xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b78257d0c10f1fe331744574eabc1e8987652b7f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallingConv.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CallSite.h"
50 #include "llvm/Support/ConvertUTF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0),
81       CFConstantStringClassRef(0),
82       ConstantStringClassRef(0), NSConstantStringType(0),
83       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
84       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
85       LifetimeStartFn(0), LifetimeEndFn(0),
86       SanitizerBlacklist(
87           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
88       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
89                                           : LangOpts.Sanitize) {
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   VoidTy = llvm::Type::getVoidTy(LLVMContext);
94   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
95   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
96   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
97   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
98   FloatTy = llvm::Type::getFloatTy(LLVMContext);
99   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
100   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
101   PointerAlignInBytes =
102   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
103   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
104   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
105   Int8PtrTy = Int8Ty->getPointerTo(0);
106   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
107 
108   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
109 
110   if (LangOpts.ObjC1)
111     createObjCRuntime();
112   if (LangOpts.OpenCL)
113     createOpenCLRuntime();
114   if (LangOpts.CUDA)
115     createCUDARuntime();
116 
117   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
118   if (SanOpts.Thread ||
119       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
120     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
121                            getCXXABI().getMangleContext());
122 
123   // If debug info or coverage generation is enabled, create the CGDebugInfo
124   // object.
125   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
126       CodeGenOpts.EmitGcovArcs ||
127       CodeGenOpts.EmitGcovNotes)
128     DebugInfo = new CGDebugInfo(*this);
129 
130   Block.GlobalUniqueCount = 0;
131 
132   if (C.getLangOpts().ObjCAutoRefCount)
133     ARCData = new ARCEntrypoints();
134   RRData = new RREntrypoints();
135 
136   if (!CodeGenOpts.InstrProfileInput.empty())
137     PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput);
138 }
139 
140 CodeGenModule::~CodeGenModule() {
141   delete ObjCRuntime;
142   delete OpenCLRuntime;
143   delete CUDARuntime;
144   delete TheTargetCodeGenInfo;
145   delete TBAA;
146   delete DebugInfo;
147   delete ARCData;
148   delete RRData;
149 }
150 
151 void CodeGenModule::createObjCRuntime() {
152   // This is just isGNUFamily(), but we want to force implementors of
153   // new ABIs to decide how best to do this.
154   switch (LangOpts.ObjCRuntime.getKind()) {
155   case ObjCRuntime::GNUstep:
156   case ObjCRuntime::GCC:
157   case ObjCRuntime::ObjFW:
158     ObjCRuntime = CreateGNUObjCRuntime(*this);
159     return;
160 
161   case ObjCRuntime::FragileMacOSX:
162   case ObjCRuntime::MacOSX:
163   case ObjCRuntime::iOS:
164     ObjCRuntime = CreateMacObjCRuntime(*this);
165     return;
166   }
167   llvm_unreachable("bad runtime kind");
168 }
169 
170 void CodeGenModule::createOpenCLRuntime() {
171   OpenCLRuntime = new CGOpenCLRuntime(*this);
172 }
173 
174 void CodeGenModule::createCUDARuntime() {
175   CUDARuntime = CreateNVCUDARuntime(*this);
176 }
177 
178 void CodeGenModule::applyReplacements() {
179   for (ReplacementsTy::iterator I = Replacements.begin(),
180                                 E = Replacements.end();
181        I != E; ++I) {
182     StringRef MangledName = I->first();
183     llvm::Constant *Replacement = I->second;
184     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
185     if (!Entry)
186       continue;
187     llvm::Function *OldF = cast<llvm::Function>(Entry);
188     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
189     if (!NewF) {
190       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
191         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
192       } else {
193         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
194         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
195                CE->getOpcode() == llvm::Instruction::GetElementPtr);
196         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
197       }
198     }
199 
200     // Replace old with new, but keep the old order.
201     OldF->replaceAllUsesWith(Replacement);
202     if (NewF) {
203       NewF->removeFromParent();
204       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
205     }
206     OldF->eraseFromParent();
207   }
208 }
209 
210 void CodeGenModule::checkAliases() {
211   bool Error = false;
212   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
213          E = Aliases.end(); I != E; ++I) {
214     const GlobalDecl &GD = *I;
215     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
216     const AliasAttr *AA = D->getAttr<AliasAttr>();
217     StringRef MangledName = getMangledName(GD);
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
220     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
221     if (GV->isDeclaration()) {
222       Error = true;
223       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
224     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
225       Error = true;
226       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
227     }
228   }
229   if (!Error)
230     return;
231 
232   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
233          E = Aliases.end(); I != E; ++I) {
234     const GlobalDecl &GD = *I;
235     StringRef MangledName = getMangledName(GD);
236     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
237     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
238     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
239     Alias->eraseFromParent();
240   }
241 }
242 
243 void CodeGenModule::clear() {
244   DeferredDeclsToEmit.clear();
245 }
246 
247 void CodeGenModule::Release() {
248   EmitDeferred();
249   applyReplacements();
250   checkAliases();
251   EmitCXXGlobalInitFunc();
252   EmitCXXGlobalDtorFunc();
253   EmitCXXThreadLocalInitFunc();
254   if (ObjCRuntime)
255     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
256       AddGlobalCtor(ObjCInitFunction);
257   EmitCtorList(GlobalCtors, "llvm.global_ctors");
258   EmitCtorList(GlobalDtors, "llvm.global_dtors");
259   EmitGlobalAnnotations();
260   EmitStaticExternCAliases();
261   EmitLLVMUsed();
262 
263   if (CodeGenOpts.Autolink &&
264       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
265     EmitModuleLinkOptions();
266   }
267   if (CodeGenOpts.DwarfVersion)
268     // We actually want the latest version when there are conflicts.
269     // We can change from Warning to Latest if such mode is supported.
270     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
271                               CodeGenOpts.DwarfVersion);
272   if (DebugInfo)
273     // We support a single version in the linked module: error out when
274     // modules do not have the same version. We are going to implement dropping
275     // debug info when the version number is not up-to-date. Once that is
276     // done, the bitcode linker is not going to see modules with different
277     // version numbers.
278     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
279                               llvm::DEBUG_METADATA_VERSION);
280 
281   SimplifyPersonality();
282 
283   if (getCodeGenOpts().EmitDeclMetadata)
284     EmitDeclMetadata();
285 
286   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
287     EmitCoverageFile();
288 
289   if (DebugInfo)
290     DebugInfo->finalize();
291 
292   EmitVersionIdentMetadata();
293 }
294 
295 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
296   // Make sure that this type is translated.
297   Types.UpdateCompletedType(TD);
298 }
299 
300 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
301   if (!TBAA)
302     return 0;
303   return TBAA->getTBAAInfo(QTy);
304 }
305 
306 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
307   if (!TBAA)
308     return 0;
309   return TBAA->getTBAAInfoForVTablePtr();
310 }
311 
312 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
313   if (!TBAA)
314     return 0;
315   return TBAA->getTBAAStructInfo(QTy);
316 }
317 
318 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
319   if (!TBAA)
320     return 0;
321   return TBAA->getTBAAStructTypeInfo(QTy);
322 }
323 
324 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
325                                                   llvm::MDNode *AccessN,
326                                                   uint64_t O) {
327   if (!TBAA)
328     return 0;
329   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
330 }
331 
332 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
333 /// and struct-path aware TBAA, the tag has the same format:
334 /// base type, access type and offset.
335 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
336 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
337                                         llvm::MDNode *TBAAInfo,
338                                         bool ConvertTypeToTag) {
339   if (ConvertTypeToTag && TBAA)
340     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
341                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
342   else
343     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
344 }
345 
346 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
347   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
348   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
349 }
350 
351 /// ErrorUnsupported - Print out an error that codegen doesn't support the
352 /// specified stmt yet.
353 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
354   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
355                                                "cannot compile this %0 yet");
356   std::string Msg = Type;
357   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
358     << Msg << S->getSourceRange();
359 }
360 
361 /// ErrorUnsupported - Print out an error that codegen doesn't support the
362 /// specified decl yet.
363 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
364   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
365                                                "cannot compile this %0 yet");
366   std::string Msg = Type;
367   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
368 }
369 
370 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
371   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
372 }
373 
374 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
375                                         const NamedDecl *D) const {
376   // Internal definitions always have default visibility.
377   if (GV->hasLocalLinkage()) {
378     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
379     return;
380   }
381 
382   // Set visibility for definitions.
383   LinkageInfo LV = D->getLinkageAndVisibility();
384   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
385     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
386 }
387 
388 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
389   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
390       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
391       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
392       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
393       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
394 }
395 
396 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
397     CodeGenOptions::TLSModel M) {
398   switch (M) {
399   case CodeGenOptions::GeneralDynamicTLSModel:
400     return llvm::GlobalVariable::GeneralDynamicTLSModel;
401   case CodeGenOptions::LocalDynamicTLSModel:
402     return llvm::GlobalVariable::LocalDynamicTLSModel;
403   case CodeGenOptions::InitialExecTLSModel:
404     return llvm::GlobalVariable::InitialExecTLSModel;
405   case CodeGenOptions::LocalExecTLSModel:
406     return llvm::GlobalVariable::LocalExecTLSModel;
407   }
408   llvm_unreachable("Invalid TLS model!");
409 }
410 
411 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
412                                const VarDecl &D) const {
413   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
414 
415   llvm::GlobalVariable::ThreadLocalMode TLM;
416   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
417 
418   // Override the TLS model if it is explicitly specified.
419   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
420     TLM = GetLLVMTLSModel(Attr->getModel());
421   }
422 
423   GV->setThreadLocalMode(TLM);
424 }
425 
426 /// Set the symbol visibility of type information (vtable and RTTI)
427 /// associated with the given type.
428 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
429                                       const CXXRecordDecl *RD,
430                                       TypeVisibilityKind TVK) const {
431   setGlobalVisibility(GV, RD);
432 
433   if (!CodeGenOpts.HiddenWeakVTables)
434     return;
435 
436   // We never want to drop the visibility for RTTI names.
437   if (TVK == TVK_ForRTTIName)
438     return;
439 
440   // We want to drop the visibility to hidden for weak type symbols.
441   // This isn't possible if there might be unresolved references
442   // elsewhere that rely on this symbol being visible.
443 
444   // This should be kept roughly in sync with setThunkVisibility
445   // in CGVTables.cpp.
446 
447   // Preconditions.
448   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
449       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
450     return;
451 
452   // Don't override an explicit visibility attribute.
453   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
454     return;
455 
456   switch (RD->getTemplateSpecializationKind()) {
457   // We have to disable the optimization if this is an EI definition
458   // because there might be EI declarations in other shared objects.
459   case TSK_ExplicitInstantiationDefinition:
460   case TSK_ExplicitInstantiationDeclaration:
461     return;
462 
463   // Every use of a non-template class's type information has to emit it.
464   case TSK_Undeclared:
465     break;
466 
467   // In theory, implicit instantiations can ignore the possibility of
468   // an explicit instantiation declaration because there necessarily
469   // must be an EI definition somewhere with default visibility.  In
470   // practice, it's possible to have an explicit instantiation for
471   // an arbitrary template class, and linkers aren't necessarily able
472   // to deal with mixed-visibility symbols.
473   case TSK_ExplicitSpecialization:
474   case TSK_ImplicitInstantiation:
475     return;
476   }
477 
478   // If there's a key function, there may be translation units
479   // that don't have the key function's definition.  But ignore
480   // this if we're emitting RTTI under -fno-rtti.
481   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
482     // FIXME: what should we do if we "lose" the key function during
483     // the emission of the file?
484     if (Context.getCurrentKeyFunction(RD))
485       return;
486   }
487 
488   // Otherwise, drop the visibility to hidden.
489   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
490   GV->setUnnamedAddr(true);
491 }
492 
493 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
494   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
495 
496   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
497   if (!Str.empty())
498     return Str;
499 
500   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
501     IdentifierInfo *II = ND->getIdentifier();
502     assert(II && "Attempt to mangle unnamed decl.");
503 
504     Str = II->getName();
505     return Str;
506   }
507 
508   SmallString<256> Buffer;
509   llvm::raw_svector_ostream Out(Buffer);
510   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
511     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
512   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
513     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
514   else
515     getCXXABI().getMangleContext().mangleName(ND, Out);
516 
517   // Allocate space for the mangled name.
