent) {
6047     callSite->eraseFromParent();
6048   }
6049 }
6050 
6051 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
6052 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
6053 /// existing call uses of the old function in the module, this adjusts them to
6054 /// call the new function directly.
6055 ///
6056 /// This is not just a cleanup: the always_inline pass requires direct calls to
6057 /// functions to be able to inline them.  If there is a bitcast in the way, it
6058 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
6059 /// run at -O0.
6060 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
6061                                                       llvm::Function *NewFn) {
6062   // If we're redefining a global as a function, don't transform it.
6063   if (!isa<llvm::Function>(Old)) return;
6064 
6065   replaceUsesOfNonProtoConstant(Old, NewFn);
6066 }
6067 
6068 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
6069   auto DK = VD->isThisDeclarationADefinition();
6070   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
6071       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
6072     return;
6073 
6074   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
6075   // If we have a definition, this might be a deferred decl. If the
6076   // instantiation is explicit, make sure we emit it at the end.
6077   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
6078     GetAddrOfGlobalVar(VD);
6079 
6080   EmitTopLevelDecl(VD);
6081 }
6082 
6083 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6084                                                  llvm::GlobalValue *GV) {
6085   const auto *D = cast<FunctionDecl>(GD.getDecl());
6086 
6087   // Compute the function info and LLVM type.
6088   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6089   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6090 
6091   // Get or create the prototype for the function.
6092   if (!GV || (GV->getValueType() != Ty))
6093     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6094                                                    /*DontDefer=*/true,
6095                                                    ForDefinition));
6096 
6097   // Already emitted.
6098   if (!GV->isDeclaration())
6099     return;
6100 
6101   // We need to set linkage and visibility on the function before
6102   // generating code for it because various parts of IR generation
6103   // want to propagate this information down (e.g. to local static
6104   // declarations).
6105   auto *Fn = cast<llvm::Function>(GV);
6106   setFunctionLinkage(GD, Fn);
6107 
6108   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6109   setGVProperties(Fn, GD);
6110 
6111   MaybeHandleStaticInExternC(D, Fn);
6112 
6113   maybeSetTrivialComdat(*D, *Fn);
6114 
6115   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6116 
6117   setNonAliasAttributes(GD, Fn);
6118   SetLLVMFunctionAttributesForDefinition(D, Fn);
6119 
6120   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6121     AddGlobalCtor(Fn, CA->getPriority());
6122   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6123     AddGlobalDtor(Fn, DA->getPriority(), true);
6124   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6125     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6126 }
6127 
6128 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6129   const auto *D = cast<ValueDecl>(GD.getDecl());
6130   const AliasAttr *AA = D->getAttr<AliasAttr>();
6131   assert(AA && "Not an alias?");
6132 
6133   StringRef MangledName = getMangledName(GD);
6134 
6135   if (AA->getAliasee() == MangledName) {
6136     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6137     return;
6138   }
6139 
6140   // If there is a definition in the module, then it wins over the alias.
6141   // This is dubious, but allow it to be safe.  Just ignore the alias.
6142   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6143   if (Entry && !Entry->isDeclaration())
6144     return;
6145 
6146   Aliases.push_back(GD);
6147 
6148   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6149 
6150   // Create a reference to the named value.  This ensures that it is emitted
6151   // if a deferred decl.
6152   llvm::Constant *Aliasee;
6153   llvm::GlobalValue::LinkageTypes LT;
6154   if (isa<llvm::FunctionType>(DeclTy)) {
6155     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6156                                       /*ForVTable=*/false);
6157     LT = getFunctionLinkage(GD);
6158   } else {
6159     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6160                                     /*D=*/nullptr);
6161     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6162       LT = getLLVMLinkageVarDefinition(VD);
6163     else
6164       LT = getFunctionLinkage(GD);
6165   }
6166 
6167   // Create the new alias itself, but don't set a name yet.
6168   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6169   auto *GA =
6170       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6171 
6172   if (Entry) {
6173     if (GA->getAliasee() == Entry) {
6174       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6175       return;
6176     }
6177 
6178     assert(Entry->isDeclaration());
6179 
6180     // If there is a declaration in the module, then we had an extern followed
6181     // by the alias, as in:
6182     //   extern int test6();
6183     //   ...
6184     //   int test6() __attribute__((alias("test7")));
6185     //
6186     // Remove it and replace uses of it with the alias.
6187     GA->takeName(Entry);
6188 
6189     Entry->replaceAllUsesWith(GA);
6190     Entry->eraseFromParent();
6191   } else {
6192     GA->setName(MangledName);
6193   }
6194 
6195   // Set attributes which are particular to an alias; this is a
6196   // specialization of the attributes which may be set on a global
6197   // variable/function.
6198   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6199       D->isWeakImported()) {
6200     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6201   }
6202 
6203   if (const auto *VD = dyn_cast<VarDecl>(D))
6204     if (VD->getTLSKind())
6205       setTLSMode(GA, *VD);
6206 
6207   SetCommonAttributes(GD, GA);
6208 
6209   // Emit global alias debug information.
6210   if (isa<VarDecl>(D))
6211     if (CGDebugInfo *DI = getModuleDebugInfo())
6212       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6213 }
6214 
6215 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6216   const auto *D = cast<ValueDecl>(GD.getDecl());
6217   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6218   assert(IFA && "Not an ifunc?");
6219 
6220   StringRef MangledName = getMangledName(GD);
6221 
6222   if (IFA->getResolver() == MangledName) {
6223     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6224     return;
6225   }
6226 
6227   // Report an error if some definition overrides ifunc.
6228   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6229   if (Entry && !Entry->isDeclaration()) {
6230     GlobalDecl OtherGD;
6231     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6232         DiagnosedConflictingDefinitions.insert(GD).second) {
6233       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6234           << MangledName;
6235       Diags.Report(OtherGD.getDecl()->getLocation(),
6236                    diag::note_previous_definition);
6237     }
6238     return;
6239   }
6240 
6241   Aliases.push_back(GD);
6242 
6243   // The resolver might not be visited yet. Specify a dummy non-function type to
6244   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6245   // was emitted) or the whole function will be replaced (if the resolver has
6246   // not been emitted).
6247   llvm::Constant *Resolver =
6248       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6249                               /*ForVTable=*/false);
6250   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6251   unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6252   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6253       DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6254   if (Entry) {
6255     if (GIF->getResolver() == Entry) {
6256       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6257       return;
6258     }
6259     assert(Entry->isDeclaration());
6260 
6261     // If there is a declaration in the module, then we had an extern followed
6262     // by the ifunc, as in:
6263     //   extern int test();
6264     //   ...
6265     //   int test() __attribute__((ifunc("resolver")));
6266     //
6267     // Remove it and replace uses of it with the ifunc.
6268     GIF->takeName(Entry);
6269 
6270     Entry->replaceAllUsesWith(GIF);
6271     Entry->eraseFromParent();
6272   } else
6273     GIF->setName(MangledName);
6274   SetCommonAttributes(GD, GIF);
6275 }
6276 
6277 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6278                                             ArrayRef<llvm::Type*> Tys) {
6279   return llvm::Intrinsic::getOrInsertDeclaration(&getModule(),
6280                                                  (llvm::Intrinsic::ID)IID, Tys);
6281 }
6282 
6283 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6284 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6285                          const StringLiteral *Literal, bool TargetIsLSB,
6286                          bool &IsUTF16, unsigned &StringLength) {
6287   StringRef String = Literal->getString();
6288   unsigned NumBytes = String.size();
6289 
6290   // Check for simple case.
