xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b555a767baf4a1058bc6e4e05acbbee9e55d0e26)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 static const char AnnotationSection[] = "llvm.metadata";
52 
53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58   }
59 
60   llvm_unreachable("invalid C++ ABI kind");
61 }
62 
63 
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::TargetData &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)),
70     Types(*this),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74     RRData(0), CFConstantStringClassRef(0),
75     ConstantStringClassRef(0), NSConstantStringType(0),
76     VMContext(M.getContext()),
77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78     BlockObjectAssign(0), BlockObjectDispose(0),
79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
80 
81   // Initialize the type cache.
82   llvm::LLVMContext &LLVMContext = M.getContext();
83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91   PointerAlignInBytes =
92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95   Int8PtrTy = Int8Ty->getPointerTo(0);
96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97 
98   if (LangOpts.ObjC1)
99     createObjCRuntime();
100   if (LangOpts.OpenCL)
101     createOpenCLRuntime();
102   if (LangOpts.CUDA)
103     createCUDARuntime();
104 
105   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106   if (LangOpts.ThreadSanitizer ||
107       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                            ABI.getMangleContext());
110 
111   // If debug info or coverage generation is enabled, create the CGDebugInfo
112   // object.
113   if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
114       CodeGenOpts.EmitGcovArcs ||
115       CodeGenOpts.EmitGcovNotes)
116     DebugInfo = new CGDebugInfo(*this);
117 
118   Block.GlobalUniqueCount = 0;
119 
120   if (C.getLangOpts().ObjCAutoRefCount)
121     ARCData = new ARCEntrypoints();
122   RRData = new RREntrypoints();
123 }
124 
125 CodeGenModule::~CodeGenModule() {
126   delete ObjCRuntime;
127   delete OpenCLRuntime;
128   delete CUDARuntime;
129   delete TheTargetCodeGenInfo;
130   delete &ABI;
131   delete TBAA;
132   delete DebugInfo;
133   delete ARCData;
134   delete RRData;
135 }
136 
137 void CodeGenModule::createObjCRuntime() {
138   // This is just isGNUFamily(), but we want to force implementors of
139   // new ABIs to decide how best to do this.
140   switch (LangOpts.ObjCRuntime.getKind()) {
141   case ObjCRuntime::GNUstep:
142   case ObjCRuntime::GCC:
143   case ObjCRuntime::ObjFW:
144     ObjCRuntime = CreateGNUObjCRuntime(*this);
145     return;
146 
147   case ObjCRuntime::FragileMacOSX:
148   case ObjCRuntime::MacOSX:
149   case ObjCRuntime::iOS:
150     ObjCRuntime = CreateMacObjCRuntime(*this);
151     return;
152   }
153   llvm_unreachable("bad runtime kind");
154 }
155 
156 void CodeGenModule::createOpenCLRuntime() {
157   OpenCLRuntime = new CGOpenCLRuntime(*this);
158 }
159 
160 void CodeGenModule::createCUDARuntime() {
161   CUDARuntime = CreateNVCUDARuntime(*this);
162 }
163 
164 void CodeGenModule::Release() {
165   EmitDeferred();
166   EmitCXXGlobalInitFunc();
167   EmitCXXGlobalDtorFunc();
168   if (ObjCRuntime)
169     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
170       AddGlobalCtor(ObjCInitFunction);
171   EmitCtorList(GlobalCtors, "llvm.global_ctors");
172   EmitCtorList(GlobalDtors, "llvm.global_dtors");
173   EmitGlobalAnnotations();
174   EmitLLVMUsed();
175 
176   SimplifyPersonality();
177 
178   if (getCodeGenOpts().EmitDeclMetadata)
179     EmitDeclMetadata();
180 
181   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
182     EmitCoverageFile();
183 
184   if (DebugInfo)
185     DebugInfo->finalize();
186 }
187 
188 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
189   // Make sure that this type is translated.
190   Types.UpdateCompletedType(TD);
191 }
192 
193 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
194   if (!TBAA)
195     return 0;
196   return TBAA->getTBAAInfo(QTy);
197 }
198 
199 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
200   if (!TBAA)
201     return 0;
202   return TBAA->getTBAAInfoForVTablePtr();
203 }
204 
205 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
206   if (!TBAA)
207     return 0;
208   return TBAA->getTBAAStructInfo(QTy);
209 }
210 
211 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
212                                         llvm::MDNode *TBAAInfo) {
213   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
214 }
215 
216 bool CodeGenModule::isTargetDarwin() const {
217   return getContext().getTargetInfo().getTriple().isOSDarwin();
218 }
219 
220 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
221   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
222   getDiags().Report(Context.getFullLoc(loc), diagID);
223 }
224 
225 /// ErrorUnsupported - Print out an error that codegen doesn't support the
226 /// specified stmt yet.
227 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
228                                      bool OmitOnError) {
229   if (OmitOnError && getDiags().hasErrorOccurred())
230     return;
231   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
232                                                "cannot compile this %0 yet");
233   std::string Msg = Type;
234   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
235     << Msg << S->getSourceRange();
236 }
237 
238 /// ErrorUnsupported - Print out an error that codegen doesn't support the
239 /// specified decl yet.
240 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
241                                      bool OmitOnError) {
242   if (OmitOnError && getDiags().hasErrorOccurred())
243     return;
244   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
245                                                "cannot compile this %0 yet");
246   std::string Msg = Type;
247   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
248 }
249 
250 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
251   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
252 }
253 
254 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
255                                         const NamedDecl *D) const {
256   // Internal definitions always have default visibility.
257   if (GV->hasLocalLinkage()) {
258     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
259     return;
260   }
261 
262   // Set visibility for definitions.
263   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
264   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
265     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
266 }
267 
268 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
269   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
270       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
271       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
272       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
273       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
274 }
275 
276 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
277     CodeGenOptions::TLSModel M) {
278   switch (M) {
279   case CodeGenOptions::GeneralDynamicTLSModel:
280     return llvm::GlobalVariable::GeneralDynamicTLSModel;
281   case CodeGenOptions::LocalDynamicTLSModel:
282     return llvm::GlobalVariable::LocalDynamicTLSModel;
283   case CodeGenOptions::InitialExecTLSModel:
284     return llvm::GlobalVariable::InitialExecTLSModel;
285   case CodeGenOptions::LocalExecTLSModel:
286     return llvm::GlobalVariable::LocalExecTLSModel;
287   }
288   llvm_unreachable("Invalid TLS model!");
289 }
290 
291 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
292                                const VarDecl &D) const {
293   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
294 
295   llvm::GlobalVariable::ThreadLocalMode TLM;
296   TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel);
297 
298   // Override the TLS model if it is explicitly specified.
299   if (D.hasAttr<TLSModelAttr>()) {
300     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
301     TLM = GetLLVMTLSModel(Attr->getModel());
302   }
303 
304   GV->setThreadLocalMode(TLM);
305 }
306 
307 /// Set the symbol visibility of type information (vtable and RTTI)
308 /// associated with the given type.
309 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
310                                       const CXXRecordDecl *RD,
311                                       TypeVisibilityKind TVK) const {
312   setGlobalVisibility(GV, RD);
313 
314   if (!CodeGenOpts.HiddenWeakVTables)
315     return;
316 
317   // We never want to drop the visibility for RTTI names.
318   if (TVK == TVK_ForRTTIName)
319     return;
320 
321   // We want to drop the visibility to hidden for weak type symbols.
322   // This isn't possible if there might be unresolved references
323   // elsewhere that rely on this symbol being visible.
324 
325   // This should be kept roughly in sync with setThunkVisibility
326   // in CGVTables.cpp.
327 
328   // Preconditions.
329   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
330       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
331     return;
332 
333   // Don't override an explicit visibility attribute.
334   if (RD->getExplicitVisibility())
335     return;
336 
337   switch (RD->getTemplateSpecializationKind()) {
338   // We have to disable the optimization if this is an EI definition
339   // because there might be EI declarations in other shared objects.
340   case TSK_ExplicitInstantiationDefinition:
341   case TSK_ExplicitInstantiationDeclaration:
342     return;
343 
344   // Every use of a non-template class's type information has to emit it.
345   case TSK_Undeclared:
346     break;
347 
348   // In theory, implicit instantiations can ignore the possibility of
349   // an explicit instantiation declaration because there necessarily
350   // must be an EI definition somewhere with default visibility.  In
351   // practice, it's possible to have an explicit instantiation for
352   // an arbitrary template class, and linkers aren't necessarily able
353   // to deal with mixed-visibility symbols.
354   case TSK_ExplicitSpecialization:
355   case TSK_ImplicitInstantiation:
356     if (!CodeGenOpts.HiddenWeakTemplateVTables)
357       return;
358     break;
359   }
360 
361   // If there's a key function, there may be translation units
362   // that don't have the key function's definition.  But ignore
363   // this if we're emitting RTTI under -fno-rtti.
364   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
365     if (Context.getKeyFunction(RD))
366       return;
367   }
368 
369   // Otherwise, drop the visibility to hidden.
370   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
371   GV->setUnnamedAddr(true);
372 }
373 
374 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
375   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
376 
377   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
378   if (!Str.empty())
379     return Str;
380 
381   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
382     IdentifierInfo *II = ND->getIdentifier();
383     assert(II && "Attempt to mangle unnamed decl.");
384 
385     Str = II->getName();
386     return Str;
387   }
388 
389   SmallString<256> Buffer;
390   llvm::raw_svector_ostream Out(Buffer);
391   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
392     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
393   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
394     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
395   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
396     getCXXABI().getMangleContext().mangleBlock(BD, Out,
397       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
398   else
399     getCXXABI().getMangleContext().mangleName(ND, Out);
400 
401   // Allocate space for the mangled name.
402   Out.flush();
403   size_t Length = Buffer.size();
404   char *Name = MangledNamesAllocator.Allocate<char>(Length);
405   std::copy(Buffer.begin(), Buffer.end(), Name);
406 
407   Str = StringRef(Name, Length);
408 
409   return Str;
410 }
411 
412 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
413                                         const BlockDecl *BD) {
414   MangleContext &MangleCtx = getCXXABI().getMangleContext();
415   const Decl *D = GD.getDecl();
416   llvm::raw_svector_ostream Out(Buffer.getBuffer());
417   if (D == 0)
418     MangleCtx.mangleGlobalBlock(BD,
419       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
420   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
421     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
422   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
423     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
424   else
425     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
426 }
427 
428 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
429   return getModule().getNamedValue(Name);
430 }
431 
432 /// AddGlobalCtor - Add a function to the list that will be called before
433 /// main() runs.
434 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
435   // FIXME: Type coercion of void()* types.
