xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b7abb30d77b79b929b6e52d58ca8dc89688a3f2b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ConvertUTF.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Target/Mangler.h"
49 using namespace clang;
50 using namespace CodeGen;
51 
52 static const char AnnotationSection[] = "llvm.metadata";
53 
54 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
55   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
56   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
57   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
58   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
59   }
60 
61   llvm_unreachable("invalid C++ ABI kind");
62 }
63 
64 
65 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
66                              llvm::Module &M, const llvm::DataLayout &TD,
67                              DiagnosticsEngine &diags)
68   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
69     TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
70     ABI(createCXXABI(*this)),
71     Types(*this),
72     TBAA(0),
73     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
74     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
75     RRData(0), CFConstantStringClassRef(0),
76     ConstantStringClassRef(0), NSConstantStringType(0),
77     VMContext(M.getContext()),
78     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
79     BlockObjectAssign(0), BlockObjectDispose(0),
80     BlockDescriptorType(0), GenericBlockLiteralType(0),
81     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
82     SanOpts(SanitizerBlacklist.isIn(M) ?
83             SanitizerOptions::Disabled : LangOpts.Sanitize) {
84 
85   // Initialize the type cache.
86   llvm::LLVMContext &LLVMContext = M.getContext();
87   VoidTy = llvm::Type::getVoidTy(LLVMContext);
88   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
89   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
90   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
91   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
92   FloatTy = llvm::Type::getFloatTy(LLVMContext);
93   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
94   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
95   PointerAlignInBytes =
96   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
97   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
98   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
99   Int8PtrTy = Int8Ty->getPointerTo(0);
100   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
101 
102   if (LangOpts.ObjC1)
103     createObjCRuntime();
104   if (LangOpts.OpenCL)
105     createOpenCLRuntime();
106   if (LangOpts.CUDA)
107     createCUDARuntime();
108 
109   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
110   if (SanOpts.Thread ||
111       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
112     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
113                            ABI.getMangleContext());
114 
115   // If debug info or coverage generation is enabled, create the CGDebugInfo
116   // object.
117   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
118       CodeGenOpts.EmitGcovArcs ||
119       CodeGenOpts.EmitGcovNotes)
120     DebugInfo = new CGDebugInfo(*this);
121 
122   Block.GlobalUniqueCount = 0;
123 
124   if (C.getLangOpts().ObjCAutoRefCount)
125     ARCData = new ARCEntrypoints();
126   RRData = new RREntrypoints();
127 }
128 
129 CodeGenModule::~CodeGenModule() {
130   delete ObjCRuntime;
131   delete OpenCLRuntime;
132   delete CUDARuntime;
133   delete TheTargetCodeGenInfo;
134   delete &ABI;
135   delete TBAA;
136   delete DebugInfo;
137   delete ARCData;
138   delete RRData;
139 }
140 
141 void CodeGenModule::createObjCRuntime() {
142   // This is just isGNUFamily(), but we want to force implementors of
143   // new ABIs to decide how best to do this.
144   switch (LangOpts.ObjCRuntime.getKind()) {
145   case ObjCRuntime::GNUstep:
146   case ObjCRuntime::GCC:
147   case ObjCRuntime::ObjFW:
148     ObjCRuntime = CreateGNUObjCRuntime(*this);
149     return;
150 
151   case ObjCRuntime::FragileMacOSX:
152   case ObjCRuntime::MacOSX:
153   case ObjCRuntime::iOS:
154     ObjCRuntime = CreateMacObjCRuntime(*this);
155     return;
156   }
157   llvm_unreachable("bad runtime kind");
158 }
159 
160 void CodeGenModule::createOpenCLRuntime() {
161   OpenCLRuntime = new CGOpenCLRuntime(*this);
162 }
163 
164 void CodeGenModule::createCUDARuntime() {
165   CUDARuntime = CreateNVCUDARuntime(*this);
166 }
167 
168 void CodeGenModule::Release() {
169   EmitDeferred();
170   EmitCXXGlobalInitFunc();
171   EmitCXXGlobalDtorFunc();
172   if (ObjCRuntime)
173     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
174       AddGlobalCtor(ObjCInitFunction);
175   EmitCtorList(GlobalCtors, "llvm.global_ctors");
176   EmitCtorList(GlobalDtors, "llvm.global_dtors");
177   EmitGlobalAnnotations();
178   EmitLLVMUsed();
179 
180   if (CodeGenOpts.ModulesAutolink) {
181     EmitModuleLinkOptions();
182   }
183 
184   SimplifyPersonality();
185 
186   if (getCodeGenOpts().EmitDeclMetadata)
187     EmitDeclMetadata();
188 
189   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
190     EmitCoverageFile();
191 
192   if (DebugInfo)
193     DebugInfo->finalize();
194 }
195 
196 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
197   // Make sure that this type is translated.
198   Types.UpdateCompletedType(TD);
199 }
200 
201 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
202   if (!TBAA)
203     return 0;
204   return TBAA->getTBAAInfo(QTy);
205 }
206 
207 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
208   if (!TBAA)
209     return 0;
210   return TBAA->getTBAAInfoForVTablePtr();
211 }
212 
213 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
214   if (!TBAA)
215     return 0;
216   return TBAA->getTBAAStructInfo(QTy);
217 }
218 
219 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
220                                         llvm::MDNode *TBAAInfo) {
221   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
222 }
223 
224 bool CodeGenModule::isTargetDarwin() const {
225   return getContext().getTargetInfo().getTriple().isOSDarwin();
226 }
227 
228 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
229   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
230   getDiags().Report(Context.getFullLoc(loc), diagID);
231 }
232 
233 /// ErrorUnsupported - Print out an error that codegen doesn't support the
234 /// specified stmt yet.
235 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
236                                      bool OmitOnError) {
237   if (OmitOnError && getDiags().hasErrorOccurred())
238     return;
239   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
240                                                "cannot compile this %0 yet");
241   std::string Msg = Type;
242   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
243     << Msg << S->getSourceRange();
244 }
245 
246 /// ErrorUnsupported - Print out an error that codegen doesn't support the
247 /// specified decl yet.
248 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
249                                      bool OmitOnError) {
250   if (OmitOnError && getDiags().hasErrorOccurred())
251     return;
252   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
253                                                "cannot compile this %0 yet");
254   std::string Msg = Type;
255   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
256 }
257 
258 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
259   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
260 }
261 
262 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
263                                         const NamedDecl *D) const {
264   // Internal definitions always have default visibility.
265   if (GV->hasLocalLinkage()) {
266     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
267     return;
268   }
269 
270   // Set visibility for definitions.
271   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
272   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
273     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
274 }
275 
276 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
277   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
278       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
279       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
280       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
281       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
282 }
283 
284 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
285     CodeGenOptions::TLSModel M) {
286   switch (M) {
287   case CodeGenOptions::GeneralDynamicTLSModel:
288     return llvm::GlobalVariable::GeneralDynamicTLSModel;
289   case CodeGenOptions::LocalDynamicTLSModel:
290     return llvm::GlobalVariable::LocalDynamicTLSModel;
291   case CodeGenOptions::InitialExecTLSModel:
292     return llvm::GlobalVariable::InitialExecTLSModel;
293   case CodeGenOptions::LocalExecTLSModel:
294     return llvm::GlobalVariable::LocalExecTLSModel;
295   }
296   llvm_unreachable("Invalid TLS model!");
297 }
298 
299 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
300                                const VarDecl &D) const {
301   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
302 
303   llvm::GlobalVariable::ThreadLocalMode TLM;
304   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
305 
306   // Override the TLS model if it is explicitly specified.
307   if (D.hasAttr<TLSModelAttr>()) {
308     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
309     TLM = GetLLVMTLSModel(Attr->getModel());
310   }
311 
312   GV->setThreadLocalMode(TLM);
313 }
314 
315 /// Set the symbol visibility of type information (vtable and RTTI)
316 /// associated with the given type.
317 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
318                                       const CXXRecordDecl *RD,
319                                       TypeVisibilityKind TVK) const {
320   setGlobalVisibility(GV, RD);
321 
322   if (!CodeGenOpts.HiddenWeakVTables)
323     return;
324 
325   // We never want to drop the visibility for RTTI names.
326   if (TVK == TVK_ForRTTIName)
327     return;
328 
329   // We want to drop the visibility to hidden for weak type symbols.
330   // This isn't possible if there might be unresolved references
331   // elsewhere that rely on this symbol being visible.
332 
333   // This should be kept roughly in sync with setThunkVisibility
334   // in CGVTables.cpp.
335 
336   // Preconditions.
337   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
338       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
339     return;
340 
341   // Don't override an explicit visibility attribute.
342   if (RD->getExplicitVisibility())
343     return;
344 
345   switch (RD->getTemplateSpecializationKind()) {
346   // We have to disable the optimization if this is an EI definition
347   // because there might be EI declarations in other shared objects.
348   case TSK_ExplicitInstantiationDefinition:
349   case TSK_ExplicitInstantiationDeclaration:
350     return;
351 
352   // Every use of a non-template class's type information has to emit it.
353   case TSK_Undeclared:
354     break;
355 
356   // In theory, implicit instantiations can ignore the possibility of
357   // an explicit instantiation declaration because there necessarily
358   // must be an EI definition somewhere with default visibility.  In
359   // practice, it's possible to have an explicit instantiation for
360   // an arbitrary template class, and linkers aren't necessarily able
361   // to deal with mixed-visibility symbols.
362   case TSK_ExplicitSpecialization:
363   case TSK_ImplicitInstantiation:
364     return;
365   }
366 
367   // If there's a key function, there may be translation units
368   // that don't have the key function's definition.  But ignore
369   // this if we're emitting RTTI under -fno-rtti.
370   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
371     if (Context.getKeyFunction(RD))
372       return;
373   }
374 
375   // Otherwise, drop the visibility to hidden.
376   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
377   GV->setUnnamedAddr(true);
378 }
379 
380 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
381   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
382 
383   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
384   if (!Str.empty())
385     return Str;
386 
387   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
388     IdentifierInfo *II = ND->getIdentifier();
389     assert(II && "Attempt to mangle unnamed decl.");
390 
391     Str = II->getName();
392     return Str;
393   }
394 
395   SmallString<256> Buffer;
396   llvm::raw_svector_ostream Out(Buffer);
397   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
398     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
399   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
400     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
401   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
402     getCXXABI().getMangleContext().mangleBlock(BD, Out,
403       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
404   else
405     getCXXABI().getMangleContext().mangleName(ND, Out);
406 
407   // Allocate space for the mangled name.
408   Out.flush();
409   size_t Length = Buffer.size();
410   char *Name = MangledNamesAllocator.Allocate<char>(Length);
411   std::copy(Buffer.begin(), Buffer.end(), Name);
412 
413   Str = StringRef(Name, Length);
414 
415   return Str;
416 }
417 
418 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
419                                         const BlockDecl *BD) {
420   MangleContext &MangleCtx = getCXXABI().getMangleContext();
421   const Decl *D = GD.getDecl();
422   llvm::raw_svector_ostream Out(Buffer.getBuffer());
423   if (D == 0)
424     MangleCtx.mangleGlobalBlock(BD,
425       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
426   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
427     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
428   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
429     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
430   else
431     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
432 }
433 
434 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
435   return getModule().getNamedValue(Name);
436 }
437 
438 /// AddGlobalCtor - Add a function to the list that will be called before
439 /// main() runs.
440 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
441   // FIXME: Type coercion of void()* types.
442   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
443 }
444 
445 /// AddGlobalDtor - Add a function to the list that will be called
446 /// when the module is unloaded.
447 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
448   // FIXME: Type coercion of void()* types.
449   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
450 }
451 
452 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
453   // Ctor function type is void()*.
454   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
455   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
456 
457   // Get the type of a ctor entry, { i32, void ()* }.