6291   if (!Literal->containsNonAsciiOrNull()) {
6292     StringLength = NumBytes;
6293     return *Map.insert(std::make_pair(String, nullptr)).first;
6294   }
6295 
6296   // Otherwise, convert the UTF8 literals into a string of shorts.
6297   IsUTF16 = true;
6298 
6299   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6300   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6301   llvm::UTF16 *ToPtr = &ToBuf[0];
6302 
6303   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6304                                  ToPtr + NumBytes, llvm::strictConversion);
6305 
6306   // ConvertUTF8toUTF16 returns the length in ToPtr.
6307   StringLength = ToPtr - &ToBuf[0];
6308 
6309   // Add an explicit null.
6310   *ToPtr = 0;
6311   return *Map.insert(std::make_pair(
6312                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6313                                    (StringLength + 1) * 2),
6314                          nullptr)).first;
6315 }
6316 
6317 ConstantAddress
6318 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6319   unsigned StringLength = 0;
6320   bool isUTF16 = false;
6321   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6322       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6323                                getDataLayout().isLittleEndian(), isUTF16,
6324                                StringLength);
6325 
6326   if (auto *C = Entry.second)
6327     return ConstantAddress(
6328         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6329 
6330   const ASTContext &Context = getContext();
6331   const llvm::Triple &Triple = getTriple();
6332 
6333   const auto CFRuntime = getLangOpts().CFRuntime;
6334   const bool IsSwiftABI =
6335       static_cast<unsigned>(CFRuntime) >=
6336       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6337   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6338 
6339   // If we don't already have it, get __CFConstantStringClassReference.
6340   if (!CFConstantStringClassRef) {
6341     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6342     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6343     Ty = llvm::ArrayType::get(Ty, 0);
6344 
6345     switch (CFRuntime) {
6346     default: break;
6347     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6348     case LangOptions::CoreFoundationABI::Swift5_0:
6349       CFConstantStringClassName =
6350           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6351                               : "$s10Foundation19_NSCFConstantStringCN";
6352       Ty = IntPtrTy;
6353       break;
6354     case LangOptions::CoreFoundationABI::Swift4_2:
6355       CFConstantStringClassName =
6356           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6357                               : "$S10Foundation19_NSCFConstantStringCN";
6358       Ty = IntPtrTy;
6359       break;
6360     case LangOptions::CoreFoundationABI::Swift4_1:
6361       CFConstantStringClassName =
6362           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6363                               : "__T010Foundation19_NSCFConstantStringCN";
6364       Ty = IntPtrTy;
6365       break;
6366     }
6367 
6368     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6369 
6370     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6371       llvm::GlobalValue *GV = nullptr;
6372 
6373       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6374         IdentifierInfo &II = Context.Idents.get(GV->getName());
6375         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6376         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6377 
6378         const VarDecl *VD = nullptr;
6379         for (const auto *Result : DC->lookup(&II))
6380           if ((VD = dyn_cast<VarDecl>(Result)))
6381             break;
6382 
6383         if (Triple.isOSBinFormatELF()) {
6384           if (!VD)
6385             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6386         } else {
6387           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6388           if (!VD || !VD->hasAttr<DLLExportAttr>())
6389             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6390           else
6391             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6392         }
6393 
6394         setDSOLocal(GV);
6395       }
6396     }
6397 
6398     // Decay array -> ptr
6399     CFConstantStringClassRef =
6400         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6401   }
6402 
6403   QualType CFTy = Context.getCFConstantStringType();
6404 
6405   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6406 
6407   ConstantInitBuilder Builder(*this);
6408   auto Fields = Builder.beginStruct(STy);
6409 
6410   // Class pointer.
6411   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6412 
6413   // Flags.
6414   if (IsSwiftABI) {
6415     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6416     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6417   } else {
6418     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6419   }
6420 
6421   // String pointer.
6422   llvm::Constant *C = nullptr;
6423   if (isUTF16) {
6424     auto Arr = llvm::ArrayRef(
6425         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6426         Entry.first().size() / 2);
6427     C = llvm::ConstantDataArray::get(VMContext, Arr);
6428   } else {
6429     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6430   }
6431 
6432   // Note: -fwritable-strings doesn't make the backing store strings of
6433   // CFStrings writable.
6434   auto *GV =
6435       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6436                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6437   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6438   // Don't enforce the target's minimum global alignment, since the only use
6439   // of the string is via this class initializer.
6440   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6441                             : Context.getTypeAlignInChars(Context.CharTy);
6442   GV->setAlignment(Align.getAsAlign());
6443 
6444   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6445   // Without it LLVM can merge the string with a non unnamed_addr one during
6446   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6447   if (Triple.isOSBinFormatMachO())
6448     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6449                            : "__TEXT,__cstring,cstring_literals");
6450   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6451   // the static linker to adjust permissions to read-only later on.
6452   else if (Triple.isOSBinFormatELF())
6453     GV->setSection(".rodata");
6454 
6455   // String.
6456   Fields.add(GV);
6457 
6458   // String length.
6459   llvm::IntegerType *LengthTy =
6460       llvm::IntegerType::get(getModule().getContext(),
6461                              Context.getTargetInfo().getLongWidth());
6462   if (IsSwiftABI) {
6463     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6464         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6465       LengthTy = Int32Ty;
6466     else
6467       LengthTy = IntPtrTy;
6468   }
6469   Fields.addInt(LengthTy, StringLength);
6470 
6471   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6472   // properly aligned on 32-bit platforms.
6473   CharUnits Alignment =
6474       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6475 
6476   // The struct.
6477   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6478                                     /*isConstant=*/false,
6479                                     llvm::GlobalVariable::PrivateLinkage);
6480   GV->addAttribute("objc_arc_inert");
6481   switch (Triple.getObjectFormat()) {
6482   case llvm::Triple::UnknownObjectFormat:
6483     llvm_unreachable("unknown file format");
6484   case llvm::Triple::DXContainer:
6485   case llvm::Triple::GOFF:
6486   case llvm::Triple::SPIRV:
6487   case llvm::Triple::XCOFF:
6488     llvm_unreachable("unimplemented");
6489   case llvm::Triple::COFF:
6490   case llvm::Triple::ELF:
6491   case llvm::Triple::Wasm:
6492     GV->setSection("cfstring");
6493     break;
6494   case llvm::Triple::MachO:
6495     GV->setSection("__DATA,__cfstring");
6496     break;
6497   }
6498   Entry.second = GV;
6499 
6500   return ConstantAddress(GV, GV->getValueType(), Alignment);
6501 }
6502 
6503 bool CodeGenModule::getExpressionLocationsEnabled() const {
6504   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6505 }
6506 
6507 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6508   if (ObjCFastEnumerationStateType.isNull()) {
6509     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6510     D->startDefinition();
6511 
6512     QualType FieldTypes[] = {
6513         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6514         Context.getPointerType(Context.UnsignedLongTy),
6515         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6516                                      nullptr, ArraySizeModifier::Normal, 0)};
6517 
6518     for (size_t i = 0; i < 4; ++i) {
6519       FieldDecl *Field = FieldDecl::Create(Context,
6520                                            D,
6521                                            SourceLocation(),
6522                                            SourceLocation(), nullptr,
6523                                            FieldTypes[i], /*TInfo=*/nullptr,
6524                                            /*BitWidth=*/nullptr,
6525                                            /*Mutable=*/false,
6526                                            ICIS_NoInit);
6527       Field->setAccess(AS_public);
6528       D->addDecl(Field);
6529     }
6530 
6531     D->completeDefinition();
6532     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6533   }
6534 
6535   return ObjCFastEnumerationStateType;
6536 }
6537 
6538 llvm::Constant *
6539 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6540   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6541 
6542   // Don't emit it as the address of the string, emit the string data itself
6543   // as an inline array.