436   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
437 }
438 
439 /// AddGlobalDtor - Add a function to the list that will be called
440 /// when the module is unloaded.
441 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
442   // FIXME: Type coercion of void()* types.
443   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
444 }
445 
446 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
447   // Ctor function type is void()*.
448   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
449   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
450 
451   // Get the type of a ctor entry, { i32, void ()* }.
452   llvm::StructType *CtorStructTy =
453     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
454 
455   // Construct the constructor and destructor arrays.
456   SmallVector<llvm::Constant*, 8> Ctors;
457   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
458     llvm::Constant *S[] = {
459       llvm::ConstantInt::get(Int32Ty, I->second, false),
460       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
461     };
462     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
463   }
464 
465   if (!Ctors.empty()) {
466     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
467     new llvm::GlobalVariable(TheModule, AT, false,
468                              llvm::GlobalValue::AppendingLinkage,
469                              llvm::ConstantArray::get(AT, Ctors),
470                              GlobalName);
471   }
472 }
473 
474 llvm::GlobalValue::LinkageTypes
475 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
476   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
477 
478   if (Linkage == GVA_Internal)
479     return llvm::Function::InternalLinkage;
480 
481   if (D->hasAttr<DLLExportAttr>())
482     return llvm::Function::DLLExportLinkage;
483 
484   if (D->hasAttr<WeakAttr>())
485     return llvm::Function::WeakAnyLinkage;
486 
487   // In C99 mode, 'inline' functions are guaranteed to have a strong
488   // definition somewhere else, so we can use available_externally linkage.
489   if (Linkage == GVA_C99Inline)
490     return llvm::Function::AvailableExternallyLinkage;
491 
492   // Note that Apple's kernel linker doesn't support symbol
493   // coalescing, so we need to avoid linkonce and weak linkages there.
494   // Normally, this means we just map to internal, but for explicit
495   // instantiations we'll map to external.
496 
497   // In C++, the compiler has to emit a definition in every translation unit
498   // that references the function.  We should use linkonce_odr because
499   // a) if all references in this translation unit are optimized away, we
500   // don't need to codegen it.  b) if the function persists, it needs to be
501   // merged with other definitions. c) C++ has the ODR, so we know the
502   // definition is dependable.
503   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
504     return !Context.getLangOpts().AppleKext
505              ? llvm::Function::LinkOnceODRLinkage
506              : llvm::Function::InternalLinkage;
507 
508   // An explicit instantiation of a template has weak linkage, since
509   // explicit instantiations can occur in multiple translation units
510   // and must all be equivalent. However, we are not allowed to
511   // throw away these explicit instantiations.
512   if (Linkage == GVA_ExplicitTemplateInstantiation)
513     return !Context.getLangOpts().AppleKext
514              ? llvm::Function::WeakODRLinkage
515              : llvm::Function::ExternalLinkage;
516 
517   // Otherwise, we have strong external linkage.
518   assert(Linkage == GVA_StrongExternal);
519   return llvm::Function::ExternalLinkage;
520 }
521 
522 
523 /// SetFunctionDefinitionAttributes - Set attributes for a global.
524 ///
525 /// FIXME: This is currently only done for aliases and functions, but not for
526 /// variables (these details are set in EmitGlobalVarDefinition for variables).
527 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
528                                                     llvm::GlobalValue *GV) {
529   SetCommonAttributes(D, GV);
530 }
531 
532 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
533                                               const CGFunctionInfo &Info,
534                                               llvm::Function *F) {
535   unsigned CallingConv;
536   AttributeListType AttributeList;
537   ConstructAttributeList(Info, D, AttributeList, CallingConv);
538   F->setAttributes(llvm::AttrListPtr::get(AttributeList));
539   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
540 }
541 
542 /// Determines whether the language options require us to model
543 /// unwind exceptions.  We treat -fexceptions as mandating this
544 /// except under the fragile ObjC ABI with only ObjC exceptions
545 /// enabled.  This means, for example, that C with -fexceptions
546 /// enables this.
547 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
548   // If exceptions are completely disabled, obviously this is false.
549   if (!LangOpts.Exceptions) return false;
550 
551   // If C++ exceptions are enabled, this is true.
552   if (LangOpts.CXXExceptions) return true;
553 
554   // If ObjC exceptions are enabled, this depends on the ABI.
555   if (LangOpts.ObjCExceptions) {
556     return LangOpts.ObjCRuntime.hasUnwindExceptions();
557   }
558 
559   return true;
560 }
561 
562 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
563                                                            llvm::Function *F) {
564   if (CodeGenOpts.UnwindTables)
565     F->setHasUWTable();
566 
567   if (!hasUnwindExceptions(LangOpts))
568     F->addFnAttr(llvm::Attribute::NoUnwind);
569 
570   if (D->hasAttr<NakedAttr>()) {
571     // Naked implies noinline: we should not be inlining such functions.
572     F->addFnAttr(llvm::Attribute::Naked);
573     F->addFnAttr(llvm::Attribute::NoInline);
574   }
575 
576   if (D->hasAttr<NoInlineAttr>())
577     F->addFnAttr(llvm::Attribute::NoInline);
578 
579   // (noinline wins over always_inline, and we can't specify both in IR)
580   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
581       !F->getFnAttributes().hasNoInlineAttr())
582     F->addFnAttr(llvm::Attribute::AlwaysInline);
583 
584   // FIXME: Communicate hot and cold attributes to LLVM more directly.
585   if (D->hasAttr<ColdAttr>())
586     F->addFnAttr(llvm::Attribute::OptimizeForSize);
587 
588   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
589     F->setUnnamedAddr(true);
590 
591   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
592     if (MD->isVirtual())
593       F->setUnnamedAddr(true);
594 
595   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
596     F->addFnAttr(llvm::Attribute::StackProtect);
597   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
598     F->addFnAttr(llvm::Attribute::StackProtectReq);
599 
600   if (LangOpts.AddressSanitizer) {
601     // When AddressSanitizer is enabled, set AddressSafety attribute
602     // unless __attribute__((no_address_safety_analysis)) is used.
603     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
604       F->addFnAttr(llvm::Attribute::AddressSafety);
605   }
606 
607   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
608   if (alignment)
609     F->setAlignment(alignment);
610 
611   // C++ ABI requires 2-byte alignment for member functions.
612   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
613     F->setAlignment(2);
614 }
615 
616 void CodeGenModule::SetCommonAttributes(const Decl *D,
617                                         llvm::GlobalValue *GV) {
618   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
619     setGlobalVisibility(GV, ND);
620   else
621     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
622 
623   if (D->hasAttr<UsedAttr>())
624     AddUsedGlobal(GV);
625 
626   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
627     GV->setSection(SA->getName());
628 
629   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
630 }
631 
632 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
633                                                   llvm::Function *F,
634                                                   const CGFunctionInfo &FI) {
635   SetLLVMFunctionAttributes(D, FI, F);
636   SetLLVMFunctionAttributesForDefinition(D, F);
637 
638   F->setLinkage(llvm::Function::InternalLinkage);
639 
640   SetCommonAttributes(D, F);
641 }
642 
643 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
644                                           llvm::Function *F,
645                                           bool IsIncompleteFunction) {
646   if (unsigned IID = F->getIntrinsicID()) {
647     // If this is an intrinsic function, set the function's attributes
648     // to the intrinsic's attributes.
649     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
650     return;
651   }
652 
653   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
654 
655   if (!IsIncompleteFunction)
656     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
657 
658   // Only a few attributes are set on declarations; these may later be
659   // overridden by a definition.
660 
661   if (FD->hasAttr<DLLImportAttr>()) {
662     F->setLinkage(llvm::Function::DLLImportLinkage);
663   } else if (FD->hasAttr<WeakAttr>() ||
664              FD->isWeakImported()) {
665     // "extern_weak" is overloaded in LLVM; we probably should have
666     // separate linkage types for this.
667     F->setLinkage(llvm::Function::ExternalWeakLinkage);
668   } else {
669     F->setLinkage(llvm::Function::ExternalLinkage);
670 
671     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
672     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
673       F->setVisibility(GetLLVMVisibility(LV.visibility()));
674     }
675   }
676 
677   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
678     F->setSection(SA->getName());
679 }
680 
681 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
682   assert(!GV->isDeclaration() &&
683          "Only globals with definition can force usage.");
684   LLVMUsed.push_back(GV);
685 }
686 
687 void CodeGenModule::EmitLLVMUsed() {
688   // Don't create llvm.used if there is no need.
689   if (LLVMUsed.empty())
690     return;
691 
692   // Convert LLVMUsed to what ConstantArray needs.
693   SmallVector<llvm::Constant*, 8> UsedArray;
694   UsedArray.resize(LLVMUsed.size());
695   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
696     UsedArray[i] =
697      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
698                                     Int8PtrTy);
699   }
700 
701   if (UsedArray.empty())
702     return;
703   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
704 
705   llvm::GlobalVariable *GV =
706     new llvm::GlobalVariable(getModule(), ATy, false,
707                              llvm::GlobalValue::AppendingLinkage,
708                              llvm::ConstantArray::get(ATy, UsedArray),
709                              "llvm.used");
710 
711   GV->setSection("llvm.metadata");
712 }
713 
714 void CodeGenModule::EmitDeferred() {
715   // Emit code for any potentially referenced deferred decls.  Since a
716   // previously unused static decl may become used during the generation of code
717   // for a static function, iterate until no changes are made.
718 
719   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
720     if (!DeferredVTables.empty()) {
721       const CXXRecordDecl *RD = DeferredVTables.back();
722       DeferredVTables.pop_back();
723       getCXXABI().EmitVTables(RD);
724       continue;
725     }
726 
727     GlobalDecl D = DeferredDeclsToEmit.back();
728     DeferredDeclsToEmit.pop_back();
729 
730     // Check to see if we've already emitted this.  This is necessary
731     // for a couple of reasons: first, decls can end up in the
732     // deferred-decls queue multiple times, and second, decls can end
733     // up with definitions in unusual ways (e.g. by an extern inline
734     // function acquiring a strong function redefinition).  Just
735     // ignore these cases.
736     //
737     // TODO: That said, looking this up multiple times is very wasteful.
738     StringRef Name = getMangledName(D);
739     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
740     assert(CGRef && "Deferred decl wasn't referenced?");
741 
742     if (!CGRef->isDeclaration())
743       continue;
744 
745     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
746     // purposes an alias counts as a definition.
747     if (isa<llvm::GlobalAlias>(CGRef))
748       continue;
749 
750     // Otherwise, emit the definition and move on to the next one.
751     EmitGlobalDefinition(D);
752   }
753 }
754 
755 void CodeGenModule::EmitGlobalAnnotations() {
756   if (Annotations.empty())
757     return;
758 
759   // Create a new global variable for the ConstantStruct in the Module.
