1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "TargetInfo.h" 26 #include "clang/AST/ASTContext.h" 27 #include "clang/AST/CharUnits.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclObjC.h" 30 #include "clang/AST/DeclTemplate.h" 31 #include "clang/AST/Mangle.h" 32 #include "clang/AST/RecordLayout.h" 33 #include "clang/AST/RecursiveASTVisitor.h" 34 #include "clang/Basic/Builtins.h" 35 #include "clang/Basic/CharInfo.h" 36 #include "clang/Basic/Diagnostic.h" 37 #include "clang/Basic/Module.h" 38 #include "clang/Basic/SourceManager.h" 39 #include "clang/Basic/TargetInfo.h" 40 #include "clang/Basic/Version.h" 41 #include "clang/Frontend/CodeGenOptions.h" 42 #include "clang/Sema/SemaDiagnostic.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/CallingConv.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/ProfileData/InstrProfReader.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ErrorHandling.h" 54 55 using namespace clang; 56 using namespace CodeGen; 57 58 static const char AnnotationSection[] = "llvm.metadata"; 59 60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 61 switch (CGM.getTarget().getCXXABI().getKind()) { 62 case TargetCXXABI::GenericAArch64: 63 case TargetCXXABI::GenericARM: 64 case TargetCXXABI::iOS: 65 case TargetCXXABI::iOS64: 66 case TargetCXXABI::GenericItanium: 67 return CreateItaniumCXXABI(CGM); 68 case TargetCXXABI::Microsoft: 69 return CreateMicrosoftCXXABI(CGM); 70 } 71 72 llvm_unreachable("invalid C++ ABI kind"); 73 } 74 75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 76 llvm::Module &M, const llvm::DataLayout &TD, 77 DiagnosticsEngine &diags) 78 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 79 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 80 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 81 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 82 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 83 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 84 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 85 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 86 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 87 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 88 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 89 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 90 LifetimeEndFn(nullptr), 91 SanitizerBlacklist( 92 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 93 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 94 : LangOpts.Sanitize) { 95 96 // Initialize the type cache. 97 llvm::LLVMContext &LLVMContext = M.getContext(); 98 VoidTy = llvm::Type::getVoidTy(LLVMContext); 99 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 100 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 101 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 102 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 103 FloatTy = llvm::Type::getFloatTy(LLVMContext); 104 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 105 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 106 PointerAlignInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 108 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 109 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 110 Int8PtrTy = Int8Ty->getPointerTo(0); 111 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 112 113 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (SanOpts.Thread || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext()); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || 134 CodeGenOpts.EmitGcovNotes) 135 DebugInfo = new CGDebugInfo(*this); 136 137 Block.GlobalUniqueCount = 0; 138 139 if (C.getLangOpts().ObjCAutoRefCount) 140 ARCData = new ARCEntrypoints(); 141 RRData = new RREntrypoints(); 142 143 if (!CodeGenOpts.InstrProfileInput.empty()) { 144 if (llvm::error_code EC = llvm::IndexedInstrProfReader::create( 145 CodeGenOpts.InstrProfileInput, PGOReader)) { 146 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 147 "Could not read profile: %0"); 148 getDiags().Report(DiagID) << EC.message(); 149 } 150 } 151 } 152 153 CodeGenModule::~CodeGenModule() { 154 delete ObjCRuntime; 155 delete OpenCLRuntime; 156 delete OpenMPRuntime; 157 delete CUDARuntime; 158 delete TheTargetCodeGenInfo; 159 delete TBAA; 160 delete DebugInfo; 161 delete ARCData; 162 delete RRData; 163 } 164 165 void CodeGenModule::createObjCRuntime() { 166 // This is just isGNUFamily(), but we want to force implementors of 167 // new ABIs to decide how best to do this. 168 switch (LangOpts.ObjCRuntime.getKind()) { 169 case ObjCRuntime::GNUstep: 170 case ObjCRuntime::GCC: 171 case ObjCRuntime::ObjFW: 172 ObjCRuntime = CreateGNUObjCRuntime(*this); 173 return; 174 175 case ObjCRuntime::FragileMacOSX: 176 case ObjCRuntime::MacOSX: 177 case ObjCRuntime::iOS: 178 ObjCRuntime = CreateMacObjCRuntime(*this); 179 return; 180 } 181 llvm_unreachable("bad runtime kind"); 182 } 183 184 void CodeGenModule::createOpenCLRuntime() { 185 OpenCLRuntime = new CGOpenCLRuntime(*this); 186 } 187 188 void CodeGenModule::createOpenMPRuntime() { 189 OpenMPRuntime = new CGOpenMPRuntime(*this); 190 } 191 192 void CodeGenModule::createCUDARuntime() { 193 CUDARuntime = CreateNVCUDARuntime(*this); 194 } 195 196 void CodeGenModule::applyReplacements() { 197 for (ReplacementsTy::iterator I = Replacements.begin(), 198 E = Replacements.end(); 199 I != E; ++I) { 200 StringRef MangledName = I->first(); 201 llvm::Constant *Replacement = I->second; 202 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 203 if (!Entry) 204 continue; 205 auto *OldF = cast<llvm::Function>(Entry); 206 auto *NewF = dyn_cast<llvm::Function>(Replacement); 207 if (!NewF) { 208 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 209 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 210 } else { 211 auto *CE = cast<llvm::ConstantExpr>(Replacement); 212 assert(CE->getOpcode() == llvm::Instruction::BitCast || 213 CE->getOpcode() == llvm::Instruction::GetElementPtr); 214 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 215 } 216 } 217 218 // Replace old with new, but keep the old order. 219 OldF->replaceAllUsesWith(Replacement); 220 if (NewF) { 221 NewF->removeFromParent(); 222 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 223 } 224 OldF->eraseFromParent(); 225 } 226 } 227 228 void CodeGenModule::checkAliases() { 229 // Check if the constructed aliases are well formed. It is really unfortunate 230 // that we have to do this in CodeGen, but we only construct mangled names 231 // and aliases during codegen. 232 bool Error = false; 233 DiagnosticsEngine &Diags = getDiags(); 234 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 235 E = Aliases.end(); I != E; ++I) { 236 const GlobalDecl &GD = *I; 237 const auto *D = cast<ValueDecl>(GD.getDecl()); 238 const AliasAttr *AA = D->getAttr<AliasAttr>(); 239 StringRef MangledName = getMangledName(GD); 240 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 241 auto *Alias = cast<llvm::GlobalAlias>(Entry); 242 llvm::GlobalValue *GV = Alias->getAliasee(); 243 if (GV->isDeclaration()) { 244 Error = true; 245 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 246 } 247 248 llvm::GlobalObject *Aliasee = Alias->getAliasee(); 249 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 250 StringRef AliasSection = SA->getName(); 251 if (AliasSection != Aliasee->getSection()) 252 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 253 << AliasSection; 254 } 255 } 256 if (!Error) 257 return; 258 259 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 260 E = Aliases.end(); I != E; ++I) { 261 const GlobalDecl &GD = *I; 262 StringRef MangledName = getMangledName(GD); 263 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 264 auto *Alias = cast<llvm::GlobalAlias>(Entry); 265 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 266 Alias->eraseFromParent(); 267 } 268 } 269 270 void CodeGenModule::clear() { 271 DeferredDeclsToEmit.clear(); 272 } 273 274 void CodeGenModule::Release() { 275 EmitDeferred(); 276 applyReplacements(); 277 checkAliases(); 278 EmitCXXGlobalInitFunc(); 279 EmitCXXGlobalDtorFunc(); 280 EmitCXXThreadLocalInitFunc(); 281 if (ObjCRuntime) 282 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 283 AddGlobalCtor(ObjCInitFunction); 284 if (getCodeGenOpts().ProfileInstrGenerate) 285 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 286 AddGlobalCtor(PGOInit, 0); 287 if (PGOReader && PGOStats.isOutOfDate()) 288 getDiags().Report(diag::warn_profile_data_out_of_date) 289 << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched; 290 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 291 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 292 EmitGlobalAnnotations(); 293 EmitStaticExternCAliases(); 294 emitLLVMUsed(); 295 296 if (CodeGenOpts.Autolink && 297 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 298 EmitModuleLinkOptions(); 299 } 300 if (CodeGenOpts.DwarfVersion) 301 // We actually want the latest version when there are conflicts. 302 // We can change from Warning to Latest if such mode is supported. 303 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 304 CodeGenOpts.DwarfVersion); 305 if (DebugInfo) 306 // We support a single version in the linked module. The LLVM 307 // parser will drop debug info with a different version number 308 // (and warn about it, too). 309 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 310 llvm::DEBUG_METADATA_VERSION); 311 312 SimplifyPersonality(); 313 314 if (getCodeGenOpts().EmitDeclMetadata) 315 EmitDeclMetadata(); 316 317 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 318 EmitCoverageFile(); 319 320 if (DebugInfo) 321 DebugInfo->finalize(); 322 323 EmitVersionIdentMetadata(); 324 } 325 326 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 327 // Make sure that this type is translated. 328 Types.UpdateCompletedType(TD); 329 } 330 331 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 332 if (!TBAA) 333 return nullptr; 334 return TBAA->getTBAAInfo(QTy); 335 } 336 337 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 338 if (!TBAA) 339 return nullptr; 340 return TBAA->getTBAAInfoForVTablePtr(); 341 } 342 343 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 344 if (!TBAA) 345 return nullptr; 346 return TBAA->getTBAAStructInfo(QTy); 347 } 348 349 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 350 if (!TBAA) 351 return nullptr; 352 return TBAA->getTBAAStructTypeInfo(QTy); 353 } 354 355 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 356 llvm::MDNode *AccessN, 357 uint64_t O) { 358 if (!TBAA) 359 return nullptr; 360 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 361 } 362 363 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 364 /// and struct-path aware TBAA, the tag has the same format: 365 /// base type, access type and offset. 366 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 367 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 368 llvm::MDNode *TBAAInfo, 369 bool ConvertTypeToTag) { 370 if (ConvertTypeToTag && TBAA) 371 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 372 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 373 else 374 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 375 } 376 377 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 378 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 379 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 380 } 381 382 /// ErrorUnsupported - Print out an error that codegen doesn't support the 383 /// specified stmt yet. 384 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 385 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 386 "cannot compile this %0 yet"); 387 std::string Msg = Type; 388 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 389 << Msg << S->getSourceRange(); 390 } 391 392 /// ErrorUnsupported - Print out an error that codegen doesn't support the 393 /// specified decl yet. 394 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 395 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 396 "cannot compile this %0 yet"); 397 std::string Msg = Type; 398 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 399 } 400 401 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 402 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 403 } 404 405 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 406 const NamedDecl *D) const { 407 // Internal definitions always have default visibility. 408 if (GV->hasLocalLinkage()) { 409 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 410 return; 411 } 412 413 // Set visibility for definitions. 414 LinkageInfo LV = D->getLinkageAndVisibility(); 415 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 416 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 417 } 418 419 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 420 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 421 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 422 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 423 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 424 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 425 } 426 427 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 428 CodeGenOptions::TLSModel M) { 429 switch (M) { 430 case CodeGenOptions::GeneralDynamicTLSModel: 431 return llvm::GlobalVariable::GeneralDynamicTLSModel; 432 case CodeGenOptions::LocalDynamicTLSModel: 433 return llvm::GlobalVariable::LocalDynamicTLSModel; 434 case CodeGenOptions::InitialExecTLSModel: 435 return llvm::GlobalVariable::InitialExecTLSModel; 436 case CodeGenOptions::LocalExecTLSModel: 437 return llvm::GlobalVariable::LocalExecTLSModel; 438 } 439 llvm_unreachable("Invalid TLS model!"); 440 } 441 442 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 443 const VarDecl &D) const { 444 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 445 446 llvm::GlobalVariable::ThreadLocalMode TLM; 447 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 448 449 // Override the TLS model if it is explicitly specified. 