xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b735004615be10ffa60dd3d4b0a060f0bed2f8de)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.ControlFlowGuard) {
461     // We want function ID tables for Control Flow Guard.
462     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463   }
464   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465     // We don't support LTO with 2 with different StrictVTablePointers
466     // FIXME: we could support it by stripping all the information introduced
467     // by StrictVTablePointers.
468 
469     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470 
471     llvm::Metadata *Ops[2] = {
472               llvm::MDString::get(VMContext, "StrictVTablePointers"),
473               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474                   llvm::Type::getInt32Ty(VMContext), 1))};
475 
476     getModule().addModuleFlag(llvm::Module::Require,
477                               "StrictVTablePointersRequirement",
478                               llvm::MDNode::get(VMContext, Ops));
479   }
480   if (DebugInfo)
481     // We support a single version in the linked module. The LLVM
482     // parser will drop debug info with a different version number
483     // (and warn about it, too).
484     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485                               llvm::DEBUG_METADATA_VERSION);
486 
487   // We need to record the widths of enums and wchar_t, so that we can generate
488   // the correct build attributes in the ARM backend. wchar_size is also used by
489   // TargetLibraryInfo.
490   uint64_t WCharWidth =
491       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493 
494   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495   if (   Arch == llvm::Triple::arm
496       || Arch == llvm::Triple::armeb
497       || Arch == llvm::Triple::thumb
498       || Arch == llvm::Triple::thumbeb) {
499     // The minimum width of an enum in bytes
500     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502   }
503 
504   if (CodeGenOpts.SanitizeCfiCrossDso) {
505     // Indicate that we want cross-DSO control flow integrity checks.
506     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507   }
508 
509   if (CodeGenOpts.CFProtectionReturn &&
510       Target.checkCFProtectionReturnSupported(getDiags())) {
511     // Indicate that we want to instrument return control flow protection.
512     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513                               1);
514   }
515 
516   if (CodeGenOpts.CFProtectionBranch &&
517       Target.checkCFProtectionBranchSupported(getDiags())) {
518     // Indicate that we want to instrument branch control flow protection.
519     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520                               1);
521   }
522 
523   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524     // Indicate whether __nvvm_reflect should be configured to flush denormal
525     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
526     // property.)
527     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529   }
530 
531   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532   if (LangOpts.OpenCL) {
533     EmitOpenCLMetadata();
534     // Emit SPIR version.
535     if (getTriple().getArch() == llvm::Triple::spir ||
536         getTriple().getArch() == llvm::Triple::spir64) {
537       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538       // opencl.spir.version named metadata.
539       llvm::Metadata *SPIRVerElts[] = {
540           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541               Int32Ty, LangOpts.OpenCLVersion / 100)),
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544       llvm::NamedMDNode *SPIRVerMD =
545           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546       llvm::LLVMContext &Ctx = TheModule.getContext();
547       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548     }
549   }
550 
551   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552     assert(PLevel < 3 && "Invalid PIC Level");
553     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554     if (Context.getLangOpts().PIE)
555       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556   }
557 
558   if (CodeGenOpts.NoPLT)
559     getModule().setRtLibUseGOT();
560 
561   SimplifyPersonality();
562 
563   if (getCodeGenOpts().EmitDeclMetadata)
564     EmitDeclMetadata();
565 
566   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
567     EmitCoverageFile();
568 
569   if (DebugInfo)
570     DebugInfo->finalize();
571 
572   EmitVersionIdentMetadata();
573 
574   EmitTargetMetadata();
575 }
576 
577 void CodeGenModule::EmitOpenCLMetadata() {
578   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
579   // opencl.ocl.version named metadata node.
580   llvm::Metadata *OCLVerElts[] = {
581       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
582           Int32Ty, LangOpts.OpenCLVersion / 100)),
583       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
585   llvm::NamedMDNode *OCLVerMD =
586       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
587   llvm::LLVMContext &Ctx = TheModule.getContext();
588   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
589 }
590 
591 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
592   // Make sure that this type is translated.
593   Types.UpdateCompletedType(TD);
594 }
595 
596 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
597   // Make sure that this type is translated.
598   Types.RefreshTypeCacheForClass(RD);
599 }
600 
601 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
602   if (!TBAA)
603     return nullptr;
604   return TBAA->getTypeInfo(QTy);
605 }
606 
607 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
608   if (!TBAA)
609     return TBAAAccessInfo();
610   return TBAA->getAccessInfo(AccessType);
611 }
612 
613 TBAAAccessInfo
614 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
615   if (!TBAA)
616     return TBAAAccessInfo();
617   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
618 }
619 
620 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
621   if (!TBAA)
622     return nullptr;
623   return TBAA->getTBAAStructInfo(QTy);
624 }
625 
626 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
627   if (!TBAA)
628     return nullptr;
629   return TBAA->getBaseTypeInfo(QTy);
630 }
631 
632 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
633   if (!TBAA)
634     return nullptr;
635   return TBAA->getAccessTagInfo(Info);
636 }
637 
638 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
639                                                    TBAAAccessInfo TargetInfo) {
640   if (!TBAA)
641     return TBAAAccessInfo();
642   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
643 }
644 
645 TBAAAccessInfo
646 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
647                                                    TBAAAccessInfo InfoB) {
648   if (!TBAA)
649     return TBAAAccessInfo();
650   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
651 }
652 
653 TBAAAccessInfo
654 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
655                                               TBAAAccessInfo SrcInfo) {
656   if (!TBAA)
657     return TBAAAccessInfo();
658   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
659 }
660 
661 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
662                                                 TBAAAccessInfo TBAAInfo) {
663   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
664     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
665 }
666 
667 void CodeGenModule::DecorateInstructionWithInvariantGroup(
668     llvm::Instruction *I, const CXXRecordDecl *RD) {
669   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
670                  llvm::MDNode::get(getLLVMContext(), {}));
671 }
672 
673 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
674   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
675   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
676 }
677 
678 /// ErrorUnsupported - Print out an error that codegen doesn't support the
679 /// specified stmt yet.
680 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
681   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
682                                                "cannot compile this %0 yet");
683   std::string Msg = Type;
684   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
685     << Msg << S->getSourceRange();
686 }
687 
688 /// ErrorUnsupported - Print out an error that codegen doesn't support the
689 /// specified decl yet.
690 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
691   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
692                                                "cannot compile this %0 yet");
693   std::string Msg = Type;
694   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
695 }
696 
697 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
698   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
699 }
700 
701 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
702                                         const NamedDecl *D) const {
703   if (GV->hasDLLImportStorageClass())
704     return;
705   // Internal definitions always have default visibility.
706   if (GV->hasLocalLinkage()) {
707     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
708     return;
709   }
710 
711   // Set visibility for definitions.
712   LinkageInfo LV = D->getLinkageAndVisibility();
713   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
714     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
715 }
716 
717 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
718                                  llvm::GlobalValue *GV) {
719   // DLLImport explicitly marks the GV as external.
720   if (GV->hasDLLImportStorageClass())
721     return false;
722 
723   const llvm::Triple &TT = CGM.getTriple();
724   // Every other GV is local on COFF.
725   // Make an exception for windows OS in the triple: Some firmware builds use
726   // *-win32-macho triples. This (accidentally?) produced windows relocations
727   // without GOT tables in older clang versions; Keep this behaviour.
728   // FIXME: even thread local variables?
729   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
730     return true;
731 
732   // Only handle COFF and ELF for now.
733   if (!TT.isOSBinFormatELF())
734     return false;
735 
736   // If this is not an executable, don't assume anything is local.
737   const auto &CGOpts = CGM.getCodeGenOpts();
738   llvm::Reloc::Model RM = CGOpts.RelocationModel;
739   const auto &LOpts = CGM.getLangOpts();
740   if (RM != llvm::Reloc::Static && !LOpts.PIE)
741     return false;
742 
743   // A definition cannot be preempted from an executable.
744   if (!GV->isDeclarationForLinker())
745     return true;
746 
747   // Most PIC code sequences that assume that a symbol is local cannot produce a
748   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
749   // depended, it seems worth it to handle it here.
750   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
751     return false;
752 
753   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
754   llvm::Triple::ArchType Arch = TT.getArch();
755   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
756       Arch == llvm::Triple::ppc64le)
757     return false;
758 
759   // If we can use copy relocations we can assume it is local.
760   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
761     if (!Var->isThreadLocal() &&
762         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
763       return true;
764 
765   // If we can use a plt entry as the symbol address we can assume it
766   // is local.
767   // FIXME: This should work for PIE, but the gold linker doesn't support it.
768   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
769     return true;
770 
771   // Otherwise don't assue it is local.
772   return false;
773 }
774 
775 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
776   if (shouldAssumeDSOLocal(*this, GV))
777     GV->setDSOLocal(true);
778 }
779 
780 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
781                                           GlobalDecl GD) const {
782   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
783   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
784     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
785       // Don't dllexport/import destructor thunks.
786       GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
787       return;
788     }
789   }
790   setDLLImportDLLExport(GV, D);
791 }
792 
793 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
794                                           const NamedDecl *D) const {
795   if (D->isExternallyVisible()) {
796     if (D->hasAttr<DLLImportAttr>())
797       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
798     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
799       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
800   }
801 }
802 
803 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
804                                     GlobalDecl GD) const {
805   setDLLImportDLLExport(GV, GD);
806   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
807 }
808 
809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
810                                     const NamedDecl *D) const {
811   setDLLImportDLLExport(GV, D);
812   setGlobalVisibilityAndLocal(GV, D);
813 }
814 
815 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
816                                                 const NamedDecl *D) const {
817   setGlobalVisibility(GV, D);
818   setDSOLocal(GV);
819 }
820 
821 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
822   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
823       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
824       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
825       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
826       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
827 }
828 
829 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
830     CodeGenOptions::TLSModel M) {
831   switch (M) {
832   case CodeGenOptions::GeneralDynamicTLSModel:
833     return llvm::GlobalVariable::GeneralDynamicTLSModel;
834   case CodeGenOptions::LocalDynamicTLSModel:
835     return llvm::GlobalVariable::LocalDynamicTLSModel;
836   case CodeGenOptions::InitialExecTLSModel:
837     return llvm::GlobalVariable::InitialExecTLSModel;
838   case CodeGenOptions::LocalExecTLSModel:
839     return llvm::GlobalVariable::LocalExecTLSModel;
840   }
841   llvm_unreachable("Invalid TLS model!");
842 }
843 
844 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
845   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
846 
847   llvm::GlobalValue::ThreadLocalMode TLM;
848   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
849 
850   // Override the TLS model if it is explicitly specified.
851   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
852     TLM = GetLLVMTLSModel(Attr->getModel());
853   }
854 
855   GV->setThreadLocalMode(TLM);
856 }
857 
858 static void AppendTargetMangling(const CodeGenModule &CGM,
859                                  const TargetAttr *Attr, raw_ostream &Out) {
860   if (Attr->isDefaultVersion())
861     return;
862 
863   Out << '.';
864   const auto &Target = CGM.getTarget();
865   TargetAttr::ParsedTargetAttr Info =
866       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
867                     // Multiversioning doesn't allow "no-${feature}", so we can
868                     // only have "+" prefixes here.
869                     assert(LHS.startswith("+") && RHS.startswith("+") &&
870                            "Features should always have a prefix.");
871                     return Target.multiVersionSortPriority(LHS.substr(1)) >
872                            Target.multiVersionSortPriority(RHS.substr(1));
873                   });
874 
875   bool IsFirst = true;
876 
877   if (!Info.Architecture.empty()) {
878     IsFirst = false;
879     Out << "arch_" << Info.Architecture;
880   }
881 
882   for (StringRef Feat : Info.Features) {
883     if (!IsFirst)
884       Out << '_';
885     IsFirst = false;
886     Out << Feat.substr(1);
887   }
888 }
889 
890 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
891                                       const NamedDecl *ND,
892                                       bool OmitTargetMangling = false) {
893   SmallString<256> Buffer;
894   llvm::raw_svector_ostream Out(Buffer);
895   MangleContext &MC = CGM.getCXXABI().getMangleContext();
896   if (MC.shouldMangleDeclName(ND)) {
897     llvm::raw_svector_ostream Out(Buffer);
898     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
899       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
900     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
901       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
902     else
903       MC.mangleName(ND, Out);
904   } else {
905     IdentifierInfo *II = ND->getIdentifier();
906     assert(II && "Attempt to mangle unnamed decl.");
907     const auto *FD = dyn_cast<FunctionDecl>(ND);
908 
909     if (FD &&
910         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
911       llvm::raw_svector_ostream Out(Buffer);
912       Out << "__regcall3__" << II->getName();
913     } else {
914       Out << II->getName();
915     }
916   }
917 
918   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
919     if (FD->isMultiVersion() && !OmitTargetMangling)
920       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
921   return Out.str();
922 }
923 
924 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
925                                             const FunctionDecl *FD) {
926   if (!FD->isMultiVersion())
927     return;
928 
929   // Get the name of what this would be without the 'target' attribute.  This
930   // allows us to lookup the version that was emitted when this wasn't a
931   // multiversion function.
932   std::string NonTargetName =
933       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
934   GlobalDecl OtherGD;
935   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
936     assert(OtherGD.getCanonicalDecl()
937                .getDecl()
938                ->getAsFunction()
939                ->isMultiVersion() &&
940            "Other GD should now be a multiversioned function");
941     // OtherFD is the version of this function that was mangled BEFORE
942     // becoming a MultiVersion function.  It potentially needs to be updated.
943     const FunctionDecl *OtherFD =
944         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
945     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
946     // This is so that if the initial version was already the 'default'
947     // version, we don't try to update it.
948     if (OtherName != NonTargetName) {
949       // Remove instead of erase, since others may have stored the StringRef
950       // to this.
951       const auto ExistingRecord = Manglings.find(NonTargetName);
952       if (ExistingRecord != std::end(Manglings))
953         Manglings.remove(&(*ExistingRecord));
954       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
955       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
956       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
957         Entry->setName(OtherName);
958     }
959   }
960 }
961 
962 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
963   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
964 
965   // Some ABIs don't have constructor variants.  Make sure that base and
966   // complete constructors get mangled the same.
967   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
968     if (!getTarget().getCXXABI().hasConstructorVariants()) {
969       CXXCtorType OrigCtorType = GD.getCtorType();
970       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
971       if (OrigCtorType == Ctor_Base)
972         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
973     }
974   }
975 
976   auto FoundName = MangledDeclNames.find(CanonicalGD);
977   if (FoundName != MangledDeclNames.end())
978     return FoundName->second;
979 
980 
981   // Keep the first result in the case of a mangling collision.
982   const auto *ND = cast<NamedDecl>(GD.getDecl());
983   auto Result =
984       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
985   return MangledDeclNames[CanonicalGD] = Result.first->first();
986 }
987 
988 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
989                                              const BlockDecl *BD) {
990   MangleContext &MangleCtx = getCXXABI().getMangleContext();
991   const Decl *D = GD.getDecl();
992 
993   SmallString<256> Buffer;
994   llvm::raw_svector_ostream Out(Buffer);
995   if (!D)
996     MangleCtx.mangleGlobalBlock(BD,
997       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
998   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
999     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1000   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1001     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1002   else
1003     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1004 
1005   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1006   return Result.first->first();
1007 }
1008 
1009 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1010   return getModule().getNamedValue(Name);
1011 }
1012 
1013 /// AddGlobalCtor - Add a function to the list that will be called before
1014 /// main() runs.
1015 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1016                                   llvm::Constant *AssociatedData) {
1017   // FIXME: Type coercion of void()* types.
1018   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1019 }
1020 
1021 /// AddGlobalDtor - Add a function to the list that will be called
1022 /// when the module is unloaded.
1023 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1024   // FIXME: Type coercion of void()* types.
1025   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1026 }
1027 
1028 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1029   if (Fns.empty()) return;
1030 
1031   // Ctor function type is void()*.
1032   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1033   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1034 
1035   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1036   llvm::StructType *CtorStructTy = llvm::StructType::get(
1037       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1038 
1039   // Construct the constructor and destructor arrays.
1040   ConstantInitBuilder builder(*this);
1041   auto ctors = builder.beginArray(CtorStructTy);
1042   for (const auto &I : Fns) {
1043     auto ctor = ctors.beginStruct(CtorStructTy);
1044     ctor.addInt(Int32Ty, I.Priority);
1045     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1046     if (I.AssociatedData)
1047       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1048     else
1049       ctor.addNullPointer(VoidPtrTy);
1050     ctor.finishAndAddTo(ctors);
1051   }
1052 
1053   auto list =
1054     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1055                                 /*constant*/ false,
1056                                 llvm::GlobalValue::AppendingLinkage);
1057 
1058   // The LTO linker doesn't seem to like it when we set an alignment
1059   // on appending variables.  Take it off as a workaround.
1060   list->setAlignment(0);
1061 
1062   Fns.clear();
1063 }
1064 
1065 llvm::GlobalValue::LinkageTypes
1066 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1067   const auto *D = cast<FunctionDecl>(GD.getDecl());
1068 
1069   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1070 
1071   if (isa<CXXDestructorDecl>(D) &&
1072       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1073                                          GD.getDtorType())) {
1074     // Destructor variants in the Microsoft C++ ABI are always internal or
1075     // linkonce_odr thunks emitted on an as-needed basis.
1076     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
1077                                    : llvm::GlobalValue::LinkOnceODRLinkage;
1078   }
1079 
1080   if (isa<CXXConstructorDecl>(D) &&
1081       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1082       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1083     // Our approach to inheriting constructors is fundamentally different from
1084     // that used by the MS ABI, so keep our inheriting constructor thunks
1085     // internal rather than trying to pick an unambiguous mangling for them.
