1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 55 #include "llvm/IR/AttributeMask.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/xxhash.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include "llvm/TargetParser/X86TargetParser.h" 73 #include <optional> 74 75 using namespace clang; 76 using namespace CodeGen; 77 78 static llvm::cl::opt<bool> LimitedCoverage( 79 "limited-coverage-experimental", llvm::cl::Hidden, 80 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 81 82 static const char AnnotationSection[] = "llvm.metadata"; 83 84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 85 switch (CGM.getContext().getCXXABIKind()) { 86 case TargetCXXABI::AppleARM64: 87 case TargetCXXABI::Fuchsia: 88 case TargetCXXABI::GenericAArch64: 89 case TargetCXXABI::GenericARM: 90 case TargetCXXABI::iOS: 91 case TargetCXXABI::WatchOS: 92 case TargetCXXABI::GenericMIPS: 93 case TargetCXXABI::GenericItanium: 94 case TargetCXXABI::WebAssembly: 95 case TargetCXXABI::XL: 96 return CreateItaniumCXXABI(CGM); 97 case TargetCXXABI::Microsoft: 98 return CreateMicrosoftCXXABI(CGM); 99 } 100 101 llvm_unreachable("invalid C++ ABI kind"); 102 } 103 104 static std::unique_ptr<TargetCodeGenInfo> 105 createTargetCodeGenInfo(CodeGenModule &CGM) { 106 const TargetInfo &Target = CGM.getTarget(); 107 const llvm::Triple &Triple = Target.getTriple(); 108 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 109 110 switch (Triple.getArch()) { 111 default: 112 return createDefaultTargetCodeGenInfo(CGM); 113 114 case llvm::Triple::le32: 115 return createPNaClTargetCodeGenInfo(CGM); 116 case llvm::Triple::m68k: 117 return createM68kTargetCodeGenInfo(CGM); 118 case llvm::Triple::mips: 119 case llvm::Triple::mipsel: 120 if (Triple.getOS() == llvm::Triple::NaCl) 121 return createPNaClTargetCodeGenInfo(CGM); 122 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 123 124 case llvm::Triple::mips64: 125 case llvm::Triple::mips64el: 126 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 127 128 case llvm::Triple::avr: { 129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 130 // on avrtiny. For passing return value, R18~R25 are used on avr, and 131 // R22~R25 are used on avrtiny. 132 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 133 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 134 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 135 } 136 137 case llvm::Triple::aarch64: 138 case llvm::Triple::aarch64_32: 139 case llvm::Triple::aarch64_be: { 140 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 141 if (Target.getABI() == "darwinpcs") 142 Kind = AArch64ABIKind::DarwinPCS; 143 else if (Triple.isOSWindows()) 144 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 145 146 return createAArch64TargetCodeGenInfo(CGM, Kind); 147 } 148 149 case llvm::Triple::wasm32: 150 case llvm::Triple::wasm64: { 151 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 152 if (Target.getABI() == "experimental-mv") 153 Kind = WebAssemblyABIKind::ExperimentalMV; 154 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 155 } 156 157 case llvm::Triple::arm: 158 case llvm::Triple::armeb: 159 case llvm::Triple::thumb: 160 case llvm::Triple::thumbeb: { 161 if (Triple.getOS() == llvm::Triple::Win32) 162 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 163 164 ARMABIKind Kind = ARMABIKind::AAPCS; 165 StringRef ABIStr = Target.getABI(); 166 if (ABIStr == "apcs-gnu") 167 Kind = ARMABIKind::APCS; 168 else if (ABIStr == "aapcs16") 169 Kind = ARMABIKind::AAPCS16_VFP; 170 else if (CodeGenOpts.FloatABI == "hard" || 171 (CodeGenOpts.FloatABI != "soft" && 172 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 173 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 174 Triple.getEnvironment() == llvm::Triple::EABIHF))) 175 Kind = ARMABIKind::AAPCS_VFP; 176 177 return createARMTargetCodeGenInfo(CGM, Kind); 178 } 179 180 case llvm::Triple::ppc: { 181 if (Triple.isOSAIX()) 182 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 183 184 bool IsSoftFloat = 185 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 186 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 187 } 188 case llvm::Triple::ppcle: { 189 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 190 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 191 } 192 case llvm::Triple::ppc64: 193 if (Triple.isOSAIX()) 194 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 195 196 if (Triple.isOSBinFormatELF()) { 197 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 198 if (Target.getABI() == "elfv2") 199 Kind = PPC64_SVR4_ABIKind::ELFv2; 200 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 201 202 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 203 } 204 return createPPC64TargetCodeGenInfo(CGM); 205 case llvm::Triple::ppc64le: { 206 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 207 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 208 if (Target.getABI() == "elfv1") 209 Kind = PPC64_SVR4_ABIKind::ELFv1; 210 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 211 212 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 213 } 214 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 return createNVPTXTargetCodeGenInfo(CGM); 218 219 case llvm::Triple::msp430: 220 return createMSP430TargetCodeGenInfo(CGM); 221 222 case llvm::Triple::riscv32: 223 case llvm::Triple::riscv64: { 224 StringRef ABIStr = Target.getABI(); 225 unsigned XLen = Target.getPointerWidth(LangAS::Default); 226 unsigned ABIFLen = 0; 227 if (ABIStr.endswith("f")) 228 ABIFLen = 32; 229 else if (ABIStr.endswith("d")) 230 ABIFLen = 64; 231 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen); 232 } 233 234 case llvm::Triple::systemz: { 235 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 236 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 237 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 238 } 239 240 case llvm::Triple::tce: 241 case llvm::Triple::tcele: 242 return createTCETargetCodeGenInfo(CGM); 243 244 case llvm::Triple::x86: { 245 bool IsDarwinVectorABI = Triple.isOSDarwin(); 246 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 247 248 if (Triple.getOS() == llvm::Triple::Win32) { 249 return createWinX86_32TargetCodeGenInfo( 250 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 251 CodeGenOpts.NumRegisterParameters); 252 } 253 return createX86_32TargetCodeGenInfo( 254 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 255 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 256 } 257 258 case llvm::Triple::x86_64: { 259 StringRef ABI = Target.getABI(); 260 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 261 : ABI == "avx" ? X86AVXABILevel::AVX 262 : X86AVXABILevel::None); 263 264 switch (Triple.getOS()) { 265 case llvm::Triple::Win32: 266 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 267 default: 268 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 } 270 } 271 case llvm::Triple::hexagon: 272 return createHexagonTargetCodeGenInfo(CGM); 273 case llvm::Triple::lanai: 274 return createLanaiTargetCodeGenInfo(CGM); 275 case llvm::Triple::r600: 276 return createAMDGPUTargetCodeGenInfo(CGM); 277 case llvm::Triple::amdgcn: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::sparc: 280 return createSparcV8TargetCodeGenInfo(CGM); 281 case llvm::Triple::sparcv9: 282 return createSparcV9TargetCodeGenInfo(CGM); 283 case llvm::Triple::xcore: 284 return createXCoreTargetCodeGenInfo(CGM); 285 case llvm::Triple::arc: 286 return createARCTargetCodeGenInfo(CGM); 287 case llvm::Triple::spir: 288 case llvm::Triple::spir64: 289 return createCommonSPIRTargetCodeGenInfo(CGM); 290 case llvm::Triple::spirv32: 291 case llvm::Triple::spirv64: 292 return createSPIRVTargetCodeGenInfo(CGM); 293 case llvm::Triple::ve: 294 return createVETargetCodeGenInfo(CGM); 295 case llvm::Triple::csky: { 296 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 297 bool hasFP64 = 298 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 299 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 300 : hasFP64 ? 64 301 : 32); 302 } 303 case llvm::Triple::bpfeb: 304 case llvm::Triple::bpfel: 305 return createBPFTargetCodeGenInfo(CGM); 306 case llvm::Triple::loongarch32: 307 case llvm::Triple::loongarch64: { 308 StringRef ABIStr = Target.getABI(); 309 unsigned ABIFRLen = 0; 310 if (ABIStr.endswith("f")) 311 ABIFRLen = 32; 312 else if (ABIStr.endswith("d")) 313 ABIFRLen = 64; 314 return createLoongArchTargetCodeGenInfo( 315 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 316 } 317 } 318 } 319 320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 321 if (!TheTargetCodeGenInfo) 322 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 323 return *TheTargetCodeGenInfo; 324 } 325 326 CodeGenModule::CodeGenModule(ASTContext &C, 327 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 328 const HeaderSearchOptions &HSO, 329 const PreprocessorOptions &PPO, 330 const CodeGenOptions &CGO, llvm::Module &M, 331 DiagnosticsEngine &diags, 332 CoverageSourceInfo *CoverageInfo) 333 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 334 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 335 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 336 VMContext(M.getContext()), Types(*this), VTables(*this), 337 SanitizerMD(new SanitizerMetadata(*this)) { 338 339 // Initialize the type cache. 340 llvm::LLVMContext &LLVMContext = M.getContext(); 341 VoidTy = llvm::Type::getVoidTy(LLVMContext); 342 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 343 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 344 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 345 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 346 HalfTy = llvm::Type::getHalfTy(LLVMContext); 347 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 348 FloatTy = llvm::Type::getFloatTy(LLVMContext); 349 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 350 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 351 PointerAlignInBytes = 352 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 353 .getQuantity(); 354 SizeSizeInBytes = 355 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 356 IntAlignInBytes = 357 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 358 CharTy = 359 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 360 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 361 IntPtrTy = llvm::IntegerType::get(LLVMContext, 362 C.getTargetInfo().getMaxPointerWidth()); 363 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 364 const llvm::DataLayout &DL = M.getDataLayout(); 365 AllocaInt8PtrTy = 366 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 367 GlobalsInt8PtrTy = 368 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 369 ConstGlobalsPtrTy = llvm::PointerType::get( 370 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 371 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 372 373 // Build C++20 Module initializers. 