760   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
761     Annotations[0]->getType(), Annotations.size()), Annotations);
762   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
763     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
764     "llvm.global.annotations");
765   gv->setSection(AnnotationSection);
766 }
767 
768 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
769   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
770   if (i != AnnotationStrings.end())
771     return i->second;
772 
773   // Not found yet, create a new global.
774   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
775   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
776     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
777   gv->setSection(AnnotationSection);
778   gv->setUnnamedAddr(true);
779   AnnotationStrings[Str] = gv;
780   return gv;
781 }
782 
783 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
784   SourceManager &SM = getContext().getSourceManager();
785   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
786   if (PLoc.isValid())
787     return EmitAnnotationString(PLoc.getFilename());
788   return EmitAnnotationString(SM.getBufferName(Loc));
789 }
790 
791 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
792   SourceManager &SM = getContext().getSourceManager();
793   PresumedLoc PLoc = SM.getPresumedLoc(L);
794   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
795     SM.getExpansionLineNumber(L);
796   return llvm::ConstantInt::get(Int32Ty, LineNo);
797 }
798 
799 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
800                                                 const AnnotateAttr *AA,
801                                                 SourceLocation L) {
802   // Get the globals for file name, annotation, and the line number.
803   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
804                  *UnitGV = EmitAnnotationUnit(L),
805                  *LineNoCst = EmitAnnotationLineNo(L);
806 
807   // Create the ConstantStruct for the global annotation.
808   llvm::Constant *Fields[4] = {
809     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
810     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
811     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
812     LineNoCst
813   };
814   return llvm::ConstantStruct::getAnon(Fields);
815 }
816 
817 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
818                                          llvm::GlobalValue *GV) {
819   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
820   // Get the struct elements for these annotations.
821   for (specific_attr_iterator<AnnotateAttr>
822        ai = D->specific_attr_begin<AnnotateAttr>(),
823        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
824     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
825 }
826 
827 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
828   // Never defer when EmitAllDecls is specified.
829   if (LangOpts.EmitAllDecls)
830     return false;
831 
832   return !getContext().DeclMustBeEmitted(Global);
833 }
834 
835 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
836   const AliasAttr *AA = VD->getAttr<AliasAttr>();
837   assert(AA && "No alias?");
838 
839   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
840 
841   // See if there is already something with the target's name in the module.
842   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
843 
844   llvm::Constant *Aliasee;
845   if (isa<llvm::FunctionType>(DeclTy))
846     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
847                                       /*ForVTable=*/false);
848   else
849     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
850                                     llvm::PointerType::getUnqual(DeclTy), 0);
851   if (!Entry) {
852     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
853     F->setLinkage(llvm::Function::ExternalWeakLinkage);
854     WeakRefReferences.insert(F);
855   }
856 
857   return Aliasee;
858 }
859 
860 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
861   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
862 
863   // Weak references don't produce any output by themselves.
864   if (Global->hasAttr<WeakRefAttr>())
865     return;
866 
867   // If this is an alias definition (which otherwise looks like a declaration)
868   // emit it now.
869   if (Global->hasAttr<AliasAttr>())
870     return EmitAliasDefinition(GD);
871 
872   // If this is CUDA, be selective about which declarations we emit.
873   if (LangOpts.CUDA) {
874     if (CodeGenOpts.CUDAIsDevice) {
875       if (!Global->hasAttr<CUDADeviceAttr>() &&
876           !Global->hasAttr<CUDAGlobalAttr>() &&
877           !Global->hasAttr<CUDAConstantAttr>() &&
878           !Global->hasAttr<CUDASharedAttr>())
879         return;
880     } else {
881       if (!Global->hasAttr<CUDAHostAttr>() && (
882             Global->hasAttr<CUDADeviceAttr>() ||
883             Global->hasAttr<CUDAConstantAttr>() ||
884             Global->hasAttr<CUDASharedAttr>()))
885         return;
886     }
887   }
888 
889   // Ignore declarations, they will be emitted on their first use.
890   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
891     // Forward declarations are emitted lazily on first use.
892     if (!FD->doesThisDeclarationHaveABody()) {
893       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
894         return;
895 
896       const FunctionDecl *InlineDefinition = 0;
897       FD->getBody(InlineDefinition);
898 
899       StringRef MangledName = getMangledName(GD);
900       DeferredDecls.erase(MangledName);
901       EmitGlobalDefinition(InlineDefinition);
902       return;
903     }
904   } else {
905     const VarDecl *VD = cast<VarDecl>(Global);
906     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
907 
908     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
909       return;
910   }
911 
912   // Defer code generation when possible if this is a static definition, inline
913   // function etc.  These we only want to emit if they are used.
914   if (!MayDeferGeneration(Global)) {
915     // Emit the definition if it can't be deferred.
916     EmitGlobalDefinition(GD);
917     return;
918   }
919 
920   // If we're deferring emission of a C++ variable with an
921   // initializer, remember the order in which it appeared in the file.
922   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
923       cast<VarDecl>(Global)->hasInit()) {
924     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
925     CXXGlobalInits.push_back(0);
926   }
927 
928   // If the value has already been used, add it directly to the
929   // DeferredDeclsToEmit list.
930   StringRef MangledName = getMangledName(GD);
931   if (GetGlobalValue(MangledName))
932     DeferredDeclsToEmit.push_back(GD);
933   else {
934     // Otherwise, remember that we saw a deferred decl with this name.  The
935     // first use of the mangled name will cause it to move into
936     // DeferredDeclsToEmit.
937     DeferredDecls[MangledName] = GD;
938   }
939 }
940 
941 namespace {
942   struct FunctionIsDirectlyRecursive :
943     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
944     const StringRef Name;
945     const Builtin::Context &BI;
946     bool Result;
947     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
948       Name(N), BI(C), Result(false) {
949     }
950     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
951 
952     bool TraverseCallExpr(CallExpr *E) {
953       const FunctionDecl *FD = E->getDirectCallee();
954       if (!FD)
955         return true;
956       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
957       if (Attr && Name == Attr->getLabel()) {
958         Result = true;
959         return false;
960       }
961       unsigned BuiltinID = FD->getBuiltinID();
962       if (!BuiltinID)
963         return true;
964       StringRef BuiltinName = BI.GetName(BuiltinID);
965       if (BuiltinName.startswith("__builtin_") &&
966           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
967         Result = true;
968         return false;
969       }
970       return true;
971     }
972   };
973 }
974 
975 // isTriviallyRecursive - Check if this function calls another
976 // decl that, because of the asm attribute or the other decl being a builtin,
977 // ends up pointing to itself.
978 bool
979 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
980   StringRef Name;
981   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
982     // asm labels are a special kind of mangling we have to support.
983     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
984     if (!Attr)
985       return false;
986     Name = Attr->getLabel();
987   } else {
988     Name = FD->getName();
989   }
990 
991   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
992   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
993   return Walker.Result;
994 }
995 
996 bool
997 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
998   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
999     return true;
1000   if (CodeGenOpts.OptimizationLevel == 0 &&
1001       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1002     return false;
1003   // PR9614. Avoid cases where the source code is lying to us. An available
1004   // externally function should have an equivalent function somewhere else,
1005   // but a function that calls itself is clearly not equivalent to the real
1006   // implementation.
1007   // This happens in glibc's btowc and in some configure checks.
1008   return !isTriviallyRecursive(F);
1009 }
1010 
1011 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1012   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1013 
1014   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1015                                  Context.getSourceManager(),
1016                                  "Generating code for declaration");
1017 
1018   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1019     // At -O0, don't generate IR for functions with available_externally
1020     // linkage.
1021     if (!shouldEmitFunction(Function))
1022       return;
1023 
1024     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1025       // Make sure to emit the definition(s) before we emit the thunks.
1026       // This is necessary for the generation of certain thunks.
1027       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1028         EmitCXXConstructor(CD, GD.getCtorType());
1029       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1030         EmitCXXDestructor(DD, GD.getDtorType());
1031       else
1032         EmitGlobalFunctionDefinition(GD);
1033 
1034       if (Method->isVirtual())
1035         getVTables().EmitThunks(GD);
1036 
1037       return;
1038     }
1039 
1040     return EmitGlobalFunctionDefinition(GD);
1041   }
1042 
1043   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1044     return EmitGlobalVarDefinition(VD);
1045 
1046   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1047 }
1048 
1049 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1050 /// module, create and return an llvm Function with the specified type. If there
1051 /// is something in the module with the specified name, return it potentially
1052 /// bitcasted to the right type.
1053 ///
1054 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1055 /// to set the attributes on the function when it is first created.
1056 llvm::Constant *
1057 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1058                                        llvm::Type *Ty,
1059                                        GlobalDecl D, bool ForVTable,
1060                                        llvm::Attributes ExtraAttrs) {
1061   // Lookup the entry, lazily creating it if necessary.
1062   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1063   if (Entry) {
1064     if (WeakRefReferences.erase(Entry)) {
1065       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1066       if (FD && !FD->hasAttr<WeakAttr>())
1067         Entry->setLinkage(llvm::Function::ExternalLinkage);
1068     }
1069 
1070     if (Entry->getType()->getElementType() == Ty)
1071       return Entry;
1072 
1073     // Make sure the result is of the correct type.
1074     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1075   }
1076 
1077   // This function doesn't have a complete type (for example, the return
1078   // type is an incomplete struct). Use a fake type instead, and make
1079   // sure not to try to set attributes.
1080   bool IsIncompleteFunction = false;
1081 
1082   llvm::FunctionType *FTy;
1083   if (isa<llvm::FunctionType>(Ty)) {
1084     FTy = cast<llvm::FunctionType>(Ty);
1085   } else {
1086     FTy = llvm::FunctionType::get(VoidTy, false);
1087     IsIncompleteFunction = true;
1088   }
1089 
1090   llvm::Function *F = llvm::Function::Create(FTy,
1091                                              llvm::Function::ExternalLinkage,
1092                                              MangledName, &getModule());
1093   assert(F->getName() == MangledName && "name was uniqued!");
1094   if (D.getDecl())
1095     SetFunctionAttributes(D, F, IsIncompleteFunction);
1096   if (ExtraAttrs != llvm::Attribute::None)
1097     F->addFnAttr(ExtraAttrs);
1098 
1099   // This is the first use or definition of a mangled name.  If there is a
1100   // deferred decl with this name, remember that we need to emit it at the end
1101   // of the file.
1102   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1103   if (DDI != DeferredDecls.end()) {
1104     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1105     // list, and remove it from DeferredDecls (since we don't need it anymore).