450 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 451 TLM = GetLLVMTLSModel(Attr->getModel()); 452 } 453 454 GV->setThreadLocalMode(TLM); 455 } 456 457 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 458 const auto *ND = cast<NamedDecl>(GD.getDecl()); 459 460 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 461 if (!Str.empty()) 462 return Str; 463 464 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 465 IdentifierInfo *II = ND->getIdentifier(); 466 assert(II && "Attempt to mangle unnamed decl."); 467 468 Str = II->getName(); 469 return Str; 470 } 471 472 SmallString<256> Buffer; 473 llvm::raw_svector_ostream Out(Buffer); 474 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 475 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 476 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 477 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 478 else 479 getCXXABI().getMangleContext().mangleName(ND, Out); 480 481 // Allocate space for the mangled name. 482 Out.flush(); 483 size_t Length = Buffer.size(); 484 char *Name = MangledNamesAllocator.Allocate<char>(Length); 485 std::copy(Buffer.begin(), Buffer.end(), Name); 486 487 Str = StringRef(Name, Length); 488 489 return Str; 490 } 491 492 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 493 const BlockDecl *BD) { 494 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 495 const Decl *D = GD.getDecl(); 496 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 497 if (!D) 498 MangleCtx.mangleGlobalBlock(BD, 499 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 500 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 501 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 502 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 503 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 504 else 505 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 506 } 507 508 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 509 return getModule().getNamedValue(Name); 510 } 511 512 /// AddGlobalCtor - Add a function to the list that will be called before 513 /// main() runs. 514 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 515 // FIXME: Type coercion of void()* types. 516 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 517 } 518 519 /// AddGlobalDtor - Add a function to the list that will be called 520 /// when the module is unloaded. 521 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 522 // FIXME: Type coercion of void()* types. 523 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 524 } 525 526 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 527 // Ctor function type is void()*. 528 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 529 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 530 531 // Get the type of a ctor entry, { i32, void ()* }. 532 llvm::StructType *CtorStructTy = 533 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 534 535 // Construct the constructor and destructor arrays. 536 SmallVector<llvm::Constant*, 8> Ctors; 537 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 538 llvm::Constant *S[] = { 539 llvm::ConstantInt::get(Int32Ty, I->second, false), 540 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 541 }; 542 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 543 } 544 545 if (!Ctors.empty()) { 546 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 547 new llvm::GlobalVariable(TheModule, AT, false, 548 llvm::GlobalValue::AppendingLinkage, 549 llvm::ConstantArray::get(AT, Ctors), 550 GlobalName); 551 } 552 } 553 554 llvm::GlobalValue::LinkageTypes 555 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 556 const auto *D = cast<FunctionDecl>(GD.getDecl()); 557 558 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 559 560 bool UseThunkForDtorVariant = 561 isa<CXXDestructorDecl>(D) && 562 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 563 GD.getDtorType()); 564 565 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false, 566 UseThunkForDtorVariant); 567 } 568 569 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 570 llvm::Function *F) { 571 setNonAliasAttributes(D, F); 572 } 573 574 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 575 const CGFunctionInfo &Info, 576 llvm::Function *F) { 577 unsigned CallingConv; 578 AttributeListType AttributeList; 579 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 580 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 581 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 582 } 583 584 /// Determines whether the language options require us to model 585 /// unwind exceptions. We treat -fexceptions as mandating this 586 /// except under the fragile ObjC ABI with only ObjC exceptions 587 /// enabled. This means, for example, that C with -fexceptions 588 /// enables this. 589 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 590 // If exceptions are completely disabled, obviously this is false. 591 if (!LangOpts.Exceptions) return false; 592 593 // If C++ exceptions are enabled, this is true. 594 if (LangOpts.CXXExceptions) return true; 595 596 // If ObjC exceptions are enabled, this depends on the ABI. 597 if (LangOpts.ObjCExceptions) { 598 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 599 } 600 601 return true; 602 } 603 604 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 605 llvm::Function *F) { 606 llvm::AttrBuilder B; 607 608 if (CodeGenOpts.UnwindTables) 609 B.addAttribute(llvm::Attribute::UWTable); 610 611 if (!hasUnwindExceptions(LangOpts)) 612 B.addAttribute(llvm::Attribute::NoUnwind); 613 614 if (D->hasAttr<NakedAttr>()) { 615 // Naked implies noinline: we should not be inlining such functions. 616 B.addAttribute(llvm::Attribute::Naked); 617 B.addAttribute(llvm::Attribute::NoInline); 618 } else if (D->hasAttr<OptimizeNoneAttr>()) { 619 // OptimizeNone implies noinline; we should not be inlining such functions. 620 B.addAttribute(llvm::Attribute::OptimizeNone); 621 B.addAttribute(llvm::Attribute::NoInline); 622 } else if (D->hasAttr<NoDuplicateAttr>()) { 623 B.addAttribute(llvm::Attribute::NoDuplicate); 624 } else if (D->hasAttr<NoInlineAttr>()) { 625 B.addAttribute(llvm::Attribute::NoInline); 626 } else if (D->hasAttr<AlwaysInlineAttr>() && 627 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 628 llvm::Attribute::NoInline)) { 629 // (noinline wins over always_inline, and we can't specify both in IR) 630 B.addAttribute(llvm::Attribute::AlwaysInline); 631 } 632 633 if (D->hasAttr<ColdAttr>()) { 634 B.addAttribute(llvm::Attribute::OptimizeForSize); 635 B.addAttribute(llvm::Attribute::Cold); 636 } 637 638 if (D->hasAttr<MinSizeAttr>()) 639 B.addAttribute(llvm::Attribute::MinSize); 640 641 if (D->hasAttr<OptimizeNoneAttr>()) { 642 // OptimizeNone wins over OptimizeForSize and MinSize. 643 B.removeAttribute(llvm::Attribute::OptimizeForSize); 644 B.removeAttribute(llvm::Attribute::MinSize); 645 } 646 647 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 648 B.addAttribute(llvm::Attribute::StackProtect); 649 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 650 B.addAttribute(llvm::Attribute::StackProtectStrong); 651 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 652 B.addAttribute(llvm::Attribute::StackProtectReq); 653 654 // Add sanitizer attributes if function is not blacklisted. 655 if (!SanitizerBlacklist->isIn(*F)) { 656 // When AddressSanitizer is enabled, set SanitizeAddress attribute 657 // unless __attribute__((no_sanitize_address)) is used. 658 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 659 B.addAttribute(llvm::Attribute::SanitizeAddress); 660 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 661 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 662 B.addAttribute(llvm::Attribute::SanitizeThread); 663 } 664 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 665 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 666 B.addAttribute(llvm::Attribute::SanitizeMemory); 667 } 668 669 F->addAttributes(llvm::AttributeSet::FunctionIndex, 670 llvm::AttributeSet::get( 671 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 672 673 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 674 F->setUnnamedAddr(true); 675 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 676 if (MD->isVirtual()) 677 F->setUnnamedAddr(true); 678 679 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 680 if (alignment) 681 F->setAlignment(alignment); 682 683 // C++ ABI requires 2-byte alignment for member functions. 684 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 685 F->setAlignment(2); 686 } 687 688 void CodeGenModule::SetCommonAttributes(const Decl *D, 689 llvm::GlobalValue *GV) { 690 if (const auto *ND = dyn_cast<NamedDecl>(D)) 691 setGlobalVisibility(GV, ND); 692 else 693 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 694 695 if (D->hasAttr<UsedAttr>()) 696 addUsedGlobal(GV); 697 } 698 699 void CodeGenModule::setNonAliasAttributes(const Decl *D, 700 llvm::GlobalObject *GO) { 701 SetCommonAttributes(D, GO); 702 703 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 704 GO->setSection(SA->getName()); 705 706 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 707 } 708 709 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 710 llvm::Function *F, 711 const CGFunctionInfo &FI) { 712 SetLLVMFunctionAttributes(D, FI, F); 713 SetLLVMFunctionAttributesForDefinition(D, F); 714 715 F->setLinkage(llvm::Function::InternalLinkage); 716 717 setNonAliasAttributes(D, F); 718 } 719 720 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 721 const NamedDecl *ND) { 722 // Set linkage and visibility in case we never see a definition. 723 LinkageInfo LV = ND->getLinkageAndVisibility(); 724 if (LV.getLinkage() != ExternalLinkage) { 725 // Don't set internal linkage on declarations. 726 } else { 727 if (ND->hasAttr<DLLImportAttr>()) { 728 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 729 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 730 } else if (ND->hasAttr<DLLExportAttr>()) { 731 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 732 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 733 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 734 // "extern_weak" is overloaded in LLVM; we probably should have 735 // separate linkage types for this. 736 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 737 } 738 739 // Set visibility on a declaration only if it's explicit. 740 if (LV.isVisibilityExplicit()) 741 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 742 } 743 } 744 745 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 746 llvm::Function *F, 747 bool IsIncompleteFunction) { 748 if (unsigned IID = F->getIntrinsicID()) { 749 // If this is an intrinsic function, set the function's attributes 750 // to the intrinsic's attributes. 751 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 752 (llvm::Intrinsic::ID)IID)); 753 return; 754 } 755 756 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 757 758 if (!IsIncompleteFunction) 759 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 760 761 // Add the Returned attribute for "this", except for iOS 5 and earlier 762 // where substantial code, including the libstdc++ dylib, was compiled with 763 // GCC and does not actually return "this". 764 if (getCXXABI().HasThisReturn(GD) && 765 !(getTarget().getTriple().isiOS() && 766 getTarget().getTriple().isOSVersionLT(6))) { 767 assert(!F->arg_empty() && 768 F->arg_begin()->getType() 769 ->canLosslesslyBitCastTo(F->getReturnType()) && 770 "unexpected this return"); 771 F->addAttribute(1, llvm::Attribute::Returned); 772 } 773 774 // Only a few attributes are set on declarations; these may later be 775 // overridden by a definition. 776 777 setLinkageAndVisibilityForGV(F, FD); 778 779 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 780 F->setSection(SA->getName()); 781 782 // A replaceable global allocation function does not act like a builtin by 783 // default, only if it is invoked by a new-expression or delete-expression. 784 if (FD->isReplaceableGlobalAllocationFunction()) 785 F->addAttribute(llvm::AttributeSet::FunctionIndex, 786 llvm::Attribute::NoBuiltin); 787 } 788 789 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 790 assert(!GV->isDeclaration() && 791 "Only globals with definition can force usage."); 792 LLVMUsed.push_back(GV); 793 } 794 795 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 796 assert(!GV->isDeclaration() && 797 "Only globals with definition can force usage."); 798 LLVMCompilerUsed.push_back(GV); 799 } 800 801 static void emitUsed(CodeGenModule &CGM, StringRef Name, 802 std::vector<llvm::WeakVH> &List) { 803 // Don't create llvm.used if there is no need. 804 if (List.empty()) 805 return; 806 807 // Convert List to what ConstantArray needs. 808 SmallVector<llvm::Constant*, 8> UsedArray; 809 UsedArray.resize(List.size()); 810 for (unsigned i = 0, e = List.size(); i != e; ++i) { 811 UsedArray[i] = 812 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 813 CGM.Int8PtrTy); 814 } 815 816 if (UsedArray.empty()) 817 return; 818 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 819 820 auto *GV = new llvm::GlobalVariable( 821 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 822 llvm::ConstantArray::get(ATy, UsedArray), Name); 823 824 GV->setSection("llvm.metadata"); 825 } 826 827 void CodeGenModule::emitLLVMUsed() { 828 emitUsed(*this, "llvm.used", LLVMUsed); 829 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 830 } 831 832 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 833 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 834 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 835 } 836 837 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 838 llvm::SmallString<32> Opt; 839 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 840 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 841 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 842 } 843 844 void CodeGenModule::AddDependentLib(StringRef Lib) { 845 llvm::SmallString<24> Opt; 846 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 847 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 848 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 849 } 850 851 /// \brief Add link options implied by the given module, including modules 852 /// it depends on, using a postorder walk. 853 static void addLinkOptionsPostorder(CodeGenModule &CGM, 854 Module *Mod, 855 SmallVectorImpl<llvm::Value *> &Metadata, 856 llvm::SmallPtrSet<Module *, 16> &Visited) { 857 // Import this module's parent. 858 if (Mod->Parent && Visited.insert(Mod->Parent)) { 859 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 860 } 861 862 // Import this module's dependencies. 863 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 864 if (Visited.insert(Mod->Imports[I-1])) 865 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 866 } 867 868 // Add linker options to link against the libraries/frameworks 869 // described by this module. 870 llvm::LLVMContext &Context = CGM.getLLVMContext(); 871 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 872 // Link against a framework. Frameworks are currently Darwin only, so we 873 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 874 if (Mod->LinkLibraries[I-1].IsFramework) { 875 llvm::Value *Args[2] = { 876 llvm::MDString::get(Context, "-framework"), 877 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 878 }; 879 880 Metadata.push_back(llvm::MDNode::get(Context, Args)); 881 continue; 882 } 883 884 // Link against a library. 