6544   if (E->getCharByteWidth() == 1) {
6545     SmallString<64> Str(E->getString());
6546 
6547     // Resize the string to the right size, which is indicated by its type.
6548     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6549     assert(CAT && "String literal not of constant array type!");
6550     Str.resize(CAT->getZExtSize());
6551     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6552   }
6553 
6554   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6555   llvm::Type *ElemTy = AType->getElementType();
6556   unsigned NumElements = AType->getNumElements();
6557 
6558   // Wide strings have either 2-byte or 4-byte elements.
6559   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6560     SmallVector<uint16_t, 32> Elements;
6561     Elements.reserve(NumElements);
6562 
6563     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6564       Elements.push_back(E->getCodeUnit(i));
6565     Elements.resize(NumElements);
6566     return llvm::ConstantDataArray::get(VMContext, Elements);
6567   }
6568 
6569   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6570   SmallVector<uint32_t, 32> Elements;
6571   Elements.reserve(NumElements);
6572 
6573   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6574     Elements.push_back(E->getCodeUnit(i));
6575   Elements.resize(NumElements);
6576   return llvm::ConstantDataArray::get(VMContext, Elements);
6577 }
6578 
6579 static llvm::GlobalVariable *
6580 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6581                       CodeGenModule &CGM, StringRef GlobalName,
6582                       CharUnits Alignment) {
6583   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6584       CGM.GetGlobalConstantAddressSpace());
6585 
6586   llvm::Module &M = CGM.getModule();
6587   // Create a global variable for this string
6588   auto *GV = new llvm::GlobalVariable(
6589       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6590       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6591   GV->setAlignment(Alignment.getAsAlign());
6592   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6593   if (GV->isWeakForLinker()) {
6594     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6595     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6596   }
6597   CGM.setDSOLocal(GV);
6598 
6599   return GV;
6600 }
6601 
6602 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6603 /// constant array for the given string literal.
6604 ConstantAddress
6605 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6606                                                   StringRef Name) {
6607   CharUnits Alignment =
6608       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6609 
6610   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6611   llvm::GlobalVariable **Entry = nullptr;
6612   if (!LangOpts.WritableStrings) {
6613     Entry = &ConstantStringMap[C];
6614     if (auto GV = *Entry) {
6615       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6616         GV->setAlignment(Alignment.getAsAlign());
6617       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6618                              GV->getValueType(), Alignment);
6619     }
6620   }
6621 
6622   SmallString<256> MangledNameBuffer;
6623   StringRef GlobalVariableName;
6624   llvm::GlobalValue::LinkageTypes LT;
6625 
6626   // Mangle the string literal if that's how the ABI merges duplicate strings.
6627   // Don't do it if they are writable, since we don't want writes in one TU to
6628   // affect strings in another.
6629   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6630       !LangOpts.WritableStrings) {
6631     llvm::raw_svector_ostream Out(MangledNameBuffer);
6632     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6633     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6634     GlobalVariableName = MangledNameBuffer;
6635   } else {
6636     LT = llvm::GlobalValue::PrivateLinkage;
6637     GlobalVariableName = Name;
6638   }
6639 
6640   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6641 
6642   CGDebugInfo *DI = getModuleDebugInfo();
6643   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6644     DI->AddStringLiteralDebugInfo(GV, S);
6645 
6646   if (Entry)
6647     *Entry = GV;
6648 
6649   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6650 
6651   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6652                          GV->getValueType(), Alignment);
6653 }
6654 
6655 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6656 /// array for the given ObjCEncodeExpr node.
6657 ConstantAddress
6658 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6659   std::string Str;
6660   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6661 
6662   return GetAddrOfConstantCString(Str);
6663 }
6664 
6665 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6666 /// the literal and a terminating '\0' character.
6667 /// The result has pointer to array type.
6668 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6669     const std::string &Str, const char *GlobalName) {
6670   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6671   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6672       getContext().CharTy, /*VD=*/nullptr);
6673 
6674   llvm::Constant *C =
6675       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6676 
6677   // Don't share any string literals if strings aren't constant.
6678   llvm::GlobalVariable **Entry = nullptr;
6679   if (!LangOpts.WritableStrings) {
6680     Entry = &ConstantStringMap[C];
6681     if (auto GV = *Entry) {
6682       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6683         GV->setAlignment(Alignment.getAsAlign());
6684       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6685                              GV->getValueType(), Alignment);
6686     }
6687   }
6688 
6689   // Get the default prefix if a name wasn't specified.
6690   if (!GlobalName)
6691     GlobalName = ".str";
6692   // Create a global variable for this.
6693   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6694                                   GlobalName, Alignment);
6695   if (Entry)
6696     *Entry = GV;
6697 
6698   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6699                          GV->getValueType(), Alignment);
6700 }
6701 
6702 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6703     const MaterializeTemporaryExpr *E, const Expr *Init) {
6704   assert((E->getStorageDuration() == SD_Static ||
6705           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6706   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6707 
6708   // If we're not materializing a subobject of the temporary, keep the
6709   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6710   QualType MaterializedType = Init->getType();
6711   if (Init == E->getSubExpr())
6712     MaterializedType = E->getType();
6713 
6714   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6715 
6716   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6717   if (!InsertResult.second) {
6718     // We've seen this before: either we already created it or we're in the
6719     // process of doing so.
6720     if (!InsertResult.first->second) {
6721       // We recursively re-entered this function, probably during emission of
6722       // the initializer. Create a placeholder. We'll clean this up in the
6723       // outer call, at the end of this function.
6724       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6725       InsertResult.first->second = new llvm::GlobalVariable(
6726           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6727           nullptr);
6728     }
6729     return ConstantAddress(InsertResult.first->second,
6730                            llvm::cast<llvm::GlobalVariable>(
6731                                InsertResult.first->second->stripPointerCasts())
6732                                ->getValueType(),
6733                            Align);
6734   }
6735 
6736   // FIXME: If an externally-visible declaration extends multiple temporaries,
6737   // we need to give each temporary the same name in every translation unit (and
6738   // we also need to make the temporaries externally-visible).
6739   SmallString<256> Name;
6740   llvm::raw_svector_ostream Out(Name);
6741   getCXXABI().getMangleContext().mangleReferenceTemporary(
6742       VD, E->getManglingNumber(), Out);
6743 
6744   APValue *Value = nullptr;
6745   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6746     // If the initializer of the extending declaration is a constant
6747     // initializer, we should have a cached constant initializer for this
6748     // temporary. Note that this might have a different value from the value
6749     // computed by evaluating the initializer if the surrounding constant
6750     // expression modifies the temporary.