1106     DeferredDeclsToEmit.push_back(DDI->second);
1107     DeferredDecls.erase(DDI);
1108 
1109   // Otherwise, there are cases we have to worry about where we're
1110   // using a declaration for which we must emit a definition but where
1111   // we might not find a top-level definition:
1112   //   - member functions defined inline in their classes
1113   //   - friend functions defined inline in some class
1114   //   - special member functions with implicit definitions
1115   // If we ever change our AST traversal to walk into class methods,
1116   // this will be unnecessary.
1117   //
1118   // We also don't emit a definition for a function if it's going to be an entry
1119   // in a vtable, unless it's already marked as used.
1120   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1121     // Look for a declaration that's lexically in a record.
1122     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1123     FD = FD->getMostRecentDecl();
1124     do {
1125       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1126         if (FD->isImplicit() && !ForVTable) {
1127           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1128           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1129           break;
1130         } else if (FD->doesThisDeclarationHaveABody()) {
1131           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1132           break;
1133         }
1134       }
1135       FD = FD->getPreviousDecl();
1136     } while (FD);
1137   }
1138 
1139   // Make sure the result is of the requested type.
1140   if (!IsIncompleteFunction) {
1141     assert(F->getType()->getElementType() == Ty);
1142     return F;
1143   }
1144 
1145   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1146   return llvm::ConstantExpr::getBitCast(F, PTy);
1147 }
1148 
1149 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1150 /// non-null, then this function will use the specified type if it has to
1151 /// create it (this occurs when we see a definition of the function).
1152 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1153                                                  llvm::Type *Ty,
1154                                                  bool ForVTable) {
1155   // If there was no specific requested type, just convert it now.
1156   if (!Ty)
1157     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1158 
1159   StringRef MangledName = getMangledName(GD);
1160   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1161 }
1162 
1163 /// CreateRuntimeFunction - Create a new runtime function with the specified
1164 /// type and name.
1165 llvm::Constant *
1166 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1167                                      StringRef Name,
1168                                      llvm::Attributes ExtraAttrs) {
1169   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1170                                  ExtraAttrs);
1171 }
1172 
1173 /// isTypeConstant - Determine whether an object of this type can be emitted
1174 /// as a constant.
1175 ///
1176 /// If ExcludeCtor is true, the duration when the object's constructor runs
1177 /// will not be considered. The caller will need to verify that the object is
1178 /// not written to during its construction.
1179 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1180   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1181     return false;
1182 
1183   if (Context.getLangOpts().CPlusPlus) {
1184     if (const CXXRecordDecl *Record
1185           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1186       return ExcludeCtor && !Record->hasMutableFields() &&
1187              Record->hasTrivialDestructor();
1188   }
1189 
1190   return true;
1191 }
1192 
1193 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1194 /// create and return an llvm GlobalVariable with the specified type.  If there
1195 /// is something in the module with the specified name, return it potentially
1196 /// bitcasted to the right type.
1197 ///
1198 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1199 /// to set the attributes on the global when it is first created.
1200 llvm::Constant *
1201 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1202                                      llvm::PointerType *Ty,
1203                                      const VarDecl *D,
1204                                      bool UnnamedAddr) {
1205   // Lookup the entry, lazily creating it if necessary.
1206   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1207   if (Entry) {
1208     if (WeakRefReferences.erase(Entry)) {
1209       if (D && !D->hasAttr<WeakAttr>())
1210         Entry->setLinkage(llvm::Function::ExternalLinkage);
1211     }
1212 
1213     if (UnnamedAddr)
1214       Entry->setUnnamedAddr(true);
1215 
1216     if (Entry->getType() == Ty)
1217       return Entry;
1218 
1219     // Make sure the result is of the correct type.
1220     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1221   }
1222 
1223   // This is the first use or definition of a mangled name.  If there is a
1224   // deferred decl with this name, remember that we need to emit it at the end
1225   // of the file.
1226   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1227   if (DDI != DeferredDecls.end()) {
1228     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1229     // list, and remove it from DeferredDecls (since we don't need it anymore).
1230     DeferredDeclsToEmit.push_back(DDI->second);
1231     DeferredDecls.erase(DDI);
1232   }
1233 
1234   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1235   llvm::GlobalVariable *GV =
1236     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1237                              llvm::GlobalValue::ExternalLinkage,
1238                              0, MangledName, 0,
1239                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1240 
1241   // Handle things which are present even on external declarations.
1242   if (D) {
1243     // FIXME: This code is overly simple and should be merged with other global
1244     // handling.
1245     GV->setConstant(isTypeConstant(D->getType(), false));
1246 
1247     // Set linkage and visibility in case we never see a definition.
1248     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1249     if (LV.linkage() != ExternalLinkage) {
1250       // Don't set internal linkage on declarations.
1251     } else {
1252       if (D->hasAttr<DLLImportAttr>())
1253         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1254       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1255         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1256 
1257       // Set visibility on a declaration only if it's explicit.
1258       if (LV.visibilityExplicit())
1259         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1260     }
1261 
1262     if (D->isThreadSpecified())
1263       setTLSMode(GV, *D);
1264   }
1265 
1266   if (AddrSpace != Ty->getAddressSpace())
1267     return llvm::ConstantExpr::getBitCast(GV, Ty);
1268   else
1269     return GV;
1270 }
1271 
1272 
1273 llvm::GlobalVariable *
1274 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1275                                       llvm::Type *Ty,
1276                                       llvm::GlobalValue::LinkageTypes Linkage) {
1277   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1278   llvm::GlobalVariable *OldGV = 0;
1279 
1280 
1281   if (GV) {
1282     // Check if the variable has the right type.
1283     if (GV->getType()->getElementType() == Ty)
1284       return GV;
1285 
1286     // Because C++ name mangling, the only way we can end up with an already
1287     // existing global with the same name is if it has been declared extern "C".
1288       assert(GV->isDeclaration() && "Declaration has wrong type!");
1289     OldGV = GV;
1290   }
1291 
1292   // Create a new variable.
1293   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1294                                 Linkage, 0, Name);
1295 
1296   if (OldGV) {
1297     // Replace occurrences of the old variable if needed.
1298     GV->takeName(OldGV);
1299 
1300     if (!OldGV->use_empty()) {
1301       llvm::Constant *NewPtrForOldDecl =
1302       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1303       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1304     }
1305 
1306     OldGV->eraseFromParent();
1307   }
1308 
1309   return GV;
1310 }
1311 
1312 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1313 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1314 /// then it will be created with the specified type instead of whatever the
1315 /// normal requested type would be.
1316 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1317                                                   llvm::Type *Ty) {
1318   assert(D->hasGlobalStorage() && "Not a global variable");
1319   QualType ASTTy = D->getType();
1320   if (Ty == 0)
1321     Ty = getTypes().ConvertTypeForMem(ASTTy);
1322 
1323   llvm::PointerType *PTy =
1324     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1325 
1326   StringRef MangledName = getMangledName(D);
1327   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1328 }
1329 
1330 /// CreateRuntimeVariable - Create a new runtime global variable with the
1331 /// specified type and name.
1332 llvm::Constant *
1333 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1334                                      StringRef Name) {
1335   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1336                                true);
1337 }
1338 
1339 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1340   assert(!D->getInit() && "Cannot emit definite definitions here!");
1341 
1342   if (MayDeferGeneration(D)) {
1343     // If we have not seen a reference to this variable yet, place it
1344     // into the deferred declarations table to be emitted if needed
1345     // later.
1346     StringRef MangledName = getMangledName(D);
1347     if (!GetGlobalValue(MangledName)) {
1348       DeferredDecls[MangledName] = D;
1349       return;
1350     }
1351   }
1352 
1353   // The tentative definition is the only definition.
1354   EmitGlobalVarDefinition(D);
1355 }
1356 
1357 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1358   if (DefinitionRequired)
1359     getCXXABI().EmitVTables(Class);
1360 }
1361 
1362 llvm::GlobalVariable::LinkageTypes
1363 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1364   if (RD->getLinkage() != ExternalLinkage)
1365     return llvm::GlobalVariable::InternalLinkage;
1366 
1367   if (const CXXMethodDecl *KeyFunction
1368                                     = RD->getASTContext().getKeyFunction(RD)) {
1369     // If this class has a key function, use that to determine the linkage of
1370     // the vtable.
1371     const FunctionDecl *Def = 0;
1372     if (KeyFunction->hasBody(Def))
1373       KeyFunction = cast<CXXMethodDecl>(Def);
1374 
1375     switch (KeyFunction->getTemplateSpecializationKind()) {
1376       case TSK_Undeclared:
1377       case TSK_ExplicitSpecialization:
1378         // When compiling with optimizations turned on, we emit all vtables,
1379         // even if the key function is not defined in the current translation
1380         // unit. If this is the case, use available_externally linkage.
1381         if (!Def && CodeGenOpts.OptimizationLevel)
1382           return llvm::GlobalVariable::AvailableExternallyLinkage;
1383 
1384         if (KeyFunction->isInlined())
1385           return !Context.getLangOpts().AppleKext ?
1386                    llvm::GlobalVariable::LinkOnceODRLinkage :
1387                    llvm::Function::InternalLinkage;
1388 
1389         return llvm::GlobalVariable::ExternalLinkage;
1390 
1391       case TSK_ImplicitInstantiation:
1392         return !Context.getLangOpts().AppleKext ?
1393                  llvm::GlobalVariable::LinkOnceODRLinkage :
1394                  llvm::Function::InternalLinkage;
1395 
1396       case TSK_ExplicitInstantiationDefinition:
1397         return !Context.getLangOpts().AppleKext ?
1398                  llvm::GlobalVariable::WeakODRLinkage :
1399                  llvm::Function::InternalLinkage;
1400 
1401       case TSK_ExplicitInstantiationDeclaration:
1402         // FIXME: Use available_externally linkage. However, this currently
1403         // breaks LLVM's build due to undefined symbols.
1404         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1405         return !Context.getLangOpts().AppleKext ?
1406                  llvm::GlobalVariable::LinkOnceODRLinkage :
1407                  llvm::Function::InternalLinkage;
1408     }
1409   }
1410 
1411   if (Context.getLangOpts().AppleKext)
1412     return llvm::Function::InternalLinkage;
1413 
1414   switch (RD->getTemplateSpecializationKind()) {
1415   case TSK_Undeclared:
1416   case TSK_ExplicitSpecialization:
1417   case TSK_ImplicitInstantiation:
1418     // FIXME: Use available_externally linkage. However, this currently
1419     // breaks LLVM's build due to undefined symbols.