1086     return llvm::GlobalValue::InternalLinkage;
1087   }
1088 
1089   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1090 }
1091 
1092 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1093   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1094   if (!MDS) return nullptr;
1095 
1096   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1097 }
1098 
1099 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1100                                               const CGFunctionInfo &Info,
1101                                               llvm::Function *F) {
1102   unsigned CallingConv;
1103   llvm::AttributeList PAL;
1104   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1105   F->setAttributes(PAL);
1106   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1107 }
1108 
1109 /// Determines whether the language options require us to model
1110 /// unwind exceptions.  We treat -fexceptions as mandating this
1111 /// except under the fragile ObjC ABI with only ObjC exceptions
1112 /// enabled.  This means, for example, that C with -fexceptions
1113 /// enables this.
1114 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1115   // If exceptions are completely disabled, obviously this is false.
1116   if (!LangOpts.Exceptions) return false;
1117 
1118   // If C++ exceptions are enabled, this is true.
1119   if (LangOpts.CXXExceptions) return true;
1120 
1121   // If ObjC exceptions are enabled, this depends on the ABI.
1122   if (LangOpts.ObjCExceptions) {
1123     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1124   }
1125 
1126   return true;
1127 }
1128 
1129 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1130                                                            llvm::Function *F) {
1131   llvm::AttrBuilder B;
1132 
1133   if (CodeGenOpts.UnwindTables)
1134     B.addAttribute(llvm::Attribute::UWTable);
1135 
1136   if (!hasUnwindExceptions(LangOpts))
1137     B.addAttribute(llvm::Attribute::NoUnwind);
1138 
1139   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1140     B.addAttribute(llvm::Attribute::StackProtect);
1141   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1142     B.addAttribute(llvm::Attribute::StackProtectStrong);
1143   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1144     B.addAttribute(llvm::Attribute::StackProtectReq);
1145 
1146   if (!D) {
1147     // If we don't have a declaration to control inlining, the function isn't
1148     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1149     // disabled, mark the function as noinline.
1150     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1151         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1152       B.addAttribute(llvm::Attribute::NoInline);
1153 
1154     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1155     return;
1156   }
1157 
1158   // Track whether we need to add the optnone LLVM attribute,
1159   // starting with the default for this optimization level.
1160   bool ShouldAddOptNone =
1161       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1162   // We can't add optnone in the following cases, it won't pass the verifier.
1163   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1164   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1165   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1166 
1167   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1168     B.addAttribute(llvm::Attribute::OptimizeNone);
1169 
1170     // OptimizeNone implies noinline; we should not be inlining such functions.
1171     B.addAttribute(llvm::Attribute::NoInline);
1172     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1173            "OptimizeNone and AlwaysInline on same function!");
1174 
1175     // We still need to handle naked functions even though optnone subsumes
1176     // much of their semantics.
1177     if (D->hasAttr<NakedAttr>())
1178       B.addAttribute(llvm::Attribute::Naked);
1179 
1180     // OptimizeNone wins over OptimizeForSize and MinSize.
1181     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1182     F->removeFnAttr(llvm::Attribute::MinSize);
1183   } else if (D->hasAttr<NakedAttr>()) {
1184     // Naked implies noinline: we should not be inlining such functions.
1185     B.addAttribute(llvm::Attribute::Naked);
1186     B.addAttribute(llvm::Attribute::NoInline);
1187   } else if (D->hasAttr<NoDuplicateAttr>()) {
1188     B.addAttribute(llvm::Attribute::NoDuplicate);
1189   } else if (D->hasAttr<NoInlineAttr>()) {
1190     B.addAttribute(llvm::Attribute::NoInline);
1191   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1192              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1193     // (noinline wins over always_inline, and we can't specify both in IR)
1194     B.addAttribute(llvm::Attribute::AlwaysInline);
1195   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1196     // If we're not inlining, then force everything that isn't always_inline to
1197     // carry an explicit noinline attribute.
1198     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1199       B.addAttribute(llvm::Attribute::NoInline);
1200   } else {
1201     // Otherwise, propagate the inline hint attribute and potentially use its
1202     // absence to mark things as noinline.
1203     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1204       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1205             return Redecl->isInlineSpecified();
1206           })) {
1207         B.addAttribute(llvm::Attribute::InlineHint);
1208       } else if (CodeGenOpts.getInlining() ==
1209                      CodeGenOptions::OnlyHintInlining &&
1210                  !FD->isInlined() &&
1211                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1212         B.addAttribute(llvm::Attribute::NoInline);
1213       }
1214     }
1215   }
1216 
1217   // Add other optimization related attributes if we are optimizing this
1218   // function.
1219   if (!D->hasAttr<OptimizeNoneAttr>()) {
1220     if (D->hasAttr<ColdAttr>()) {
1221       if (!ShouldAddOptNone)
1222         B.addAttribute(llvm::Attribute::OptimizeForSize);
1223       B.addAttribute(llvm::Attribute::Cold);
1224     }
1225 
1226     if (D->hasAttr<MinSizeAttr>())
1227       B.addAttribute(llvm::Attribute::MinSize);
1228   }
1229 
1230   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1231 
1232   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1233   if (alignment)
1234     F->setAlignment(alignment);
1235 
1236   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1237   // reserve a bit for differentiating between virtual and non-virtual member
1238   // functions. If the current target's C++ ABI requires this and this is a
1239   // member function, set its alignment accordingly.
1240   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1241     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1242       F->setAlignment(2);
1243   }
1244 
1245   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1246   if (CodeGenOpts.SanitizeCfiCrossDso)
1247     if (auto *FD = dyn_cast<FunctionDecl>(D))
1248       CreateFunctionTypeMetadata(FD, F);
1249 }
1250 
1251 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1252   const Decl *D = GD.getDecl();
1253   if (dyn_cast_or_null<NamedDecl>(D))
1254     setGVProperties(GV, GD);
1255   else
1256     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1257 
1258   if (D && D->hasAttr<UsedAttr>())
1259     addUsedGlobal(GV);
1260 }
1261 
1262 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1263                                                 llvm::AttrBuilder &Attrs) {
1264   // Add target-cpu and target-features attributes to functions. If
1265   // we have a decl for the function and it has a target attribute then
1266   // parse that and add it to the feature set.
1267   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1268   std::vector<std::string> Features;
1269   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1270   FD = FD ? FD->getMostRecentDecl() : FD;
1271   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1272   bool AddedAttr = false;
1273   if (TD) {
1274     llvm::StringMap<bool> FeatureMap;
1275     getFunctionFeatureMap(FeatureMap, FD);
1276 
1277     // Produce the canonical string for this set of features.
1278     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1279       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1280 
1281     // Now add the target-cpu and target-features to the function.
1282     // While we populated the feature map above, we still need to
1283     // get and parse the target attribute so we can get the cpu for
1284     // the function.
1285     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1286     if (ParsedAttr.Architecture != "" &&
1287         getTarget().isValidCPUName(ParsedAttr.Architecture))
1288       TargetCPU = ParsedAttr.Architecture;
1289   } else {
1290     // Otherwise just add the existing target cpu and target features to the
1291     // function.
1292     Features = getTarget().getTargetOpts().Features;
1293   }
1294 
1295   if (TargetCPU != "") {
1296     Attrs.addAttribute("target-cpu", TargetCPU);
1297     AddedAttr = true;
1298   }
1299   if (!Features.empty()) {
1300     std::sort(Features.begin(), Features.end());
1301     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1302     AddedAttr = true;
1303   }
1304 
1305   return AddedAttr;
1306 }
1307 
1308 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1309                                           llvm::GlobalObject *GO) {
1310   const Decl *D = GD.getDecl();
1311   SetCommonAttributes(GD, GO);
1312 
1313   if (D) {
1314     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1315       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1316         GV->addAttribute("bss-section", SA->getName());
1317       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1318         GV->addAttribute("data-section", SA->getName());
1319       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1320         GV->addAttribute("rodata-section", SA->getName());
1321     }
1322 
1323     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1324       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1325         if (!D->getAttr<SectionAttr>())
1326           F->addFnAttr("implicit-section-name", SA->getName());
1327 
1328       llvm::AttrBuilder Attrs;
1329       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1330         // We know that GetCPUAndFeaturesAttributes will always have the
1331         // newest set, since it has the newest possible FunctionDecl, so the
1332         // new ones should replace the old.
1333         F->removeFnAttr("target-cpu");
1334         F->removeFnAttr("target-features");
1335         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1336       }
1337     }
1338 
1339     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1340       GO->setSection(SA->getName());
1341   }
1342 
1343   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1344 }
1345 
1346 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1347                                                   llvm::Function *F,
1348                                                   const CGFunctionInfo &FI) {
1349   const Decl *D = GD.getDecl();
1350   SetLLVMFunctionAttributes(D, FI, F);
1351   SetLLVMFunctionAttributesForDefinition(D, F);
1352 
1353   F->setLinkage(llvm::Function::InternalLinkage);
1354 
1355   setNonAliasAttributes(GD, F);
1356 }
1357 
1358 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1359   // Set linkage and visibility in case we never see a definition.
1360   LinkageInfo LV = ND->getLinkageAndVisibility();
1361   // Don't set internal linkage on declarations.
1362   // "extern_weak" is overloaded in LLVM; we probably should have
1363   // separate linkage types for this.
1364   if (isExternallyVisible(LV.getLinkage()) &&
1365       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1366     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1367 }
1368 
1369 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1370                                                llvm::Function *F) {
1371   // Only if we are checking indirect calls.
1372   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1373     return;
1374 
1375   // Non-static class methods are handled via vtable pointer checks elsewhere.
1376   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1377     return;
1378 
1379   // Additionally, if building with cross-DSO support...
1380   if (CodeGenOpts.SanitizeCfiCrossDso) {
1381     // Skip available_externally functions. They won't be codegen'ed in the
1382     // current module anyway.
1383     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1384       return;
1385   }
1386 
1387   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1388   F->addTypeMetadata(0, MD);
1389   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1390 
1391   // Emit a hash-based bit set entry for cross-DSO calls.
1392   if (CodeGenOpts.SanitizeCfiCrossDso)
1393     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1394       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1395 }
1396 
1397 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1398                                           bool IsIncompleteFunction,
1399                                           bool IsThunk) {
1400 
1401   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1402     // If this is an intrinsic function, set the function's attributes
1403     // to the intrinsic's attributes.
1404     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1405     return;
1406   }
1407 
1408   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1409 
1410   if (!IsIncompleteFunction) {
1411     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1412     // Setup target-specific attributes.
1413     if (F->isDeclaration())
1414       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1415   }
1416 
1417   // Add the Returned attribute for "this", except for iOS 5 and earlier
1418   // where substantial code, including the libstdc++ dylib, was compiled with
1419   // GCC and does not actually return "this".
1420   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1421       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1422     assert(!F->arg_empty() &&
1423            F->arg_begin()->getType()
1424              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1425            "unexpected this return");
1426     F->addAttribute(1, llvm::Attribute::Returned);
1427   }
1428 
1429   // Only a few attributes are set on declarations; these may later be
1430   // overridden by a definition.
1431 
1432   setLinkageForGV(F, FD);
1433   setGVProperties(F, FD);
1434 
1435   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1436     F->addFnAttr("implicit-section-name");
1437   }
1438 
1439   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1440     F->setSection(SA->getName());
1441 
1442   if (FD->isReplaceableGlobalAllocationFunction()) {
1443     // A replaceable global allocation function does not act like a builtin by
1444     // default, only if it is invoked by a new-expression or delete-expression.
1445     F->addAttribute(llvm::AttributeList::FunctionIndex,
1446                     llvm::Attribute::NoBuiltin);
1447 
1448     // A sane operator new returns a non-aliasing pointer.
1449     // FIXME: Also add NonNull attribute to the return value
1450     // for the non-nothrow forms?
1451     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1452     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1453         (Kind == OO_New || Kind == OO_Array_New))
1454       F->addAttribute(llvm::AttributeList::ReturnIndex,
1455                       llvm::Attribute::NoAlias);
1456   }
1457 
1458   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1459     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1460   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1461     if (MD->isVirtual())
1462       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1463 
1464   // Don't emit entries for function declarations in the cross-DSO mode. This
1465   // is handled with better precision by the receiving DSO.
1466   if (!CodeGenOpts.SanitizeCfiCrossDso)
1467     CreateFunctionTypeMetadata(FD, F);
1468 
1469   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1470     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1471 }
1472 
1473 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1474   assert(!GV->isDeclaration() &&
1475          "Only globals with definition can force usage.");
1476   LLVMUsed.emplace_back(GV);
1477 }
1478 
1479 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1480   assert(!GV->isDeclaration() &&
1481          "Only globals with definition can force usage.");
1482   LLVMCompilerUsed.emplace_back(GV);
1483 }
1484 
1485 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1486                      std::vector<llvm::WeakTrackingVH> &List) {
1487   // Don't create llvm.used if there is no need.
1488   if (List.empty())
1489     return;
1490 
1491   // Convert List to what ConstantArray needs.
1492   SmallVector<llvm::Constant*, 8> UsedArray;
1493   UsedArray.resize(List.size());
1494   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1495     UsedArray[i] =
1496         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1497             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1498   }
1499 
1500   if (UsedArray.empty())
1501     return;
1502   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1503 
1504   auto *GV = new llvm::GlobalVariable(
1505       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1506       llvm::ConstantArray::get(ATy, UsedArray), Name);
1507 
1508   GV->setSection("llvm.metadata");
1509 }
1510 
1511 void CodeGenModule::emitLLVMUsed() {
1512   emitUsed(*this, "llvm.used", LLVMUsed);
1513   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1514 }
1515 
1516 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1517   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1518   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1519 }
1520 
1521 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1522   llvm::SmallString<32> Opt;
1523   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1524   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1525   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1526 }
1527 
1528 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1529   auto &C = getLLVMContext();
1530   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1531       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1532 }
1533 
1534 void CodeGenModule::AddDependentLib(StringRef Lib) {
1535   llvm::SmallString<24> Opt;
1536   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1537   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1538   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1539 }
1540 
1541 /// \brief Add link options implied by the given module, including modules
1542 /// it depends on, using a postorder walk.
1543 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1544                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1545                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1546   // Import this module's parent.
1547   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1548     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1549   }
1550 
1551   // Import this module's dependencies.
1552   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1553     if (Visited.insert(Mod->Imports[I - 1]).second)
1554       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1555   }
1556 
1557   // Add linker options to link against the libraries/frameworks
1558   // described by this module.
1559   llvm::LLVMContext &Context = CGM.getLLVMContext();
1560   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1561     // Link against a framework.  Frameworks are currently Darwin only, so we
1562     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1563     if (Mod->LinkLibraries[I-1].IsFramework) {
1564       llvm::Metadata *Args[2] = {
1565           llvm::MDString::get(Context, "-framework"),
1566           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1567 
1568       Metadata.push_back(llvm::MDNode::get(Context, Args));
1569       continue;
1570     }
1571 
1572     // Link against a library.
1573     llvm::SmallString<24> Opt;
1574     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1575       Mod->LinkLibraries[I-1].Library, Opt);
1576     auto *OptString = llvm::MDString::get(Context, Opt);
1577     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1578   }
1579 }
1580 
1581 void CodeGenModule::EmitModuleLinkOptions() {
1582   // Collect the set of all of the modules we want to visit to emit link
1583   // options, which is essentially the imported modules and all of their
1584   // non-explicit child modules.
1585   llvm::SetVector<clang::Module *> LinkModules;
1586   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1587   SmallVector<clang::Module *, 16> Stack;
1588 
1589   // Seed the stack with imported modules.
1590   for (Module *M : ImportedModules) {
1591     // Do not add any link flags when an implementation TU of a module imports
1592     // a header of that same module.
1593     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1594         !getLangOpts().isCompilingModule())
1595       continue;
1596     if (Visited.insert(M).second)
1597       Stack.push_back(M);
1598   }
1599 
1600   // Find all of the modules to import, making a little effort to prune
1601   // non-leaf modules.
1602   while (!Stack.empty()) {
1603     clang::Module *Mod = Stack.pop_back_val();
1604 
1605     bool AnyChildren = false;
1606 
1607     // Visit the submodules of this module.
1608     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1609                                         SubEnd = Mod->submodule_end();
1610          Sub != SubEnd; ++Sub) {
1611       // Skip explicit children; they need to be explicitly imported to be
1612       // linked against.
1613       if ((*Sub)->IsExplicit)
1614         continue;
1615 
1616       if (Visited.insert(*Sub).second) {
1617         Stack.push_back(*Sub);
1618         AnyChildren = true;
1619       }
1620     }
1621 
1622     // We didn't find any children, so add this module to the list of
1623     // modules to link against.
1624     if (!AnyChildren) {
1625       LinkModules.insert(Mod);
1626     }
1627   }
1628 
1629   // Add link options for all of the imported modules in reverse topological
1630   // order.  We don't do anything to try to order import link flags with respect
1631   // to linker options inserted by things like #pragma comment().
1632   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1633   Visited.clear();
1634   for (Module *M : LinkModules)
1635     if (Visited.insert(M).second)
1636       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1637   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1638   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1639 
1640   // Add the linker options metadata flag.
1641   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1642   for (auto *MD : LinkerOptionsMetadata)
1643     NMD->addOperand(MD);
1644 }
1645 
1646 void CodeGenModule::EmitDeferred() {
1647   // Emit code for any potentially referenced deferred decls.  Since a
1648   // previously unused static decl may become used during the generation of code
1649   // for a static function, iterate until no changes are made.