885 llvm::SmallString<24> Opt; 886 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 887 Mod->LinkLibraries[I-1].Library, Opt); 888 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 889 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 890 } 891 } 892 893 void CodeGenModule::EmitModuleLinkOptions() { 894 // Collect the set of all of the modules we want to visit to emit link 895 // options, which is essentially the imported modules and all of their 896 // non-explicit child modules. 897 llvm::SetVector<clang::Module *> LinkModules; 898 llvm::SmallPtrSet<clang::Module *, 16> Visited; 899 SmallVector<clang::Module *, 16> Stack; 900 901 // Seed the stack with imported modules. 902 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 903 MEnd = ImportedModules.end(); 904 M != MEnd; ++M) { 905 if (Visited.insert(*M)) 906 Stack.push_back(*M); 907 } 908 909 // Find all of the modules to import, making a little effort to prune 910 // non-leaf modules. 911 while (!Stack.empty()) { 912 clang::Module *Mod = Stack.pop_back_val(); 913 914 bool AnyChildren = false; 915 916 // Visit the submodules of this module. 917 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 918 SubEnd = Mod->submodule_end(); 919 Sub != SubEnd; ++Sub) { 920 // Skip explicit children; they need to be explicitly imported to be 921 // linked against. 922 if ((*Sub)->IsExplicit) 923 continue; 924 925 if (Visited.insert(*Sub)) { 926 Stack.push_back(*Sub); 927 AnyChildren = true; 928 } 929 } 930 931 // We didn't find any children, so add this module to the list of 932 // modules to link against. 933 if (!AnyChildren) { 934 LinkModules.insert(Mod); 935 } 936 } 937 938 // Add link options for all of the imported modules in reverse topological 939 // order. We don't do anything to try to order import link flags with respect 940 // to linker options inserted by things like #pragma comment(). 941 SmallVector<llvm::Value *, 16> MetadataArgs; 942 Visited.clear(); 943 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 944 MEnd = LinkModules.end(); 945 M != MEnd; ++M) { 946 if (Visited.insert(*M)) 947 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 948 } 949 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 950 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 951 952 // Add the linker options metadata flag. 953 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 954 llvm::MDNode::get(getLLVMContext(), 955 LinkerOptionsMetadata)); 956 } 957 958 void CodeGenModule::EmitDeferred() { 959 // Emit code for any potentially referenced deferred decls. Since a 960 // previously unused static decl may become used during the generation of code 961 // for a static function, iterate until no changes are made. 962 963 while (true) { 964 if (!DeferredVTables.empty()) { 965 EmitDeferredVTables(); 966 967 // Emitting a v-table doesn't directly cause more v-tables to 968 // become deferred, although it can cause functions to be 969 // emitted that then need those v-tables. 970 assert(DeferredVTables.empty()); 971 } 972 973 // Stop if we're out of both deferred v-tables and deferred declarations. 974 if (DeferredDeclsToEmit.empty()) break; 975 976 DeferredGlobal &G = DeferredDeclsToEmit.back(); 977 GlobalDecl D = G.GD; 978 llvm::GlobalValue *GV = G.GV; 979 DeferredDeclsToEmit.pop_back(); 980 981 assert(GV == GetGlobalValue(getMangledName(D))); 982 // Check to see if we've already emitted this. This is necessary 983 // for a couple of reasons: first, decls can end up in the 984 // deferred-decls queue multiple times, and second, decls can end 985 // up with definitions in unusual ways (e.g. by an extern inline 986 // function acquiring a strong function redefinition). Just 987 // ignore these cases. 988 if(!GV->isDeclaration()) 989 continue; 990 991 // Otherwise, emit the definition and move on to the next one. 992 EmitGlobalDefinition(D, GV); 993 } 994 } 995 996 void CodeGenModule::EmitGlobalAnnotations() { 997 if (Annotations.empty()) 998 return; 999 1000 // Create a new global variable for the ConstantStruct in the Module. 1001 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1002 Annotations[0]->getType(), Annotations.size()), Annotations); 1003 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1004 llvm::GlobalValue::AppendingLinkage, 1005 Array, "llvm.global.annotations"); 1006 gv->setSection(AnnotationSection); 1007 } 1008 1009 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1010 llvm::Constant *&AStr = AnnotationStrings[Str]; 1011 if (AStr) 1012 return AStr; 1013 1014 // Not found yet, create a new global. 1015 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1016 auto *gv = 1017 new llvm::GlobalVariable(getModule(), s->getType(), true, 1018 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1019 gv->setSection(AnnotationSection); 1020 gv->setUnnamedAddr(true); 1021 AStr = gv; 1022 return gv; 1023 } 1024 1025 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1026 SourceManager &SM = getContext().getSourceManager(); 1027 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1028 if (PLoc.isValid()) 1029 return EmitAnnotationString(PLoc.getFilename()); 1030 return EmitAnnotationString(SM.getBufferName(Loc)); 1031 } 1032 1033 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1034 SourceManager &SM = getContext().getSourceManager(); 1035 PresumedLoc PLoc = SM.getPresumedLoc(L); 1036 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1037 SM.getExpansionLineNumber(L); 1038 return llvm::ConstantInt::get(Int32Ty, LineNo); 1039 } 1040 1041 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1042 const AnnotateAttr *AA, 1043 SourceLocation L) { 1044 // Get the globals for file name, annotation, and the line number. 1045 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1046 *UnitGV = EmitAnnotationUnit(L), 1047 *LineNoCst = EmitAnnotationLineNo(L); 1048 1049 // Create the ConstantStruct for the global annotation. 1050 llvm::Constant *Fields[4] = { 1051 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1052 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1053 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1054 LineNoCst 1055 }; 1056 return llvm::ConstantStruct::getAnon(Fields); 1057 } 1058 1059 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1060 llvm::GlobalValue *GV) { 1061 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1062 // Get the struct elements for these annotations. 1063 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1064 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1065 } 1066 1067 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1068 // Never defer when EmitAllDecls is specified. 1069 if (LangOpts.EmitAllDecls) 1070 return false; 1071 1072 return !getContext().DeclMustBeEmitted(Global); 1073 } 1074 1075 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1076 const CXXUuidofExpr* E) { 1077 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1078 // well-formed. 1079 StringRef Uuid = E->getUuidAsStringRef(Context); 1080 std::string Name = "_GUID_" + Uuid.lower(); 1081 std::replace(Name.begin(), Name.end(), '-', '_'); 1082 1083 // Look for an existing global. 1084 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1085 return GV; 1086 1087 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1088 assert(Init && "failed to initialize as constant"); 1089 1090 auto *GV = new llvm::GlobalVariable( 1091 getModule(), Init->getType(), 1092 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1093 return GV; 1094 } 1095 1096 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1097 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1098 assert(AA && "No alias?"); 1099 1100 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1101 1102 // See if there is already something with the target's name in the module. 1103 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1104 if (Entry) { 1105 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1106 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1107 } 1108 1109 llvm::Constant *Aliasee; 1110 if (isa<llvm::FunctionType>(DeclTy)) 1111 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1112 GlobalDecl(cast<FunctionDecl>(VD)), 1113 /*ForVTable=*/false); 1114 else 1115 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1116 llvm::PointerType::getUnqual(DeclTy), 1117 nullptr); 1118 1119 auto *F = cast<llvm::GlobalValue>(Aliasee); 1120 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1121 WeakRefReferences.insert(F); 1122 1123 return Aliasee; 1124 } 1125 1126 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1127 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1128 1129 // Weak references don't produce any output by themselves. 1130 if (Global->hasAttr<WeakRefAttr>()) 1131 return; 1132 1133 // If this is an alias definition (which otherwise looks like a declaration) 1134 // emit it now. 1135 if (Global->hasAttr<AliasAttr>()) 1136 return EmitAliasDefinition(GD); 1137 1138 // If this is CUDA, be selective about which declarations we emit. 1139 if (LangOpts.CUDA) { 1140 if (CodeGenOpts.CUDAIsDevice) { 1141 if (!Global->hasAttr<CUDADeviceAttr>() && 1142 !Global->hasAttr<CUDAGlobalAttr>() && 1143 !Global->hasAttr<CUDAConstantAttr>() && 1144 !Global->hasAttr<CUDASharedAttr>()) 1145 return; 1146 } else { 1147 if (!Global->hasAttr<CUDAHostAttr>() && ( 1148 Global->hasAttr<CUDADeviceAttr>() || 1149 Global->hasAttr<CUDAConstantAttr>() || 1150 Global->hasAttr<CUDASharedAttr>())) 1151 return; 1152 } 1153 } 1154 1155 // Ignore declarations, they will be emitted on their first use. 1156 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1157 // Forward declarations are emitted lazily on first use. 1158 if (!FD->doesThisDeclarationHaveABody()) { 1159 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1160 return; 1161 1162 StringRef MangledName = getMangledName(GD); 1163 1164 // Compute the function info and LLVM type. 1165 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1166 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1167 1168 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1169 /*DontDefer=*/false); 1170 return; 1171 } 1172 } else { 1173 const auto *VD = cast<VarDecl>(Global); 1174 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1175 1176 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1177 return; 1178 } 1179 1180 // Defer code generation when possible if this is a static definition, inline 1181 // function etc. These we only want to emit if they are used. 1182 if (!MayDeferGeneration(Global)) { 1183 // Emit the definition if it can't be deferred. 1184 EmitGlobalDefinition(GD); 1185 return; 1186 } 1187 1188 // If we're deferring emission of a C++ variable with an 1189 // initializer, remember the order in which it appeared in the file. 1190 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1191 cast<VarDecl>(Global)->hasInit()) { 1192 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1193 CXXGlobalInits.push_back(nullptr); 1194 } 1195 1196 // If the value has already been used, add it directly to the 1197 // DeferredDeclsToEmit list. 1198 StringRef MangledName = getMangledName(GD); 1199 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1200 addDeferredDeclToEmit(GV, GD); 1201 else { 1202 // Otherwise, remember that we saw a deferred decl with this name. The 1203 // first use of the mangled name will cause it to move into 1204 // DeferredDeclsToEmit. 1205 DeferredDecls[MangledName] = GD; 1206 } 1207 } 1208 1209 namespace { 1210 struct FunctionIsDirectlyRecursive : 1211 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1212 const StringRef Name; 1213 const Builtin::Context &BI; 1214 bool Result; 1215 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1216 Name(N), BI(C), Result(false) { 1217 } 1218 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1219 1220 bool TraverseCallExpr(CallExpr *E) { 1221 const FunctionDecl *FD = E->getDirectCallee(); 1222 if (!FD) 1223 return true; 1224 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1225 if (Attr && Name == Attr->getLabel()) { 1226 Result = true; 1227 return false; 1228 } 1229 unsigned BuiltinID = FD->getBuiltinID(); 1230 if (!BuiltinID) 1231 return true; 1232 StringRef BuiltinName = BI.GetName(BuiltinID); 1233 if (BuiltinName.startswith("__builtin_") && 1234 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1235 Result = true; 1236 return false; 1237 } 1238 return true; 1239 } 1240 }; 1241 } 1242 1243 // isTriviallyRecursive - Check if this function calls another 1244 // decl that, because of the asm attribute or the other decl being a builtin, 1245 // ends up pointing to itself. 1246 bool 1247 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1248 StringRef Name; 1249 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1250 // asm labels are a special kind of mangling we have to support. 1251 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1252 if (!Attr) 1253 return false; 1254 Name = Attr->getLabel(); 1255 } else { 1256 Name = FD->getName(); 1257 } 1258 1259 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1260 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1261 return Walker.Result; 1262 } 1263 1264 bool 1265 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1266 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1267 return true; 1268 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1269 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1270 return false; 1271 // PR9614. Avoid cases where the source code is lying to us. An available 1272 // externally function should have an equivalent function somewhere else, 1273 // but a function that calls itself is clearly not equivalent to the real 1274 // implementation. 1275 // This happens in glibc's btowc and in some configure checks. 1276 return !isTriviallyRecursive(F); 1277 } 1278 1279 /// If the type for the method's class was generated by 1280 /// CGDebugInfo::createContextChain(), the cache contains only a 1281 /// limited DIType without any declarations. Since EmitFunctionStart() 1282 /// needs to find the canonical declaration for each method, we need 1283 /// to construct the complete type prior to emitting the method. 