6751     Value = E->getOrCreateValue(false);
6752   }
6753 
6754   // Try evaluating it now, it might have a constant initializer.
6755   Expr::EvalResult EvalResult;
6756   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6757       !EvalResult.hasSideEffects())
6758     Value = &EvalResult.Val;
6759 
6760   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6761 
6762   std::optional<ConstantEmitter> emitter;
6763   llvm::Constant *InitialValue = nullptr;
6764   bool Constant = false;
6765   llvm::Type *Type;
6766   if (Value) {
6767     // The temporary has a constant initializer, use it.
6768     emitter.emplace(*this);
6769     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6770                                                MaterializedType);
6771     Constant =
6772         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6773                                            /*ExcludeDtor*/ false);
6774     Type = InitialValue->getType();
6775   } else {
6776     // No initializer, the initialization will be provided when we
6777     // initialize the declaration which performed lifetime extension.
6778     Type = getTypes().ConvertTypeForMem(MaterializedType);
6779   }
6780 
6781   // Create a global variable for this lifetime-extended temporary.
6782   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6783   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6784     const VarDecl *InitVD;
6785     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6786         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6787       // Temporaries defined inside a class get linkonce_odr linkage because the
6788       // class can be defined in multiple translation units.
6789       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6790     } else {
6791       // There is no need for this temporary to have external linkage if the
6792       // VarDecl has external linkage.
6793       Linkage = llvm::GlobalVariable::InternalLinkage;
6794     }
6795   }
6796   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6797   auto *GV = new llvm::GlobalVariable(
6798       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6799       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6800   if (emitter) emitter->finalize(GV);
6801   // Don't assign dllimport or dllexport to local linkage globals.
6802   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6803     setGVProperties(GV, VD);
6804     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6805       // The reference temporary should never be dllexport.
6806       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6807   }
6808   GV->setAlignment(Align.getAsAlign());
6809   if (supportsCOMDAT() && GV->isWeakForLinker())
6810     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6811   if (VD->getTLSKind())
6812     setTLSMode(GV, *VD);
6813   llvm::Constant *CV = GV;
6814   if (AddrSpace != LangAS::Default)
6815     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6816         *this, GV, AddrSpace, LangAS::Default,
6817         llvm::PointerType::get(
6818             getLLVMContext(),
6819             getContext().getTargetAddressSpace(LangAS::Default)));
6820 
6821   // Update the map with the new temporary. If we created a placeholder above,
6822   // replace it with the new global now.
6823   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6824   if (Entry) {
6825     Entry->replaceAllUsesWith(CV);
6826     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6827   }
6828   Entry = CV;
6829 
6830   return ConstantAddress(CV, Type, Align);
6831 }
6832 
6833 /// EmitObjCPropertyImplementations - Emit information for synthesized
6834 /// properties for an implementation.
6835 void CodeGenModule::EmitObjCPropertyImplementations(const
6836                                                     ObjCImplementationDecl *D) {
6837   for (const auto *PID : D->property_impls()) {
6838     // Dynamic is just for type-checking.
6839     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6840       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6841 
6842       // Determine which methods need to be implemented, some may have
6843       // been overridden. Note that ::isPropertyAccessor is not the method
6844       // we want, that just indicates if the decl came from a
6845       // property. What we want to know is if the method is defined in
6846       // this implementation.
6847       auto *Getter = PID->getGetterMethodDecl();
6848       if (!Getter || Getter->isSynthesizedAccessorStub())
6849         CodeGenFunction(*this).GenerateObjCGetter(
6850             const_cast<ObjCImplementationDecl *>(D), PID);
6851       auto *Setter = PID->getSetterMethodDecl();
6852       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6853         CodeGenFunction(*this).GenerateObjCSetter(
6854                                  const_cast<ObjCImplementationDecl *>(D), PID);
6855     }
6856   }
6857 }
6858 
6859 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6860   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6861   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6862        ivar; ivar = ivar->getNextIvar())
6863     if (ivar->getType().isDestructedType())
6864       return true;
6865 
6866   return false;
6867 }
6868 
6869 static bool AllTrivialInitializers(CodeGenModule &CGM,
6870                                    ObjCImplementationDecl *D) {
6871   CodeGenFunction CGF(CGM);
6872   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6873        E = D->init_end(); B != E; ++B) {
6874     CXXCtorInitializer *CtorInitExp = *B;
6875     Expr *Init = CtorInitExp->getInit();
6876     if (!CGF.isTrivialInitializer(Init))
6877       return false;
6878   }
6879   return true;
6880 }
6881 
6882 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6883 /// for an implementation.
6884 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6885   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6886   if (needsDestructMethod(D)) {
6887     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6888     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6889     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6890         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6891         getContext().VoidTy, nullptr, D,
6892         /*isInstance=*/true, /*isVariadic=*/false,
6893         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6894         /*isImplicitlyDeclared=*/true,
6895         /*isDefined=*/false, ObjCImplementationControl::Required);
6896     D->addInstanceMethod(DTORMethod);
6897     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6898     D->setHasDestructors(true);
6899   }
6900 
6901   // If the implementation doesn't have any ivar initializers, we don't need
6902   // a .cxx_construct.
6903   if (D->getNumIvarInitializers() == 0 ||
6904       AllTrivialInitializers(*this, D))
6905     return;
6906 
6907   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6908   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6909   // The constructor returns 'self'.
6910   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6911       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6912       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6913       /*isVariadic=*/false,
6914       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6915       /*isImplicitlyDeclared=*/true,
6916       /*isDefined=*/false, ObjCImplementationControl::Required);
6917   D->addInstanceMethod(CTORMethod);
6918   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6919   D->setHasNonZeroConstructors(true);
6920 }
6921 
6922 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6923 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6924   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6925       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6926     ErrorUnsupported(LSD, "linkage spec");
6927     return;
6928   }
6929 
6930   EmitDeclContext(LSD);
6931 }
6932 
6933 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6934   // Device code should not be at top level.
6935   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6936     return;
6937 
6938   std::unique_ptr<CodeGenFunction> &CurCGF =
6939       GlobalTopLevelStmtBlockInFlight.first;
6940 
6941   // We emitted a top-level stmt but after it there is initialization.
6942   // Stop squashing the top-level stmts into a single function.
6943   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6944     CurCGF->FinishFunction(D->getEndLoc());
6945     CurCGF = nullptr;
6946   }
6947 
6948   if (!CurCGF) {
6949     // void __stmts__N(void)
6950     // FIXME: Ask the ABI name mangler to pick a name.
6951     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6952     FunctionArgList Args;
6953     QualType RetTy = getContext().VoidTy;
6954     const CGFunctionInfo &FnInfo =
6955         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6956     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6957     llvm::Function *Fn = llvm::Function::Create(
6958         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6959 
6960     CurCGF.reset(new CodeGenFunction(*this));
6961     GlobalTopLevelStmtBlockInFlight.second = D;
6962     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6963                           D->getBeginLoc(), D->getBeginLoc());
6964     CXXGlobalInits.push_back(Fn);
6965   }
6966 
6967   CurCGF->EmitStmt(D->getStmt());
6968 }
6969 
6970 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6971   for (auto *I : DC->decls()) {
6972     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6973     // are themselves considered "top-level", so EmitTopLevelDecl on an
6974     // ObjCImplDecl does not recursively visit them. We need to do that in
6975     // case they're nested inside another construct (LinkageSpecDecl /
6976     // ExportDecl) that does stop them from being considered "top-level".