1650 
1651   if (!DeferredVTables.empty()) {
1652     EmitDeferredVTables();
1653 
1654     // Emitting a vtable doesn't directly cause more vtables to
1655     // become deferred, although it can cause functions to be
1656     // emitted that then need those vtables.
1657     assert(DeferredVTables.empty());
1658   }
1659 
1660   // Stop if we're out of both deferred vtables and deferred declarations.
1661   if (DeferredDeclsToEmit.empty())
1662     return;
1663 
1664   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1665   // work, it will not interfere with this.
1666   std::vector<GlobalDecl> CurDeclsToEmit;
1667   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1668 
1669   for (GlobalDecl &D : CurDeclsToEmit) {
1670     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1671     // to get GlobalValue with exactly the type we need, not something that
1672     // might had been created for another decl with the same mangled name but
1673     // different type.
1674     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1675         GetAddrOfGlobal(D, ForDefinition));
1676 
1677     // In case of different address spaces, we may still get a cast, even with
1678     // IsForDefinition equal to true. Query mangled names table to get
1679     // GlobalValue.
1680     if (!GV)
1681       GV = GetGlobalValue(getMangledName(D));
1682 
1683     // Make sure GetGlobalValue returned non-null.
1684     assert(GV);
1685 
1686     // Check to see if we've already emitted this.  This is necessary
1687     // for a couple of reasons: first, decls can end up in the
1688     // deferred-decls queue multiple times, and second, decls can end
1689     // up with definitions in unusual ways (e.g. by an extern inline
1690     // function acquiring a strong function redefinition).  Just
1691     // ignore these cases.
1692     if (!GV->isDeclaration())
1693       continue;
1694 
1695     // Otherwise, emit the definition and move on to the next one.
1696     EmitGlobalDefinition(D, GV);
1697 
1698     // If we found out that we need to emit more decls, do that recursively.
1699     // This has the advantage that the decls are emitted in a DFS and related
1700     // ones are close together, which is convenient for testing.
1701     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1702       EmitDeferred();
1703       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1704     }
1705   }
1706 }
1707 
1708 void CodeGenModule::EmitVTablesOpportunistically() {
1709   // Try to emit external vtables as available_externally if they have emitted
1710   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1711   // is not allowed to create new references to things that need to be emitted
1712   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1713 
1714   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1715          && "Only emit opportunistic vtables with optimizations");
1716 
1717   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1718     assert(getVTables().isVTableExternal(RD) &&
1719            "This queue should only contain external vtables");
1720     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1721       VTables.GenerateClassData(RD);
1722   }
1723   OpportunisticVTables.clear();
1724 }
1725 
1726 void CodeGenModule::EmitGlobalAnnotations() {
1727   if (Annotations.empty())
1728     return;
1729 
1730   // Create a new global variable for the ConstantStruct in the Module.
1731   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1732     Annotations[0]->getType(), Annotations.size()), Annotations);
1733   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1734                                       llvm::GlobalValue::AppendingLinkage,
1735                                       Array, "llvm.global.annotations");
1736   gv->setSection(AnnotationSection);
1737 }
1738 
1739 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1740   llvm::Constant *&AStr = AnnotationStrings[Str];
1741   if (AStr)
1742     return AStr;
1743 
1744   // Not found yet, create a new global.
1745   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1746   auto *gv =
1747       new llvm::GlobalVariable(getModule(), s->getType(), true,
1748                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1749   gv->setSection(AnnotationSection);
1750   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1751   AStr = gv;
1752   return gv;
1753 }
1754 
1755 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1756   SourceManager &SM = getContext().getSourceManager();
1757   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1758   if (PLoc.isValid())
1759     return EmitAnnotationString(PLoc.getFilename());
1760   return EmitAnnotationString(SM.getBufferName(Loc));
1761 }
1762 
1763 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1764   SourceManager &SM = getContext().getSourceManager();
1765   PresumedLoc PLoc = SM.getPresumedLoc(L);
1766   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1767     SM.getExpansionLineNumber(L);
1768   return llvm::ConstantInt::get(Int32Ty, LineNo);
1769 }
1770 
1771 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1772                                                 const AnnotateAttr *AA,
1773                                                 SourceLocation L) {
1774   // Get the globals for file name, annotation, and the line number.
1775   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1776                  *UnitGV = EmitAnnotationUnit(L),
1777                  *LineNoCst = EmitAnnotationLineNo(L);
1778 
1779   // Create the ConstantStruct for the global annotation.
1780   llvm::Constant *Fields[4] = {
1781     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1782     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1783     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1784     LineNoCst
1785   };
1786   return llvm::ConstantStruct::getAnon(Fields);
1787 }
1788 
1789 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1790                                          llvm::GlobalValue *GV) {
1791   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1792   // Get the struct elements for these annotations.
1793   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1794     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1795 }
1796 
1797 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1798                                            llvm::Function *Fn,
1799                                            SourceLocation Loc) const {
1800   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1801   // Blacklist by function name.
1802   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1803     return true;
1804   // Blacklist by location.
1805   if (Loc.isValid())
1806     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1807   // If location is unknown, this may be a compiler-generated function. Assume
1808   // it's located in the main file.
1809   auto &SM = Context.getSourceManager();
1810   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1811     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1812   }
1813   return false;
1814 }
1815 
1816 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1817                                            SourceLocation Loc, QualType Ty,
1818                                            StringRef Category) const {
1819   // For now globals can be blacklisted only in ASan and KASan.
1820   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1821       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1822   if (!EnabledAsanMask)
1823     return false;
1824   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1825   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1826     return true;
1827   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1828     return true;
1829   // Check global type.
1830   if (!Ty.isNull()) {
1831     // Drill down the array types: if global variable of a fixed type is
1832     // blacklisted, we also don't instrument arrays of them.
1833     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1834       Ty = AT->getElementType();
1835     Ty = Ty.getCanonicalType().getUnqualifiedType();
1836     // We allow to blacklist only record types (classes, structs etc.)
1837     if (Ty->isRecordType()) {
1838       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1839       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1840         return true;
1841     }
1842   }
1843   return false;
1844 }
1845 
1846 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1847                                    StringRef Category) const {
1848   if (!LangOpts.XRayInstrument)
1849     return false;
1850   const auto &XRayFilter = getContext().getXRayFilter();
1851   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1852   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1853   if (Loc.isValid())
1854     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1855   if (Attr == ImbueAttr::NONE)
1856     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1857   switch (Attr) {
1858   case ImbueAttr::NONE:
1859     return false;
1860   case ImbueAttr::ALWAYS:
1861     Fn->addFnAttr("function-instrument", "xray-always");
1862     break;
1863   case ImbueAttr::ALWAYS_ARG1:
1864     Fn->addFnAttr("function-instrument", "xray-always");
1865     Fn->addFnAttr("xray-log-args", "1");
1866     break;
1867   case ImbueAttr::NEVER:
1868     Fn->addFnAttr("function-instrument", "xray-never");
1869     break;
1870   }
1871   return true;
1872 }
1873 
1874 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1875   // Never defer when EmitAllDecls is specified.
1876   if (LangOpts.EmitAllDecls)
1877     return true;
1878 
1879   return getContext().DeclMustBeEmitted(Global);
1880 }
1881 
1882 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1883   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1884     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1885       // Implicit template instantiations may change linkage if they are later
1886       // explicitly instantiated, so they should not be emitted eagerly.
1887       return false;
1888   if (const auto *VD = dyn_cast<VarDecl>(Global))
1889     if (Context.getInlineVariableDefinitionKind(VD) ==
1890         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1891       // A definition of an inline constexpr static data member may change
1892       // linkage later if it's redeclared outside the class.
1893       return false;
1894   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1895   // codegen for global variables, because they may be marked as threadprivate.
1896   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1897       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1898     return false;
1899 
1900   return true;
1901 }
1902 
1903 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1904     const CXXUuidofExpr* E) {
1905   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1906   // well-formed.
1907   StringRef Uuid = E->getUuidStr();
1908   std::string Name = "_GUID_" + Uuid.lower();
1909   std::replace(Name.begin(), Name.end(), '-', '_');
1910 
1911   // The UUID descriptor should be pointer aligned.
1912   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1913 
1914   // Look for an existing global.
1915   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1916     return ConstantAddress(GV, Alignment);
1917 
1918   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1919   assert(Init && "failed to initialize as constant");
1920 
1921   auto *GV = new llvm::GlobalVariable(
1922       getModule(), Init->getType(),
1923       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1924   if (supportsCOMDAT())
1925     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1926   return ConstantAddress(GV, Alignment);
1927 }
1928 
1929 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1930   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1931   assert(AA && "No alias?");
1932 
1933   CharUnits Alignment = getContext().getDeclAlign(VD);
1934   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1935 
1936   // See if there is already something with the target's name in the module.
1937   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1938   if (Entry) {
1939     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1940     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1941     return ConstantAddress(Ptr, Alignment);
1942   }
1943 
1944   llvm::Constant *Aliasee;
1945   if (isa<llvm::FunctionType>(DeclTy))
1946     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1947                                       GlobalDecl(cast<FunctionDecl>(VD)),
1948                                       /*ForVTable=*/false);
1949   else
1950     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1951                                     llvm::PointerType::getUnqual(DeclTy),
1952                                     nullptr);
1953 
1954   auto *F = cast<llvm::GlobalValue>(Aliasee);
1955   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1956   WeakRefReferences.insert(F);
1957 
1958   return ConstantAddress(Aliasee, Alignment);
1959 }
1960 
1961 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1962   const auto *Global = cast<ValueDecl>(GD.getDecl());
1963 
1964   // Weak references don't produce any output by themselves.
1965   if (Global->hasAttr<WeakRefAttr>())
1966     return;
1967 
1968   // If this is an alias definition (which otherwise looks like a declaration)
1969   // emit it now.
1970   if (Global->hasAttr<AliasAttr>())
1971     return EmitAliasDefinition(GD);
1972 
1973   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1974   if (Global->hasAttr<IFuncAttr>())
1975     return emitIFuncDefinition(GD);
1976 
1977   // If this is CUDA, be selective about which declarations we emit.
1978   if (LangOpts.CUDA) {
1979     if (LangOpts.CUDAIsDevice) {
1980       if (!Global->hasAttr<CUDADeviceAttr>() &&
1981           !Global->hasAttr<CUDAGlobalAttr>() &&
1982           !Global->hasAttr<CUDAConstantAttr>() &&
1983           !Global->hasAttr<CUDASharedAttr>())
1984         return;
1985     } else {
1986       // We need to emit host-side 'shadows' for all global
1987       // device-side variables because the CUDA runtime needs their
1988       // size and host-side address in order to provide access to
1989       // their device-side incarnations.
1990 
1991       // So device-only functions are the only things we skip.
1992       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1993           Global->hasAttr<CUDADeviceAttr>())
1994         return;
1995 
1996       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1997              "Expected Variable or Function");
1998     }
1999   }
2000 
2001   if (LangOpts.OpenMP) {
2002     // If this is OpenMP device, check if it is legal to emit this global
2003     // normally.
2004     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2005       return;
2006     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2007       if (MustBeEmitted(Global))
2008         EmitOMPDeclareReduction(DRD);
2009       return;
2010     }
2011   }
2012 
2013   // Ignore declarations, they will be emitted on their first use.
2014   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2015     // Forward declarations are emitted lazily on first use.
2016     if (!FD->doesThisDeclarationHaveABody()) {
2017       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2018         return;
2019 
2020       StringRef MangledName = getMangledName(GD);
2021 
2022       // Compute the function info and LLVM type.
2023       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2024       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2025 
2026       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2027                               /*DontDefer=*/false);
2028       return;
2029     }
2030   } else {
2031     const auto *VD = cast<VarDecl>(Global);
2032     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2033     // We need to emit device-side global CUDA variables even if a
2034     // variable does not have a definition -- we still need to define
2035     // host-side shadow for it.
2036     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2037                            !VD->hasDefinition() &&
2038                            (VD->hasAttr<CUDAConstantAttr>() ||
2039                             VD->hasAttr<CUDADeviceAttr>());
2040     if (!MustEmitForCuda &&
2041         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2042         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2043       // If this declaration may have caused an inline variable definition to
2044       // change linkage, make sure that it's emitted.
2045       if (Context.getInlineVariableDefinitionKind(VD) ==
2046           ASTContext::InlineVariableDefinitionKind::Strong)
2047         GetAddrOfGlobalVar(VD);
2048       return;
2049     }
2050   }
2051 
2052   // Defer code generation to first use when possible, e.g. if this is an inline
2053   // function. If the global must always be emitted, do it eagerly if possible
2054   // to benefit from cache locality.
2055   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2056     // Emit the definition if it can't be deferred.
2057     EmitGlobalDefinition(GD);
2058     return;
2059   }
2060 
2061   // If we're deferring emission of a C++ variable with an
2062   // initializer, remember the order in which it appeared in the file.
2063   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2064       cast<VarDecl>(Global)->hasInit()) {
2065     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2066     CXXGlobalInits.push_back(nullptr);
2067   }
2068 
2069   StringRef MangledName = getMangledName(GD);
2070   if (GetGlobalValue(MangledName) != nullptr) {
2071     // The value has already been used and should therefore be emitted.
2072     addDeferredDeclToEmit(GD);
2073   } else if (MustBeEmitted(Global)) {
2074     // The value must be emitted, but cannot be emitted eagerly.
2075     assert(!MayBeEmittedEagerly(Global));
2076     addDeferredDeclToEmit(GD);
2077   } else {
2078     // Otherwise, remember that we saw a deferred decl with this name.  The
2079     // first use of the mangled name will cause it to move into
2080     // DeferredDeclsToEmit.
2081     DeferredDecls[MangledName] = GD;
2082   }
2083 }
2084 
2085 // Check if T is a class type with a destructor that's not dllimport.
2086 static bool HasNonDllImportDtor(QualType T) {
2087   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2088     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2089       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2090         return true;
2091 
2092   return false;
2093 }
2094 
2095 namespace {
2096   struct FunctionIsDirectlyRecursive :
2097     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2098     const StringRef Name;
2099     const Builtin::Context &BI;
2100     bool Result;
2101     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2102       Name(N), BI(C), Result(false) {
2103     }
2104     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2105 
2106     bool TraverseCallExpr(CallExpr *E) {
2107       const FunctionDecl *FD = E->getDirectCallee();
2108       if (!FD)
2109         return true;
2110       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2111       if (Attr && Name == Attr->getLabel()) {
2112         Result = true;
2113         return false;
2114       }
2115       unsigned BuiltinID = FD->getBuiltinID();
2116       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2117         return true;
2118       StringRef BuiltinName = BI.getName(BuiltinID);
2119       if (BuiltinName.startswith("__builtin_") &&
2120           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2121         Result = true;
2122         return false;
2123       }
2124       return true;
2125     }
2126   };
2127 
2128   // Make sure we're not referencing non-imported vars or functions.
2129   struct DLLImportFunctionVisitor
2130       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2131     bool SafeToInline = true;
2132 
2133     bool shouldVisitImplicitCode() const { return true; }
2134 
2135     bool VisitVarDecl(VarDecl *VD) {
2136       if (VD->getTLSKind()) {
2137         // A thread-local variable cannot be imported.
2138         SafeToInline = false;
2139         return SafeToInline;
2140       }
2141 
2142       // A variable definition might imply a destructor call.
2143       if (VD->isThisDeclarationADefinition())
2144         SafeToInline = !HasNonDllImportDtor(VD->getType());
2145 
2146       return SafeToInline;
2147     }
2148 
2149     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2150       if (const auto *D = E->getTemporary()->getDestructor())
2151         SafeToInline = D->hasAttr<DLLImportAttr>();
2152       return SafeToInline;
2153     }
2154 
2155     bool VisitDeclRefExpr(DeclRefExpr *E) {
2156       ValueDecl *VD = E->getDecl();
2157       if (isa<FunctionDecl>(VD))
2158         SafeToInline = VD->hasAttr<DLLImportAttr>();
2159       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2160         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2161       return SafeToInline;
2162     }
2163 
2164     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2165       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2166       return SafeToInline;
2167     }
2168 
2169     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2170       CXXMethodDecl *M = E->getMethodDecl();
2171       if (!M) {
2172         // Call through a pointer to member function. This is safe to inline.
2173         SafeToInline = true;
2174       } else {
2175         SafeToInline = M->hasAttr<DLLImportAttr>();
2176       }
2177       return SafeToInline;
2178     }
2179 
2180     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2181       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2182       return SafeToInline;
2183     }
2184 
2185     bool VisitCXXNewExpr(CXXNewExpr *E) {
2186       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2187       return SafeToInline;
2188     }
2189   };
2190 }
2191 
2192 // isTriviallyRecursive - Check if this function calls another
2193 // decl that, because of the asm attribute or the other decl being a builtin,
2194 // ends up pointing to itself.
2195 bool
2196 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2197   StringRef Name;
2198   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2199     // asm labels are a special kind of mangling we have to support.
2200     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2201     if (!Attr)
2202       return false;
2203     Name = Attr->getLabel();
2204   } else {
2205     Name = FD->getName();
2206   }
2207 
2208   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2209   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2210   return Walker.Result;
2211 }
2212 
2213 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2214   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2215     return true;
2216   const auto *F = cast<FunctionDecl>(GD.getDecl());
2217   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2218     return false;
2219 
2220   if (F->hasAttr<DLLImportAttr>()) {
2221     // Check whether it would be safe to inline this dllimport function.
2222     DLLImportFunctionVisitor Visitor;
2223     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2224     if (!Visitor.SafeToInline)
2225       return false;
2226 
2227     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2228       // Implicit destructor invocations aren't captured in the AST, so the
2229       // check above can't see them. Check for them manually here.