518   Out.flush();
519   size_t Length = Buffer.size();
520   char *Name = MangledNamesAllocator.Allocate<char>(Length);
521   std::copy(Buffer.begin(), Buffer.end(), Name);
522 
523   Str = StringRef(Name, Length);
524 
525   return Str;
526 }
527 
528 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
529                                         const BlockDecl *BD) {
530   MangleContext &MangleCtx = getCXXABI().getMangleContext();
531   const Decl *D = GD.getDecl();
532   llvm::raw_svector_ostream Out(Buffer.getBuffer());
533   if (D == 0)
534     MangleCtx.mangleGlobalBlock(BD,
535       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
536   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
537     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
538   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
539     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
540   else
541     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
542 }
543 
544 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
545   return getModule().getNamedValue(Name);
546 }
547 
548 /// AddGlobalCtor - Add a function to the list that will be called before
549 /// main() runs.
550 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
551   // FIXME: Type coercion of void()* types.
552   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
553 }
554 
555 /// AddGlobalDtor - Add a function to the list that will be called
556 /// when the module is unloaded.
557 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
558   // FIXME: Type coercion of void()* types.
559   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
560 }
561 
562 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
563   // Ctor function type is void()*.
564   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
565   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
566 
567   // Get the type of a ctor entry, { i32, void ()* }.
568   llvm::StructType *CtorStructTy =
569     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
570 
571   // Construct the constructor and destructor arrays.
572   SmallVector<llvm::Constant*, 8> Ctors;
573   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
574     llvm::Constant *S[] = {
575       llvm::ConstantInt::get(Int32Ty, I->second, false),
576       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
577     };
578     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
579   }
580 
581   if (!Ctors.empty()) {
582     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
583     new llvm::GlobalVariable(TheModule, AT, false,
584                              llvm::GlobalValue::AppendingLinkage,
585                              llvm::ConstantArray::get(AT, Ctors),
586                              GlobalName);
587   }
588 }
589 
590 llvm::GlobalValue::LinkageTypes
591 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
592   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
593 
594   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
595 
596   if (Linkage == GVA_Internal)
597     return llvm::Function::InternalLinkage;
598 
599   if (D->hasAttr<DLLExportAttr>())
600     return llvm::Function::ExternalLinkage;
601 
602   if (D->hasAttr<WeakAttr>())
603     return llvm::Function::WeakAnyLinkage;
604 
605   // In C99 mode, 'inline' functions are guaranteed to have a strong
606   // definition somewhere else, so we can use available_externally linkage.
607   if (Linkage == GVA_C99Inline)
608     return llvm::Function::AvailableExternallyLinkage;
609 
610   // Note that Apple's kernel linker doesn't support symbol
611   // coalescing, so we need to avoid linkonce and weak linkages there.
612   // Normally, this means we just map to internal, but for explicit
613   // instantiations we'll map to external.
614 
615   // In C++, the compiler has to emit a definition in every translation unit
616   // that references the function.  We should use linkonce_odr because
617   // a) if all references in this translation unit are optimized away, we
618   // don't need to codegen it.  b) if the function persists, it needs to be
619   // merged with other definitions. c) C++ has the ODR, so we know the
620   // definition is dependable.
621   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
622     return !Context.getLangOpts().AppleKext
623              ? llvm::Function::LinkOnceODRLinkage
624              : llvm::Function::InternalLinkage;
625 
626   // An explicit instantiation of a template has weak linkage, since
627   // explicit instantiations can occur in multiple translation units
628   // and must all be equivalent. However, we are not allowed to
629   // throw away these explicit instantiations.
630   if (Linkage == GVA_ExplicitTemplateInstantiation)
631     return !Context.getLangOpts().AppleKext
632              ? llvm::Function::WeakODRLinkage
633              : llvm::Function::ExternalLinkage;
634 
635   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
636   // emitted on an as-needed basis.
637   if (isa<CXXDestructorDecl>(D) &&
638       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
639                                          GD.getDtorType()))
640     return llvm::Function::LinkOnceODRLinkage;
641 
642   // Otherwise, we have strong external linkage.
643   assert(Linkage == GVA_StrongExternal);
644   return llvm::Function::ExternalLinkage;
645 }
646 
647 
648 /// SetFunctionDefinitionAttributes - Set attributes for a global.
649 ///
650 /// FIXME: This is currently only done for aliases and functions, but not for
651 /// variables (these details are set in EmitGlobalVarDefinition for variables).
652 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
653                                                     llvm::GlobalValue *GV) {
654   SetCommonAttributes(D, GV);
655 }
656 
657 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
658                                               const CGFunctionInfo &Info,
659                                               llvm::Function *F) {
660   unsigned CallingConv;
661   AttributeListType AttributeList;
662   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
663   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
664   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
665 }
666 
667 /// Determines whether the language options require us to model
668 /// unwind exceptions.  We treat -fexceptions as mandating this
669 /// except under the fragile ObjC ABI with only ObjC exceptions
670 /// enabled.  This means, for example, that C with -fexceptions
671 /// enables this.
672 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
673   // If exceptions are completely disabled, obviously this is false.
674   if (!LangOpts.Exceptions) return false;
675 
676   // If C++ exceptions are enabled, this is true.
677   if (LangOpts.CXXExceptions) return true;
678 
679   // If ObjC exceptions are enabled, this depends on the ABI.
680   if (LangOpts.ObjCExceptions) {
681     return LangOpts.ObjCRuntime.hasUnwindExceptions();
682   }
683 
684   return true;
685 }
686 
687 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
688                                                            llvm::Function *F) {
689   llvm::AttrBuilder B;
690 
691   if (CodeGenOpts.UnwindTables)
692     B.addAttribute(llvm::Attribute::UWTable);
693 
694   if (!hasUnwindExceptions(LangOpts))
695     B.addAttribute(llvm::Attribute::NoUnwind);
696 
697   if (D->hasAttr<NakedAttr>()) {
698     // Naked implies noinline: we should not be inlining such functions.
699     B.addAttribute(llvm::Attribute::Naked);
700     B.addAttribute(llvm::Attribute::NoInline);
701   } else if (D->hasAttr<NoInlineAttr>()) {
702     B.addAttribute(llvm::Attribute::NoInline);
703   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
704               D->hasAttr<ForceInlineAttr>()) &&
705              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
706                                               llvm::Attribute::NoInline)) {
707     // (noinline wins over always_inline, and we can't specify both in IR)
708     B.addAttribute(llvm::Attribute::AlwaysInline);
709   }
710 
711   if (D->hasAttr<ColdAttr>()) {
712     B.addAttribute(llvm::Attribute::OptimizeForSize);
713     B.addAttribute(llvm::Attribute::Cold);
714   }
715 
716   if (D->hasAttr<MinSizeAttr>())
717     B.addAttribute(llvm::Attribute::MinSize);
718 
719   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
720     B.addAttribute(llvm::Attribute::StackProtect);
721   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
722     B.addAttribute(llvm::Attribute::StackProtectReq);
723 
724   // Add sanitizer attributes if function is not blacklisted.
725   if (!SanitizerBlacklist->isIn(*F)) {
726     // When AddressSanitizer is enabled, set SanitizeAddress attribute
727     // unless __attribute__((no_sanitize_address)) is used.
728     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
729       B.addAttribute(llvm::Attribute::SanitizeAddress);
730     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
731     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
732       B.addAttribute(llvm::Attribute::SanitizeThread);
733     }
734     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
735     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
736       B.addAttribute(llvm::Attribute::SanitizeMemory);
737   }
738 
739   F->addAttributes(llvm::AttributeSet::FunctionIndex,
740                    llvm::AttributeSet::get(
741                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
742 
743   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
744     F->setUnnamedAddr(true);
745   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
746     if (MD->isVirtual())
747       F->setUnnamedAddr(true);
748 
749   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
750   if (alignment)
751     F->setAlignment(alignment);
752 
753   // C++ ABI requires 2-byte alignment for member functions.
754   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
755     F->setAlignment(2);
756 }
757 
758 void CodeGenModule::SetCommonAttributes(const Decl *D,
759                                         llvm::GlobalValue *GV) {
760   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
761     setGlobalVisibility(GV, ND);
762   else
763     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
764 
765   if (D->hasAttr<UsedAttr>())
766     AddUsedGlobal(GV);
767 
768   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
769     GV->setSection(SA->getName());
770 
771   // Alias cannot have attributes. Filter them here.
772   if (!isa<llvm::GlobalAlias>(GV))
773     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
774 }
775 
776 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
777                                                   llvm::Function *F,
778                                                   const CGFunctionInfo &FI) {
779   SetLLVMFunctionAttributes(D, FI, F);
780   SetLLVMFunctionAttributesForDefinition(D, F);
781 
782   F->setLinkage(llvm::Function::InternalLinkage);
783 
784   SetCommonAttributes(D, F);
785 }
786 
787 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
788                                           llvm::Function *F,
789                                           bool IsIncompleteFunction) {
790   if (unsigned IID = F->getIntrinsicID()) {
791     // If this is an intrinsic function, set the function's attributes
792     // to the intrinsic's attributes.
793     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
794                                                     (llvm::Intrinsic::ID)IID));
795     return;
796   }
797 
798   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
799 
800   if (!IsIncompleteFunction)
801     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
802 
803   if (getCXXABI().HasThisReturn(GD)) {
804     assert(!F->arg_empty() &&
805            F->arg_begin()->getType()
806              ->canLosslesslyBitCastTo(F->getReturnType()) &&
807            "unexpected this return");
808     F->addAttribute(1, llvm::Attribute::Returned);
809   }
810 
811   // Only a few attributes are set on declarations; these may later be
812   // overridden by a definition.
813 
814   if (FD->hasAttr<DLLImportAttr>()) {
815     F->setLinkage(llvm::Function::ExternalLinkage);
816     F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
817   } else if (FD->hasAttr<WeakAttr>() ||
818              FD->isWeakImported()) {
819     // "extern_weak" is overloaded in LLVM; we probably should have
820     // separate linkage types for this.
821     F->setLinkage(llvm::Function::ExternalWeakLinkage);
822   } else {
823     F->setLinkage(llvm::Function::ExternalLinkage);
824     if (FD->hasAttr<DLLExportAttr>())
825       F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
826 
827     LinkageInfo LV = FD->getLinkageAndVisibility();
828     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
829       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
830     }
831   }
832 
833   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
834     F->setSection(SA->getName());
835 
836   // A replaceable global allocation function does not act like a builtin by
837   // default, only if it is invoked by a new-expression or delete-expression.
838   if (FD->isReplaceableGlobalAllocationFunction())
839     F->addAttribute(llvm::AttributeSet::FunctionIndex,
840                     llvm::Attribute::NoBuiltin);
841 }
842 
843 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
844   assert(!GV->isDeclaration() &&
845          "Only globals with definition can force usage.");
846   LLVMUsed.push_back(GV);
847 }
848 
849 void CodeGenModule::EmitLLVMUsed() {
850   // Don't create llvm.used if there is no need.
851   if (LLVMUsed.empty())
852     return;
853 
854   // Convert LLVMUsed to what ConstantArray needs.
855   SmallVector<llvm::Constant*, 8> UsedArray;
856   UsedArray.resize(LLVMUsed.size());
857   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
858     UsedArray[i] =
859      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
860                                     Int8PtrTy);
861   }
862 
863   if (UsedArray.empty())
864     return;
865   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
866 
867   llvm::GlobalVariable *GV =
868     new llvm::GlobalVariable(getModule(), ATy, false,
869                              llvm::GlobalValue::AppendingLinkage,
870                              llvm::ConstantArray::get(ATy, UsedArray),
871                              "llvm.used");
872 
873   GV->setSection("llvm.metadata");
874 }
875 
876 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
877   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
878   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
879 }
880 
881 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
882   llvm::SmallString<32> Opt;
883   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
884   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
885   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
886 }
887 
888 void CodeGenModule::AddDependentLib(StringRef Lib) {
889   llvm::SmallString<24> Opt;
890   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
891   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
892   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
893 }
894 
895 /// \brief Add link options implied by the given module, including modules
896 /// it depends on, using a postorder walk.
897 static void addLinkOptionsPostorder(CodeGenModule &CGM,
898                                     Module *Mod,
899                                     SmallVectorImpl<llvm::Value *> &Metadata,
900                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
901   // Import this module's parent.