374 // TODO: Add Microsoft here once we know the mangling required for the 375 // initializers. 376 CXX20ModuleInits = 377 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 378 ItaniumMangleContext::MK_Itanium; 379 380 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 381 382 if (LangOpts.ObjC) 383 createObjCRuntime(); 384 if (LangOpts.OpenCL) 385 createOpenCLRuntime(); 386 if (LangOpts.OpenMP) 387 createOpenMPRuntime(); 388 if (LangOpts.CUDA) 389 createCUDARuntime(); 390 if (LangOpts.HLSL) 391 createHLSLRuntime(); 392 393 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 394 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 395 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 396 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 397 getCXXABI().getMangleContext())); 398 399 // If debug info or coverage generation is enabled, create the CGDebugInfo 400 // object. 401 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 402 CodeGenOpts.CoverageNotesFile.size() || 403 CodeGenOpts.CoverageDataFile.size()) 404 DebugInfo.reset(new CGDebugInfo(*this)); 405 406 Block.GlobalUniqueCount = 0; 407 408 if (C.getLangOpts().ObjC) 409 ObjCData.reset(new ObjCEntrypoints()); 410 411 if (CodeGenOpts.hasProfileClangUse()) { 412 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 413 CodeGenOpts.ProfileInstrumentUsePath, *FS, 414 CodeGenOpts.ProfileRemappingFile); 415 // We're checking for profile read errors in CompilerInvocation, so if 416 // there was an error it should've already been caught. If it hasn't been 417 // somehow, trip an assertion. 418 assert(ReaderOrErr); 419 PGOReader = std::move(ReaderOrErr.get()); 420 } 421 422 // If coverage mapping generation is enabled, create the 423 // CoverageMappingModuleGen object. 424 if (CodeGenOpts.CoverageMapping) 425 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 426 427 // Generate the module name hash here if needed. 428 if (CodeGenOpts.UniqueInternalLinkageNames && 429 !getModule().getSourceFileName().empty()) { 430 std::string Path = getModule().getSourceFileName(); 431 // Check if a path substitution is needed from the MacroPrefixMap. 432 for (const auto &Entry : LangOpts.MacroPrefixMap) 433 if (Path.rfind(Entry.first, 0) != std::string::npos) { 434 Path = Entry.second + Path.substr(Entry.first.size()); 435 break; 436 } 437 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 438 } 439 } 440 441 CodeGenModule::~CodeGenModule() {} 442 443 void CodeGenModule::createObjCRuntime() { 444 // This is just isGNUFamily(), but we want to force implementors of 445 // new ABIs to decide how best to do this. 446 switch (LangOpts.ObjCRuntime.getKind()) { 447 case ObjCRuntime::GNUstep: 448 case ObjCRuntime::GCC: 449 case ObjCRuntime::ObjFW: 450 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 451 return; 452 453 case ObjCRuntime::FragileMacOSX: 454 case ObjCRuntime::MacOSX: 455 case ObjCRuntime::iOS: 456 case ObjCRuntime::WatchOS: 457 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 458 return; 459 } 460 llvm_unreachable("bad runtime kind"); 461 } 462 463 void CodeGenModule::createOpenCLRuntime() { 464 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 465 } 466 467 void CodeGenModule::createOpenMPRuntime() { 468 // Select a specialized code generation class based on the target, if any. 469 // If it does not exist use the default implementation. 470 switch (getTriple().getArch()) { 471 case llvm::Triple::nvptx: 472 case llvm::Triple::nvptx64: 473 case llvm::Triple::amdgcn: 474 assert(getLangOpts().OpenMPIsTargetDevice && 475 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 476 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 477 break; 478 default: 479 if (LangOpts.OpenMPSimd) 480 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 481 else 482 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 483 break; 484 } 485 } 486 487 void CodeGenModule::createCUDARuntime() { 488 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 489 } 490 491 void CodeGenModule::createHLSLRuntime() { 492 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 493 } 494 495 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 496 Replacements[Name] = C; 497 } 498 499 void CodeGenModule::applyReplacements() { 500 for (auto &I : Replacements) { 501 StringRef MangledName = I.first; 502 llvm::Constant *Replacement = I.second; 503 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 504 if (!Entry) 505 continue; 506 auto *OldF = cast<llvm::Function>(Entry); 507 auto *NewF = dyn_cast<llvm::Function>(Replacement); 508 if (!NewF) { 509 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 510 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 511 } else { 512 auto *CE = cast<llvm::ConstantExpr>(Replacement); 513 assert(CE->getOpcode() == llvm::Instruction::BitCast || 514 CE->getOpcode() == llvm::Instruction::GetElementPtr); 515 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 516 } 517 } 518 519 // Replace old with new, but keep the old order. 520 OldF->replaceAllUsesWith(Replacement); 521 if (NewF) { 522 NewF->removeFromParent(); 523 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 524 NewF); 525 } 526 OldF->eraseFromParent(); 527 } 528 } 529 530 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 531 GlobalValReplacements.push_back(std::make_pair(GV, C)); 532 } 533 534 void CodeGenModule::applyGlobalValReplacements() { 535 for (auto &I : GlobalValReplacements) { 536 llvm::GlobalValue *GV = I.first; 537 llvm::Constant *C = I.second; 538 539 GV->replaceAllUsesWith(C); 540 GV->eraseFromParent(); 541 } 542 } 543 544 // This is only used in aliases that we created and we know they have a 545 // linear structure. 546 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 547 const llvm::Constant *C; 548 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 549 C = GA->getAliasee(); 550 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 551 C = GI->getResolver(); 552 else 553 return GV; 554 555 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 556 if (!AliaseeGV) 557 return nullptr; 558 559 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 560 if (FinalGV == GV) 561 return nullptr; 562 563 return FinalGV; 564 } 565 566 static bool checkAliasedGlobal( 567 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 568 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 569 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 570 SourceRange AliasRange) { 571 GV = getAliasedGlobal(Alias); 572 if (!GV) { 573 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 574 return false; 575 } 576 577 if (GV->hasCommonLinkage()) { 578 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 579 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 580 Diags.Report(Location, diag::err_alias_to_common); 581 return false; 582 } 583 } 584 585 if (GV->isDeclaration()) { 586 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 587 Diags.Report(Location, diag::note_alias_requires_mangled_name) 588 << IsIFunc << IsIFunc; 589 // Provide a note if the given function is not found and exists as a 590 // mangled name. 591 for (const auto &[Decl, Name] : MangledDeclNames) { 592 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 593 if (ND->getName() == GV->getName()) { 594 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 595 << Name 596 << FixItHint::CreateReplacement( 597 AliasRange, 598 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 599 .str()); 600 } 601 } 602 } 603 return false; 604 } 605 606 if (IsIFunc) { 607 // Check resolver function type. 608 const auto *F = dyn_cast<llvm::Function>(GV); 609 if (!F) { 610 Diags.Report(Location, diag::err_alias_to_undefined) 611 << IsIFunc << IsIFunc; 612 return false; 613 } 614 615 llvm::FunctionType *FTy = F->getFunctionType(); 616 if (!FTy->getReturnType()->isPointerTy()) { 617 Diags.Report(Location, diag::err_ifunc_resolver_return); 618 return false; 619 } 620 } 621 622 return true; 623 } 624 625 void CodeGenModule::checkAliases() { 626 // Check if the constructed aliases are well formed. It is really unfortunate 627 // that we have to do this in CodeGen, but we only construct mangled names 628 // and aliases during codegen. 629 bool Error = false; 630 DiagnosticsEngine &Diags = getDiags(); 631 for (const GlobalDecl &GD : Aliases) { 632 const auto *D = cast<ValueDecl>(GD.getDecl()); 633 SourceLocation Location; 634 SourceRange Range; 635 bool IsIFunc = D->hasAttr<IFuncAttr>(); 636 if (const Attr *A = D->getDefiningAttr()) { 637 Location = A->getLocation(); 638 Range = A->getRange(); 639 } else 640 llvm_unreachable("Not an alias or ifunc?"); 641 642 StringRef MangledName = getMangledName(GD); 643 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 644 const llvm::GlobalValue *GV = nullptr; 645 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 646 MangledDeclNames, Range)) { 647 Error = true; 648 continue; 649 } 650 651 llvm::Constant *Aliasee = 652 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 653 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 654 655 llvm::GlobalValue *AliaseeGV; 656 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 657 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 658 else 659 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 660 661 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 662 StringRef AliasSection = SA->getName(); 663 if (AliasSection != AliaseeGV->getSection()) 664 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 665 << AliasSection << IsIFunc << IsIFunc; 666 } 667 668 // We have to handle alias to weak aliases in here. LLVM itself disallows 669 // this since the object semantics would not match the IL one. For 670 // compatibility with gcc we implement it by just pointing the alias 671 // to its aliasee's aliasee. We also warn, since the user is probably 672 // expecting the link to be weak. 673 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 674 if (GA->isInterposable()) { 675 Diags.Report(Location, diag::warn_alias_to_weak_alias) 676 << GV->getName() << GA->getName() << IsIFunc; 677 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 678 GA->getAliasee(), Alias->getType()); 679 680 if (IsIFunc) 681 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 682 else 683 