458   llvm::StructType *CtorStructTy =
459     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
460 
461   // Construct the constructor and destructor arrays.
462   SmallVector<llvm::Constant*, 8> Ctors;
463   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
464     llvm::Constant *S[] = {
465       llvm::ConstantInt::get(Int32Ty, I->second, false),
466       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
467     };
468     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
469   }
470 
471   if (!Ctors.empty()) {
472     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
473     new llvm::GlobalVariable(TheModule, AT, false,
474                              llvm::GlobalValue::AppendingLinkage,
475                              llvm::ConstantArray::get(AT, Ctors),
476                              GlobalName);
477   }
478 }
479 
480 llvm::GlobalValue::LinkageTypes
481 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
482   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
483 
484   if (Linkage == GVA_Internal)
485     return llvm::Function::InternalLinkage;
486 
487   if (D->hasAttr<DLLExportAttr>())
488     return llvm::Function::DLLExportLinkage;
489 
490   if (D->hasAttr<WeakAttr>())
491     return llvm::Function::WeakAnyLinkage;
492 
493   // In C99 mode, 'inline' functions are guaranteed to have a strong
494   // definition somewhere else, so we can use available_externally linkage.
495   if (Linkage == GVA_C99Inline)
496     return llvm::Function::AvailableExternallyLinkage;
497 
498   // Note that Apple's kernel linker doesn't support symbol
499   // coalescing, so we need to avoid linkonce and weak linkages there.
500   // Normally, this means we just map to internal, but for explicit
501   // instantiations we'll map to external.
502 
503   // In C++, the compiler has to emit a definition in every translation unit
504   // that references the function.  We should use linkonce_odr because
505   // a) if all references in this translation unit are optimized away, we
506   // don't need to codegen it.  b) if the function persists, it needs to be
507   // merged with other definitions. c) C++ has the ODR, so we know the
508   // definition is dependable.
509   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
510     return !Context.getLangOpts().AppleKext
511              ? llvm::Function::LinkOnceODRLinkage
512              : llvm::Function::InternalLinkage;
513 
514   // An explicit instantiation of a template has weak linkage, since
515   // explicit instantiations can occur in multiple translation units
516   // and must all be equivalent. However, we are not allowed to
517   // throw away these explicit instantiations.
518   if (Linkage == GVA_ExplicitTemplateInstantiation)
519     return !Context.getLangOpts().AppleKext
520              ? llvm::Function::WeakODRLinkage
521              : llvm::Function::ExternalLinkage;
522 
523   // Otherwise, we have strong external linkage.
524   assert(Linkage == GVA_StrongExternal);
525   return llvm::Function::ExternalLinkage;
526 }
527 
528 
529 /// SetFunctionDefinitionAttributes - Set attributes for a global.
530 ///
531 /// FIXME: This is currently only done for aliases and functions, but not for
532 /// variables (these details are set in EmitGlobalVarDefinition for variables).
533 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
534                                                     llvm::GlobalValue *GV) {
535   SetCommonAttributes(D, GV);
536 }
537 
538 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
539                                               const CGFunctionInfo &Info,
540                                               llvm::Function *F) {
541   unsigned CallingConv;
542   AttributeListType AttributeList;
543   ConstructAttributeList(Info, D, AttributeList, CallingConv);
544   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
545   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
546 }
547 
548 /// Determines whether the language options require us to model
549 /// unwind exceptions.  We treat -fexceptions as mandating this
550 /// except under the fragile ObjC ABI with only ObjC exceptions
551 /// enabled.  This means, for example, that C with -fexceptions
552 /// enables this.
553 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
554   // If exceptions are completely disabled, obviously this is false.
555   if (!LangOpts.Exceptions) return false;
556 
557   // If C++ exceptions are enabled, this is true.
558   if (LangOpts.CXXExceptions) return true;
559 
560   // If ObjC exceptions are enabled, this depends on the ABI.
561   if (LangOpts.ObjCExceptions) {
562     return LangOpts.ObjCRuntime.hasUnwindExceptions();
563   }
564 
565   return true;
566 }
567 
568 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
569                                                            llvm::Function *F) {
570   if (CodeGenOpts.UnwindTables)
571     F->setHasUWTable();
572 
573   if (!hasUnwindExceptions(LangOpts))
574     F->addFnAttr(llvm::Attribute::NoUnwind);
575 
576   if (D->hasAttr<NakedAttr>()) {
577     // Naked implies noinline: we should not be inlining such functions.
578     F->addFnAttr(llvm::Attribute::Naked);
579     F->addFnAttr(llvm::Attribute::NoInline);
580   }
581 
582   if (D->hasAttr<NoInlineAttr>())
583     F->addFnAttr(llvm::Attribute::NoInline);
584 
585   // (noinline wins over always_inline, and we can't specify both in IR)
586   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
587       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
588                                        llvm::Attribute::NoInline))
589     F->addFnAttr(llvm::Attribute::AlwaysInline);
590 
591   // FIXME: Communicate hot and cold attributes to LLVM more directly.
592   if (D->hasAttr<ColdAttr>())
593     F->addFnAttr(llvm::Attribute::OptimizeForSize);
594 
595   if (D->hasAttr<MinSizeAttr>())
596     F->addFnAttr(llvm::Attribute::MinSize);
597 
598   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
599     F->setUnnamedAddr(true);
600 
601   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
602     if (MD->isVirtual())
603       F->setUnnamedAddr(true);
604 
605   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
606     F->addFnAttr(llvm::Attribute::StackProtect);
607   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
608     F->addFnAttr(llvm::Attribute::StackProtectReq);
609 
610   if (SanOpts.Address) {
611     // When AddressSanitizer is enabled, set AddressSafety attribute
612     // unless __attribute__((no_address_safety_analysis)) is used.
613     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
614       F->addFnAttr(llvm::Attribute::AddressSafety);
615   }
616 
617   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
618   if (alignment)
619     F->setAlignment(alignment);
620 
621   // C++ ABI requires 2-byte alignment for member functions.
622   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
623     F->setAlignment(2);
624 }
625 
626 void CodeGenModule::SetCommonAttributes(const Decl *D,
627                                         llvm::GlobalValue *GV) {
628   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
629     setGlobalVisibility(GV, ND);
630   else
631     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
632 
633   if (D->hasAttr<UsedAttr>())
634     AddUsedGlobal(GV);
635 
636   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
637     GV->setSection(SA->getName());
638 
639   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
640 }
641 
642 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
643                                                   llvm::Function *F,
644                                                   const CGFunctionInfo &FI) {
645   SetLLVMFunctionAttributes(D, FI, F);
646   SetLLVMFunctionAttributesForDefinition(D, F);
647 
648   F->setLinkage(llvm::Function::InternalLinkage);
649 
650   SetCommonAttributes(D, F);
651 }
652 
653 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
654                                           llvm::Function *F,
655                                           bool IsIncompleteFunction) {
656   if (unsigned IID = F->getIntrinsicID()) {
657     // If this is an intrinsic function, set the function's attributes
658     // to the intrinsic's attributes.
659     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
660                                                     (llvm::Intrinsic::ID)IID));
661     return;
662   }
663 
664   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
665 
666   if (!IsIncompleteFunction)
667     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
668 
669   // Only a few attributes are set on declarations; these may later be
670   // overridden by a definition.
671 
672   if (FD->hasAttr<DLLImportAttr>()) {
673     F->setLinkage(llvm::Function::DLLImportLinkage);
674   } else if (FD->hasAttr<WeakAttr>() ||
675              FD->isWeakImported()) {
676     // "extern_weak" is overloaded in LLVM; we probably should have
677     // separate linkage types for this.
678     F->setLinkage(llvm::Function::ExternalWeakLinkage);
679   } else {
680     F->setLinkage(llvm::Function::ExternalLinkage);
681 
682     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
683     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
684       F->setVisibility(GetLLVMVisibility(LV.visibility()));
685     }
686   }
687 
688   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
689     F->setSection(SA->getName());
690 }
691 
692 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
693   assert(!GV->isDeclaration() &&
694          "Only globals with definition can force usage.");
695   LLVMUsed.push_back(GV);
696 }
697 
698 void CodeGenModule::EmitLLVMUsed() {
699   // Don't create llvm.used if there is no need.
700   if (LLVMUsed.empty())
701     return;
702 
703   // Convert LLVMUsed to what ConstantArray needs.
704   SmallVector<llvm::Constant*, 8> UsedArray;
705   UsedArray.resize(LLVMUsed.size());
706   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
707     UsedArray[i] =
708      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
709                                     Int8PtrTy);
710   }
711 
712   if (UsedArray.empty())
713     return;
714   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
715 
716   llvm::GlobalVariable *GV =
717     new llvm::GlobalVariable(getModule(), ATy, false,
718                              llvm::GlobalValue::AppendingLinkage,
719                              llvm::ConstantArray::get(ATy, UsedArray),
720                              "llvm.used");
721 
722   GV->setSection("llvm.metadata");
723 }
724 
725 /// \brief Add link options implied by the given module, including modules
726 /// it depends on, using a postorder walk.
727 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
728                                     Module *Mod,
729                                     SmallVectorImpl<llvm::Value *> &Metadata,
730                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
731   // Import this module's parent.
732   if (Mod->Parent && Visited.insert(Mod->Parent)) {
733     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
734   }
735 
736   // Import this module's dependencies.
737   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
738     if (Visited.insert(Mod->Imports[I-1]))
739       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
740   }
741 
742   // Add linker options to link against the libraries/frameworks
743   // described by this module.
744   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
745     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
746     // We need to know more about the linker to know how to encode these
747     // options propertly.
748 
749     // Link against a framework.
750     if (Mod->LinkLibraries[I-1].IsFramework) {
751       llvm::Value *Args[2] = {
752         llvm::MDString::get(Context, "-framework"),
753         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
754       };
755 
756       Metadata.push_back(llvm::MDNode::get(Context, Args));
757       continue;
758     }
759 
760     // Link against a library.
761     llvm::Value *OptString
762     = llvm::MDString::get(Context,
763                           "-l" + Mod->LinkLibraries[I-1].Library);
764     Metadata.push_back(llvm::MDNode::get(Context, OptString));
765   }
766 }
767 
768 void CodeGenModule::EmitModuleLinkOptions() {
769   // Collect the set of all of the modules we want to visit to emit link
770   // options, which is essentially the imported modules and all of their
771   // non-explicit child modules.
772   llvm::SetVector<clang::Module *> LinkModules;
773   llvm::SmallPtrSet<clang::Module *, 16> Visited;
774   SmallVector<clang::Module *, 16> Stack;
775 
776   // Seed the stack with imported modules.
777   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
778                                                MEnd = ImportedModules.end();
779        M != MEnd; ++M) {
780     if (Visited.insert(*M))
781       Stack.push_back(*M);
782   }
783 
784   // Find all of the modules to import, making a little effort to prune
785   // non-leaf modules.
786   while (!Stack.empty()) {
787     clang::Module *Mod = Stack.back();
788     Stack.pop_back();
789 
790     bool AnyChildren = false;
791 
792     // Visit the submodules of this module.
793     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
794                                         SubEnd = Mod->submodule_end();
795          Sub != SubEnd; ++Sub) {
796       // Skip explicit children; they need to be explicitly imported to be
797       // linked against.
798       if ((*Sub)->IsExplicit)
799         continue;
800 
801       if (Visited.insert(*Sub)) {
802         Stack.push_back(*Sub);
803         AnyChildren = true;
804       }
805     }
806 
807     // We didn't find any children, so add this module to the list of
808     // modules to link against.
809     if (!AnyChildren) {
810       LinkModules.insert(Mod);
811     }
812   }
813 
814   // Add link options for all of the imported modules in reverse topological
815   // order.