902   if (Mod->Parent && Visited.insert(Mod->Parent)) {
903     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
904   }
905 
906   // Import this module's dependencies.
907   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
908     if (Visited.insert(Mod->Imports[I-1]))
909       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
910   }
911 
912   // Add linker options to link against the libraries/frameworks
913   // described by this module.
914   llvm::LLVMContext &Context = CGM.getLLVMContext();
915   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
916     // Link against a framework.  Frameworks are currently Darwin only, so we
917     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
918     if (Mod->LinkLibraries[I-1].IsFramework) {
919       llvm::Value *Args[2] = {
920         llvm::MDString::get(Context, "-framework"),
921         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
922       };
923 
924       Metadata.push_back(llvm::MDNode::get(Context, Args));
925       continue;
926     }
927 
928     // Link against a library.
929     llvm::SmallString<24> Opt;
930     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
931       Mod->LinkLibraries[I-1].Library, Opt);
932     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
933     Metadata.push_back(llvm::MDNode::get(Context, OptString));
934   }
935 }
936 
937 void CodeGenModule::EmitModuleLinkOptions() {
938   // Collect the set of all of the modules we want to visit to emit link
939   // options, which is essentially the imported modules and all of their
940   // non-explicit child modules.
941   llvm::SetVector<clang::Module *> LinkModules;
942   llvm::SmallPtrSet<clang::Module *, 16> Visited;
943   SmallVector<clang::Module *, 16> Stack;
944 
945   // Seed the stack with imported modules.
946   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
947                                                MEnd = ImportedModules.end();
948        M != MEnd; ++M) {
949     if (Visited.insert(*M))
950       Stack.push_back(*M);
951   }
952 
953   // Find all of the modules to import, making a little effort to prune
954   // non-leaf modules.
955   while (!Stack.empty()) {
956     clang::Module *Mod = Stack.pop_back_val();
957 
958     bool AnyChildren = false;
959 
960     // Visit the submodules of this module.
961     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
962                                         SubEnd = Mod->submodule_end();
963          Sub != SubEnd; ++Sub) {
964       // Skip explicit children; they need to be explicitly imported to be
965       // linked against.
966       if ((*Sub)->IsExplicit)
967         continue;
968 
969       if (Visited.insert(*Sub)) {
970         Stack.push_back(*Sub);
971         AnyChildren = true;
972       }
973     }
974 
975     // We didn't find any children, so add this module to the list of
976     // modules to link against.
977     if (!AnyChildren) {
978       LinkModules.insert(Mod);
979     }
980   }
981 
982   // Add link options for all of the imported modules in reverse topological
983   // order.  We don't do anything to try to order import link flags with respect
984   // to linker options inserted by things like #pragma comment().
985   SmallVector<llvm::Value *, 16> MetadataArgs;
986   Visited.clear();
987   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
988                                                MEnd = LinkModules.end();
989        M != MEnd; ++M) {
990     if (Visited.insert(*M))
991       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
992   }
993   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
994   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
995 
996   // Add the linker options metadata flag.
997   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
998                             llvm::MDNode::get(getLLVMContext(),
999                                               LinkerOptionsMetadata));
1000 }
1001 
1002 void CodeGenModule::EmitDeferred() {
1003   // Emit code for any potentially referenced deferred decls.  Since a
1004   // previously unused static decl may become used during the generation of code
1005   // for a static function, iterate until no changes are made.
1006 
1007   while (true) {
1008     if (!DeferredVTables.empty()) {
1009       EmitDeferredVTables();
1010 
1011       // Emitting a v-table doesn't directly cause more v-tables to
1012       // become deferred, although it can cause functions to be
1013       // emitted that then need those v-tables.
1014       assert(DeferredVTables.empty());
1015     }
1016 
1017     // Stop if we're out of both deferred v-tables and deferred declarations.
1018     if (DeferredDeclsToEmit.empty()) break;
1019 
1020     DeferredGlobal &G = DeferredDeclsToEmit.back();
1021     GlobalDecl D = G.GD;
1022     llvm::GlobalValue *GV = G.GV;
1023     DeferredDeclsToEmit.pop_back();
1024 
1025     assert(GV == GetGlobalValue(getMangledName(D)));
1026     // Check to see if we've already emitted this.  This is necessary
1027     // for a couple of reasons: first, decls can end up in the
1028     // deferred-decls queue multiple times, and second, decls can end
1029     // up with definitions in unusual ways (e.g. by an extern inline
1030     // function acquiring a strong function redefinition).  Just
1031     // ignore these cases.
1032     if(!GV->isDeclaration())
1033       continue;
1034 
1035     // Otherwise, emit the definition and move on to the next one.
1036     EmitGlobalDefinition(D, GV);
1037   }
1038 }
1039 
1040 void CodeGenModule::EmitGlobalAnnotations() {
1041   if (Annotations.empty())
1042     return;
1043 
1044   // Create a new global variable for the ConstantStruct in the Module.
1045   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1046     Annotations[0]->getType(), Annotations.size()), Annotations);
1047   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1048     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1049     "llvm.global.annotations");
1050   gv->setSection(AnnotationSection);
1051 }
1052 
1053 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1054   llvm::Constant *&AStr = AnnotationStrings[Str];
1055   if (AStr)
1056     return AStr;
1057 
1058   // Not found yet, create a new global.
1059   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1060   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1061     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1062   gv->setSection(AnnotationSection);
1063   gv->setUnnamedAddr(true);
1064   AStr = gv;
1065   return gv;
1066 }
1067 
1068 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1069   SourceManager &SM = getContext().getSourceManager();
1070   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1071   if (PLoc.isValid())
1072     return EmitAnnotationString(PLoc.getFilename());
1073   return EmitAnnotationString(SM.getBufferName(Loc));
1074 }
1075 
1076 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1077   SourceManager &SM = getContext().getSourceManager();
1078   PresumedLoc PLoc = SM.getPresumedLoc(L);
1079   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1080     SM.getExpansionLineNumber(L);
1081   return llvm::ConstantInt::get(Int32Ty, LineNo);
1082 }
1083 
1084 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1085                                                 const AnnotateAttr *AA,
1086                                                 SourceLocation L) {
1087   // Get the globals for file name, annotation, and the line number.
1088   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1089                  *UnitGV = EmitAnnotationUnit(L),
1090                  *LineNoCst = EmitAnnotationLineNo(L);
1091 
1092   // Create the ConstantStruct for the global annotation.
1093   llvm::Constant *Fields[4] = {
1094     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1095     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1096     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1097     LineNoCst
1098   };
1099   return llvm::ConstantStruct::getAnon(Fields);
1100 }
1101 
1102 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1103                                          llvm::GlobalValue *GV) {
1104   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1105   // Get the struct elements for these annotations.
1106   for (specific_attr_iterator<AnnotateAttr>
1107        ai = D->specific_attr_begin<AnnotateAttr>(),
1108        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1109     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1110 }
1111 
1112 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1113   // Never defer when EmitAllDecls is specified.
1114   if (LangOpts.EmitAllDecls)
1115     return false;
1116 
1117   return !getContext().DeclMustBeEmitted(Global);
1118 }
1119 
1120 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1121     const CXXUuidofExpr* E) {
1122   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1123   // well-formed.
1124   StringRef Uuid = E->getUuidAsStringRef(Context);
1125   std::string Name = "_GUID_" + Uuid.lower();
1126   std::replace(Name.begin(), Name.end(), '-', '_');
1127 
1128   // Look for an existing global.
1129   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1130     return GV;
1131 
1132   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1133   assert(Init && "failed to initialize as constant");
1134 
1135   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1136       getModule(), Init->getType(),
1137       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1138   return GV;
1139 }
1140 
1141 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1142   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1143   assert(AA && "No alias?");
1144 
1145   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1146 
1147   // See if there is already something with the target's name in the module.
1148   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1149   if (Entry) {
1150     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1151     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1152   }
1153 
1154   llvm::Constant *Aliasee;
1155   if (isa<llvm::FunctionType>(DeclTy))
1156     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1157                                       GlobalDecl(cast<FunctionDecl>(VD)),
1158                                       /*ForVTable=*/false);
1159   else
1160     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1161                                     llvm::PointerType::getUnqual(DeclTy), 0);
1162 
1163   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1164   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1165   WeakRefReferences.insert(F);
1166 
1167   return Aliasee;
1168 }
1169 
1170 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1171   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1172 
1173   // Weak references don't produce any output by themselves.
1174   if (Global->hasAttr<WeakRefAttr>())
1175     return;
1176 
1177   // If this is an alias definition (which otherwise looks like a declaration)
1178   // emit it now.
1179   if (Global->hasAttr<AliasAttr>())
1180     return EmitAliasDefinition(GD);
1181 
1182   // If this is CUDA, be selective about which declarations we emit.
1183   if (LangOpts.CUDA) {
1184     if (CodeGenOpts.CUDAIsDevice) {
1185       if (!Global->hasAttr<CUDADeviceAttr>() &&
1186           !Global->hasAttr<CUDAGlobalAttr>() &&
1187           !Global->hasAttr<CUDAConstantAttr>() &&
1188           !Global->hasAttr<CUDASharedAttr>())
1189         return;
1190     } else {
1191       if (!Global->hasAttr<CUDAHostAttr>() && (
1192             Global->hasAttr<CUDADeviceAttr>() ||
1193             Global->hasAttr<CUDAConstantAttr>() ||
1194             Global->hasAttr<CUDASharedAttr>()))
1195         return;
1196     }
1197   }
1198 
1199   // Ignore declarations, they will be emitted on their first use.
1200   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1201     // Forward declarations are emitted lazily on first use.
1202     if (!FD->doesThisDeclarationHaveABody()) {
1203       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1204         return;
1205 
1206       const FunctionDecl *InlineDefinition = 0;
1207       FD->getBody(InlineDefinition);
1208 
1209       StringRef MangledName = getMangledName(GD);
1210       DeferredDecls.erase(MangledName);
1211       EmitGlobalDefinition(InlineDefinition);
1212       return;
1213     }
1214   } else {
1215     const VarDecl *VD = cast<VarDecl>(Global);
1216     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1217 
1218     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1219       return;
1220   }
1221 
1222   // Defer code generation when possible if this is a static definition, inline
1223   // function etc.  These we only want to emit if they are used.
1224   if (!MayDeferGeneration(Global)) {
1225     // Emit the definition if it can't be deferred.
1226     EmitGlobalDefinition(GD);
1227     return;
1228   }
1229 
1230   // If we're deferring emission of a C++ variable with an
1231   // initializer, remember the order in which it appeared in the file.
1232   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1233       cast<VarDecl>(Global)->hasInit()) {
1234     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1235     CXXGlobalInits.push_back(0);
1236   }
1237 
1238   // If the value has already been used, add it directly to the
1239   // DeferredDeclsToEmit list.
1240   StringRef MangledName = getMangledName(GD);
1241   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1242     addDeferredDeclToEmit(GV, GD);
1243   else {
1244     // Otherwise, remember that we saw a deferred decl with this name.  The
1245     // first use of the mangled name will cause it to move into
1246     // DeferredDeclsToEmit.
1247     DeferredDecls[MangledName] = GD;
1248   }
1249 }
1250 
1251 namespace {
1252   struct FunctionIsDirectlyRecursive :
1253     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1254     const StringRef Name;
1255     const Builtin::Context &BI;
1256     bool Result;
1257     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1258       Name(N), BI(C), Result(false) {
1259     }
1260     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1261 
1262     bool TraverseCallExpr(CallExpr *E) {
1263       const FunctionDecl *FD = E->getDirectCallee();
1264       if (!FD)
1265         return true;
1266       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1267       if (Attr && Name == Attr->getLabel()) {
1268         Result = true;
1269         return false;
1270       }
1271       unsigned BuiltinID = FD->getBuiltinID();
1272       if (!BuiltinID)
1273         return true;
1274       StringRef BuiltinName = BI.GetName(BuiltinID);
1275       if (BuiltinName.startswith("__builtin_") &&
1276           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1277         Result = true;
1278         return false;
1279       }
1280       return true;
1281     }
1282   };
1283 }
1284 
1285 // isTriviallyRecursive - Check if this function calls another
1286 // decl that, because of the asm attribute or the other decl being a builtin,
1287 // ends up pointing to itself.
