xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b73c973d3b86eacdc08a69266de40fe91ad992c7)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "TargetInfo.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/AST/CharUnits.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Mangle.h"
32 #include "clang/AST/RecordLayout.h"
33 #include "clang/AST/RecursiveASTVisitor.h"
34 #include "clang/Basic/Builtins.h"
35 #include "clang/Basic/CharInfo.h"
36 #include "clang/Basic/Diagnostic.h"
37 #include "clang/Basic/Module.h"
38 #include "clang/Basic/SourceManager.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Version.h"
41 #include "clang/Frontend/CodeGenOptions.h"
42 #include "clang/Sema/SemaDiagnostic.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/Triple.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/CallingConv.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/ProfileData/InstrProfReader.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ErrorHandling.h"
54 
55 using namespace clang;
56 using namespace CodeGen;
57 
58 static const char AnnotationSection[] = "llvm.metadata";
59 
60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
61   switch (CGM.getTarget().getCXXABI().getKind()) {
62   case TargetCXXABI::GenericAArch64:
63   case TargetCXXABI::GenericARM:
64   case TargetCXXABI::iOS:
65   case TargetCXXABI::iOS64:
66   case TargetCXXABI::GenericItanium:
67     return CreateItaniumCXXABI(CGM);
68   case TargetCXXABI::Microsoft:
69     return CreateMicrosoftCXXABI(CGM);
70   }
71 
72   llvm_unreachable("invalid C++ ABI kind");
73 }
74 
75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
76                              llvm::Module &M, const llvm::DataLayout &TD,
77                              DiagnosticsEngine &diags)
78     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
79       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
80       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
81       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
82       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
83       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
84       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
85       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
86       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
87       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
88       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
89       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
90       LifetimeEndFn(nullptr),
91       SanitizerBlacklist(
92           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
93       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
94                                           : LangOpts.Sanitize) {
95 
96   // Initialize the type cache.
97   llvm::LLVMContext &LLVMContext = M.getContext();
98   VoidTy = llvm::Type::getVoidTy(LLVMContext);
99   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
100   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
101   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
102   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
103   FloatTy = llvm::Type::getFloatTy(LLVMContext);
104   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
105   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
106   PointerAlignInBytes =
107   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
110   Int8PtrTy = Int8Ty->getPointerTo(0);
111   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
112 
113   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (SanOpts.Thread ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     if (llvm::error_code EC = llvm::IndexedInstrProfReader::create(
145             CodeGenOpts.InstrProfileInput, PGOReader)) {
146       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
147                                               "Could not read profile: %0");
148       getDiags().Report(DiagID) << EC.message();
149     }
150   }
151 }
152 
153 CodeGenModule::~CodeGenModule() {
154   delete ObjCRuntime;
155   delete OpenCLRuntime;
156   delete OpenMPRuntime;
157   delete CUDARuntime;
158   delete TheTargetCodeGenInfo;
159   delete TBAA;
160   delete DebugInfo;
161   delete ARCData;
162   delete RRData;
163 }
164 
165 void CodeGenModule::createObjCRuntime() {
166   // This is just isGNUFamily(), but we want to force implementors of
167   // new ABIs to decide how best to do this.
168   switch (LangOpts.ObjCRuntime.getKind()) {
169   case ObjCRuntime::GNUstep:
170   case ObjCRuntime::GCC:
171   case ObjCRuntime::ObjFW:
172     ObjCRuntime = CreateGNUObjCRuntime(*this);
173     return;
174 
175   case ObjCRuntime::FragileMacOSX:
176   case ObjCRuntime::MacOSX:
177   case ObjCRuntime::iOS:
178     ObjCRuntime = CreateMacObjCRuntime(*this);
179     return;
180   }
181   llvm_unreachable("bad runtime kind");
182 }
183 
184 void CodeGenModule::createOpenCLRuntime() {
185   OpenCLRuntime = new CGOpenCLRuntime(*this);
186 }
187 
188 void CodeGenModule::createOpenMPRuntime() {
189   OpenMPRuntime = new CGOpenMPRuntime(*this);
190 }
191 
192 void CodeGenModule::createCUDARuntime() {
193   CUDARuntime = CreateNVCUDARuntime(*this);
194 }
195 
196 void CodeGenModule::applyReplacements() {
197   for (ReplacementsTy::iterator I = Replacements.begin(),
198                                 E = Replacements.end();
199        I != E; ++I) {
200     StringRef MangledName = I->first();
201     llvm::Constant *Replacement = I->second;
202     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
203     if (!Entry)
204       continue;
205     auto *OldF = cast<llvm::Function>(Entry);
206     auto *NewF = dyn_cast<llvm::Function>(Replacement);
207     if (!NewF) {
208       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
209         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
210       } else {
211         auto *CE = cast<llvm::ConstantExpr>(Replacement);
212         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
213                CE->getOpcode() == llvm::Instruction::GetElementPtr);
214         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
215       }
216     }
217 
218     // Replace old with new, but keep the old order.
219     OldF->replaceAllUsesWith(Replacement);
220     if (NewF) {
221       NewF->removeFromParent();
222       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
223     }
224     OldF->eraseFromParent();
225   }
226 }
227 
228 void CodeGenModule::checkAliases() {
229   // Check if the constructed aliases are well formed. It is really unfortunate
230   // that we have to do this in CodeGen, but we only construct mangled names
231   // and aliases during codegen.
232   bool Error = false;
233   DiagnosticsEngine &Diags = getDiags();
234   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
235          E = Aliases.end(); I != E; ++I) {
236     const GlobalDecl &GD = *I;
237     const auto *D = cast<ValueDecl>(GD.getDecl());
238     const AliasAttr *AA = D->getAttr<AliasAttr>();
239     StringRef MangledName = getMangledName(GD);
240     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
241     auto *Alias = cast<llvm::GlobalAlias>(Entry);
242     llvm::GlobalValue *GV = Alias->getAliasee();
243     if (GV->isDeclaration()) {
244       Error = true;
245       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
246     }
247 
248     llvm::GlobalObject *Aliasee = Alias->getAliasee();
249     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
250       StringRef AliasSection = SA->getName();
251       if (AliasSection != Aliasee->getSection())
252         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
253             << AliasSection;
254     }
255   }
256   if (!Error)
257     return;
258 
259   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
260          E = Aliases.end(); I != E; ++I) {
261     const GlobalDecl &GD = *I;
262     StringRef MangledName = getMangledName(GD);
263     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
264     auto *Alias = cast<llvm::GlobalAlias>(Entry);
265     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
266     Alias->eraseFromParent();
267   }
268 }
269 
270 void CodeGenModule::clear() {
271   DeferredDeclsToEmit.clear();
272 }
273 
274 void CodeGenModule::Release() {
275   EmitDeferred();
276   applyReplacements();
277   checkAliases();
278   EmitCXXGlobalInitFunc();
279   EmitCXXGlobalDtorFunc();
280   EmitCXXThreadLocalInitFunc();
281   if (ObjCRuntime)
282     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
283       AddGlobalCtor(ObjCInitFunction);
284   if (getCodeGenOpts().ProfileInstrGenerate)
285     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
286       AddGlobalCtor(PGOInit, 0);
287   if (PGOReader && PGOStats.isOutOfDate())
288     getDiags().Report(diag::warn_profile_data_out_of_date)
289         << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched;
290   EmitCtorList(GlobalCtors, "llvm.global_ctors");
291   EmitCtorList(GlobalDtors, "llvm.global_dtors");
292   EmitGlobalAnnotations();
293   EmitStaticExternCAliases();
294   emitLLVMUsed();
295 
296   if (CodeGenOpts.Autolink &&
297       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
298     EmitModuleLinkOptions();
299   }
300   if (CodeGenOpts.DwarfVersion)
301     // We actually want the latest version when there are conflicts.
302     // We can change from Warning to Latest if such mode is supported.
303     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
304                               CodeGenOpts.DwarfVersion);
305   if (DebugInfo)
306     // We support a single version in the linked module. The LLVM
307     // parser will drop debug info with a different version number
308     // (and warn about it, too).
309     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
310                               llvm::DEBUG_METADATA_VERSION);
311 
312   SimplifyPersonality();
313 
314   if (getCodeGenOpts().EmitDeclMetadata)
315     EmitDeclMetadata();
316 
317   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
318     EmitCoverageFile();
319 
320   if (DebugInfo)
321     DebugInfo->finalize();
322 
323   EmitVersionIdentMetadata();
324 }
325 
326 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
327   // Make sure that this type is translated.
328   Types.UpdateCompletedType(TD);
329 }
330 
331 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
332   if (!TBAA)
333     return nullptr;
334   return TBAA->getTBAAInfo(QTy);
335 }
336 
337 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
338   if (!TBAA)
339     return nullptr;
340   return TBAA->getTBAAInfoForVTablePtr();
341 }
342 
343 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
344   if (!TBAA)
345     return nullptr;
346   return TBAA->getTBAAStructInfo(QTy);
347 }
348 
349 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
350   if (!TBAA)
351     return nullptr;
352   return TBAA->getTBAAStructTypeInfo(QTy);
353 }
354 
355 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
356                                                   llvm::MDNode *AccessN,
357                                                   uint64_t O) {
358   if (!TBAA)
359     return nullptr;
360   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
361 }
362 
363 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
364 /// and struct-path aware TBAA, the tag has the same format:
365 /// base type, access type and offset.
366 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
367 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
368                                         llvm::MDNode *TBAAInfo,
369                                         bool ConvertTypeToTag) {
370   if (ConvertTypeToTag && TBAA)
371     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
372                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
373   else
374     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
375 }
376 
377 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
378   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
379   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
380 }
381 
382 /// ErrorUnsupported - Print out an error that codegen doesn't support the
383 /// specified stmt yet.
384 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
385   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
386                                                "cannot compile this %0 yet");
387   std::string Msg = Type;
388   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
389     << Msg << S->getSourceRange();
390 }
391 
392 /// ErrorUnsupported - Print out an error that codegen doesn't support the
393 /// specified decl yet.
394 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
395   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
396                                                "cannot compile this %0 yet");
397   std::string Msg = Type;
398   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
399 }
400 
401 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
402   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
403 }
404 
405 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
406                                         const NamedDecl *D) const {
407   // Internal definitions always have default visibility.
408   if (GV->hasLocalLinkage()) {
409     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
410     return;
411   }
412 
413   // Set visibility for definitions.
414   LinkageInfo LV = D->getLinkageAndVisibility();
415   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
416     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
417 }
418 
419 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
420   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
421       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
422       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
423       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
424       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
425 }
426 
427 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
428     CodeGenOptions::TLSModel M) {
429   switch (M) {
430   case CodeGenOptions::GeneralDynamicTLSModel:
431     return llvm::GlobalVariable::GeneralDynamicTLSModel;
432   case CodeGenOptions::LocalDynamicTLSModel:
433     return llvm::GlobalVariable::LocalDynamicTLSModel;
434   case CodeGenOptions::InitialExecTLSModel:
435     return llvm::GlobalVariable::InitialExecTLSModel;
436   case CodeGenOptions::LocalExecTLSModel:
437     return llvm::GlobalVariable::LocalExecTLSModel;
438   }
439   llvm_unreachable("Invalid TLS model!");
440 }
441 
442 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
443                                const VarDecl &D) const {
444   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
445 
446   llvm::GlobalVariable::ThreadLocalMode TLM;
447   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
448 
449   // Override the TLS model if it is explicitly specified.
450   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
451     TLM = GetLLVMTLSModel(Attr->getModel());
452   }
453 
454   GV->setThreadLocalMode(TLM);
455 }
456 
457 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
458   const auto *ND = cast<NamedDecl>(GD.getDecl());
459 
460   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
461   if (!Str.empty())
462     return Str;
463 
464   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
465     IdentifierInfo *II = ND->getIdentifier();
466     assert(II && "Attempt to mangle unnamed decl.");
467 
468     Str = II->getName();
469     return Str;
470   }
471 
472   SmallString<256> Buffer;
473   llvm::raw_svector_ostream Out(Buffer);
474   if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
475     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
476   else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
477     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
478   else
479     getCXXABI().getMangleContext().mangleName(ND, Out);
480 
481   // Allocate space for the mangled name.
482   Out.flush();
483   size_t Length = Buffer.size();
484   char *Name = MangledNamesAllocator.Allocate<char>(Length);
485   std::copy(Buffer.begin(), Buffer.end(), Name);
486 
487   Str = StringRef(Name, Length);
488 
489   return Str;
490 }
491 
492 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
493                                         const BlockDecl *BD) {
494   MangleContext &MangleCtx = getCXXABI().getMangleContext();
495   const Decl *D = GD.getDecl();
496   llvm::raw_svector_ostream Out(Buffer.getBuffer());
497   if (!D)
498     MangleCtx.mangleGlobalBlock(BD,
499       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
500   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
501     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
502   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
503     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
504   else
505     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
506 }
507 
508 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
509   return getModule().getNamedValue(Name);
510 }
511 
512 /// AddGlobalCtor - Add a function to the list that will be called before
513 /// main() runs.