6977     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6978       for (auto *M : OID->methods())
6979         EmitTopLevelDecl(M);
6980     }
6981 
6982     EmitTopLevelDecl(I);
6983   }
6984 }
6985 
6986 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6987 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6988   // Ignore dependent declarations.
6989   if (D->isTemplated())
6990     return;
6991 
6992   // Consteval function shouldn't be emitted.
6993   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6994     return;
6995 
6996   switch (D->getKind()) {
6997   case Decl::CXXConversion:
6998   case Decl::CXXMethod:
6999   case Decl::Function:
7000     EmitGlobal(cast<FunctionDecl>(D));
7001     // Always provide some coverage mapping
7002     // even for the functions that aren't emitted.
7003     AddDeferredUnusedCoverageMapping(D);
7004     break;
7005 
7006   case Decl::CXXDeductionGuide:
7007     // Function-like, but does not result in code emission.
7008     break;
7009 
7010   case Decl::Var:
7011   case Decl::Decomposition:
7012   case Decl::VarTemplateSpecialization:
7013     EmitGlobal(cast<VarDecl>(D));
7014     if (auto *DD = dyn_cast<DecompositionDecl>(D))
7015       for (auto *B : DD->bindings())
7016         if (auto *HD = B->getHoldingVar())
7017           EmitGlobal(HD);
7018     break;
7019 
7020   // Indirect fields from global anonymous structs and unions can be
7021   // ignored; only the actual variable requires IR gen support.
7022   case Decl::IndirectField:
7023     break;
7024 
7025   // C++ Decls
7026   case Decl::Namespace:
7027     EmitDeclContext(cast<NamespaceDecl>(D));
7028     break;
7029   case Decl::ClassTemplateSpecialization: {
7030     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
7031     if (CGDebugInfo *DI = getModuleDebugInfo())
7032       if (Spec->getSpecializationKind() ==
7033               TSK_ExplicitInstantiationDefinition &&
7034           Spec->hasDefinition())
7035         DI->completeTemplateDefinition(*Spec);
7036   } [[fallthrough]];
7037   case Decl::CXXRecord: {
7038     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
7039     if (CGDebugInfo *DI = getModuleDebugInfo()) {
7040       if (CRD->hasDefinition())
7041         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7042       if (auto *ES = D->getASTContext().getExternalSource())
7043         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
7044           DI->completeUnusedClass(*CRD);
7045     }
7046     // Emit any static data members, they may be definitions.
7047     for (auto *I : CRD->decls())
7048       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
7049         EmitTopLevelDecl(I);
7050     break;
7051   }
7052     // No code generation needed.
7053   case Decl::UsingShadow:
7054   case Decl::ClassTemplate:
7055   case Decl::VarTemplate:
7056   case Decl::Concept:
7057   case Decl::VarTemplatePartialSpecialization:
7058   case Decl::FunctionTemplate:
7059   case Decl::TypeAliasTemplate:
7060   case Decl::Block:
7061   case Decl::Empty:
7062   case Decl::Binding:
7063     break;
7064   case Decl::Using:          // using X; [C++]
7065     if (CGDebugInfo *DI = getModuleDebugInfo())
7066         DI->EmitUsingDecl(cast<UsingDecl>(*D));
7067     break;
7068   case Decl::UsingEnum: // using enum X; [C++]
7069     if (CGDebugInfo *DI = getModuleDebugInfo())
7070       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
7071     break;
7072   case Decl::NamespaceAlias:
7073     if (CGDebugInfo *DI = getModuleDebugInfo())
7074         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
7075     break;
7076   case Decl::UsingDirective: // using namespace X; [C++]
7077     if (CGDebugInfo *DI = getModuleDebugInfo())
7078       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
7079     break;
7080   case Decl::CXXConstructor:
7081     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
7082     break;
7083   case Decl::CXXDestructor:
7084     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7085     break;
7086 
7087   case Decl::StaticAssert:
7088     // Nothing to do.
7089     break;
7090 
7091   // Objective-C Decls
7092 
7093   // Forward declarations, no (immediate) code generation.
7094   case Decl::ObjCInterface:
7095   case Decl::ObjCCategory:
7096     break;
7097 
7098   case Decl::ObjCProtocol: {
7099     auto *Proto = cast<ObjCProtocolDecl>(D);
7100     if (Proto->isThisDeclarationADefinition())
7101       ObjCRuntime->GenerateProtocol(Proto);
7102     break;
7103   }
7104 
7105   case Decl::ObjCCategoryImpl:
7106     // Categories have properties but don't support synthesize so we
7107     // can ignore them here.
7108     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7109     break;
7110 
7111   case Decl::ObjCImplementation: {
7112     auto *OMD = cast<ObjCImplementationDecl>(D);
7113     EmitObjCPropertyImplementations(OMD);
7114     EmitObjCIvarInitializations(OMD);
7115     ObjCRuntime->GenerateClass(OMD);
7116     // Emit global variable debug information.
7117     if (CGDebugInfo *DI = getModuleDebugInfo())
7118       if (getCodeGenOpts().hasReducedDebugInfo())
7119         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7120             OMD->getClassInterface()), OMD->getLocation());
7121     break;
7122   }
7123   case Decl::ObjCMethod: {
7124     auto *OMD = cast<ObjCMethodDecl>(D);
7125     // If this is not a prototype, emit the body.
7126     if (OMD->getBody())
7127       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7128     break;
7129   }
7130   case Decl::ObjCCompatibleAlias:
7131     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7132     break;
7133 
7134   case Decl::PragmaComment: {
7135     const auto *PCD = cast<PragmaCommentDecl>(D);
7136     switch (PCD->getCommentKind()) {
7137     case PCK_Unknown:
7138       llvm_unreachable("unexpected pragma comment kind");
7139     case PCK_Linker:
7140       AppendLinkerOptions(PCD->getArg());
7141       break;
7142     case PCK_Lib:
7143         AddDependentLib(PCD->getArg());
7144       break;
7145     case PCK_Compiler:
7146     case PCK_ExeStr:
7147     case PCK_User:
7148       break; // We ignore all of these.
7149     }
7150     break;
7151   }
7152 
7153   case Decl::PragmaDetectMismatch: {
7154     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7155     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7156     break;
7157   }
7158 
7159   case Decl::LinkageSpec:
7160     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7161     break;
7162 
7163   case Decl::FileScopeAsm: {
7164     // File-scope asm is ignored during device-side CUDA compilation.
7165     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7166       break;
7167     // File-scope asm is ignored during device-side OpenMP compilation.
7168     if (LangOpts.OpenMPIsTargetDevice)
7169       break;
7170     // File-scope asm is ignored during device-side SYCL compilation.
7171     if (LangOpts.SYCLIsDevice)
7172       break;
7173     auto *AD = cast<FileScopeAsmDecl>(D);
7174     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7175     break;
7176   }
7177 
7178   case Decl::TopLevelStmt:
7179     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7180     break;
7181 
7182   case Decl::Import: {
7183     auto *Import = cast<ImportDecl>(D);
7184 
7185     // If we've already imported this module, we're done.