1288 bool
1289 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1290   StringRef Name;
1291   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1292     // asm labels are a special kind of mangling we have to support.
1293     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1294     if (!Attr)
1295       return false;
1296     Name = Attr->getLabel();
1297   } else {
1298     Name = FD->getName();
1299   }
1300 
1301   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1302   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1303   return Walker.Result;
1304 }
1305 
1306 bool
1307 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1308   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1309     return true;
1310   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1311   if (CodeGenOpts.OptimizationLevel == 0 &&
1312       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1313     return false;
1314   // PR9614. Avoid cases where the source code is lying to us. An available
1315   // externally function should have an equivalent function somewhere else,
1316   // but a function that calls itself is clearly not equivalent to the real
1317   // implementation.
1318   // This happens in glibc's btowc and in some configure checks.
1319   return !isTriviallyRecursive(F);
1320 }
1321 
1322 /// If the type for the method's class was generated by
1323 /// CGDebugInfo::createContextChain(), the cache contains only a
1324 /// limited DIType without any declarations. Since EmitFunctionStart()
1325 /// needs to find the canonical declaration for each method, we need
1326 /// to construct the complete type prior to emitting the method.
1327 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1328   if (!D->isInstance())
1329     return;
1330 
1331   if (CGDebugInfo *DI = getModuleDebugInfo())
1332     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1333       const PointerType *ThisPtr =
1334         cast<PointerType>(D->getThisType(getContext()));
1335       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1336     }
1337 }
1338 
1339 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1340   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1341 
1342   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1343                                  Context.getSourceManager(),
1344                                  "Generating code for declaration");
1345 
1346   if (isa<FunctionDecl>(D)) {
1347     // At -O0, don't generate IR for functions with available_externally
1348     // linkage.
1349     if (!shouldEmitFunction(GD))
1350       return;
1351 
1352     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1353       CompleteDIClassType(Method);
1354       // Make sure to emit the definition(s) before we emit the thunks.
1355       // This is necessary for the generation of certain thunks.
1356       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1357         EmitCXXConstructor(CD, GD.getCtorType());
1358       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1359         EmitCXXDestructor(DD, GD.getDtorType());
1360       else
1361         EmitGlobalFunctionDefinition(GD, GV);
1362 
1363       if (Method->isVirtual())
1364         getVTables().EmitThunks(GD);
1365 
1366       return;
1367     }
1368 
1369     return EmitGlobalFunctionDefinition(GD, GV);
1370   }
1371 
1372   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1373     return EmitGlobalVarDefinition(VD);
1374 
1375   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1376 }
1377 
1378 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1379 /// module, create and return an llvm Function with the specified type. If there
1380 /// is something in the module with the specified name, return it potentially
1381 /// bitcasted to the right type.
1382 ///
1383 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1384 /// to set the attributes on the function when it is first created.
1385 llvm::Constant *
1386 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1387                                        llvm::Type *Ty,
1388                                        GlobalDecl GD, bool ForVTable,
1389                                        bool DontDefer,
1390                                        llvm::AttributeSet ExtraAttrs) {
1391   const Decl *D = GD.getDecl();
1392 
1393   // Lookup the entry, lazily creating it if necessary.
1394   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1395   if (Entry) {
1396     if (WeakRefReferences.erase(Entry)) {
1397       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1398       if (FD && !FD->hasAttr<WeakAttr>())
1399         Entry->setLinkage(llvm::Function::ExternalLinkage);
1400     }
1401 
1402     if (Entry->getType()->getElementType() == Ty)
1403       return Entry;
1404 
1405     // Make sure the result is of the correct type.
1406     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1407   }
1408 
1409   // This function doesn't have a complete type (for example, the return
1410   // type is an incomplete struct). Use a fake type instead, and make
1411   // sure not to try to set attributes.
1412   bool IsIncompleteFunction = false;
1413 
1414   llvm::FunctionType *FTy;
1415   if (isa<llvm::FunctionType>(Ty)) {
1416     FTy = cast<llvm::FunctionType>(Ty);
1417   } else {
1418     FTy = llvm::FunctionType::get(VoidTy, false);
1419     IsIncompleteFunction = true;
1420   }
1421 
1422   llvm::Function *F = llvm::Function::Create(FTy,
1423                                              llvm::Function::ExternalLinkage,
1424                                              MangledName, &getModule());
1425   assert(F->getName() == MangledName && "name was uniqued!");
1426   if (D)
1427     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1428   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1429     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1430     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1431                      llvm::AttributeSet::get(VMContext,
1432                                              llvm::AttributeSet::FunctionIndex,
1433                                              B));
1434   }
1435 
1436   if (!DontDefer) {
1437     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1438     // each other bottoming out with the base dtor.  Therefore we emit non-base
1439     // dtors on usage, even if there is no dtor definition in the TU.
1440     if (D && isa<CXXDestructorDecl>(D) &&
1441         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1442                                            GD.getDtorType()))
1443       addDeferredDeclToEmit(F, GD);
1444 
1445     // This is the first use or definition of a mangled name.  If there is a
1446     // deferred decl with this name, remember that we need to emit it at the end
1447     // of the file.
1448     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1449     if (DDI != DeferredDecls.end()) {
1450       // Move the potentially referenced deferred decl to the
1451       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1452       // don't need it anymore).
1453       addDeferredDeclToEmit(F, DDI->second);
1454       DeferredDecls.erase(DDI);
1455 
1456       // Otherwise, if this is a sized deallocation function, emit a weak
1457       // definition
1458       // for it at the end of the translation unit.
1459     } else if (D && cast<FunctionDecl>(D)
1460                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1461       addDeferredDeclToEmit(F, GD);
1462 
1463       // Otherwise, there are cases we have to worry about where we're
1464       // using a declaration for which we must emit a definition but where
1465       // we might not find a top-level definition:
1466       //   - member functions defined inline in their classes
1467       //   - friend functions defined inline in some class
1468       //   - special member functions with implicit definitions
1469       // If we ever change our AST traversal to walk into class methods,
1470       // this will be unnecessary.
1471       //
1472       // We also don't emit a definition for a function if it's going to be an
1473       // entry
1474       // in a vtable, unless it's already marked as used.
1475     } else if (getLangOpts().CPlusPlus && D) {
1476       // Look for a declaration that's lexically in a record.
1477       const FunctionDecl *FD = cast<FunctionDecl>(D);
1478       FD = FD->getMostRecentDecl();
1479       do {
1480         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1481           if (FD->isImplicit() && !ForVTable) {
1482             assert(FD->isUsed() &&
1483                    "Sema didn't mark implicit function as used!");
1484             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1485             break;
1486           } else if (FD->doesThisDeclarationHaveABody()) {
1487             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1488             break;
1489           }
1490         }
1491         FD = FD->getPreviousDecl();
1492       } while (FD);
1493     }
1494   }
1495 
1496   // Make sure the result is of the requested type.
1497   if (!IsIncompleteFunction) {
1498     assert(F->getType()->getElementType() == Ty);
1499     return F;
1500   }
1501 
1502   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1503   return llvm::ConstantExpr::getBitCast(F, PTy);
1504 }
1505 
1506 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1507 /// non-null, then this function will use the specified type if it has to
1508 /// create it (this occurs when we see a definition of the function).
1509 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1510                                                  llvm::Type *Ty,
1511                                                  bool ForVTable,
1512                                                  bool DontDefer) {
1513   // If there was no specific requested type, just convert it now.
1514   if (!Ty)
1515     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1516 
1517   StringRef MangledName = getMangledName(GD);
1518   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1519 }
1520 
1521 /// CreateRuntimeFunction - Create a new runtime function with the specified
1522 /// type and name.
1523 llvm::Constant *
1524 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1525                                      StringRef Name,
1526                                      llvm::AttributeSet ExtraAttrs) {
1527   llvm::Constant *C =
1528       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1529                               /*DontDefer=*/false, ExtraAttrs);
1530   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1531     if (F->empty())
1532       F->setCallingConv(getRuntimeCC());
1533   return C;
1534 }
1535 
1536 /// isTypeConstant - Determine whether an object of this type can be emitted
1537 /// as a constant.
1538 ///
1539 /// If ExcludeCtor is true, the duration when the object's constructor runs
1540 /// will not be considered. The caller will need to verify that the object is
1541 /// not written to during its construction.
1542 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1543   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1544     return false;
1545 
1546   if (Context.getLangOpts().CPlusPlus) {
1547     if (const CXXRecordDecl *Record
1548           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1549       return ExcludeCtor && !Record->hasMutableFields() &&
1550              Record->hasTrivialDestructor();
1551   }
1552 
1553   return true;
1554 }
1555 
1556 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1557 /// create and return an llvm GlobalVariable with the specified type.  If there
1558 /// is something in the module with the specified name, return it potentially
1559 /// bitcasted to the right type.
1560 ///
1561 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1562 /// to set the attributes on the global when it is first created.
1563 llvm::Constant *
1564 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1565                                      llvm::PointerType *Ty,
1566                                      const VarDecl *D,
1567                                      bool UnnamedAddr) {
1568   // Lookup the entry, lazily creating it if necessary.
1569   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1570   if (Entry) {
1571     if (WeakRefReferences.erase(Entry)) {
1572       if (D && !D->hasAttr<WeakAttr>())
1573         Entry->setLinkage(llvm::Function::ExternalLinkage);
1574     }
1575 
1576     if (UnnamedAddr)
1577       Entry->setUnnamedAddr(true);
1578 
1579     if (Entry->getType() == Ty)
1580       return Entry;
1581 
1582     // Make sure the result is of the correct type.
1583     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1584       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1585 
1586     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1587   }
1588 
1589   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1590   llvm::GlobalVariable *GV =
1591     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1592                              llvm::GlobalValue::ExternalLinkage,
1593                              0, MangledName, 0,
1594                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1595 
1596   // This is the first use or definition of a mangled name.  If there is a
1597   // deferred decl with this name, remember that we need to emit it at the end
1598   // of the file.
1599   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1600   if (DDI != DeferredDecls.end()) {
1601     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1602     // list, and remove it from DeferredDecls (since we don't need it anymore).
1603     addDeferredDeclToEmit(GV, DDI->second);
1604     DeferredDecls.erase(DDI);
1605   }
1606 
1607   // Handle things which are present even on external declarations.
1608   if (D) {
1609     // FIXME: This code is overly simple and should be merged with other global
1610     // handling.
1611     GV->setConstant(isTypeConstant(D->getType(), false));
1612 
1613     // Set linkage and visibility in case we never see a definition.
1614     LinkageInfo LV = D->getLinkageAndVisibility();
1615     if (LV.getLinkage() != ExternalLinkage) {
1616       // Don't set internal linkage on declarations.
1617     } else {
1618       if (D->hasAttr<DLLImportAttr>()) {
1619         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1620         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1621       } else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1622         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1623 
1624       // Set visibility on a declaration only if it's explicit.
1625       if (LV.isVisibilityExplicit())
1626         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1627     }
1628 
1629     if (D->getTLSKind()) {
1630       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1631         CXXThreadLocals.push_back(std::make_pair(D, GV));
1632       setTLSMode(GV, *D);
1633     }
1634 
1635     // If required by the ABI, treat declarations of static data members with
1636     // inline initializers as definitions.
1637     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1638         D->isStaticDataMember() && D->hasInit() &&
1639         !D->isThisDeclarationADefinition())
1640       EmitGlobalVarDefinition(D);
1641   }
1642 
1643   if (AddrSpace != Ty->getAddressSpace())
1644     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1645 
1646   return GV;
1647 }
1648 
1649 
1650 llvm::GlobalVariable *
1651 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1652                                       llvm::Type *Ty,
1653                                       llvm::GlobalValue::LinkageTypes Linkage) {
1654   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1655   llvm::GlobalVariable *OldGV = 0;
1656 
1657 
1658   if (GV) {
1659     // Check if the variable has the right type.
1660     if (GV->getType()->getElementType() == Ty)
1661       return GV;
1662 
1663     // Because C++ name mangling, the only way we can end up with an already
1664     // existing global with the same name is if it has been declared extern "C".
1665     assert(GV->isDeclaration() && "Declaration has wrong type!");
1666     OldGV = GV;
1667   }
1668 
1669   // Create a new variable.