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 684 } 685 } 686 } 687 if (!Error) 688 return; 689 690 for (const GlobalDecl &GD : Aliases) { 691 StringRef MangledName = getMangledName(GD); 692 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 693 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 694 Alias->eraseFromParent(); 695 } 696 } 697 698 void CodeGenModule::clear() { 699 DeferredDeclsToEmit.clear(); 700 EmittedDeferredDecls.clear(); 701 if (OpenMPRuntime) 702 OpenMPRuntime->clear(); 703 } 704 705 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 706 StringRef MainFile) { 707 if (!hasDiagnostics()) 708 return; 709 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 710 if (MainFile.empty()) 711 MainFile = "<stdin>"; 712 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 713 } else { 714 if (Mismatched > 0) 715 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 716 717 if (Missing > 0) 718 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 719 } 720 } 721 722 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 723 llvm::Module &M) { 724 if (!LO.VisibilityFromDLLStorageClass) 725 return; 726 727 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 728 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 729 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 730 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 731 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 732 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 733 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 734 CodeGenModule::GetLLVMVisibility( 735 LO.getExternDeclNoDLLStorageClassVisibility()); 736 737 for (llvm::GlobalValue &GV : M.global_values()) { 738 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 739 continue; 740 741 // Reset DSO locality before setting the visibility. This removes 742 // any effects that visibility options and annotations may have 743 // had on the DSO locality. Setting the visibility will implicitly set 744 // appropriate globals to DSO Local; however, this will be pessimistic 745 // w.r.t. to the normal compiler IRGen. 746 GV.setDSOLocal(false); 747 748 if (GV.isDeclarationForLinker()) { 749 GV.setVisibility(GV.getDLLStorageClass() == 750 llvm::GlobalValue::DLLImportStorageClass 751 ? ExternDeclDLLImportVisibility 752 : ExternDeclNoDLLStorageClassVisibility); 753 } else { 754 GV.setVisibility(GV.getDLLStorageClass() == 755 llvm::GlobalValue::DLLExportStorageClass 756 ? DLLExportVisibility 757 : NoDLLStorageClassVisibility); 758 } 759 760 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 761 } 762 } 763 764 void CodeGenModule::Release() { 765 Module *Primary = getContext().getCurrentNamedModule(); 766 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 767 EmitModuleInitializers(Primary); 768 EmitDeferred(); 769 DeferredDecls.insert(EmittedDeferredDecls.begin(), 770 EmittedDeferredDecls.end()); 771 EmittedDeferredDecls.clear(); 772 EmitVTablesOpportunistically(); 773 applyGlobalValReplacements(); 774 applyReplacements(); 775 emitMultiVersionFunctions(); 776 777 if (Context.getLangOpts().IncrementalExtensions && 778 GlobalTopLevelStmtBlockInFlight.first) { 779 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 780 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 781 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 782 } 783 784 // Module implementations are initialized the same way as a regular TU that 785 // imports one or more modules. 786 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 787 EmitCXXModuleInitFunc(Primary); 788 else 789 EmitCXXGlobalInitFunc(); 790 EmitCXXGlobalCleanUpFunc(); 791 registerGlobalDtorsWithAtExit(); 792 EmitCXXThreadLocalInitFunc(); 793 if (ObjCRuntime) 794 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 795 AddGlobalCtor(ObjCInitFunction); 796 if (Context.getLangOpts().CUDA && CUDARuntime) { 797 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 798 AddGlobalCtor(CudaCtorFunction); 799 } 800 if (OpenMPRuntime) { 801 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 802 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 803 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 804 } 805 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 806 OpenMPRuntime->clear(); 807 } 808 if (PGOReader) { 809 getModule().setProfileSummary( 810 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 811 llvm::ProfileSummary::PSK_Instr); 812 if (PGOStats.hasDiagnostics()) 813 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 814 } 815 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 816 return L.LexOrder < R.LexOrder; 817 }); 818 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 819 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 820 EmitGlobalAnnotations(); 821 EmitStaticExternCAliases(); 822 checkAliases(); 823 EmitDeferredUnusedCoverageMappings(); 824 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 825 if (CoverageMapping) 826 CoverageMapping->emit(); 827 if (CodeGenOpts.SanitizeCfiCrossDso) { 828 CodeGenFunction(*this).EmitCfiCheckFail(); 829 CodeGenFunction(*this).EmitCfiCheckStub(); 830 } 831 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 832 finalizeKCFITypes(); 833 emitAtAvailableLinkGuard(); 834 if (Context.getTargetInfo().getTriple().isWasm()) 835 EmitMainVoidAlias(); 836 837 if (getTriple().isAMDGPU()) { 838 // Emit amdgpu_code_object_version module flag, which is code object version 839 // times 100. 840 if (getTarget().getTargetOpts().CodeObjectVersion != 841 TargetOptions::COV_None) { 842 getModule().addModuleFlag(llvm::Module::Error, 843 "amdgpu_code_object_version", 844 getTarget().getTargetOpts().CodeObjectVersion); 845 } 846 847 // Currently, "-mprintf-kind" option is only supported for HIP 848 if (LangOpts.HIP) { 849 auto *MDStr = llvm::MDString::get( 850 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 851 TargetOptions::AMDGPUPrintfKind::Hostcall) 852 ? "hostcall" 853 : "buffered"); 854 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 855 MDStr); 856 } 857 } 858 859 // Emit a global array containing all external kernels or device variables 860 // used by host functions and mark it as used for CUDA/HIP. This is necessary 861 // to get kernels or device variables in archives linked in even if these 862 // kernels or device variables are only used in host functions. 863 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 864 SmallVector<llvm::Constant *, 8> UsedArray; 865 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 866 GlobalDecl GD; 867 if (auto *FD = dyn_cast<FunctionDecl>(D)) 868 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 869 else 870 GD = GlobalDecl(D); 871 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 872 GetAddrOfGlobal(GD), Int8PtrTy)); 873 } 874 875 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 876 877 auto *GV = new llvm::GlobalVariable( 878 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 879 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 880 addCompilerUsedGlobal(GV); 881 } 882 883 emitLLVMUsed(); 884 if (SanStats) 885 SanStats->finish(); 886 887 if (CodeGenOpts.Autolink && 888 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 889 EmitModuleLinkOptions(); 890 } 891 892 // On ELF we pass the dependent library specifiers directly to the linker 893 // without manipulating them. This is in contrast to other platforms where 894 // they are mapped to a specific linker option by the compiler. This 895 // difference is a result of the greater variety of ELF linkers and the fact 896 // that ELF linkers tend to handle libraries in a more complicated fashion 897 // than on other platforms. This forces us to defer handling the dependent 898 // libs to the linker. 899 // 900 // CUDA/HIP device and host libraries are different. Currently there is no 901 // way to differentiate dependent libraries for host or device. Existing 902 // usage of #pragma comment(lib, *) is intended for host libraries on 903 // Windows. Therefore emit llvm.dependent-libraries only for host. 904 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 905 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 906 for (auto *MD : ELFDependentLibraries) 907 NMD->addOperand(MD); 908 } 909 910 // Record mregparm value now so it is visible through rest of codegen. 911 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 912 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 913 CodeGenOpts.NumRegisterParameters); 914 915 if (CodeGenOpts.DwarfVersion) { 916 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 917 CodeGenOpts.DwarfVersion); 918 } 919 920 if (CodeGenOpts.Dwarf64) 921 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 922 923 if (Context.getLangOpts().SemanticInterposition) 924 // Require various optimization to respect semantic interposition. 925 getModule().setSemanticInterposition(true); 926 927 if (CodeGenOpts.EmitCodeView) { 928 // Indicate that we want CodeView in the metadata. 929 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 930 } 931 if (CodeGenOpts.CodeViewGHash) { 932 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 933 } 934 if (CodeGenOpts.ControlFlowGuard) { 935 // Function ID tables and checks for Control Flow Guard (cfguard=2). 936 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 937 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 938 // Function ID tables for Control Flow Guard (cfguard=1). 939 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 940 } 941 if (CodeGenOpts.EHContGuard) { 942 // Function ID tables for EH Continuation Guard. 943 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 944 } 945 if (Context.getLangOpts().Kernel) { 946 // Note if we are compiling with /kernel. 947 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 948 } 949 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 950 // We don't support LTO with 2 with different StrictVTablePointers 951 // FIXME: we could support it by stripping all the information introduced 952 // by StrictVTablePointers. 953 954 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 955 956 llvm::Metadata *Ops[2] = { 957 llvm::MDString::get(VMContext, "StrictVTablePointers"), 958 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 959 llvm::Type::getInt32Ty(VMContext), 1))}; 960 961 getModule().addModuleFlag(llvm::Module::Require, 962 "StrictVTablePointersRequirement", 963 llvm::MDNode::get(VMContext, Ops)); 964 } 965 if (getModuleDebugInfo()) 966 // We support a single version in the linked module. The LLVM 967 // parser will drop debug info with a different version number 968 // (and warn about it, too). 