7186     if (!ImportedModules.insert(Import->getImportedModule()))
7187       break;
7188 
7189     // Emit debug information for direct imports.
7190     if (!Import->getImportedOwningModule()) {
7191       if (CGDebugInfo *DI = getModuleDebugInfo())
7192         DI->EmitImportDecl(*Import);
7193     }
7194 
7195     // For C++ standard modules we are done - we will call the module
7196     // initializer for imported modules, and that will likewise call those for
7197     // any imports it has.
7198     if (CXX20ModuleInits && Import->getImportedModule() &&
7199         Import->getImportedModule()->isNamedModule())
7200       break;
7201 
7202     // For clang C++ module map modules the initializers for sub-modules are
7203     // emitted here.
7204 
7205     // Find all of the submodules and emit the module initializers.
7206     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7207     SmallVector<clang::Module *, 16> Stack;
7208     Visited.insert(Import->getImportedModule());
7209     Stack.push_back(Import->getImportedModule());
7210 
7211     while (!Stack.empty()) {
7212       clang::Module *Mod = Stack.pop_back_val();
7213       if (!EmittedModuleInitializers.insert(Mod).second)
7214         continue;
7215 
7216       for (auto *D : Context.getModuleInitializers(Mod))
7217         EmitTopLevelDecl(D);
7218 
7219       // Visit the submodules of this module.
7220       for (auto *Submodule : Mod->submodules()) {
7221         // Skip explicit children; they need to be explicitly imported to emit
7222         // the initializers.
7223         if (Submodule->IsExplicit)
7224           continue;
7225 
7226         if (Visited.insert(Submodule).second)
7227           Stack.push_back(Submodule);
7228       }
7229     }
7230     break;
7231   }
7232 
7233   case Decl::Export:
7234     EmitDeclContext(cast<ExportDecl>(D));
7235     break;
7236 
7237   case Decl::OMPThreadPrivate:
7238     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7239     break;
7240 
7241   case Decl::OMPAllocate:
7242     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7243     break;
7244 
7245   case Decl::OMPDeclareReduction:
7246     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7247     break;
7248 
7249   case Decl::OMPDeclareMapper:
7250     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7251     break;
7252 
7253   case Decl::OMPRequires:
7254     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7255     break;
7256 
7257   case Decl::Typedef:
7258   case Decl::TypeAlias: // using foo = bar; [C++11]
7259     if (CGDebugInfo *DI = getModuleDebugInfo())
7260       DI->EmitAndRetainType(
7261           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7262     break;
7263 
7264   case Decl::Record:
7265     if (CGDebugInfo *DI = getModuleDebugInfo())
7266       if (cast<RecordDecl>(D)->getDefinition())
7267         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7268     break;
7269 
7270   case Decl::Enum:
7271     if (CGDebugInfo *DI = getModuleDebugInfo())
7272       if (cast<EnumDecl>(D)->getDefinition())
7273         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7274     break;
7275 
7276   case Decl::HLSLBuffer:
7277     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7278     break;
7279 
7280   default:
7281     // Make sure we handled everything we should, every other kind is a
7282     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7283     // function. Need to recode Decl::Kind to do that easily.
7284     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7285     break;
7286   }
7287 }
7288 
7289 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7290   // Do we need to generate coverage mapping?
7291   if (!CodeGenOpts.CoverageMapping)
7292     return;
7293   switch (D->getKind()) {
7294   case Decl::CXXConversion:
7295   case Decl::CXXMethod:
7296   case Decl::Function:
7297   case Decl::ObjCMethod:
7298   case Decl::CXXConstructor:
7299   case Decl::CXXDestructor: {
7300     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7301       break;
7302     SourceManager &SM = getContext().getSourceManager();
7303     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7304       break;
7305     if (!llvm::coverage::SystemHeadersCoverage &&
7306         SM.isInSystemHeader(D->getBeginLoc()))
7307       break;
7308     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7309     break;
7310   }
7311   default:
7312     break;
7313   };
7314 }
7315 
7316 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7317   // Do we need to generate coverage mapping?
7318   if (!CodeGenOpts.CoverageMapping)
7319     return;
7320   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7321     if (Fn->isTemplateInstantiation())
7322       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7323   }
7324   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7325 }
7326 
7327 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7328   // We call takeVector() here to avoid use-after-free.
7329   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7330   // we deserialize function bodies to emit coverage info for them, and that
7331   // deserializes more declarations. How should we handle that case?
7332   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7333     if (!Entry.second)
7334       continue;
7335     const Decl *D = Entry.first;
7336     switch (D->getKind()) {
7337     case Decl::CXXConversion:
7338     case Decl::CXXMethod:
7339     case Decl::Function:
7340     case Decl::ObjCMethod: {
7341       CodeGenPGO PGO(*this);
7342       GlobalDecl GD(cast<FunctionDecl>(D));
7343       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7344                                   getFunctionLinkage(GD));
7345       break;
7346     }
7347     case Decl::CXXConstructor: {
7348       CodeGenPGO PGO(*this);
7349       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7350       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7351                                   getFunctionLinkage(GD));
7352       break;
7353     }
7354     case Decl::CXXDestructor: {
7355       CodeGenPGO PGO(*this);
7356       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7357       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7358                                   getFunctionLinkage(GD));
7359       break;
7360     }
7361     default:
7362       break;
7363     };
7364   }
7365 }
7366 
7367 void CodeGenModule::EmitMainVoidAlias() {
7368   // In order to transition away from "__original_main" gracefully, emit an
7369   // alias for "main" in the no-argument case so that libc can detect when
7370   // new-style no-argument main is in used.
7371   if (llvm::Function *F = getModule().getFunction("main")) {
7372     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7373         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7374       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7375       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7376     }
7377   }
7378 }
7379 
7380 /// Turns the given pointer into a constant.
7381 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7382                                           const void *Ptr) {
7383   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7384   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7385   return llvm::ConstantInt::get(i64, PtrInt);
7386 }
7387 
7388 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7389                                    llvm::NamedMDNode *&GlobalMetadata,
7390                                    GlobalDecl D,
7391                                    llvm::GlobalValue *Addr) {
7392   if (!GlobalMetadata)
7393     GlobalMetadata =
7394       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7395 
7396   // TODO: should we report variant information for ctors/dtors?
7397   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7398                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7399                                CGM.getLLVMContext(), D.getDecl()))};
7400   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7401 }
7402 
7403 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7404                                                  llvm::GlobalValue *CppFunc) {
7405   // Store the list of ifuncs we need to replace uses in.
7406   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7407   // List of ConstantExprs that we should be able to delete when we're done
7408   // here.
7409   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7410 
7411   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7412   if (Elem == CppFunc)
7413     return false;
7414 
7415   // First make sure that all users of this are ifuncs (or ifuncs via a
7416   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7417   // later.
7418   for (llvm::User *User : Elem->users()) {
7419     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7420     // ifunc directly. In any other case, just give up, as we don't know what we
7421     // could break by changing those.
7422     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7423       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7424         return false;
7425 
7426       for (llvm::User *CEUser : ConstExpr->users()) {
7427         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7428           IFuncs.push_back(IFunc);
7429         } else {
7430           return false;
7431         }
7432       }
7433       CEs.push_back(ConstExpr);
7434     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7435       IFuncs.push_back(IFunc);
7436     } else {
7437       // This user is one we don't know how to handle, so fail redirection. This
7438       // will result in an ifunc retaining a resolver name that will ultimately
7439       // fail to be resolved to a defined function.