1670   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1671                                 Linkage, 0, Name);
1672 
1673   if (OldGV) {
1674     // Replace occurrences of the old variable if needed.
1675     GV->takeName(OldGV);
1676 
1677     if (!OldGV->use_empty()) {
1678       llvm::Constant *NewPtrForOldDecl =
1679       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1680       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1681     }
1682 
1683     OldGV->eraseFromParent();
1684   }
1685 
1686   return GV;
1687 }
1688 
1689 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1690 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1691 /// then it will be created with the specified type instead of whatever the
1692 /// normal requested type would be.
1693 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1694                                                   llvm::Type *Ty) {
1695   assert(D->hasGlobalStorage() && "Not a global variable");
1696   QualType ASTTy = D->getType();
1697   if (Ty == 0)
1698     Ty = getTypes().ConvertTypeForMem(ASTTy);
1699 
1700   llvm::PointerType *PTy =
1701     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1702 
1703   StringRef MangledName = getMangledName(D);
1704   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1705 }
1706 
1707 /// CreateRuntimeVariable - Create a new runtime global variable with the
1708 /// specified type and name.
1709 llvm::Constant *
1710 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1711                                      StringRef Name) {
1712   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1713                                true);
1714 }
1715 
1716 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1717   assert(!D->getInit() && "Cannot emit definite definitions here!");
1718 
1719   if (MayDeferGeneration(D)) {
1720     // If we have not seen a reference to this variable yet, place it
1721     // into the deferred declarations table to be emitted if needed
1722     // later.
1723     StringRef MangledName = getMangledName(D);
1724     if (!GetGlobalValue(MangledName)) {
1725       DeferredDecls[MangledName] = D;
1726       return;
1727     }
1728   }
1729 
1730   // The tentative definition is the only definition.
1731   EmitGlobalVarDefinition(D);
1732 }
1733 
1734 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1735     return Context.toCharUnitsFromBits(
1736       TheDataLayout.getTypeStoreSizeInBits(Ty));
1737 }
1738 
1739 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1740                                                  unsigned AddrSpace) {
1741   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1742     if (D->hasAttr<CUDAConstantAttr>())
1743       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1744     else if (D->hasAttr<CUDASharedAttr>())
1745       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1746     else
1747       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1748   }
1749 
1750   return AddrSpace;
1751 }
1752 
1753 template<typename SomeDecl>
1754 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1755                                                llvm::GlobalValue *GV) {
1756   if (!getLangOpts().CPlusPlus)
1757     return;
1758 
1759   // Must have 'used' attribute, or else inline assembly can't rely on
1760   // the name existing.
1761   if (!D->template hasAttr<UsedAttr>())
1762     return;
1763 
1764   // Must have internal linkage and an ordinary name.
1765   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1766     return;
1767 
1768   // Must be in an extern "C" context. Entities declared directly within
1769   // a record are not extern "C" even if the record is in such a context.
1770   const SomeDecl *First = D->getFirstDecl();
1771   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1772     return;
1773 
1774   // OK, this is an internal linkage entity inside an extern "C" linkage
1775   // specification. Make a note of that so we can give it the "expected"
1776   // mangled name if nothing else is using that name.
1777   std::pair<StaticExternCMap::iterator, bool> R =
1778       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1779 
1780   // If we have multiple internal linkage entities with the same name
1781   // in extern "C" regions, none of them gets that name.
1782   if (!R.second)
1783     R.first->second = 0;
1784 }
1785 
1786 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1787   llvm::Constant *Init = 0;
1788   QualType ASTTy = D->getType();
1789   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1790   bool NeedsGlobalCtor = false;
1791   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1792 
1793   const VarDecl *InitDecl;
1794   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1795 
1796   if (!InitExpr) {
1797     // This is a tentative definition; tentative definitions are
1798     // implicitly initialized with { 0 }.
1799     //
1800     // Note that tentative definitions are only emitted at the end of
1801     // a translation unit, so they should never have incomplete
1802     // type. In addition, EmitTentativeDefinition makes sure that we
1803     // never attempt to emit a tentative definition if a real one
1804     // exists. A use may still exists, however, so we still may need
1805     // to do a RAUW.
1806     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1807     Init = EmitNullConstant(D->getType());
1808   } else {
1809     initializedGlobalDecl = GlobalDecl(D);
1810     Init = EmitConstantInit(*InitDecl);
1811 
1812     if (!Init) {
1813       QualType T = InitExpr->getType();
1814       if (D->getType()->isReferenceType())
1815         T = D->getType();
1816 
1817       if (getLangOpts().CPlusPlus) {
1818         Init = EmitNullConstant(T);
1819         NeedsGlobalCtor = true;
1820       } else {
1821         ErrorUnsupported(D, "static initializer");
1822         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1823       }
1824     } else {
1825       // We don't need an initializer, so remove the entry for the delayed
1826       // initializer position (just in case this entry was delayed) if we
1827       // also don't need to register a destructor.
1828       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1829         DelayedCXXInitPosition.erase(D);
1830     }
1831   }
1832 
1833   llvm::Type* InitType = Init->getType();
1834   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1835 
1836   // Strip off a bitcast if we got one back.
1837   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1838     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1839            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1840            // All zero index gep.
1841            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1842     Entry = CE->getOperand(0);
1843   }
1844 
1845   // Entry is now either a Function or GlobalVariable.
1846   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1847 
1848   // We have a definition after a declaration with the wrong type.
1849   // We must make a new GlobalVariable* and update everything that used OldGV
1850   // (a declaration or tentative definition) with the new GlobalVariable*
1851   // (which will be a definition).
1852   //
1853   // This happens if there is a prototype for a global (e.g.
1854   // "extern int x[];") and then a definition of a different type (e.g.
1855   // "int x[10];"). This also happens when an initializer has a different type
1856   // from the type of the global (this happens with unions).
1857   if (GV == 0 ||
1858       GV->getType()->getElementType() != InitType ||
1859       GV->getType()->getAddressSpace() !=
1860        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1861 
1862     // Move the old entry aside so that we'll create a new one.
1863     Entry->setName(StringRef());
1864 
1865     // Make a new global with the correct type, this is now guaranteed to work.
1866     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1867 
1868     // Replace all uses of the old global with the new global
1869     llvm::Constant *NewPtrForOldDecl =
1870         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1871     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1872 
1873     // Erase the old global, since it is no longer used.
1874     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1875   }
1876 
1877   MaybeHandleStaticInExternC(D, GV);
1878 
1879   if (D->hasAttr<AnnotateAttr>())
1880     AddGlobalAnnotations(D, GV);
1881 
1882   GV->setInitializer(Init);
1883 
1884   // If it is safe to mark the global 'constant', do so now.
1885   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1886                   isTypeConstant(D->getType(), true));
1887 
1888   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1889 
1890   // Set the llvm linkage type as appropriate.
1891   llvm::GlobalValue::LinkageTypes Linkage =
1892     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1893   GV->setLinkage(Linkage);
1894   if (D->hasAttr<DLLImportAttr>())
1895     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1896   else if (D->hasAttr<DLLExportAttr>())
1897     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1898 
1899   // If required by the ABI, give definitions of static data members with inline
1900   // initializers linkonce_odr linkage.
1901   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1902       D->isStaticDataMember() && InitExpr &&
1903       !InitDecl->isThisDeclarationADefinition())
1904     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1905 
1906   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1907     // common vars aren't constant even if declared const.
1908     GV->setConstant(false);
1909 
1910   SetCommonAttributes(D, GV);
1911 
1912   // Emit the initializer function if necessary.
1913   if (NeedsGlobalCtor || NeedsGlobalDtor)
1914     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1915 
1916   // If we are compiling with ASan, add metadata indicating dynamically
1917   // initialized globals.
1918   if (SanOpts.Address && NeedsGlobalCtor) {
1919     llvm::Module &M = getModule();
1920 
1921     llvm::NamedMDNode *DynamicInitializers =
1922         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1923     llvm::Value *GlobalToAdd[] = { GV };
1924     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1925     DynamicInitializers->addOperand(ThisGlobal);
1926   }
1927 
1928   // Emit global variable debug information.
1929   if (CGDebugInfo *DI = getModuleDebugInfo())
1930     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1931       DI->EmitGlobalVariable(GV, D);
1932 }
1933 
1934 llvm::GlobalValue::LinkageTypes
1935 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1936   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1937   if (Linkage == GVA_Internal)
1938     return llvm::Function::InternalLinkage;
1939   else if (D->hasAttr<DLLImportAttr>())
1940     return llvm::Function::ExternalLinkage;
1941   else if (D->hasAttr<DLLExportAttr>())
1942     return llvm::Function::ExternalLinkage;
1943   else if (D->hasAttr<SelectAnyAttr>()) {
1944     // selectany symbols are externally visible, so use weak instead of
1945     // linkonce.  MSVC optimizes away references to const selectany globals, so
1946     // all definitions should be the same and ODR linkage should be used.
1947     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1948     return llvm::GlobalVariable::WeakODRLinkage;
1949   } else if (D->hasAttr<WeakAttr>()) {
1950     if (isConstant)
1951       return llvm::GlobalVariable::WeakODRLinkage;
1952     else
1953       return llvm::GlobalVariable::WeakAnyLinkage;
1954   } else if (Linkage == GVA_TemplateInstantiation ||
1955              Linkage == GVA_ExplicitTemplateInstantiation)
1956     return llvm::GlobalVariable::WeakODRLinkage;
1957   else if (!getLangOpts().CPlusPlus &&
1958            ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) ||
1959              D->hasAttr<CommonAttr>()) &&
1960            !D->hasExternalStorage() && !D->getInit() &&
1961            !D->hasAttr<SectionAttr>() && !D->getTLSKind() &&
1962            !D->hasAttr<WeakImportAttr>()) {
1963     // Thread local vars aren't considered common linkage.
1964     return llvm::GlobalVariable::CommonLinkage;
1965   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1966              getTarget().getTriple().isMacOSX())
1967     // On Darwin, the backing variable for a C++11 thread_local variable always
1968     // has internal linkage; all accesses should just be calls to the
1969     // Itanium-specified entry point, which has the normal linkage of the
1970     // variable.
1971     return llvm::GlobalValue::InternalLinkage;
1972   return llvm::GlobalVariable::ExternalLinkage;
1973 }
1974 
1975 /// Replace the uses of a function that was declared with a non-proto type.
1976 /// We want to silently drop extra arguments from call sites
1977 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1978                                           llvm::Function *newFn) {
1979   // Fast path.
1980   if (old->use_empty()) return;
1981 
1982   llvm::Type *newRetTy = newFn->getReturnType();
1983   SmallVector<llvm::Value*, 4> newArgs;
1984 
1985   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1986          ui != ue; ) {
1987     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1988     llvm::User *user = *use;
1989 
1990     // Recognize and replace uses of bitcasts.  Most calls to
1991     // unprototyped functions will use bitcasts.
1992     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1993       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1994         replaceUsesOfNonProtoConstant(bitcast, newFn);
1995       continue;
1996     }
1997 
1998     // Recognize calls to the function.
1999     llvm::CallSite callSite(user);
2000     if (!callSite) continue;
2001     if (!callSite.isCallee(use)) continue;
2002 
2003     // If the return types don't match exactly, then we can't
2004     // transform this call unless it's dead.
2005     if (callSite->getType() != newRetTy && !callSite->use_empty())
2006       continue;
2007 
2008     // Get the call site's attribute list.
2009     SmallVector<llvm::AttributeSet, 8> newAttrs;
2010     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2011 
2012     // Collect any return attributes from the call.
2013     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2014       newAttrs.push_back(
2015         llvm::AttributeSet::get(newFn->getContext(),
2016                                 oldAttrs.getRetAttributes()));
2017 
2018     // If the function was passed too few arguments, don't transform.
2019     unsigned newNumArgs = newFn->arg_size();
2020     if (callSite.arg_size() < newNumArgs) continue;
2021 
2022     // If extra arguments were passed, we silently drop them.
2023     // If any of the types mismatch, we don't transform.
2024     unsigned argNo = 0;
2025     bool dontTransform = false;
2026     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2027            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2028       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2029         dontTransform = true;
2030         break;
2031       }
2032 
2033       // Add any parameter attributes.
2034       if (oldAttrs.hasAttributes(argNo + 1))
2035         newAttrs.