969 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 970 llvm::DEBUG_METADATA_VERSION); 971 972 // We need to record the widths of enums and wchar_t, so that we can generate 973 // the correct build attributes in the ARM backend. wchar_size is also used by 974 // TargetLibraryInfo. 975 uint64_t WCharWidth = 976 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 977 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 978 979 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 980 if ( Arch == llvm::Triple::arm 981 || Arch == llvm::Triple::armeb 982 || Arch == llvm::Triple::thumb 983 || Arch == llvm::Triple::thumbeb) { 984 // The minimum width of an enum in bytes 985 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 986 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 987 } 988 989 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 990 StringRef ABIStr = Target.getABI(); 991 llvm::LLVMContext &Ctx = TheModule.getContext(); 992 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 993 llvm::MDString::get(Ctx, ABIStr)); 994 } 995 996 if (CodeGenOpts.SanitizeCfiCrossDso) { 997 // Indicate that we want cross-DSO control flow integrity checks. 998 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 999 } 1000 1001 if (CodeGenOpts.WholeProgramVTables) { 1002 // Indicate whether VFE was enabled for this module, so that the 1003 // vcall_visibility metadata added under whole program vtables is handled 1004 // appropriately in the optimizer. 1005 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1006 CodeGenOpts.VirtualFunctionElimination); 1007 } 1008 1009 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1010 getModule().addModuleFlag(llvm::Module::Override, 1011 "CFI Canonical Jump Tables", 1012 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1013 } 1014 1015 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1016 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1017 // KCFI assumes patchable-function-prefix is the same for all indirectly 1018 // called functions. Store the expected offset for code generation. 1019 if (CodeGenOpts.PatchableFunctionEntryOffset) 1020 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1021 CodeGenOpts.PatchableFunctionEntryOffset); 1022 } 1023 1024 if (CodeGenOpts.CFProtectionReturn && 1025 Target.checkCFProtectionReturnSupported(getDiags())) { 1026 // Indicate that we want to instrument return control flow protection. 1027 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1028 1); 1029 } 1030 1031 if (CodeGenOpts.CFProtectionBranch && 1032 Target.checkCFProtectionBranchSupported(getDiags())) { 1033 // Indicate that we want to instrument branch control flow protection. 1034 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1035 1); 1036 } 1037 1038 if (CodeGenOpts.FunctionReturnThunks) 1039 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1040 1041 if (CodeGenOpts.IndirectBranchCSPrefix) 1042 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1043 1044 // Add module metadata for return address signing (ignoring 1045 // non-leaf/all) and stack tagging. These are actually turned on by function 1046 // attributes, but we use module metadata to emit build attributes. This is 1047 // needed for LTO, where the function attributes are inside bitcode 1048 // serialised into a global variable by the time build attributes are 1049 // emitted, so we can't access them. LTO objects could be compiled with 1050 // different flags therefore module flags are set to "Min" behavior to achieve 1051 // the same end result of the normal build where e.g BTI is off if any object 1052 // doesn't support it. 1053 if (Context.getTargetInfo().hasFeature("ptrauth") && 1054 LangOpts.getSignReturnAddressScope() != 1055 LangOptions::SignReturnAddressScopeKind::None) 1056 getModule().addModuleFlag(llvm::Module::Override, 1057 "sign-return-address-buildattr", 1); 1058 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1059 getModule().addModuleFlag(llvm::Module::Override, 1060 "tag-stack-memory-buildattr", 1); 1061 1062 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1063 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1064 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1065 Arch == llvm::Triple::aarch64_be) { 1066 if (LangOpts.BranchTargetEnforcement) 1067 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1068 1); 1069 if (LangOpts.hasSignReturnAddress()) 1070 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1071 if (LangOpts.isSignReturnAddressScopeAll()) 1072 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1073 1); 1074 if (!LangOpts.isSignReturnAddressWithAKey()) 1075 getModule().addModuleFlag(llvm::Module::Min, 1076 "sign-return-address-with-bkey", 1); 1077 } 1078 1079 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1080 llvm::LLVMContext &Ctx = TheModule.getContext(); 1081 getModule().addModuleFlag( 1082 llvm::Module::Error, "MemProfProfileFilename", 1083 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1084 } 1085 1086 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1087 // Indicate whether __nvvm_reflect should be configured to flush denormal 1088 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1089 // property.) 1090 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1091 CodeGenOpts.FP32DenormalMode.Output != 1092 llvm::DenormalMode::IEEE); 1093 } 1094 1095 if (LangOpts.EHAsynch) 1096 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1097 1098 // Indicate whether this Module was compiled with -fopenmp 1099 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1100 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1101 if (getLangOpts().OpenMPIsTargetDevice) 1102 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1103 LangOpts.OpenMP); 1104 1105 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1106 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1107 EmitOpenCLMetadata(); 1108 // Emit SPIR version. 1109 if (getTriple().isSPIR()) { 1110 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1111 // opencl.spir.version named metadata. 1112 // C++ for OpenCL has a distinct mapping for version compatibility with 1113 // OpenCL. 1114 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1115 llvm::Metadata *SPIRVerElts[] = { 1116 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1117 Int32Ty, Version / 100)), 1118 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1119 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1120 llvm::NamedMDNode *SPIRVerMD = 1121 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1122 llvm::LLVMContext &Ctx = TheModule.getContext(); 1123 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1124 } 1125 } 1126 1127 // HLSL related end of code gen work items. 1128 if (LangOpts.HLSL) 1129 getHLSLRuntime().finishCodeGen(); 1130 1131 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1132 assert(PLevel < 3 && "Invalid PIC Level"); 1133 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1134 if (Context.getLangOpts().PIE) 1135 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1136 } 1137 1138 if (getCodeGenOpts().CodeModel.size() > 0) { 1139 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1140 .Case("tiny", llvm::CodeModel::Tiny) 1141 .Case("small", llvm::CodeModel::Small) 1142 .Case("kernel", llvm::CodeModel::Kernel) 1143 .Case("medium", llvm::CodeModel::Medium) 1144 .Case("large", llvm::CodeModel::Large) 1145 .Default(~0u); 1146 if (CM != ~0u) { 1147 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1148 getModule().setCodeModel(codeModel); 1149 } 1150 } 1151 1152 if (CodeGenOpts.NoPLT) 1153 getModule().setRtLibUseGOT(); 1154 if (getTriple().isOSBinFormatELF() && 1155 CodeGenOpts.DirectAccessExternalData != 1156 getModule().getDirectAccessExternalData()) { 1157 getModule().setDirectAccessExternalData( 1158 CodeGenOpts.DirectAccessExternalData); 1159 } 1160 if (CodeGenOpts.UnwindTables) 1161 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1162 1163 switch (CodeGenOpts.getFramePointer()) { 1164 case CodeGenOptions::FramePointerKind::None: 1165 // 0 ("none") is the default. 1166 break; 1167 case CodeGenOptions::FramePointerKind::NonLeaf: 1168 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1169 break; 1170 case CodeGenOptions::FramePointerKind::All: 1171 getModule().setFramePointer(llvm::FramePointerKind::All); 1172 break; 1173 } 1174 1175 SimplifyPersonality(); 1176 1177 if (getCodeGenOpts().EmitDeclMetadata) 1178 EmitDeclMetadata(); 1179 1180 if (getCodeGenOpts().CoverageNotesFile.size() || 1181 getCodeGenOpts().CoverageDataFile.size()) 1182 EmitCoverageFile(); 1183 1184 if (CGDebugInfo *DI = getModuleDebugInfo()) 1185 DI->finalize(); 1186 1187 if (getCodeGenOpts().EmitVersionIdentMetadata) 1188 EmitVersionIdentMetadata(); 1189 1190 if (!getCodeGenOpts().RecordCommandLine.empty()) 1191 EmitCommandLineMetadata(); 1192 1193 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1194 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1195 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1196 getModule().setStackProtectorGuardReg( 1197 getCodeGenOpts().StackProtectorGuardReg); 1198 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1199 getModule().setStackProtectorGuardSymbol( 1200 getCodeGenOpts().StackProtectorGuardSymbol); 1201 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1202 getModule().setStackProtectorGuardOffset( 1203 getCodeGenOpts().StackProtectorGuardOffset); 1204 if (getCodeGenOpts().StackAlignment) 1205 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1206 if (getCodeGenOpts().SkipRaxSetup) 1207 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1208 if (getLangOpts().RegCall4) 1209 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1210 1211 if (getContext().getTargetInfo().getMaxTLSAlign()) 1212 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1213 getContext().getTargetInfo().getMaxTLSAlign()); 1214 1215 getTargetCodeGenInfo().emitTargetGlobals(*this); 1216 1217 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1218 1219 EmitBackendOptionsMetadata(getCodeGenOpts()); 1220 1221 // If there is device offloading code embed it in the host now. 1222 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1223 1224 // Set visibility from DLL storage class 1225 // We do this at the end of LLVM IR generation; after any operation 1226 // that might affect the DLL storage class or the visibility, and 1227 // before anything that might act on these. 