514 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
515   // FIXME: Type coercion of void()* types.
516   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
517 }
518 
519 /// AddGlobalDtor - Add a function to the list that will be called
520 /// when the module is unloaded.
521 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
522   // FIXME: Type coercion of void()* types.
523   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
524 }
525 
526 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
527   // Ctor function type is void()*.
528   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
529   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
530 
531   // Get the type of a ctor entry, { i32, void ()* }.
532   llvm::StructType *CtorStructTy =
533     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
534 
535   // Construct the constructor and destructor arrays.
536   SmallVector<llvm::Constant*, 8> Ctors;
537   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
538     llvm::Constant *S[] = {
539       llvm::ConstantInt::get(Int32Ty, I->second, false),
540       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
541     };
542     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
543   }
544 
545   if (!Ctors.empty()) {
546     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
547     new llvm::GlobalVariable(TheModule, AT, false,
548                              llvm::GlobalValue::AppendingLinkage,
549                              llvm::ConstantArray::get(AT, Ctors),
550                              GlobalName);
551   }
552 }
553 
554 llvm::GlobalValue::LinkageTypes
555 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
556   const auto *D = cast<FunctionDecl>(GD.getDecl());
557 
558   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
559 
560   bool UseThunkForDtorVariant =
561       isa<CXXDestructorDecl>(D) &&
562       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
563                                          GD.getDtorType());
564 
565   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false,
566                                      UseThunkForDtorVariant);
567 }
568 
569 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
570                                                     llvm::Function *F) {
571   setNonAliasAttributes(D, F);
572 }
573 
574 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
575                                               const CGFunctionInfo &Info,
576                                               llvm::Function *F) {
577   unsigned CallingConv;
578   AttributeListType AttributeList;
579   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
580   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
581   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
582 }
583 
584 /// Determines whether the language options require us to model
585 /// unwind exceptions.  We treat -fexceptions as mandating this
586 /// except under the fragile ObjC ABI with only ObjC exceptions
587 /// enabled.  This means, for example, that C with -fexceptions
588 /// enables this.
589 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
590   // If exceptions are completely disabled, obviously this is false.
591   if (!LangOpts.Exceptions) return false;
592 
593   // If C++ exceptions are enabled, this is true.
594   if (LangOpts.CXXExceptions) return true;
595 
596   // If ObjC exceptions are enabled, this depends on the ABI.
597   if (LangOpts.ObjCExceptions) {
598     return LangOpts.ObjCRuntime.hasUnwindExceptions();
599   }
600 
601   return true;
602 }
603 
604 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
605                                                            llvm::Function *F) {
606   llvm::AttrBuilder B;
607 
608   if (CodeGenOpts.UnwindTables)
609     B.addAttribute(llvm::Attribute::UWTable);
610 
611   if (!hasUnwindExceptions(LangOpts))
612     B.addAttribute(llvm::Attribute::NoUnwind);
613 
614   if (D->hasAttr<NakedAttr>()) {
615     // Naked implies noinline: we should not be inlining such functions.
616     B.addAttribute(llvm::Attribute::Naked);
617     B.addAttribute(llvm::Attribute::NoInline);
618   } else if (D->hasAttr<OptimizeNoneAttr>()) {
619     // OptimizeNone implies noinline; we should not be inlining such functions.
620     B.addAttribute(llvm::Attribute::OptimizeNone);
621     B.addAttribute(llvm::Attribute::NoInline);
622   } else if (D->hasAttr<NoDuplicateAttr>()) {
623     B.addAttribute(llvm::Attribute::NoDuplicate);
624   } else if (D->hasAttr<NoInlineAttr>()) {
625     B.addAttribute(llvm::Attribute::NoInline);
626   } else if (D->hasAttr<AlwaysInlineAttr>() &&
627              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
628                                               llvm::Attribute::NoInline)) {
629     // (noinline wins over always_inline, and we can't specify both in IR)
630     B.addAttribute(llvm::Attribute::AlwaysInline);
631   }
632 
633   if (D->hasAttr<ColdAttr>()) {
634     B.addAttribute(llvm::Attribute::OptimizeForSize);
635     B.addAttribute(llvm::Attribute::Cold);
636   }
637 
638   if (D->hasAttr<MinSizeAttr>())
639     B.addAttribute(llvm::Attribute::MinSize);
640 
641   if (D->hasAttr<OptimizeNoneAttr>()) {
642     // OptimizeNone wins over OptimizeForSize and MinSize.
643     B.removeAttribute(llvm::Attribute::OptimizeForSize);
644     B.removeAttribute(llvm::Attribute::MinSize);
645   }
646 
647   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
648     B.addAttribute(llvm::Attribute::StackProtect);
649   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
650     B.addAttribute(llvm::Attribute::StackProtectStrong);
651   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
652     B.addAttribute(llvm::Attribute::StackProtectReq);
653 
654   // Add sanitizer attributes if function is not blacklisted.
655   if (!SanitizerBlacklist->isIn(*F)) {
656     // When AddressSanitizer is enabled, set SanitizeAddress attribute
657     // unless __attribute__((no_sanitize_address)) is used.
658     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
659       B.addAttribute(llvm::Attribute::SanitizeAddress);
660     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
661     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
662       B.addAttribute(llvm::Attribute::SanitizeThread);
663     }
664     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
665     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
666       B.addAttribute(llvm::Attribute::SanitizeMemory);
667   }
668 
669   F->addAttributes(llvm::AttributeSet::FunctionIndex,
670                    llvm::AttributeSet::get(
671                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
672 
673   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
674     F->setUnnamedAddr(true);
675   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
676     if (MD->isVirtual())
677       F->setUnnamedAddr(true);
678 
679   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
680   if (alignment)
681     F->setAlignment(alignment);
682 
683   // C++ ABI requires 2-byte alignment for member functions.
684   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
685     F->setAlignment(2);
686 }
687 
688 void CodeGenModule::SetCommonAttributes(const Decl *D,
689                                         llvm::GlobalValue *GV) {
690   if (const auto *ND = dyn_cast<NamedDecl>(D))
691     setGlobalVisibility(GV, ND);
692   else
693     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
694 
695   if (D->hasAttr<UsedAttr>())
696     addUsedGlobal(GV);
697 }
698 
699 void CodeGenModule::setNonAliasAttributes(const Decl *D,
700                                           llvm::GlobalObject *GO) {
701   SetCommonAttributes(D, GO);
702 
703   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
704     GO->setSection(SA->getName());
705 
706   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
707 }
708 
709 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
710                                                   llvm::Function *F,
711                                                   const CGFunctionInfo &FI) {
712   SetLLVMFunctionAttributes(D, FI, F);
713   SetLLVMFunctionAttributesForDefinition(D, F);
714 
715   F->setLinkage(llvm::Function::InternalLinkage);
716 
717   setNonAliasAttributes(D, F);
718 }
719 
720 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
721                                          const NamedDecl *ND) {
722   // Set linkage and visibility in case we never see a definition.
723   LinkageInfo LV = ND->getLinkageAndVisibility();
724   if (LV.getLinkage() != ExternalLinkage) {
725     // Don't set internal linkage on declarations.
726   } else {
727     if (ND->hasAttr<DLLImportAttr>()) {
728       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
729       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
730     } else if (ND->hasAttr<DLLExportAttr>()) {
731       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
732       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
733     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
734       // "extern_weak" is overloaded in LLVM; we probably should have
735       // separate linkage types for this.
736       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
737     }
738 
739     // Set visibility on a declaration only if it's explicit.
740     if (LV.isVisibilityExplicit())
741       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
742   }
743 }
744 
745 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
746                                           llvm::Function *F,
747                                           bool IsIncompleteFunction) {
748   if (unsigned IID = F->getIntrinsicID()) {
749     // If this is an intrinsic function, set the function's attributes
750     // to the intrinsic's attributes.
751     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
752                                                     (llvm::Intrinsic::ID)IID));
753     return;
754   }
755 
756   const auto *FD = cast<FunctionDecl>(GD.getDecl());
757 
758   if (!IsIncompleteFunction)
759     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
760 
761   // Add the Returned attribute for "this", except for iOS 5 and earlier
762   // where substantial code, including the libstdc++ dylib, was compiled with
763   // GCC and does not actually return "this".
764   if (getCXXABI().HasThisReturn(GD) &&
765       !(getTarget().getTriple().isiOS() &&
766         getTarget().getTriple().isOSVersionLT(6))) {
767     assert(!F->arg_empty() &&
768            F->arg_begin()->getType()
769              ->canLosslesslyBitCastTo(F->getReturnType()) &&
770            "unexpected this return");
771     F->addAttribute(1, llvm::Attribute::Returned);
772   }
773 
774   // Only a few attributes are set on declarations; these may later be
775   // overridden by a definition.
776 
777   setLinkageAndVisibilityForGV(F, FD);
778 
779   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
780     F->setSection(SA->getName());
781 
782   // A replaceable global allocation function does not act like a builtin by
783   // default, only if it is invoked by a new-expression or delete-expression.
784   if (FD->isReplaceableGlobalAllocationFunction())
785     F->addAttribute(llvm::AttributeSet::FunctionIndex,
786                     llvm::Attribute::NoBuiltin);
787 }
788 
789 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
790   assert(!GV->isDeclaration() &&
791          "Only globals with definition can force usage.");
792   LLVMUsed.push_back(GV);
793 }
794 
795 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
796   assert(!GV->isDeclaration() &&
797          "Only globals with definition can force usage.");
798   LLVMCompilerUsed.push_back(GV);
799 }
800 
801 static void emitUsed(CodeGenModule &CGM, StringRef Name,
802                      std::vector<llvm::WeakVH> &List) {
803   // Don't create llvm.used if there is no need.
804   if (List.empty())
805     return;
806 
807   // Convert List to what ConstantArray needs.
808   SmallVector<llvm::Constant*, 8> UsedArray;
809   UsedArray.resize(List.size());
810   for (unsigned i = 0, e = List.size(); i != e; ++i) {
811     UsedArray[i] =
812      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
813                                     CGM.Int8PtrTy);
814   }
815 
816   if (UsedArray.empty())
817     return;
818   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
819 
820   auto *GV = new llvm::GlobalVariable(
821       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
822       llvm::ConstantArray::get(ATy, UsedArray), Name);
823 
824   GV->setSection("llvm.metadata");
825 }
826 
827 void CodeGenModule::emitLLVMUsed() {
828   emitUsed(*this, "llvm.used", LLVMUsed);
829   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
830 }
831 
832 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
833   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
834   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
835 }
836 
837 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
838   llvm::SmallString<32> Opt;
839   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
840   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
841   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
842 }
843 
844 void CodeGenModule::AddDependentLib(StringRef Lib) {
845   llvm::SmallString<24> Opt;
846   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
847   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
848   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
849 }
850 
851 /// \brief Add link options implied by the given module, including modules
852 /// it depends on, using a postorder walk.
853 static void addLinkOptionsPostorder(CodeGenModule &CGM,
854                                     Module *Mod,
855                                     SmallVectorImpl<llvm::Value *> &Metadata,
856                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
857   // Import this module's parent.
858   if (Mod->Parent && Visited.insert(Mod->Parent)) {
859     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
860   }
861 
862   // Import this module's dependencies.
863   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
864     if (Visited.insert(Mod->Imports[I-1]))
865       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
866   }
867 
868   // Add linker options to link against the libraries/frameworks
869   // described by this module.
870   llvm::LLVMContext &Context = CGM.getLLVMContext();
871   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
872     // Link against a framework.  Frameworks are currently Darwin only, so we
873     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
874     if (Mod->LinkLibraries[I-1].IsFramework) {
875       llvm::Value *Args[2] = {
876         llvm::MDString::get(Context, "-framework"),
877         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
878       };
879 
880       Metadata.push_back(llvm::MDNode::get(Context, Args));
881       continue;
882     }
883 
884     // Link against a library.
885     llvm::SmallString<24> Opt;
886     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
887       Mod->LinkLibraries[I-1].Library, Opt);
888     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
889     Metadata.push_back(llvm::MDNode::get(Context, OptString));
890   }
891 }
892 
893 void CodeGenModule::EmitModuleLinkOptions() {
894   // Collect the set of all of the modules we want to visit to emit link
895   // options, which is essentially the imported modules and all of their
896   // non-explicit child modules.
897   llvm::SetVector<clang::Module *> LinkModules;
898   llvm::SmallPtrSet<clang::Module *, 16> Visited;
899   SmallVector<clang::Module *, 16> Stack;
900 
901   // Seed the stack with imported modules.