7440       return false;
7441     }
7442   }
7443 
7444   // Now we know this is a valid case where we can do this alias replacement, we
7445   // need to remove all of the references to Elem (and the bitcasts!) so we can
7446   // delete it.
7447   for (llvm::GlobalIFunc *IFunc : IFuncs)
7448     IFunc->setResolver(nullptr);
7449   for (llvm::ConstantExpr *ConstExpr : CEs)
7450     ConstExpr->destroyConstant();
7451 
7452   // We should now be out of uses for the 'old' version of this function, so we
7453   // can erase it as well.
7454   Elem->eraseFromParent();
7455 
7456   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7457     // The type of the resolver is always just a function-type that returns the
7458     // type of the IFunc, so create that here. If the type of the actual
7459     // resolver doesn't match, it just gets bitcast to the right thing.
7460     auto *ResolverTy =
7461         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7462     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7463         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7464     IFunc->setResolver(Resolver);
7465   }
7466   return true;
7467 }
7468 
7469 /// For each function which is declared within an extern "C" region and marked
7470 /// as 'used', but has internal linkage, create an alias from the unmangled
7471 /// name to the mangled name if possible. People expect to be able to refer
7472 /// to such functions with an unmangled name from inline assembly within the
7473 /// same translation unit.
7474 void CodeGenModule::EmitStaticExternCAliases() {
7475   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7476     return;
7477   for (auto &I : StaticExternCValues) {
7478     const IdentifierInfo *Name = I.first;
7479     llvm::GlobalValue *Val = I.second;
7480 
7481     // If Val is null, that implies there were multiple declarations that each
7482     // had a claim to the unmangled name. In this case, generation of the alias
7483     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7484     if (!Val)
7485       break;
7486 
7487     llvm::GlobalValue *ExistingElem =
7488         getModule().getNamedValue(Name->getName());
7489 
7490     // If there is either not something already by this name, or we were able to
7491     // replace all uses from IFuncs, create the alias.
7492     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7493       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7494   }
7495 }
7496 
7497 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7498                                              GlobalDecl &Result) const {
7499   auto Res = Manglings.find(MangledName);
7500   if (Res == Manglings.end())
7501     return false;
7502   Result = Res->getValue();
7503   return true;
7504 }
7505 
7506 /// Emits metadata nodes associating all the global values in the
7507 /// current module with the Decls they came from.  This is useful for
7508 /// projects using IR gen as a subroutine.
7509 ///
7510 /// Since there's currently no way to associate an MDNode directly
7511 /// with an llvm::GlobalValue, we create a global named metadata
7512 /// with the name 'clang.global.decl.ptrs'.
7513 void CodeGenModule::EmitDeclMetadata() {
7514   llvm::NamedMDNode *GlobalMetadata = nullptr;
7515 
7516   for (auto &I : MangledDeclNames) {
7517     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7518     // Some mangled names don't necessarily have an associated GlobalValue
7519     // in this module, e.g. if we mangled it for DebugInfo.
7520     if (Addr)
7521       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7522   }
7523 }
7524 
7525 /// Emits metadata nodes for all the local variables in the current
7526 /// function.
7527 void CodeGenFunction::EmitDeclMetadata() {
7528   if (LocalDeclMap.empty()) return;
7529 
7530   llvm::LLVMContext &Context = getLLVMContext();
7531 
7532   // Find the unique metadata ID for this name.
7533   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7534 
7535   llvm::NamedMDNode *GlobalMetadata = nullptr;
7536 
7537   for (auto &I : LocalDeclMap) {
7538     const Decl *D = I.first;
7539     llvm::Value *Addr = I.second.emitRawPointer(*this);
7540     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7541       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7542       Alloca->setMetadata(
7543           DeclPtrKind, llvm::MDNode::get(
7544                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7545     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7546       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7547       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7548     }
7549   }
7550 }
7551 
7552 void CodeGenModule::EmitVersionIdentMetadata() {
7553   llvm::NamedMDNode *IdentMetadata =
7554     TheModule.getOrInsertNamedMetadata("llvm.ident");
7555   std::string Version = getClangFullVersion();
7556   llvm::LLVMContext &Ctx = TheModule.getContext();
7557 
7558   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7559   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7560 }
7561 
7562 void CodeGenModule::EmitCommandLineMetadata() {
7563   llvm::NamedMDNode *CommandLineMetadata =
7564     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7565   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7566   llvm::LLVMContext &Ctx = TheModule.getContext();
7567 
7568   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7569   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7570 }
7571 
7572 void CodeGenModule::EmitCoverageFile() {
7573   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7574   if (!CUNode)
7575     return;
7576 
7577   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7578   llvm::LLVMContext &Ctx = TheModule.getContext();
7579   auto *CoverageDataFile =
7580       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7581   auto *CoverageNotesFile =
7582       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7583   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7584     llvm::MDNode *CU = CUNode->getOperand(i);
7585     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7586     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7587   }
7588 }
7589 
7590 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7591                                                        bool ForEH) {
7592   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7593   // FIXME: should we even be calling this method if RTTI is disabled
7594   // and it's not for EH?
7595   if (!shouldEmitRTTI(ForEH))
7596     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7597 
7598   if (ForEH && Ty->isObjCObjectPointerType() &&
7599       LangOpts.ObjCRuntime.isGNUFamily())
7600     return ObjCRuntime->GetEHType(Ty);
7601 
7602   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7603 }
7604 
7605 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7606   // Do not emit threadprivates in simd-only mode.
7607   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7608     return;
7609   for (auto RefExpr : D->varlist()) {
7610     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7611     bool PerformInit =
7612         VD->getAnyInitializer() &&
7613         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7614                                                         /*ForRef=*/false);
7615 
7616     Address Addr(GetAddrOfGlobalVar(VD),
7617                  getTypes().ConvertTypeForMem(VD->getType()),
7618                  getContext().getDeclAlign(VD));
7619     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7620             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7621       CXXGlobalInits.push_back(InitFunction);
7622   }
7623 }
7624 
7625 llvm::Metadata *
7626 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7627                                             StringRef Suffix) {
7628   if (auto *FnType = T->getAs<FunctionProtoType>())
7629     T = getContext().getFunctionType(
7630         FnType->getReturnType(), FnType->getParamTypes(),
7631         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7632 
7633   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7634   if (InternalId)
7635     return InternalId;
7636 
7637   if (isExternallyVisible(T->getLinkage())) {
7638     std::string OutName;
7639     llvm::raw_string_ostream Out(OutName);
7640     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7641         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7642 
7643     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7644       Out << ".normalized";
7645 
7646     Out << Suffix;
7647 
7648     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7649   } else {
7650     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7651                                            llvm::ArrayRef<llvm::Metadata *>());
7652   }
7653 
7654   return InternalId;
7655 }
7656 
7657 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7658   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7659 }
7660 
7661 llvm::Metadata *
7662 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7663   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7664 }
7665 
7666 // Generalize pointer types to a void pointer with the qualifiers of the
7667 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7668 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7669 // 'void *'.