2230       for (const Decl *Member : Dtor->getParent()->decls())
2231         if (isa<FieldDecl>(Member))
2232           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2233             return false;
2234       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2235         if (HasNonDllImportDtor(B.getType()))
2236           return false;
2237     }
2238   }
2239 
2240   // PR9614. Avoid cases where the source code is lying to us. An available
2241   // externally function should have an equivalent function somewhere else,
2242   // but a function that calls itself is clearly not equivalent to the real
2243   // implementation.
2244   // This happens in glibc's btowc and in some configure checks.
2245   return !isTriviallyRecursive(F);
2246 }
2247 
2248 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2249   return CodeGenOpts.OptimizationLevel > 0;
2250 }
2251 
2252 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2253   const auto *D = cast<ValueDecl>(GD.getDecl());
2254 
2255   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2256                                  Context.getSourceManager(),
2257                                  "Generating code for declaration");
2258 
2259   if (isa<FunctionDecl>(D)) {
2260     // At -O0, don't generate IR for functions with available_externally
2261     // linkage.
2262     if (!shouldEmitFunction(GD))
2263       return;
2264 
2265     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2266       // Make sure to emit the definition(s) before we emit the thunks.
2267       // This is necessary for the generation of certain thunks.
2268       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2269         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2270       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2271         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2272       else
2273         EmitGlobalFunctionDefinition(GD, GV);
2274 
2275       if (Method->isVirtual())
2276         getVTables().EmitThunks(GD);
2277 
2278       return;
2279     }
2280 
2281     return EmitGlobalFunctionDefinition(GD, GV);
2282   }
2283 
2284   if (const auto *VD = dyn_cast<VarDecl>(D))
2285     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2286 
2287   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2288 }
2289 
2290 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2291                                                       llvm::Function *NewFn);
2292 
2293 void CodeGenModule::emitMultiVersionFunctions() {
2294   for (GlobalDecl GD : MultiVersionFuncs) {
2295     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2296     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2297     getContext().forEachMultiversionedFunctionVersion(
2298         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2299           GlobalDecl CurGD{
2300               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2301           StringRef MangledName = getMangledName(CurGD);
2302           llvm::Constant *Func = GetGlobalValue(MangledName);
2303           if (!Func) {
2304             if (CurFD->isDefined()) {
2305               EmitGlobalFunctionDefinition(CurGD, nullptr);
2306               Func = GetGlobalValue(MangledName);
2307             } else {
2308               const CGFunctionInfo &FI =
2309                   getTypes().arrangeGlobalDeclaration(GD);
2310               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2311               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2312                                        /*DontDefer=*/false, ForDefinition);
2313             }
2314             assert(Func && "This should have just been created");
2315           }
2316           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2317                                CurFD->getAttr<TargetAttr>()->parse());
2318         });
2319 
2320     llvm::Function *ResolverFunc = cast<llvm::Function>(
2321         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2322     if (supportsCOMDAT())
2323       ResolverFunc->setComdat(
2324           getModule().getOrInsertComdat(ResolverFunc->getName()));
2325     std::stable_sort(
2326         Options.begin(), Options.end(),
2327         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2328     CodeGenFunction CGF(*this);
2329     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2330   }
2331 }
2332 
2333 /// If an ifunc for the specified mangled name is not in the module, create and
2334 /// return an llvm IFunc Function with the specified type.
2335 llvm::Constant *
2336 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2337                                             StringRef MangledName,
2338                                             const FunctionDecl *FD) {
2339   std::string IFuncName = (MangledName + ".ifunc").str();
2340   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2341     return IFuncGV;
2342 
2343   // Since this is the first time we've created this IFunc, make sure
2344   // that we put this multiversioned function into the list to be
2345   // replaced later.
2346   MultiVersionFuncs.push_back(GD);
2347 
2348   std::string ResolverName = (MangledName + ".resolver").str();
2349   llvm::Type *ResolverType = llvm::FunctionType::get(
2350       llvm::PointerType::get(DeclTy,
2351                              Context.getTargetAddressSpace(FD->getType())),
2352       false);
2353   llvm::Constant *Resolver =
2354       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2355                               /*ForVTable=*/false);
2356   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2357       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2358   GIF->setName(IFuncName);
2359   SetCommonAttributes(FD, GIF);
2360 
2361   return GIF;
2362 }
2363 
2364 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2365 /// module, create and return an llvm Function with the specified type. If there
2366 /// is something in the module with the specified name, return it potentially
2367 /// bitcasted to the right type.
2368 ///
2369 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2370 /// to set the attributes on the function when it is first created.
2371 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2372     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2373     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2374     ForDefinition_t IsForDefinition) {
2375   const Decl *D = GD.getDecl();
2376 
2377   // Any attempts to use a MultiVersion function should result in retrieving
2378   // the iFunc instead. Name Mangling will handle the rest of the changes.
2379   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2380     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2381       UpdateMultiVersionNames(GD, FD);
2382       if (!IsForDefinition)
2383         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2384     }
2385   }
2386 
2387   // Lookup the entry, lazily creating it if necessary.
2388   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2389   if (Entry) {
2390     if (WeakRefReferences.erase(Entry)) {
2391       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2392       if (FD && !FD->hasAttr<WeakAttr>())
2393         Entry->setLinkage(llvm::Function::ExternalLinkage);
2394     }
2395 
2396     // Handle dropped DLL attributes.
2397     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2398       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2399 
2400     // If there are two attempts to define the same mangled name, issue an
2401     // error.
2402     if (IsForDefinition && !Entry->isDeclaration()) {
2403       GlobalDecl OtherGD;
2404       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2405       // to make sure that we issue an error only once.
2406       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2407           (GD.getCanonicalDecl().getDecl() !=
2408            OtherGD.getCanonicalDecl().getDecl()) &&
2409           DiagnosedConflictingDefinitions.insert(GD).second) {
2410         getDiags().Report(D->getLocation(),
2411                           diag::err_duplicate_mangled_name);
2412         getDiags().Report(OtherGD.getDecl()->getLocation(),
2413                           diag::note_previous_definition);
2414       }
2415     }
2416 
2417     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2418         (Entry->getType()->getElementType() == Ty)) {
2419       return Entry;
2420     }
2421 
2422     // Make sure the result is of the correct type.
2423     // (If function is requested for a definition, we always need to create a new
2424     // function, not just return a bitcast.)
2425     if (!IsForDefinition)
2426       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2427   }
2428 
2429   // This function doesn't have a complete type (for example, the return
2430   // type is an incomplete struct). Use a fake type instead, and make
2431   // sure not to try to set attributes.
2432   bool IsIncompleteFunction = false;
2433 
2434   llvm::FunctionType *FTy;
2435   if (isa<llvm::FunctionType>(Ty)) {
2436     FTy = cast<llvm::FunctionType>(Ty);
2437   } else {
2438     FTy = llvm::FunctionType::get(VoidTy, false);
2439     IsIncompleteFunction = true;
2440   }
2441 
2442   llvm::Function *F =
2443       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2444                              Entry ? StringRef() : MangledName, &getModule());
2445 
2446   // If we already created a function with the same mangled name (but different
2447   // type) before, take its name and add it to the list of functions to be
2448   // replaced with F at the end of CodeGen.
2449   //
2450   // This happens if there is a prototype for a function (e.g. "int f()") and
2451   // then a definition of a different type (e.g. "int f(int x)").
2452   if (Entry) {
2453     F->takeName(Entry);
2454 
2455     // This might be an implementation of a function without a prototype, in
2456     // which case, try to do special replacement of calls which match the new
2457     // prototype.  The really key thing here is that we also potentially drop
2458     // arguments from the call site so as to make a direct call, which makes the
2459     // inliner happier and suppresses a number of optimizer warnings (!) about
2460     // dropping arguments.
2461     if (!Entry->use_empty()) {
2462       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2463       Entry->removeDeadConstantUsers();
2464     }
2465 
2466     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2467         F, Entry->getType()->getElementType()->getPointerTo());
2468     addGlobalValReplacement(Entry, BC);
2469   }
2470 
2471   assert(F->getName() == MangledName && "name was uniqued!");
2472   if (D)
2473     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2474   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2475     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2476     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2477   }
2478 
2479   if (!DontDefer) {
2480     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2481     // each other bottoming out with the base dtor.  Therefore we emit non-base
2482     // dtors on usage, even if there is no dtor definition in the TU.
2483     if (D && isa<CXXDestructorDecl>(D) &&
2484         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2485                                            GD.getDtorType()))
2486       addDeferredDeclToEmit(GD);
2487 
2488     // This is the first use or definition of a mangled name.  If there is a
2489     // deferred decl with this name, remember that we need to emit it at the end
2490     // of the file.
2491     auto DDI = DeferredDecls.find(MangledName);
2492     if (DDI != DeferredDecls.end()) {
2493       // Move the potentially referenced deferred decl to the
2494       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2495       // don't need it anymore).
2496       addDeferredDeclToEmit(DDI->second);
2497       DeferredDecls.erase(DDI);
2498 
2499       // Otherwise, there are cases we have to worry about where we're
2500       // using a declaration for which we must emit a definition but where
2501       // we might not find a top-level definition:
2502       //   - member functions defined inline in their classes
2503       //   - friend functions defined inline in some class
2504       //   - special member functions with implicit definitions
2505       // If we ever change our AST traversal to walk into class methods,
2506       // this will be unnecessary.
2507       //
2508       // We also don't emit a definition for a function if it's going to be an
2509       // entry in a vtable, unless it's already marked as used.
2510     } else if (getLangOpts().CPlusPlus && D) {
2511       // Look for a declaration that's lexically in a record.
2512       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2513            FD = FD->getPreviousDecl()) {
2514         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2515           if (FD->doesThisDeclarationHaveABody()) {
2516             addDeferredDeclToEmit(GD.getWithDecl(FD));
2517             break;
2518           }
2519         }
2520       }
2521     }
2522   }
2523 
2524   // Make sure the result is of the requested type.
2525   if (!IsIncompleteFunction) {
2526     assert(F->getType()->getElementType() == Ty);
2527     return F;
2528   }
2529 
2530   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2531   return llvm::ConstantExpr::getBitCast(F, PTy);
2532 }
2533 
2534 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2535 /// non-null, then this function will use the specified type if it has to
2536 /// create it (this occurs when we see a definition of the function).
2537 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2538                                                  llvm::Type *Ty,
2539                                                  bool ForVTable,
2540                                                  bool DontDefer,
2541                                               ForDefinition_t IsForDefinition) {
2542   // If there was no specific requested type, just convert it now.
2543   if (!Ty) {
2544     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2545     auto CanonTy = Context.getCanonicalType(FD->getType());
2546     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2547   }
2548 
2549   StringRef MangledName = getMangledName(GD);
2550   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2551                                  /*IsThunk=*/false, llvm::AttributeList(),
2552                                  IsForDefinition);
2553 }
2554 
2555 static const FunctionDecl *
2556 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2557   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2558   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2559 
2560   IdentifierInfo &CII = C.Idents.get(Name);
2561   for (const auto &Result : DC->lookup(&CII))
2562     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2563       return FD;
2564 
2565   if (!C.getLangOpts().CPlusPlus)
2566     return nullptr;
2567 
2568   // Demangle the premangled name from getTerminateFn()
2569   IdentifierInfo &CXXII =
2570       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2571           ? C.Idents.get("terminate")
2572           : C.Idents.get(Name);
2573 
2574   for (const auto &N : {"__cxxabiv1", "std"}) {
2575     IdentifierInfo &NS = C.Idents.get(N);
2576     for (const auto &Result : DC->lookup(&NS)) {
2577       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2578       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2579         for (const auto &Result : LSD->lookup(&NS))
2580           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2581             break;
2582 
2583       if (ND)
2584         for (const auto &Result : ND->lookup(&CXXII))
2585           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2586             return FD;
2587     }
2588   }
2589 
2590   return nullptr;
2591 }
2592 
2593 /// CreateRuntimeFunction - Create a new runtime function with the specified
2594 /// type and name.
2595 llvm::Constant *
2596 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2597                                      llvm::AttributeList ExtraAttrs,
2598                                      bool Local) {
2599   llvm::Constant *C =
2600       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2601                               /*DontDefer=*/false, /*IsThunk=*/false,
2602                               ExtraAttrs);
2603 
2604   if (auto *F = dyn_cast<llvm::Function>(C)) {
2605     if (F->empty()) {
2606       F->setCallingConv(getRuntimeCC());
2607 
2608       if (!Local && getTriple().isOSBinFormatCOFF() &&
2609           !getCodeGenOpts().LTOVisibilityPublicStd &&
2610           !getTriple().isWindowsGNUEnvironment()) {
2611         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2612         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2613           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2614           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2615         }
2616       }
2617     }
2618   }
2619 
2620   return C;
2621 }
2622 
2623 /// CreateBuiltinFunction - Create a new builtin function with the specified
2624 /// type and name.
2625 llvm::Constant *
2626 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2627                                      llvm::AttributeList ExtraAttrs) {
2628   llvm::Constant *C =
2629       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2630                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2631   if (auto *F = dyn_cast<llvm::Function>(C))
2632     if (F->empty())
2633       F->setCallingConv(getBuiltinCC());
2634   return C;
2635 }
2636 
2637 /// isTypeConstant - Determine whether an object of this type can be emitted
2638 /// as a constant.
2639 ///
2640 /// If ExcludeCtor is true, the duration when the object's constructor runs
2641 /// will not be considered. The caller will need to verify that the object is
2642 /// not written to during its construction.
2643 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2644   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2645     return false;
2646 
2647   if (Context.getLangOpts().CPlusPlus) {
2648     if (const CXXRecordDecl *Record
2649           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2650       return ExcludeCtor && !Record->hasMutableFields() &&
2651              Record->hasTrivialDestructor();
2652   }
2653 
2654   return true;
2655 }
2656 
2657 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2658 /// create and return an llvm GlobalVariable with the specified type.  If there
2659 /// is something in the module with the specified name, return it potentially
2660 /// bitcasted to the right type.
2661 ///
2662 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2663 /// to set the attributes on the global when it is first created.
2664 ///
2665 /// If IsForDefinition is true, it is guranteed that an actual global with
2666 /// type Ty will be returned, not conversion of a variable with the same
2667 /// mangled name but some other type.
2668 llvm::Constant *
2669 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2670                                      llvm::PointerType *Ty,
2671                                      const VarDecl *D,
2672                                      ForDefinition_t IsForDefinition) {
2673   // Lookup the entry, lazily creating it if necessary.
2674   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2675   if (Entry) {
2676     if (WeakRefReferences.erase(Entry)) {
2677       if (D && !D->hasAttr<WeakAttr>())
2678         Entry->setLinkage(llvm::Function::ExternalLinkage);
2679     }
2680 
2681     // Handle dropped DLL attributes.
2682     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2683       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2684 
2685     if (Entry->getType() == Ty)
2686       return Entry;
2687 
2688     // If there are two attempts to define the same mangled name, issue an
2689     // error.
2690     if (IsForDefinition && !Entry->isDeclaration()) {
2691       GlobalDecl OtherGD;
2692       const VarDecl *OtherD;
2693 
2694       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2695       // to make sure that we issue an error only once.
2696       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2697           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2698           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2699           OtherD->hasInit() &&
2700           DiagnosedConflictingDefinitions.insert(D).second) {
2701         getDiags().Report(D->getLocation(),
2702                           diag::err_duplicate_mangled_name);
2703         getDiags().Report(OtherGD.getDecl()->getLocation(),
2704                           diag::note_previous_definition);
2705       }
2706     }
2707 
2708     // Make sure the result is of the correct type.
2709     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2710       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2711 
2712     // (If global is requested for a definition, we always need to create a new
2713     // global, not just return a bitcast.)
2714     if (!IsForDefinition)
2715       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2716   }
2717 
2718   auto AddrSpace = GetGlobalVarAddressSpace(D);
2719   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2720 
2721   auto *GV = new llvm::GlobalVariable(
2722       getModule(), Ty->getElementType(), false,
2723       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2724       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2725 
2726   // If we already created a global with the same mangled name (but different
2727   // type) before, take its name and remove it from its parent.
2728   if (Entry) {
2729     GV->takeName(Entry);
2730 
2731     if (!Entry->use_empty()) {
2732       llvm::Constant *NewPtrForOldDecl =
2733           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2734       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2735     }
2736 
2737     Entry->eraseFromParent();
2738   }
2739 
2740   // This is the first use or definition of a mangled name.  If there is a
2741   // deferred decl with this name, remember that we need to emit it at the end
2742   // of the file.
2743   auto DDI = DeferredDecls.find(MangledName);
2744   if (DDI != DeferredDecls.end()) {
2745     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2746     // list, and remove it from DeferredDecls (since we don't need it anymore).
2747     addDeferredDeclToEmit(DDI->second);
2748     DeferredDecls.erase(DDI);
2749   }
2750 
2751   // Handle things which are present even on external declarations.
2752   if (D) {
2753     // FIXME: This code is overly simple and should be merged with other global
2754     // handling.
2755     GV->setConstant(isTypeConstant(D->getType(), false));
2756 
2757     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2758 
2759     setLinkageForGV(GV, D);
2760 
2761     if (D->getTLSKind()) {
2762       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2763         CXXThreadLocals.push_back(D);
2764       setTLSMode(GV, *D);
2765     }
2766 
2767     setGVProperties(GV, D);
2768 
2769     // If required by the ABI, treat declarations of static data members with
2770     // inline initializers as definitions.
2771     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2772       EmitGlobalVarDefinition(D);
2773     }
2774 
2775     // Emit section information for extern variables.