902   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
903                                                MEnd = ImportedModules.end();
904        M != MEnd; ++M) {
905     if (Visited.insert(*M))
906       Stack.push_back(*M);
907   }
908 
909   // Find all of the modules to import, making a little effort to prune
910   // non-leaf modules.
911   while (!Stack.empty()) {
912     clang::Module *Mod = Stack.pop_back_val();
913 
914     bool AnyChildren = false;
915 
916     // Visit the submodules of this module.
917     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
918                                         SubEnd = Mod->submodule_end();
919          Sub != SubEnd; ++Sub) {
920       // Skip explicit children; they need to be explicitly imported to be
921       // linked against.
922       if ((*Sub)->IsExplicit)
923         continue;
924 
925       if (Visited.insert(*Sub)) {
926         Stack.push_back(*Sub);
927         AnyChildren = true;
928       }
929     }
930 
931     // We didn't find any children, so add this module to the list of
932     // modules to link against.
933     if (!AnyChildren) {
934       LinkModules.insert(Mod);
935     }
936   }
937 
938   // Add link options for all of the imported modules in reverse topological
939   // order.  We don't do anything to try to order import link flags with respect
940   // to linker options inserted by things like #pragma comment().
941   SmallVector<llvm::Value *, 16> MetadataArgs;
942   Visited.clear();
943   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
944                                                MEnd = LinkModules.end();
945        M != MEnd; ++M) {
946     if (Visited.insert(*M))
947       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
948   }
949   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
950   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
951 
952   // Add the linker options metadata flag.
953   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
954                             llvm::MDNode::get(getLLVMContext(),
955                                               LinkerOptionsMetadata));
956 }
957 
958 void CodeGenModule::EmitDeferred() {
959   // Emit code for any potentially referenced deferred decls.  Since a
960   // previously unused static decl may become used during the generation of code
961   // for a static function, iterate until no changes are made.
962 
963   while (true) {
964     if (!DeferredVTables.empty()) {
965       EmitDeferredVTables();
966 
967       // Emitting a v-table doesn't directly cause more v-tables to
968       // become deferred, although it can cause functions to be
969       // emitted that then need those v-tables.
970       assert(DeferredVTables.empty());
971     }
972 
973     // Stop if we're out of both deferred v-tables and deferred declarations.
974     if (DeferredDeclsToEmit.empty()) break;
975 
976     DeferredGlobal &G = DeferredDeclsToEmit.back();
977     GlobalDecl D = G.GD;
978     llvm::GlobalValue *GV = G.GV;
979     DeferredDeclsToEmit.pop_back();
980 
981     assert(GV == GetGlobalValue(getMangledName(D)));
982     // Check to see if we've already emitted this.  This is necessary
983     // for a couple of reasons: first, decls can end up in the
984     // deferred-decls queue multiple times, and second, decls can end
985     // up with definitions in unusual ways (e.g. by an extern inline
986     // function acquiring a strong function redefinition).  Just
987     // ignore these cases.
988     if(!GV->isDeclaration())
989       continue;
990 
991     // Otherwise, emit the definition and move on to the next one.
992     EmitGlobalDefinition(D, GV);
993   }
994 }
995 
996 void CodeGenModule::EmitGlobalAnnotations() {
997   if (Annotations.empty())
998     return;
999 
1000   // Create a new global variable for the ConstantStruct in the Module.
1001   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1002     Annotations[0]->getType(), Annotations.size()), Annotations);
1003   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1004                                       llvm::GlobalValue::AppendingLinkage,
1005                                       Array, "llvm.global.annotations");
1006   gv->setSection(AnnotationSection);
1007 }
1008 
1009 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1010   llvm::Constant *&AStr = AnnotationStrings[Str];
1011   if (AStr)
1012     return AStr;
1013 
1014   // Not found yet, create a new global.
1015   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1016   auto *gv =
1017       new llvm::GlobalVariable(getModule(), s->getType(), true,
1018                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1019   gv->setSection(AnnotationSection);
1020   gv->setUnnamedAddr(true);
1021   AStr = gv;
1022   return gv;
1023 }
1024 
1025 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1026   SourceManager &SM = getContext().getSourceManager();
1027   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1028   if (PLoc.isValid())
1029     return EmitAnnotationString(PLoc.getFilename());
1030   return EmitAnnotationString(SM.getBufferName(Loc));
1031 }
1032 
1033 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1034   SourceManager &SM = getContext().getSourceManager();
1035   PresumedLoc PLoc = SM.getPresumedLoc(L);
1036   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1037     SM.getExpansionLineNumber(L);
1038   return llvm::ConstantInt::get(Int32Ty, LineNo);
1039 }
1040 
1041 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1042                                                 const AnnotateAttr *AA,
1043                                                 SourceLocation L) {
1044   // Get the globals for file name, annotation, and the line number.
1045   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1046                  *UnitGV = EmitAnnotationUnit(L),
1047                  *LineNoCst = EmitAnnotationLineNo(L);
1048 
1049   // Create the ConstantStruct for the global annotation.
1050   llvm::Constant *Fields[4] = {
1051     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1052     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1053     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1054     LineNoCst
1055   };
1056   return llvm::ConstantStruct::getAnon(Fields);
1057 }
1058 
1059 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1060                                          llvm::GlobalValue *GV) {
1061   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1062   // Get the struct elements for these annotations.
1063   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1064     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1065 }
1066 
1067 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1068   // Never defer when EmitAllDecls is specified.
1069   if (LangOpts.EmitAllDecls)
1070     return false;
1071 
1072   return !getContext().DeclMustBeEmitted(Global);
1073 }
1074 
1075 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1076     const CXXUuidofExpr* E) {
1077   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1078   // well-formed.
1079   StringRef Uuid = E->getUuidAsStringRef(Context);
1080   std::string Name = "_GUID_" + Uuid.lower();
1081   std::replace(Name.begin(), Name.end(), '-', '_');
1082 
1083   // Look for an existing global.
1084   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1085     return GV;
1086 
1087   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1088   assert(Init && "failed to initialize as constant");
1089 
1090   auto *GV = new llvm::GlobalVariable(
1091       getModule(), Init->getType(),
1092       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1093   return GV;
1094 }
1095 
1096 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1097   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1098   assert(AA && "No alias?");
1099 
1100   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1101 
1102   // See if there is already something with the target's name in the module.
1103   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1104   if (Entry) {
1105     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1106     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1107   }
1108 
1109   llvm::Constant *Aliasee;
1110   if (isa<llvm::FunctionType>(DeclTy))
1111     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1112                                       GlobalDecl(cast<FunctionDecl>(VD)),
1113                                       /*ForVTable=*/false);
1114   else
1115     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1116                                     llvm::PointerType::getUnqual(DeclTy),
1117                                     nullptr);
1118 
1119   auto *F = cast<llvm::GlobalValue>(Aliasee);
1120   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1121   WeakRefReferences.insert(F);
1122 
1123   return Aliasee;
1124 }
1125 
1126 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1127   const auto *Global = cast<ValueDecl>(GD.getDecl());
1128 
1129   // Weak references don't produce any output by themselves.
1130   if (Global->hasAttr<WeakRefAttr>())
1131     return;
1132 
1133   // If this is an alias definition (which otherwise looks like a declaration)
1134   // emit it now.
1135   if (Global->hasAttr<AliasAttr>())
1136     return EmitAliasDefinition(GD);
1137 
1138   // If this is CUDA, be selective about which declarations we emit.
1139   if (LangOpts.CUDA) {
1140     if (CodeGenOpts.CUDAIsDevice) {
1141       if (!Global->hasAttr<CUDADeviceAttr>() &&
1142           !Global->hasAttr<CUDAGlobalAttr>() &&
1143           !Global->hasAttr<CUDAConstantAttr>() &&
1144           !Global->hasAttr<CUDASharedAttr>())
1145         return;
1146     } else {
1147       if (!Global->hasAttr<CUDAHostAttr>() && (
1148             Global->hasAttr<CUDADeviceAttr>() ||
1149             Global->hasAttr<CUDAConstantAttr>() ||
1150             Global->hasAttr<CUDASharedAttr>()))
1151         return;
1152     }
1153   }
1154 
1155   // Ignore declarations, they will be emitted on their first use.
1156   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1157     // Forward declarations are emitted lazily on first use.
1158     if (!FD->doesThisDeclarationHaveABody()) {
1159       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1160         return;
1161 
1162       StringRef MangledName = getMangledName(GD);
1163 
1164       // Compute the function info and LLVM type.
1165       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1166       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1167 
1168       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1169                               /*DontDefer=*/false);
1170       return;
1171     }
1172   } else {
1173     const auto *VD = cast<VarDecl>(Global);
1174     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1175 
1176     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1177       return;
1178   }
1179 
1180   // Defer code generation when possible if this is a static definition, inline
1181   // function etc.  These we only want to emit if they are used.
1182   if (!MayDeferGeneration(Global)) {
1183     // Emit the definition if it can't be deferred.
1184     EmitGlobalDefinition(GD);
1185     return;
1186   }
1187 
1188   // If we're deferring emission of a C++ variable with an
1189   // initializer, remember the order in which it appeared in the file.
1190   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1191       cast<VarDecl>(Global)->hasInit()) {
1192     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1193     CXXGlobalInits.push_back(nullptr);
1194   }
1195 
1196   // If the value has already been used, add it directly to the
1197   // DeferredDeclsToEmit list.
1198   StringRef MangledName = getMangledName(GD);
1199   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1200     addDeferredDeclToEmit(GV, GD);
1201   else {
1202     // Otherwise, remember that we saw a deferred decl with this name.  The
1203     // first use of the mangled name will cause it to move into
1204     // DeferredDeclsToEmit.
1205     DeferredDecls[MangledName] = GD;
1206   }
1207 }
1208 
1209 namespace {
1210   struct FunctionIsDirectlyRecursive :
1211     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1212     const StringRef Name;
1213     const Builtin::Context &BI;
1214     bool Result;
1215     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1216       Name(N), BI(C), Result(false) {
1217     }
1218     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1219 
1220     bool TraverseCallExpr(CallExpr *E) {
1221       const FunctionDecl *FD = E->getDirectCallee();
1222       if (!FD)
1223         return true;
1224       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1225       if (Attr && Name == Attr->getLabel()) {
1226         Result = true;
1227         return false;
1228       }
1229       unsigned BuiltinID = FD->getBuiltinID();
1230       if (!BuiltinID)
1231         return true;
1232       StringRef BuiltinName = BI.GetName(BuiltinID);
1233       if (BuiltinName.startswith("__builtin_") &&
1234           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1235         Result = true;
1236         return false;
1237       }
1238       return true;
1239     }
1240   };
1241 }
1242 
1243 // isTriviallyRecursive - Check if this function calls another
1244 // decl that, because of the asm attribute or the other decl being a builtin,
1245 // ends up pointing to itself.
1246 bool
1247 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1248   StringRef Name;
1249   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1250     // asm labels are a special kind of mangling we have to support.
1251     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1252     if (!Attr)
1253       return false;
1254     Name = Attr->getLabel();
1255   } else {
1256     Name = FD->getName();
1257   }
1258 
1259   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1260   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1261   return Walker.Result;
1262 }
1263 
1264 bool
1265 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1266   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1267     return true;
1268   const auto *F = cast<FunctionDecl>(GD.getDecl());
1269   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1270     return false;
1271   // PR9614. Avoid cases where the source code is lying to us. An available
1272   // externally function should have an equivalent function somewhere else,
1273   // but a function that calls itself is clearly not equivalent to the real
1274   // implementation.
1275   // This happens in glibc's btowc and in some configure checks.
1276   return !isTriviallyRecursive(F);
1277 }
1278 
1279 /// If the type for the method's class was generated by
1280 /// CGDebugInfo::createContextChain(), the cache contains only a
1281 /// limited DIType without any declarations. Since EmitFunctionStart()
1282 /// needs to find the canonical declaration for each method, we need
1283 /// to construct the complete type prior to emitting the method.
1284 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1285   if (!D->isInstance())
1286     return;
1287 
1288   if (CGDebugInfo *DI = getModuleDebugInfo())
1289     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1290       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1291       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1292     }
1293 }
1294 
1295 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1296   const auto *D = cast<ValueDecl>(GD.getDecl());
1297 
1298   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1299                                  Context.getSourceManager(),
1300                                  "Generating code for declaration");
1301 
1302   if (isa<FunctionDecl>(D)) {
1303     // At -O0, don't generate IR for functions with available_externally
1304     // linkage.
1305     if (!shouldEmitFunction(GD))
1306       return;
1307 
1308     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1309       CompleteDIClassType(Method);
1310       // Make sure to emit the definition(s) before we emit the thunks.
1311       // This is necessary for the generation of certain thunks.