1228 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1229 } 1230 1231 void CodeGenModule::EmitOpenCLMetadata() { 1232 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1233 // opencl.ocl.version named metadata node. 1234 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1235 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1236 llvm::Metadata *OCLVerElts[] = { 1237 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1238 Int32Ty, Version / 100)), 1239 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1240 Int32Ty, (Version % 100) / 10))}; 1241 llvm::NamedMDNode *OCLVerMD = 1242 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1243 llvm::LLVMContext &Ctx = TheModule.getContext(); 1244 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1245 } 1246 1247 void CodeGenModule::EmitBackendOptionsMetadata( 1248 const CodeGenOptions &CodeGenOpts) { 1249 if (getTriple().isRISCV()) { 1250 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1251 CodeGenOpts.SmallDataLimit); 1252 } 1253 } 1254 1255 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1256 // Make sure that this type is translated. 1257 Types.UpdateCompletedType(TD); 1258 } 1259 1260 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1261 // Make sure that this type is translated. 1262 Types.RefreshTypeCacheForClass(RD); 1263 } 1264 1265 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1266 if (!TBAA) 1267 return nullptr; 1268 return TBAA->getTypeInfo(QTy); 1269 } 1270 1271 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1272 if (!TBAA) 1273 return TBAAAccessInfo(); 1274 if (getLangOpts().CUDAIsDevice) { 1275 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1276 // access info. 1277 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1278 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1279 nullptr) 1280 return TBAAAccessInfo(); 1281 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1282 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1283 nullptr) 1284 return TBAAAccessInfo(); 1285 } 1286 } 1287 return TBAA->getAccessInfo(AccessType); 1288 } 1289 1290 TBAAAccessInfo 1291 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1292 if (!TBAA) 1293 return TBAAAccessInfo(); 1294 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1295 } 1296 1297 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1298 if (!TBAA) 1299 return nullptr; 1300 return TBAA->getTBAAStructInfo(QTy); 1301 } 1302 1303 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1304 if (!TBAA) 1305 return nullptr; 1306 return TBAA->getBaseTypeInfo(QTy); 1307 } 1308 1309 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1310 if (!TBAA) 1311 return nullptr; 1312 return TBAA->getAccessTagInfo(Info); 1313 } 1314 1315 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1316 TBAAAccessInfo TargetInfo) { 1317 if (!TBAA) 1318 return TBAAAccessInfo(); 1319 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1320 } 1321 1322 TBAAAccessInfo 1323 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1324 TBAAAccessInfo InfoB) { 1325 if (!TBAA) 1326 return TBAAAccessInfo(); 1327 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1328 } 1329 1330 TBAAAccessInfo 1331 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1332 TBAAAccessInfo SrcInfo) { 1333 if (!TBAA) 1334 return TBAAAccessInfo(); 1335 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1336 } 1337 1338 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1339 TBAAAccessInfo TBAAInfo) { 1340 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1341 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1342 } 1343 1344 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1345 llvm::Instruction *I, const CXXRecordDecl *RD) { 1346 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1347 llvm::MDNode::get(getLLVMContext(), {})); 1348 } 1349 1350 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1351 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1352 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1353 } 1354 1355 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1356 /// specified stmt yet. 1357 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1358 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1359 "cannot compile this %0 yet"); 1360 std::string Msg = Type; 1361 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1362 << Msg << S->getSourceRange(); 1363 } 1364 1365 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1366 /// specified decl yet. 1367 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1368 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1369 "cannot compile this %0 yet"); 1370 std::string Msg = Type; 1371 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1372 } 1373 1374 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1375 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1376 } 1377 1378 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1379 const NamedDecl *D) const { 1380 // Internal definitions always have default visibility. 1381 if (GV->hasLocalLinkage()) { 1382 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1383 return; 1384 } 1385 if (!D) 1386 return; 1387 // Set visibility for definitions, and for declarations if requested globally 1388 // or set explicitly. 1389 LinkageInfo LV = D->getLinkageAndVisibility(); 1390 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1391 // Reject incompatible dlllstorage and visibility annotations. 1392 if (!LV.isVisibilityExplicit()) 1393 return; 1394 if (GV->hasDLLExportStorageClass()) { 1395 if (LV.getVisibility() == HiddenVisibility) 1396 getDiags().Report(D->getLocation(), 1397 diag::err_hidden_visibility_dllexport); 1398 } else if (LV.getVisibility() != DefaultVisibility) { 1399 getDiags().Report(D->getLocation(), 1400 diag::err_non_default_visibility_dllimport); 1401 } 1402 return; 1403 } 1404 1405 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1406 !GV->isDeclarationForLinker()) 1407 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1408 } 1409 1410 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1411 llvm::GlobalValue *GV) { 1412 if (GV->hasLocalLinkage()) 1413 return true; 1414 1415 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1416 return true; 1417 1418 // DLLImport explicitly marks the GV as external. 1419 if (GV->hasDLLImportStorageClass()) 1420 return false; 1421 1422 const llvm::Triple &TT = CGM.getTriple(); 1423 const auto &CGOpts = CGM.getCodeGenOpts(); 1424 if (TT.isWindowsGNUEnvironment()) { 1425 // In MinGW, variables without DLLImport can still be automatically 1426 // imported from a DLL by the linker; don't mark variables that 1427 // potentially could come from another DLL as DSO local. 1428 1429 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1430 // (and this actually happens in the public interface of libstdc++), so 1431 // such variables can't be marked as DSO local. (Native TLS variables 1432 // can't be dllimported at all, though.) 1433 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1434 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1435 CGOpts.AutoImport) 1436 return false; 1437 } 1438 1439 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1440 // remain unresolved in the link, they can be resolved to zero, which is 1441 // outside the current DSO. 1442 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1443 return false; 1444 1445 // Every other GV is local on COFF. 1446 // Make an exception for windows OS in the triple: Some firmware builds use 1447 // *-win32-macho triples. This (accidentally?) produced windows relocations 1448 // without GOT tables in older clang versions; Keep this behaviour. 1449 // FIXME: even thread local variables? 1450 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1451 return true; 1452 1453 // Only handle COFF and ELF for now. 1454 if (!TT.isOSBinFormatELF()) 1455 return false; 1456 1457 // If this is not an executable, don't assume anything is local. 1458 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1459 const auto &LOpts = CGM.getLangOpts(); 1460 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1461 // On ELF, if -fno-semantic-interposition is specified and the target 1462 // supports local aliases, there will be neither CC1 1463 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1464 // dso_local on the function if using a local alias is preferable (can avoid 1465 // PLT indirection). 1466 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1467 return false; 1468 return !(CGM.getLangOpts().SemanticInterposition || 1469 CGM.getLangOpts().HalfNoSemanticInterposition); 1470 } 1471 1472 // A definition cannot be preempted from an executable. 1473 if (!GV->isDeclarationForLinker()) 1474 return true; 1475 1476 // Most PIC code sequences that assume that a symbol is local cannot produce a 1477 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1478 // depended, it seems worth it to handle it here. 1479 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1480 return false; 1481 1482 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1483 if (TT.isPPC64()) 1484 return false; 1485 1486 if (CGOpts.DirectAccessExternalData) { 1487 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1488 // for non-thread-local variables. If the symbol is not defined in the 1489 // executable, a copy relocation will be needed at link time. dso_local is 1490 // excluded for thread-local variables because they generally don't support 1491 // copy relocations. 1492 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1493 if (!Var->isThreadLocal()) 1494 return true; 1495 1496 // -fno-pic sets dso_local on a function declaration to allow direct 1497 // accesses when taking its address (similar to a data symbol). If the 1498 // function is not defined in the executable, a canonical PLT entry will be 1499 // needed at link time. -fno-direct-access-external-data can avoid the 1500 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1501 // it could just cause trouble without providing perceptible benefits. 1502 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1503 return true; 1504 } 1505 1506 // If we can use copy relocations we can assume it is local. 1507 1508 // Otherwise don't assume it is local. 1509 return false; 1510 } 1511 1512 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1513 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1514 } 1515 1516 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1517 GlobalDecl GD) const { 1518 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1519 // C++ destructors have a few C++ ABI specific special cases. 