1420     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1421   case TSK_ExplicitInstantiationDeclaration:
1422     return llvm::GlobalVariable::LinkOnceODRLinkage;
1423 
1424   case TSK_ExplicitInstantiationDefinition:
1425       return llvm::GlobalVariable::WeakODRLinkage;
1426   }
1427 
1428   llvm_unreachable("Invalid TemplateSpecializationKind!");
1429 }
1430 
1431 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1432     return Context.toCharUnitsFromBits(
1433       TheTargetData.getTypeStoreSizeInBits(Ty));
1434 }
1435 
1436 llvm::Constant *
1437 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1438                                                        const Expr *rawInit) {
1439   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1440   if (const ExprWithCleanups *withCleanups =
1441           dyn_cast<ExprWithCleanups>(rawInit)) {
1442     cleanups = withCleanups->getObjects();
1443     rawInit = withCleanups->getSubExpr();
1444   }
1445 
1446   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1447   if (!init || !init->initializesStdInitializerList() ||
1448       init->getNumInits() == 0)
1449     return 0;
1450 
1451   ASTContext &ctx = getContext();
1452   unsigned numInits = init->getNumInits();
1453   // FIXME: This check is here because we would otherwise silently miscompile
1454   // nested global std::initializer_lists. Better would be to have a real
1455   // implementation.
1456   for (unsigned i = 0; i < numInits; ++i) {
1457     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1458     if (inner && inner->initializesStdInitializerList()) {
1459       ErrorUnsupported(inner, "nested global std::initializer_list");
1460       return 0;
1461     }
1462   }
1463 
1464   // Synthesize a fake VarDecl for the array and initialize that.
1465   QualType elementType = init->getInit(0)->getType();
1466   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1467   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1468                                                 ArrayType::Normal, 0);
1469 
1470   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1471   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1472                                               arrayType, D->getLocation());
1473   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1474                                                           D->getDeclContext()),
1475                                           D->getLocStart(), D->getLocation(),
1476                                           name, arrayType, sourceInfo,
1477                                           SC_Static, SC_Static);
1478 
1479   // Now clone the InitListExpr to initialize the array instead.
1480   // Incredible hack: we want to use the existing InitListExpr here, so we need
1481   // to tell it that it no longer initializes a std::initializer_list.
1482   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1483                         init->getNumInits());
1484   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1485                                            init->getRBraceLoc());
1486   arrayInit->setType(arrayType);
1487 
1488   if (!cleanups.empty())
1489     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1490 
1491   backingArray->setInit(arrayInit);
1492 
1493   // Emit the definition of the array.
1494   EmitGlobalVarDefinition(backingArray);
1495 
1496   // Inspect the initializer list to validate it and determine its type.
1497   // FIXME: doing this every time is probably inefficient; caching would be nice
1498   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1499   RecordDecl::field_iterator field = record->field_begin();
1500   if (field == record->field_end()) {
1501     ErrorUnsupported(D, "weird std::initializer_list");
1502     return 0;
1503   }
1504   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1505   // Start pointer.
1506   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1507     ErrorUnsupported(D, "weird std::initializer_list");
1508     return 0;
1509   }
1510   ++field;
1511   if (field == record->field_end()) {
1512     ErrorUnsupported(D, "weird std::initializer_list");
1513     return 0;
1514   }
1515   bool isStartEnd = false;
1516   if (ctx.hasSameType(field->getType(), elementPtr)) {
1517     // End pointer.
1518     isStartEnd = true;
1519   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1520     ErrorUnsupported(D, "weird std::initializer_list");
1521     return 0;
1522   }
1523 
1524   // Now build an APValue representing the std::initializer_list.
1525   APValue initListValue(APValue::UninitStruct(), 0, 2);
1526   APValue &startField = initListValue.getStructField(0);
1527   APValue::LValuePathEntry startOffsetPathEntry;
1528   startOffsetPathEntry.ArrayIndex = 0;
1529   startField = APValue(APValue::LValueBase(backingArray),
1530                        CharUnits::fromQuantity(0),
1531                        llvm::makeArrayRef(startOffsetPathEntry),
1532                        /*IsOnePastTheEnd=*/false, 0);
1533 
1534   if (isStartEnd) {
1535     APValue &endField = initListValue.getStructField(1);
1536     APValue::LValuePathEntry endOffsetPathEntry;
1537     endOffsetPathEntry.ArrayIndex = numInits;
1538     endField = APValue(APValue::LValueBase(backingArray),
1539                        ctx.getTypeSizeInChars(elementType) * numInits,
1540                        llvm::makeArrayRef(endOffsetPathEntry),
1541                        /*IsOnePastTheEnd=*/true, 0);
1542   } else {
1543     APValue &sizeField = initListValue.getStructField(1);
1544     sizeField = APValue(llvm::APSInt(numElements));
1545   }
1546 
1547   // Emit the constant for the initializer_list.
1548   llvm::Constant *llvmInit =
1549       EmitConstantValueForMemory(initListValue, D->getType());
1550   assert(llvmInit && "failed to initialize as constant");
1551   return llvmInit;
1552 }
1553 
1554 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1555                                                  unsigned AddrSpace) {
1556   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1557     if (D->hasAttr<CUDAConstantAttr>())
1558       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1559     else if (D->hasAttr<CUDASharedAttr>())
1560       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1561     else
1562       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1563   }
1564 
1565   return AddrSpace;
1566 }
1567 
1568 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1569   llvm::Constant *Init = 0;
1570   QualType ASTTy = D->getType();
1571   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1572   bool NeedsGlobalCtor = false;
1573   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1574 
1575   const VarDecl *InitDecl;
1576   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1577 
1578   if (!InitExpr) {
1579     // This is a tentative definition; tentative definitions are
1580     // implicitly initialized with { 0 }.
1581     //
1582     // Note that tentative definitions are only emitted at the end of
1583     // a translation unit, so they should never have incomplete
1584     // type. In addition, EmitTentativeDefinition makes sure that we
1585     // never attempt to emit a tentative definition if a real one
1586     // exists. A use may still exists, however, so we still may need
1587     // to do a RAUW.
1588     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1589     Init = EmitNullConstant(D->getType());
1590   } else {
1591     // If this is a std::initializer_list, emit the special initializer.
1592     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1593     // An empty init list will perform zero-initialization, which happens
1594     // to be exactly what we want.
1595     // FIXME: It does so in a global constructor, which is *not* what we
1596     // want.
1597 
1598     if (!Init) {
1599       initializedGlobalDecl = GlobalDecl(D);
1600       Init = EmitConstantInit(*InitDecl);
1601     }
1602     if (!Init) {
1603       QualType T = InitExpr->getType();
1604       if (D->getType()->isReferenceType())
1605         T = D->getType();
1606 
1607       if (getLangOpts().CPlusPlus) {
1608         Init = EmitNullConstant(T);
1609         NeedsGlobalCtor = true;
1610       } else {
1611         ErrorUnsupported(D, "static initializer");
1612         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1613       }
1614     } else {
1615       // We don't need an initializer, so remove the entry for the delayed
1616       // initializer position (just in case this entry was delayed) if we
1617       // also don't need to register a destructor.
1618       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1619         DelayedCXXInitPosition.erase(D);
1620     }
1621   }
1622 
1623   llvm::Type* InitType = Init->getType();
1624   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1625 
1626   // Strip off a bitcast if we got one back.
1627   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1628     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1629            // all zero index gep.
1630            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1631     Entry = CE->getOperand(0);
1632   }
1633 
1634   // Entry is now either a Function or GlobalVariable.
1635   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1636 
1637   // We have a definition after a declaration with the wrong type.
1638   // We must make a new GlobalVariable* and update everything that used OldGV
1639   // (a declaration or tentative definition) with the new GlobalVariable*
1640   // (which will be a definition).
1641   //
1642   // This happens if there is a prototype for a global (e.g.
1643   // "extern int x[];") and then a definition of a different type (e.g.
1644   // "int x[10];"). This also happens when an initializer has a different type
1645   // from the type of the global (this happens with unions).
1646   if (GV == 0 ||
1647       GV->getType()->getElementType() != InitType ||
1648       GV->getType()->getAddressSpace() !=
1649        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1650 
1651     // Move the old entry aside so that we'll create a new one.
1652     Entry->setName(StringRef());
1653 
1654     // Make a new global with the correct type, this is now guaranteed to work.
1655     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1656 
1657     // Replace all uses of the old global with the new global
1658     llvm::Constant *NewPtrForOldDecl =
1659         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1660     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1661 
1662     // Erase the old global, since it is no longer used.
1663     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1664   }
1665 
1666   if (D->hasAttr<AnnotateAttr>())
1667     AddGlobalAnnotations(D, GV);
1668 
1669   GV->setInitializer(Init);
1670 
1671   // If it is safe to mark the global 'constant', do so now.
1672   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1673                   isTypeConstant(D->getType(), true));
1674 
1675   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1676 
1677   // Set the llvm linkage type as appropriate.
1678   llvm::GlobalValue::LinkageTypes Linkage =
1679     GetLLVMLinkageVarDefinition(D, GV);
1680   GV->setLinkage(Linkage);
1681   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1682     // common vars aren't constant even if declared const.
1683     GV->setConstant(false);
1684 
1685   SetCommonAttributes(D, GV);
1686 
1687   // Emit the initializer function if necessary.
1688   if (NeedsGlobalCtor || NeedsGlobalDtor)
1689     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1690 
1691   // If we are compiling with ASan, add metadata indicating dynamically
1692   // initialized globals.
1693   if (LangOpts.AddressSanitizer && NeedsGlobalCtor) {
1694     llvm::Module &M = getModule();
1695 
1696     llvm::NamedMDNode *DynamicInitializers =
1697         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1698     llvm::Value *GlobalToAdd[] = { GV };
1699     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1700     DynamicInitializers->addOperand(ThisGlobal);
1701   }
1702 
1703   // Emit global variable debug information.
1704   if (CGDebugInfo *DI = getModuleDebugInfo())
1705     if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1706       DI->EmitGlobalVariable(GV, D);
1707 }
1708 
1709 llvm::GlobalValue::LinkageTypes
1710 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1711                                            llvm::GlobalVariable *GV) {
1712   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1713   if (Linkage == GVA_Internal)
1714     return llvm::Function::InternalLinkage;
1715   else if (D->hasAttr<DLLImportAttr>())
1716     return llvm::Function::DLLImportLinkage;
1717   else if (D->hasAttr<DLLExportAttr>())
1718     return llvm::Function::DLLExportLinkage;
1719   else if (D->hasAttr<WeakAttr>()) {
1720     if (GV->isConstant())
1721       return llvm::GlobalVariable::WeakODRLinkage;
1722     else
1723       return llvm::GlobalVariable::WeakAnyLinkage;
1724   } else if (Linkage == GVA_TemplateInstantiation ||
1725              Linkage == GVA_ExplicitTemplateInstantiation)
1726     return llvm::GlobalVariable::WeakODRLinkage;
1727   else if (!getLangOpts().CPlusPlus &&
1728            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1729              D->getAttr<CommonAttr>()) &&
1730            !D->hasExternalStorage() && !D->getInit() &&
1731            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1732            !D->getAttr<WeakImportAttr>()) {
1733     // Thread local vars aren't considered common linkage.