1312       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1313         EmitCXXConstructor(CD, GD.getCtorType());
1314       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1315         EmitCXXDestructor(DD, GD.getDtorType());
1316       else
1317         EmitGlobalFunctionDefinition(GD, GV);
1318 
1319       if (Method->isVirtual())
1320         getVTables().EmitThunks(GD);
1321 
1322       return;
1323     }
1324 
1325     return EmitGlobalFunctionDefinition(GD, GV);
1326   }
1327 
1328   if (const auto *VD = dyn_cast<VarDecl>(D))
1329     return EmitGlobalVarDefinition(VD);
1330 
1331   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1332 }
1333 
1334 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1335 /// module, create and return an llvm Function with the specified type. If there
1336 /// is something in the module with the specified name, return it potentially
1337 /// bitcasted to the right type.
1338 ///
1339 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1340 /// to set the attributes on the function when it is first created.
1341 llvm::Constant *
1342 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1343                                        llvm::Type *Ty,
1344                                        GlobalDecl GD, bool ForVTable,
1345                                        bool DontDefer,
1346                                        llvm::AttributeSet ExtraAttrs) {
1347   const Decl *D = GD.getDecl();
1348 
1349   // Lookup the entry, lazily creating it if necessary.
1350   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1351   if (Entry) {
1352     if (WeakRefReferences.erase(Entry)) {
1353       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1354       if (FD && !FD->hasAttr<WeakAttr>())
1355         Entry->setLinkage(llvm::Function::ExternalLinkage);
1356     }
1357 
1358     if (Entry->getType()->getElementType() == Ty)
1359       return Entry;
1360 
1361     // Make sure the result is of the correct type.
1362     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1363   }
1364 
1365   // This function doesn't have a complete type (for example, the return
1366   // type is an incomplete struct). Use a fake type instead, and make
1367   // sure not to try to set attributes.
1368   bool IsIncompleteFunction = false;
1369 
1370   llvm::FunctionType *FTy;
1371   if (isa<llvm::FunctionType>(Ty)) {
1372     FTy = cast<llvm::FunctionType>(Ty);
1373   } else {
1374     FTy = llvm::FunctionType::get(VoidTy, false);
1375     IsIncompleteFunction = true;
1376   }
1377 
1378   llvm::Function *F = llvm::Function::Create(FTy,
1379                                              llvm::Function::ExternalLinkage,
1380                                              MangledName, &getModule());
1381   assert(F->getName() == MangledName && "name was uniqued!");
1382   if (D)
1383     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1384   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1385     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1386     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1387                      llvm::AttributeSet::get(VMContext,
1388                                              llvm::AttributeSet::FunctionIndex,
1389                                              B));
1390   }
1391 
1392   if (!DontDefer) {
1393     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1394     // each other bottoming out with the base dtor.  Therefore we emit non-base
1395     // dtors on usage, even if there is no dtor definition in the TU.
1396     if (D && isa<CXXDestructorDecl>(D) &&
1397         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1398                                            GD.getDtorType()))
1399       addDeferredDeclToEmit(F, GD);
1400 
1401     // This is the first use or definition of a mangled name.  If there is a
1402     // deferred decl with this name, remember that we need to emit it at the end
1403     // of the file.
1404     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1405     if (DDI != DeferredDecls.end()) {
1406       // Move the potentially referenced deferred decl to the
1407       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1408       // don't need it anymore).
1409       addDeferredDeclToEmit(F, DDI->second);
1410       DeferredDecls.erase(DDI);
1411 
1412       // Otherwise, if this is a sized deallocation function, emit a weak
1413       // definition
1414       // for it at the end of the translation unit.
1415     } else if (D && cast<FunctionDecl>(D)
1416                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1417       addDeferredDeclToEmit(F, GD);
1418 
1419       // Otherwise, there are cases we have to worry about where we're
1420       // using a declaration for which we must emit a definition but where
1421       // we might not find a top-level definition:
1422       //   - member functions defined inline in their classes
1423       //   - friend functions defined inline in some class
1424       //   - special member functions with implicit definitions
1425       // If we ever change our AST traversal to walk into class methods,
1426       // this will be unnecessary.
1427       //
1428       // We also don't emit a definition for a function if it's going to be an
1429       // entry
1430       // in a vtable, unless it's already marked as used.
1431     } else if (getLangOpts().CPlusPlus && D) {
1432       // Look for a declaration that's lexically in a record.
1433       const auto *FD = cast<FunctionDecl>(D);
1434       FD = FD->getMostRecentDecl();
1435       do {
1436         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1437           if (FD->isImplicit() && !ForVTable) {
1438             assert(FD->isUsed() &&
1439                    "Sema didn't mark implicit function as used!");
1440             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1441             break;
1442           } else if (FD->doesThisDeclarationHaveABody()) {
1443             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1444             break;
1445           }
1446         }
1447         FD = FD->getPreviousDecl();
1448       } while (FD);
1449     }
1450   }
1451 
1452   getTargetCodeGenInfo().emitTargetMD(D, F, *this);
1453 
1454   // Make sure the result is of the requested type.
1455   if (!IsIncompleteFunction) {
1456     assert(F->getType()->getElementType() == Ty);
1457     return F;
1458   }
1459 
1460   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1461   return llvm::ConstantExpr::getBitCast(F, PTy);
1462 }
1463 
1464 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1465 /// non-null, then this function will use the specified type if it has to
1466 /// create it (this occurs when we see a definition of the function).
1467 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1468                                                  llvm::Type *Ty,
1469                                                  bool ForVTable,
1470                                                  bool DontDefer) {
1471   // If there was no specific requested type, just convert it now.
1472   if (!Ty)
1473     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1474 
1475   StringRef MangledName = getMangledName(GD);
1476   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1477 }
1478 
1479 /// CreateRuntimeFunction - Create a new runtime function with the specified
1480 /// type and name.
1481 llvm::Constant *
1482 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1483                                      StringRef Name,
1484                                      llvm::AttributeSet ExtraAttrs) {
1485   llvm::Constant *C =
1486       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1487                               /*DontDefer=*/false, ExtraAttrs);
1488   if (auto *F = dyn_cast<llvm::Function>(C))
1489     if (F->empty())
1490       F->setCallingConv(getRuntimeCC());
1491   return C;
1492 }
1493 
1494 /// isTypeConstant - Determine whether an object of this type can be emitted
1495 /// as a constant.
1496 ///
1497 /// If ExcludeCtor is true, the duration when the object's constructor runs
1498 /// will not be considered. The caller will need to verify that the object is
1499 /// not written to during its construction.
1500 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1501   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1502     return false;
1503 
1504   if (Context.getLangOpts().CPlusPlus) {
1505     if (const CXXRecordDecl *Record
1506           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1507       return ExcludeCtor && !Record->hasMutableFields() &&
1508              Record->hasTrivialDestructor();
1509   }
1510 
1511   return true;
1512 }
1513 
1514 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) {
1515   if (!VD->isStaticDataMember())
1516     return false;
1517   const VarDecl *InitDecl;
1518   const Expr *InitExpr = VD->getAnyInitializer(InitDecl);
1519   if (!InitExpr)
1520     return false;
1521   if (InitDecl->isThisDeclarationADefinition())
1522     return false;
1523   return true;
1524 }
1525 
1526 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1527 /// create and return an llvm GlobalVariable with the specified type.  If there
1528 /// is something in the module with the specified name, return it potentially
1529 /// bitcasted to the right type.
1530 ///
1531 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1532 /// to set the attributes on the global when it is first created.
1533 llvm::Constant *
1534 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1535                                      llvm::PointerType *Ty,
1536                                      const VarDecl *D) {
1537   // Lookup the entry, lazily creating it if necessary.
1538   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1539   if (Entry) {
1540     if (WeakRefReferences.erase(Entry)) {
1541       if (D && !D->hasAttr<WeakAttr>())
1542         Entry->setLinkage(llvm::Function::ExternalLinkage);
1543     }
1544 
1545     if (Entry->getType() == Ty)
1546       return Entry;
1547 
1548     // Make sure the result is of the correct type.
1549     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1550       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1551 
1552     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1553   }
1554 
1555   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1556   auto *GV = new llvm::GlobalVariable(
1557       getModule(), Ty->getElementType(), false,
1558       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1559       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1560 
1561   // This is the first use or definition of a mangled name.  If there is a
1562   // deferred decl with this name, remember that we need to emit it at the end
1563   // of the file.
1564   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1565   if (DDI != DeferredDecls.end()) {
1566     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1567     // list, and remove it from DeferredDecls (since we don't need it anymore).
1568     addDeferredDeclToEmit(GV, DDI->second);
1569     DeferredDecls.erase(DDI);
1570   }
1571 
1572   // Handle things which are present even on external declarations.
1573   if (D) {
1574     // FIXME: This code is overly simple and should be merged with other global
1575     // handling.
1576     GV->setConstant(isTypeConstant(D->getType(), false));
1577 
1578     setLinkageAndVisibilityForGV(GV, D);
1579 
1580     if (D->getTLSKind()) {
1581       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1582         CXXThreadLocals.push_back(std::make_pair(D, GV));
1583       setTLSMode(GV, *D);
1584     }
1585 
1586     // If required by the ABI, treat declarations of static data members with
1587     // inline initializers as definitions.
1588     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1589         isVarDeclInlineInitializedStaticDataMember(D))
1590       EmitGlobalVarDefinition(D);
1591 
1592     // Handle XCore specific ABI requirements.
1593     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1594         D->getLanguageLinkage() == CLanguageLinkage &&
1595         D->getType().isConstant(Context) &&
1596         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1597       GV->setSection(".cp.rodata");
1598   }
1599 
1600   if (AddrSpace != Ty->getAddressSpace())
1601     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1602 
1603   getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
1604 
1605   return GV;
1606 }
1607 
1608 
1609 llvm::GlobalVariable *
1610 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1611                                       llvm::Type *Ty,
1612                                       llvm::GlobalValue::LinkageTypes Linkage) {
1613   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1614   llvm::GlobalVariable *OldGV = nullptr;
1615 
1616   if (GV) {
1617     // Check if the variable has the right type.
1618     if (GV->getType()->getElementType() == Ty)
1619       return GV;
1620 
1621     // Because C++ name mangling, the only way we can end up with an already
1622     // existing global with the same name is if it has been declared extern "C".
1623     assert(GV->isDeclaration() && "Declaration has wrong type!");
1624     OldGV = GV;
1625   }
1626 
1627   // Create a new variable.
1628   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1629                                 Linkage, nullptr, Name);
1630 
1631   if (OldGV) {
1632     // Replace occurrences of the old variable if needed.
1633     GV->takeName(OldGV);
1634 
1635     if (!OldGV->use_empty()) {
1636       llvm::Constant *NewPtrForOldDecl =
1637       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1638       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1639     }
1640 
1641     OldGV->eraseFromParent();
1642   }
1643 
1644   return GV;
1645 }
1646 
1647 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1648 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1649 /// then it will be created with the specified type instead of whatever the
1650 /// normal requested type would be.
1651 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1652                                                   llvm::Type *Ty) {
1653   assert(D->hasGlobalStorage() && "Not a global variable");
1654   QualType ASTTy = D->getType();
1655   if (!Ty)
1656     Ty = getTypes().ConvertTypeForMem(ASTTy);
1657 
1658   llvm::PointerType *PTy =
1659     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1660 
1661   StringRef MangledName = getMangledName(D);
1662   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1663 }
1664 
1665 /// CreateRuntimeVariable - Create a new runtime global variable with the
1666 /// specified type and name.
1667 llvm::Constant *
1668 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1669                                      StringRef Name) {
1670   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1671 }
1672 
1673 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1674   assert(!D->getInit() && "Cannot emit definite definitions here!");
1675 
1676   if (MayDeferGeneration(D)) {
1677     // If we have not seen a reference to this variable yet, place it
1678     // into the deferred declarations table to be emitted if needed
1679     // later.
1680     StringRef MangledName = getMangledName(D);
1681     if (!GetGlobalValue(MangledName)) {
1682       DeferredDecls[MangledName] = D;
1683       return;
1684     }
1685   }
1686 
1687   // The tentative definition is the only definition.
1688   EmitGlobalVarDefinition(D);
1689 }
1690 
1691 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1692     return Context.toCharUnitsFromBits(
1693       TheDataLayout.getTypeStoreSizeInBits(Ty));
1694 }
1695 
1696 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1697                                                  unsigned AddrSpace) {
1698   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1699     if (D->hasAttr<CUDAConstantAttr>())
1700       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1701     else if (D->hasAttr<CUDASharedAttr>())
1702       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1703     else
1704       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1705   }
1706 
1707   return AddrSpace;
1708 }
1709 
1710 template<typename SomeDecl>
1711 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1712                                                llvm::GlobalValue *GV) {
1713   if (!getLangOpts().CPlusPlus)
1714     return;
1715 
1716   // Must have 'used' attribute, or else inline assembly can't rely on
1717   // the name existing.
1718   if (!D->template hasAttr<UsedAttr>())
1719     return;
1720 
1721   // Must have internal linkage and an ordinary name.