816   SmallVector<llvm::Value *, 16> MetadataArgs;
817   Visited.clear();
818   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
819                                                MEnd = LinkModules.end();
820        M != MEnd; ++M) {
821     if (Visited.insert(*M))
822       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
823   }
824   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
825 
826   // Add the linker options metadata flag.
827   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
828                             llvm::MDNode::get(getLLVMContext(), MetadataArgs));
829 }
830 
831 void CodeGenModule::EmitDeferred() {
832   // Emit code for any potentially referenced deferred decls.  Since a
833   // previously unused static decl may become used during the generation of code
834   // for a static function, iterate until no changes are made.
835 
836   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
837     if (!DeferredVTables.empty()) {
838       const CXXRecordDecl *RD = DeferredVTables.back();
839       DeferredVTables.pop_back();
840       getCXXABI().EmitVTables(RD);
841       continue;
842     }
843 
844     GlobalDecl D = DeferredDeclsToEmit.back();
845     DeferredDeclsToEmit.pop_back();
846 
847     // Check to see if we've already emitted this.  This is necessary
848     // for a couple of reasons: first, decls can end up in the
849     // deferred-decls queue multiple times, and second, decls can end
850     // up with definitions in unusual ways (e.g. by an extern inline
851     // function acquiring a strong function redefinition).  Just
852     // ignore these cases.
853     //
854     // TODO: That said, looking this up multiple times is very wasteful.
855     StringRef Name = getMangledName(D);
856     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
857     assert(CGRef && "Deferred decl wasn't referenced?");
858 
859     if (!CGRef->isDeclaration())
860       continue;
861 
862     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
863     // purposes an alias counts as a definition.
864     if (isa<llvm::GlobalAlias>(CGRef))
865       continue;
866 
867     // Otherwise, emit the definition and move on to the next one.
868     EmitGlobalDefinition(D);
869   }
870 }
871 
872 void CodeGenModule::EmitGlobalAnnotations() {
873   if (Annotations.empty())
874     return;
875 
876   // Create a new global variable for the ConstantStruct in the Module.
877   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
878     Annotations[0]->getType(), Annotations.size()), Annotations);
879   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
880     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
881     "llvm.global.annotations");
882   gv->setSection(AnnotationSection);
883 }
884 
885 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
886   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
887   if (i != AnnotationStrings.end())
888     return i->second;
889 
890   // Not found yet, create a new global.
891   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
892   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
893     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
894   gv->setSection(AnnotationSection);
895   gv->setUnnamedAddr(true);
896   AnnotationStrings[Str] = gv;
897   return gv;
898 }
899 
900 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
901   SourceManager &SM = getContext().getSourceManager();
902   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
903   if (PLoc.isValid())
904     return EmitAnnotationString(PLoc.getFilename());
905   return EmitAnnotationString(SM.getBufferName(Loc));
906 }
907 
908 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
909   SourceManager &SM = getContext().getSourceManager();
910   PresumedLoc PLoc = SM.getPresumedLoc(L);
911   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
912     SM.getExpansionLineNumber(L);
913   return llvm::ConstantInt::get(Int32Ty, LineNo);
914 }
915 
916 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
917                                                 const AnnotateAttr *AA,
918                                                 SourceLocation L) {
919   // Get the globals for file name, annotation, and the line number.
920   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
921                  *UnitGV = EmitAnnotationUnit(L),
922                  *LineNoCst = EmitAnnotationLineNo(L);
923 
924   // Create the ConstantStruct for the global annotation.
925   llvm::Constant *Fields[4] = {
926     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
927     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
928     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
929     LineNoCst
930   };
931   return llvm::ConstantStruct::getAnon(Fields);
932 }
933 
934 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
935                                          llvm::GlobalValue *GV) {
936   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
937   // Get the struct elements for these annotations.
938   for (specific_attr_iterator<AnnotateAttr>
939        ai = D->specific_attr_begin<AnnotateAttr>(),
940        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
941     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
942 }
943 
944 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
945   // Never defer when EmitAllDecls is specified.
946   if (LangOpts.EmitAllDecls)
947     return false;
948 
949   return !getContext().DeclMustBeEmitted(Global);
950 }
951 
952 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
953     const CXXUuidofExpr* E) {
954   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
955   // well-formed.
956   StringRef Uuid;
957   if (E->isTypeOperand())
958     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
959   else {
960     // Special case: __uuidof(0) means an all-zero GUID.
961     Expr *Op = E->getExprOperand();
962     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
963       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
964     else
965       Uuid = "00000000-0000-0000-0000-000000000000";
966   }
967   std::string Name = "__uuid_" + Uuid.str();
968 
969   // Look for an existing global.
970   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
971     return GV;
972 
973   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
974   assert(Init && "failed to initialize as constant");
975 
976   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
977   // first field is declared as "long", which for many targets is 8 bytes.
978   // Those architectures are not supported. (With the MS abi, long is always 4
979   // bytes.)
980   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
981   if (Init->getType() != GuidType) {
982     DiagnosticsEngine &Diags = getDiags();
983     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
984         "__uuidof codegen is not supported on this architecture");
985     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
986     Init = llvm::UndefValue::get(GuidType);
987   }
988 
989   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
990       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
991   GV->setUnnamedAddr(true);
992   return GV;
993 }
994 
995 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
996   const AliasAttr *AA = VD->getAttr<AliasAttr>();
997   assert(AA && "No alias?");
998 
999   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1000 
1001   // See if there is already something with the target's name in the module.
1002   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1003   if (Entry) {
1004     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1005     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1006   }
1007 
1008   llvm::Constant *Aliasee;
1009   if (isa<llvm::FunctionType>(DeclTy))
1010     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1011                                       GlobalDecl(cast<FunctionDecl>(VD)),
1012                                       /*ForVTable=*/false);
1013   else
1014     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1015                                     llvm::PointerType::getUnqual(DeclTy), 0);
1016 
1017   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1018   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1019   WeakRefReferences.insert(F);
1020 
1021   return Aliasee;
1022 }
1023 
1024 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1025   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1026 
1027   // Weak references don't produce any output by themselves.
1028   if (Global->hasAttr<WeakRefAttr>())
1029     return;
1030 
1031   // If this is an alias definition (which otherwise looks like a declaration)
1032   // emit it now.
1033   if (Global->hasAttr<AliasAttr>())
1034     return EmitAliasDefinition(GD);
1035 
1036   // If this is CUDA, be selective about which declarations we emit.
1037   if (LangOpts.CUDA) {
1038     if (CodeGenOpts.CUDAIsDevice) {
1039       if (!Global->hasAttr<CUDADeviceAttr>() &&
1040           !Global->hasAttr<CUDAGlobalAttr>() &&
1041           !Global->hasAttr<CUDAConstantAttr>() &&
1042           !Global->hasAttr<CUDASharedAttr>())
1043         return;
1044     } else {
1045       if (!Global->hasAttr<CUDAHostAttr>() && (
1046             Global->hasAttr<CUDADeviceAttr>() ||
1047             Global->hasAttr<CUDAConstantAttr>() ||
1048             Global->hasAttr<CUDASharedAttr>()))
1049         return;
1050     }
1051   }
1052 
1053   // Ignore declarations, they will be emitted on their first use.
1054   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1055     // Forward declarations are emitted lazily on first use.
1056     if (!FD->doesThisDeclarationHaveABody()) {
1057       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1058         return;
1059 
1060       const FunctionDecl *InlineDefinition = 0;
1061       FD->getBody(InlineDefinition);
1062 
1063       StringRef MangledName = getMangledName(GD);
1064       DeferredDecls.erase(MangledName);
1065       EmitGlobalDefinition(InlineDefinition);
1066       return;
1067     }
1068   } else {
1069     const VarDecl *VD = cast<VarDecl>(Global);
1070     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1071 
1072     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1073       return;
1074   }
1075 
1076   // Defer code generation when possible if this is a static definition, inline
1077   // function etc.  These we only want to emit if they are used.
1078   if (!MayDeferGeneration(Global)) {
1079     // Emit the definition if it can't be deferred.
1080     EmitGlobalDefinition(GD);
1081     return;
1082   }
1083 
1084   // If we're deferring emission of a C++ variable with an
1085   // initializer, remember the order in which it appeared in the file.
1086   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1087       cast<VarDecl>(Global)->hasInit()) {
1088     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1089     CXXGlobalInits.push_back(0);
1090   }
1091 
1092   // If the value has already been used, add it directly to the
1093   // DeferredDeclsToEmit list.
1094   StringRef MangledName = getMangledName(GD);
1095   if (GetGlobalValue(MangledName))
1096     DeferredDeclsToEmit.push_back(GD);
1097   else {
1098     // Otherwise, remember that we saw a deferred decl with this name.  The
1099     // first use of the mangled name will cause it to move into
1100     // DeferredDeclsToEmit.
1101     DeferredDecls[MangledName] = GD;
1102   }
1103 }
1104 
1105 namespace {
1106   struct FunctionIsDirectlyRecursive :
1107     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1108     const StringRef Name;
1109     const Builtin::Context &BI;
1110     bool Result;
1111     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1112       Name(N), BI(C), Result(false) {
1113     }
1114     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1115 
1116     bool TraverseCallExpr(CallExpr *E) {
1117       const FunctionDecl *FD = E->getDirectCallee();
1118       if (!FD)
1119         return true;
1120       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1121       if (Attr && Name == Attr->getLabel()) {
1122         Result = true;
1123         return false;
1124       }
1125       unsigned BuiltinID = FD->getBuiltinID();
1126       if (!BuiltinID)
1127         return true;
1128       StringRef BuiltinName = BI.GetName(BuiltinID);
1129       if (BuiltinName.startswith("__builtin_") &&
1130           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1131         Result = true;
1132         return false;
1133       }
1134       return true;
1135     }
1136   };
1137 }
1138 
1139 // isTriviallyRecursive - Check if this function calls another
1140 // decl that, because of the asm attribute or the other decl being a builtin,
1141 // ends up pointing to itself.
1142 bool
1143 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1144   StringRef Name;
1145   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1146     // asm labels are a special kind of mangling we have to support.
1147     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1148     if (!Attr)
1149       return false;
1150     Name = Attr->getLabel();
1151   } else {
1152     Name = FD->getName();
1153   }
1154 
1155   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1156   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1157   return Walker.Result;
1158 }
1159 
1160 bool
1161 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1162   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1163     return true;
1164   if (CodeGenOpts.OptimizationLevel == 0 &&
1165       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1166     return false;
1167   // PR9614. Avoid cases where the source code is lying to us. An available
1168   // externally function should have an equivalent function somewhere else,
1169   // but a function that calls itself is clearly not equivalent to the real
1170   // implementation.
1171   // This happens in glibc's btowc and in some configure checks.
1172   return !isTriviallyRecursive(F);
1173 }
1174 
1175 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1176   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1177 
1178   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1179                                  Context.getSourceManager(),
1180                                  "Generating code for declaration");
1181 
1182   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1183     // At -O0, don't generate IR for functions with available_externally
1184     // linkage.
1185     if (!shouldEmitFunction(Function))
1186       return;
1187 
1188     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1189       // Make sure to emit the definition(s) before we emit the thunks.
1190       // This is necessary for the generation of certain thunks.
1191       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1192         EmitCXXConstructor(CD, GD.getCtorType());
1193       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1194         EmitCXXDestructor(DD, GD.getDtorType());
1195       else
1196         EmitGlobalFunctionDefinition(GD);
1197 
1198       if (Method->isVirtual())
1199         getVTables().EmitThunks(GD);
1200 
1201       return;
1202     }
1203 
1204     return EmitGlobalFunctionDefinition(GD);
1205   }
1206 
1207   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1208     return EmitGlobalVarDefinition(VD);
1209 
1210   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1211 }
1212 
1213 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1214 /// module, create and return an llvm Function with the specified type. If there
1215 /// is something in the module with the specified name, return it potentially
1216 /// bitcasted to the right type.