1284 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1285 if (!D->isInstance()) 1286 return; 1287 1288 if (CGDebugInfo *DI = getModuleDebugInfo()) 1289 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1290 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1291 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1292 } 1293 } 1294 1295 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1296 const auto *D = cast<ValueDecl>(GD.getDecl()); 1297 1298 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1299 Context.getSourceManager(), 1300 "Generating code for declaration"); 1301 1302 if (isa<FunctionDecl>(D)) { 1303 // At -O0, don't generate IR for functions with available_externally 1304 // linkage. 1305 if (!shouldEmitFunction(GD)) 1306 return; 1307 1308 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1309 CompleteDIClassType(Method); 1310 // Make sure to emit the definition(s) before we emit the thunks. 1311 // This is necessary for the generation of certain thunks. 1312 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1313 EmitCXXConstructor(CD, GD.getCtorType()); 1314 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1315 EmitCXXDestructor(DD, GD.getDtorType()); 1316 else 1317 EmitGlobalFunctionDefinition(GD, GV); 1318 1319 if (Method->isVirtual()) 1320 getVTables().EmitThunks(GD); 1321 1322 return; 1323 } 1324 1325 return EmitGlobalFunctionDefinition(GD, GV); 1326 } 1327 1328 if (const auto *VD = dyn_cast<VarDecl>(D)) 1329 return EmitGlobalVarDefinition(VD); 1330 1331 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1332 } 1333 1334 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1335 /// module, create and return an llvm Function with the specified type. If there 1336 /// is something in the module with the specified name, return it potentially 1337 /// bitcasted to the right type. 1338 /// 1339 /// If D is non-null, it specifies a decl that correspond to this. This is used 1340 /// to set the attributes on the function when it is first created. 1341 llvm::Constant * 1342 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1343 llvm::Type *Ty, 1344 GlobalDecl GD, bool ForVTable, 1345 bool DontDefer, 1346 llvm::AttributeSet ExtraAttrs) { 1347 const Decl *D = GD.getDecl(); 1348 1349 // Lookup the entry, lazily creating it if necessary. 1350 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1351 if (Entry) { 1352 if (WeakRefReferences.erase(Entry)) { 1353 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1354 if (FD && !FD->hasAttr<WeakAttr>()) 1355 Entry->setLinkage(llvm::Function::ExternalLinkage); 1356 } 1357 1358 if (Entry->getType()->getElementType() == Ty) 1359 return Entry; 1360 1361 // Make sure the result is of the correct type. 1362 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1363 } 1364 1365 // This function doesn't have a complete type (for example, the return 1366 // type is an incomplete struct). Use a fake type instead, and make 1367 // sure not to try to set attributes. 1368 bool IsIncompleteFunction = false; 1369 1370 llvm::FunctionType *FTy; 1371 if (isa<llvm::FunctionType>(Ty)) { 1372 FTy = cast<llvm::FunctionType>(Ty); 1373 } else { 1374 FTy = llvm::FunctionType::get(VoidTy, false); 1375 IsIncompleteFunction = true; 1376 } 1377 1378 llvm::Function *F = llvm::Function::Create(FTy, 1379 llvm::Function::ExternalLinkage, 1380 MangledName, &getModule()); 1381 assert(F->getName() == MangledName && "name was uniqued!"); 1382 if (D) 1383 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1384 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1385 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1386 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1387 llvm::AttributeSet::get(VMContext, 1388 llvm::AttributeSet::FunctionIndex, 1389 B)); 1390 } 1391 1392 if (!DontDefer) { 1393 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1394 // each other bottoming out with the base dtor. Therefore we emit non-base 1395 // dtors on usage, even if there is no dtor definition in the TU. 1396 if (D && isa<CXXDestructorDecl>(D) && 1397 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1398 GD.getDtorType())) 1399 addDeferredDeclToEmit(F, GD); 1400 1401 // This is the first use or definition of a mangled name. If there is a 1402 // deferred decl with this name, remember that we need to emit it at the end 1403 // of the file. 1404 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1405 if (DDI != DeferredDecls.end()) { 1406 // Move the potentially referenced deferred decl to the 1407 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1408 // don't need it anymore). 1409 addDeferredDeclToEmit(F, DDI->second); 1410 DeferredDecls.erase(DDI); 1411 1412 // Otherwise, if this is a sized deallocation function, emit a weak 1413 // definition 1414 // for it at the end of the translation unit. 1415 } else if (D && cast<FunctionDecl>(D) 1416 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1417 addDeferredDeclToEmit(F, GD); 1418 1419 // Otherwise, there are cases we have to worry about where we're 1420 // using a declaration for which we must emit a definition but where 1421 // we might not find a top-level definition: 1422 // - member functions defined inline in their classes 1423 // - friend functions defined inline in some class 1424 // - special member functions with implicit definitions 1425 // If we ever change our AST traversal to walk into class methods, 1426 // this will be unnecessary. 1427 // 1428 // We also don't emit a definition for a function if it's going to be an 1429 // entry 1430 // in a vtable, unless it's already marked as used. 1431 } else if (getLangOpts().CPlusPlus && D) { 1432 // Look for a declaration that's lexically in a record. 1433 const auto *FD = cast<FunctionDecl>(D); 1434 FD = FD->getMostRecentDecl(); 1435 do { 1436 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1437 if (FD->isImplicit() && !ForVTable) { 1438 assert(FD->isUsed() && 1439 "Sema didn't mark implicit function as used!"); 1440 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1441 break; 1442 } else if (FD->doesThisDeclarationHaveABody()) { 1443 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1444 break; 1445 } 1446 } 1447 FD = FD->getPreviousDecl(); 1448 } while (FD); 1449 } 1450 } 1451 1452 getTargetCodeGenInfo().emitTargetMD(D, F, *this); 1453 1454 // Make sure the result is of the requested type. 1455 if (!IsIncompleteFunction) { 1456 assert(F->getType()->getElementType() == Ty); 1457 return F; 1458 } 1459 1460 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1461 return llvm::ConstantExpr::getBitCast(F, PTy); 1462 } 1463 1464 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1465 /// non-null, then this function will use the specified type if it has to 1466 /// create it (this occurs when we see a definition of the function). 1467 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1468 llvm::Type *Ty, 1469 bool ForVTable, 1470 bool DontDefer) { 1471 // If there was no specific requested type, just convert it now. 1472 if (!Ty) 1473 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1474 1475 StringRef MangledName = getMangledName(GD); 1476 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1477 } 1478 1479 /// CreateRuntimeFunction - Create a new runtime function with the specified 1480 /// type and name. 1481 llvm::Constant * 1482 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1483 StringRef Name, 1484 llvm::AttributeSet ExtraAttrs) { 1485 llvm::Constant *C = 1486 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1487 /*DontDefer=*/false, ExtraAttrs); 1488 if (auto *F = dyn_cast<llvm::Function>(C)) 1489 if (F->empty()) 1490 F->setCallingConv(getRuntimeCC()); 1491 return C; 1492 } 1493 1494 /// isTypeConstant - Determine whether an object of this type can be emitted 1495 /// as a constant. 1496 /// 1497 /// If ExcludeCtor is true, the duration when the object's constructor runs 1498 /// will not be considered. The caller will need to verify that the object is 1499 /// not written to during its construction. 1500 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1501 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1502 return false; 1503 1504 if (Context.getLangOpts().CPlusPlus) { 1505 if (const CXXRecordDecl *Record 1506 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1507 return ExcludeCtor && !Record->hasMutableFields() && 1508 Record->hasTrivialDestructor(); 1509 } 1510 1511 return true; 1512 } 1513 1514 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) { 1515 if (!VD->isStaticDataMember()) 1516 return false; 1517 const VarDecl *InitDecl; 1518 const Expr *InitExpr = VD->getAnyInitializer(InitDecl); 1519 if (!InitExpr) 1520 return false; 1521 if (InitDecl->isThisDeclarationADefinition()) 1522 return false; 1523 return true; 1524 } 1525 1526 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1527 /// create and return an llvm GlobalVariable with the specified type. If there 1528 /// is something in the module with the specified name, return it potentially 1529 /// bitcasted to the right type. 1530 /// 1531 /// If D is non-null, it specifies a decl that correspond to this. This is used 1532 /// to set the attributes on the global when it is first created. 1533 llvm::Constant * 1534 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1535 llvm::PointerType *Ty, 1536 const VarDecl *D) { 1537 // Lookup the entry, lazily creating it if necessary. 1538 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1539 if (Entry) { 1540 if (WeakRefReferences.erase(Entry)) { 1541 if (D && !D->hasAttr<WeakAttr>()) 1542 Entry->setLinkage(llvm::Function::ExternalLinkage); 1543 } 1544 1545 if (Entry->getType() == Ty) 1546 return Entry; 1547 1548 // Make sure the result is of the correct type. 1549 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1550 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1551 1552 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1553 } 1554 1555 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1556 auto *GV = new llvm::GlobalVariable( 1557 getModule(), Ty->getElementType(), false, 1558 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1559 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1560 1561 // This is the first use or definition of a mangled name. If there is a 1562 // deferred decl with this name, remember that we need to emit it at the end 1563 // of the file. 1564 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1565 if (DDI != DeferredDecls.end()) { 1566 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1567 // list, and remove it from DeferredDecls (since we don't need it anymore). 1568 addDeferredDeclToEmit(GV, DDI->second); 1569 DeferredDecls.erase(DDI); 1570 } 1571 1572 // Handle things which are present even on external declarations. 1573 if (D) { 1574 // FIXME: This code is overly simple and should be merged with other global 1575 // handling. 1576 GV->setConstant(isTypeConstant(D->getType(), false)); 1577 1578 setLinkageAndVisibilityForGV(GV, D); 1579 1580 if (D->getTLSKind()) { 1581 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1582 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1583 setTLSMode(GV, *D); 1584 } 1585 1586 // If required by the ABI, treat declarations of static data members with 1587 // inline initializers as definitions. 1588 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1589 isVarDeclInlineInitializedStaticDataMember(D)) 1590 EmitGlobalVarDefinition(D); 1591 1592 // Handle XCore specific ABI requirements. 1593 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1594 D->getLanguageLinkage() == CLanguageLinkage && 1595 D->getType().isConstant(Context) && 1596 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1597 GV->setSection(".cp.rodata"); 1598 } 1599 1600 if (AddrSpace != Ty->getAddressSpace()) 1601 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1602 1603 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 1604 1605 return GV; 1606 } 1607 1608 1609 llvm::GlobalVariable * 1610 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1611 llvm::Type *Ty, 1612 llvm::GlobalValue::LinkageTypes Linkage) { 1613 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1614 llvm::GlobalVariable *OldGV = nullptr; 1615 1616 if (GV) { 1617 // Check if the variable has the right type. 1618 if (GV->getType()->getElementType() == Ty) 1619 return GV; 1620 1621 // Because C++ name mangling, the only way we can end up with an already 1622 // existing global with the same name is if it has been declared extern "C". 1623 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1624 OldGV = GV; 1625 } 1626 1627 // Create a new variable. 1628 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1629 Linkage, nullptr, Name); 1630 1631 if (OldGV) { 1632 // Replace occurrences of the old variable if needed. 1633 GV->takeName(OldGV); 1634 1635 if (!OldGV->use_empty()) { 1636 llvm::Constant *NewPtrForOldDecl = 1637 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1638 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1639 } 1640 1641 OldGV->eraseFromParent(); 1642 } 1643 1644 return GV; 1645 } 1646 1647 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1648 /// given global variable. If Ty is non-null and if the global doesn't exist, 1649 /// then it will be created with the specified type instead of whatever the 1650 /// normal requested type would be. 1651 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1652 llvm::Type *Ty) { 1653 assert(D->hasGlobalStorage() && "Not a global variable"); 1654 QualType ASTTy = D->getType(); 1655 if (!Ty) 1656 Ty = getTypes().ConvertTypeForMem(ASTTy); 1657 1658 llvm::PointerType *PTy = 1659 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1660 1661 StringRef MangledName = getMangledName(D); 1662 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1663 } 1664 1665 /// CreateRuntimeVariable - Create a new runtime global variable with the 1666 /// specified type and name. 1667 llvm::Constant * 1668 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1669 StringRef Name) { 1670 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1671 } 1672 1673 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1674 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1675 1676 if (MayDeferGeneration(D)) { 1677 // If we have not seen a reference to this variable yet, place it 1678 // into the deferred declarations table to be emitted if needed 1679 // later. 1680 StringRef MangledName = getMangledName(D); 1681 if (!GetGlobalValue(MangledName)) { 1682 DeferredDecls[MangledName] = D; 1683 return; 1684 } 1685 } 1686 1687 // The tentative definition is the only definition. 