2776     if (D->hasExternalStorage()) {
2777       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2778         GV->setSection(SA->getName());
2779     }
2780 
2781     // Handle XCore specific ABI requirements.
2782     if (getTriple().getArch() == llvm::Triple::xcore &&
2783         D->getLanguageLinkage() == CLanguageLinkage &&
2784         D->getType().isConstant(Context) &&
2785         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2786       GV->setSection(".cp.rodata");
2787 
2788     // Check if we a have a const declaration with an initializer, we may be
2789     // able to emit it as available_externally to expose it's value to the
2790     // optimizer.
2791     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2792         D->getType().isConstQualified() && !GV->hasInitializer() &&
2793         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2794       const auto *Record =
2795           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2796       bool HasMutableFields = Record && Record->hasMutableFields();
2797       if (!HasMutableFields) {
2798         const VarDecl *InitDecl;
2799         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2800         if (InitExpr) {
2801           ConstantEmitter emitter(*this);
2802           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2803           if (Init) {
2804             auto *InitType = Init->getType();
2805             if (GV->getType()->getElementType() != InitType) {
2806               // The type of the initializer does not match the definition.
2807               // This happens when an initializer has a different type from
2808               // the type of the global (because of padding at the end of a
2809               // structure for instance).
2810               GV->setName(StringRef());
2811               // Make a new global with the correct type, this is now guaranteed
2812               // to work.
2813               auto *NewGV = cast<llvm::GlobalVariable>(
2814                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2815 
2816               // Erase the old global, since it is no longer used.
2817               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2818               GV = NewGV;
2819             } else {
2820               GV->setInitializer(Init);
2821               GV->setConstant(true);
2822               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2823             }
2824             emitter.finalize(GV);
2825           }
2826         }
2827       }
2828     }
2829   }
2830 
2831   LangAS ExpectedAS =
2832       D ? D->getType().getAddressSpace()
2833         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2834   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2835          Ty->getPointerAddressSpace());
2836   if (AddrSpace != ExpectedAS)
2837     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2838                                                        ExpectedAS, Ty);
2839 
2840   return GV;
2841 }
2842 
2843 llvm::Constant *
2844 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2845                                ForDefinition_t IsForDefinition) {
2846   const Decl *D = GD.getDecl();
2847   if (isa<CXXConstructorDecl>(D))
2848     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2849                                 getFromCtorType(GD.getCtorType()),
2850                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2851                                 /*DontDefer=*/false, IsForDefinition);
2852   else if (isa<CXXDestructorDecl>(D))
2853     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2854                                 getFromDtorType(GD.getDtorType()),
2855                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2856                                 /*DontDefer=*/false, IsForDefinition);
2857   else if (isa<CXXMethodDecl>(D)) {
2858     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2859         cast<CXXMethodDecl>(D));
2860     auto Ty = getTypes().GetFunctionType(*FInfo);
2861     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2862                              IsForDefinition);
2863   } else if (isa<FunctionDecl>(D)) {
2864     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2865     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2866     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2867                              IsForDefinition);
2868   } else
2869     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2870                               IsForDefinition);
2871 }
2872 
2873 llvm::GlobalVariable *
2874 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2875                                       llvm::Type *Ty,
2876                                       llvm::GlobalValue::LinkageTypes Linkage) {
2877   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2878   llvm::GlobalVariable *OldGV = nullptr;
2879 
2880   if (GV) {
2881     // Check if the variable has the right type.
2882     if (GV->getType()->getElementType() == Ty)
2883       return GV;
2884 
2885     // Because C++ name mangling, the only way we can end up with an already
2886     // existing global with the same name is if it has been declared extern "C".
2887     assert(GV->isDeclaration() && "Declaration has wrong type!");
2888     OldGV = GV;
2889   }
2890 
2891   // Create a new variable.
2892   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2893                                 Linkage, nullptr, Name);
2894 
2895   if (OldGV) {
2896     // Replace occurrences of the old variable if needed.
2897     GV->takeName(OldGV);
2898 
2899     if (!OldGV->use_empty()) {
2900       llvm::Constant *NewPtrForOldDecl =
2901       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2902       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2903     }
2904 
2905     OldGV->eraseFromParent();
2906   }
2907 
2908   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2909       !GV->hasAvailableExternallyLinkage())
2910     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2911 
2912   return GV;
2913 }
2914 
2915 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2916 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2917 /// then it will be created with the specified type instead of whatever the
2918 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2919 /// that an actual global with type Ty will be returned, not conversion of a
2920 /// variable with the same mangled name but some other type.
2921 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2922                                                   llvm::Type *Ty,
2923                                            ForDefinition_t IsForDefinition) {
2924   assert(D->hasGlobalStorage() && "Not a global variable");
2925   QualType ASTTy = D->getType();
2926   if (!Ty)
2927     Ty = getTypes().ConvertTypeForMem(ASTTy);
2928 
2929   llvm::PointerType *PTy =
2930     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2931 
2932   StringRef MangledName = getMangledName(D);
2933   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2934 }
2935 
2936 /// CreateRuntimeVariable - Create a new runtime global variable with the
2937 /// specified type and name.
2938 llvm::Constant *
2939 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2940                                      StringRef Name) {
2941   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2942 }
2943 
2944 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2945   assert(!D->getInit() && "Cannot emit definite definitions here!");
2946 
2947   StringRef MangledName = getMangledName(D);
2948   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2949 
2950   // We already have a definition, not declaration, with the same mangled name.
2951   // Emitting of declaration is not required (and actually overwrites emitted
2952   // definition).
2953   if (GV && !GV->isDeclaration())
2954     return;
2955 
2956   // If we have not seen a reference to this variable yet, place it into the
2957   // deferred declarations table to be emitted if needed later.
2958   if (!MustBeEmitted(D) && !GV) {
2959       DeferredDecls[MangledName] = D;
2960       return;
2961   }
2962 
2963   // The tentative definition is the only definition.
2964   EmitGlobalVarDefinition(D);
2965 }
2966 
2967 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2968   return Context.toCharUnitsFromBits(
2969       getDataLayout().getTypeStoreSizeInBits(Ty));
2970 }
2971 
2972 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2973   LangAS AddrSpace = LangAS::Default;
2974   if (LangOpts.OpenCL) {
2975     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2976     assert(AddrSpace == LangAS::opencl_global ||
2977            AddrSpace == LangAS::opencl_constant ||
2978            AddrSpace == LangAS::opencl_local ||
2979            AddrSpace >= LangAS::FirstTargetAddressSpace);
2980     return AddrSpace;
2981   }
2982 
2983   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2984     if (D && D->hasAttr<CUDAConstantAttr>())
2985       return LangAS::cuda_constant;
2986     else if (D && D->hasAttr<CUDASharedAttr>())
2987       return LangAS::cuda_shared;
2988     else
2989       return LangAS::cuda_device;
2990   }
2991 
2992   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2993 }
2994 
2995 template<typename SomeDecl>
2996 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2997                                                llvm::GlobalValue *GV) {
2998   if (!getLangOpts().CPlusPlus)
2999     return;
3000 
3001   // Must have 'used' attribute, or else inline assembly can't rely on
3002   // the name existing.
3003   if (!D->template hasAttr<UsedAttr>())
3004     return;
3005 
3006   // Must have internal linkage and an ordinary name.
3007   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3008     return;
3009 
3010   // Must be in an extern "C" context. Entities declared directly within
3011   // a record are not extern "C" even if the record is in such a context.
3012   const SomeDecl *First = D->getFirstDecl();
3013   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3014     return;
3015 
3016   // OK, this is an internal linkage entity inside an extern "C" linkage
3017   // specification. Make a note of that so we can give it the "expected"
3018   // mangled name if nothing else is using that name.
3019   std::pair<StaticExternCMap::iterator, bool> R =
3020       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3021 
3022   // If we have multiple internal linkage entities with the same name
3023   // in extern "C" regions, none of them gets that name.
3024   if (!R.second)
3025     R.first->second = nullptr;
3026 }
3027 
3028 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3029   if (!CGM.supportsCOMDAT())
3030     return false;
3031 
3032   if (D.hasAttr<SelectAnyAttr>())
3033     return true;
3034 
3035   GVALinkage Linkage;
3036   if (auto *VD = dyn_cast<VarDecl>(&D))
3037     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3038   else
3039     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3040 
3041   switch (Linkage) {
3042   case GVA_Internal:
3043   case GVA_AvailableExternally:
3044   case GVA_StrongExternal:
3045     return false;
3046   case GVA_DiscardableODR:
3047   case GVA_StrongODR:
3048     return true;
3049   }
3050   llvm_unreachable("No such linkage");
3051 }
3052 
3053 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3054                                           llvm::GlobalObject &GO) {
3055   if (!shouldBeInCOMDAT(*this, D))
3056     return;
3057   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3058 }
3059 
3060 /// Pass IsTentative as true if you want to create a tentative definition.
3061 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3062                                             bool IsTentative) {
3063   // OpenCL global variables of sampler type are translated to function calls,
3064   // therefore no need to be translated.
3065   QualType ASTTy = D->getType();
3066   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3067     return;
3068 
3069   llvm::Constant *Init = nullptr;
3070   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3071   bool NeedsGlobalCtor = false;
3072   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3073 
3074   const VarDecl *InitDecl;
3075   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3076 
3077   Optional<ConstantEmitter> emitter;
3078 
3079   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3080   // as part of their declaration."  Sema has already checked for
3081   // error cases, so we just need to set Init to UndefValue.
3082   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3083       D->hasAttr<CUDASharedAttr>())
3084     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3085   else if (!InitExpr) {
3086     // This is a tentative definition; tentative definitions are
3087     // implicitly initialized with { 0 }.
3088     //
3089     // Note that tentative definitions are only emitted at the end of
3090     // a translation unit, so they should never have incomplete
3091     // type. In addition, EmitTentativeDefinition makes sure that we
3092     // never attempt to emit a tentative definition if a real one
3093     // exists. A use may still exists, however, so we still may need
3094     // to do a RAUW.
3095     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3096     Init = EmitNullConstant(D->getType());
3097   } else {
3098     initializedGlobalDecl = GlobalDecl(D);
3099     emitter.emplace(*this);
3100     Init = emitter->tryEmitForInitializer(*InitDecl);
3101 
3102     if (!Init) {
3103       QualType T = InitExpr->getType();
3104       if (D->getType()->isReferenceType())
3105         T = D->getType();
3106 
3107       if (getLangOpts().CPlusPlus) {
3108         Init = EmitNullConstant(T);
3109         NeedsGlobalCtor = true;
3110       } else {
3111         ErrorUnsupported(D, "static initializer");
3112         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3113       }
3114     } else {
3115       // We don't need an initializer, so remove the entry for the delayed
3116       // initializer position (just in case this entry was delayed) if we
3117       // also don't need to register a destructor.
3118       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3119         DelayedCXXInitPosition.erase(D);
3120     }
3121   }
3122 
3123   llvm::Type* InitType = Init->getType();
3124   llvm::Constant *Entry =
3125       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3126 
3127   // Strip off a bitcast if we got one back.
3128   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3129     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3130            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3131            // All zero index gep.
3132            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3133     Entry = CE->getOperand(0);
3134   }
3135 
3136   // Entry is now either a Function or GlobalVariable.
3137   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3138 
3139   // We have a definition after a declaration with the wrong type.
3140   // We must make a new GlobalVariable* and update everything that used OldGV
3141   // (a declaration or tentative definition) with the new GlobalVariable*
3142   // (which will be a definition).
3143   //
3144   // This happens if there is a prototype for a global (e.g.
3145   // "extern int x[];") and then a definition of a different type (e.g.
3146   // "int x[10];"). This also happens when an initializer has a different type
3147   // from the type of the global (this happens with unions).
3148   if (!GV || GV->getType()->getElementType() != InitType ||
3149       GV->getType()->getAddressSpace() !=
3150           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3151 
3152     // Move the old entry aside so that we'll create a new one.
3153     Entry->setName(StringRef());
3154 
3155     // Make a new global with the correct type, this is now guaranteed to work.
3156     GV = cast<llvm::GlobalVariable>(
3157         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3158 
3159     // Replace all uses of the old global with the new global
3160     llvm::Constant *NewPtrForOldDecl =
3161         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3162     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3163 
3164     // Erase the old global, since it is no longer used.
3165     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3166   }
3167 
3168   MaybeHandleStaticInExternC(D, GV);
3169 
3170   if (D->hasAttr<AnnotateAttr>())
3171     AddGlobalAnnotations(D, GV);
3172 
3173   // Set the llvm linkage type as appropriate.
3174   llvm::GlobalValue::LinkageTypes Linkage =
3175       getLLVMLinkageVarDefinition(D, GV->isConstant());
3176 
3177   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3178   // the device. [...]"
3179   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3180   // __device__, declares a variable that: [...]
3181   // Is accessible from all the threads within the grid and from the host
3182   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3183   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3184   if (GV && LangOpts.CUDA) {
3185     if (LangOpts.CUDAIsDevice) {
3186       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3187         GV->setExternallyInitialized(true);
3188     } else {
3189       // Host-side shadows of external declarations of device-side
3190       // global variables become internal definitions. These have to
3191       // be internal in order to prevent name conflicts with global
3192       // host variables with the same name in a different TUs.
3193       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3194         Linkage = llvm::GlobalValue::InternalLinkage;
3195 
3196         // Shadow variables and their properties must be registered
3197         // with CUDA runtime.
3198         unsigned Flags = 0;
3199         if (!D->hasDefinition())
3200           Flags |= CGCUDARuntime::ExternDeviceVar;
3201         if (D->hasAttr<CUDAConstantAttr>())
3202           Flags |= CGCUDARuntime::ConstantDeviceVar;
3203         getCUDARuntime().registerDeviceVar(*GV, Flags);
3204       } else if (D->hasAttr<CUDASharedAttr>())
3205         // __shared__ variables are odd. Shadows do get created, but
3206         // they are not registered with the CUDA runtime, so they
3207         // can't really be used to access their device-side
3208         // counterparts. It's not clear yet whether it's nvcc's bug or
3209         // a feature, but we've got to do the same for compatibility.
3210         Linkage = llvm::GlobalValue::InternalLinkage;
3211     }
3212   }
3213 
3214   GV->setInitializer(Init);
3215   if (emitter) emitter->finalize(GV);
3216 
3217   // If it is safe to mark the global 'constant', do so now.
3218   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3219                   isTypeConstant(D->getType(), true));
3220 
3221   // If it is in a read-only section, mark it 'constant'.
3222   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3223     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3224     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3225       GV->setConstant(true);
3226   }
3227 
3228   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3229 
3230 
3231   // On Darwin, if the normal linkage of a C++ thread_local variable is
3232   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3233   // copies within a linkage unit; otherwise, the backing variable has
3234   // internal linkage and all accesses should just be calls to the
3235   // Itanium-specified entry point, which has the normal linkage of the
3236   // variable. This is to preserve the ability to change the implementation
3237   // behind the scenes.
3238   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3239       Context.getTargetInfo().getTriple().isOSDarwin() &&
3240       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3241       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3242     Linkage = llvm::GlobalValue::InternalLinkage;
3243 
3244   GV->setLinkage(Linkage);
3245   if (D->hasAttr<DLLImportAttr>())
3246     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3247   else if (D->hasAttr<DLLExportAttr>())
3248     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3249   else
3250     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3251 
3252   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3253     // common vars aren't constant even if declared const.
3254     GV->setConstant(false);
3255     // Tentative definition of global variables may be initialized with
3256     // non-zero null pointers. In this case they should have weak linkage
3257     // since common linkage must have zero initializer and must not have
3258     // explicit section therefore cannot have non-zero initial value.
3259     if (!GV->getInitializer()->isNullValue())
3260       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3261   }
3262 
3263   setNonAliasAttributes(D, GV);
3264 
3265   if (D->getTLSKind() && !GV->isThreadLocal()) {
3266     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3267       CXXThreadLocals.push_back(D);
3268     setTLSMode(GV, *D);
3269   }
3270 
3271   maybeSetTrivialComdat(*D, *GV);
3272 
3273   // Emit the initializer function if necessary.
3274   if (NeedsGlobalCtor || NeedsGlobalDtor)
3275     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3276 
3277   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3278 
3279   // Emit global variable debug information.
3280   if (CGDebugInfo *DI = getModuleDebugInfo())
3281     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3282       DI->EmitGlobalVariable(GV, D);
3283 }
3284 
3285 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3286                                       CodeGenModule &CGM, const VarDecl *D,
3287                                       bool NoCommon) {
3288   // Don't give variables common linkage if -fno-common was specified unless it
3289   // was overridden by a NoCommon attribute.
3290   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3291     return true;
3292 
3293   // C11 6.9.2/2:
3294   //   A declaration of an identifier for an object that has file scope without
3295   //   an initializer, and without a storage-class specifier or with the
3296   //   storage-class specifier static, constitutes a tentative definition.
3297   if (D->getInit() || D->hasExternalStorage())
3298     return true;
3299 
3300   // A variable cannot be both common and exist in a section.
3301   if (D->hasAttr<SectionAttr>())
3302     return true;
3303 
3304   // A variable cannot be both common and exist in a section.
3305   // We dont try to determine which is the right section in the front-end.
3306   // If no specialized section name is applicable, it will resort to default.
3307   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3308       D->hasAttr<PragmaClangDataSectionAttr>() ||
3309       D->hasAttr<PragmaClangRodataSectionAttr>())
3310     return true;
3311 
3312   // Thread local vars aren't considered common linkage.
3313   if (D->getTLSKind())
3314     return true;
3315 
3316   // Tentative definitions marked with WeakImportAttr are true definitions.