1734     return llvm::GlobalVariable::CommonLinkage;
1735   }
1736   return llvm::GlobalVariable::ExternalLinkage;
1737 }
1738 
1739 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1740 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1741 /// existing call uses of the old function in the module, this adjusts them to
1742 /// call the new function directly.
1743 ///
1744 /// This is not just a cleanup: the always_inline pass requires direct calls to
1745 /// functions to be able to inline them.  If there is a bitcast in the way, it
1746 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1747 /// run at -O0.
1748 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1749                                                       llvm::Function *NewFn) {
1750   // If we're redefining a global as a function, don't transform it.
1751   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1752   if (OldFn == 0) return;
1753 
1754   llvm::Type *NewRetTy = NewFn->getReturnType();
1755   SmallVector<llvm::Value*, 4> ArgList;
1756 
1757   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1758        UI != E; ) {
1759     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1760     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1761     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1762     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1763     llvm::CallSite CS(CI);
1764     if (!CI || !CS.isCallee(I)) continue;
1765 
1766     // If the return types don't match exactly, and if the call isn't dead, then
1767     // we can't transform this call.
1768     if (CI->getType() != NewRetTy && !CI->use_empty())
1769       continue;
1770 
1771     // Get the attribute list.
1772     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1773     llvm::AttrListPtr AttrList = CI->getAttributes();
1774 
1775     // Get any return attributes.
1776     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1777 
1778     // Add the return attributes.
1779     if (RAttrs)
1780       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1781 
1782     // If the function was passed too few arguments, don't transform.  If extra
1783     // arguments were passed, we silently drop them.  If any of the types
1784     // mismatch, we don't transform.
1785     unsigned ArgNo = 0;
1786     bool DontTransform = false;
1787     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1788          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1789       if (CS.arg_size() == ArgNo ||
1790           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1791         DontTransform = true;
1792         break;
1793       }
1794 
1795       // Add any parameter attributes.
1796       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1797         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1798     }
1799     if (DontTransform)
1800       continue;
1801 
1802     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1803       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1804 
1805     // Okay, we can transform this.  Create the new call instruction and copy
1806     // over the required information.
1807     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1808     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1809     ArgList.clear();
1810     if (!NewCall->getType()->isVoidTy())
1811       NewCall->takeName(CI);
1812     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1813     NewCall->setCallingConv(CI->getCallingConv());
1814 
1815     // Finally, remove the old call, replacing any uses with the new one.
1816     if (!CI->use_empty())
1817       CI->replaceAllUsesWith(NewCall);
1818 
1819     // Copy debug location attached to CI.
1820     if (!CI->getDebugLoc().isUnknown())
1821       NewCall->setDebugLoc(CI->getDebugLoc());
1822     CI->eraseFromParent();
1823   }
1824 }
1825 
1826 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1827   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1828   // If we have a definition, this might be a deferred decl. If the
1829   // instantiation is explicit, make sure we emit it at the end.
1830   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1831     GetAddrOfGlobalVar(VD);
1832 }
1833 
1834 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1835   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1836 
1837   // Compute the function info and LLVM type.
1838   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1839   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1840 
1841   // Get or create the prototype for the function.
1842   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1843 
1844   // Strip off a bitcast if we got one back.
1845   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1846     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1847     Entry = CE->getOperand(0);
1848   }
1849 
1850 
1851   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1852     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1853 
1854     // If the types mismatch then we have to rewrite the definition.
1855     assert(OldFn->isDeclaration() &&
1856            "Shouldn't replace non-declaration");
1857 
1858     // F is the Function* for the one with the wrong type, we must make a new
1859     // Function* and update everything that used F (a declaration) with the new
1860     // Function* (which will be a definition).
1861     //
1862     // This happens if there is a prototype for a function
1863     // (e.g. "int f()") and then a definition of a different type
1864     // (e.g. "int f(int x)").  Move the old function aside so that it
1865     // doesn't interfere with GetAddrOfFunction.
1866     OldFn->setName(StringRef());
1867     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1868 
1869     // If this is an implementation of a function without a prototype, try to
1870     // replace any existing uses of the function (which may be calls) with uses
1871     // of the new function
1872     if (D->getType()->isFunctionNoProtoType()) {
1873       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1874       OldFn->removeDeadConstantUsers();
1875     }
1876 
1877     // Replace uses of F with the Function we will endow with a body.
1878     if (!Entry->use_empty()) {
1879       llvm::Constant *NewPtrForOldDecl =
1880         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1881       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1882     }
1883 
1884     // Ok, delete the old function now, which is dead.
1885     OldFn->eraseFromParent();
1886 
1887     Entry = NewFn;
1888   }
1889 
1890   // We need to set linkage and visibility on the function before
1891   // generating code for it because various parts of IR generation
1892   // want to propagate this information down (e.g. to local static
1893   // declarations).
1894   llvm::Function *Fn = cast<llvm::Function>(Entry);
1895   setFunctionLinkage(D, Fn);
1896 
1897   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1898   setGlobalVisibility(Fn, D);
1899 
1900   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1901 
1902   SetFunctionDefinitionAttributes(D, Fn);
1903   SetLLVMFunctionAttributesForDefinition(D, Fn);
1904 
1905   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1906     AddGlobalCtor(Fn, CA->getPriority());
1907   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1908     AddGlobalDtor(Fn, DA->getPriority());
1909   if (D->hasAttr<AnnotateAttr>())
1910     AddGlobalAnnotations(D, Fn);
1911 }
1912 
1913 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1914   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1915   const AliasAttr *AA = D->getAttr<AliasAttr>();
1916   assert(AA && "Not an alias?");
1917 
1918   StringRef MangledName = getMangledName(GD);
1919 
1920   // If there is a definition in the module, then it wins over the alias.
1921   // This is dubious, but allow it to be safe.  Just ignore the alias.
1922   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1923   if (Entry && !Entry->isDeclaration())
1924     return;
1925 
1926   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1927 
1928   // Create a reference to the named value.  This ensures that it is emitted
1929   // if a deferred decl.
1930   llvm::Constant *Aliasee;
1931   if (isa<llvm::FunctionType>(DeclTy))
1932     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1933                                       /*ForVTable=*/false);
1934   else
1935     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1936                                     llvm::PointerType::getUnqual(DeclTy), 0);
1937 
1938   // Create the new alias itself, but don't set a name yet.
1939   llvm::GlobalValue *GA =
1940     new llvm::GlobalAlias(Aliasee->getType(),
1941                           llvm::Function::ExternalLinkage,
1942                           "", Aliasee, &getModule());
1943 
1944   if (Entry) {
1945     assert(Entry->isDeclaration());
1946 
1947     // If there is a declaration in the module, then we had an extern followed
1948     // by the alias, as in:
1949     //   extern int test6();
1950     //   ...
1951     //   int test6() __attribute__((alias("test7")));
1952     //
1953     // Remove it and replace uses of it with the alias.
1954     GA->takeName(Entry);
1955 
1956     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1957                                                           Entry->getType()));
1958     Entry->eraseFromParent();
1959   } else {
1960     GA->setName(MangledName);
1961   }
1962 
1963   // Set attributes which are particular to an alias; this is a
1964   // specialization of the attributes which may be set on a global
1965   // variable/function.
1966   if (D->hasAttr<DLLExportAttr>()) {
1967     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1968       // The dllexport attribute is ignored for undefined symbols.
1969       if (FD->hasBody())
1970         GA->setLinkage(llvm::Function::DLLExportLinkage);
1971     } else {
1972       GA->setLinkage(llvm::Function::DLLExportLinkage);
1973     }
1974   } else if (D->hasAttr<WeakAttr>() ||
1975              D->hasAttr<WeakRefAttr>() ||
1976              D->isWeakImported()) {
1977     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1978   }
1979 
1980   SetCommonAttributes(D, GA);
1981 }
1982 
1983 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1984                                             ArrayRef<llvm::Type*> Tys) {
1985   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1986                                          Tys);
1987 }
1988 
1989 static llvm::StringMapEntry<llvm::Constant*> &
1990 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1991                          const StringLiteral *Literal,
1992                          bool TargetIsLSB,
1993                          bool &IsUTF16,
1994                          unsigned &StringLength) {
1995   StringRef String = Literal->getString();
1996   unsigned NumBytes = String.size();
1997 
1998   // Check for simple case.
1999   if (!Literal->containsNonAsciiOrNull()) {
2000     StringLength = NumBytes;
2001     return Map.GetOrCreateValue(String);
2002   }
2003 
2004   // Otherwise, convert the UTF8 literals into a string of shorts.
2005   IsUTF16 = true;
2006 
2007   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2008   const UTF8 *FromPtr = (const UTF8 *)String.data();
2009   UTF16 *ToPtr = &ToBuf[0];
2010 
2011   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2012                            &ToPtr, ToPtr + NumBytes,
2013                            strictConversion);
2014 
2015   // ConvertUTF8toUTF16 returns the length in ToPtr.
2016   StringLength = ToPtr - &ToBuf[0];
2017 
2018   // Add an explicit null.
2019   *ToPtr = 0;
2020   return Map.
2021     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2022                                (StringLength + 1) * 2));
2023 }
2024 
2025 static llvm::StringMapEntry<llvm::Constant*> &
2026 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2027                        const StringLiteral *Literal,
2028                        unsigned &StringLength) {
2029   StringRef String = Literal->getString();
2030   StringLength = String.size();
2031   return Map.GetOrCreateValue(String);
2032 }
2033 
2034 llvm::Constant *
2035 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2036   unsigned StringLength = 0;
2037   bool isUTF16 = false;
2038   llvm::StringMapEntry<llvm::Constant*> &Entry =
2039     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2040                              getTargetData().isLittleEndian(),
2041                              isUTF16, StringLength);
2042 
2043   if (llvm::Constant *C = Entry.getValue())
2044     return C;
2045 
2046   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2047   llvm::Constant *Zeros[] = { Zero, Zero };
2048 
2049   // If we don't already have it, get __CFConstantStringClassReference.