1520 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1521 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1522 return; 1523 } 1524 setDLLImportDLLExport(GV, D); 1525 } 1526 1527 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1528 const NamedDecl *D) const { 1529 if (D && D->isExternallyVisible()) { 1530 if (D->hasAttr<DLLImportAttr>()) 1531 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1532 else if ((D->hasAttr<DLLExportAttr>() || 1533 shouldMapVisibilityToDLLExport(D)) && 1534 !GV->isDeclarationForLinker()) 1535 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1536 } 1537 } 1538 1539 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1540 GlobalDecl GD) const { 1541 setDLLImportDLLExport(GV, GD); 1542 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1543 } 1544 1545 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1546 const NamedDecl *D) const { 1547 setDLLImportDLLExport(GV, D); 1548 setGVPropertiesAux(GV, D); 1549 } 1550 1551 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1552 const NamedDecl *D) const { 1553 setGlobalVisibility(GV, D); 1554 setDSOLocal(GV); 1555 GV->setPartition(CodeGenOpts.SymbolPartition); 1556 } 1557 1558 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1559 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1560 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1561 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1562 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1563 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1564 } 1565 1566 llvm::GlobalVariable::ThreadLocalMode 1567 CodeGenModule::GetDefaultLLVMTLSModel() const { 1568 switch (CodeGenOpts.getDefaultTLSModel()) { 1569 case CodeGenOptions::GeneralDynamicTLSModel: 1570 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1571 case CodeGenOptions::LocalDynamicTLSModel: 1572 return llvm::GlobalVariable::LocalDynamicTLSModel; 1573 case CodeGenOptions::InitialExecTLSModel: 1574 return llvm::GlobalVariable::InitialExecTLSModel; 1575 case CodeGenOptions::LocalExecTLSModel: 1576 return llvm::GlobalVariable::LocalExecTLSModel; 1577 } 1578 llvm_unreachable("Invalid TLS model!"); 1579 } 1580 1581 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1582 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1583 1584 llvm::GlobalValue::ThreadLocalMode TLM; 1585 TLM = GetDefaultLLVMTLSModel(); 1586 1587 // Override the TLS model if it is explicitly specified. 1588 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1589 TLM = GetLLVMTLSModel(Attr->getModel()); 1590 } 1591 1592 GV->setThreadLocalMode(TLM); 1593 } 1594 1595 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1596 StringRef Name) { 1597 const TargetInfo &Target = CGM.getTarget(); 1598 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1599 } 1600 1601 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1602 const CPUSpecificAttr *Attr, 1603 unsigned CPUIndex, 1604 raw_ostream &Out) { 1605 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1606 // supported. 1607 if (Attr) 1608 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1609 else if (CGM.getTarget().supportsIFunc()) 1610 Out << ".resolver"; 1611 } 1612 1613 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1614 const TargetVersionAttr *Attr, 1615 raw_ostream &Out) { 1616 if (Attr->isDefaultVersion()) 1617 return; 1618 Out << "._"; 1619 const TargetInfo &TI = CGM.getTarget(); 1620 llvm::SmallVector<StringRef, 8> Feats; 1621 Attr->getFeatures(Feats); 1622 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1623 return TI.multiVersionSortPriority(FeatL) < 1624 TI.multiVersionSortPriority(FeatR); 1625 }); 1626 for (const auto &Feat : Feats) { 1627 Out << 'M'; 1628 Out << Feat; 1629 } 1630 } 1631 1632 static void AppendTargetMangling(const CodeGenModule &CGM, 1633 const TargetAttr *Attr, raw_ostream &Out) { 1634 if (Attr->isDefaultVersion()) 1635 return; 1636 1637 Out << '.'; 1638 const TargetInfo &Target = CGM.getTarget(); 1639 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1640 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1641 // Multiversioning doesn't allow "no-${feature}", so we can 1642 // only have "+" prefixes here. 1643 assert(LHS.startswith("+") && RHS.startswith("+") && 1644 "Features should always have a prefix."); 1645 return Target.multiVersionSortPriority(LHS.substr(1)) > 1646 Target.multiVersionSortPriority(RHS.substr(1)); 1647 }); 1648 1649 bool IsFirst = true; 1650 1651 if (!Info.CPU.empty()) { 1652 IsFirst = false; 1653 Out << "arch_" << Info.CPU; 1654 } 1655 1656 for (StringRef Feat : Info.Features) { 1657 if (!IsFirst) 1658 Out << '_'; 1659 IsFirst = false; 1660 Out << Feat.substr(1); 1661 } 1662 } 1663 1664 // Returns true if GD is a function decl with internal linkage and 1665 // needs a unique suffix after the mangled name. 1666 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1667 CodeGenModule &CGM) { 1668 const Decl *D = GD.getDecl(); 1669 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1670 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1671 } 1672 1673 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1674 const TargetClonesAttr *Attr, 1675 unsigned VersionIndex, 1676 raw_ostream &Out) { 1677 const TargetInfo &TI = CGM.getTarget(); 1678 if (TI.getTriple().isAArch64()) { 1679 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1680 if (FeatureStr == "default") 1681 return; 1682 Out << "._"; 1683 SmallVector<StringRef, 8> Features; 1684 FeatureStr.split(Features, "+"); 1685 llvm::stable_sort(Features, 1686 [&TI](const StringRef FeatL, const StringRef FeatR) { 1687 return TI.multiVersionSortPriority(FeatL) < 1688 TI.multiVersionSortPriority(FeatR); 1689 }); 1690 for (auto &Feat : Features) { 1691 Out << 'M'; 1692 Out << Feat; 1693 } 1694 } else { 1695 Out << '.'; 1696 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1697 if (FeatureStr.startswith("arch=")) 1698 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1699 else 1700 Out << FeatureStr; 1701 1702 Out << '.' << Attr->getMangledIndex(VersionIndex); 1703 } 1704 } 1705 1706 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1707 const NamedDecl *ND, 1708 bool OmitMultiVersionMangling = false) { 1709 SmallString<256> Buffer; 1710 llvm::raw_svector_ostream Out(Buffer); 1711 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1712 if (!CGM.getModuleNameHash().empty()) 1713 MC.needsUniqueInternalLinkageNames(); 1714 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1715 if (ShouldMangle) 1716 MC.mangleName(GD.getWithDecl(ND), Out); 1717 else { 1718 IdentifierInfo *II = ND->getIdentifier(); 1719 assert(II && "Attempt to mangle unnamed decl."); 1720 const auto *FD = dyn_cast<FunctionDecl>(ND); 1721 1722 if (FD && 1723 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1724 if (CGM.getLangOpts().RegCall4) 1725 Out << "__regcall4__" << II->getName(); 1726 else 1727 Out << "__regcall3__" << II->getName(); 1728 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1729 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1730 Out << "__device_stub__" << II->getName(); 1731 } else { 1732 Out << II->getName(); 1733 } 1734 } 1735 1736 // Check if the module name hash should be appended for internal linkage 1737 // symbols. This should come before multi-version target suffixes are 1738 // appended. This is to keep the name and module hash suffix of the 1739 // internal linkage function together. The unique suffix should only be 1740 // added when name mangling is done to make sure that the final name can 1741 // be properly demangled. For example, for C functions without prototypes, 1742 // name mangling is not done and the unique suffix should not be appeneded 1743 // then. 1744 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1745 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1746 "Hash computed when not explicitly requested"); 1747 Out << CGM.getModuleNameHash(); 1748 } 1749 1750 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1751 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1752 switch (FD->getMultiVersionKind()) { 1753 case MultiVersionKind::CPUDispatch: 1754 case MultiVersionKind::CPUSpecific: 1755 AppendCPUSpecificCPUDispatchMangling(CGM, 1756 FD->getAttr<CPUSpecificAttr>(), 1757 GD.getMultiVersionIndex(), Out); 1758 break; 1759 case MultiVersionKind::Target: 1760 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1761 break; 1762 case MultiVersionKind::TargetVersion: 1763 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1764 break; 1765 case MultiVersionKind::TargetClones: 1766 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1767 GD.getMultiVersionIndex(), Out); 1768 break; 1769 case MultiVersionKind::None: 1770 llvm_unreachable("None multiversion type isn't valid here"); 1771 } 1772 } 1773 1774 // Make unique name for device side static file-scope variable for HIP. 1775 if (CGM.getContext().shouldExternalize(ND) && 1776 CGM.getLangOpts().GPURelocatableDeviceCode && 1777 CGM.getLangOpts().CUDAIsDevice) 1778 CGM.printPostfixForExternalizedDecl(Out, ND); 1779 1780 return std::string(Out.str()); 1781 } 1782 1783 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1784 const FunctionDecl *FD, 1785 StringRef &CurName) { 1786 if (!FD->isMultiVersion()) 1787 return; 1788 1789 // Get the name of what this would be without the 'target' attribute. This 1790 // allows us to lookup the version that was emitted when this wasn't a 1791 // multiversion function. 1792 std::string NonTargetName = 1793 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1794 GlobalDecl OtherGD; 1795 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1796 assert(OtherGD.getCanonicalDecl() 1797 .getDecl() 1798 ->getAsFunction() 1799 ->isMultiVersion() && 1800 "Other GD should now be a multiversioned function"); 1801 // OtherFD is the version of this function that was mangled BEFORE 1802 // becoming a MultiVersion function. It potentially needs to be updated. 