3317   if (D->hasAttr<WeakImportAttr>())
3318     return true;
3319 
3320   // A variable cannot be both common and exist in a comdat.
3321   if (shouldBeInCOMDAT(CGM, *D))
3322     return true;
3323 
3324   // Declarations with a required alignment do not have common linkage in MSVC
3325   // mode.
3326   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3327     if (D->hasAttr<AlignedAttr>())
3328       return true;
3329     QualType VarType = D->getType();
3330     if (Context.isAlignmentRequired(VarType))
3331       return true;
3332 
3333     if (const auto *RT = VarType->getAs<RecordType>()) {
3334       const RecordDecl *RD = RT->getDecl();
3335       for (const FieldDecl *FD : RD->fields()) {
3336         if (FD->isBitField())
3337           continue;
3338         if (FD->hasAttr<AlignedAttr>())
3339           return true;
3340         if (Context.isAlignmentRequired(FD->getType()))
3341           return true;
3342       }
3343     }
3344   }
3345 
3346   return false;
3347 }
3348 
3349 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3350     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3351   if (Linkage == GVA_Internal)
3352     return llvm::Function::InternalLinkage;
3353 
3354   if (D->hasAttr<WeakAttr>()) {
3355     if (IsConstantVariable)
3356       return llvm::GlobalVariable::WeakODRLinkage;
3357     else
3358       return llvm::GlobalVariable::WeakAnyLinkage;
3359   }
3360 
3361   // We are guaranteed to have a strong definition somewhere else,
3362   // so we can use available_externally linkage.
3363   if (Linkage == GVA_AvailableExternally)
3364     return llvm::GlobalValue::AvailableExternallyLinkage;
3365 
3366   // Note that Apple's kernel linker doesn't support symbol
3367   // coalescing, so we need to avoid linkonce and weak linkages there.
3368   // Normally, this means we just map to internal, but for explicit
3369   // instantiations we'll map to external.
3370 
3371   // In C++, the compiler has to emit a definition in every translation unit
3372   // that references the function.  We should use linkonce_odr because
3373   // a) if all references in this translation unit are optimized away, we
3374   // don't need to codegen it.  b) if the function persists, it needs to be
3375   // merged with other definitions. c) C++ has the ODR, so we know the
3376   // definition is dependable.
3377   if (Linkage == GVA_DiscardableODR)
3378     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3379                                             : llvm::Function::InternalLinkage;
3380 
3381   // An explicit instantiation of a template has weak linkage, since
3382   // explicit instantiations can occur in multiple translation units
3383   // and must all be equivalent. However, we are not allowed to
3384   // throw away these explicit instantiations.
3385   //
3386   // We don't currently support CUDA device code spread out across multiple TUs,
3387   // so say that CUDA templates are either external (for kernels) or internal.
3388   // This lets llvm perform aggressive inter-procedural optimizations.
3389   if (Linkage == GVA_StrongODR) {
3390     if (Context.getLangOpts().AppleKext)
3391       return llvm::Function::ExternalLinkage;
3392     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3393       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3394                                           : llvm::Function::InternalLinkage;
3395     return llvm::Function::WeakODRLinkage;
3396   }
3397 
3398   // C++ doesn't have tentative definitions and thus cannot have common
3399   // linkage.
3400   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3401       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3402                                  CodeGenOpts.NoCommon))
3403     return llvm::GlobalVariable::CommonLinkage;
3404 
3405   // selectany symbols are externally visible, so use weak instead of
3406   // linkonce.  MSVC optimizes away references to const selectany globals, so
3407   // all definitions should be the same and ODR linkage should be used.
3408   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3409   if (D->hasAttr<SelectAnyAttr>())
3410     return llvm::GlobalVariable::WeakODRLinkage;
3411 
3412   // Otherwise, we have strong external linkage.
3413   assert(Linkage == GVA_StrongExternal);
3414   return llvm::GlobalVariable::ExternalLinkage;
3415 }
3416 
3417 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3418     const VarDecl *VD, bool IsConstant) {
3419   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3420   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3421 }
3422 
3423 /// Replace the uses of a function that was declared with a non-proto type.
3424 /// We want to silently drop extra arguments from call sites
3425 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3426                                           llvm::Function *newFn) {
3427   // Fast path.
3428   if (old->use_empty()) return;
3429 
3430   llvm::Type *newRetTy = newFn->getReturnType();
3431   SmallVector<llvm::Value*, 4> newArgs;
3432   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3433 
3434   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3435          ui != ue; ) {
3436     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3437     llvm::User *user = use->getUser();
3438 
3439     // Recognize and replace uses of bitcasts.  Most calls to
3440     // unprototyped functions will use bitcasts.
3441     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3442       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3443         replaceUsesOfNonProtoConstant(bitcast, newFn);
3444       continue;
3445     }
3446 
3447     // Recognize calls to the function.
3448     llvm::CallSite callSite(user);
3449     if (!callSite) continue;
3450     if (!callSite.isCallee(&*use)) continue;
3451 
3452     // If the return types don't match exactly, then we can't
3453     // transform this call unless it's dead.
3454     if (callSite->getType() != newRetTy && !callSite->use_empty())
3455       continue;
3456 
3457     // Get the call site's attribute list.
3458     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3459     llvm::AttributeList oldAttrs = callSite.getAttributes();
3460 
3461     // If the function was passed too few arguments, don't transform.
3462     unsigned newNumArgs = newFn->arg_size();
3463     if (callSite.arg_size() < newNumArgs) continue;
3464 
3465     // If extra arguments were passed, we silently drop them.
3466     // If any of the types mismatch, we don't transform.
3467     unsigned argNo = 0;
3468     bool dontTransform = false;
3469     for (llvm::Argument &A : newFn->args()) {
3470       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3471         dontTransform = true;
3472         break;
3473       }
3474 
3475       // Add any parameter attributes.
3476       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3477       argNo++;
3478     }
3479     if (dontTransform)
3480       continue;
3481 
3482     // Okay, we can transform this.  Create the new call instruction and copy
3483     // over the required information.
3484     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3485 
3486     // Copy over any operand bundles.
3487     callSite.getOperandBundlesAsDefs(newBundles);
3488 
3489     llvm::CallSite newCall;
3490     if (callSite.isCall()) {
3491       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3492                                        callSite.getInstruction());
3493     } else {
3494       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3495       newCall = llvm::InvokeInst::Create(newFn,
3496                                          oldInvoke->getNormalDest(),
3497                                          oldInvoke->getUnwindDest(),
3498                                          newArgs, newBundles, "",
3499                                          callSite.getInstruction());
3500     }
3501     newArgs.clear(); // for the next iteration
3502 
3503     if (!newCall->getType()->isVoidTy())
3504       newCall->takeName(callSite.getInstruction());
3505     newCall.setAttributes(llvm::AttributeList::get(
3506         newFn->getContext(), oldAttrs.getFnAttributes(),
3507         oldAttrs.getRetAttributes(), newArgAttrs));
3508     newCall.setCallingConv(callSite.getCallingConv());
3509 
3510     // Finally, remove the old call, replacing any uses with the new one.
3511     if (!callSite->use_empty())
3512       callSite->replaceAllUsesWith(newCall.getInstruction());
3513 
3514     // Copy debug location attached to CI.
3515     if (callSite->getDebugLoc())
3516       newCall->setDebugLoc(callSite->getDebugLoc());
3517 
3518     callSite->eraseFromParent();
3519   }
3520 }
3521 
3522 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3523 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3524 /// existing call uses of the old function in the module, this adjusts them to
3525 /// call the new function directly.
3526 ///
3527 /// This is not just a cleanup: the always_inline pass requires direct calls to
3528 /// functions to be able to inline them.  If there is a bitcast in the way, it
3529 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3530 /// run at -O0.
3531 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3532                                                       llvm::Function *NewFn) {
3533   // If we're redefining a global as a function, don't transform it.
3534   if (!isa<llvm::Function>(Old)) return;
3535 
3536   replaceUsesOfNonProtoConstant(Old, NewFn);
3537 }
3538 
3539 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3540   auto DK = VD->isThisDeclarationADefinition();
3541   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3542     return;
3543 
3544   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3545   // If we have a definition, this might be a deferred decl. If the
3546   // instantiation is explicit, make sure we emit it at the end.
3547   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3548     GetAddrOfGlobalVar(VD);
3549 
3550   EmitTopLevelDecl(VD);
3551 }
3552 
3553 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3554                                                  llvm::GlobalValue *GV) {
3555   const auto *D = cast<FunctionDecl>(GD.getDecl());
3556 
3557   // Compute the function info and LLVM type.
3558   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3559   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3560 
3561   // Get or create the prototype for the function.
3562   if (!GV || (GV->getType()->getElementType() != Ty))
3563     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3564                                                    /*DontDefer=*/true,
3565                                                    ForDefinition));
3566 
3567   // Already emitted.
3568   if (!GV->isDeclaration())
3569     return;
3570 
3571   // We need to set linkage and visibility on the function before
3572   // generating code for it because various parts of IR generation
3573   // want to propagate this information down (e.g. to local static
3574   // declarations).
3575   auto *Fn = cast<llvm::Function>(GV);
3576   setFunctionLinkage(GD, Fn);
3577 
3578   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3579   setGVProperties(Fn, GD);
3580 
3581   MaybeHandleStaticInExternC(D, Fn);
3582 
3583   maybeSetTrivialComdat(*D, *Fn);
3584 
3585   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3586 
3587   setNonAliasAttributes(GD, Fn);
3588   SetLLVMFunctionAttributesForDefinition(D, Fn);
3589 
3590   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3591     AddGlobalCtor(Fn, CA->getPriority());
3592   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3593     AddGlobalDtor(Fn, DA->getPriority());
3594   if (D->hasAttr<AnnotateAttr>())
3595     AddGlobalAnnotations(D, Fn);
3596 }
3597 
3598 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3599   const auto *D = cast<ValueDecl>(GD.getDecl());
3600   const AliasAttr *AA = D->getAttr<AliasAttr>();
3601   assert(AA && "Not an alias?");
3602 
3603   StringRef MangledName = getMangledName(GD);
3604 
3605   if (AA->getAliasee() == MangledName) {
3606     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3607     return;
3608   }
3609 
3610   // If there is a definition in the module, then it wins over the alias.
3611   // This is dubious, but allow it to be safe.  Just ignore the alias.
3612   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3613   if (Entry && !Entry->isDeclaration())
3614     return;
3615 
3616   Aliases.push_back(GD);
3617 
3618   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3619 
3620   // Create a reference to the named value.  This ensures that it is emitted
3621   // if a deferred decl.
3622   llvm::Constant *Aliasee;
3623   if (isa<llvm::FunctionType>(DeclTy))
3624     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3625                                       /*ForVTable=*/false);
3626   else
3627     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3628                                     llvm::PointerType::getUnqual(DeclTy),
3629                                     /*D=*/nullptr);
3630 
3631   // Create the new alias itself, but don't set a name yet.
3632   auto *GA = llvm::GlobalAlias::create(
3633       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3634 
3635   if (Entry) {
3636     if (GA->getAliasee() == Entry) {
3637       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3638       return;
3639     }
3640 
3641     assert(Entry->isDeclaration());
3642 
3643     // If there is a declaration in the module, then we had an extern followed
3644     // by the alias, as in:
3645     //   extern int test6();
3646     //   ...
3647     //   int test6() __attribute__((alias("test7")));
3648     //
3649     // Remove it and replace uses of it with the alias.
3650     GA->takeName(Entry);
3651 
3652     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3653                                                           Entry->getType()));
3654     Entry->eraseFromParent();
3655   } else {
3656     GA->setName(MangledName);
3657   }
3658 
3659   // Set attributes which are particular to an alias; this is a
3660   // specialization of the attributes which may be set on a global
3661   // variable/function.
3662   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3663       D->isWeakImported()) {
3664     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3665   }
3666 
3667   if (const auto *VD = dyn_cast<VarDecl>(D))
3668     if (VD->getTLSKind())
3669       setTLSMode(GA, *VD);
3670 
3671   SetCommonAttributes(GD, GA);
3672 }
3673 
3674 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3675   const auto *D = cast<ValueDecl>(GD.getDecl());
3676   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3677   assert(IFA && "Not an ifunc?");
3678 
3679   StringRef MangledName = getMangledName(GD);
3680 
3681   if (IFA->getResolver() == MangledName) {
3682     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3683     return;
3684   }
3685 
3686   // Report an error if some definition overrides ifunc.
3687   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3688   if (Entry && !Entry->isDeclaration()) {
3689     GlobalDecl OtherGD;
3690     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3691         DiagnosedConflictingDefinitions.insert(GD).second) {
3692       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3693       Diags.Report(OtherGD.getDecl()->getLocation(),
3694                    diag::note_previous_definition);
3695     }
3696     return;
3697   }
3698 
3699   Aliases.push_back(GD);
3700 
3701   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3702   llvm::Constant *Resolver =
3703       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3704                               /*ForVTable=*/false);
3705   llvm::GlobalIFunc *GIF =
3706       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3707                                 "", Resolver, &getModule());
3708   if (Entry) {
3709     if (GIF->getResolver() == Entry) {
3710       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3711       return;
3712     }
3713     assert(Entry->isDeclaration());
3714 
3715     // If there is a declaration in the module, then we had an extern followed
3716     // by the ifunc, as in:
3717     //   extern int test();
3718     //   ...
3719     //   int test() __attribute__((ifunc("resolver")));
3720     //
3721     // Remove it and replace uses of it with the ifunc.
3722     GIF->takeName(Entry);
3723 
3724     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3725                                                           Entry->getType()));
3726     Entry->eraseFromParent();
3727   } else
3728     GIF->setName(MangledName);
3729 
3730   SetCommonAttributes(GD, GIF);
3731 }
3732 
3733 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3734                                             ArrayRef<llvm::Type*> Tys) {
3735   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3736                                          Tys);
3737 }
3738 
3739 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3740 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3741                          const StringLiteral *Literal, bool TargetIsLSB,
3742                          bool &IsUTF16, unsigned &StringLength) {
3743   StringRef String = Literal->getString();
3744   unsigned NumBytes = String.size();
3745 
3746   // Check for simple case.
3747   if (!Literal->containsNonAsciiOrNull()) {
3748     StringLength = NumBytes;
3749     return *Map.insert(std::make_pair(String, nullptr)).first;
3750   }
3751 
3752   // Otherwise, convert the UTF8 literals into a string of shorts.
3753   IsUTF16 = true;
3754 
3755   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3756   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3757   llvm::UTF16 *ToPtr = &ToBuf[0];
3758 
3759   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3760                                  ToPtr + NumBytes, llvm::strictConversion);
3761 
3762   // ConvertUTF8toUTF16 returns the length in ToPtr.
3763   StringLength = ToPtr - &ToBuf[0];
3764 
3765   // Add an explicit null.
3766   *ToPtr = 0;
3767   return *Map.insert(std::make_pair(
3768                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3769                                    (StringLength + 1) * 2),
3770                          nullptr)).first;
3771 }
3772 
3773 ConstantAddress
3774 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3775   unsigned StringLength = 0;
3776   bool isUTF16 = false;
3777   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3778       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3779                                getDataLayout().isLittleEndian(), isUTF16,
3780                                StringLength);
3781 
3782   if (auto *C = Entry.second)
3783     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3784 
3785   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3786   llvm::Constant *Zeros[] = { Zero, Zero };
3787 
3788   // If we don't already have it, get __CFConstantStringClassReference.
3789   if (!CFConstantStringClassRef) {
3790     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3791     Ty = llvm::ArrayType::get(Ty, 0);
3792     llvm::Constant *GV =
3793         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3794 
3795     if (getTriple().isOSBinFormatCOFF()) {
3796       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3797       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3798       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3799       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3800 
3801       const VarDecl *VD = nullptr;
3802       for (const auto &Result : DC->lookup(&II))
3803         if ((VD = dyn_cast<VarDecl>(Result)))
3804           break;
3805 
3806       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3807         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3808         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3809       } else {
3810         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3811         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3812       }
3813     }
3814 
3815     // Decay array -> ptr
3816     CFConstantStringClassRef =
3817         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3818   }
3819 
3820   QualType CFTy = getContext().getCFConstantStringType();
3821 
3822   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3823 
3824   ConstantInitBuilder Builder(*this);
3825   auto Fields = Builder.beginStruct(STy);
3826 
3827   // Class pointer.
3828   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3829 
3830   // Flags.
3831   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3832 
3833   // String pointer.
3834   llvm::Constant *C = nullptr;
3835   if (isUTF16) {
3836     auto Arr = llvm::makeArrayRef(
3837         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3838         Entry.first().size() / 2);
3839     C = llvm::ConstantDataArray::get(VMContext, Arr);
3840   } else {
3841     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3842   }
3843 
3844   // Note: -fwritable-strings doesn't make the backing store strings of
3845   // CFStrings writable. (See <rdar://problem/10657500>)
3846   auto *GV =
3847       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3848                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3849   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3850   // Don't enforce the target's minimum global alignment, since the only use
3851   // of the string is via this class initializer.
3852   CharUnits Align = isUTF16
3853                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3854                         : getContext().getTypeAlignInChars(getContext().CharTy);
3855   GV->setAlignment(Align.getQuantity());
3856 
3857   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3858   // Without it LLVM can merge the string with a non unnamed_addr one during
3859   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3860   if (getTriple().isOSBinFormatMachO())
3861     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3862                            : "__TEXT,__cstring,cstring_literals");
3863 
3864   // String.
3865   llvm::Constant *Str =
3866       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3867 
3868   if (isUTF16)
3869     // Cast the UTF16 string to the correct type.
3870     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3871   Fields.add(Str);
3872 
3873   // String length.