2050   if (!CFConstantStringClassRef) {
2051     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2052     Ty = llvm::ArrayType::get(Ty, 0);
2053     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2054                                            "__CFConstantStringClassReference");
2055     // Decay array -> ptr
2056     CFConstantStringClassRef =
2057       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2058   }
2059 
2060   QualType CFTy = getContext().getCFConstantStringType();
2061 
2062   llvm::StructType *STy =
2063     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2064 
2065   llvm::Constant *Fields[4];
2066 
2067   // Class pointer.
2068   Fields[0] = CFConstantStringClassRef;
2069 
2070   // Flags.
2071   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2072   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2073     llvm::ConstantInt::get(Ty, 0x07C8);
2074 
2075   // String pointer.
2076   llvm::Constant *C = 0;
2077   if (isUTF16) {
2078     ArrayRef<uint16_t> Arr =
2079       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2080                                    Entry.getKey().size() / 2);
2081     C = llvm::ConstantDataArray::get(VMContext, Arr);
2082   } else {
2083     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2084   }
2085 
2086   llvm::GlobalValue::LinkageTypes Linkage;
2087   if (isUTF16)
2088     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2089     Linkage = llvm::GlobalValue::InternalLinkage;
2090   else
2091     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2092     // when using private linkage. It is not clear if this is a bug in ld
2093     // or a reasonable new restriction.
2094     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2095 
2096   // Note: -fwritable-strings doesn't make the backing store strings of
2097   // CFStrings writable. (See <rdar://problem/10657500>)
2098   llvm::GlobalVariable *GV =
2099     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2100                              Linkage, C, ".str");
2101   GV->setUnnamedAddr(true);
2102   if (isUTF16) {
2103     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2104     GV->setAlignment(Align.getQuantity());
2105   } else {
2106     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2107     GV->setAlignment(Align.getQuantity());
2108   }
2109 
2110   // String.
2111   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2112 
2113   if (isUTF16)
2114     // Cast the UTF16 string to the correct type.
2115     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2116 
2117   // String length.
2118   Ty = getTypes().ConvertType(getContext().LongTy);
2119   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2120 
2121   // The struct.
2122   C = llvm::ConstantStruct::get(STy, Fields);
2123   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2124                                 llvm::GlobalVariable::PrivateLinkage, C,
2125                                 "_unnamed_cfstring_");
2126   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2127     GV->setSection(Sect);
2128   Entry.setValue(GV);
2129 
2130   return GV;
2131 }
2132 
2133 static RecordDecl *
2134 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2135                  DeclContext *DC, IdentifierInfo *Id) {
2136   SourceLocation Loc;
2137   if (Ctx.getLangOpts().CPlusPlus)
2138     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2139   else
2140     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2141 }
2142 
2143 llvm::Constant *
2144 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2145   unsigned StringLength = 0;
2146   llvm::StringMapEntry<llvm::Constant*> &Entry =
2147     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2148 
2149   if (llvm::Constant *C = Entry.getValue())
2150     return C;
2151 
2152   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2153   llvm::Constant *Zeros[] = { Zero, Zero };
2154 
2155   // If we don't already have it, get _NSConstantStringClassReference.
2156   if (!ConstantStringClassRef) {
2157     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2158     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2159     llvm::Constant *GV;
2160     if (LangOpts.ObjCRuntime.isNonFragile()) {
2161       std::string str =
2162         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2163                             : "OBJC_CLASS_$_" + StringClass;
2164       GV = getObjCRuntime().GetClassGlobal(str);
2165       // Make sure the result is of the correct type.
2166       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2167       ConstantStringClassRef =
2168         llvm::ConstantExpr::getBitCast(GV, PTy);
2169     } else {
2170       std::string str =
2171         StringClass.empty() ? "_NSConstantStringClassReference"
2172                             : "_" + StringClass + "ClassReference";
2173       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2174       GV = CreateRuntimeVariable(PTy, str);
2175       // Decay array -> ptr
2176       ConstantStringClassRef =
2177         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2178     }
2179   }
2180 
2181   if (!NSConstantStringType) {
2182     // Construct the type for a constant NSString.
2183     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2184                                      Context.getTranslationUnitDecl(),
2185                                    &Context.Idents.get("__builtin_NSString"));
2186     D->startDefinition();
2187 
2188     QualType FieldTypes[3];
2189 
2190     // const int *isa;
2191     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2192     // const char *str;
2193     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2194     // unsigned int length;
2195     FieldTypes[2] = Context.UnsignedIntTy;
2196 
2197     // Create fields
2198     for (unsigned i = 0; i < 3; ++i) {
2199       FieldDecl *Field = FieldDecl::Create(Context, D,
2200                                            SourceLocation(),
2201                                            SourceLocation(), 0,
2202                                            FieldTypes[i], /*TInfo=*/0,
2203                                            /*BitWidth=*/0,
2204                                            /*Mutable=*/false,
2205                                            ICIS_NoInit);
2206       Field->setAccess(AS_public);
2207       D->addDecl(Field);
2208     }
2209 
2210     D->completeDefinition();
2211     QualType NSTy = Context.getTagDeclType(D);
2212     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2213   }
2214 
2215   llvm::Constant *Fields[3];
2216 
2217   // Class pointer.
2218   Fields[0] = ConstantStringClassRef;
2219 
2220   // String pointer.
2221   llvm::Constant *C =
2222     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2223 
2224   llvm::GlobalValue::LinkageTypes Linkage;
2225   bool isConstant;
2226   Linkage = llvm::GlobalValue::PrivateLinkage;
2227   isConstant = !LangOpts.WritableStrings;
2228 
2229   llvm::GlobalVariable *GV =
2230   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2231                            ".str");
2232   GV->setUnnamedAddr(true);
2233   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2234   GV->setAlignment(Align.getQuantity());
2235   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2236 
2237   // String length.
2238   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2239   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2240 
2241   // The struct.
2242   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2243   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2244                                 llvm::GlobalVariable::PrivateLinkage, C,
2245                                 "_unnamed_nsstring_");
2246   // FIXME. Fix section.
2247   if (const char *Sect =
2248         LangOpts.ObjCRuntime.isNonFragile()
2249           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2250           : getContext().getTargetInfo().getNSStringSection())
2251     GV->setSection(Sect);
2252   Entry.setValue(GV);
2253 
2254   return GV;
2255 }
2256 
2257 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2258   if (ObjCFastEnumerationStateType.isNull()) {
2259     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2260                                      Context.getTranslationUnitDecl(),
2261                       &Context.Idents.get("__objcFastEnumerationState"));
2262     D->startDefinition();
2263 
2264     QualType FieldTypes[] = {
2265       Context.UnsignedLongTy,
2266       Context.getPointerType(Context.getObjCIdType()),
2267       Context.getPointerType(Context.UnsignedLongTy),
2268       Context.getConstantArrayType(Context.UnsignedLongTy,
2269                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2270     };
2271 
2272     for (size_t i = 0; i < 4; ++i) {
2273       FieldDecl *Field = FieldDecl::Create(Context,
2274                                            D,
2275                                            SourceLocation(),
2276                                            SourceLocation(), 0,
2277                                            FieldTypes[i], /*TInfo=*/0,
2278                                            /*BitWidth=*/0,
2279                                            /*Mutable=*/false,
2280                                            ICIS_NoInit);
2281       Field->setAccess(AS_public);
2282       D->addDecl(Field);
2283     }
2284 
2285     D->completeDefinition();
2286     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2287   }
2288 
2289   return ObjCFastEnumerationStateType;
2290 }
2291 
2292 llvm::Constant *
2293 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2294   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2295 
2296   // Don't emit it as the address of the string, emit the string data itself
2297   // as an inline array.
2298   if (E->getCharByteWidth() == 1) {
2299     SmallString<64> Str(E->getString());
2300 
2301     // Resize the string to the right size, which is indicated by its type.
2302     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2303     Str.resize(CAT->getSize().getZExtValue());
2304     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2305   }
2306 
2307   llvm::ArrayType *AType =
2308     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2309   llvm::Type *ElemTy = AType->getElementType();
2310   unsigned NumElements = AType->getNumElements();
2311 
2312   // Wide strings have either 2-byte or 4-byte elements.
2313   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2314     SmallVector<uint16_t, 32> Elements;
2315     Elements.reserve(NumElements);
2316 
2317     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2318       Elements.push_back(E->getCodeUnit(i));
2319     Elements.resize(NumElements);
2320     return llvm::ConstantDataArray::get(VMContext, Elements);
2321   }
2322 
2323   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2324   SmallVector<uint32_t, 32> Elements;
2325   Elements.reserve(NumElements);
2326 
2327   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2328     Elements.push_back(E->getCodeUnit(i));
2329   Elements.resize(NumElements);
2330   return llvm::ConstantDataArray::get(VMContext, Elements);
2331 }
2332 
2333 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2334 /// constant array for the given string literal.
2335 llvm::Constant *
2336 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2337   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2338   if (S->isAscii() || S->isUTF8()) {
2339     SmallString<64> Str(S->getString());
2340 
2341     // Resize the string to the right size, which is indicated by its type.
2342     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2343     Str.resize(CAT->getSize().getZExtValue());
2344     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2345   }
2346 
2347   // FIXME: the following does not memoize wide strings.
2348   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2349   llvm::GlobalVariable *GV =
2350     new llvm::GlobalVariable(getModule(),C->getType(),
2351                              !LangOpts.WritableStrings,
2352                              llvm::GlobalValue::PrivateLinkage,
2353                              C,".str");
2354 
2355   GV->setAlignment(Align.getQuantity());
2356   GV->setUnnamedAddr(true);
2357   return GV;
2358 }
2359 
2360 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2361 /// array for the given ObjCEncodeExpr node.
2362 llvm::Constant *
2363 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2364   std::string Str;
2365   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2366 
2367   return GetAddrOfConstantCString(Str);
2368 }
2369 
2370 
2371 /// GenerateWritableString -- Creates storage for a string literal.
2372 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2373                                              bool constant,
2374                                              CodeGenModule &CGM,
2375                                              const char *GlobalName,
2376                                              unsigned Alignment) {
2377   // Create Constant for this string literal. Don't add a '\0'.
2378   llvm::Constant *C =
2379       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2380 
2381   // Create a global variable for this string
2382   llvm::GlobalVariable *GV =
2383     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2384                              llvm::GlobalValue::PrivateLinkage,
2385                              C, GlobalName);
2386   GV->setAlignment(Alignment);
2387   GV->setUnnamedAddr(true);
2388   return GV;
2389 }
2390 
2391 /// GetAddrOfConstantString - Returns a pointer to a character array
2392 /// containing the literal. This contents are exactly that of the
2393 /// given string, i.e. it will not be null terminated automatically;
2394 /// see GetAddrOfConstantCString. Note that whether the result is
2395 /// actually a pointer to an LLVM constant depends on
2396 /// Feature.WriteableStrings.