2036           push_back(llvm::
2037                     AttributeSet::get(newFn->getContext(),
2038                                       oldAttrs.getParamAttributes(argNo + 1)));
2039     }
2040     if (dontTransform)
2041       continue;
2042 
2043     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2044       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2045                                                  oldAttrs.getFnAttributes()));
2046 
2047     // Okay, we can transform this.  Create the new call instruction and copy
2048     // over the required information.
2049     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2050 
2051     llvm::CallSite newCall;
2052     if (callSite.isCall()) {
2053       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2054                                        callSite.getInstruction());
2055     } else {
2056       llvm::InvokeInst *oldInvoke =
2057         cast<llvm::InvokeInst>(callSite.getInstruction());
2058       newCall = llvm::InvokeInst::Create(newFn,
2059                                          oldInvoke->getNormalDest(),
2060                                          oldInvoke->getUnwindDest(),
2061                                          newArgs, "",
2062                                          callSite.getInstruction());
2063     }
2064     newArgs.clear(); // for the next iteration
2065 
2066     if (!newCall->getType()->isVoidTy())
2067       newCall->takeName(callSite.getInstruction());
2068     newCall.setAttributes(
2069                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2070     newCall.setCallingConv(callSite.getCallingConv());
2071 
2072     // Finally, remove the old call, replacing any uses with the new one.
2073     if (!callSite->use_empty())
2074       callSite->replaceAllUsesWith(newCall.getInstruction());
2075 
2076     // Copy debug location attached to CI.
2077     if (!callSite->getDebugLoc().isUnknown())
2078       newCall->setDebugLoc(callSite->getDebugLoc());
2079     callSite->eraseFromParent();
2080   }
2081 }
2082 
2083 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2084 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2085 /// existing call uses of the old function in the module, this adjusts them to
2086 /// call the new function directly.
2087 ///
2088 /// This is not just a cleanup: the always_inline pass requires direct calls to
2089 /// functions to be able to inline them.  If there is a bitcast in the way, it
2090 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2091 /// run at -O0.
2092 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2093                                                       llvm::Function *NewFn) {
2094   // If we're redefining a global as a function, don't transform it.
2095   if (!isa<llvm::Function>(Old)) return;
2096 
2097   replaceUsesOfNonProtoConstant(Old, NewFn);
2098 }
2099 
2100 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2101   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2102   // If we have a definition, this might be a deferred decl. If the
2103   // instantiation is explicit, make sure we emit it at the end.
2104   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2105     GetAddrOfGlobalVar(VD);
2106 
2107   EmitTopLevelDecl(VD);
2108 }
2109 
2110 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2111                                                  llvm::GlobalValue *GV) {
2112   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2113 
2114   // Compute the function info and LLVM type.
2115   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2116   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2117 
2118   // Get or create the prototype for the function.
2119   llvm::Constant *Entry =
2120       GV ? GV
2121          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2122 
2123   // Strip off a bitcast if we got one back.
2124   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2125     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2126     Entry = CE->getOperand(0);
2127   }
2128 
2129   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2130     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2131     return;
2132   }
2133 
2134   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2135     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2136 
2137     // If the types mismatch then we have to rewrite the definition.
2138     assert(OldFn->isDeclaration() &&
2139            "Shouldn't replace non-declaration");
2140 
2141     // F is the Function* for the one with the wrong type, we must make a new
2142     // Function* and update everything that used F (a declaration) with the new
2143     // Function* (which will be a definition).
2144     //
2145     // This happens if there is a prototype for a function
2146     // (e.g. "int f()") and then a definition of a different type
2147     // (e.g. "int f(int x)").  Move the old function aside so that it
2148     // doesn't interfere with GetAddrOfFunction.
2149     OldFn->setName(StringRef());
2150     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2151 
2152     // This might be an implementation of a function without a
2153     // prototype, in which case, try to do special replacement of
2154     // calls which match the new prototype.  The really key thing here
2155     // is that we also potentially drop arguments from the call site
2156     // so as to make a direct call, which makes the inliner happier
2157     // and suppresses a number of optimizer warnings (!) about
2158     // dropping arguments.
2159     if (!OldFn->use_empty()) {
2160       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2161       OldFn->removeDeadConstantUsers();
2162     }
2163 
2164     // Replace uses of F with the Function we will endow with a body.
2165     if (!Entry->use_empty()) {
2166       llvm::Constant *NewPtrForOldDecl =
2167         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2168       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2169     }
2170 
2171     // Ok, delete the old function now, which is dead.
2172     OldFn->eraseFromParent();
2173 
2174     Entry = NewFn;
2175   }
2176 
2177   // We need to set linkage and visibility on the function before
2178   // generating code for it because various parts of IR generation
2179   // want to propagate this information down (e.g. to local static
2180   // declarations).
2181   llvm::Function *Fn = cast<llvm::Function>(Entry);
2182   setFunctionLinkage(GD, Fn);
2183 
2184   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2185   setGlobalVisibility(Fn, D);
2186 
2187   MaybeHandleStaticInExternC(D, Fn);
2188 
2189   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2190 
2191   SetFunctionDefinitionAttributes(D, Fn);
2192   SetLLVMFunctionAttributesForDefinition(D, Fn);
2193 
2194   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2195     AddGlobalCtor(Fn, CA->getPriority());
2196   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2197     AddGlobalDtor(Fn, DA->getPriority());
2198   if (D->hasAttr<AnnotateAttr>())
2199     AddGlobalAnnotations(D, Fn);
2200 
2201   llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this);
2202   if (PGOInit)
2203     AddGlobalCtor(PGOInit, 0);
2204 }
2205 
2206 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2207   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2208   const AliasAttr *AA = D->getAttr<AliasAttr>();
2209   assert(AA && "Not an alias?");
2210 
2211   StringRef MangledName = getMangledName(GD);
2212 
2213   // If there is a definition in the module, then it wins over the alias.
2214   // This is dubious, but allow it to be safe.  Just ignore the alias.
2215   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2216   if (Entry && !Entry->isDeclaration())
2217     return;
2218 
2219   Aliases.push_back(GD);
2220 
2221   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2222 
2223   // Create a reference to the named value.  This ensures that it is emitted
2224   // if a deferred decl.
2225   llvm::Constant *Aliasee;
2226   if (isa<llvm::FunctionType>(DeclTy))
2227     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2228                                       /*ForVTable=*/false);
2229   else
2230     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2231                                     llvm::PointerType::getUnqual(DeclTy), 0);
2232 
2233   // Create the new alias itself, but don't set a name yet.
2234   llvm::GlobalValue *GA =
2235     new llvm::GlobalAlias(Aliasee->getType(),
2236                           llvm::Function::ExternalLinkage,
2237                           "", Aliasee, &getModule());
2238 
2239   if (Entry) {
2240     assert(Entry->isDeclaration());
2241 
2242     // If there is a declaration in the module, then we had an extern followed
2243     // by the alias, as in:
2244     //   extern int test6();
2245     //   ...
2246     //   int test6() __attribute__((alias("test7")));
2247     //
2248     // Remove it and replace uses of it with the alias.
2249     GA->takeName(Entry);
2250 
2251     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2252                                                           Entry->getType()));
2253     Entry->eraseFromParent();
2254   } else {
2255     GA->setName(MangledName);
2256   }
2257 
2258   // Set attributes which are particular to an alias; this is a
2259   // specialization of the attributes which may be set on a global
2260   // variable/function.
2261   if (D->hasAttr<DLLExportAttr>()) {
2262     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2263       // The dllexport attribute is ignored for undefined symbols.
2264       if (FD->hasBody())
2265         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2266     } else {
2267       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2268     }
2269   } else if (D->hasAttr<WeakAttr>() ||
2270              D->hasAttr<WeakRefAttr>() ||
2271              D->isWeakImported()) {
2272     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2273   }
2274 
2275   SetCommonAttributes(D, GA);
2276 }
2277 
2278 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2279                                             ArrayRef<llvm::Type*> Tys) {
2280   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2281                                          Tys);
2282 }
2283 
2284 static llvm::StringMapEntry<llvm::Constant*> &
2285 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2286                          const StringLiteral *Literal,
2287                          bool TargetIsLSB,
2288                          bool &IsUTF16,
2289                          unsigned &StringLength) {
2290   StringRef String = Literal->getString();
2291   unsigned NumBytes = String.size();
2292 
2293   // Check for simple case.
2294   if (!Literal->containsNonAsciiOrNull()) {
2295     StringLength = NumBytes;
2296     return Map.GetOrCreateValue(String);
2297   }
2298 
2299   // Otherwise, convert the UTF8 literals into a string of shorts.
2300   IsUTF16 = true;
2301 
2302   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2303   const UTF8 *FromPtr = (const UTF8 *)String.data();
2304   UTF16 *ToPtr = &ToBuf[0];
2305 
2306   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2307                            &ToPtr, ToPtr + NumBytes,
2308                            strictConversion);
2309 
2310   // ConvertUTF8toUTF16 returns the length in ToPtr.
2311   StringLength = ToPtr - &ToBuf[0];
2312 
2313   // Add an explicit null.
2314   *ToPtr = 0;
2315   return Map.
2316     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2317                                (StringLength + 1) * 2));
2318 }
2319 
2320 static llvm::StringMapEntry<llvm::Constant*> &
2321 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2322                        const StringLiteral *Literal,
2323                        unsigned &StringLength) {
2324   StringRef String = Literal->getString();
2325   StringLength = String.size();
2326   return Map.GetOrCreateValue(String);
2327 }
2328 
2329 llvm::Constant *
2330 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2331   unsigned StringLength = 0;
2332   bool isUTF16 = false;
2333   llvm::StringMapEntry<llvm::Constant*> &Entry =
2334     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2335                              getDataLayout().isLittleEndian(),
2336                              isUTF16, StringLength);
2337 
2338   if (llvm::Constant *C = Entry.getValue())
2339     return C;
2340 
2341   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2342   llvm::Constant *Zeros[] = { Zero, Zero };
2343   llvm::Value *V;
2344 
2345   // If we don't already have it, get __CFConstantStringClassReference.
2346   if (!CFConstantStringClassRef) {
2347     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2348     Ty = llvm::ArrayType::get(Ty, 0);
2349     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2350                                            "__CFConstantStringClassReference");
2351     // Decay array -> ptr
2352     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2353     CFConstantStringClassRef = V;
2354   }
2355   else
2356     V = CFConstantStringClassRef;
2357 
2358   QualType CFTy = getContext().getCFConstantStringType();
2359 
2360   llvm::StructType *STy =
2361     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2362 
2363   llvm::Constant *Fields[4];
2364 
2365   // Class pointer.
2366   Fields[0] = cast<llvm::ConstantExpr>(V);
2367 
2368   // Flags.
2369   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2370   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2371     llvm::ConstantInt::get(Ty, 0x07C8);
2372 
2373   // String pointer.
2374   llvm::Constant *C = 0;
2375   if (isUTF16) {
2376     ArrayRef<uint16_t> Arr =
2377       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2378                                      const_cast<char *>(Entry.getKey().data())),
2379                                    Entry.getKey().size() / 2);
2380     C = llvm::ConstantDataArray::get(VMContext, Arr);
2381   } else {
2382     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2383   }
2384 
2385   // Note: -fwritable-strings doesn't make the backing store strings of
2386   // CFStrings writable. (See <rdar://problem/10657500>)
2387   llvm::GlobalVariable *GV =
2388       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2389                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2390   GV->setUnnamedAddr(true);
2391   // Don't enforce the target's minimum global alignment, since the only use
2392   // of the string is via this class initializer.
2393   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2394   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2395   // that changes the section it ends in, which surprises ld64.
2396   if (isUTF16) {
2397     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2398     GV->setAlignment(Align.getQuantity());
2399     GV->setSection("__TEXT,__ustring");
2400   } else {
2401     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2402     GV->setAlignment(Align.getQuantity());
2403     GV->setSection("__TEXT,__cstring,cstring_literals");
2404   }
2405 
2406   // String.
2407   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2408 
2409   if (isUTF16)
2410     // Cast the UTF16 string to the correct type.
2411     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2412 
2413   // String length.
2414   Ty = getTypes().ConvertType(getContext().LongTy);
2415   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2416 
2417   // The struct.