3874   auto Ty = getTypes().ConvertType(getContext().LongTy);
3875   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3876 
3877   CharUnits Alignment = getPointerAlign();
3878 
3879   // The struct.
3880   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3881                                     /*isConstant=*/false,
3882                                     llvm::GlobalVariable::PrivateLinkage);
3883   switch (getTriple().getObjectFormat()) {
3884   case llvm::Triple::UnknownObjectFormat:
3885     llvm_unreachable("unknown file format");
3886   case llvm::Triple::COFF:
3887   case llvm::Triple::ELF:
3888   case llvm::Triple::Wasm:
3889     GV->setSection("cfstring");
3890     break;
3891   case llvm::Triple::MachO:
3892     GV->setSection("__DATA,__cfstring");
3893     break;
3894   }
3895   Entry.second = GV;
3896 
3897   return ConstantAddress(GV, Alignment);
3898 }
3899 
3900 bool CodeGenModule::getExpressionLocationsEnabled() const {
3901   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3902 }
3903 
3904 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3905   if (ObjCFastEnumerationStateType.isNull()) {
3906     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3907     D->startDefinition();
3908 
3909     QualType FieldTypes[] = {
3910       Context.UnsignedLongTy,
3911       Context.getPointerType(Context.getObjCIdType()),
3912       Context.getPointerType(Context.UnsignedLongTy),
3913       Context.getConstantArrayType(Context.UnsignedLongTy,
3914                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3915     };
3916 
3917     for (size_t i = 0; i < 4; ++i) {
3918       FieldDecl *Field = FieldDecl::Create(Context,
3919                                            D,
3920                                            SourceLocation(),
3921                                            SourceLocation(), nullptr,
3922                                            FieldTypes[i], /*TInfo=*/nullptr,
3923                                            /*BitWidth=*/nullptr,
3924                                            /*Mutable=*/false,
3925                                            ICIS_NoInit);
3926       Field->setAccess(AS_public);
3927       D->addDecl(Field);
3928     }
3929 
3930     D->completeDefinition();
3931     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3932   }
3933 
3934   return ObjCFastEnumerationStateType;
3935 }
3936 
3937 llvm::Constant *
3938 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3939   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3940 
3941   // Don't emit it as the address of the string, emit the string data itself
3942   // as an inline array.
3943   if (E->getCharByteWidth() == 1) {
3944     SmallString<64> Str(E->getString());
3945 
3946     // Resize the string to the right size, which is indicated by its type.
3947     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3948     Str.resize(CAT->getSize().getZExtValue());
3949     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3950   }
3951 
3952   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3953   llvm::Type *ElemTy = AType->getElementType();
3954   unsigned NumElements = AType->getNumElements();
3955 
3956   // Wide strings have either 2-byte or 4-byte elements.
3957   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3958     SmallVector<uint16_t, 32> Elements;
3959     Elements.reserve(NumElements);
3960 
3961     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3962       Elements.push_back(E->getCodeUnit(i));
3963     Elements.resize(NumElements);
3964     return llvm::ConstantDataArray::get(VMContext, Elements);
3965   }
3966 
3967   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3968   SmallVector<uint32_t, 32> Elements;
3969   Elements.reserve(NumElements);
3970 
3971   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3972     Elements.push_back(E->getCodeUnit(i));
3973   Elements.resize(NumElements);
3974   return llvm::ConstantDataArray::get(VMContext, Elements);
3975 }
3976 
3977 static llvm::GlobalVariable *
3978 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3979                       CodeGenModule &CGM, StringRef GlobalName,
3980                       CharUnits Alignment) {
3981   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3982   unsigned AddrSpace = 0;
3983   if (CGM.getLangOpts().OpenCL)
3984     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3985 
3986   llvm::Module &M = CGM.getModule();
3987   // Create a global variable for this string
3988   auto *GV = new llvm::GlobalVariable(
3989       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3990       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3991   GV->setAlignment(Alignment.getQuantity());
3992   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3993   if (GV->isWeakForLinker()) {
3994     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3995     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3996   }
3997 
3998   return GV;
3999 }
4000 
4001 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4002 /// constant array for the given string literal.
4003 ConstantAddress
4004 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4005                                                   StringRef Name) {
4006   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4007 
4008   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4009   llvm::GlobalVariable **Entry = nullptr;
4010   if (!LangOpts.WritableStrings) {
4011     Entry = &ConstantStringMap[C];
4012     if (auto GV = *Entry) {
4013       if (Alignment.getQuantity() > GV->getAlignment())
4014         GV->setAlignment(Alignment.getQuantity());
4015       return ConstantAddress(GV, Alignment);
4016     }
4017   }
4018 
4019   SmallString<256> MangledNameBuffer;
4020   StringRef GlobalVariableName;
4021   llvm::GlobalValue::LinkageTypes LT;
4022 
4023   // Mangle the string literal if the ABI allows for it.  However, we cannot
4024   // do this if  we are compiling with ASan or -fwritable-strings because they
4025   // rely on strings having normal linkage.
4026   if (!LangOpts.WritableStrings &&
4027       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4028       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4029     llvm::raw_svector_ostream Out(MangledNameBuffer);
4030     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4031 
4032     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4033     GlobalVariableName = MangledNameBuffer;
4034   } else {
4035     LT = llvm::GlobalValue::PrivateLinkage;
4036     GlobalVariableName = Name;
4037   }
4038 
4039   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4040   if (Entry)
4041     *Entry = GV;
4042 
4043   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4044                                   QualType());
4045   return ConstantAddress(GV, Alignment);
4046 }
4047 
4048 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4049 /// array for the given ObjCEncodeExpr node.
4050 ConstantAddress
4051 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4052   std::string Str;
4053   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4054 
4055   return GetAddrOfConstantCString(Str);
4056 }
4057 
4058 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4059 /// the literal and a terminating '\0' character.
4060 /// The result has pointer to array type.
4061 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4062     const std::string &Str, const char *GlobalName) {
4063   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4064   CharUnits Alignment =
4065     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4066 
4067   llvm::Constant *C =
4068       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4069 
4070   // Don't share any string literals if strings aren't constant.
4071   llvm::GlobalVariable **Entry = nullptr;
4072   if (!LangOpts.WritableStrings) {
4073     Entry = &ConstantStringMap[C];
4074     if (auto GV = *Entry) {
4075       if (Alignment.getQuantity() > GV->getAlignment())
4076         GV->setAlignment(Alignment.getQuantity());
4077       return ConstantAddress(GV, Alignment);
4078     }
4079   }
4080 
4081   // Get the default prefix if a name wasn't specified.
4082   if (!GlobalName)
4083     GlobalName = ".str";
4084   // Create a global variable for this.
4085   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4086                                   GlobalName, Alignment);
4087   if (Entry)
4088     *Entry = GV;
4089   return ConstantAddress(GV, Alignment);
4090 }
4091 
4092 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4093     const MaterializeTemporaryExpr *E, const Expr *Init) {
4094   assert((E->getStorageDuration() == SD_Static ||
4095           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4096   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4097 
4098   // If we're not materializing a subobject of the temporary, keep the
4099   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4100   QualType MaterializedType = Init->getType();
4101   if (Init == E->GetTemporaryExpr())
4102     MaterializedType = E->getType();
4103 
4104   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4105 
4106   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4107     return ConstantAddress(Slot, Align);
4108 
4109   // FIXME: If an externally-visible declaration extends multiple temporaries,
4110   // we need to give each temporary the same name in every translation unit (and
4111   // we also need to make the temporaries externally-visible).
4112   SmallString<256> Name;
4113   llvm::raw_svector_ostream Out(Name);
4114   getCXXABI().getMangleContext().mangleReferenceTemporary(
4115       VD, E->getManglingNumber(), Out);
4116 
4117   APValue *Value = nullptr;
4118   if (E->getStorageDuration() == SD_Static) {
4119     // We might have a cached constant initializer for this temporary. Note
4120     // that this might have a different value from the value computed by
4121     // evaluating the initializer if the surrounding constant expression
4122     // modifies the temporary.
4123     Value = getContext().getMaterializedTemporaryValue(E, false);
4124     if (Value && Value->isUninit())
4125       Value = nullptr;
4126   }
4127 
4128   // Try evaluating it now, it might have a constant initializer.
4129   Expr::EvalResult EvalResult;
4130   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4131       !EvalResult.hasSideEffects())
4132     Value = &EvalResult.Val;
4133 
4134   LangAS AddrSpace =
4135       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4136 
4137   Optional<ConstantEmitter> emitter;
4138   llvm::Constant *InitialValue = nullptr;
4139   bool Constant = false;
4140   llvm::Type *Type;
4141   if (Value) {
4142     // The temporary has a constant initializer, use it.
4143     emitter.emplace(*this);
4144     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4145                                                MaterializedType);
4146     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4147     Type = InitialValue->getType();
4148   } else {
4149     // No initializer, the initialization will be provided when we
4150     // initialize the declaration which performed lifetime extension.
4151     Type = getTypes().ConvertTypeForMem(MaterializedType);
4152   }
4153 
4154   // Create a global variable for this lifetime-extended temporary.
4155   llvm::GlobalValue::LinkageTypes Linkage =
4156       getLLVMLinkageVarDefinition(VD, Constant);
4157   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4158     const VarDecl *InitVD;
4159     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4160         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4161       // Temporaries defined inside a class get linkonce_odr linkage because the
4162       // class can be defined in multipe translation units.
4163       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4164     } else {
4165       // There is no need for this temporary to have external linkage if the
4166       // VarDecl has external linkage.
4167       Linkage = llvm::GlobalVariable::InternalLinkage;
4168     }
4169   }
4170   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4171   auto *GV = new llvm::GlobalVariable(
4172       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4173       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4174   if (emitter) emitter->finalize(GV);
4175   setGVProperties(GV, VD);
4176   GV->setAlignment(Align.getQuantity());
4177   if (supportsCOMDAT() && GV->isWeakForLinker())
4178     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4179   if (VD->getTLSKind())
4180     setTLSMode(GV, *VD);
4181   llvm::Constant *CV = GV;
4182   if (AddrSpace != LangAS::Default)
4183     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4184         *this, GV, AddrSpace, LangAS::Default,
4185         Type->getPointerTo(
4186             getContext().getTargetAddressSpace(LangAS::Default)));
4187   MaterializedGlobalTemporaryMap[E] = CV;
4188   return ConstantAddress(CV, Align);
4189 }
4190 
4191 /// EmitObjCPropertyImplementations - Emit information for synthesized
4192 /// properties for an implementation.
4193 void CodeGenModule::EmitObjCPropertyImplementations(const
4194                                                     ObjCImplementationDecl *D) {
4195   for (const auto *PID : D->property_impls()) {
4196     // Dynamic is just for type-checking.
4197     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4198       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4199 
4200       // Determine which methods need to be implemented, some may have
4201       // been overridden. Note that ::isPropertyAccessor is not the method
4202       // we want, that just indicates if the decl came from a
4203       // property. What we want to know is if the method is defined in
4204       // this implementation.
4205       if (!D->getInstanceMethod(PD->getGetterName()))
4206         CodeGenFunction(*this).GenerateObjCGetter(
4207                                  const_cast<ObjCImplementationDecl *>(D), PID);
4208       if (!PD->isReadOnly() &&
4209           !D->getInstanceMethod(PD->getSetterName()))
4210         CodeGenFunction(*this).GenerateObjCSetter(
4211                                  const_cast<ObjCImplementationDecl *>(D), PID);
4212     }
4213   }
4214 }
4215 
4216 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4217   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4218   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4219        ivar; ivar = ivar->getNextIvar())
4220     if (ivar->getType().isDestructedType())
4221       return true;
4222 
4223   return false;
4224 }
4225 
4226 static bool AllTrivialInitializers(CodeGenModule &CGM,
4227                                    ObjCImplementationDecl *D) {
4228   CodeGenFunction CGF(CGM);
4229   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4230        E = D->init_end(); B != E; ++B) {
4231     CXXCtorInitializer *CtorInitExp = *B;
4232     Expr *Init = CtorInitExp->getInit();
4233     if (!CGF.isTrivialInitializer(Init))
4234       return false;
4235   }
4236   return true;
4237 }
4238 
4239 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4240 /// for an implementation.
4241 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4242   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4243   if (needsDestructMethod(D)) {
4244     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4245     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4246     ObjCMethodDecl *DTORMethod =
4247       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4248                              cxxSelector, getContext().VoidTy, nullptr, D,
4249                              /*isInstance=*/true, /*isVariadic=*/false,
4250                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4251                              /*isDefined=*/false, ObjCMethodDecl::Required);
4252     D->addInstanceMethod(DTORMethod);
4253     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4254     D->setHasDestructors(true);
4255   }
4256 
4257   // If the implementation doesn't have any ivar initializers, we don't need
4258   // a .cxx_construct.
4259   if (D->getNumIvarInitializers() == 0 ||
4260       AllTrivialInitializers(*this, D))
4261     return;
4262 
4263   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4264   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4265   // The constructor returns 'self'.
4266   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4267                                                 D->getLocation(),
4268                                                 D->getLocation(),
4269                                                 cxxSelector,
4270                                                 getContext().getObjCIdType(),
4271                                                 nullptr, D, /*isInstance=*/true,
4272                                                 /*isVariadic=*/false,
4273                                                 /*isPropertyAccessor=*/true,
4274                                                 /*isImplicitlyDeclared=*/true,
4275                                                 /*isDefined=*/false,
4276                                                 ObjCMethodDecl::Required);
4277   D->addInstanceMethod(CTORMethod);
4278   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4279   D->setHasNonZeroConstructors(true);
4280 }
4281 
4282 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4283 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4284   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4285       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4286     ErrorUnsupported(LSD, "linkage spec");
4287     return;
4288   }
4289 
4290   EmitDeclContext(LSD);
4291 }
4292 
4293 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4294   for (auto *I : DC->decls()) {
4295     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4296     // are themselves considered "top-level", so EmitTopLevelDecl on an
4297     // ObjCImplDecl does not recursively visit them. We need to do that in
4298     // case they're nested inside another construct (LinkageSpecDecl /
4299     // ExportDecl) that does stop them from being considered "top-level".
4300     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4301       for (auto *M : OID->methods())
4302         EmitTopLevelDecl(M);
4303     }
4304 
4305     EmitTopLevelDecl(I);
4306   }
4307 }
4308 
4309 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4310 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4311   // Ignore dependent declarations.
4312   if (D->isTemplated())
4313     return;
4314 
4315   switch (D->getKind()) {
4316   case Decl::CXXConversion:
4317   case Decl::CXXMethod:
4318   case Decl::Function:
4319     EmitGlobal(cast<FunctionDecl>(D));
4320     // Always provide some coverage mapping
4321     // even for the functions that aren't emitted.
4322     AddDeferredUnusedCoverageMapping(D);
4323     break;
4324 
4325   case Decl::CXXDeductionGuide:
4326     // Function-like, but does not result in code emission.
4327     break;
4328 
4329   case Decl::Var:
4330   case Decl::Decomposition:
4331   case Decl::VarTemplateSpecialization:
4332     EmitGlobal(cast<VarDecl>(D));
4333     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4334       for (auto *B : DD->bindings())
4335         if (auto *HD = B->getHoldingVar())
4336           EmitGlobal(HD);
4337     break;
4338 
4339   // Indirect fields from global anonymous structs and unions can be
4340   // ignored; only the actual variable requires IR gen support.
4341   case Decl::IndirectField:
4342     break;
4343 
4344   // C++ Decls
4345   case Decl::Namespace:
4346     EmitDeclContext(cast<NamespaceDecl>(D));
4347     break;
4348   case Decl::ClassTemplateSpecialization: {
4349     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4350     if (DebugInfo &&
4351         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4352         Spec->hasDefinition())
4353       DebugInfo->completeTemplateDefinition(*Spec);
4354   } LLVM_FALLTHROUGH;
4355   case Decl::CXXRecord:
4356     if (DebugInfo) {
4357       if (auto *ES = D->getASTContext().getExternalSource())
4358         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4359           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4360     }
4361     // Emit any static data members, they may be definitions.
4362     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4363       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4364         EmitTopLevelDecl(I);
4365     break;
4366     // No code generation needed.
4367   case Decl::UsingShadow:
4368   case Decl::ClassTemplate:
4369   case Decl::VarTemplate:
4370   case Decl::VarTemplatePartialSpecialization:
4371   case Decl::FunctionTemplate:
4372   case Decl::TypeAliasTemplate:
4373   case Decl::Block:
4374   case Decl::Empty:
4375     break;
4376   case Decl::Using:          // using X; [C++]
4377     if (CGDebugInfo *DI = getModuleDebugInfo())
4378         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4379     return;
4380   case Decl::NamespaceAlias:
4381     if (CGDebugInfo *DI = getModuleDebugInfo())
4382         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4383     return;
4384   case Decl::UsingDirective: // using namespace X; [C++]
4385     if (CGDebugInfo *DI = getModuleDebugInfo())
4386       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4387     return;
4388   case Decl::CXXConstructor:
4389     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4390     break;
4391   case Decl::CXXDestructor:
4392     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4393     break;
4394 
4395   case Decl::StaticAssert:
4396     // Nothing to do.
4397     break;
4398 
4399   // Objective-C Decls
4400 
4401   // Forward declarations, no (immediate) code generation.
4402   case Decl::ObjCInterface:
4403   case Decl::ObjCCategory:
4404     break;
4405 
4406   case Decl::ObjCProtocol: {
4407     auto *Proto = cast<ObjCProtocolDecl>(D);
4408     if (Proto->isThisDeclarationADefinition())
4409       ObjCRuntime->GenerateProtocol(Proto);
4410     break;
4411   }
4412 
4413   case Decl::ObjCCategoryImpl:
4414     // Categories have properties but don't support synthesize so we
4415     // can ignore them here.