1217 ///
1218 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1219 /// to set the attributes on the function when it is first created.
1220 llvm::Constant *
1221 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1222                                        llvm::Type *Ty,
1223                                        GlobalDecl D, bool ForVTable,
1224                                        llvm::Attribute ExtraAttrs) {
1225   // Lookup the entry, lazily creating it if necessary.
1226   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1227   if (Entry) {
1228     if (WeakRefReferences.erase(Entry)) {
1229       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1230       if (FD && !FD->hasAttr<WeakAttr>())
1231         Entry->setLinkage(llvm::Function::ExternalLinkage);
1232     }
1233 
1234     if (Entry->getType()->getElementType() == Ty)
1235       return Entry;
1236 
1237     // Make sure the result is of the correct type.
1238     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1239   }
1240 
1241   // This function doesn't have a complete type (for example, the return
1242   // type is an incomplete struct). Use a fake type instead, and make
1243   // sure not to try to set attributes.
1244   bool IsIncompleteFunction = false;
1245 
1246   llvm::FunctionType *FTy;
1247   if (isa<llvm::FunctionType>(Ty)) {
1248     FTy = cast<llvm::FunctionType>(Ty);
1249   } else {
1250     FTy = llvm::FunctionType::get(VoidTy, false);
1251     IsIncompleteFunction = true;
1252   }
1253 
1254   llvm::Function *F = llvm::Function::Create(FTy,
1255                                              llvm::Function::ExternalLinkage,
1256                                              MangledName, &getModule());
1257   assert(F->getName() == MangledName && "name was uniqued!");
1258   if (D.getDecl())
1259     SetFunctionAttributes(D, F, IsIncompleteFunction);
1260   if (ExtraAttrs.hasAttributes())
1261     F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs);
1262 
1263   // This is the first use or definition of a mangled name.  If there is a
1264   // deferred decl with this name, remember that we need to emit it at the end
1265   // of the file.
1266   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1267   if (DDI != DeferredDecls.end()) {
1268     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1269     // list, and remove it from DeferredDecls (since we don't need it anymore).
1270     DeferredDeclsToEmit.push_back(DDI->second);
1271     DeferredDecls.erase(DDI);
1272 
1273   // Otherwise, there are cases we have to worry about where we're
1274   // using a declaration for which we must emit a definition but where
1275   // we might not find a top-level definition:
1276   //   - member functions defined inline in their classes
1277   //   - friend functions defined inline in some class
1278   //   - special member functions with implicit definitions
1279   // If we ever change our AST traversal to walk into class methods,
1280   // this will be unnecessary.
1281   //
1282   // We also don't emit a definition for a function if it's going to be an entry
1283   // in a vtable, unless it's already marked as used.
1284   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1285     // Look for a declaration that's lexically in a record.
1286     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1287     FD = FD->getMostRecentDecl();
1288     do {
1289       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1290         if (FD->isImplicit() && !ForVTable) {
1291           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1292           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1293           break;
1294         } else if (FD->doesThisDeclarationHaveABody()) {
1295           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1296           break;
1297         }
1298       }
1299       FD = FD->getPreviousDecl();
1300     } while (FD);
1301   }
1302 
1303   // Make sure the result is of the requested type.
1304   if (!IsIncompleteFunction) {
1305     assert(F->getType()->getElementType() == Ty);
1306     return F;
1307   }
1308 
1309   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1310   return llvm::ConstantExpr::getBitCast(F, PTy);
1311 }
1312 
1313 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1314 /// non-null, then this function will use the specified type if it has to
1315 /// create it (this occurs when we see a definition of the function).
1316 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1317                                                  llvm::Type *Ty,
1318                                                  bool ForVTable) {
1319   // If there was no specific requested type, just convert it now.
1320   if (!Ty)
1321     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1322 
1323   StringRef MangledName = getMangledName(GD);
1324   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1325 }
1326 
1327 /// CreateRuntimeFunction - Create a new runtime function with the specified
1328 /// type and name.
1329 llvm::Constant *
1330 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1331                                      StringRef Name,
1332                                      llvm::Attribute ExtraAttrs) {
1333   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1334                                  ExtraAttrs);
1335 }
1336 
1337 /// isTypeConstant - Determine whether an object of this type can be emitted
1338 /// as a constant.
1339 ///
1340 /// If ExcludeCtor is true, the duration when the object's constructor runs
1341 /// will not be considered. The caller will need to verify that the object is
1342 /// not written to during its construction.
1343 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1344   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1345     return false;
1346 
1347   if (Context.getLangOpts().CPlusPlus) {
1348     if (const CXXRecordDecl *Record
1349           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1350       return ExcludeCtor && !Record->hasMutableFields() &&
1351              Record->hasTrivialDestructor();
1352   }
1353 
1354   return true;
1355 }
1356 
1357 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1358 /// create and return an llvm GlobalVariable with the specified type.  If there
1359 /// is something in the module with the specified name, return it potentially
1360 /// bitcasted to the right type.
1361 ///
1362 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1363 /// to set the attributes on the global when it is first created.
1364 llvm::Constant *
1365 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1366                                      llvm::PointerType *Ty,
1367                                      const VarDecl *D,
1368                                      bool UnnamedAddr) {
1369   // Lookup the entry, lazily creating it if necessary.
1370   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1371   if (Entry) {
1372     if (WeakRefReferences.erase(Entry)) {
1373       if (D && !D->hasAttr<WeakAttr>())
1374         Entry->setLinkage(llvm::Function::ExternalLinkage);
1375     }
1376 
1377     if (UnnamedAddr)
1378       Entry->setUnnamedAddr(true);
1379 
1380     if (Entry->getType() == Ty)
1381       return Entry;
1382 
1383     // Make sure the result is of the correct type.
1384     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1385   }
1386 
1387   // This is the first use or definition of a mangled name.  If there is a
1388   // deferred decl with this name, remember that we need to emit it at the end
1389   // of the file.
1390   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1391   if (DDI != DeferredDecls.end()) {
1392     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1393     // list, and remove it from DeferredDecls (since we don't need it anymore).
1394     DeferredDeclsToEmit.push_back(DDI->second);
1395     DeferredDecls.erase(DDI);
1396   }
1397 
1398   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1399   llvm::GlobalVariable *GV =
1400     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1401                              llvm::GlobalValue::ExternalLinkage,
1402                              0, MangledName, 0,
1403                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1404 
1405   // Handle things which are present even on external declarations.
1406   if (D) {
1407     // FIXME: This code is overly simple and should be merged with other global
1408     // handling.
1409     GV->setConstant(isTypeConstant(D->getType(), false));
1410 
1411     // Set linkage and visibility in case we never see a definition.
1412     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1413     if (LV.linkage() != ExternalLinkage) {
1414       // Don't set internal linkage on declarations.
1415     } else {
1416       if (D->hasAttr<DLLImportAttr>())
1417         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1418       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1419         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1420 
1421       // Set visibility on a declaration only if it's explicit.
1422       if (LV.visibilityExplicit())
1423         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1424     }
1425 
1426     if (D->isThreadSpecified())
1427       setTLSMode(GV, *D);
1428   }
1429 
1430   if (AddrSpace != Ty->getAddressSpace())
1431     return llvm::ConstantExpr::getBitCast(GV, Ty);
1432   else
1433     return GV;
1434 }
1435 
1436 
1437 llvm::GlobalVariable *
1438 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1439                                       llvm::Type *Ty,
1440                                       llvm::GlobalValue::LinkageTypes Linkage) {
1441   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1442   llvm::GlobalVariable *OldGV = 0;
1443 
1444 
1445   if (GV) {
1446     // Check if the variable has the right type.
1447     if (GV->getType()->getElementType() == Ty)
1448       return GV;
1449 
1450     // Because C++ name mangling, the only way we can end up with an already
1451     // existing global with the same name is if it has been declared extern "C".
1452     assert(GV->isDeclaration() && "Declaration has wrong type!");
1453     OldGV = GV;
1454   }
1455 
1456   // Create a new variable.
1457   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1458                                 Linkage, 0, Name);
1459 
1460   if (OldGV) {
1461     // Replace occurrences of the old variable if needed.
1462     GV->takeName(OldGV);
1463 
1464     if (!OldGV->use_empty()) {
1465       llvm::Constant *NewPtrForOldDecl =
1466       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1467       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1468     }
1469 
1470     OldGV->eraseFromParent();
1471   }
1472 
1473   return GV;
1474 }
1475 
1476 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1477 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1478 /// then it will be created with the specified type instead of whatever the
1479 /// normal requested type would be.
1480 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1481                                                   llvm::Type *Ty) {
1482   assert(D->hasGlobalStorage() && "Not a global variable");
1483   QualType ASTTy = D->getType();
1484   if (Ty == 0)
1485     Ty = getTypes().ConvertTypeForMem(ASTTy);
1486 
1487   llvm::PointerType *PTy =
1488     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1489 
1490   StringRef MangledName = getMangledName(D);
1491   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1492 }
1493 
1494 /// CreateRuntimeVariable - Create a new runtime global variable with the
1495 /// specified type and name.
1496 llvm::Constant *
1497 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1498                                      StringRef Name) {
1499   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1500                                true);
1501 }
1502 
1503 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1504   assert(!D->getInit() && "Cannot emit definite definitions here!");
1505 
1506   if (MayDeferGeneration(D)) {
1507     // If we have not seen a reference to this variable yet, place it
1508     // into the deferred declarations table to be emitted if needed
1509     // later.
1510     StringRef MangledName = getMangledName(D);
1511     if (!GetGlobalValue(MangledName)) {
1512       DeferredDecls[MangledName] = D;
1513       return;
1514     }
1515   }
1516 
1517   // The tentative definition is the only definition.
1518   EmitGlobalVarDefinition(D);
1519 }
1520 
1521 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1522   if (DefinitionRequired)
1523     getCXXABI().EmitVTables(Class);
1524 }
1525 
1526 llvm::GlobalVariable::LinkageTypes
1527 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1528   if (RD->getLinkage() != ExternalLinkage)
1529     return llvm::GlobalVariable::InternalLinkage;
1530 
1531   if (const CXXMethodDecl *KeyFunction
1532                                     = RD->getASTContext().getKeyFunction(RD)) {
1533     // If this class has a key function, use that to determine the linkage of
1534     // the vtable.
1535     const FunctionDecl *Def = 0;
1536     if (KeyFunction->hasBody(Def))
1537       KeyFunction = cast<CXXMethodDecl>(Def);
1538 
1539     switch (KeyFunction->getTemplateSpecializationKind()) {
1540       case TSK_Undeclared:
1541       case TSK_ExplicitSpecialization:
1542         // When compiling with optimizations turned on, we emit all vtables,
1543         // even if the key function is not defined in the current translation
1544         // unit. If this is the case, use available_externally linkage.
1545         if (!Def && CodeGenOpts.OptimizationLevel)
1546           return llvm::GlobalVariable::AvailableExternallyLinkage;
1547 
1548         if (KeyFunction->isInlined())
1549           return !Context.getLangOpts().AppleKext ?
1550                    llvm::GlobalVariable::LinkOnceODRLinkage :
1551                    llvm::Function::InternalLinkage;
1552 
1553         return llvm::GlobalVariable::ExternalLinkage;
1554 
1555       case TSK_ImplicitInstantiation:
1556         return !Context.getLangOpts().AppleKext ?
1557                  llvm::GlobalVariable::LinkOnceODRLinkage :
1558                  llvm::Function::InternalLinkage;
1559 
1560       case TSK_ExplicitInstantiationDefinition:
1561         return !Context.getLangOpts().AppleKext ?
1562                  llvm::GlobalVariable::WeakODRLinkage :
1563                  llvm::Function::InternalLinkage;
1564 
1565       case TSK_ExplicitInstantiationDeclaration:
1566         // FIXME: Use available_externally linkage. However, this currently
1567         // breaks LLVM's build due to undefined symbols.