2418   C = llvm::ConstantStruct::get(STy, Fields);
2419   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2420                                 llvm::GlobalVariable::PrivateLinkage, C,
2421                                 "_unnamed_cfstring_");
2422   GV->setSection("__DATA,__cfstring");
2423   Entry.setValue(GV);
2424 
2425   return GV;
2426 }
2427 
2428 llvm::Constant *
2429 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2430   unsigned StringLength = 0;
2431   llvm::StringMapEntry<llvm::Constant*> &Entry =
2432     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2433 
2434   if (llvm::Constant *C = Entry.getValue())
2435     return C;
2436 
2437   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2438   llvm::Constant *Zeros[] = { Zero, Zero };
2439   llvm::Value *V;
2440   // If we don't already have it, get _NSConstantStringClassReference.
2441   if (!ConstantStringClassRef) {
2442     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2443     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2444     llvm::Constant *GV;
2445     if (LangOpts.ObjCRuntime.isNonFragile()) {
2446       std::string str =
2447         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2448                             : "OBJC_CLASS_$_" + StringClass;
2449       GV = getObjCRuntime().GetClassGlobal(str);
2450       // Make sure the result is of the correct type.
2451       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2452       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2453       ConstantStringClassRef = V;
2454     } else {
2455       std::string str =
2456         StringClass.empty() ? "_NSConstantStringClassReference"
2457                             : "_" + StringClass + "ClassReference";
2458       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2459       GV = CreateRuntimeVariable(PTy, str);
2460       // Decay array -> ptr
2461       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2462       ConstantStringClassRef = V;
2463     }
2464   }
2465   else
2466     V = ConstantStringClassRef;
2467 
2468   if (!NSConstantStringType) {
2469     // Construct the type for a constant NSString.
2470     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2471     D->startDefinition();
2472 
2473     QualType FieldTypes[3];
2474 
2475     // const int *isa;
2476     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2477     // const char *str;
2478     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2479     // unsigned int length;
2480     FieldTypes[2] = Context.UnsignedIntTy;
2481 
2482     // Create fields
2483     for (unsigned i = 0; i < 3; ++i) {
2484       FieldDecl *Field = FieldDecl::Create(Context, D,
2485                                            SourceLocation(),
2486                                            SourceLocation(), 0,
2487                                            FieldTypes[i], /*TInfo=*/0,
2488                                            /*BitWidth=*/0,
2489                                            /*Mutable=*/false,
2490                                            ICIS_NoInit);
2491       Field->setAccess(AS_public);
2492       D->addDecl(Field);
2493     }
2494 
2495     D->completeDefinition();
2496     QualType NSTy = Context.getTagDeclType(D);
2497     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2498   }
2499 
2500   llvm::Constant *Fields[3];
2501 
2502   // Class pointer.
2503   Fields[0] = cast<llvm::ConstantExpr>(V);
2504 
2505   // String pointer.
2506   llvm::Constant *C =
2507     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2508 
2509   llvm::GlobalValue::LinkageTypes Linkage;
2510   bool isConstant;
2511   Linkage = llvm::GlobalValue::PrivateLinkage;
2512   isConstant = !LangOpts.WritableStrings;
2513 
2514   llvm::GlobalVariable *GV =
2515   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2516                            ".str");
2517   GV->setUnnamedAddr(true);
2518   // Don't enforce the target's minimum global alignment, since the only use
2519   // of the string is via this class initializer.
2520   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2521   GV->setAlignment(Align.getQuantity());
2522   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2523 
2524   // String length.
2525   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2526   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2527 
2528   // The struct.
2529   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2530   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2531                                 llvm::GlobalVariable::PrivateLinkage, C,
2532                                 "_unnamed_nsstring_");
2533   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2534   const char *NSStringNonFragileABISection =
2535       "__DATA,__objc_stringobj,regular,no_dead_strip";
2536   // FIXME. Fix section.
2537   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2538                      ? NSStringNonFragileABISection
2539                      : NSStringSection);
2540   Entry.setValue(GV);
2541 
2542   return GV;
2543 }
2544 
2545 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2546   if (ObjCFastEnumerationStateType.isNull()) {
2547     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2548     D->startDefinition();
2549 
2550     QualType FieldTypes[] = {
2551       Context.UnsignedLongTy,
2552       Context.getPointerType(Context.getObjCIdType()),
2553       Context.getPointerType(Context.UnsignedLongTy),
2554       Context.getConstantArrayType(Context.UnsignedLongTy,
2555                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2556     };
2557 
2558     for (size_t i = 0; i < 4; ++i) {
2559       FieldDecl *Field = FieldDecl::Create(Context,
2560                                            D,
2561                                            SourceLocation(),
2562                                            SourceLocation(), 0,
2563                                            FieldTypes[i], /*TInfo=*/0,
2564                                            /*BitWidth=*/0,
2565                                            /*Mutable=*/false,
2566                                            ICIS_NoInit);
2567       Field->setAccess(AS_public);
2568       D->addDecl(Field);
2569     }
2570 
2571     D->completeDefinition();
2572     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2573   }
2574 
2575   return ObjCFastEnumerationStateType;
2576 }
2577 
2578 llvm::Constant *
2579 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2580   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2581 
2582   // Don't emit it as the address of the string, emit the string data itself
2583   // as an inline array.
2584   if (E->getCharByteWidth() == 1) {
2585     SmallString<64> Str(E->getString());
2586 
2587     // Resize the string to the right size, which is indicated by its type.
2588     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2589     Str.resize(CAT->getSize().getZExtValue());
2590     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2591   }
2592 
2593   llvm::ArrayType *AType =
2594     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2595   llvm::Type *ElemTy = AType->getElementType();
2596   unsigned NumElements = AType->getNumElements();
2597 
2598   // Wide strings have either 2-byte or 4-byte elements.
2599   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2600     SmallVector<uint16_t, 32> Elements;
2601     Elements.reserve(NumElements);
2602 
2603     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2604       Elements.push_back(E->getCodeUnit(i));
2605     Elements.resize(NumElements);
2606     return llvm::ConstantDataArray::get(VMContext, Elements);
2607   }
2608 
2609   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2610   SmallVector<uint32_t, 32> Elements;
2611   Elements.reserve(NumElements);
2612 
2613   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2614     Elements.push_back(E->getCodeUnit(i));
2615   Elements.resize(NumElements);
2616   return llvm::ConstantDataArray::get(VMContext, Elements);
2617 }
2618 
2619 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2620 /// constant array for the given string literal.
2621 llvm::Constant *
2622 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2623   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2624   if (S->isAscii() || S->isUTF8()) {
2625     SmallString<64> Str(S->getString());
2626 
2627     // Resize the string to the right size, which is indicated by its type.
2628     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2629     Str.resize(CAT->getSize().getZExtValue());
2630     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2631   }
2632 
2633   // FIXME: the following does not memoize wide strings.
2634   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2635   llvm::GlobalVariable *GV =
2636     new llvm::GlobalVariable(getModule(),C->getType(),
2637                              !LangOpts.WritableStrings,
2638                              llvm::GlobalValue::PrivateLinkage,
2639                              C,".str");
2640 
2641   GV->setAlignment(Align.getQuantity());
2642   GV->setUnnamedAddr(true);
2643   return GV;
2644 }
2645 
2646 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2647 /// array for the given ObjCEncodeExpr node.
2648 llvm::Constant *
2649 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2650   std::string Str;
2651   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2652 
2653   return GetAddrOfConstantCString(Str);
2654 }
2655 
2656 
2657 /// GenerateWritableString -- Creates storage for a string literal.
2658 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2659                                              bool constant,
2660                                              CodeGenModule &CGM,
2661                                              const char *GlobalName,
2662                                              unsigned Alignment) {
2663   // Create Constant for this string literal. Don't add a '\0'.
2664   llvm::Constant *C =
2665       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2666 
2667   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
2668   unsigned AddrSpace = 0;
2669   if (CGM.getLangOpts().OpenCL)
2670     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2671 
2672   // Create a global variable for this string
2673   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2674       CGM.getModule(), C->getType(), constant,
2675       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2676       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2677   GV->setAlignment(Alignment);
2678   GV->setUnnamedAddr(true);
2679   return GV;
2680 }
2681 
2682 /// GetAddrOfConstantString - Returns a pointer to a character array
2683 /// containing the literal. This contents are exactly that of the
2684 /// given string, i.e. it will not be null terminated automatically;
2685 /// see GetAddrOfConstantCString. Note that whether the result is
2686 /// actually a pointer to an LLVM constant depends on
2687 /// Feature.WriteableStrings.
2688 ///
2689 /// The result has pointer to array type.
2690 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2691                                                        const char *GlobalName,
2692                                                        unsigned Alignment) {
2693   // Get the default prefix if a name wasn't specified.
2694   if (!GlobalName)
2695     GlobalName = ".str";
2696 
2697   if (Alignment == 0)
2698     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2699       .getQuantity();
2700 
2701   // Don't share any string literals if strings aren't constant.
2702   if (LangOpts.WritableStrings)
2703     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2704 
2705   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2706     ConstantStringMap.GetOrCreateValue(Str);
2707 
2708   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2709     if (Alignment > GV->getAlignment()) {
2710       GV->setAlignment(Alignment);
2711     }
2712     return GV;
2713   }
2714 
2715   // Create a global variable for this.
2716   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2717                                                    Alignment);
2718   Entry.setValue(GV);
2719   return GV;
2720 }
2721 
2722 /// GetAddrOfConstantCString - Returns a pointer to a character
2723 /// array containing the literal and a terminating '\0'
2724 /// character. The result has pointer to array type.
2725 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2726                                                         const char *GlobalName,
2727                                                         unsigned Alignment) {
2728   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2729   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2730 }
2731 
2732 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2733     const MaterializeTemporaryExpr *E, const Expr *Init) {
2734   assert((E->getStorageDuration() == SD_Static ||
2735           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2736   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2737 
2738   // If we're not materializing a subobject of the temporary, keep the
2739   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2740   QualType MaterializedType = Init->getType();
2741   if (Init == E->GetTemporaryExpr())
2742     MaterializedType = E->getType();
2743 
2744   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2745   if (Slot)
2746     return Slot;
2747 
2748   // FIXME: If an externally-visible declaration extends multiple temporaries,
2749   // we need to give each temporary the same name in every translation unit (and
2750   // we also need to make the temporaries externally-visible).
2751   SmallString<256> Name;
2752   llvm::raw_svector_ostream Out(Name);
2753   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2754   Out.flush();
2755 
2756   APValue *Value = 0;
2757   if (E->getStorageDuration() == SD_Static) {
2758     // We might have a cached constant initializer for this temporary. Note
2759     // that this might have a different value from the value computed by
2760     // evaluating the initializer if the surrounding constant expression
2761     // modifies the temporary.
2762     Value = getContext().getMaterializedTemporaryValue(E, false);
2763     if (Value && Value->isUninit())
2764       Value = 0;
2765   }
2766 
2767   // Try evaluating it now, it might have a constant initializer.
2768   Expr::EvalResult EvalResult;
2769   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2770       !EvalResult.hasSideEffects())
2771     Value = &EvalResult.Val;
2772 
2773   llvm::Constant *InitialValue = 0;
2774   bool Constant = false;
2775   llvm::Type *Type;
2776   if (Value) {
2777     // The temporary has a constant initializer, use it.
2778     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2779     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2780     Type = InitialValue->getType();
2781   } else {
2782     // No initializer, the initialization will be provided when we
2783     // initialize the declaration which performed lifetime extension.
2784     Type = getTypes().ConvertTypeForMem(MaterializedType);
2785   }
2786 
2787   // Create a global variable for this lifetime-extended temporary.
2788   llvm::GlobalVariable *GV =
2789     new llvm::GlobalVariable(getModule(), Type, Constant,
2790                              llvm::GlobalValue::PrivateLinkage,
2791                              InitialValue, Name.c_str());
2792   GV->setAlignment(
2793       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2794   if (VD->getTLSKind())
2795     setTLSMode(GV, *VD);
2796   Slot = GV;
2797   return GV;
2798 }
2799 
2800 /// EmitObjCPropertyImplementations - Emit information for synthesized
2801 /// properties for an implementation.