1688 EmitGlobalVarDefinition(D); 1689 } 1690 1691 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1692 return Context.toCharUnitsFromBits( 1693 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1694 } 1695 1696 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1697 unsigned AddrSpace) { 1698 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1699 if (D->hasAttr<CUDAConstantAttr>()) 1700 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1701 else if (D->hasAttr<CUDASharedAttr>()) 1702 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1703 else 1704 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1705 } 1706 1707 return AddrSpace; 1708 } 1709 1710 template<typename SomeDecl> 1711 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1712 llvm::GlobalValue *GV) { 1713 if (!getLangOpts().CPlusPlus) 1714 return; 1715 1716 // Must have 'used' attribute, or else inline assembly can't rely on 1717 // the name existing. 1718 if (!D->template hasAttr<UsedAttr>()) 1719 return; 1720 1721 // Must have internal linkage and an ordinary name. 1722 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1723 return; 1724 1725 // Must be in an extern "C" context. Entities declared directly within 1726 // a record are not extern "C" even if the record is in such a context. 1727 const SomeDecl *First = D->getFirstDecl(); 1728 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1729 return; 1730 1731 // OK, this is an internal linkage entity inside an extern "C" linkage 1732 // specification. Make a note of that so we can give it the "expected" 1733 // mangled name if nothing else is using that name. 1734 std::pair<StaticExternCMap::iterator, bool> R = 1735 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1736 1737 // If we have multiple internal linkage entities with the same name 1738 // in extern "C" regions, none of them gets that name. 1739 if (!R.second) 1740 R.first->second = nullptr; 1741 } 1742 1743 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1744 llvm::Constant *Init = nullptr; 1745 QualType ASTTy = D->getType(); 1746 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1747 bool NeedsGlobalCtor = false; 1748 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1749 1750 const VarDecl *InitDecl; 1751 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1752 1753 if (!InitExpr) { 1754 // This is a tentative definition; tentative definitions are 1755 // implicitly initialized with { 0 }. 1756 // 1757 // Note that tentative definitions are only emitted at the end of 1758 // a translation unit, so they should never have incomplete 1759 // type. In addition, EmitTentativeDefinition makes sure that we 1760 // never attempt to emit a tentative definition if a real one 1761 // exists. A use may still exists, however, so we still may need 1762 // to do a RAUW. 1763 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1764 Init = EmitNullConstant(D->getType()); 1765 } else { 1766 initializedGlobalDecl = GlobalDecl(D); 1767 Init = EmitConstantInit(*InitDecl); 1768 1769 if (!Init) { 1770 QualType T = InitExpr->getType(); 1771 if (D->getType()->isReferenceType()) 1772 T = D->getType(); 1773 1774 if (getLangOpts().CPlusPlus) { 1775 Init = EmitNullConstant(T); 1776 NeedsGlobalCtor = true; 1777 } else { 1778 ErrorUnsupported(D, "static initializer"); 1779 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1780 } 1781 } else { 1782 // We don't need an initializer, so remove the entry for the delayed 1783 // initializer position (just in case this entry was delayed) if we 1784 // also don't need to register a destructor. 1785 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1786 DelayedCXXInitPosition.erase(D); 1787 } 1788 } 1789 1790 llvm::Type* InitType = Init->getType(); 1791 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1792 1793 // Strip off a bitcast if we got one back. 1794 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1795 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1796 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1797 // All zero index gep. 1798 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1799 Entry = CE->getOperand(0); 1800 } 1801 1802 // Entry is now either a Function or GlobalVariable. 1803 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1804 1805 // We have a definition after a declaration with the wrong type. 1806 // We must make a new GlobalVariable* and update everything that used OldGV 1807 // (a declaration or tentative definition) with the new GlobalVariable* 1808 // (which will be a definition). 1809 // 1810 // This happens if there is a prototype for a global (e.g. 1811 // "extern int x[];") and then a definition of a different type (e.g. 1812 // "int x[10];"). This also happens when an initializer has a different type 1813 // from the type of the global (this happens with unions). 1814 if (!GV || 1815 GV->getType()->getElementType() != InitType || 1816 GV->getType()->getAddressSpace() != 1817 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1818 1819 // Move the old entry aside so that we'll create a new one. 1820 Entry->setName(StringRef()); 1821 1822 // Make a new global with the correct type, this is now guaranteed to work. 1823 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1824 1825 // Replace all uses of the old global with the new global 1826 llvm::Constant *NewPtrForOldDecl = 1827 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1828 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1829 1830 // Erase the old global, since it is no longer used. 1831 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1832 } 1833 1834 MaybeHandleStaticInExternC(D, GV); 1835 1836 if (D->hasAttr<AnnotateAttr>()) 1837 AddGlobalAnnotations(D, GV); 1838 1839 GV->setInitializer(Init); 1840 1841 // If it is safe to mark the global 'constant', do so now. 1842 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1843 isTypeConstant(D->getType(), true)); 1844 1845 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1846 1847 // Set the llvm linkage type as appropriate. 1848 llvm::GlobalValue::LinkageTypes Linkage = 1849 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1850 GV->setLinkage(Linkage); 1851 if (D->hasAttr<DLLImportAttr>()) 1852 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1853 else if (D->hasAttr<DLLExportAttr>()) 1854 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1855 1856 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1857 // common vars aren't constant even if declared const. 1858 GV->setConstant(false); 1859 1860 setNonAliasAttributes(D, GV); 1861 1862 // Emit the initializer function if necessary. 1863 if (NeedsGlobalCtor || NeedsGlobalDtor) 1864 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1865 1866 // If we are compiling with ASan, add metadata indicating dynamically 1867 // initialized globals. 1868 if (SanOpts.Address && NeedsGlobalCtor) { 1869 llvm::Module &M = getModule(); 1870 1871 llvm::NamedMDNode *DynamicInitializers = 1872 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1873 llvm::Value *GlobalToAdd[] = { GV }; 1874 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1875 DynamicInitializers->addOperand(ThisGlobal); 1876 } 1877 1878 // Emit global variable debug information. 1879 if (CGDebugInfo *DI = getModuleDebugInfo()) 1880 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1881 DI->EmitGlobalVariable(GV, D); 1882 } 1883 1884 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 1885 // Don't give variables common linkage if -fno-common was specified unless it 1886 // was overridden by a NoCommon attribute. 1887 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 1888 return true; 1889 1890 // C11 6.9.2/2: 1891 // A declaration of an identifier for an object that has file scope without 1892 // an initializer, and without a storage-class specifier or with the 1893 // storage-class specifier static, constitutes a tentative definition. 1894 if (D->getInit() || D->hasExternalStorage()) 1895 return true; 1896 1897 // A variable cannot be both common and exist in a section. 1898 if (D->hasAttr<SectionAttr>()) 1899 return true; 1900 1901 // Thread local vars aren't considered common linkage. 1902 if (D->getTLSKind()) 1903 return true; 1904 1905 // Tentative definitions marked with WeakImportAttr are true definitions. 1906 if (D->hasAttr<WeakImportAttr>()) 1907 return true; 1908 1909 return false; 1910 } 1911 1912 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 1913 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable, 1914 bool UseThunkForDtorVariant) { 1915 if (Linkage == GVA_Internal) 1916 return llvm::Function::InternalLinkage; 1917 1918 if (D->hasAttr<WeakAttr>()) { 1919 if (IsConstantVariable) 1920 return llvm::GlobalVariable::WeakODRLinkage; 1921 else 1922 return llvm::GlobalVariable::WeakAnyLinkage; 1923 } 1924 1925 // We are guaranteed to have a strong definition somewhere else, 1926 // so we can use available_externally linkage. 1927 if (Linkage == GVA_AvailableExternally) 1928 return llvm::Function::AvailableExternallyLinkage; 1929 1930 // Note that Apple's kernel linker doesn't support symbol 1931 // coalescing, so we need to avoid linkonce and weak linkages there. 1932 // Normally, this means we just map to internal, but for explicit 1933 // instantiations we'll map to external. 1934 1935 // In C++, the compiler has to emit a definition in every translation unit 1936 // that references the function. We should use linkonce_odr because 1937 // a) if all references in this translation unit are optimized away, we 1938 // don't need to codegen it. b) if the function persists, it needs to be 1939 // merged with other definitions. c) C++ has the ODR, so we know the 1940 // definition is dependable. 1941 if (Linkage == GVA_DiscardableODR) 1942 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 1943 : llvm::Function::InternalLinkage; 1944 1945 // An explicit instantiation of a template has weak linkage, since 1946 // explicit instantiations can occur in multiple translation units 1947 // and must all be equivalent. However, we are not allowed to 1948 // throw away these explicit instantiations. 1949 if (Linkage == GVA_StrongODR) 1950 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 1951 : llvm::Function::ExternalLinkage; 1952 1953 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 1954 // emitted on an as-needed basis. 1955 if (UseThunkForDtorVariant) 1956 return llvm::GlobalValue::LinkOnceODRLinkage; 1957 1958 // If required by the ABI, give definitions of static data members with inline 1959 // initializers at least linkonce_odr linkage. 1960 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1961 isa<VarDecl>(D) && 1962 isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D))) 1963 return llvm::GlobalValue::LinkOnceODRLinkage; 1964 1965 // C++ doesn't have tentative definitions and thus cannot have common 1966 // linkage. 1967 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 1968 !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon)) 1969 return llvm::GlobalVariable::CommonLinkage; 1970 1971 // selectany symbols are externally visible, so use weak instead of 1972 // linkonce. MSVC optimizes away references to const selectany globals, so 1973 // all definitions should be the same and ODR linkage should be used. 1974 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1975 if (D->hasAttr<SelectAnyAttr>()) 1976 return llvm::GlobalVariable::WeakODRLinkage; 1977 1978 // Otherwise, we have strong external linkage. 1979 assert(Linkage == GVA_StrongExternal); 1980 return llvm::GlobalVariable::ExternalLinkage; 1981 } 1982 1983 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 1984 const VarDecl *VD, bool IsConstant) { 1985 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 1986 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant, 1987 /*UseThunkForDtorVariant=*/false); 1988 } 1989 1990 /// Replace the uses of a function that was declared with a non-proto type. 1991 /// We want to silently drop extra arguments from call sites 1992 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1993 llvm::Function *newFn) { 1994 // Fast path. 1995 if (old->use_empty()) return; 1996 1997 llvm::Type *newRetTy = newFn->getReturnType(); 1998 SmallVector<llvm::Value*, 4> newArgs; 1999 2000 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2001 ui != ue; ) { 2002 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2003 llvm::User *user = use->getUser(); 2004 2005 // Recognize and replace uses of bitcasts. Most calls to 2006 // unprototyped functions will use bitcasts. 2007 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2008 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2009 replaceUsesOfNonProtoConstant(bitcast, newFn); 2010 continue; 2011 } 2012 2013 // Recognize calls to the function. 2014 llvm::CallSite callSite(user); 2015 if (!callSite) continue; 2016 if (!callSite.isCallee(&*use)) continue; 2017 2018 // If the return types don't match exactly, then we can't 2019 // transform this call unless it's dead. 2020 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2021 continue; 2022 2023 // Get the call site's attribute list. 2024 SmallVector<llvm::AttributeSet, 8> newAttrs; 2025 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2026 2027 // Collect any return attributes from the call. 2028 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2029 newAttrs.push_back( 2030 llvm::AttributeSet::get(newFn->getContext(), 2031 oldAttrs.getRetAttributes())); 2032 2033 // If the function was passed too few arguments, don't transform. 2034 unsigned newNumArgs = newFn->arg_size(); 2035 if (callSite.arg_size() < newNumArgs) continue; 2036 2037 // If extra arguments were passed, we silently drop them. 2038 // If any of the types mismatch, we don't transform. 2039 unsigned argNo = 0; 2040 bool dontTransform = false; 2041 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2042 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2043 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2044 dontTransform = true; 2045 break; 2046 } 2047 2048 // Add any parameter attributes. 2049 if (oldAttrs.hasAttributes(argNo + 1)) 2050 newAttrs. 2051 push_back(llvm:: 2052 AttributeSet::get(newFn->getContext(), 2053 oldAttrs.getParamAttributes(argNo + 1))); 2054 } 2055 if (dontTransform) 2056 continue; 2057 2058 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2059 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2060 oldAttrs.getFnAttributes())); 2061 2062 // Okay, we can transform this. Create the new call instruction and copy 2063 // over the required information. 