1803 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1804 .getDecl() 1805 ->getAsFunction() 1806 ->getMostRecentDecl(); 1807 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1808 // This is so that if the initial version was already the 'default' 1809 // version, we don't try to update it. 1810 if (OtherName != NonTargetName) { 1811 // Remove instead of erase, since others may have stored the StringRef 1812 // to this. 1813 const auto ExistingRecord = Manglings.find(NonTargetName); 1814 if (ExistingRecord != std::end(Manglings)) 1815 Manglings.remove(&(*ExistingRecord)); 1816 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1817 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1818 Result.first->first(); 1819 // If this is the current decl is being created, make sure we update the name. 1820 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1821 CurName = OtherNameRef; 1822 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1823 Entry->setName(OtherName); 1824 } 1825 } 1826 } 1827 1828 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1829 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1830 1831 // Some ABIs don't have constructor variants. Make sure that base and 1832 // complete constructors get mangled the same. 1833 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1834 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1835 CXXCtorType OrigCtorType = GD.getCtorType(); 1836 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1837 if (OrigCtorType == Ctor_Base) 1838 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1839 } 1840 } 1841 1842 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1843 // static device variable depends on whether the variable is referenced by 1844 // a host or device host function. Therefore the mangled name cannot be 1845 // cached. 1846 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1847 auto FoundName = MangledDeclNames.find(CanonicalGD); 1848 if (FoundName != MangledDeclNames.end()) 1849 return FoundName->second; 1850 } 1851 1852 // Keep the first result in the case of a mangling collision. 1853 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1854 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1855 1856 // Ensure either we have different ABIs between host and device compilations, 1857 // says host compilation following MSVC ABI but device compilation follows 1858 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1859 // mangling should be the same after name stubbing. The later checking is 1860 // very important as the device kernel name being mangled in host-compilation 1861 // is used to resolve the device binaries to be executed. Inconsistent naming 1862 // result in undefined behavior. Even though we cannot check that naming 1863 // directly between host- and device-compilations, the host- and 1864 // device-mangling in host compilation could help catching certain ones. 1865 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1866 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1867 (getContext().getAuxTargetInfo() && 1868 (getContext().getAuxTargetInfo()->getCXXABI() != 1869 getContext().getTargetInfo().getCXXABI())) || 1870 getCUDARuntime().getDeviceSideName(ND) == 1871 getMangledNameImpl( 1872 *this, 1873 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1874 ND)); 1875 1876 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1877 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1878 } 1879 1880 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1881 const BlockDecl *BD) { 1882 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1883 const Decl *D = GD.getDecl(); 1884 1885 SmallString<256> Buffer; 1886 llvm::raw_svector_ostream Out(Buffer); 1887 if (!D) 1888 MangleCtx.mangleGlobalBlock(BD, 1889 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1890 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1891 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1892 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1893 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1894 else 1895 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1896 1897 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1898 return Result.first->first(); 1899 } 1900 1901 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1902 auto it = MangledDeclNames.begin(); 1903 while (it != MangledDeclNames.end()) { 1904 if (it->second == Name) 1905 return it->first; 1906 it++; 1907 } 1908 return GlobalDecl(); 1909 } 1910 1911 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1912 return getModule().getNamedValue(Name); 1913 } 1914 1915 /// AddGlobalCtor - Add a function to the list that will be called before 1916 /// main() runs. 1917 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1918 unsigned LexOrder, 1919 llvm::Constant *AssociatedData) { 1920 // FIXME: Type coercion of void()* types. 1921 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1922 } 1923 1924 /// AddGlobalDtor - Add a function to the list that will be called 1925 /// when the module is unloaded. 1926 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1927 bool IsDtorAttrFunc) { 1928 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1929 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1930 DtorsUsingAtExit[Priority].push_back(Dtor); 1931 return; 1932 } 1933 1934 // FIXME: Type coercion of void()* types. 1935 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1936 } 1937 1938 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1939 if (Fns.empty()) return; 1940 1941 // Ctor function type is void()*. 1942 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1943 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1944 TheModule.getDataLayout().getProgramAddressSpace()); 1945 1946 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1947 llvm::StructType *CtorStructTy = llvm::StructType::get( 1948 Int32Ty, CtorPFTy, VoidPtrTy); 1949 1950 // Construct the constructor and destructor arrays. 1951 ConstantInitBuilder builder(*this); 1952 auto ctors = builder.beginArray(CtorStructTy); 1953 for (const auto &I : Fns) { 1954 auto ctor = ctors.beginStruct(CtorStructTy); 1955 ctor.addInt(Int32Ty, I.Priority); 1956 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1957 if (I.AssociatedData) 1958 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1959 else 1960 ctor.addNullPointer(VoidPtrTy); 1961 ctor.finishAndAddTo(ctors); 1962 } 1963 1964 auto list = 1965 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1966 /*constant*/ false, 1967 llvm::GlobalValue::AppendingLinkage); 1968 1969 // The LTO linker doesn't seem to like it when we set an alignment 1970 // on appending variables. Take it off as a workaround. 1971 list->setAlignment(std::nullopt); 1972 1973 Fns.clear(); 1974 } 1975 1976 llvm::GlobalValue::LinkageTypes 1977 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1978 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1979 1980 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1981 1982 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1983 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1984 1985 return getLLVMLinkageForDeclarator(D, Linkage); 1986 } 1987 1988 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1989 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1990 if (!MDS) return nullptr; 1991 1992 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1993 } 1994 1995 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1996 if (auto *FnType = T->getAs<FunctionProtoType>()) 1997 T = getContext().getFunctionType( 1998 FnType->getReturnType(), FnType->getParamTypes(), 1999 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2000 2001 std::string OutName; 2002 llvm::raw_string_ostream Out(OutName); 2003 getCXXABI().getMangleContext().mangleTypeName( 2004 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2005 2006 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2007 Out << ".normalized"; 2008 2009 return llvm::ConstantInt::get(Int32Ty, 2010 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2011 } 2012 2013 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2014 const CGFunctionInfo &Info, 2015 llvm::Function *F, bool IsThunk) { 2016 unsigned CallingConv; 2017 llvm::AttributeList PAL; 2018 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2019 /*AttrOnCallSite=*/false, IsThunk); 2020 F->setAttributes(PAL); 2021 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2022 } 2023 2024 static void removeImageAccessQualifier(std::string& TyName) { 2025 std::string ReadOnlyQual("__read_only"); 2026 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2027 if (ReadOnlyPos != std::string::npos) 2028 // "+ 1" for the space after access qualifier. 2029 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2030 else { 2031 std::string WriteOnlyQual("__write_only"); 2032 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2033 if (WriteOnlyPos != std::string::npos) 2034 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2035 else { 2036 std::string ReadWriteQual("__read_write"); 2037 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2038 if (ReadWritePos != std::string::npos) 2039 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2040 } 2041 } 2042 } 2043 2044 // Returns the address space id that should be produced to the 2045 // kernel_arg_addr_space metadata. This is always fixed to the ids 2046 // as specified in the SPIR 2.0 specification in order to differentiate 2047 // for example in clGetKernelArgInfo() implementation between the address 2048 // spaces with targets without unique mapping to the OpenCL address spaces 2049 // (basically all single AS CPUs). 2050 static unsigned ArgInfoAddressSpace(LangAS AS) { 2051 switch (AS) { 2052 case LangAS::opencl_global: 2053 return 1; 2054 case LangAS::opencl_constant: 2055 return 2; 2056 case LangAS::opencl_local: 2057 return 3; 2058 case LangAS::opencl_generic: 2059 return 4; // Not in SPIR 2.0 specs. 2060 case LangAS::opencl_global_device: 2061 return 5; 2062 case LangAS::opencl_global_host: 2063 return 6; 2064 default: 2065 return 0; // Assume private. 2066 } 2067 } 2068 2069 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2070 const FunctionDecl *FD, 2071 CodeGenFunction *CGF) { 2072 assert(((FD && CGF) || (!FD && !CGF)) && 2073 "Incorrect use - FD and CGF should either be both null or not!"); 2074 // Create MDNodes that represent the kernel arg metadata. 2075 // Each MDNode is a list in the form of "key", N number of values which is 2076 // the same number of values as their are kernel arguments. 2077 2078 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2079 2080 // MDNode for the kernel argument address space qualifiers. 2081 SmallVector<llvm::Metadata *, 8> addressQuals; 2082 2083 // MDNode for the kernel argument access qualifiers (images only). 2084 SmallVector<llvm::Metadata *, 8> accessQuals; 2085 2086 // MDNode for the kernel argument type names. 2087 SmallVector<llvm::Metadata *, 8> argTypeNames; 2088 2089 // MDNode for the kernel argument base type names. 2090 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2091 2092 // MDNode for the kernel argument type qualifiers. 2093 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2094 2095 // MDNode for the kernel argument names. 