7670 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7671   if (!Ty->isPointerType())
7672     return Ty;
7673 
7674   return Ctx.getPointerType(
7675       QualType(Ctx.VoidTy).withCVRQualifiers(
7676           Ty->getPointeeType().getCVRQualifiers()));
7677 }
7678 
7679 // Apply type generalization to a FunctionType's return and argument types
7680 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7681   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7682     SmallVector<QualType, 8> GeneralizedParams;
7683     for (auto &Param : FnType->param_types())
7684       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7685 
7686     return Ctx.getFunctionType(
7687         GeneralizeType(Ctx, FnType->getReturnType()),
7688         GeneralizedParams, FnType->getExtProtoInfo());
7689   }
7690 
7691   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7692     return Ctx.getFunctionNoProtoType(
7693         GeneralizeType(Ctx, FnType->getReturnType()));
7694 
7695   llvm_unreachable("Encountered unknown FunctionType");
7696 }
7697 
7698 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7699   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7700                                       GeneralizedMetadataIdMap, ".generalized");
7701 }
7702 
7703 /// Returns whether this module needs the "all-vtables" type identifier.
7704 bool CodeGenModule::NeedAllVtablesTypeId() const {
7705   // Returns true if at least one of vtable-based CFI checkers is enabled and
7706   // is not in the trapping mode.
7707   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7708            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7709           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7710            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7711           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7712            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7713           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7714            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7715 }
7716 
7717 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7718                                           CharUnits Offset,
7719                                           const CXXRecordDecl *RD) {
7720   llvm::Metadata *MD =
7721       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7722   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7723 
7724   if (CodeGenOpts.SanitizeCfiCrossDso)
7725     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7726       VTable->addTypeMetadata(Offset.getQuantity(),
7727                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7728 
7729   if (NeedAllVtablesTypeId()) {
7730     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7731     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7732   }
7733 }
7734 
7735 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7736   if (!SanStats)
7737     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7738 
7739   return *SanStats;
7740 }
7741 
7742 llvm::Value *
7743 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7744                                                   CodeGenFunction &CGF) {
7745   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7746   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7747   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7748   auto *Call = CGF.EmitRuntimeCall(
7749       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7750   return Call;
7751 }
7752 
7753 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7754     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7755   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7756                                  /* forPointeeType= */ true);
7757 }
7758 
7759 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7760                                                  LValueBaseInfo *BaseInfo,
7761                                                  TBAAAccessInfo *TBAAInfo,
7762                                                  bool forPointeeType) {
7763   if (TBAAInfo)
7764     *TBAAInfo = getTBAAAccessInfo(T);
7765 
7766   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7767   // that doesn't return the information we need to compute BaseInfo.
7768 
7769   // Honor alignment typedef attributes even on incomplete types.
7770   // We also honor them straight for C++ class types, even as pointees;
7771   // there's an expressivity gap here.
7772   if (auto TT = T->getAs<TypedefType>()) {
7773     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7774       if (BaseInfo)
7775         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7776       return getContext().toCharUnitsFromBits(Align);
7777     }
7778   }
7779 
7780   bool AlignForArray = T->isArrayType();
7781 
7782   // Analyze the base element type, so we don't get confused by incomplete
7783   // array types.
7784   T = getContext().getBaseElementType(T);
7785 
7786   if (T->isIncompleteType()) {
7787     // We could try to replicate the logic from
7788     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7789     // type is incomplete, so it's impossible to test. We could try to reuse
7790     // getTypeAlignIfKnown, but that doesn't return the information we need
7791     // to set BaseInfo.  So just ignore the possibility that the alignment is
7792     // greater than one.
7793     if (BaseInfo)
7794       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7795     return CharUnits::One();
7796   }
7797 
7798   if (BaseInfo)
7799     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7800 
7801   CharUnits Alignment;
7802   const CXXRecordDecl *RD;
7803   if (T.getQualifiers().hasUnaligned()) {
7804     Alignment = CharUnits::One();
7805   } else if (forPointeeType && !AlignForArray &&
7806              (RD = T->getAsCXXRecordDecl())) {
7807     // For C++ class pointees, we don't know whether we're pointing at a
7808     // base or a complete object, so we generally need to use the
7809     // non-virtual alignment.
7810     Alignment = getClassPointerAlignment(RD);
7811   } else {
7812     Alignment = getContext().getTypeAlignInChars(T);
7813   }
7814 
7815   // Cap to the global maximum type alignment unless the alignment
7816   // was somehow explicit on the type.
7817   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7818     if (Alignment.getQuantity() > MaxAlign &&
7819         !getContext().isAlignmentRequired(T))
7820       Alignment = CharUnits::fromQuantity(MaxAlign);
7821   }
7822   return Alignment;
7823 }
7824 
7825 bool CodeGenModule::stopAutoInit() {
7826   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7827   if (StopAfter) {
7828     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7829     // used
7830     if (NumAutoVarInit >= StopAfter) {
7831       return true;
7832     }
7833     if (!NumAutoVarInit) {
7834       unsigned DiagID = getDiags().getCustomDiagID(
7835           DiagnosticsEngine::Warning,
7836           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7837           "number of times ftrivial-auto-var-init=%1 gets applied.");
7838       getDiags().Report(DiagID)
7839           << StopAfter
7840           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7841                       LangOptions::TrivialAutoVarInitKind::Zero
7842                   ? "zero"
7843                   : "pattern");
7844     }
7845     ++NumAutoVarInit;
7846   }
7847   return false;
7848 }
7849 
7850 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7851                                                     const Decl *D) const {
7852   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7853   // postfix beginning with '.' since the symbol name can be demangled.
7854   if (LangOpts.HIP)
7855     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7856   else
7857     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7858 
7859   // If the CUID is not specified we try to generate a unique postfix.
7860   if (getLangOpts().CUID.empty()) {
7861     SourceManager &SM = getContext().getSourceManager();
7862     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7863     assert(PLoc.isValid() && "Source location is expected to be valid.");
7864 
7865     // Get the hash of the user defined macros.
7866     llvm::MD5 Hash;
7867     llvm::MD5::MD5Result Result;
7868     for (const auto &Arg : PreprocessorOpts.Macros)
7869       Hash.update(Arg.first);
7870     Hash.final(Result);
7871 
7872     // Get the UniqueID for the file containing the decl.
7873     llvm::sys::fs::UniqueID ID;
7874     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7875       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7876       assert(PLoc.isValid() && "Source location is expected to be valid.");
7877       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7878         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7879             << PLoc.getFilename() << EC.message();
7880     }
7881     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7882        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7883   } else {
7884     OS << getContext().getCUIDHash();
7885   }
7886 }
7887 
7888 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7889   assert(DeferredDeclsToEmit.empty() &&
7890          "Should have emitted all decls deferred to emit.");
7891   assert(NewBuilder->DeferredDecls.empty() &&
7892          "Newly created module should not have deferred decls");
7893   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7894   assert(EmittedDeferredDecls.empty() &&
7895          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7896 
7897   assert(NewBuilder->DeferredVTables.empty() &&
7898          "Newly created module should not have deferred vtables");
7899   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7900 
7901   assert(NewBuilder->MangledDeclNames.empty() &&
7902          "Newly created module should not have mangled decl names");
7903   assert(NewBuilder->Manglings.empty() &&
7904          "Newly created module should not have manglings");
7905   NewBuilder->Manglings = std::move(Manglings);
7906 
7907   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7908 
7909   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7910 }
7911