2064 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2065 2066 llvm::CallSite newCall; 2067 if (callSite.isCall()) { 2068 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2069 callSite.getInstruction()); 2070 } else { 2071 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2072 newCall = llvm::InvokeInst::Create(newFn, 2073 oldInvoke->getNormalDest(), 2074 oldInvoke->getUnwindDest(), 2075 newArgs, "", 2076 callSite.getInstruction()); 2077 } 2078 newArgs.clear(); // for the next iteration 2079 2080 if (!newCall->getType()->isVoidTy()) 2081 newCall->takeName(callSite.getInstruction()); 2082 newCall.setAttributes( 2083 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2084 newCall.setCallingConv(callSite.getCallingConv()); 2085 2086 // Finally, remove the old call, replacing any uses with the new one. 2087 if (!callSite->use_empty()) 2088 callSite->replaceAllUsesWith(newCall.getInstruction()); 2089 2090 // Copy debug location attached to CI. 2091 if (!callSite->getDebugLoc().isUnknown()) 2092 newCall->setDebugLoc(callSite->getDebugLoc()); 2093 callSite->eraseFromParent(); 2094 } 2095 } 2096 2097 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2098 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2099 /// existing call uses of the old function in the module, this adjusts them to 2100 /// call the new function directly. 2101 /// 2102 /// This is not just a cleanup: the always_inline pass requires direct calls to 2103 /// functions to be able to inline them. If there is a bitcast in the way, it 2104 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2105 /// run at -O0. 2106 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2107 llvm::Function *NewFn) { 2108 // If we're redefining a global as a function, don't transform it. 2109 if (!isa<llvm::Function>(Old)) return; 2110 2111 replaceUsesOfNonProtoConstant(Old, NewFn); 2112 } 2113 2114 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2115 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2116 // If we have a definition, this might be a deferred decl. If the 2117 // instantiation is explicit, make sure we emit it at the end. 2118 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2119 GetAddrOfGlobalVar(VD); 2120 2121 EmitTopLevelDecl(VD); 2122 } 2123 2124 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2125 llvm::GlobalValue *GV) { 2126 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2127 2128 // Compute the function info and LLVM type. 2129 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2130 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2131 2132 // Get or create the prototype for the function. 2133 if (!GV) { 2134 llvm::Constant *C = 2135 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2136 2137 // Strip off a bitcast if we got one back. 2138 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2139 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2140 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2141 } else { 2142 GV = cast<llvm::GlobalValue>(C); 2143 } 2144 } 2145 2146 if (!GV->isDeclaration()) { 2147 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2148 return; 2149 } 2150 2151 if (GV->getType()->getElementType() != Ty) { 2152 // If the types mismatch then we have to rewrite the definition. 2153 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2154 2155 // F is the Function* for the one with the wrong type, we must make a new 2156 // Function* and update everything that used F (a declaration) with the new 2157 // Function* (which will be a definition). 2158 // 2159 // This happens if there is a prototype for a function 2160 // (e.g. "int f()") and then a definition of a different type 2161 // (e.g. "int f(int x)"). Move the old function aside so that it 2162 // doesn't interfere with GetAddrOfFunction. 2163 GV->setName(StringRef()); 2164 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2165 2166 // This might be an implementation of a function without a 2167 // prototype, in which case, try to do special replacement of 2168 // calls which match the new prototype. The really key thing here 2169 // is that we also potentially drop arguments from the call site 2170 // so as to make a direct call, which makes the inliner happier 2171 // and suppresses a number of optimizer warnings (!) about 2172 // dropping arguments. 2173 if (!GV->use_empty()) { 2174 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2175 GV->removeDeadConstantUsers(); 2176 } 2177 2178 // Replace uses of F with the Function we will endow with a body. 2179 if (!GV->use_empty()) { 2180 llvm::Constant *NewPtrForOldDecl = 2181 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2182 GV->replaceAllUsesWith(NewPtrForOldDecl); 2183 } 2184 2185 // Ok, delete the old function now, which is dead. 2186 GV->eraseFromParent(); 2187 2188 GV = NewFn; 2189 } 2190 2191 // We need to set linkage and visibility on the function before 2192 // generating code for it because various parts of IR generation 2193 // want to propagate this information down (e.g. to local static 2194 // declarations). 2195 auto *Fn = cast<llvm::Function>(GV); 2196 setFunctionLinkage(GD, Fn); 2197 2198 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2199 setGlobalVisibility(Fn, D); 2200 2201 MaybeHandleStaticInExternC(D, Fn); 2202 2203 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2204 2205 setFunctionDefinitionAttributes(D, Fn); 2206 SetLLVMFunctionAttributesForDefinition(D, Fn); 2207 2208 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2209 AddGlobalCtor(Fn, CA->getPriority()); 2210 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2211 AddGlobalDtor(Fn, DA->getPriority()); 2212 if (D->hasAttr<AnnotateAttr>()) 2213 AddGlobalAnnotations(D, Fn); 2214 } 2215 2216 static llvm::GlobalObject &getGlobalObjectInExpr(DiagnosticsEngine &Diags, 2217 const AliasAttr *AA, 2218 llvm::Constant *C) { 2219 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 2220 return *GO; 2221 2222 auto *GA = dyn_cast<llvm::GlobalAlias>(C); 2223 if (GA) { 2224 if (GA->mayBeOverridden()) { 2225 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 2226 << GA->getAliasee()->getName() << GA->getName(); 2227 } 2228 2229 return *GA->getAliasee(); 2230 } 2231 2232 auto *CE = cast<llvm::ConstantExpr>(C); 2233 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2234 CE->getOpcode() == llvm::Instruction::GetElementPtr || 2235 CE->getOpcode() == llvm::Instruction::AddrSpaceCast); 2236 return *cast<llvm::GlobalObject>(CE->getOperand(0)); 2237 } 2238 2239 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2240 const auto *D = cast<ValueDecl>(GD.getDecl()); 2241 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2242 assert(AA && "Not an alias?"); 2243 2244 StringRef MangledName = getMangledName(GD); 2245 2246 // If there is a definition in the module, then it wins over the alias. 2247 // This is dubious, but allow it to be safe. Just ignore the alias. 2248 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2249 if (Entry && !Entry->isDeclaration()) 2250 return; 2251 2252 Aliases.push_back(GD); 2253 2254 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2255 2256 // Create a reference to the named value. This ensures that it is emitted 2257 // if a deferred decl. 2258 llvm::Constant *Aliasee; 2259 if (isa<llvm::FunctionType>(DeclTy)) 2260 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2261 /*ForVTable=*/false); 2262 else 2263 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2264 llvm::PointerType::getUnqual(DeclTy), 2265 nullptr); 2266 2267 // Create the new alias itself, but don't set a name yet. 2268 auto *GA = llvm::GlobalAlias::create( 2269 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2270 llvm::Function::ExternalLinkage, "", 2271 &getGlobalObjectInExpr(Diags, AA, Aliasee)); 2272 2273 if (Entry) { 2274 if (GA->getAliasee() == Entry) { 2275 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2276 return; 2277 } 2278 2279 assert(Entry->isDeclaration()); 2280 2281 // If there is a declaration in the module, then we had an extern followed 2282 // by the alias, as in: 2283 // extern int test6(); 2284 // ... 2285 // int test6() __attribute__((alias("test7"))); 2286 // 2287 // Remove it and replace uses of it with the alias. 2288 GA->takeName(Entry); 2289 2290 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2291 Entry->getType())); 2292 Entry->eraseFromParent(); 2293 } else { 2294 GA->setName(MangledName); 2295 } 2296 2297 // Set attributes which are particular to an alias; this is a 2298 // specialization of the attributes which may be set on a global 2299 // variable/function. 2300 if (D->hasAttr<DLLExportAttr>()) { 2301 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2302 // The dllexport attribute is ignored for undefined symbols. 2303 if (FD->hasBody()) 2304 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2305 } else { 2306 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2307 } 2308 } else if (D->hasAttr<WeakAttr>() || 2309 D->hasAttr<WeakRefAttr>() || 2310 D->isWeakImported()) { 2311 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2312 } 2313 2314 SetCommonAttributes(D, GA); 2315 } 2316 2317 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2318 ArrayRef<llvm::Type*> Tys) { 2319 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2320 Tys); 2321 } 2322 2323 static llvm::StringMapEntry<llvm::Constant*> & 2324 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2325 const StringLiteral *Literal, 2326 bool TargetIsLSB, 2327 bool &IsUTF16, 2328 unsigned &StringLength) { 2329 StringRef String = Literal->getString(); 2330 unsigned NumBytes = String.size(); 2331 2332 // Check for simple case. 2333 if (!Literal->containsNonAsciiOrNull()) { 2334 StringLength = NumBytes; 2335 return Map.GetOrCreateValue(String); 2336 } 2337 2338 // Otherwise, convert the UTF8 literals into a string of shorts. 2339 IsUTF16 = true; 2340 2341 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2342 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2343 UTF16 *ToPtr = &ToBuf[0]; 2344 2345 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2346 &ToPtr, ToPtr + NumBytes, 2347 strictConversion); 2348 2349 // ConvertUTF8toUTF16 returns the length in ToPtr. 2350 StringLength = ToPtr - &ToBuf[0]; 2351 2352 // Add an explicit null. 2353 *ToPtr = 0; 2354 return Map. 2355 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2356 (StringLength + 1) * 2)); 2357 } 2358 2359 static llvm::StringMapEntry<llvm::Constant*> & 2360 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2361 const StringLiteral *Literal, 2362 unsigned &StringLength) { 2363 StringRef String = Literal->getString(); 2364 StringLength = String.size(); 2365 return Map.GetOrCreateValue(String); 2366 } 2367 2368 llvm::Constant * 2369 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2370 unsigned StringLength = 0; 2371 bool isUTF16 = false; 2372 llvm::StringMapEntry<llvm::Constant*> &Entry = 2373 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2374 getDataLayout().isLittleEndian(), 2375 isUTF16, StringLength); 2376 2377 if (llvm::Constant *C = Entry.getValue()) 2378 return C; 2379 2380 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2381 llvm::Constant *Zeros[] = { Zero, Zero }; 2382 llvm::Value *V; 2383 2384 // If we don't already have it, get __CFConstantStringClassReference. 2385 if (!CFConstantStringClassRef) { 2386 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2387 Ty = llvm::ArrayType::get(Ty, 0); 2388 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2389 "__CFConstantStringClassReference"); 2390 // Decay array -> ptr 2391 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2392 CFConstantStringClassRef = V; 2393 } 2394 else 2395 V = CFConstantStringClassRef; 2396 2397 QualType CFTy = getContext().getCFConstantStringType(); 2398 2399 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2400 2401 llvm::Constant *Fields[4]; 2402 2403 // Class pointer. 2404 Fields[0] = cast<llvm::ConstantExpr>(V); 2405 2406 // Flags. 2407 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2408 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2409 llvm::ConstantInt::get(Ty, 0x07C8); 2410 2411 // String pointer. 2412 llvm::Constant *C = nullptr; 2413 if (isUTF16) { 2414 ArrayRef<uint16_t> Arr = 2415 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2416 const_cast<char *>(Entry.getKey().data())), 2417 Entry.getKey().size() / 2); 2418 C = llvm::ConstantDataArray::get(VMContext, Arr); 2419 } else { 2420 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2421 } 2422 2423 // Note: -fwritable-strings doesn't make the backing store strings of 2424 // CFStrings writable. (See <rdar://problem/10657500>) 2425 auto *GV = 2426 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2427 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2428 GV->setUnnamedAddr(true); 2429 // Don't enforce the target's minimum global alignment, since the only use 2430 // of the string is via this class initializer. 2431 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2432 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2433 // that changes the section it ends in, which surprises ld64. 2434 if (isUTF16) { 2435 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2436 GV->setAlignment(Align.getQuantity()); 2437 GV->setSection("__TEXT,__ustring"); 2438 } else { 2439 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2440 GV->setAlignment(Align.getQuantity()); 2441 GV->setSection("__TEXT,__cstring,cstring_literals"); 2442 } 2443 2444 // String. 2445 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2446 2447 if (isUTF16) 2448 // Cast the UTF16 string to the correct type. 2449 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2450 2451 // String length. 2452 Ty = getTypes().ConvertType(getContext().LongTy); 2453 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2454 2455 // The struct. 2456 C = llvm::ConstantStruct::get(STy, Fields); 2457 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2458 llvm::GlobalVariable::PrivateLinkage, C, 2459 "_unnamed_cfstring_"); 2460 GV->setSection("__DATA,__cfstring"); 2461 Entry.setValue(GV); 2462 2463 return GV; 2464 } 2465 2466 llvm::Constant * 2467 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2468 unsigned StringLength = 0; 2469 llvm::StringMapEntry<llvm::Constant*> &Entry = 2470 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2471 2472 if (llvm::Constant *C = Entry.getValue()) 2473 return C; 2474 2475 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2476 llvm::Constant *Zeros[] = { Zero, Zero }; 2477 llvm::Value *V; 2478 // If we don't already have it, get _NSConstantStringClassReference. 