1568         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1569         return !Context.getLangOpts().AppleKext ?
1570                  llvm::GlobalVariable::LinkOnceODRLinkage :
1571                  llvm::Function::InternalLinkage;
1572     }
1573   }
1574 
1575   if (Context.getLangOpts().AppleKext)
1576     return llvm::Function::InternalLinkage;
1577 
1578   switch (RD->getTemplateSpecializationKind()) {
1579   case TSK_Undeclared:
1580   case TSK_ExplicitSpecialization:
1581   case TSK_ImplicitInstantiation:
1582     // FIXME: Use available_externally linkage. However, this currently
1583     // breaks LLVM's build due to undefined symbols.
1584     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1585   case TSK_ExplicitInstantiationDeclaration:
1586     return llvm::GlobalVariable::LinkOnceODRLinkage;
1587 
1588   case TSK_ExplicitInstantiationDefinition:
1589       return llvm::GlobalVariable::WeakODRLinkage;
1590   }
1591 
1592   llvm_unreachable("Invalid TemplateSpecializationKind!");
1593 }
1594 
1595 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1596     return Context.toCharUnitsFromBits(
1597       TheDataLayout.getTypeStoreSizeInBits(Ty));
1598 }
1599 
1600 llvm::Constant *
1601 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1602                                                        const Expr *rawInit) {
1603   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1604   if (const ExprWithCleanups *withCleanups =
1605           dyn_cast<ExprWithCleanups>(rawInit)) {
1606     cleanups = withCleanups->getObjects();
1607     rawInit = withCleanups->getSubExpr();
1608   }
1609 
1610   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1611   if (!init || !init->initializesStdInitializerList() ||
1612       init->getNumInits() == 0)
1613     return 0;
1614 
1615   ASTContext &ctx = getContext();
1616   unsigned numInits = init->getNumInits();
1617   // FIXME: This check is here because we would otherwise silently miscompile
1618   // nested global std::initializer_lists. Better would be to have a real
1619   // implementation.
1620   for (unsigned i = 0; i < numInits; ++i) {
1621     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1622     if (inner && inner->initializesStdInitializerList()) {
1623       ErrorUnsupported(inner, "nested global std::initializer_list");
1624       return 0;
1625     }
1626   }
1627 
1628   // Synthesize a fake VarDecl for the array and initialize that.
1629   QualType elementType = init->getInit(0)->getType();
1630   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1631   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1632                                                 ArrayType::Normal, 0);
1633 
1634   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1635   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1636                                               arrayType, D->getLocation());
1637   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1638                                                           D->getDeclContext()),
1639                                           D->getLocStart(), D->getLocation(),
1640                                           name, arrayType, sourceInfo,
1641                                           SC_Static, SC_Static);
1642 
1643   // Now clone the InitListExpr to initialize the array instead.
1644   // Incredible hack: we want to use the existing InitListExpr here, so we need
1645   // to tell it that it no longer initializes a std::initializer_list.
1646   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1647                         init->getNumInits());
1648   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1649                                            init->getRBraceLoc());
1650   arrayInit->setType(arrayType);
1651 
1652   if (!cleanups.empty())
1653     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1654 
1655   backingArray->setInit(arrayInit);
1656 
1657   // Emit the definition of the array.
1658   EmitGlobalVarDefinition(backingArray);
1659 
1660   // Inspect the initializer list to validate it and determine its type.
1661   // FIXME: doing this every time is probably inefficient; caching would be nice
1662   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1663   RecordDecl::field_iterator field = record->field_begin();
1664   if (field == record->field_end()) {
1665     ErrorUnsupported(D, "weird std::initializer_list");
1666     return 0;
1667   }
1668   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1669   // Start pointer.
1670   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1671     ErrorUnsupported(D, "weird std::initializer_list");
1672     return 0;
1673   }
1674   ++field;
1675   if (field == record->field_end()) {
1676     ErrorUnsupported(D, "weird std::initializer_list");
1677     return 0;
1678   }
1679   bool isStartEnd = false;
1680   if (ctx.hasSameType(field->getType(), elementPtr)) {
1681     // End pointer.
1682     isStartEnd = true;
1683   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1684     ErrorUnsupported(D, "weird std::initializer_list");
1685     return 0;
1686   }
1687 
1688   // Now build an APValue representing the std::initializer_list.
1689   APValue initListValue(APValue::UninitStruct(), 0, 2);
1690   APValue &startField = initListValue.getStructField(0);
1691   APValue::LValuePathEntry startOffsetPathEntry;
1692   startOffsetPathEntry.ArrayIndex = 0;
1693   startField = APValue(APValue::LValueBase(backingArray),
1694                        CharUnits::fromQuantity(0),
1695                        llvm::makeArrayRef(startOffsetPathEntry),
1696                        /*IsOnePastTheEnd=*/false, 0);
1697 
1698   if (isStartEnd) {
1699     APValue &endField = initListValue.getStructField(1);
1700     APValue::LValuePathEntry endOffsetPathEntry;
1701     endOffsetPathEntry.ArrayIndex = numInits;
1702     endField = APValue(APValue::LValueBase(backingArray),
1703                        ctx.getTypeSizeInChars(elementType) * numInits,
1704                        llvm::makeArrayRef(endOffsetPathEntry),
1705                        /*IsOnePastTheEnd=*/true, 0);
1706   } else {
1707     APValue &sizeField = initListValue.getStructField(1);
1708     sizeField = APValue(llvm::APSInt(numElements));
1709   }
1710 
1711   // Emit the constant for the initializer_list.
1712   llvm::Constant *llvmInit =
1713       EmitConstantValueForMemory(initListValue, D->getType());
1714   assert(llvmInit && "failed to initialize as constant");
1715   return llvmInit;
1716 }
1717 
1718 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1719                                                  unsigned AddrSpace) {
1720   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1721     if (D->hasAttr<CUDAConstantAttr>())
1722       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1723     else if (D->hasAttr<CUDASharedAttr>())
1724       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1725     else
1726       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1727   }
1728 
1729   return AddrSpace;
1730 }
1731 
1732 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1733   llvm::Constant *Init = 0;
1734   QualType ASTTy = D->getType();
1735   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1736   bool NeedsGlobalCtor = false;
1737   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1738 
1739   const VarDecl *InitDecl;
1740   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1741 
1742   if (!InitExpr) {
1743     // This is a tentative definition; tentative definitions are
1744     // implicitly initialized with { 0 }.
1745     //
1746     // Note that tentative definitions are only emitted at the end of
1747     // a translation unit, so they should never have incomplete
1748     // type. In addition, EmitTentativeDefinition makes sure that we
1749     // never attempt to emit a tentative definition if a real one
1750     // exists. A use may still exists, however, so we still may need
1751     // to do a RAUW.
1752     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1753     Init = EmitNullConstant(D->getType());
1754   } else {
1755     // If this is a std::initializer_list, emit the special initializer.
1756     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1757     // An empty init list will perform zero-initialization, which happens
1758     // to be exactly what we want.
1759     // FIXME: It does so in a global constructor, which is *not* what we
1760     // want.
1761 
1762     if (!Init) {
1763       initializedGlobalDecl = GlobalDecl(D);
1764       Init = EmitConstantInit(*InitDecl);
1765     }
1766     if (!Init) {
1767       QualType T = InitExpr->getType();
1768       if (D->getType()->isReferenceType())
1769         T = D->getType();
1770 
1771       if (getLangOpts().CPlusPlus) {
1772         Init = EmitNullConstant(T);
1773         NeedsGlobalCtor = true;
1774       } else {
1775         ErrorUnsupported(D, "static initializer");
1776         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1777       }
1778     } else {
1779       // We don't need an initializer, so remove the entry for the delayed
1780       // initializer position (just in case this entry was delayed) if we
1781       // also don't need to register a destructor.
1782       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1783         DelayedCXXInitPosition.erase(D);
1784     }
1785   }
1786 
1787   llvm::Type* InitType = Init->getType();
1788   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1789 
1790   // Strip off a bitcast if we got one back.
1791   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1792     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1793            // all zero index gep.
1794            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1795     Entry = CE->getOperand(0);
1796   }
1797 
1798   // Entry is now either a Function or GlobalVariable.
1799   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1800 
1801   // We have a definition after a declaration with the wrong type.
1802   // We must make a new GlobalVariable* and update everything that used OldGV
1803   // (a declaration or tentative definition) with the new GlobalVariable*
1804   // (which will be a definition).
1805   //
1806   // This happens if there is a prototype for a global (e.g.
1807   // "extern int x[];") and then a definition of a different type (e.g.
1808   // "int x[10];"). This also happens when an initializer has a different type
1809   // from the type of the global (this happens with unions).
1810   if (GV == 0 ||
1811       GV->getType()->getElementType() != InitType ||
1812       GV->getType()->getAddressSpace() !=
1813        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1814 
1815     // Move the old entry aside so that we'll create a new one.
1816     Entry->setName(StringRef());
1817 
1818     // Make a new global with the correct type, this is now guaranteed to work.
1819     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1820 
1821     // Replace all uses of the old global with the new global
1822     llvm::Constant *NewPtrForOldDecl =
1823         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1824     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1825 
1826     // Erase the old global, since it is no longer used.
1827     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1828   }
1829 
1830   if (D->hasAttr<AnnotateAttr>())
1831     AddGlobalAnnotations(D, GV);
1832 
1833   GV->setInitializer(Init);
1834 
1835   // If it is safe to mark the global 'constant', do so now.
1836   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1837                   isTypeConstant(D->getType(), true));
1838 
1839   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1840 
1841   // Set the llvm linkage type as appropriate.
1842   llvm::GlobalValue::LinkageTypes Linkage =
1843     GetLLVMLinkageVarDefinition(D, GV);
1844   GV->setLinkage(Linkage);
1845   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1846     // common vars aren't constant even if declared const.
1847     GV->setConstant(false);
1848 
1849   SetCommonAttributes(D, GV);
1850 
1851   // Emit the initializer function if necessary.
1852   if (NeedsGlobalCtor || NeedsGlobalDtor)
1853     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1854 
1855   // If we are compiling with ASan, add metadata indicating dynamically
1856   // initialized globals.
1857   if (SanOpts.Address && NeedsGlobalCtor) {
1858     llvm::Module &M = getModule();
1859 
1860     llvm::NamedMDNode *DynamicInitializers =
1861         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1862     llvm::Value *GlobalToAdd[] = { GV };
1863     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1864     DynamicInitializers->addOperand(ThisGlobal);
1865   }
1866 
1867   // Emit global variable debug information.
1868   if (CGDebugInfo *DI = getModuleDebugInfo())
1869     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1870       DI->EmitGlobalVariable(GV, D);
1871 }
1872 
1873 llvm::GlobalValue::LinkageTypes
1874 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1875                                            llvm::GlobalVariable *GV) {
1876   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1877   if (Linkage == GVA_Internal)
1878     return llvm::Function::InternalLinkage;
1879   else if (D->hasAttr<DLLImportAttr>())
1880     return llvm::Function::DLLImportLinkage;
1881   else if (D->hasAttr<DLLExportAttr>())
1882     return llvm::Function::DLLExportLinkage;
1883   else if (D->hasAttr<WeakAttr>()) {
1884     if (GV->isConstant())
1885       return llvm::GlobalVariable::WeakODRLinkage;
1886     else
1887       return llvm::GlobalVariable::WeakAnyLinkage;
1888   } else if (Linkage == GVA_TemplateInstantiation ||
1889              Linkage == GVA_ExplicitTemplateInstantiation)
1890     return llvm::GlobalVariable::WeakODRLinkage;
1891   else if (!getLangOpts().CPlusPlus &&
1892            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1893              D->getAttr<CommonAttr>()) &&
1894            !D->hasExternalStorage() && !D->getInit() &&
1895            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1896            !D->getAttr<WeakImportAttr>()) {
1897     // Thread local vars aren't considered common linkage.