1722   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1723     return;
1724 
1725   // Must be in an extern "C" context. Entities declared directly within
1726   // a record are not extern "C" even if the record is in such a context.
1727   const SomeDecl *First = D->getFirstDecl();
1728   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1729     return;
1730 
1731   // OK, this is an internal linkage entity inside an extern "C" linkage
1732   // specification. Make a note of that so we can give it the "expected"
1733   // mangled name if nothing else is using that name.
1734   std::pair<StaticExternCMap::iterator, bool> R =
1735       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1736 
1737   // If we have multiple internal linkage entities with the same name
1738   // in extern "C" regions, none of them gets that name.
1739   if (!R.second)
1740     R.first->second = nullptr;
1741 }
1742 
1743 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1744   llvm::Constant *Init = nullptr;
1745   QualType ASTTy = D->getType();
1746   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1747   bool NeedsGlobalCtor = false;
1748   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1749 
1750   const VarDecl *InitDecl;
1751   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1752 
1753   if (!InitExpr) {
1754     // This is a tentative definition; tentative definitions are
1755     // implicitly initialized with { 0 }.
1756     //
1757     // Note that tentative definitions are only emitted at the end of
1758     // a translation unit, so they should never have incomplete
1759     // type. In addition, EmitTentativeDefinition makes sure that we
1760     // never attempt to emit a tentative definition if a real one
1761     // exists. A use may still exists, however, so we still may need
1762     // to do a RAUW.
1763     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1764     Init = EmitNullConstant(D->getType());
1765   } else {
1766     initializedGlobalDecl = GlobalDecl(D);
1767     Init = EmitConstantInit(*InitDecl);
1768 
1769     if (!Init) {
1770       QualType T = InitExpr->getType();
1771       if (D->getType()->isReferenceType())
1772         T = D->getType();
1773 
1774       if (getLangOpts().CPlusPlus) {
1775         Init = EmitNullConstant(T);
1776         NeedsGlobalCtor = true;
1777       } else {
1778         ErrorUnsupported(D, "static initializer");
1779         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1780       }
1781     } else {
1782       // We don't need an initializer, so remove the entry for the delayed
1783       // initializer position (just in case this entry was delayed) if we
1784       // also don't need to register a destructor.
1785       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1786         DelayedCXXInitPosition.erase(D);
1787     }
1788   }
1789 
1790   llvm::Type* InitType = Init->getType();
1791   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1792 
1793   // Strip off a bitcast if we got one back.
1794   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1795     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1796            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1797            // All zero index gep.
1798            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1799     Entry = CE->getOperand(0);
1800   }
1801 
1802   // Entry is now either a Function or GlobalVariable.
1803   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1804 
1805   // We have a definition after a declaration with the wrong type.
1806   // We must make a new GlobalVariable* and update everything that used OldGV
1807   // (a declaration or tentative definition) with the new GlobalVariable*
1808   // (which will be a definition).
1809   //
1810   // This happens if there is a prototype for a global (e.g.
1811   // "extern int x[];") and then a definition of a different type (e.g.
1812   // "int x[10];"). This also happens when an initializer has a different type
1813   // from the type of the global (this happens with unions).
1814   if (!GV ||
1815       GV->getType()->getElementType() != InitType ||
1816       GV->getType()->getAddressSpace() !=
1817        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1818 
1819     // Move the old entry aside so that we'll create a new one.
1820     Entry->setName(StringRef());
1821 
1822     // Make a new global with the correct type, this is now guaranteed to work.
1823     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1824 
1825     // Replace all uses of the old global with the new global
1826     llvm::Constant *NewPtrForOldDecl =
1827         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1828     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1829 
1830     // Erase the old global, since it is no longer used.
1831     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1832   }
1833 
1834   MaybeHandleStaticInExternC(D, GV);
1835 
1836   if (D->hasAttr<AnnotateAttr>())
1837     AddGlobalAnnotations(D, GV);
1838 
1839   GV->setInitializer(Init);
1840 
1841   // If it is safe to mark the global 'constant', do so now.
1842   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1843                   isTypeConstant(D->getType(), true));
1844 
1845   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1846 
1847   // Set the llvm linkage type as appropriate.
1848   llvm::GlobalValue::LinkageTypes Linkage =
1849       getLLVMLinkageVarDefinition(D, GV->isConstant());
1850   GV->setLinkage(Linkage);
1851   if (D->hasAttr<DLLImportAttr>())
1852     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1853   else if (D->hasAttr<DLLExportAttr>())
1854     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1855 
1856   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1857     // common vars aren't constant even if declared const.
1858     GV->setConstant(false);
1859 
1860   setNonAliasAttributes(D, GV);
1861 
1862   // Emit the initializer function if necessary.
1863   if (NeedsGlobalCtor || NeedsGlobalDtor)
1864     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1865 
1866   // If we are compiling with ASan, add metadata indicating dynamically
1867   // initialized globals.
1868   if (SanOpts.Address && NeedsGlobalCtor) {
1869     llvm::Module &M = getModule();
1870 
1871     llvm::NamedMDNode *DynamicInitializers =
1872         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1873     llvm::Value *GlobalToAdd[] = { GV };
1874     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1875     DynamicInitializers->addOperand(ThisGlobal);
1876   }
1877 
1878   // Emit global variable debug information.
1879   if (CGDebugInfo *DI = getModuleDebugInfo())
1880     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1881       DI->EmitGlobalVariable(GV, D);
1882 }
1883 
1884 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1885   // Don't give variables common linkage if -fno-common was specified unless it
1886   // was overridden by a NoCommon attribute.
1887   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1888     return true;
1889 
1890   // C11 6.9.2/2:
1891   //   A declaration of an identifier for an object that has file scope without
1892   //   an initializer, and without a storage-class specifier or with the
1893   //   storage-class specifier static, constitutes a tentative definition.
1894   if (D->getInit() || D->hasExternalStorage())
1895     return true;
1896 
1897   // A variable cannot be both common and exist in a section.
1898   if (D->hasAttr<SectionAttr>())
1899     return true;
1900 
1901   // Thread local vars aren't considered common linkage.
1902   if (D->getTLSKind())
1903     return true;
1904 
1905   // Tentative definitions marked with WeakImportAttr are true definitions.
1906   if (D->hasAttr<WeakImportAttr>())
1907     return true;
1908 
1909   return false;
1910 }
1911 
1912 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
1913     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable,
1914     bool UseThunkForDtorVariant) {
1915   if (Linkage == GVA_Internal)
1916     return llvm::Function::InternalLinkage;
1917 
1918   if (D->hasAttr<WeakAttr>()) {
1919     if (IsConstantVariable)
1920       return llvm::GlobalVariable::WeakODRLinkage;
1921     else
1922       return llvm::GlobalVariable::WeakAnyLinkage;
1923   }
1924 
1925   // We are guaranteed to have a strong definition somewhere else,
1926   // so we can use available_externally linkage.
1927   if (Linkage == GVA_AvailableExternally)
1928     return llvm::Function::AvailableExternallyLinkage;
1929 
1930   // Note that Apple's kernel linker doesn't support symbol
1931   // coalescing, so we need to avoid linkonce and weak linkages there.
1932   // Normally, this means we just map to internal, but for explicit
1933   // instantiations we'll map to external.
1934 
1935   // In C++, the compiler has to emit a definition in every translation unit
1936   // that references the function.  We should use linkonce_odr because
1937   // a) if all references in this translation unit are optimized away, we
1938   // don't need to codegen it.  b) if the function persists, it needs to be
1939   // merged with other definitions. c) C++ has the ODR, so we know the
1940   // definition is dependable.
1941   if (Linkage == GVA_DiscardableODR)
1942     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
1943                                             : llvm::Function::InternalLinkage;
1944 
1945   // An explicit instantiation of a template has weak linkage, since
1946   // explicit instantiations can occur in multiple translation units
1947   // and must all be equivalent. However, we are not allowed to
1948   // throw away these explicit instantiations.
1949   if (Linkage == GVA_StrongODR)
1950     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
1951                                             : llvm::Function::ExternalLinkage;
1952 
1953   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
1954   // emitted on an as-needed basis.
1955   if (UseThunkForDtorVariant)
1956     return llvm::GlobalValue::LinkOnceODRLinkage;
1957 
1958   // If required by the ABI, give definitions of static data members with inline
1959   // initializers at least linkonce_odr linkage.
1960   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1961       isa<VarDecl>(D) &&
1962       isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D)))
1963     return llvm::GlobalValue::LinkOnceODRLinkage;
1964 
1965   // C++ doesn't have tentative definitions and thus cannot have common
1966   // linkage.
1967   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
1968       !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon))
1969     return llvm::GlobalVariable::CommonLinkage;
1970 
1971   // selectany symbols are externally visible, so use weak instead of
1972   // linkonce.  MSVC optimizes away references to const selectany globals, so
1973   // all definitions should be the same and ODR linkage should be used.
1974   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1975   if (D->hasAttr<SelectAnyAttr>())
1976     return llvm::GlobalVariable::WeakODRLinkage;
1977 
1978   // Otherwise, we have strong external linkage.
1979   assert(Linkage == GVA_StrongExternal);
1980   return llvm::GlobalVariable::ExternalLinkage;
1981 }
1982 
1983 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
1984     const VarDecl *VD, bool IsConstant) {
1985   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
1986   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant,
1987                                      /*UseThunkForDtorVariant=*/false);
1988 }
1989 
1990 /// Replace the uses of a function that was declared with a non-proto type.
1991 /// We want to silently drop extra arguments from call sites
1992 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1993                                           llvm::Function *newFn) {
1994   // Fast path.
1995   if (old->use_empty()) return;
1996 
1997   llvm::Type *newRetTy = newFn->getReturnType();
1998   SmallVector<llvm::Value*, 4> newArgs;
1999 
2000   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2001          ui != ue; ) {
2002     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2003     llvm::User *user = use->getUser();
2004 
2005     // Recognize and replace uses of bitcasts.  Most calls to
2006     // unprototyped functions will use bitcasts.
2007     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2008       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2009         replaceUsesOfNonProtoConstant(bitcast, newFn);
2010       continue;
2011     }
2012 
2013     // Recognize calls to the function.
2014     llvm::CallSite callSite(user);
2015     if (!callSite) continue;
2016     if (!callSite.isCallee(&*use)) continue;
2017 
2018     // If the return types don't match exactly, then we can't
2019     // transform this call unless it's dead.
2020     if (callSite->getType() != newRetTy && !callSite->use_empty())
2021       continue;
2022 
2023     // Get the call site's attribute list.
2024     SmallVector<llvm::AttributeSet, 8> newAttrs;
2025     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2026 
2027     // Collect any return attributes from the call.
2028     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2029       newAttrs.push_back(
2030         llvm::AttributeSet::get(newFn->getContext(),
2031                                 oldAttrs.getRetAttributes()));
2032 
2033     // If the function was passed too few arguments, don't transform.
2034     unsigned newNumArgs = newFn->arg_size();
2035     if (callSite.arg_size() < newNumArgs) continue;
2036 
2037     // If extra arguments were passed, we silently drop them.
2038     // If any of the types mismatch, we don't transform.
2039     unsigned argNo = 0;
2040     bool dontTransform = false;
2041     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2042            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2043       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2044         dontTransform = true;
2045         break;
2046       }
2047 
2048       // Add any parameter attributes.
2049       if (oldAttrs.hasAttributes(argNo + 1))
2050         newAttrs.
2051           push_back(llvm::
2052                     AttributeSet::get(newFn->getContext(),
2053                                       oldAttrs.getParamAttributes(argNo + 1)));
2054     }
2055     if (dontTransform)
2056       continue;
2057 
2058     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2059       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2060                                                  oldAttrs.getFnAttributes()));
2061 
2062     // Okay, we can transform this.  Create the new call instruction and copy
2063     // over the required information.
2064     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2065 
2066     llvm::CallSite newCall;
2067     if (callSite.isCall()) {
2068       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2069                                        callSite.getInstruction());
2070     } else {
2071       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2072       newCall = llvm::InvokeInst::Create(newFn,
2073                                          oldInvoke->getNormalDest(),
2074                                          oldInvoke->getUnwindDest(),
2075                                          newArgs, "",
2076                                          callSite.getInstruction());
2077     }
2078     newArgs.clear(); // for the next iteration
2079 
2080     if (!newCall->getType()->isVoidTy())
2081       newCall->takeName(callSite.getInstruction());
2082     newCall.setAttributes(
2083                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2084     newCall.setCallingConv(callSite.getCallingConv());
2085 
2086     // Finally, remove the old call, replacing any uses with the new one.
2087     if (!callSite->use_empty())
2088       callSite->replaceAllUsesWith(newCall.getInstruction());
2089 
2090     // Copy debug location attached to CI.