2479 if (!ConstantStringClassRef) { 2480 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2481 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2482 llvm::Constant *GV; 2483 if (LangOpts.ObjCRuntime.isNonFragile()) { 2484 std::string str = 2485 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2486 : "OBJC_CLASS_$_" + StringClass; 2487 GV = getObjCRuntime().GetClassGlobal(str); 2488 // Make sure the result is of the correct type. 2489 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2490 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2491 ConstantStringClassRef = V; 2492 } else { 2493 std::string str = 2494 StringClass.empty() ? "_NSConstantStringClassReference" 2495 : "_" + StringClass + "ClassReference"; 2496 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2497 GV = CreateRuntimeVariable(PTy, str); 2498 // Decay array -> ptr 2499 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2500 ConstantStringClassRef = V; 2501 } 2502 } 2503 else 2504 V = ConstantStringClassRef; 2505 2506 if (!NSConstantStringType) { 2507 // Construct the type for a constant NSString. 2508 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2509 D->startDefinition(); 2510 2511 QualType FieldTypes[3]; 2512 2513 // const int *isa; 2514 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2515 // const char *str; 2516 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2517 // unsigned int length; 2518 FieldTypes[2] = Context.UnsignedIntTy; 2519 2520 // Create fields 2521 for (unsigned i = 0; i < 3; ++i) { 2522 FieldDecl *Field = FieldDecl::Create(Context, D, 2523 SourceLocation(), 2524 SourceLocation(), nullptr, 2525 FieldTypes[i], /*TInfo=*/nullptr, 2526 /*BitWidth=*/nullptr, 2527 /*Mutable=*/false, 2528 ICIS_NoInit); 2529 Field->setAccess(AS_public); 2530 D->addDecl(Field); 2531 } 2532 2533 D->completeDefinition(); 2534 QualType NSTy = Context.getTagDeclType(D); 2535 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2536 } 2537 2538 llvm::Constant *Fields[3]; 2539 2540 // Class pointer. 2541 Fields[0] = cast<llvm::ConstantExpr>(V); 2542 2543 // String pointer. 2544 llvm::Constant *C = 2545 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2546 2547 llvm::GlobalValue::LinkageTypes Linkage; 2548 bool isConstant; 2549 Linkage = llvm::GlobalValue::PrivateLinkage; 2550 isConstant = !LangOpts.WritableStrings; 2551 2552 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2553 Linkage, C, ".str"); 2554 GV->setUnnamedAddr(true); 2555 // Don't enforce the target's minimum global alignment, since the only use 2556 // of the string is via this class initializer. 2557 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2558 GV->setAlignment(Align.getQuantity()); 2559 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2560 2561 // String length. 2562 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2563 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2564 2565 // The struct. 2566 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2567 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2568 llvm::GlobalVariable::PrivateLinkage, C, 2569 "_unnamed_nsstring_"); 2570 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2571 const char *NSStringNonFragileABISection = 2572 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2573 // FIXME. Fix section. 2574 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2575 ? NSStringNonFragileABISection 2576 : NSStringSection); 2577 Entry.setValue(GV); 2578 2579 return GV; 2580 } 2581 2582 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2583 if (ObjCFastEnumerationStateType.isNull()) { 2584 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2585 D->startDefinition(); 2586 2587 QualType FieldTypes[] = { 2588 Context.UnsignedLongTy, 2589 Context.getPointerType(Context.getObjCIdType()), 2590 Context.getPointerType(Context.UnsignedLongTy), 2591 Context.getConstantArrayType(Context.UnsignedLongTy, 2592 llvm::APInt(32, 5), ArrayType::Normal, 0) 2593 }; 2594 2595 for (size_t i = 0; i < 4; ++i) { 2596 FieldDecl *Field = FieldDecl::Create(Context, 2597 D, 2598 SourceLocation(), 2599 SourceLocation(), nullptr, 2600 FieldTypes[i], /*TInfo=*/nullptr, 2601 /*BitWidth=*/nullptr, 2602 /*Mutable=*/false, 2603 ICIS_NoInit); 2604 Field->setAccess(AS_public); 2605 D->addDecl(Field); 2606 } 2607 2608 D->completeDefinition(); 2609 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2610 } 2611 2612 return ObjCFastEnumerationStateType; 2613 } 2614 2615 llvm::Constant * 2616 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2617 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2618 2619 // Don't emit it as the address of the string, emit the string data itself 2620 // as an inline array. 2621 if (E->getCharByteWidth() == 1) { 2622 SmallString<64> Str(E->getString()); 2623 2624 // Resize the string to the right size, which is indicated by its type. 2625 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2626 Str.resize(CAT->getSize().getZExtValue()); 2627 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2628 } 2629 2630 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2631 llvm::Type *ElemTy = AType->getElementType(); 2632 unsigned NumElements = AType->getNumElements(); 2633 2634 // Wide strings have either 2-byte or 4-byte elements. 2635 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2636 SmallVector<uint16_t, 32> Elements; 2637 Elements.reserve(NumElements); 2638 2639 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2640 Elements.push_back(E->getCodeUnit(i)); 2641 Elements.resize(NumElements); 2642 return llvm::ConstantDataArray::get(VMContext, Elements); 2643 } 2644 2645 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2646 SmallVector<uint32_t, 32> Elements; 2647 Elements.reserve(NumElements); 2648 2649 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2650 Elements.push_back(E->getCodeUnit(i)); 2651 Elements.resize(NumElements); 2652 return llvm::ConstantDataArray::get(VMContext, Elements); 2653 } 2654 2655 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2656 /// constant array for the given string literal. 2657 llvm::Constant * 2658 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2659 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2660 2661 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2662 llvm::GlobalVariable *GV = nullptr; 2663 if (!LangOpts.WritableStrings) { 2664 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2665 switch (S->getCharByteWidth()) { 2666 case 1: 2667 ConstantStringMap = &Constant1ByteStringMap; 2668 break; 2669 case 2: 2670 ConstantStringMap = &Constant2ByteStringMap; 2671 break; 2672 case 4: 2673 ConstantStringMap = &Constant4ByteStringMap; 2674 break; 2675 default: 2676 llvm_unreachable("unhandled byte width!"); 2677 } 2678 Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes()); 2679 GV = Entry->getValue(); 2680 } 2681 2682 if (!GV) { 2683 SmallString<256> MangledNameBuffer; 2684 StringRef GlobalVariableName; 2685 llvm::GlobalValue::LinkageTypes LT; 2686 2687 // Mangle the string literal if the ABI allows for it. However, we cannot 2688 // do this if we are compiling with ASan or -fwritable-strings because they 2689 // rely on strings having normal linkage. 2690 if (!LangOpts.WritableStrings && !SanOpts.Address && 2691 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2692 llvm::raw_svector_ostream Out(MangledNameBuffer); 2693 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2694 Out.flush(); 2695 2696 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2697 GlobalVariableName = MangledNameBuffer; 2698 } else { 2699 LT = llvm::GlobalValue::PrivateLinkage; 2700 GlobalVariableName = ".str"; 2701 } 2702 2703 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2704 unsigned AddrSpace = 0; 2705 if (getLangOpts().OpenCL) 2706 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant); 2707 2708 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2709 GV = new llvm::GlobalVariable( 2710 getModule(), C->getType(), !LangOpts.WritableStrings, LT, C, 2711 GlobalVariableName, /*InsertBefore=*/nullptr, 2712 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2713 GV->setUnnamedAddr(true); 2714 if (Entry) 2715 Entry->setValue(GV); 2716 } 2717 2718 if (Align.getQuantity() > GV->getAlignment()) 2719 GV->setAlignment(Align.getQuantity()); 2720 2721 return GV; 2722 } 2723 2724 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2725 /// array for the given ObjCEncodeExpr node. 2726 llvm::Constant * 2727 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2728 std::string Str; 2729 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2730 2731 return GetAddrOfConstantCString(Str); 2732 } 2733 2734 2735 /// GenerateWritableString -- Creates storage for a string literal. 2736 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2737 bool constant, 2738 CodeGenModule &CGM, 2739 const char *GlobalName, 2740 unsigned Alignment) { 2741 // Create Constant for this string literal. Don't add a '\0'. 2742 llvm::Constant *C = 2743 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2744 2745 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2746 unsigned AddrSpace = 0; 2747 if (CGM.getLangOpts().OpenCL) 2748 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2749 2750 // Create a global variable for this string 2751 auto *GV = new llvm::GlobalVariable( 2752 CGM.getModule(), C->getType(), constant, 2753 llvm::GlobalValue::PrivateLinkage, C, GlobalName, nullptr, 2754 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2755 GV->setAlignment(Alignment); 2756 GV->setUnnamedAddr(true); 2757 return GV; 2758 } 2759 2760 /// GetAddrOfConstantString - Returns a pointer to a character array 2761 /// containing the literal. This contents are exactly that of the 2762 /// given string, i.e. it will not be null terminated automatically; 2763 /// see GetAddrOfConstantCString. Note that whether the result is 2764 /// actually a pointer to an LLVM constant depends on 2765 /// Feature.WriteableStrings. 2766 /// 2767 /// The result has pointer to array type. 2768 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2769 const char *GlobalName, 2770 unsigned Alignment) { 2771 // Get the default prefix if a name wasn't specified. 2772 if (!GlobalName) 2773 GlobalName = ".str"; 2774 2775 if (Alignment == 0) 2776 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2777 .getQuantity(); 2778 2779 // Don't share any string literals if strings aren't constant. 2780 if (LangOpts.WritableStrings) 2781 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2782 2783 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2784 Constant1ByteStringMap.GetOrCreateValue(Str); 2785 2786 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2787 if (Alignment > GV->getAlignment()) { 2788 GV->setAlignment(Alignment); 2789 } 2790 return GV; 2791 } 2792 2793 // Create a global variable for this. 2794 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2795 Alignment); 2796 Entry.setValue(GV); 2797 return GV; 2798 } 2799 2800 /// GetAddrOfConstantCString - Returns a pointer to a character 2801 /// array containing the literal and a terminating '\0' 2802 /// character. The result has pointer to array type. 2803 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2804 const char *GlobalName, 2805 unsigned Alignment) { 2806 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2807 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2808 } 2809 2810 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2811 const MaterializeTemporaryExpr *E, const Expr *Init) { 2812 assert((E->getStorageDuration() == SD_Static || 2813 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2814 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2815 2816 // If we're not materializing a subobject of the temporary, keep the 2817 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2818 QualType MaterializedType = Init->getType(); 2819 if (Init == E->GetTemporaryExpr()) 2820 MaterializedType = E->getType(); 2821 2822 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2823 if (Slot) 2824 return Slot; 2825 2826 // FIXME: If an externally-visible declaration extends multiple temporaries, 2827 // we need to give each temporary the same name in every translation unit (and 2828 // we also need to make the temporaries externally-visible). 2829 SmallString<256> Name; 2830 llvm::raw_svector_ostream Out(Name); 2831 getCXXABI().getMangleContext().mangleReferenceTemporary( 2832 VD, E->getManglingNumber(), Out); 2833 Out.flush(); 2834 2835 APValue *Value = nullptr; 2836 if (E->getStorageDuration() == SD_Static) { 2837 // We might have a cached constant initializer for this temporary. Note 2838 // that this might have a different value from the value computed by 2839 // evaluating the initializer if the surrounding constant expression 2840 // modifies the temporary. 2841 Value = getContext().getMaterializedTemporaryValue(E, false); 2842 if (Value && Value->isUninit()) 2843 Value = nullptr; 2844 } 2845 2846 // Try evaluating it now, it might have a constant initializer. 2847 Expr::EvalResult EvalResult; 2848 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2849 !EvalResult.hasSideEffects()) 2850 Value = &EvalResult.Val; 2851 2852 llvm::Constant *InitialValue = nullptr; 2853 bool Constant = false; 2854 llvm::Type *Type; 2855 if (Value) { 2856 // The temporary has a constant initializer, use it. 2857 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2858 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2859 Type = InitialValue->getType(); 2860 } else { 2861 // No initializer, the initialization will be provided when we 2862 // initialize the declaration which performed lifetime extension. 2863 Type = getTypes().ConvertTypeForMem(MaterializedType); 2864 } 2865 2866 // Create a global variable for this lifetime-extended temporary. 2867 llvm::GlobalValue::LinkageTypes Linkage = 2868 getLLVMLinkageVarDefinition(VD, Constant); 2869 // There is no need for this temporary to have global linkage if the global 2870 // variable has external linkage. 2871 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2872 Linkage = llvm::GlobalVariable::PrivateLinkage; 2873 unsigned AddrSpace = GetGlobalVarAddressSpace( 2874 VD, getContext().getTargetAddressSpace(MaterializedType)); 2875 auto *GV = new llvm::GlobalVariable( 2876 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2877 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2878 AddrSpace); 2879 setGlobalVisibility(GV, VD); 2880 GV->setAlignment( 2881 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2882 if (VD->getTLSKind()) 2883 setTLSMode(GV, *VD); 2884 Slot = GV; 2885 return GV; 2886 } 2887 2888 /// EmitObjCPropertyImplementations - Emit information for synthesized 2889 /// properties for an implementation. 