2802 void CodeGenModule::EmitObjCPropertyImplementations(const
2803                                                     ObjCImplementationDecl *D) {
2804   for (ObjCImplementationDecl::propimpl_iterator
2805          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2806     ObjCPropertyImplDecl *PID = *i;
2807 
2808     // Dynamic is just for type-checking.
2809     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2810       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2811 
2812       // Determine which methods need to be implemented, some may have
2813       // been overridden. Note that ::isPropertyAccessor is not the method
2814       // we want, that just indicates if the decl came from a
2815       // property. What we want to know is if the method is defined in
2816       // this implementation.
2817       if (!D->getInstanceMethod(PD->getGetterName()))
2818         CodeGenFunction(*this).GenerateObjCGetter(
2819                                  const_cast<ObjCImplementationDecl *>(D), PID);
2820       if (!PD->isReadOnly() &&
2821           !D->getInstanceMethod(PD->getSetterName()))
2822         CodeGenFunction(*this).GenerateObjCSetter(
2823                                  const_cast<ObjCImplementationDecl *>(D), PID);
2824     }
2825   }
2826 }
2827 
2828 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2829   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2830   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2831        ivar; ivar = ivar->getNextIvar())
2832     if (ivar->getType().isDestructedType())
2833       return true;
2834 
2835   return false;
2836 }
2837 
2838 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2839 /// for an implementation.
2840 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2841   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2842   if (needsDestructMethod(D)) {
2843     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2844     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2845     ObjCMethodDecl *DTORMethod =
2846       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2847                              cxxSelector, getContext().VoidTy, 0, D,
2848                              /*isInstance=*/true, /*isVariadic=*/false,
2849                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2850                              /*isDefined=*/false, ObjCMethodDecl::Required);
2851     D->addInstanceMethod(DTORMethod);
2852     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2853     D->setHasDestructors(true);
2854   }
2855 
2856   // If the implementation doesn't have any ivar initializers, we don't need
2857   // a .cxx_construct.
2858   if (D->getNumIvarInitializers() == 0)
2859     return;
2860 
2861   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2862   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2863   // The constructor returns 'self'.
2864   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2865                                                 D->getLocation(),
2866                                                 D->getLocation(),
2867                                                 cxxSelector,
2868                                                 getContext().getObjCIdType(), 0,
2869                                                 D, /*isInstance=*/true,
2870                                                 /*isVariadic=*/false,
2871                                                 /*isPropertyAccessor=*/true,
2872                                                 /*isImplicitlyDeclared=*/true,
2873                                                 /*isDefined=*/false,
2874                                                 ObjCMethodDecl::Required);
2875   D->addInstanceMethod(CTORMethod);
2876   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2877   D->setHasNonZeroConstructors(true);
2878 }
2879 
2880 /// EmitNamespace - Emit all declarations in a namespace.
2881 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2882   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2883        I != E; ++I) {
2884     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2885       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2886           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2887         continue;
2888     EmitTopLevelDecl(*I);
2889   }
2890 }
2891 
2892 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2893 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2894   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2895       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2896     ErrorUnsupported(LSD, "linkage spec");
2897     return;
2898   }
2899 
2900   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2901        I != E; ++I) {
2902     // Meta-data for ObjC class includes references to implemented methods.
2903     // Generate class's method definitions first.
2904     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2905       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2906            MEnd = OID->meth_end();
2907            M != MEnd; ++M)
2908         EmitTopLevelDecl(*M);
2909     }
2910     EmitTopLevelDecl(*I);
2911   }
2912 }
2913 
2914 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2915 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2916   // Ignore dependent declarations.
2917   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2918     return;
2919 
2920   switch (D->getKind()) {
2921   case Decl::CXXConversion:
2922   case Decl::CXXMethod:
2923   case Decl::Function:
2924     // Skip function templates
2925     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2926         cast<FunctionDecl>(D)->isLateTemplateParsed())
2927       return;
2928 
2929     EmitGlobal(cast<FunctionDecl>(D));
2930     break;
2931 
2932   case Decl::Var:
2933     // Skip variable templates
2934     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2935       return;
2936   case Decl::VarTemplateSpecialization:
2937     EmitGlobal(cast<VarDecl>(D));
2938     break;
2939 
2940   // Indirect fields from global anonymous structs and unions can be
2941   // ignored; only the actual variable requires IR gen support.
2942   case Decl::IndirectField:
2943     break;
2944 
2945   // C++ Decls
2946   case Decl::Namespace:
2947     EmitNamespace(cast<NamespaceDecl>(D));
2948     break;
2949     // No code generation needed.
2950   case Decl::UsingShadow:
2951   case Decl::Using:
2952   case Decl::ClassTemplate:
2953   case Decl::VarTemplate:
2954   case Decl::VarTemplatePartialSpecialization:
2955   case Decl::FunctionTemplate:
2956   case Decl::TypeAliasTemplate:
2957   case Decl::Block:
2958   case Decl::Empty:
2959     break;
2960   case Decl::NamespaceAlias:
2961     if (CGDebugInfo *DI = getModuleDebugInfo())
2962         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2963     return;
2964   case Decl::UsingDirective: // using namespace X; [C++]
2965     if (CGDebugInfo *DI = getModuleDebugInfo())
2966       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2967     return;
2968   case Decl::CXXConstructor:
2969     // Skip function templates
2970     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2971         cast<FunctionDecl>(D)->isLateTemplateParsed())
2972       return;
2973 
2974     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2975     break;
2976   case Decl::CXXDestructor:
2977     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2978       return;
2979     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2980     break;
2981 
2982   case Decl::StaticAssert:
2983     // Nothing to do.
2984     break;
2985 
2986   // Objective-C Decls
2987 
2988   // Forward declarations, no (immediate) code generation.
2989   case Decl::ObjCInterface:
2990   case Decl::ObjCCategory:
2991     break;
2992 
2993   case Decl::ObjCProtocol: {
2994     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2995     if (Proto->isThisDeclarationADefinition())
2996       ObjCRuntime->GenerateProtocol(Proto);
2997     break;
2998   }
2999 
3000   case Decl::ObjCCategoryImpl:
3001     // Categories have properties but don't support synthesize so we
3002     // can ignore them here.
3003     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3004     break;
3005 
3006   case Decl::ObjCImplementation: {
3007     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
3008     EmitObjCPropertyImplementations(OMD);
3009     EmitObjCIvarInitializations(OMD);
3010     ObjCRuntime->GenerateClass(OMD);
3011     // Emit global variable debug information.
3012     if (CGDebugInfo *DI = getModuleDebugInfo())
3013       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3014         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3015             OMD->getClassInterface()), OMD->getLocation());
3016     break;
3017   }
3018   case Decl::ObjCMethod: {
3019     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3020     // If this is not a prototype, emit the body.
3021     if (OMD->getBody())
3022       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3023     break;
3024   }
3025   case Decl::ObjCCompatibleAlias:
3026     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3027     break;
3028 
3029   case Decl::LinkageSpec:
3030     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3031     break;
3032 
3033   case Decl::FileScopeAsm: {
3034     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3035     StringRef AsmString = AD->getAsmString()->getString();
3036 
3037     const std::string &S = getModule().getModuleInlineAsm();
3038     if (S.empty())
3039       getModule().setModuleInlineAsm(AsmString);
3040     else if (S.end()[-1] == '\n')
3041       getModule().setModuleInlineAsm(S + AsmString.str());
3042     else
3043       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3044     break;
3045   }
3046 
3047   case Decl::Import: {
3048     ImportDecl *Import = cast<ImportDecl>(D);
3049 
3050     // Ignore import declarations that come from imported modules.
3051     if (clang::Module *Owner = Import->getOwningModule()) {
3052       if (getLangOpts().CurrentModule.empty() ||
3053           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3054         break;
3055     }
3056 
3057     ImportedModules.insert(Import->getImportedModule());
3058     break;
3059  }
3060 
3061   default:
3062     // Make sure we handled everything we should, every other kind is a
3063     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3064     // function. Need to recode Decl::Kind to do that easily.
3065     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3066   }
3067 }
3068 
3069 /// Turns the given pointer into a constant.
3070 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3071                                           const void *Ptr) {
3072   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3073   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3074   return llvm::ConstantInt::get(i64, PtrInt);
3075 }
3076 
3077 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3078                                    llvm::NamedMDNode *&GlobalMetadata,
3079                                    GlobalDecl D,
3080                                    llvm::GlobalValue *Addr) {
3081   if (!GlobalMetadata)
3082     GlobalMetadata =
3083       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3084 
3085   // TODO: should we report variant information for ctors/dtors?
3086   llvm::Value *Ops[] = {
3087     Addr,
3088     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3089   };
3090   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3091 }
3092 
3093 /// For each function which is declared within an extern "C" region and marked
3094 /// as 'used', but has internal linkage, create an alias from the unmangled
3095 /// name to the mangled name if possible. People expect to be able to refer
3096 /// to such functions with an unmangled name from inline assembly within the
3097 /// same translation unit.
3098 void CodeGenModule::EmitStaticExternCAliases() {
3099   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3100                                   E = StaticExternCValues.end();
3101        I != E; ++I) {
3102     IdentifierInfo *Name = I->first;
3103     llvm::GlobalValue *Val = I->second;
3104     if (Val && !getModule().getNamedValue(Name->getName()))
3105       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3106                                           Name->getName(), Val, &getModule()));
3107   }
3108 }
3109 
3110 /// Emits metadata nodes associating all the global values in the
3111 /// current module with the Decls they came from.  This is useful for
3112 /// projects using IR gen as a subroutine.
3113 ///
3114 /// Since there's currently no way to associate an MDNode directly
3115 /// with an llvm::GlobalValue, we create a global named metadata
3116 /// with the name 'clang.global.decl.ptrs'.
3117 void CodeGenModule::EmitDeclMetadata() {
3118   llvm::NamedMDNode *GlobalMetadata = 0;
3119 
3120   // StaticLocalDeclMap
3121   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3122          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3123        I != E; ++I) {
3124     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3125     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3126   }
3127 }
3128 
3129 /// Emits metadata nodes for all the local variables in the current
3130 /// function.
3131 void CodeGenFunction::EmitDeclMetadata() {
3132   if (LocalDeclMap.empty()) return;
3133 
3134   llvm::LLVMContext &Context = getLLVMContext();
3135 
3136   // Find the unique metadata ID for this name.
3137   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3138 
3139   llvm::NamedMDNode *GlobalMetadata = 0;
3140 
3141   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3142          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3143     const Decl *D = I->first;
3144     llvm::Value *Addr = I->second;
3145 
3146     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3147       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3148       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3149     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3150       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3151       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3152     }
3153   }
3154 }
3155 
3156 void CodeGenModule::EmitVersionIdentMetadata() {
3157   llvm::NamedMDNode *IdentMetadata =
3158     TheModule.getOrInsertNamedMetadata("llvm.ident");
3159   std::string Version = getClangFullVersion();
3160   llvm::LLVMContext &Ctx = TheModule.getContext();
3161 
3162   llvm::Value *IdentNode[] = {
3163     llvm::MDString::get(Ctx, Version)
3164   };
3165   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3166 }
3167 
3168 void CodeGenModule::EmitCoverageFile() {
3169   if (!getCodeGenOpts().CoverageFile.empty()) {
3170     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3171       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3172       llvm::LLVMContext &Ctx = TheModule.getContext();
3173       llvm::MDString *CoverageFile =
3174           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3175       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3176         llvm::MDNode *CU = CUNode->getOperand(i);
3177         llvm::Value *node[] = { CoverageFile, CU };
3178         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3179         GCov->addOperand(N);
3180       }
3181     }
3182   }
3183 }
3184 
3185 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3186                                                      QualType GuidType) {
3187   // Sema has checked that all uuid strings are of the form
3188   // "12345678-1234-1234-1234-1234567890ab".
3189   assert(Uuid.size() == 36);
3190   for (unsigned i = 0; i < 36; ++i) {
3191     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3192     else                                         assert(isHexDigit(Uuid[i]));
3193   }
3194 
3195   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3196 
3197   llvm::Constant *Field3[8];
3198   for (unsigned Idx = 0; Idx < 8; ++Idx)
3199     Field3[Idx] = llvm::ConstantInt::get(
3200         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3201 
3202   llvm::Constant *Fields[4] = {
3203     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3204     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3205     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3206     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3207   };
3208 
3209   return llvm::ConstantStruct::getAnon(Fields);
3210 }
3211