2091     if (!callSite->getDebugLoc().isUnknown())
2092       newCall->setDebugLoc(callSite->getDebugLoc());
2093     callSite->eraseFromParent();
2094   }
2095 }
2096 
2097 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2098 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2099 /// existing call uses of the old function in the module, this adjusts them to
2100 /// call the new function directly.
2101 ///
2102 /// This is not just a cleanup: the always_inline pass requires direct calls to
2103 /// functions to be able to inline them.  If there is a bitcast in the way, it
2104 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2105 /// run at -O0.
2106 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2107                                                       llvm::Function *NewFn) {
2108   // If we're redefining a global as a function, don't transform it.
2109   if (!isa<llvm::Function>(Old)) return;
2110 
2111   replaceUsesOfNonProtoConstant(Old, NewFn);
2112 }
2113 
2114 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2115   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2116   // If we have a definition, this might be a deferred decl. If the
2117   // instantiation is explicit, make sure we emit it at the end.
2118   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2119     GetAddrOfGlobalVar(VD);
2120 
2121   EmitTopLevelDecl(VD);
2122 }
2123 
2124 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2125                                                  llvm::GlobalValue *GV) {
2126   const auto *D = cast<FunctionDecl>(GD.getDecl());
2127 
2128   // Compute the function info and LLVM type.
2129   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2130   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2131 
2132   // Get or create the prototype for the function.
2133   if (!GV) {
2134     llvm::Constant *C =
2135         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2136 
2137     // Strip off a bitcast if we got one back.
2138     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2139       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2140       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2141     } else {
2142       GV = cast<llvm::GlobalValue>(C);
2143     }
2144   }
2145 
2146   if (!GV->isDeclaration()) {
2147     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2148     return;
2149   }
2150 
2151   if (GV->getType()->getElementType() != Ty) {
2152     // If the types mismatch then we have to rewrite the definition.
2153     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2154 
2155     // F is the Function* for the one with the wrong type, we must make a new
2156     // Function* and update everything that used F (a declaration) with the new
2157     // Function* (which will be a definition).
2158     //
2159     // This happens if there is a prototype for a function
2160     // (e.g. "int f()") and then a definition of a different type
2161     // (e.g. "int f(int x)").  Move the old function aside so that it
2162     // doesn't interfere with GetAddrOfFunction.
2163     GV->setName(StringRef());
2164     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2165 
2166     // This might be an implementation of a function without a
2167     // prototype, in which case, try to do special replacement of
2168     // calls which match the new prototype.  The really key thing here
2169     // is that we also potentially drop arguments from the call site
2170     // so as to make a direct call, which makes the inliner happier
2171     // and suppresses a number of optimizer warnings (!) about
2172     // dropping arguments.
2173     if (!GV->use_empty()) {
2174       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2175       GV->removeDeadConstantUsers();
2176     }
2177 
2178     // Replace uses of F with the Function we will endow with a body.
2179     if (!GV->use_empty()) {
2180       llvm::Constant *NewPtrForOldDecl =
2181           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2182       GV->replaceAllUsesWith(NewPtrForOldDecl);
2183     }
2184 
2185     // Ok, delete the old function now, which is dead.
2186     GV->eraseFromParent();
2187 
2188     GV = NewFn;
2189   }
2190 
2191   // We need to set linkage and visibility on the function before
2192   // generating code for it because various parts of IR generation
2193   // want to propagate this information down (e.g. to local static
2194   // declarations).
2195   auto *Fn = cast<llvm::Function>(GV);
2196   setFunctionLinkage(GD, Fn);
2197 
2198   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2199   setGlobalVisibility(Fn, D);
2200 
2201   MaybeHandleStaticInExternC(D, Fn);
2202 
2203   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2204 
2205   setFunctionDefinitionAttributes(D, Fn);
2206   SetLLVMFunctionAttributesForDefinition(D, Fn);
2207 
2208   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2209     AddGlobalCtor(Fn, CA->getPriority());
2210   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2211     AddGlobalDtor(Fn, DA->getPriority());
2212   if (D->hasAttr<AnnotateAttr>())
2213     AddGlobalAnnotations(D, Fn);
2214 }
2215 
2216 static llvm::GlobalObject &getGlobalObjectInExpr(DiagnosticsEngine &Diags,
2217                                                  const AliasAttr *AA,
2218                                                  llvm::Constant *C) {
2219   if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
2220     return *GO;
2221 
2222   auto *GA = dyn_cast<llvm::GlobalAlias>(C);
2223   if (GA) {
2224     if (GA->mayBeOverridden()) {
2225       Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
2226           << GA->getAliasee()->getName() << GA->getName();
2227     }
2228 
2229     return *GA->getAliasee();
2230   }
2231 
2232   auto *CE = cast<llvm::ConstantExpr>(C);
2233   assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2234          CE->getOpcode() == llvm::Instruction::GetElementPtr ||
2235          CE->getOpcode() == llvm::Instruction::AddrSpaceCast);
2236   return *cast<llvm::GlobalObject>(CE->getOperand(0));
2237 }
2238 
2239 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2240   const auto *D = cast<ValueDecl>(GD.getDecl());
2241   const AliasAttr *AA = D->getAttr<AliasAttr>();
2242   assert(AA && "Not an alias?");
2243 
2244   StringRef MangledName = getMangledName(GD);
2245 
2246   // If there is a definition in the module, then it wins over the alias.
2247   // This is dubious, but allow it to be safe.  Just ignore the alias.
2248   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2249   if (Entry && !Entry->isDeclaration())
2250     return;
2251 
2252   Aliases.push_back(GD);
2253 
2254   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2255 
2256   // Create a reference to the named value.  This ensures that it is emitted
2257   // if a deferred decl.
2258   llvm::Constant *Aliasee;
2259   if (isa<llvm::FunctionType>(DeclTy))
2260     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2261                                       /*ForVTable=*/false);
2262   else
2263     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2264                                     llvm::PointerType::getUnqual(DeclTy),
2265                                     nullptr);
2266 
2267   // Create the new alias itself, but don't set a name yet.
2268   auto *GA = llvm::GlobalAlias::create(
2269       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2270       llvm::Function::ExternalLinkage, "",
2271       &getGlobalObjectInExpr(Diags, AA, Aliasee));
2272 
2273   if (Entry) {
2274     if (GA->getAliasee() == Entry) {
2275       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2276       return;
2277     }
2278 
2279     assert(Entry->isDeclaration());
2280 
2281     // If there is a declaration in the module, then we had an extern followed
2282     // by the alias, as in:
2283     //   extern int test6();
2284     //   ...
2285     //   int test6() __attribute__((alias("test7")));
2286     //
2287     // Remove it and replace uses of it with the alias.
2288     GA->takeName(Entry);
2289 
2290     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2291                                                           Entry->getType()));
2292     Entry->eraseFromParent();
2293   } else {
2294     GA->setName(MangledName);
2295   }
2296 
2297   // Set attributes which are particular to an alias; this is a
2298   // specialization of the attributes which may be set on a global
2299   // variable/function.
2300   if (D->hasAttr<DLLExportAttr>()) {
2301     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2302       // The dllexport attribute is ignored for undefined symbols.
2303       if (FD->hasBody())
2304         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2305     } else {
2306       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2307     }
2308   } else if (D->hasAttr<WeakAttr>() ||
2309              D->hasAttr<WeakRefAttr>() ||
2310              D->isWeakImported()) {
2311     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2312   }
2313 
2314   SetCommonAttributes(D, GA);
2315 }
2316 
2317 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2318                                             ArrayRef<llvm::Type*> Tys) {
2319   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2320                                          Tys);
2321 }
2322 
2323 static llvm::StringMapEntry<llvm::Constant*> &
2324 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2325                          const StringLiteral *Literal,
2326                          bool TargetIsLSB,
2327                          bool &IsUTF16,
2328                          unsigned &StringLength) {
2329   StringRef String = Literal->getString();
2330   unsigned NumBytes = String.size();
2331 
2332   // Check for simple case.
2333   if (!Literal->containsNonAsciiOrNull()) {
2334     StringLength = NumBytes;
2335     return Map.GetOrCreateValue(String);
2336   }
2337 
2338   // Otherwise, convert the UTF8 literals into a string of shorts.
2339   IsUTF16 = true;
2340 
2341   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2342   const UTF8 *FromPtr = (const UTF8 *)String.data();
2343   UTF16 *ToPtr = &ToBuf[0];
2344 
2345   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2346                            &ToPtr, ToPtr + NumBytes,
2347                            strictConversion);
2348 
2349   // ConvertUTF8toUTF16 returns the length in ToPtr.
2350   StringLength = ToPtr - &ToBuf[0];
2351 
2352   // Add an explicit null.
2353   *ToPtr = 0;
2354   return Map.
2355     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2356                                (StringLength + 1) * 2));
2357 }
2358 
2359 static llvm::StringMapEntry<llvm::Constant*> &
2360 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2361                        const StringLiteral *Literal,
2362                        unsigned &StringLength) {
2363   StringRef String = Literal->getString();
2364   StringLength = String.size();
2365   return Map.GetOrCreateValue(String);
2366 }
2367 
2368 llvm::Constant *
2369 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2370   unsigned StringLength = 0;
2371   bool isUTF16 = false;
2372   llvm::StringMapEntry<llvm::Constant*> &Entry =
2373     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2374                              getDataLayout().isLittleEndian(),
2375                              isUTF16, StringLength);
2376 
2377   if (llvm::Constant *C = Entry.getValue())
2378     return C;
2379 
2380   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2381   llvm::Constant *Zeros[] = { Zero, Zero };
2382   llvm::Value *V;
2383 
2384   // If we don't already have it, get __CFConstantStringClassReference.
2385   if (!CFConstantStringClassRef) {
2386     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2387     Ty = llvm::ArrayType::get(Ty, 0);
2388     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2389                                            "__CFConstantStringClassReference");
2390     // Decay array -> ptr
2391     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2392     CFConstantStringClassRef = V;
2393   }
2394   else
2395     V = CFConstantStringClassRef;
2396 
2397   QualType CFTy = getContext().getCFConstantStringType();
2398 
2399   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2400 
2401   llvm::Constant *Fields[4];
2402 
2403   // Class pointer.
2404   Fields[0] = cast<llvm::ConstantExpr>(V);
2405 
2406   // Flags.
2407   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2408   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2409     llvm::ConstantInt::get(Ty, 0x07C8);
2410 
2411   // String pointer.
2412   llvm::Constant *C = nullptr;
2413   if (isUTF16) {
2414     ArrayRef<uint16_t> Arr =
2415       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2416                                      const_cast<char *>(Entry.getKey().data())),
2417                                    Entry.getKey().size() / 2);
2418     C = llvm::ConstantDataArray::get(VMContext, Arr);
2419   } else {
2420     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2421   }
2422 
2423   // Note: -fwritable-strings doesn't make the backing store strings of
2424   // CFStrings writable. (See <rdar://problem/10657500>)
2425   auto *GV =
2426       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2427                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2428   GV->setUnnamedAddr(true);
2429   // Don't enforce the target's minimum global alignment, since the only use
2430   // of the string is via this class initializer.
2431   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2432   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2433   // that changes the section it ends in, which surprises ld64.
2434   if (isUTF16) {
2435     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2436     GV->setAlignment(Align.getQuantity());
2437     GV->setSection("__TEXT,__ustring");
2438   } else {
2439     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2440     GV->setAlignment(Align.getQuantity());
2441     GV->setSection("__TEXT,__cstring,cstring_literals");
2442   }
2443 
2444   // String.
2445   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2446 
2447   if (isUTF16)
2448     // Cast the UTF16 string to the correct type.
2449     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2450 
2451   // String length.
2452   Ty = getTypes().ConvertType(getContext().LongTy);
2453   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2454 
2455   // The struct.
2456   C = llvm::ConstantStruct::get(STy, Fields);
2457   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2458                                 llvm::GlobalVariable::PrivateLinkage, C,
2459                                 "_unnamed_cfstring_");
2460   GV->setSection("__DATA,__cfstring");
2461   Entry.setValue(GV);
2462 
2463   return GV;
2464 }
2465 
2466 llvm::Constant *
2467 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2468   unsigned StringLength = 0;
2469   llvm::StringMapEntry<llvm::Constant*> &Entry =
2470     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2471 
2472   if (llvm::Constant *C = Entry.getValue())
2473     return C;
2474 
2475   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2476   llvm::Constant *Zeros[] = { Zero, Zero };
2477   llvm::Value *V;
2478   // If we don't already have it, get _NSConstantStringClassReference.
2479   if (!ConstantStringClassRef) {
2480     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2481     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2482     llvm::Constant *GV;
2483     if (LangOpts.ObjCRuntime.isNonFragile()) {
2484       std::string str =
2485         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2486                             : "OBJC_CLASS_$_" + StringClass;
2487       GV = getObjCRuntime().GetClassGlobal(str);
2488       // Make sure the result is of the correct type.