1898     return llvm::GlobalVariable::CommonLinkage;
1899   }
1900   return llvm::GlobalVariable::ExternalLinkage;
1901 }
1902 
1903 /// Replace the uses of a function that was declared with a non-proto type.
1904 /// We want to silently drop extra arguments from call sites
1905 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1906                                           llvm::Function *newFn) {
1907   // Fast path.
1908   if (old->use_empty()) return;
1909 
1910   llvm::Type *newRetTy = newFn->getReturnType();
1911   SmallVector<llvm::Value*, 4> newArgs;
1912 
1913   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1914          ui != ue; ) {
1915     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1916     llvm::User *user = *use;
1917 
1918     // Recognize and replace uses of bitcasts.  Most calls to
1919     // unprototyped functions will use bitcasts.
1920     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1921       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1922         replaceUsesOfNonProtoConstant(bitcast, newFn);
1923       continue;
1924     }
1925 
1926     // Recognize calls to the function.
1927     llvm::CallSite callSite(user);
1928     if (!callSite) continue;
1929     if (!callSite.isCallee(use)) continue;
1930 
1931     // If the return types don't match exactly, then we can't
1932     // transform this call unless it's dead.
1933     if (callSite->getType() != newRetTy && !callSite->use_empty())
1934       continue;
1935 
1936     // Get the call site's attribute list.
1937     SmallVector<llvm::AttributeWithIndex, 8> newAttrs;
1938     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1939 
1940     // Collect any return attributes from the call.
1941     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1942       newAttrs.push_back(
1943         llvm::AttributeWithIndex::get(newFn->getContext(),
1944                                       llvm::AttributeSet::ReturnIndex,
1945                                       oldAttrs.getRetAttributes()));
1946 
1947     // If the function was passed too few arguments, don't transform.
1948     unsigned newNumArgs = newFn->arg_size();
1949     if (callSite.arg_size() < newNumArgs) continue;
1950 
1951     // If extra arguments were passed, we silently drop them.
1952     // If any of the types mismatch, we don't transform.
1953     unsigned argNo = 0;
1954     bool dontTransform = false;
1955     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1956            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1957       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1958         dontTransform = true;
1959         break;
1960       }
1961 
1962       // Add any parameter attributes.
1963       llvm::Attribute pAttrs = oldAttrs.getParamAttributes(argNo + 1);
1964       if (pAttrs.hasAttributes())
1965         newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs));
1966     }
1967     if (dontTransform)
1968       continue;
1969 
1970     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1971       newAttrs.push_back(llvm::
1972                       AttributeWithIndex::get(newFn->getContext(),
1973                                               llvm::AttributeSet::FunctionIndex,
1974                                               oldAttrs.getFnAttributes()));
1975 
1976     // Okay, we can transform this.  Create the new call instruction and copy
1977     // over the required information.
1978     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1979 
1980     llvm::CallSite newCall;
1981     if (callSite.isCall()) {
1982       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1983                                        callSite.getInstruction());
1984     } else {
1985       llvm::InvokeInst *oldInvoke =
1986         cast<llvm::InvokeInst>(callSite.getInstruction());
1987       newCall = llvm::InvokeInst::Create(newFn,
1988                                          oldInvoke->getNormalDest(),
1989                                          oldInvoke->getUnwindDest(),
1990                                          newArgs, "",
1991                                          callSite.getInstruction());
1992     }
1993     newArgs.clear(); // for the next iteration
1994 
1995     if (!newCall->getType()->isVoidTy())
1996       newCall->takeName(callSite.getInstruction());
1997     newCall.setAttributes(
1998                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1999     newCall.setCallingConv(callSite.getCallingConv());
2000 
2001     // Finally, remove the old call, replacing any uses with the new one.
2002     if (!callSite->use_empty())
2003       callSite->replaceAllUsesWith(newCall.getInstruction());
2004 
2005     // Copy debug location attached to CI.
2006     if (!callSite->getDebugLoc().isUnknown())
2007       newCall->setDebugLoc(callSite->getDebugLoc());
2008     callSite->eraseFromParent();
2009   }
2010 }
2011 
2012 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2013 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2014 /// existing call uses of the old function in the module, this adjusts them to
2015 /// call the new function directly.
2016 ///
2017 /// This is not just a cleanup: the always_inline pass requires direct calls to
2018 /// functions to be able to inline them.  If there is a bitcast in the way, it
2019 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2020 /// run at -O0.
2021 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2022                                                       llvm::Function *NewFn) {
2023   // If we're redefining a global as a function, don't transform it.
2024   if (!isa<llvm::Function>(Old)) return;
2025 
2026   replaceUsesOfNonProtoConstant(Old, NewFn);
2027 }
2028 
2029 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2030   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2031   // If we have a definition, this might be a deferred decl. If the
2032   // instantiation is explicit, make sure we emit it at the end.
2033   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2034     GetAddrOfGlobalVar(VD);
2035 }
2036 
2037 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2038   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2039 
2040   // Compute the function info and LLVM type.
2041   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2042   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2043 
2044   // Get or create the prototype for the function.
2045   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2046 
2047   // Strip off a bitcast if we got one back.
2048   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2049     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2050     Entry = CE->getOperand(0);
2051   }
2052 
2053 
2054   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2055     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2056 
2057     // If the types mismatch then we have to rewrite the definition.
2058     assert(OldFn->isDeclaration() &&
2059            "Shouldn't replace non-declaration");
2060 
2061     // F is the Function* for the one with the wrong type, we must make a new
2062     // Function* and update everything that used F (a declaration) with the new
2063     // Function* (which will be a definition).
2064     //
2065     // This happens if there is a prototype for a function
2066     // (e.g. "int f()") and then a definition of a different type
2067     // (e.g. "int f(int x)").  Move the old function aside so that it
2068     // doesn't interfere with GetAddrOfFunction.
2069     OldFn->setName(StringRef());
2070     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2071 
2072     // This might be an implementation of a function without a
2073     // prototype, in which case, try to do special replacement of
2074     // calls which match the new prototype.  The really key thing here
2075     // is that we also potentially drop arguments from the call site
2076     // so as to make a direct call, which makes the inliner happier
2077     // and suppresses a number of optimizer warnings (!) about
2078     // dropping arguments.
2079     if (!OldFn->use_empty()) {
2080       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2081       OldFn->removeDeadConstantUsers();
2082     }
2083 
2084     // Replace uses of F with the Function we will endow with a body.
2085     if (!Entry->use_empty()) {
2086       llvm::Constant *NewPtrForOldDecl =
2087         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2088       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2089     }
2090 
2091     // Ok, delete the old function now, which is dead.
2092     OldFn->eraseFromParent();
2093 
2094     Entry = NewFn;
2095   }
2096 
2097   // We need to set linkage and visibility on the function before
2098   // generating code for it because various parts of IR generation
2099   // want to propagate this information down (e.g. to local static
2100   // declarations).
2101   llvm::Function *Fn = cast<llvm::Function>(Entry);
2102   setFunctionLinkage(D, Fn);
2103 
2104   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2105   setGlobalVisibility(Fn, D);
2106 
2107   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2108 
2109   SetFunctionDefinitionAttributes(D, Fn);
2110   SetLLVMFunctionAttributesForDefinition(D, Fn);
2111 
2112   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2113     AddGlobalCtor(Fn, CA->getPriority());
2114   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2115     AddGlobalDtor(Fn, DA->getPriority());
2116   if (D->hasAttr<AnnotateAttr>())
2117     AddGlobalAnnotations(D, Fn);
2118 }
2119 
2120 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2121   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2122   const AliasAttr *AA = D->getAttr<AliasAttr>();
2123   assert(AA && "Not an alias?");
2124 
2125   StringRef MangledName = getMangledName(GD);
2126 
2127   // If there is a definition in the module, then it wins over the alias.
2128   // This is dubious, but allow it to be safe.  Just ignore the alias.
2129   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2130   if (Entry && !Entry->isDeclaration())
2131     return;
2132 
2133   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2134 
2135   // Create a reference to the named value.  This ensures that it is emitted
2136   // if a deferred decl.
2137   llvm::Constant *Aliasee;
2138   if (isa<llvm::FunctionType>(DeclTy))
2139     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2140                                       /*ForVTable=*/false);
2141   else
2142     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2143                                     llvm::PointerType::getUnqual(DeclTy), 0);
2144 
2145   // Create the new alias itself, but don't set a name yet.
2146   llvm::GlobalValue *GA =
2147     new llvm::GlobalAlias(Aliasee->getType(),
2148                           llvm::Function::ExternalLinkage,
2149                           "", Aliasee, &getModule());
2150 
2151   if (Entry) {
2152     assert(Entry->isDeclaration());
2153 
2154     // If there is a declaration in the module, then we had an extern followed
2155     // by the alias, as in:
2156     //   extern int test6();
2157     //   ...
2158     //   int test6() __attribute__((alias("test7")));
2159     //
2160     // Remove it and replace uses of it with the alias.
2161     GA->takeName(Entry);
2162 
2163     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2164                                                           Entry->getType()));
2165     Entry->eraseFromParent();
2166   } else {
2167     GA->setName(MangledName);
2168   }
2169 
2170   // Set attributes which are particular to an alias; this is a
2171   // specialization of the attributes which may be set on a global
2172   // variable/function.
2173   if (D->hasAttr<DLLExportAttr>()) {
2174     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2175       // The dllexport attribute is ignored for undefined symbols.
2176       if (FD->hasBody())
2177         GA->setLinkage(llvm::Function::DLLExportLinkage);
2178     } else {
2179       GA->setLinkage(llvm::Function::DLLExportLinkage);
2180     }
2181   } else if (D->hasAttr<WeakAttr>() ||
2182              D->hasAttr<WeakRefAttr>() ||
2183              D->isWeakImported()) {
2184     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2185   }
2186 
2187   SetCommonAttributes(D, GA);
2188 }
2189 
2190 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2191                                             ArrayRef<llvm::Type*> Tys) {
2192   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2193                                          Tys);
2194 }
2195 
2196 static llvm::StringMapEntry<llvm::Constant*> &
2197 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2198                          const StringLiteral *Literal,
2199                          bool TargetIsLSB,
2200                          bool &IsUTF16,
2201                          unsigned &StringLength) {
2202   StringRef String = Literal->getString();
2203   unsigned NumBytes = String.size();
2204 
2205   // Check for simple case.
2206   if (!Literal->containsNonAsciiOrNull()) {
2207     StringLength = NumBytes;
2208     return Map.GetOrCreateValue(String);
2209   }
2210 
2211   // Otherwise, convert the UTF8 literals into a string of shorts.
2212   IsUTF16 = true;
2213 
2214   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2215   const UTF8 *FromPtr = (const UTF8 *)String.data();
2216   UTF16 *ToPtr = &ToBuf[0];
2217 
2218   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2219                            &ToPtr, ToPtr + NumBytes,
2220                            strictConversion);
2221 
2222   // ConvertUTF8toUTF16 returns the length in ToPtr.
2223   StringLength = ToPtr - &ToBuf[0];
2224 
2225   // Add an explicit null.
2226   *ToPtr = 0;
2227   return Map.