2890 void CodeGenModule::EmitObjCPropertyImplementations(const 2891 ObjCImplementationDecl *D) { 2892 for (const auto *PID : D->property_impls()) { 2893 // Dynamic is just for type-checking. 2894 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2895 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2896 2897 // Determine which methods need to be implemented, some may have 2898 // been overridden. Note that ::isPropertyAccessor is not the method 2899 // we want, that just indicates if the decl came from a 2900 // property. What we want to know is if the method is defined in 2901 // this implementation. 2902 if (!D->getInstanceMethod(PD->getGetterName())) 2903 CodeGenFunction(*this).GenerateObjCGetter( 2904 const_cast<ObjCImplementationDecl *>(D), PID); 2905 if (!PD->isReadOnly() && 2906 !D->getInstanceMethod(PD->getSetterName())) 2907 CodeGenFunction(*this).GenerateObjCSetter( 2908 const_cast<ObjCImplementationDecl *>(D), PID); 2909 } 2910 } 2911 } 2912 2913 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2914 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2915 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2916 ivar; ivar = ivar->getNextIvar()) 2917 if (ivar->getType().isDestructedType()) 2918 return true; 2919 2920 return false; 2921 } 2922 2923 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2924 /// for an implementation. 2925 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2926 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2927 if (needsDestructMethod(D)) { 2928 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2929 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2930 ObjCMethodDecl *DTORMethod = 2931 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2932 cxxSelector, getContext().VoidTy, nullptr, D, 2933 /*isInstance=*/true, /*isVariadic=*/false, 2934 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2935 /*isDefined=*/false, ObjCMethodDecl::Required); 2936 D->addInstanceMethod(DTORMethod); 2937 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2938 D->setHasDestructors(true); 2939 } 2940 2941 // If the implementation doesn't have any ivar initializers, we don't need 2942 // a .cxx_construct. 2943 if (D->getNumIvarInitializers() == 0) 2944 return; 2945 2946 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2947 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2948 // The constructor returns 'self'. 2949 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2950 D->getLocation(), 2951 D->getLocation(), 2952 cxxSelector, 2953 getContext().getObjCIdType(), 2954 nullptr, D, /*isInstance=*/true, 2955 /*isVariadic=*/false, 2956 /*isPropertyAccessor=*/true, 2957 /*isImplicitlyDeclared=*/true, 2958 /*isDefined=*/false, 2959 ObjCMethodDecl::Required); 2960 D->addInstanceMethod(CTORMethod); 2961 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2962 D->setHasNonZeroConstructors(true); 2963 } 2964 2965 /// EmitNamespace - Emit all declarations in a namespace. 2966 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2967 for (auto *I : ND->decls()) { 2968 if (const auto *VD = dyn_cast<VarDecl>(I)) 2969 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2970 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2971 continue; 2972 EmitTopLevelDecl(I); 2973 } 2974 } 2975 2976 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2977 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2978 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2979 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2980 ErrorUnsupported(LSD, "linkage spec"); 2981 return; 2982 } 2983 2984 for (auto *I : LSD->decls()) { 2985 // Meta-data for ObjC class includes references to implemented methods. 2986 // Generate class's method definitions first. 2987 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 2988 for (auto *M : OID->methods()) 2989 EmitTopLevelDecl(M); 2990 } 2991 EmitTopLevelDecl(I); 2992 } 2993 } 2994 2995 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2996 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2997 // Ignore dependent declarations. 2998 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2999 return; 3000 3001 switch (D->getKind()) { 3002 case Decl::CXXConversion: 3003 case Decl::CXXMethod: 3004 case Decl::Function: 3005 // Skip function templates 3006 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3007 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3008 return; 3009 3010 EmitGlobal(cast<FunctionDecl>(D)); 3011 break; 3012 3013 case Decl::Var: 3014 // Skip variable templates 3015 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3016 return; 3017 case Decl::VarTemplateSpecialization: 3018 EmitGlobal(cast<VarDecl>(D)); 3019 break; 3020 3021 // Indirect fields from global anonymous structs and unions can be 3022 // ignored; only the actual variable requires IR gen support. 3023 case Decl::IndirectField: 3024 break; 3025 3026 // C++ Decls 3027 case Decl::Namespace: 3028 EmitNamespace(cast<NamespaceDecl>(D)); 3029 break; 3030 // No code generation needed. 3031 case Decl::UsingShadow: 3032 case Decl::ClassTemplate: 3033 case Decl::VarTemplate: 3034 case Decl::VarTemplatePartialSpecialization: 3035 case Decl::FunctionTemplate: 3036 case Decl::TypeAliasTemplate: 3037 case Decl::Block: 3038 case Decl::Empty: 3039 break; 3040 case Decl::Using: // using X; [C++] 3041 if (CGDebugInfo *DI = getModuleDebugInfo()) 3042 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3043 return; 3044 case Decl::NamespaceAlias: 3045 if (CGDebugInfo *DI = getModuleDebugInfo()) 3046 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3047 return; 3048 case Decl::UsingDirective: // using namespace X; [C++] 3049 if (CGDebugInfo *DI = getModuleDebugInfo()) 3050 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3051 return; 3052 case Decl::CXXConstructor: 3053 // Skip function templates 3054 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3055 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3056 return; 3057 3058 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3059 break; 3060 case Decl::CXXDestructor: 3061 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3062 return; 3063 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3064 break; 3065 3066 case Decl::StaticAssert: 3067 // Nothing to do. 3068 break; 3069 3070 // Objective-C Decls 3071 3072 // Forward declarations, no (immediate) code generation. 3073 case Decl::ObjCInterface: 3074 case Decl::ObjCCategory: 3075 break; 3076 3077 case Decl::ObjCProtocol: { 3078 auto *Proto = cast<ObjCProtocolDecl>(D); 3079 if (Proto->isThisDeclarationADefinition()) 3080 ObjCRuntime->GenerateProtocol(Proto); 3081 break; 3082 } 3083 3084 case Decl::ObjCCategoryImpl: 3085 // Categories have properties but don't support synthesize so we 3086 // can ignore them here. 3087 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3088 break; 3089 3090 case Decl::ObjCImplementation: { 3091 auto *OMD = cast<ObjCImplementationDecl>(D); 3092 EmitObjCPropertyImplementations(OMD); 3093 EmitObjCIvarInitializations(OMD); 3094 ObjCRuntime->GenerateClass(OMD); 3095 // Emit global variable debug information. 3096 if (CGDebugInfo *DI = getModuleDebugInfo()) 3097 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3098 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3099 OMD->getClassInterface()), OMD->getLocation()); 3100 break; 3101 } 3102 case Decl::ObjCMethod: { 3103 auto *OMD = cast<ObjCMethodDecl>(D); 3104 // If this is not a prototype, emit the body. 3105 if (OMD->getBody()) 3106 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3107 break; 3108 } 3109 case Decl::ObjCCompatibleAlias: 3110 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3111 break; 3112 3113 case Decl::LinkageSpec: 3114 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3115 break; 3116 3117 case Decl::FileScopeAsm: { 3118 auto *AD = cast<FileScopeAsmDecl>(D); 3119 StringRef AsmString = AD->getAsmString()->getString(); 3120 3121 const std::string &S = getModule().getModuleInlineAsm(); 3122 if (S.empty()) 3123 getModule().setModuleInlineAsm(AsmString); 3124 else if (S.end()[-1] == '\n') 3125 getModule().setModuleInlineAsm(S + AsmString.str()); 3126 else 3127 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3128 break; 3129 } 3130 3131 case Decl::Import: { 3132 auto *Import = cast<ImportDecl>(D); 3133 3134 // Ignore import declarations that come from imported modules. 3135 if (clang::Module *Owner = Import->getOwningModule()) { 3136 if (getLangOpts().CurrentModule.empty() || 3137 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3138 break; 3139 } 3140 3141 ImportedModules.insert(Import->getImportedModule()); 3142 break; 3143 } 3144 3145 case Decl::ClassTemplateSpecialization: { 3146 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3147 if (DebugInfo && 3148 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3149 DebugInfo->completeTemplateDefinition(*Spec); 3150 } 3151 3152 default: 3153 // Make sure we handled everything we should, every other kind is a 3154 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3155 // function. Need to recode Decl::Kind to do that easily. 3156 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3157 } 3158 } 3159 3160 /// Turns the given pointer into a constant. 3161 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3162 const void *Ptr) { 3163 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3164 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3165 return llvm::ConstantInt::get(i64, PtrInt); 3166 } 3167 3168 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3169 llvm::NamedMDNode *&GlobalMetadata, 3170 GlobalDecl D, 3171 llvm::GlobalValue *Addr) { 3172 if (!GlobalMetadata) 3173 GlobalMetadata = 3174 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3175 3176 // TODO: should we report variant information for ctors/dtors? 3177 llvm::Value *Ops[] = { 3178 Addr, 3179 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3180 }; 3181 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3182 } 3183 3184 /// For each function which is declared within an extern "C" region and marked 3185 /// as 'used', but has internal linkage, create an alias from the unmangled 3186 /// name to the mangled name if possible. People expect to be able to refer 3187 /// to such functions with an unmangled name from inline assembly within the 3188 /// same translation unit. 3189 void CodeGenModule::EmitStaticExternCAliases() { 3190 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3191 E = StaticExternCValues.end(); 3192 I != E; ++I) { 3193 IdentifierInfo *Name = I->first; 3194 llvm::GlobalValue *Val = I->second; 3195 if (Val && !getModule().getNamedValue(Name->getName())) 3196 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), 3197 cast<llvm::GlobalObject>(Val))); 3198 } 3199 } 3200 3201 /// Emits metadata nodes associating all the global values in the 3202 /// current module with the Decls they came from. This is useful for 3203 /// projects using IR gen as a subroutine. 3204 /// 3205 /// Since there's currently no way to associate an MDNode directly 3206 /// with an llvm::GlobalValue, we create a global named metadata 3207 /// with the name 'clang.global.decl.ptrs'. 3208 void CodeGenModule::EmitDeclMetadata() { 3209 llvm::NamedMDNode *GlobalMetadata = nullptr; 3210 3211 // StaticLocalDeclMap 3212 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3213 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3214 I != E; ++I) { 3215 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3216 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3217 } 3218 } 3219 3220 /// Emits metadata nodes for all the local variables in the current 3221 /// function. 3222 void CodeGenFunction::EmitDeclMetadata() { 3223 if (LocalDeclMap.empty()) return; 3224 3225 llvm::LLVMContext &Context = getLLVMContext(); 3226 3227 // Find the unique metadata ID for this name. 3228 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3229 3230 llvm::NamedMDNode *GlobalMetadata = nullptr; 3231 3232 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3233 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3234 const Decl *D = I->first; 3235 llvm::Value *Addr = I->second; 3236 3237 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3238 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3239 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3240 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3241 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3242 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3243 } 3244 } 3245 } 3246 3247 void CodeGenModule::EmitVersionIdentMetadata() { 3248 llvm::NamedMDNode *IdentMetadata = 3249 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3250 std::string Version = getClangFullVersion(); 3251 llvm::LLVMContext &Ctx = TheModule.getContext(); 3252 3253 llvm::Value *IdentNode[] = { 3254 llvm::MDString::get(Ctx, Version) 3255 }; 3256 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3257 } 3258 3259 void CodeGenModule::EmitCoverageFile() { 3260 if (!getCodeGenOpts().CoverageFile.empty()) { 3261 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3262 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3263 llvm::LLVMContext &Ctx = TheModule.getContext(); 3264 llvm::MDString *CoverageFile = 3265 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3266 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3267 llvm::MDNode *CU = CUNode->getOperand(i); 3268 llvm::Value *node[] = { CoverageFile, CU }; 3269 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3270 GCov->addOperand(N); 3271 } 3272 } 3273 } 3274 } 3275 3276 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3277 QualType GuidType) { 3278 // Sema has checked that all uuid strings are of the form 3279 // "12345678-1234-1234-1234-1234567890ab". 3280 assert(Uuid.size() == 36); 3281 for (unsigned i = 0; i < 36; ++i) { 3282 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3283 else assert(isHexDigit(Uuid[i])); 3284 } 3285 3286 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3287 3288 llvm::Constant *Field3[8]; 3289 for (unsigned Idx = 0; Idx < 8; ++Idx) 3290 Field3[Idx] = llvm::ConstantInt::get( 3291 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3292 3293 llvm::Constant *Fields[4] = { 3294 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3295 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3296 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3297 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3298 }; 3299 3300 return llvm::ConstantStruct::getAnon(Fields); 3301 } 3302