2489       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2490       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2491       ConstantStringClassRef = V;
2492     } else {
2493       std::string str =
2494         StringClass.empty() ? "_NSConstantStringClassReference"
2495                             : "_" + StringClass + "ClassReference";
2496       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2497       GV = CreateRuntimeVariable(PTy, str);
2498       // Decay array -> ptr
2499       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2500       ConstantStringClassRef = V;
2501     }
2502   }
2503   else
2504     V = ConstantStringClassRef;
2505 
2506   if (!NSConstantStringType) {
2507     // Construct the type for a constant NSString.
2508     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2509     D->startDefinition();
2510 
2511     QualType FieldTypes[3];
2512 
2513     // const int *isa;
2514     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2515     // const char *str;
2516     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2517     // unsigned int length;
2518     FieldTypes[2] = Context.UnsignedIntTy;
2519 
2520     // Create fields
2521     for (unsigned i = 0; i < 3; ++i) {
2522       FieldDecl *Field = FieldDecl::Create(Context, D,
2523                                            SourceLocation(),
2524                                            SourceLocation(), nullptr,
2525                                            FieldTypes[i], /*TInfo=*/nullptr,
2526                                            /*BitWidth=*/nullptr,
2527                                            /*Mutable=*/false,
2528                                            ICIS_NoInit);
2529       Field->setAccess(AS_public);
2530       D->addDecl(Field);
2531     }
2532 
2533     D->completeDefinition();
2534     QualType NSTy = Context.getTagDeclType(D);
2535     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2536   }
2537 
2538   llvm::Constant *Fields[3];
2539 
2540   // Class pointer.
2541   Fields[0] = cast<llvm::ConstantExpr>(V);
2542 
2543   // String pointer.
2544   llvm::Constant *C =
2545     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2546 
2547   llvm::GlobalValue::LinkageTypes Linkage;
2548   bool isConstant;
2549   Linkage = llvm::GlobalValue::PrivateLinkage;
2550   isConstant = !LangOpts.WritableStrings;
2551 
2552   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2553                                       Linkage, C, ".str");
2554   GV->setUnnamedAddr(true);
2555   // Don't enforce the target's minimum global alignment, since the only use
2556   // of the string is via this class initializer.
2557   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2558   GV->setAlignment(Align.getQuantity());
2559   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2560 
2561   // String length.
2562   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2563   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2564 
2565   // The struct.
2566   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2567   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2568                                 llvm::GlobalVariable::PrivateLinkage, C,
2569                                 "_unnamed_nsstring_");
2570   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2571   const char *NSStringNonFragileABISection =
2572       "__DATA,__objc_stringobj,regular,no_dead_strip";
2573   // FIXME. Fix section.
2574   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2575                      ? NSStringNonFragileABISection
2576                      : NSStringSection);
2577   Entry.setValue(GV);
2578 
2579   return GV;
2580 }
2581 
2582 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2583   if (ObjCFastEnumerationStateType.isNull()) {
2584     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2585     D->startDefinition();
2586 
2587     QualType FieldTypes[] = {
2588       Context.UnsignedLongTy,
2589       Context.getPointerType(Context.getObjCIdType()),
2590       Context.getPointerType(Context.UnsignedLongTy),
2591       Context.getConstantArrayType(Context.UnsignedLongTy,
2592                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2593     };
2594 
2595     for (size_t i = 0; i < 4; ++i) {
2596       FieldDecl *Field = FieldDecl::Create(Context,
2597                                            D,
2598                                            SourceLocation(),
2599                                            SourceLocation(), nullptr,
2600                                            FieldTypes[i], /*TInfo=*/nullptr,
2601                                            /*BitWidth=*/nullptr,
2602                                            /*Mutable=*/false,
2603                                            ICIS_NoInit);
2604       Field->setAccess(AS_public);
2605       D->addDecl(Field);
2606     }
2607 
2608     D->completeDefinition();
2609     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2610   }
2611 
2612   return ObjCFastEnumerationStateType;
2613 }
2614 
2615 llvm::Constant *
2616 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2617   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2618 
2619   // Don't emit it as the address of the string, emit the string data itself
2620   // as an inline array.
2621   if (E->getCharByteWidth() == 1) {
2622     SmallString<64> Str(E->getString());
2623 
2624     // Resize the string to the right size, which is indicated by its type.
2625     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2626     Str.resize(CAT->getSize().getZExtValue());
2627     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2628   }
2629 
2630   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2631   llvm::Type *ElemTy = AType->getElementType();
2632   unsigned NumElements = AType->getNumElements();
2633 
2634   // Wide strings have either 2-byte or 4-byte elements.
2635   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2636     SmallVector<uint16_t, 32> Elements;
2637     Elements.reserve(NumElements);
2638 
2639     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2640       Elements.push_back(E->getCodeUnit(i));
2641     Elements.resize(NumElements);
2642     return llvm::ConstantDataArray::get(VMContext, Elements);
2643   }
2644 
2645   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2646   SmallVector<uint32_t, 32> Elements;
2647   Elements.reserve(NumElements);
2648 
2649   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2650     Elements.push_back(E->getCodeUnit(i));
2651   Elements.resize(NumElements);
2652   return llvm::ConstantDataArray::get(VMContext, Elements);
2653 }
2654 
2655 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2656 /// constant array for the given string literal.
2657 llvm::Constant *
2658 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2659   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2660 
2661   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2662   llvm::GlobalVariable *GV = nullptr;
2663   if (!LangOpts.WritableStrings) {
2664     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2665     switch (S->getCharByteWidth()) {
2666     case 1:
2667       ConstantStringMap = &Constant1ByteStringMap;
2668       break;
2669     case 2:
2670       ConstantStringMap = &Constant2ByteStringMap;
2671       break;
2672     case 4:
2673       ConstantStringMap = &Constant4ByteStringMap;
2674       break;
2675     default:
2676       llvm_unreachable("unhandled byte width!");
2677     }
2678     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2679     GV = Entry->getValue();
2680   }
2681 
2682   if (!GV) {
2683     SmallString<256> MangledNameBuffer;
2684     StringRef GlobalVariableName;
2685     llvm::GlobalValue::LinkageTypes LT;
2686 
2687     // Mangle the string literal if the ABI allows for it.  However, we cannot
2688     // do this if  we are compiling with ASan or -fwritable-strings because they
2689     // rely on strings having normal linkage.
2690     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2691         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2692       llvm::raw_svector_ostream Out(MangledNameBuffer);
2693       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2694       Out.flush();
2695 
2696       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2697       GlobalVariableName = MangledNameBuffer;
2698     } else {
2699       LT = llvm::GlobalValue::PrivateLinkage;
2700       GlobalVariableName = ".str";
2701     }
2702 
2703     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2704     unsigned AddrSpace = 0;
2705     if (getLangOpts().OpenCL)
2706       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2707 
2708     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2709     GV = new llvm::GlobalVariable(
2710         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2711         GlobalVariableName, /*InsertBefore=*/nullptr,
2712         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2713     GV->setUnnamedAddr(true);
2714     if (Entry)
2715       Entry->setValue(GV);
2716   }
2717 
2718   if (Align.getQuantity() > GV->getAlignment())
2719     GV->setAlignment(Align.getQuantity());
2720 
2721   return GV;
2722 }
2723 
2724 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2725 /// array for the given ObjCEncodeExpr node.
2726 llvm::Constant *
2727 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2728   std::string Str;
2729   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2730 
2731   return GetAddrOfConstantCString(Str);
2732 }
2733 
2734 
2735 /// GenerateWritableString -- Creates storage for a string literal.
2736 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2737                                              bool constant,
2738                                              CodeGenModule &CGM,
2739                                              const char *GlobalName,
2740                                              unsigned Alignment) {
2741   // Create Constant for this string literal. Don't add a '\0'.
2742   llvm::Constant *C =
2743       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2744 
2745   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2746   unsigned AddrSpace = 0;
2747   if (CGM.getLangOpts().OpenCL)
2748     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2749 
2750   // Create a global variable for this string
2751   auto *GV = new llvm::GlobalVariable(
2752       CGM.getModule(), C->getType(), constant,
2753       llvm::GlobalValue::PrivateLinkage, C, GlobalName, nullptr,
2754       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2755   GV->setAlignment(Alignment);
2756   GV->setUnnamedAddr(true);
2757   return GV;
2758 }
2759 
2760 /// GetAddrOfConstantString - Returns a pointer to a character array
2761 /// containing the literal. This contents are exactly that of the
2762 /// given string, i.e. it will not be null terminated automatically;
2763 /// see GetAddrOfConstantCString. Note that whether the result is
2764 /// actually a pointer to an LLVM constant depends on
2765 /// Feature.WriteableStrings.
2766 ///
2767 /// The result has pointer to array type.
2768 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2769                                                        const char *GlobalName,
2770                                                        unsigned Alignment) {
2771   // Get the default prefix if a name wasn't specified.
2772   if (!GlobalName)
2773     GlobalName = ".str";
2774 
2775   if (Alignment == 0)
2776     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2777       .getQuantity();
2778 
2779   // Don't share any string literals if strings aren't constant.
2780   if (LangOpts.WritableStrings)
2781     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2782 
2783   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2784     Constant1ByteStringMap.GetOrCreateValue(Str);
2785 
2786   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2787     if (Alignment > GV->getAlignment()) {
2788       GV->setAlignment(Alignment);
2789     }
2790     return GV;
2791   }
2792 
2793   // Create a global variable for this.
2794   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2795                                                    Alignment);
2796   Entry.setValue(GV);
2797   return GV;
2798 }
2799 
2800 /// GetAddrOfConstantCString - Returns a pointer to a character
2801 /// array containing the literal and a terminating '\0'
2802 /// character. The result has pointer to array type.
2803 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2804                                                         const char *GlobalName,
2805                                                         unsigned Alignment) {
2806   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2807   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2808 }
2809 
2810 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2811     const MaterializeTemporaryExpr *E, const Expr *Init) {
2812   assert((E->getStorageDuration() == SD_Static ||
2813           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2814   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2815 
2816   // If we're not materializing a subobject of the temporary, keep the
2817   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2818   QualType MaterializedType = Init->getType();
2819   if (Init == E->GetTemporaryExpr())
2820     MaterializedType = E->getType();
2821 
2822   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2823   if (Slot)
2824     return Slot;
2825 
2826   // FIXME: If an externally-visible declaration extends multiple temporaries,
2827   // we need to give each temporary the same name in every translation unit (and
2828   // we also need to make the temporaries externally-visible).
2829   SmallString<256> Name;
2830   llvm::raw_svector_ostream Out(Name);
2831   getCXXABI().getMangleContext().mangleReferenceTemporary(
2832       VD, E->getManglingNumber(), Out);
2833   Out.flush();
2834 
2835   APValue *Value = nullptr;
2836   if (E->getStorageDuration() == SD_Static) {
2837     // We might have a cached constant initializer for this temporary. Note
2838     // that this might have a different value from the value computed by
2839     // evaluating the initializer if the surrounding constant expression
2840     // modifies the temporary.
2841     Value = getContext().getMaterializedTemporaryValue(E, false);
2842     if (Value && Value->isUninit())
2843       Value = nullptr;
2844   }
2845 
2846   // Try evaluating it now, it might have a constant initializer.
2847   Expr::EvalResult EvalResult;
2848   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2849       !EvalResult.hasSideEffects())
2850     Value = &EvalResult.Val;
2851 
2852   llvm::Constant *InitialValue = nullptr;
2853   bool Constant = false;
2854   llvm::Type *Type;
2855   if (Value) {
2856     // The temporary has a constant initializer, use it.
2857     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2858     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2859     Type = InitialValue->getType();
2860   } else {
2861     // No initializer, the initialization will be provided when we
2862     // initialize the declaration which performed lifetime extension.
2863     Type = getTypes().ConvertTypeForMem(MaterializedType);
2864   }
2865 
2866   // Create a global variable for this lifetime-extended temporary.
2867   llvm::GlobalValue::LinkageTypes Linkage =
2868       getLLVMLinkageVarDefinition(VD, Constant);
2869   // There is no need for this temporary to have global linkage if the global
2870   // variable has external linkage.
2871   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2872     Linkage = llvm::GlobalVariable::PrivateLinkage;
2873   unsigned AddrSpace = GetGlobalVarAddressSpace(
2874       VD, getContext().getTargetAddressSpace(MaterializedType));
2875   auto *GV = new llvm::GlobalVariable(
2876       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2877       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2878       AddrSpace);
2879   setGlobalVisibility(GV, VD);
2880   GV->setAlignment(
2881       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2882   if (VD->getTLSKind())
2883     setTLSMode(GV, *VD);
2884   Slot = GV;
2885   return GV;
2886 }
2887 
2888 /// EmitObjCPropertyImplementations - Emit information for synthesized
2889 /// properties for an implementation.