2397 ///
2398 /// The result has pointer to array type.
2399 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2400                                                        const char *GlobalName,
2401                                                        unsigned Alignment) {
2402   // Get the default prefix if a name wasn't specified.
2403   if (!GlobalName)
2404     GlobalName = ".str";
2405 
2406   // Don't share any string literals if strings aren't constant.
2407   if (LangOpts.WritableStrings)
2408     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2409 
2410   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2411     ConstantStringMap.GetOrCreateValue(Str);
2412 
2413   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2414     if (Alignment > GV->getAlignment()) {
2415       GV->setAlignment(Alignment);
2416     }
2417     return GV;
2418   }
2419 
2420   // Create a global variable for this.
2421   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2422                                                    Alignment);
2423   Entry.setValue(GV);
2424   return GV;
2425 }
2426 
2427 /// GetAddrOfConstantCString - Returns a pointer to a character
2428 /// array containing the literal and a terminating '\0'
2429 /// character. The result has pointer to array type.
2430 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2431                                                         const char *GlobalName,
2432                                                         unsigned Alignment) {
2433   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2434   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2435 }
2436 
2437 /// EmitObjCPropertyImplementations - Emit information for synthesized
2438 /// properties for an implementation.
2439 void CodeGenModule::EmitObjCPropertyImplementations(const
2440                                                     ObjCImplementationDecl *D) {
2441   for (ObjCImplementationDecl::propimpl_iterator
2442          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2443     ObjCPropertyImplDecl *PID = *i;
2444 
2445     // Dynamic is just for type-checking.
2446     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2447       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2448 
2449       // Determine which methods need to be implemented, some may have
2450       // been overridden. Note that ::isSynthesized is not the method
2451       // we want, that just indicates if the decl came from a
2452       // property. What we want to know is if the method is defined in
2453       // this implementation.
2454       if (!D->getInstanceMethod(PD->getGetterName()))
2455         CodeGenFunction(*this).GenerateObjCGetter(
2456                                  const_cast<ObjCImplementationDecl *>(D), PID);
2457       if (!PD->isReadOnly() &&
2458           !D->getInstanceMethod(PD->getSetterName()))
2459         CodeGenFunction(*this).GenerateObjCSetter(
2460                                  const_cast<ObjCImplementationDecl *>(D), PID);
2461     }
2462   }
2463 }
2464 
2465 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2466   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2467   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2468        ivar; ivar = ivar->getNextIvar())
2469     if (ivar->getType().isDestructedType())
2470       return true;
2471 
2472   return false;
2473 }
2474 
2475 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2476 /// for an implementation.
2477 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2478   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2479   if (needsDestructMethod(D)) {
2480     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2481     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2482     ObjCMethodDecl *DTORMethod =
2483       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2484                              cxxSelector, getContext().VoidTy, 0, D,
2485                              /*isInstance=*/true, /*isVariadic=*/false,
2486                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2487                              /*isDefined=*/false, ObjCMethodDecl::Required);
2488     D->addInstanceMethod(DTORMethod);
2489     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2490     D->setHasCXXStructors(true);
2491   }
2492 
2493   // If the implementation doesn't have any ivar initializers, we don't need
2494   // a .cxx_construct.
2495   if (D->getNumIvarInitializers() == 0)
2496     return;
2497 
2498   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2499   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2500   // The constructor returns 'self'.
2501   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2502                                                 D->getLocation(),
2503                                                 D->getLocation(),
2504                                                 cxxSelector,
2505                                                 getContext().getObjCIdType(), 0,
2506                                                 D, /*isInstance=*/true,
2507                                                 /*isVariadic=*/false,
2508                                                 /*isSynthesized=*/true,
2509                                                 /*isImplicitlyDeclared=*/true,
2510                                                 /*isDefined=*/false,
2511                                                 ObjCMethodDecl::Required);
2512   D->addInstanceMethod(CTORMethod);
2513   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2514   D->setHasCXXStructors(true);
2515 }
2516 
2517 /// EmitNamespace - Emit all declarations in a namespace.
2518 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2519   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2520        I != E; ++I)
2521     EmitTopLevelDecl(*I);
2522 }
2523 
2524 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2525 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2526   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2527       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2528     ErrorUnsupported(LSD, "linkage spec");
2529     return;
2530   }
2531 
2532   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2533        I != E; ++I)
2534     EmitTopLevelDecl(*I);
2535 }
2536 
2537 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2538 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2539   // If an error has occurred, stop code generation, but continue
2540   // parsing and semantic analysis (to ensure all warnings and errors
2541   // are emitted).
2542   if (Diags.hasErrorOccurred())
2543     return;
2544 
2545   // Ignore dependent declarations.
2546   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2547     return;
2548 
2549   switch (D->getKind()) {
2550   case Decl::CXXConversion:
2551   case Decl::CXXMethod:
2552   case Decl::Function:
2553     // Skip function templates
2554     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2555         cast<FunctionDecl>(D)->isLateTemplateParsed())
2556       return;
2557 
2558     EmitGlobal(cast<FunctionDecl>(D));
2559     break;
2560 
2561   case Decl::Var:
2562     EmitGlobal(cast<VarDecl>(D));
2563     break;
2564 
2565   // Indirect fields from global anonymous structs and unions can be
2566   // ignored; only the actual variable requires IR gen support.
2567   case Decl::IndirectField:
2568     break;
2569 
2570   // C++ Decls
2571   case Decl::Namespace:
2572     EmitNamespace(cast<NamespaceDecl>(D));
2573     break;
2574     // No code generation needed.
2575   case Decl::UsingShadow:
2576   case Decl::Using:
2577   case Decl::UsingDirective:
2578   case Decl::ClassTemplate:
2579   case Decl::FunctionTemplate:
2580   case Decl::TypeAliasTemplate:
2581   case Decl::NamespaceAlias:
2582   case Decl::Block:
2583   case Decl::Import:
2584     break;
2585   case Decl::CXXConstructor:
2586     // Skip function templates
2587     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2588         cast<FunctionDecl>(D)->isLateTemplateParsed())
2589       return;
2590 
2591     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2592     break;
2593   case Decl::CXXDestructor:
2594     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2595       return;
2596     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2597     break;
2598 
2599   case Decl::StaticAssert:
2600     // Nothing to do.
2601     break;
2602 
2603   // Objective-C Decls
2604 
2605   // Forward declarations, no (immediate) code generation.
2606   case Decl::ObjCInterface:
2607   case Decl::ObjCCategory:
2608     break;
2609 
2610   case Decl::ObjCProtocol: {
2611     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2612     if (Proto->isThisDeclarationADefinition())
2613       ObjCRuntime->GenerateProtocol(Proto);
2614     break;
2615   }
2616 
2617   case Decl::ObjCCategoryImpl:
2618     // Categories have properties but don't support synthesize so we
2619     // can ignore them here.
2620     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2621     break;
2622 
2623   case Decl::ObjCImplementation: {
2624     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2625     EmitObjCPropertyImplementations(OMD);
2626     EmitObjCIvarInitializations(OMD);
2627     ObjCRuntime->GenerateClass(OMD);
2628     // Emit global variable debug information.
2629     if (CGDebugInfo *DI = getModuleDebugInfo())
2630       DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2631 				   OMD->getLocation());
2632 
2633     break;
2634   }
2635   case Decl::ObjCMethod: {
2636     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2637     // If this is not a prototype, emit the body.
2638     if (OMD->getBody())
2639       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2640     break;
2641   }
2642   case Decl::ObjCCompatibleAlias:
2643     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2644     break;
2645 
2646   case Decl::LinkageSpec:
2647     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2648     break;
2649 
2650   case Decl::FileScopeAsm: {
2651     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2652     StringRef AsmString = AD->getAsmString()->getString();
2653 
2654     const std::string &S = getModule().getModuleInlineAsm();
2655     if (S.empty())
2656       getModule().setModuleInlineAsm(AsmString);
2657     else if (S.end()[-1] == '\n')
2658       getModule().setModuleInlineAsm(S + AsmString.str());
2659     else
2660       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2661     break;
2662   }
2663 
2664   default:
2665     // Make sure we handled everything we should, every other kind is a
2666     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2667     // function. Need to recode Decl::Kind to do that easily.
2668     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2669   }
2670 }
2671 
2672 /// Turns the given pointer into a constant.
2673 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2674                                           const void *Ptr) {
2675   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2676   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2677   return llvm::ConstantInt::get(i64, PtrInt);
2678 }
2679 
2680 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2681                                    llvm::NamedMDNode *&GlobalMetadata,
2682                                    GlobalDecl D,
2683                                    llvm::GlobalValue *Addr) {
2684   if (!GlobalMetadata)
2685     GlobalMetadata =
2686       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2687 
2688   // TODO: should we report variant information for ctors/dtors?
2689   llvm::Value *Ops[] = {
2690     Addr,
2691     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2692   };
2693   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2694 }
2695 
2696 /// Emits metadata nodes associating all the global values in the
2697 /// current module with the Decls they came from.  This is useful for
2698 /// projects using IR gen as a subroutine.
2699 ///
2700 /// Since there's currently no way to associate an MDNode directly
2701 /// with an llvm::GlobalValue, we create a global named metadata
2702 /// with the name 'clang.global.decl.ptrs'.
2703 void CodeGenModule::EmitDeclMetadata() {
2704   llvm::NamedMDNode *GlobalMetadata = 0;
2705 
2706   // StaticLocalDeclMap
2707   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2708          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2709        I != E; ++I) {
2710     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2711     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2712   }
2713 }
2714 
2715 /// Emits metadata nodes for all the local variables in the current
2716 /// function.
2717 void CodeGenFunction::EmitDeclMetadata() {
2718   if (LocalDeclMap.empty()) return;
2719 
2720   llvm::LLVMContext &Context = getLLVMContext();
2721 
2722   // Find the unique metadata ID for this name.
2723   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2724 
2725   llvm::NamedMDNode *GlobalMetadata = 0;
2726 
2727   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2728          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2729     const Decl *D = I->first;
2730     llvm::Value *Addr = I->second;
2731 
2732     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2733       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2734       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2735     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2736       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2737       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2738     }
2739   }
2740 }
2741 
2742 void CodeGenModule::EmitCoverageFile() {
2743   if (!getCodeGenOpts().CoverageFile.empty()) {
2744     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2745       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2746       llvm::LLVMContext &Ctx = TheModule.getContext();
2747       llvm::MDString *CoverageFile =
2748           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2749       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2750         llvm::MDNode *CU = CUNode->getOperand(i);
2751         llvm::Value *node[] = { CoverageFile, CU };
2752         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2753         GCov->addOperand(N);
2754       }
2755     }
2756   }
2757 }
2758