4416     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4417     break;
4418 
4419   case Decl::ObjCImplementation: {
4420     auto *OMD = cast<ObjCImplementationDecl>(D);
4421     EmitObjCPropertyImplementations(OMD);
4422     EmitObjCIvarInitializations(OMD);
4423     ObjCRuntime->GenerateClass(OMD);
4424     // Emit global variable debug information.
4425     if (CGDebugInfo *DI = getModuleDebugInfo())
4426       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4427         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4428             OMD->getClassInterface()), OMD->getLocation());
4429     break;
4430   }
4431   case Decl::ObjCMethod: {
4432     auto *OMD = cast<ObjCMethodDecl>(D);
4433     // If this is not a prototype, emit the body.
4434     if (OMD->getBody())
4435       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4436     break;
4437   }
4438   case Decl::ObjCCompatibleAlias:
4439     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4440     break;
4441 
4442   case Decl::PragmaComment: {
4443     const auto *PCD = cast<PragmaCommentDecl>(D);
4444     switch (PCD->getCommentKind()) {
4445     case PCK_Unknown:
4446       llvm_unreachable("unexpected pragma comment kind");
4447     case PCK_Linker:
4448       AppendLinkerOptions(PCD->getArg());
4449       break;
4450     case PCK_Lib:
4451       if (getTarget().getTriple().isOSBinFormatELF() &&
4452           !getTarget().getTriple().isPS4())
4453         AddELFLibDirective(PCD->getArg());
4454       else
4455         AddDependentLib(PCD->getArg());
4456       break;
4457     case PCK_Compiler:
4458     case PCK_ExeStr:
4459     case PCK_User:
4460       break; // We ignore all of these.
4461     }
4462     break;
4463   }
4464 
4465   case Decl::PragmaDetectMismatch: {
4466     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4467     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4468     break;
4469   }
4470 
4471   case Decl::LinkageSpec:
4472     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4473     break;
4474 
4475   case Decl::FileScopeAsm: {
4476     // File-scope asm is ignored during device-side CUDA compilation.
4477     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4478       break;
4479     // File-scope asm is ignored during device-side OpenMP compilation.
4480     if (LangOpts.OpenMPIsDevice)
4481       break;
4482     auto *AD = cast<FileScopeAsmDecl>(D);
4483     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4484     break;
4485   }
4486 
4487   case Decl::Import: {
4488     auto *Import = cast<ImportDecl>(D);
4489 
4490     // If we've already imported this module, we're done.
4491     if (!ImportedModules.insert(Import->getImportedModule()))
4492       break;
4493 
4494     // Emit debug information for direct imports.
4495     if (!Import->getImportedOwningModule()) {
4496       if (CGDebugInfo *DI = getModuleDebugInfo())
4497         DI->EmitImportDecl(*Import);
4498     }
4499 
4500     // Find all of the submodules and emit the module initializers.
4501     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4502     SmallVector<clang::Module *, 16> Stack;
4503     Visited.insert(Import->getImportedModule());
4504     Stack.push_back(Import->getImportedModule());
4505 
4506     while (!Stack.empty()) {
4507       clang::Module *Mod = Stack.pop_back_val();
4508       if (!EmittedModuleInitializers.insert(Mod).second)
4509         continue;
4510 
4511       for (auto *D : Context.getModuleInitializers(Mod))
4512         EmitTopLevelDecl(D);
4513 
4514       // Visit the submodules of this module.
4515       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4516                                              SubEnd = Mod->submodule_end();
4517            Sub != SubEnd; ++Sub) {
4518         // Skip explicit children; they need to be explicitly imported to emit
4519         // the initializers.
4520         if ((*Sub)->IsExplicit)
4521           continue;
4522 
4523         if (Visited.insert(*Sub).second)
4524           Stack.push_back(*Sub);
4525       }
4526     }
4527     break;
4528   }
4529 
4530   case Decl::Export:
4531     EmitDeclContext(cast<ExportDecl>(D));
4532     break;
4533 
4534   case Decl::OMPThreadPrivate:
4535     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4536     break;
4537 
4538   case Decl::OMPDeclareReduction:
4539     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4540     break;
4541 
4542   default:
4543     // Make sure we handled everything we should, every other kind is a
4544     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4545     // function. Need to recode Decl::Kind to do that easily.
4546     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4547     break;
4548   }
4549 }
4550 
4551 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4552   // Do we need to generate coverage mapping?
4553   if (!CodeGenOpts.CoverageMapping)
4554     return;
4555   switch (D->getKind()) {
4556   case Decl::CXXConversion:
4557   case Decl::CXXMethod:
4558   case Decl::Function:
4559   case Decl::ObjCMethod:
4560   case Decl::CXXConstructor:
4561   case Decl::CXXDestructor: {
4562     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4563       return;
4564     SourceManager &SM = getContext().getSourceManager();
4565     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4566       return;
4567     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4568     if (I == DeferredEmptyCoverageMappingDecls.end())
4569       DeferredEmptyCoverageMappingDecls[D] = true;
4570     break;
4571   }
4572   default:
4573     break;
4574   };
4575 }
4576 
4577 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4578   // Do we need to generate coverage mapping?
4579   if (!CodeGenOpts.CoverageMapping)
4580     return;
4581   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4582     if (Fn->isTemplateInstantiation())
4583       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4584   }
4585   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4586   if (I == DeferredEmptyCoverageMappingDecls.end())
4587     DeferredEmptyCoverageMappingDecls[D] = false;
4588   else
4589     I->second = false;
4590 }
4591 
4592 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4593   // We call takeVector() here to avoid use-after-free.
4594   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4595   // we deserialize function bodies to emit coverage info for them, and that
4596   // deserializes more declarations. How should we handle that case?
4597   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4598     if (!Entry.second)
4599       continue;
4600     const Decl *D = Entry.first;
4601     switch (D->getKind()) {
4602     case Decl::CXXConversion:
4603     case Decl::CXXMethod:
4604     case Decl::Function:
4605     case Decl::ObjCMethod: {
4606       CodeGenPGO PGO(*this);
4607       GlobalDecl GD(cast<FunctionDecl>(D));
4608       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4609                                   getFunctionLinkage(GD));
4610       break;
4611     }
4612     case Decl::CXXConstructor: {
4613       CodeGenPGO PGO(*this);
4614       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4615       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4616                                   getFunctionLinkage(GD));
4617       break;
4618     }
4619     case Decl::CXXDestructor: {
4620       CodeGenPGO PGO(*this);
4621       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4622       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4623                                   getFunctionLinkage(GD));
4624       break;
4625     }
4626     default:
4627       break;
4628     };
4629   }
4630 }
4631 
4632 /// Turns the given pointer into a constant.
4633 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4634                                           const void *Ptr) {
4635   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4636   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4637   return llvm::ConstantInt::get(i64, PtrInt);
4638 }
4639 
4640 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4641                                    llvm::NamedMDNode *&GlobalMetadata,
4642                                    GlobalDecl D,
4643                                    llvm::GlobalValue *Addr) {
4644   if (!GlobalMetadata)
4645     GlobalMetadata =
4646       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4647 
4648   // TODO: should we report variant information for ctors/dtors?
4649   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4650                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4651                                CGM.getLLVMContext(), D.getDecl()))};
4652   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4653 }
4654 
4655 /// For each function which is declared within an extern "C" region and marked
4656 /// as 'used', but has internal linkage, create an alias from the unmangled
4657 /// name to the mangled name if possible. People expect to be able to refer
4658 /// to such functions with an unmangled name from inline assembly within the
4659 /// same translation unit.
4660 void CodeGenModule::EmitStaticExternCAliases() {
4661   // Don't do anything if we're generating CUDA device code -- the NVPTX
4662   // assembly target doesn't support aliases.
4663   if (Context.getTargetInfo().getTriple().isNVPTX())
4664     return;
4665   for (auto &I : StaticExternCValues) {
4666     IdentifierInfo *Name = I.first;
4667     llvm::GlobalValue *Val = I.second;
4668     if (Val && !getModule().getNamedValue(Name->getName()))
4669       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4670   }
4671 }
4672 
4673 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4674                                              GlobalDecl &Result) const {
4675   auto Res = Manglings.find(MangledName);
4676   if (Res == Manglings.end())
4677     return false;
4678   Result = Res->getValue();
4679   return true;
4680 }
4681 
4682 /// Emits metadata nodes associating all the global values in the
4683 /// current module with the Decls they came from.  This is useful for
4684 /// projects using IR gen as a subroutine.
4685 ///
4686 /// Since there's currently no way to associate an MDNode directly
4687 /// with an llvm::GlobalValue, we create a global named metadata
4688 /// with the name 'clang.global.decl.ptrs'.
4689 void CodeGenModule::EmitDeclMetadata() {
4690   llvm::NamedMDNode *GlobalMetadata = nullptr;
4691 
4692   for (auto &I : MangledDeclNames) {
4693     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4694     // Some mangled names don't necessarily have an associated GlobalValue
4695     // in this module, e.g. if we mangled it for DebugInfo.
4696     if (Addr)
4697       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4698   }
4699 }
4700 
4701 /// Emits metadata nodes for all the local variables in the current
4702 /// function.
4703 void CodeGenFunction::EmitDeclMetadata() {
4704   if (LocalDeclMap.empty()) return;
4705 
4706   llvm::LLVMContext &Context = getLLVMContext();
4707 
4708   // Find the unique metadata ID for this name.
4709   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4710 
4711   llvm::NamedMDNode *GlobalMetadata = nullptr;
4712 
4713   for (auto &I : LocalDeclMap) {
4714     const Decl *D = I.first;
4715     llvm::Value *Addr = I.second.getPointer();
4716     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4717       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4718       Alloca->setMetadata(
4719           DeclPtrKind, llvm::MDNode::get(
4720                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4721     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4722       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4723       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4724     }
4725   }
4726 }
4727 
4728 void CodeGenModule::EmitVersionIdentMetadata() {
4729   llvm::NamedMDNode *IdentMetadata =
4730     TheModule.getOrInsertNamedMetadata("llvm.ident");
4731   std::string Version = getClangFullVersion();
4732   llvm::LLVMContext &Ctx = TheModule.getContext();
4733 
4734   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4735   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4736 }
4737 
4738 void CodeGenModule::EmitTargetMetadata() {
4739   // Warning, new MangledDeclNames may be appended within this loop.
4740   // We rely on MapVector insertions adding new elements to the end
4741   // of the container.
4742   // FIXME: Move this loop into the one target that needs it, and only
4743   // loop over those declarations for which we couldn't emit the target
4744   // metadata when we emitted the declaration.
4745   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4746     auto Val = *(MangledDeclNames.begin() + I);
4747     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4748     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4749     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4750   }
4751 }
4752 
4753 void CodeGenModule::EmitCoverageFile() {
4754   if (getCodeGenOpts().CoverageDataFile.empty() &&
4755       getCodeGenOpts().CoverageNotesFile.empty())
4756     return;
4757 
4758   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4759   if (!CUNode)
4760     return;
4761 
4762   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4763   llvm::LLVMContext &Ctx = TheModule.getContext();
4764   auto *CoverageDataFile =
4765       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4766   auto *CoverageNotesFile =
4767       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4768   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4769     llvm::MDNode *CU = CUNode->getOperand(i);
4770     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4771     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4772   }
4773 }
4774 
4775 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4776   // Sema has checked that all uuid strings are of the form
4777   // "12345678-1234-1234-1234-1234567890ab".
4778   assert(Uuid.size() == 36);
4779   for (unsigned i = 0; i < 36; ++i) {
4780     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4781     else                                         assert(isHexDigit(Uuid[i]));
4782   }
4783 
4784   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4785   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4786 
4787   llvm::Constant *Field3[8];
4788   for (unsigned Idx = 0; Idx < 8; ++Idx)
4789     Field3[Idx] = llvm::ConstantInt::get(
4790         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4791 
4792   llvm::Constant *Fields[4] = {
4793     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4794     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4795     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4796     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4797   };
4798 
4799   return llvm::ConstantStruct::getAnon(Fields);
4800 }
4801 
4802 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4803                                                        bool ForEH) {
4804   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4805   // FIXME: should we even be calling this method if RTTI is disabled
4806   // and it's not for EH?
4807   if (!ForEH && !getLangOpts().RTTI)
4808     return llvm::Constant::getNullValue(Int8PtrTy);
4809 
4810   if (ForEH && Ty->isObjCObjectPointerType() &&
4811       LangOpts.ObjCRuntime.isGNUFamily())
4812     return ObjCRuntime->GetEHType(Ty);
4813 
4814   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4815 }
4816 
4817 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4818   // Do not emit threadprivates in simd-only mode.
4819   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4820     return;
4821   for (auto RefExpr : D->varlists()) {
4822     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4823     bool PerformInit =
4824         VD->getAnyInitializer() &&
4825         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4826                                                         /*ForRef=*/false);
4827 
4828     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4829     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4830             VD, Addr, RefExpr->getLocStart(), PerformInit))
4831       CXXGlobalInits.push_back(InitFunction);
4832   }
4833 }
4834 
4835 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4836   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4837   if (InternalId)
4838     return InternalId;
4839 
4840   if (isExternallyVisible(T->getLinkage())) {
4841     std::string OutName;
4842     llvm::raw_string_ostream Out(OutName);
4843     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4844 
4845     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4846   } else {
4847     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4848                                            llvm::ArrayRef<llvm::Metadata *>());
4849   }
4850 
4851   return InternalId;
4852 }
4853 
4854 // Generalize pointer types to a void pointer with the qualifiers of the
4855 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4856 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4857 // 'void *'.
4858 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4859   if (!Ty->isPointerType())
4860     return Ty;
4861 
4862   return Ctx.getPointerType(
4863       QualType(Ctx.VoidTy).withCVRQualifiers(
4864           Ty->getPointeeType().getCVRQualifiers()));
4865 }
4866 
4867 // Apply type generalization to a FunctionType's return and argument types
4868 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4869   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4870     SmallVector<QualType, 8> GeneralizedParams;
4871     for (auto &Param : FnType->param_types())
4872       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4873 
4874     return Ctx.getFunctionType(
4875         GeneralizeType(Ctx, FnType->getReturnType()),
4876         GeneralizedParams, FnType->getExtProtoInfo());
4877   }
4878 
4879   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4880     return Ctx.getFunctionNoProtoType(
4881         GeneralizeType(Ctx, FnType->getReturnType()));
4882 
4883   llvm_unreachable("Encountered unknown FunctionType");
4884 }
4885 
4886 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4887   T = GeneralizeFunctionType(getContext(), T);
4888 
4889   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4890   if (InternalId)
4891     return InternalId;
4892 
4893   if (isExternallyVisible(T->getLinkage())) {
4894     std::string OutName;
4895     llvm::raw_string_ostream Out(OutName);
4896     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4897     Out << ".generalized";
4898 
4899     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4900   } else {
4901     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4902                                            llvm::ArrayRef<llvm::Metadata *>());
4903   }
4904 
4905   return InternalId;
4906 }
4907 
4908 /// Returns whether this module needs the "all-vtables" type identifier.
4909 bool CodeGenModule::NeedAllVtablesTypeId() const {
4910   // Returns true if at least one of vtable-based CFI checkers is enabled and
4911   // is not in the trapping mode.
4912   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4913            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4914           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4915            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4916           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4917            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4918           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4919            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4920 }
4921 
4922 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4923                                           CharUnits Offset,
4924                                           const CXXRecordDecl *RD) {
4925   llvm::Metadata *MD =
4926       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4927   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4928 
4929   if (CodeGenOpts.SanitizeCfiCrossDso)
4930     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4931       VTable->addTypeMetadata(Offset.getQuantity(),
4932                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4933 
4934   if (NeedAllVtablesTypeId()) {
4935     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4936     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4937   }
4938 }
4939 
4940 // Fills in the supplied string map with the set of target features for the
4941 // passed in function.
4942 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4943                                           const FunctionDecl *FD) {
4944   StringRef TargetCPU = Target.getTargetOpts().CPU;
4945   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4946     // If we have a TargetAttr build up the feature map based on that.
4947     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4948 
4949     ParsedAttr.Features.erase(
4950         llvm::remove_if(ParsedAttr.Features,
4951                         [&](const std::string &Feat) {
4952                           return !Target.isValidFeatureName(
4953                               StringRef{Feat}.substr(1));
4954                         }),
4955         ParsedAttr.Features.end());
4956 
4957     // Make a copy of the features as passed on the command line into the
4958     // beginning of the additional features from the function to override.
4959     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4960                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4961                             Target.getTargetOpts().FeaturesAsWritten.end());
4962 
4963     if (ParsedAttr.Architecture != "" &&
4964         Target.isValidCPUName(ParsedAttr.Architecture))
4965       TargetCPU = ParsedAttr.Architecture;
4966 
4967     // Now populate the feature map, first with the TargetCPU which is either
4968     // the default or a new one from the target attribute string. Then we'll use
4969     // the passed in features (FeaturesAsWritten) along with the new ones from
4970     // the attribute.
4971     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4972                           ParsedAttr.Features);
4973   } else {
4974     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4975                           Target.getTargetOpts().Features);
4976   }
4977 }
4978 
4979 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4980   if (!SanStats)
4981     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4982 
4983   return *SanStats;
4984 }
4985 llvm::Value *
4986 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4987                                                   CodeGenFunction &CGF) {
4988   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4989   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4990   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4991   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4992                                 "__translate_sampler_initializer"),
4993                                 {C});
4994 }
4995