2890 void CodeGenModule::EmitObjCPropertyImplementations(const
2891                                                     ObjCImplementationDecl *D) {
2892   for (const auto *PID : D->property_impls()) {
2893     // Dynamic is just for type-checking.
2894     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2895       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2896 
2897       // Determine which methods need to be implemented, some may have
2898       // been overridden. Note that ::isPropertyAccessor is not the method
2899       // we want, that just indicates if the decl came from a
2900       // property. What we want to know is if the method is defined in
2901       // this implementation.
2902       if (!D->getInstanceMethod(PD->getGetterName()))
2903         CodeGenFunction(*this).GenerateObjCGetter(
2904                                  const_cast<ObjCImplementationDecl *>(D), PID);
2905       if (!PD->isReadOnly() &&
2906           !D->getInstanceMethod(PD->getSetterName()))
2907         CodeGenFunction(*this).GenerateObjCSetter(
2908                                  const_cast<ObjCImplementationDecl *>(D), PID);
2909     }
2910   }
2911 }
2912 
2913 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2914   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2915   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2916        ivar; ivar = ivar->getNextIvar())
2917     if (ivar->getType().isDestructedType())
2918       return true;
2919 
2920   return false;
2921 }
2922 
2923 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2924 /// for an implementation.
2925 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2926   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2927   if (needsDestructMethod(D)) {
2928     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2929     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2930     ObjCMethodDecl *DTORMethod =
2931       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2932                              cxxSelector, getContext().VoidTy, nullptr, D,
2933                              /*isInstance=*/true, /*isVariadic=*/false,
2934                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2935                              /*isDefined=*/false, ObjCMethodDecl::Required);
2936     D->addInstanceMethod(DTORMethod);
2937     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2938     D->setHasDestructors(true);
2939   }
2940 
2941   // If the implementation doesn't have any ivar initializers, we don't need
2942   // a .cxx_construct.
2943   if (D->getNumIvarInitializers() == 0)
2944     return;
2945 
2946   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2947   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2948   // The constructor returns 'self'.
2949   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2950                                                 D->getLocation(),
2951                                                 D->getLocation(),
2952                                                 cxxSelector,
2953                                                 getContext().getObjCIdType(),
2954                                                 nullptr, D, /*isInstance=*/true,
2955                                                 /*isVariadic=*/false,
2956                                                 /*isPropertyAccessor=*/true,
2957                                                 /*isImplicitlyDeclared=*/true,
2958                                                 /*isDefined=*/false,
2959                                                 ObjCMethodDecl::Required);
2960   D->addInstanceMethod(CTORMethod);
2961   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2962   D->setHasNonZeroConstructors(true);
2963 }
2964 
2965 /// EmitNamespace - Emit all declarations in a namespace.
2966 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2967   for (auto *I : ND->decls()) {
2968     if (const auto *VD = dyn_cast<VarDecl>(I))
2969       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2970           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2971         continue;
2972     EmitTopLevelDecl(I);
2973   }
2974 }
2975 
2976 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2977 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2978   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2979       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2980     ErrorUnsupported(LSD, "linkage spec");
2981     return;
2982   }
2983 
2984   for (auto *I : LSD->decls()) {
2985     // Meta-data for ObjC class includes references to implemented methods.
2986     // Generate class's method definitions first.
2987     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2988       for (auto *M : OID->methods())
2989         EmitTopLevelDecl(M);
2990     }
2991     EmitTopLevelDecl(I);
2992   }
2993 }
2994 
2995 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2996 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2997   // Ignore dependent declarations.
2998   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2999     return;
3000 
3001   switch (D->getKind()) {
3002   case Decl::CXXConversion:
3003   case Decl::CXXMethod:
3004   case Decl::Function:
3005     // Skip function templates
3006     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3007         cast<FunctionDecl>(D)->isLateTemplateParsed())
3008       return;
3009 
3010     EmitGlobal(cast<FunctionDecl>(D));
3011     break;
3012 
3013   case Decl::Var:
3014     // Skip variable templates
3015     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3016       return;
3017   case Decl::VarTemplateSpecialization:
3018     EmitGlobal(cast<VarDecl>(D));
3019     break;
3020 
3021   // Indirect fields from global anonymous structs and unions can be
3022   // ignored; only the actual variable requires IR gen support.
3023   case Decl::IndirectField:
3024     break;
3025 
3026   // C++ Decls
3027   case Decl::Namespace:
3028     EmitNamespace(cast<NamespaceDecl>(D));
3029     break;
3030     // No code generation needed.
3031   case Decl::UsingShadow:
3032   case Decl::ClassTemplate:
3033   case Decl::VarTemplate:
3034   case Decl::VarTemplatePartialSpecialization:
3035   case Decl::FunctionTemplate:
3036   case Decl::TypeAliasTemplate:
3037   case Decl::Block:
3038   case Decl::Empty:
3039     break;
3040   case Decl::Using:          // using X; [C++]
3041     if (CGDebugInfo *DI = getModuleDebugInfo())
3042         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3043     return;
3044   case Decl::NamespaceAlias:
3045     if (CGDebugInfo *DI = getModuleDebugInfo())
3046         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3047     return;
3048   case Decl::UsingDirective: // using namespace X; [C++]
3049     if (CGDebugInfo *DI = getModuleDebugInfo())
3050       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3051     return;
3052   case Decl::CXXConstructor:
3053     // Skip function templates
3054     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3055         cast<FunctionDecl>(D)->isLateTemplateParsed())
3056       return;
3057 
3058     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3059     break;
3060   case Decl::CXXDestructor:
3061     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3062       return;
3063     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3064     break;
3065 
3066   case Decl::StaticAssert:
3067     // Nothing to do.
3068     break;
3069 
3070   // Objective-C Decls
3071 
3072   // Forward declarations, no (immediate) code generation.
3073   case Decl::ObjCInterface:
3074   case Decl::ObjCCategory:
3075     break;
3076 
3077   case Decl::ObjCProtocol: {
3078     auto *Proto = cast<ObjCProtocolDecl>(D);
3079     if (Proto->isThisDeclarationADefinition())
3080       ObjCRuntime->GenerateProtocol(Proto);
3081     break;
3082   }
3083 
3084   case Decl::ObjCCategoryImpl:
3085     // Categories have properties but don't support synthesize so we
3086     // can ignore them here.
3087     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3088     break;
3089 
3090   case Decl::ObjCImplementation: {
3091     auto *OMD = cast<ObjCImplementationDecl>(D);
3092     EmitObjCPropertyImplementations(OMD);
3093     EmitObjCIvarInitializations(OMD);
3094     ObjCRuntime->GenerateClass(OMD);
3095     // Emit global variable debug information.
3096     if (CGDebugInfo *DI = getModuleDebugInfo())
3097       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3098         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3099             OMD->getClassInterface()), OMD->getLocation());
3100     break;
3101   }
3102   case Decl::ObjCMethod: {
3103     auto *OMD = cast<ObjCMethodDecl>(D);
3104     // If this is not a prototype, emit the body.
3105     if (OMD->getBody())
3106       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3107     break;
3108   }
3109   case Decl::ObjCCompatibleAlias:
3110     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3111     break;
3112 
3113   case Decl::LinkageSpec:
3114     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3115     break;
3116 
3117   case Decl::FileScopeAsm: {
3118     auto *AD = cast<FileScopeAsmDecl>(D);
3119     StringRef AsmString = AD->getAsmString()->getString();
3120 
3121     const std::string &S = getModule().getModuleInlineAsm();
3122     if (S.empty())
3123       getModule().setModuleInlineAsm(AsmString);
3124     else if (S.end()[-1] == '\n')
3125       getModule().setModuleInlineAsm(S + AsmString.str());
3126     else
3127       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3128     break;
3129   }
3130 
3131   case Decl::Import: {
3132     auto *Import = cast<ImportDecl>(D);
3133 
3134     // Ignore import declarations that come from imported modules.
3135     if (clang::Module *Owner = Import->getOwningModule()) {
3136       if (getLangOpts().CurrentModule.empty() ||
3137           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3138         break;
3139     }
3140 
3141     ImportedModules.insert(Import->getImportedModule());
3142     break;
3143   }
3144 
3145   case Decl::ClassTemplateSpecialization: {
3146     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3147     if (DebugInfo &&
3148         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3149       DebugInfo->completeTemplateDefinition(*Spec);
3150   }
3151 
3152   default:
3153     // Make sure we handled everything we should, every other kind is a
3154     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3155     // function. Need to recode Decl::Kind to do that easily.
3156     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3157   }
3158 }
3159 
3160 /// Turns the given pointer into a constant.
3161 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3162                                           const void *Ptr) {
3163   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3164   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3165   return llvm::ConstantInt::get(i64, PtrInt);
3166 }
3167 
3168 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3169                                    llvm::NamedMDNode *&GlobalMetadata,
3170                                    GlobalDecl D,
3171                                    llvm::GlobalValue *Addr) {
3172   if (!GlobalMetadata)
3173     GlobalMetadata =
3174       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3175 
3176   // TODO: should we report variant information for ctors/dtors?
3177   llvm::Value *Ops[] = {
3178     Addr,
3179     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3180   };
3181   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3182 }
3183 
3184 /// For each function which is declared within an extern "C" region and marked
3185 /// as 'used', but has internal linkage, create an alias from the unmangled
3186 /// name to the mangled name if possible. People expect to be able to refer
3187 /// to such functions with an unmangled name from inline assembly within the
3188 /// same translation unit.
3189 void CodeGenModule::EmitStaticExternCAliases() {
3190   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3191                                   E = StaticExternCValues.end();
3192        I != E; ++I) {
3193     IdentifierInfo *Name = I->first;
3194     llvm::GlobalValue *Val = I->second;
3195     if (Val && !getModule().getNamedValue(Name->getName()))
3196       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(),
3197                                               cast<llvm::GlobalObject>(Val)));
3198   }
3199 }
3200 
3201 /// Emits metadata nodes associating all the global values in the
3202 /// current module with the Decls they came from.  This is useful for
3203 /// projects using IR gen as a subroutine.
3204 ///
3205 /// Since there's currently no way to associate an MDNode directly
3206 /// with an llvm::GlobalValue, we create a global named metadata
3207 /// with the name 'clang.global.decl.ptrs'.
3208 void CodeGenModule::EmitDeclMetadata() {
3209   llvm::NamedMDNode *GlobalMetadata = nullptr;
3210 
3211   // StaticLocalDeclMap
3212   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3213          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3214        I != E; ++I) {
3215     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3216     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3217   }
3218 }
3219 
3220 /// Emits metadata nodes for all the local variables in the current
3221 /// function.
3222 void CodeGenFunction::EmitDeclMetadata() {
3223   if (LocalDeclMap.empty()) return;
3224 
3225   llvm::LLVMContext &Context = getLLVMContext();
3226 
3227   // Find the unique metadata ID for this name.
3228   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3229 
3230   llvm::NamedMDNode *GlobalMetadata = nullptr;
3231 
3232   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3233          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3234     const Decl *D = I->first;
3235     llvm::Value *Addr = I->second;
3236 
3237     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3238       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3239       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3240     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3241       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3242       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3243     }
3244   }
3245 }
3246 
3247 void CodeGenModule::EmitVersionIdentMetadata() {
3248   llvm::NamedMDNode *IdentMetadata =
3249     TheModule.getOrInsertNamedMetadata("llvm.ident");
3250   std::string Version = getClangFullVersion();
3251   llvm::LLVMContext &Ctx = TheModule.getContext();
3252 
3253   llvm::Value *IdentNode[] = {
3254     llvm::MDString::get(Ctx, Version)
3255   };
3256   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3257 }
3258 
3259 void CodeGenModule::EmitCoverageFile() {
3260   if (!getCodeGenOpts().CoverageFile.empty()) {
3261     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3262       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3263       llvm::LLVMContext &Ctx = TheModule.getContext();
3264       llvm::MDString *CoverageFile =
3265           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3266       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3267         llvm::MDNode *CU = CUNode->getOperand(i);
3268         llvm::Value *node[] = { CoverageFile, CU };
3269         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3270         GCov->addOperand(N);
3271       }
3272     }
3273   }
3274 }
3275 
3276 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3277                                                      QualType GuidType) {
3278   // Sema has checked that all uuid strings are of the form
3279   // "12345678-1234-1234-1234-1234567890ab".
3280   assert(Uuid.size() == 36);
3281   for (unsigned i = 0; i < 36; ++i) {
3282     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3283     else                                         assert(isHexDigit(Uuid[i]));
3284   }
3285 
3286   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3287 
3288   llvm::Constant *Field3[8];
3289   for (unsigned Idx = 0; Idx < 8; ++Idx)
3290     Field3[Idx] = llvm::ConstantInt::get(
3291         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3292 
3293   llvm::Constant *Fields[4] = {
3294     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3295     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3296     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3297     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3298   };
3299 
3300   return llvm::ConstantStruct::getAnon(Fields);
3301 }
3302