2228     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2229                                (StringLength + 1) * 2));
2230 }
2231 
2232 static llvm::StringMapEntry<llvm::Constant*> &
2233 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2234                        const StringLiteral *Literal,
2235                        unsigned &StringLength) {
2236   StringRef String = Literal->getString();
2237   StringLength = String.size();
2238   return Map.GetOrCreateValue(String);
2239 }
2240 
2241 llvm::Constant *
2242 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2243   unsigned StringLength = 0;
2244   bool isUTF16 = false;
2245   llvm::StringMapEntry<llvm::Constant*> &Entry =
2246     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2247                              getDataLayout().isLittleEndian(),
2248                              isUTF16, StringLength);
2249 
2250   if (llvm::Constant *C = Entry.getValue())
2251     return C;
2252 
2253   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2254   llvm::Constant *Zeros[] = { Zero, Zero };
2255 
2256   // If we don't already have it, get __CFConstantStringClassReference.
2257   if (!CFConstantStringClassRef) {
2258     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2259     Ty = llvm::ArrayType::get(Ty, 0);
2260     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2261                                            "__CFConstantStringClassReference");
2262     // Decay array -> ptr
2263     CFConstantStringClassRef =
2264       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2265   }
2266 
2267   QualType CFTy = getContext().getCFConstantStringType();
2268 
2269   llvm::StructType *STy =
2270     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2271 
2272   llvm::Constant *Fields[4];
2273 
2274   // Class pointer.
2275   Fields[0] = CFConstantStringClassRef;
2276 
2277   // Flags.
2278   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2279   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2280     llvm::ConstantInt::get(Ty, 0x07C8);
2281 
2282   // String pointer.
2283   llvm::Constant *C = 0;
2284   if (isUTF16) {
2285     ArrayRef<uint16_t> Arr =
2286       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2287                                      const_cast<char *>(Entry.getKey().data())),
2288                                    Entry.getKey().size() / 2);
2289     C = llvm::ConstantDataArray::get(VMContext, Arr);
2290   } else {
2291     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2292   }
2293 
2294   llvm::GlobalValue::LinkageTypes Linkage;
2295   if (isUTF16)
2296     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2297     Linkage = llvm::GlobalValue::InternalLinkage;
2298   else
2299     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2300     // when using private linkage. It is not clear if this is a bug in ld
2301     // or a reasonable new restriction.
2302     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2303 
2304   // Note: -fwritable-strings doesn't make the backing store strings of
2305   // CFStrings writable. (See <rdar://problem/10657500>)
2306   llvm::GlobalVariable *GV =
2307     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2308                              Linkage, C, ".str");
2309   GV->setUnnamedAddr(true);
2310   if (isUTF16) {
2311     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2312     GV->setAlignment(Align.getQuantity());
2313   } else {
2314     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2315     GV->setAlignment(Align.getQuantity());
2316   }
2317 
2318   // String.
2319   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2320 
2321   if (isUTF16)
2322     // Cast the UTF16 string to the correct type.
2323     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2324 
2325   // String length.
2326   Ty = getTypes().ConvertType(getContext().LongTy);
2327   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2328 
2329   // The struct.
2330   C = llvm::ConstantStruct::get(STy, Fields);
2331   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2332                                 llvm::GlobalVariable::PrivateLinkage, C,
2333                                 "_unnamed_cfstring_");
2334   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2335     GV->setSection(Sect);
2336   Entry.setValue(GV);
2337 
2338   return GV;
2339 }
2340 
2341 static RecordDecl *
2342 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2343                  DeclContext *DC, IdentifierInfo *Id) {
2344   SourceLocation Loc;
2345   if (Ctx.getLangOpts().CPlusPlus)
2346     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2347   else
2348     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2349 }
2350 
2351 llvm::Constant *
2352 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2353   unsigned StringLength = 0;
2354   llvm::StringMapEntry<llvm::Constant*> &Entry =
2355     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2356 
2357   if (llvm::Constant *C = Entry.getValue())
2358     return C;
2359 
2360   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2361   llvm::Constant *Zeros[] = { Zero, Zero };
2362 
2363   // If we don't already have it, get _NSConstantStringClassReference.
2364   if (!ConstantStringClassRef) {
2365     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2366     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2367     llvm::Constant *GV;
2368     if (LangOpts.ObjCRuntime.isNonFragile()) {
2369       std::string str =
2370         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2371                             : "OBJC_CLASS_$_" + StringClass;
2372       GV = getObjCRuntime().GetClassGlobal(str);
2373       // Make sure the result is of the correct type.
2374       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2375       ConstantStringClassRef =
2376         llvm::ConstantExpr::getBitCast(GV, PTy);
2377     } else {
2378       std::string str =
2379         StringClass.empty() ? "_NSConstantStringClassReference"
2380                             : "_" + StringClass + "ClassReference";
2381       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2382       GV = CreateRuntimeVariable(PTy, str);
2383       // Decay array -> ptr
2384       ConstantStringClassRef =
2385         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2386     }
2387   }
2388 
2389   if (!NSConstantStringType) {
2390     // Construct the type for a constant NSString.
2391     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2392                                      Context.getTranslationUnitDecl(),
2393                                    &Context.Idents.get("__builtin_NSString"));
2394     D->startDefinition();
2395 
2396     QualType FieldTypes[3];
2397 
2398     // const int *isa;
2399     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2400     // const char *str;
2401     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2402     // unsigned int length;
2403     FieldTypes[2] = Context.UnsignedIntTy;
2404 
2405     // Create fields
2406     for (unsigned i = 0; i < 3; ++i) {
2407       FieldDecl *Field = FieldDecl::Create(Context, D,
2408                                            SourceLocation(),
2409                                            SourceLocation(), 0,
2410                                            FieldTypes[i], /*TInfo=*/0,
2411                                            /*BitWidth=*/0,
2412                                            /*Mutable=*/false,
2413                                            ICIS_NoInit);
2414       Field->setAccess(AS_public);
2415       D->addDecl(Field);
2416     }
2417 
2418     D->completeDefinition();
2419     QualType NSTy = Context.getTagDeclType(D);
2420     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2421   }
2422 
2423   llvm::Constant *Fields[3];
2424 
2425   // Class pointer.
2426   Fields[0] = ConstantStringClassRef;
2427 
2428   // String pointer.
2429   llvm::Constant *C =
2430     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2431 
2432   llvm::GlobalValue::LinkageTypes Linkage;
2433   bool isConstant;
2434   Linkage = llvm::GlobalValue::PrivateLinkage;
2435   isConstant = !LangOpts.WritableStrings;
2436 
2437   llvm::GlobalVariable *GV =
2438   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2439                            ".str");
2440   GV->setUnnamedAddr(true);
2441   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2442   GV->setAlignment(Align.getQuantity());
2443   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2444 
2445   // String length.
2446   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2447   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2448 
2449   // The struct.
2450   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2451   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2452                                 llvm::GlobalVariable::PrivateLinkage, C,
2453                                 "_unnamed_nsstring_");
2454   // FIXME. Fix section.
2455   if (const char *Sect =
2456         LangOpts.ObjCRuntime.isNonFragile()
2457           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2458           : getContext().getTargetInfo().getNSStringSection())
2459     GV->setSection(Sect);
2460   Entry.setValue(GV);
2461 
2462   return GV;
2463 }
2464 
2465 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2466   if (ObjCFastEnumerationStateType.isNull()) {
2467     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2468                                      Context.getTranslationUnitDecl(),
2469                       &Context.Idents.get("__objcFastEnumerationState"));
2470     D->startDefinition();
2471 
2472     QualType FieldTypes[] = {
2473       Context.UnsignedLongTy,
2474       Context.getPointerType(Context.getObjCIdType()),
2475       Context.getPointerType(Context.UnsignedLongTy),
2476       Context.getConstantArrayType(Context.UnsignedLongTy,
2477                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2478     };
2479 
2480     for (size_t i = 0; i < 4; ++i) {
2481       FieldDecl *Field = FieldDecl::Create(Context,
2482                                            D,
2483                                            SourceLocation(),
2484                                            SourceLocation(), 0,
2485                                            FieldTypes[i], /*TInfo=*/0,
2486                                            /*BitWidth=*/0,
2487                                            /*Mutable=*/false,
2488                                            ICIS_NoInit);
2489       Field->setAccess(AS_public);
2490       D->addDecl(Field);
2491     }
2492 
2493     D->completeDefinition();
2494     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2495   }
2496 
2497   return ObjCFastEnumerationStateType;
2498 }
2499 
2500 llvm::Constant *
2501 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2502   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2503 
2504   // Don't emit it as the address of the string, emit the string data itself
2505   // as an inline array.
2506   if (E->getCharByteWidth() == 1) {
2507     SmallString<64> Str(E->getString());
2508 
2509     // Resize the string to the right size, which is indicated by its type.
2510     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2511     Str.resize(CAT->getSize().getZExtValue());
2512     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2513   }
2514 
2515   llvm::ArrayType *AType =
2516     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2517   llvm::Type *ElemTy = AType->getElementType();
2518   unsigned NumElements = AType->getNumElements();
2519 
2520   // Wide strings have either 2-byte or 4-byte elements.
2521   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2522     SmallVector<uint16_t, 32> Elements;
2523     Elements.reserve(NumElements);
2524 
2525     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2526       Elements.push_back(E->getCodeUnit(i));
2527     Elements.resize(NumElements);
2528     return llvm::ConstantDataArray::get(VMContext, Elements);
2529   }
2530 
2531   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2532   SmallVector<uint32_t, 32> Elements;
2533   Elements.reserve(NumElements);
2534 
2535   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2536     Elements.push_back(E->getCodeUnit(i));
2537   Elements.resize(NumElements);
2538   return llvm::ConstantDataArray::get(VMContext, Elements);
2539 }
2540 
2541 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2542 /// constant array for the given string literal.
2543 llvm::Constant *
2544 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2545   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2546   if (S->isAscii() || S->isUTF8()) {
2547     SmallString<64> Str(S->getString());
2548 
2549     // Resize the string to the right size, which is indicated by its type.
2550     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2551     Str.resize(CAT->getSize().getZExtValue());
2552     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2553   }
2554 
2555   // FIXME: the following does not memoize wide strings.
2556   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2557   llvm::GlobalVariable *GV =
2558     new llvm::GlobalVariable(getModule(),C->getType(),
2559                              !LangOpts.WritableStrings,
2560                              llvm::GlobalValue::PrivateLinkage,
2561                              C,".str");
2562 
2563   GV->setAlignment(Align.getQuantity());
2564   GV->setUnnamedAddr(true);
2565   return GV;
2566 }
2567 
2568 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2569 /// array for the given ObjCEncodeExpr node.
2570 llvm::Constant *
2571 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2572   std::string Str;
2573   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2574 
2575   return GetAddrOfConstantCString(Str);
2576 }
2577 
2578 
2579 /// GenerateWritableString -- Creates storage for a string literal.
2580 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2581                                              bool constant,
2582                                              CodeGenModule &CGM,
2583                                              const char *GlobalName,
2584                                              unsigned Alignment) {
2585   // Create Constant for this string literal. Don't add a '\0'.
2586   llvm::Constant *C =
2587       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2588 
2589   // Create a global variable for this string
2590   llvm::GlobalVariable *GV =
2591     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2592                              llvm::GlobalValue::PrivateLinkage,
2593                              C, GlobalName);
2594   GV->setAlignment(Alignment);
2595   GV->setUnnamedAddr(true);
2596   return GV;
2597 }
2598 
2599 /// GetAddrOfConstantString - Returns a pointer to a character array
2600 /// containing the literal. This contents are exactly that of the
2601 /// given string, i.e. it will not be null terminated automatically;
2602 /// see GetAddrOfConstantCString. Note that whether the result is
2603 /// actually a pointer to an LLVM constant depends on
2604 /// Feature.WriteableStrings.
2605 ///
2606 /// The result has pointer to array type.
2607 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2608                                                        const char *GlobalName,
2609                                                        unsigned Alignment) {
2610   // Get the default prefix if a name wasn't specified.
2611   if (!GlobalName)
2612     GlobalName = ".str";
2613 
2614   // Don't share any string literals if strings aren't constant.
2615   if (LangOpts.WritableStrings)
2616     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2617 
2618   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2619     ConstantStringMap.GetOrCreateValue(Str);
2620 
2621   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2622     if (Alignment > GV->getAlignment()) {
2623       GV->setAlignment(Alignment);
2624     }
2625     return GV;
2626   }
2627 
2628   // Create a global variable for this.
2629   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2630                                                    Alignment);
2631   Entry.setValue(GV);
2632   return GV;
2633 }
2634 
2635 /// GetAddrOfConstantCString - Returns a pointer to a character
2636 /// array containing the literal and a terminating '\0'
2637 /// character. The result has pointer to array type.
2638 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2639                                                         const char *GlobalName,
2640                                                         unsigned Alignment) {
2641   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2642   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2643 }
2644 
2645 /// EmitObjCPropertyImplementations - Emit information for synthesized
2646 /// properties for an implementation.
2647 void CodeGenModule::EmitObjCPropertyImplementations(const
2648                                                     ObjCImplementationDecl *D) {
2649   for (ObjCImplementationDecl::propimpl_iterator
2650          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2651     ObjCPropertyImplDecl *PID = *i;
2652 
2653     // Dynamic is just for type-checking.
2654     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2655       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2656 
2657       // Determine which methods need to be implemented, some may have
2658       // been overridden. Note that ::isPropertyAccessor is not the method
2659       // we want, that just indicates if the decl came from a
2660       // property. What we want to know is if the method is defined in
2661       // this implementation.
2662       if (!D->getInstanceMethod(PD->getGetterName()))
2663         CodeGenFunction(*this).GenerateObjCGetter(
2664                                  const_cast<ObjCImplementationDecl *>(D), PID);
2665       if (!PD->isReadOnly() &&
2666           !D->getInstanceMethod(PD->getSetterName()))
2667         CodeGenFunction(*this).GenerateObjCSetter(
2668                                  const_cast<ObjCImplementationDecl *>(D), PID);
2669     }
2670   }
2671 }
2672 
2673 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2674   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2675   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2676        ivar; ivar = ivar->getNextIvar())
2677     if (ivar->getType().isDestructedType())
2678       return true;
2679 
2680   return false;
2681 }
2682 
2683 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2684 /// for an implementation.
2685 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2686   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2687   if (needsDestructMethod(D)) {
2688     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2689     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2690     ObjCMethodDecl *DTORMethod =
2691       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2692                              cxxSelector, getContext().VoidTy, 0, D,
2693                              /*isInstance=*/true, /*isVariadic=*/false,
2694                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2695                              /*isDefined=*/false, ObjCMethodDecl::Required);
2696     D->addInstanceMethod(DTORMethod);
2697     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2698     D->setHasDestructors(true);
2699   }
2700 
2701   // If the implementation doesn't have any ivar initializers, we don't need
2702   // a .cxx_construct.
2703   if (D->getNumIvarInitializers() == 0)
2704     return;
2705 
2706   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2707   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2708   // The constructor returns 'self'.
2709   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2710                                                 D->getLocation(),
2711                                                 D->getLocation(),
2712                                                 cxxSelector,
2713                                                 getContext().getObjCIdType(), 0,
2714                                                 D, /*isInstance=*/true,
2715                                                 /*isVariadic=*/false,
2716                                                 /*isPropertyAccessor=*/true,
2717                                                 /*isImplicitlyDeclared=*/true,
2718                                                 /*isDefined=*/false,
2719                                                 ObjCMethodDecl::Required);
2720   D->addInstanceMethod(CTORMethod);
2721   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2722   D->setHasNonZeroConstructors(true);
2723 }
2724 
2725 /// EmitNamespace - Emit all declarations in a namespace.
2726 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2727   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2728        I != E; ++I)
2729     EmitTopLevelDecl(*I);
2730 }
2731 
2732 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2733 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2734   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2735       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2736     ErrorUnsupported(LSD, "linkage spec");
2737     return;
2738   }
2739 
2740   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2741        I != E; ++I) {
2742     // Meta-data for ObjC class includes references to implemented methods.
2743     // Generate class's method definitions first.
2744     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2745       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2746            MEnd = OID->meth_end();
2747            M != MEnd; ++M)
2748         EmitTopLevelDecl(*M);
2749     }
2750     EmitTopLevelDecl(*I);
2751   }
2752 }
2753 
2754 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2755 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2756   // If an error has occurred, stop code generation, but continue
2757   // parsing and semantic analysis (to ensure all warnings and errors
2758   // are emitted).
2759   if (Diags.hasErrorOccurred())
2760     return;
2761 
2762   // Ignore dependent declarations.
2763   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2764     return;
2765 
2766   switch (D->getKind()) {
2767   case Decl::CXXConversion:
2768   case Decl::CXXMethod:
2769   case Decl::Function:
2770     // Skip function templates
2771     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2772         cast<FunctionDecl>(D)->isLateTemplateParsed())
2773       return;
2774 
2775     EmitGlobal(cast<FunctionDecl>(D));
2776     break;
2777 
2778   case Decl::Var:
2779     EmitGlobal(cast<VarDecl>(D));
2780     break;
2781 
2782   // Indirect fields from global anonymous structs and unions can be
2783   // ignored; only the actual variable requires IR gen support.
2784   case Decl::IndirectField:
2785     break;
2786 
2787   // C++ Decls
2788   case Decl::Namespace:
2789     EmitNamespace(cast<NamespaceDecl>(D));
2790     break;
2791     // No code generation needed.
2792   case Decl::UsingShadow:
2793   case Decl::Using:
2794   case Decl::UsingDirective:
2795   case Decl::ClassTemplate:
2796   case Decl::FunctionTemplate:
2797   case Decl::TypeAliasTemplate:
2798   case Decl::NamespaceAlias:
2799   case Decl::Block:
2800     break;
2801   case Decl::CXXConstructor:
2802     // Skip function templates
2803     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2804         cast<FunctionDecl>(D)->isLateTemplateParsed())
2805       return;
2806 
2807     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2808     break;
2809   case Decl::CXXDestructor:
2810     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2811       return;
2812     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2813     break;
2814 
2815   case Decl::StaticAssert:
2816     // Nothing to do.
2817     break;
2818 
2819   // Objective-C Decls
2820 
2821   // Forward declarations, no (immediate) code generation.
2822   case Decl::ObjCInterface:
2823   case Decl::ObjCCategory:
2824     break;
2825 
2826   case Decl::ObjCProtocol: {
2827     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2828     if (Proto->isThisDeclarationADefinition())
2829       ObjCRuntime->GenerateProtocol(Proto);
2830     break;
2831   }
2832 
2833   case Decl::ObjCCategoryImpl:
2834     // Categories have properties but don't support synthesize so we
2835     // can ignore them here.
2836     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2837     break;
2838 
2839   case Decl::ObjCImplementation: {
2840     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2841     EmitObjCPropertyImplementations(OMD);
2842     EmitObjCIvarInitializations(OMD);
2843     ObjCRuntime->GenerateClass(OMD);
2844     // Emit global variable debug information.
2845     if (CGDebugInfo *DI = getModuleDebugInfo())
2846       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2847         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2848             OMD->getClassInterface()), OMD->getLocation());
2849     break;
2850   }
2851   case Decl::ObjCMethod: {
2852     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2853     // If this is not a prototype, emit the body.
2854     if (OMD->getBody())
2855       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2856     break;
2857   }
2858   case Decl::ObjCCompatibleAlias:
2859     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2860     break;
2861 
2862   case Decl::LinkageSpec:
2863     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2864     break;
2865 
2866   case Decl::FileScopeAsm: {
2867     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2868     StringRef AsmString = AD->getAsmString()->getString();
2869 
2870     const std::string &S = getModule().getModuleInlineAsm();
2871     if (S.empty())
2872       getModule().setModuleInlineAsm(AsmString);
2873     else if (S.end()[-1] == '\n')
2874       getModule().setModuleInlineAsm(S + AsmString.str());
2875     else
2876       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2877     break;
2878   }
2879 
2880   case Decl::Import: {
2881     ImportDecl *Import = cast<ImportDecl>(D);
2882 
2883     // Ignore import declarations that come from imported modules.
2884     if (clang::Module *Owner = Import->getOwningModule()) {
2885       if (getLangOpts().CurrentModule.empty() ||
2886           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2887         break;
2888     }
2889 
2890     ImportedModules.insert(Import->getImportedModule());
2891     break;
2892  }
2893 
2894   default:
2895     // Make sure we handled everything we should, every other kind is a
2896     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2897     // function. Need to recode Decl::Kind to do that easily.
2898     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2899   }
2900 }
2901 
2902 /// Turns the given pointer into a constant.
2903 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2904                                           const void *Ptr) {
2905   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2906   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2907   return llvm::ConstantInt::get(i64, PtrInt);
2908 }
2909 
2910 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2911                                    llvm::NamedMDNode *&GlobalMetadata,
2912                                    GlobalDecl D,
2913                                    llvm::GlobalValue *Addr) {
2914   if (!GlobalMetadata)
2915     GlobalMetadata =
2916       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2917 
2918   // TODO: should we report variant information for ctors/dtors?
2919   llvm::Value *Ops[] = {
2920     Addr,
2921     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2922   };
2923   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2924 }
2925 
2926 /// Emits metadata nodes associating all the global values in the
2927 /// current module with the Decls they came from.  This is useful for
2928 /// projects using IR gen as a subroutine.
2929 ///
2930 /// Since there's currently no way to associate an MDNode directly
2931 /// with an llvm::GlobalValue, we create a global named metadata
2932 /// with the name 'clang.global.decl.ptrs'.
2933 void CodeGenModule::EmitDeclMetadata() {
2934   llvm::NamedMDNode *GlobalMetadata = 0;
2935 
2936   // StaticLocalDeclMap
2937   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2938          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2939        I != E; ++I) {
2940     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2941     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2942   }
2943 }
2944 
2945 /// Emits metadata nodes for all the local variables in the current
2946 /// function.
2947 void CodeGenFunction::EmitDeclMetadata() {
2948   if (LocalDeclMap.empty()) return;
2949 
2950   llvm::LLVMContext &Context = getLLVMContext();
2951 
2952   // Find the unique metadata ID for this name.
2953   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2954 
2955   llvm::NamedMDNode *GlobalMetadata = 0;
2956 
2957   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2958          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2959     const Decl *D = I->first;
2960     llvm::Value *Addr = I->second;
2961 
2962     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2963       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2964       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2965     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2966       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2967       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2968     }
2969   }
2970 }
2971 
2972 void CodeGenModule::EmitCoverageFile() {
2973   if (!getCodeGenOpts().CoverageFile.empty()) {
2974     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2975       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2976       llvm::LLVMContext &Ctx = TheModule.getContext();
2977       llvm::MDString *CoverageFile =
2978           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2979       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2980         llvm::MDNode *CU = CUNode->getOperand(i);
2981         llvm::Value *node[] = { CoverageFile, CU };
2982         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2983         GCov->addOperand(N);
2984       }
2985     }
2986   }
2987 }
2988 
2989 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2990                                                      QualType GuidType) {
2991   // Sema has checked that all uuid strings are of the form
2992   // "12345678-1234-1234-1234-1234567890ab".
2993   assert(Uuid.size() == 36);
2994   const char *Uuidstr = Uuid.data();
2995   for (int i = 0; i < 36; ++i) {
2996     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2997     else                                         assert(isxdigit(Uuidstr[i]));
2998   }
2999 
3000   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3001   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3002   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3003   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3004 
3005   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3006   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3007   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3008   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3009   APValue& Arr = InitStruct.getStructField(3);
3010   Arr = APValue(APValue::UninitArray(), 8, 8);
3011   for (int t = 0; t < 8; ++t)
3012     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3013           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3014 
3015   return EmitConstantValue(InitStruct, GuidType);
3016 }
3017