2096 SmallVector<llvm::Metadata *, 8> argNames; 2097 2098 if (FD && CGF) 2099 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2100 const ParmVarDecl *parm = FD->getParamDecl(i); 2101 // Get argument name. 2102 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2103 2104 if (!getLangOpts().OpenCL) 2105 continue; 2106 QualType ty = parm->getType(); 2107 std::string typeQuals; 2108 2109 // Get image and pipe access qualifier: 2110 if (ty->isImageType() || ty->isPipeType()) { 2111 const Decl *PDecl = parm; 2112 if (const auto *TD = ty->getAs<TypedefType>()) 2113 PDecl = TD->getDecl(); 2114 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2115 if (A && A->isWriteOnly()) 2116 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2117 else if (A && A->isReadWrite()) 2118 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2119 else 2120 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2121 } else 2122 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2123 2124 auto getTypeSpelling = [&](QualType Ty) { 2125 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2126 2127 if (Ty.isCanonical()) { 2128 StringRef typeNameRef = typeName; 2129 // Turn "unsigned type" to "utype" 2130 if (typeNameRef.consume_front("unsigned ")) 2131 return std::string("u") + typeNameRef.str(); 2132 if (typeNameRef.consume_front("signed ")) 2133 return typeNameRef.str(); 2134 } 2135 2136 return typeName; 2137 }; 2138 2139 if (ty->isPointerType()) { 2140 QualType pointeeTy = ty->getPointeeType(); 2141 2142 // Get address qualifier. 2143 addressQuals.push_back( 2144 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2145 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2146 2147 // Get argument type name. 2148 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2149 std::string baseTypeName = 2150 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2151 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2152 argBaseTypeNames.push_back( 2153 llvm::MDString::get(VMContext, baseTypeName)); 2154 2155 // Get argument type qualifiers: 2156 if (ty.isRestrictQualified()) 2157 typeQuals = "restrict"; 2158 if (pointeeTy.isConstQualified() || 2159 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2160 typeQuals += typeQuals.empty() ? "const" : " const"; 2161 if (pointeeTy.isVolatileQualified()) 2162 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2163 } else { 2164 uint32_t AddrSpc = 0; 2165 bool isPipe = ty->isPipeType(); 2166 if (ty->isImageType() || isPipe) 2167 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2168 2169 addressQuals.push_back( 2170 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2171 2172 // Get argument type name. 2173 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2174 std::string typeName = getTypeSpelling(ty); 2175 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2176 2177 // Remove access qualifiers on images 2178 // (as they are inseparable from type in clang implementation, 2179 // but OpenCL spec provides a special query to get access qualifier 2180 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2181 if (ty->isImageType()) { 2182 removeImageAccessQualifier(typeName); 2183 removeImageAccessQualifier(baseTypeName); 2184 } 2185 2186 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2187 argBaseTypeNames.push_back( 2188 llvm::MDString::get(VMContext, baseTypeName)); 2189 2190 if (isPipe) 2191 typeQuals = "pipe"; 2192 } 2193 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2194 } 2195 2196 if (getLangOpts().OpenCL) { 2197 Fn->setMetadata("kernel_arg_addr_space", 2198 llvm::MDNode::get(VMContext, addressQuals)); 2199 Fn->setMetadata("kernel_arg_access_qual", 2200 llvm::MDNode::get(VMContext, accessQuals)); 2201 Fn->setMetadata("kernel_arg_type", 2202 llvm::MDNode::get(VMContext, argTypeNames)); 2203 Fn->setMetadata("kernel_arg_base_type", 2204 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2205 Fn->setMetadata("kernel_arg_type_qual", 2206 llvm::MDNode::get(VMContext, argTypeQuals)); 2207 } 2208 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2209 getCodeGenOpts().HIPSaveKernelArgName) 2210 Fn->setMetadata("kernel_arg_name", 2211 llvm::MDNode::get(VMContext, argNames)); 2212 } 2213 2214 /// Determines whether the language options require us to model 2215 /// unwind exceptions. We treat -fexceptions as mandating this 2216 /// except under the fragile ObjC ABI with only ObjC exceptions 2217 /// enabled. This means, for example, that C with -fexceptions 2218 /// enables this. 2219 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2220 // If exceptions are completely disabled, obviously this is false. 2221 if (!LangOpts.Exceptions) return false; 2222 2223 // If C++ exceptions are enabled, this is true. 2224 if (LangOpts.CXXExceptions) return true; 2225 2226 // If ObjC exceptions are enabled, this depends on the ABI. 2227 if (LangOpts.ObjCExceptions) { 2228 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2229 } 2230 2231 return true; 2232 } 2233 2234 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2235 const CXXMethodDecl *MD) { 2236 // Check that the type metadata can ever actually be used by a call. 2237 if (!CGM.getCodeGenOpts().LTOUnit || 2238 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2239 return false; 2240 2241 // Only functions whose address can be taken with a member function pointer 2242 // need this sort of type metadata. 2243 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 2244 !isa<CXXDestructorDecl>(MD); 2245 } 2246 2247 SmallVector<const CXXRecordDecl *, 0> 2248 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2249 llvm::SetVector<const CXXRecordDecl *> MostBases; 2250 2251 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2252 CollectMostBases = [&](const CXXRecordDecl *RD) { 2253 if (RD->getNumBases() == 0) 2254 MostBases.insert(RD); 2255 for (const CXXBaseSpecifier &B : RD->bases()) 2256 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2257 }; 2258 CollectMostBases(RD); 2259 return MostBases.takeVector(); 2260 } 2261 2262 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2263 llvm::Function *F) { 2264 llvm::AttrBuilder B(F->getContext()); 2265 2266 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2267 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2268 2269 if (CodeGenOpts.StackClashProtector) 2270 B.addAttribute("probe-stack", "inline-asm"); 2271 2272 if (!hasUnwindExceptions(LangOpts)) 2273 B.addAttribute(llvm::Attribute::NoUnwind); 2274 2275 if (D && D->hasAttr<NoStackProtectorAttr>()) 2276 ; // Do nothing. 2277 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2278 LangOpts.getStackProtector() == LangOptions::SSPOn) 2279 B.addAttribute(llvm::Attribute::StackProtectStrong); 2280 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2281 B.addAttribute(llvm::Attribute::StackProtect); 2282 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2283 B.addAttribute(llvm::Attribute::StackProtectStrong); 2284 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2285 B.addAttribute(llvm::Attribute::StackProtectReq); 2286 2287 if (!D) { 2288 // If we don't have a declaration to control inlining, the function isn't 2289 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2290 // disabled, mark the function as noinline. 2291 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2292 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2293 B.addAttribute(llvm::Attribute::NoInline); 2294 2295 F->addFnAttrs(B); 2296 return; 2297 } 2298 2299 // Handle SME attributes that apply to function definitions, 2300 // rather than to function prototypes. 2301 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2302 B.addAttribute("aarch64_pstate_sm_body"); 2303 2304 if (D->hasAttr<ArmNewZAAttr>()) 2305 B.addAttribute("aarch64_pstate_za_new"); 2306 2307 // Track whether we need to add the optnone LLVM attribute, 2308 // starting with the default for this optimization level. 2309 bool ShouldAddOptNone = 2310 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2311 // We can't add optnone in the following cases, it won't pass the verifier. 2312 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2313 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2314 2315 // Add optnone, but do so only if the function isn't always_inline. 2316 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2317 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2318 B.addAttribute(llvm::Attribute::OptimizeNone); 2319 2320 // OptimizeNone implies noinline; we should not be inlining such functions. 2321 B.addAttribute(llvm::Attribute::NoInline); 2322 2323 // We still need to handle naked functions even though optnone subsumes 2324 // much of their semantics. 2325 if (D->hasAttr<NakedAttr>()) 2326 B.addAttribute(llvm::Attribute::Naked); 2327 2328 // OptimizeNone wins over OptimizeForSize and MinSize. 2329 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2330 F->removeFnAttr(llvm::Attribute::MinSize); 2331 } else if (D->hasAttr<NakedAttr>()) { 2332 // Naked implies noinline: we should not be inlining such functions. 2333 B.addAttribute(llvm::Attribute::Naked); 2334 B.addAttribute(llvm::Attribute::NoInline); 2335 } else if (D->hasAttr<NoDuplicateAttr>()) { 2336 B.addAttribute(llvm::Attribute::NoDuplicate); 2337 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2338 // Add noinline if the function isn't always_inline. 2339 B.addAttribute(llvm::Attribute::NoInline); 2340 } else if (D->hasAttr<AlwaysInlineAttr>() && 2341 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2342 // (noinline wins over always_inline, and we can't specify both in IR) 2343 B.addAttribute(llvm::Attribute::AlwaysInline); 2344 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2345 // If we're not inlining, then force everything that isn't always_inline to 2346 // carry an explicit noinline attribute. 2347 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2348 B.addAttribute(llvm::Attribute::NoInline); 2349 } else { 2350 // Otherwise, propagate the inline hint attribute and potentially use its 2351 // absence to mark things as noinline. 2352 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2353 // Search function and template pattern redeclarations for inline. 2354 auto CheckForInline = [](const FunctionDecl *FD) { 2355 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2356 return Redecl->isInlineSpecified(); 2357 }; 2358 if (any_of(FD->redecls(), CheckRedeclForInline)) 2359 return true; 2360 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2361 if (!Pattern) 2362 return false; 2363 return any_of(Pattern->redecls(), CheckRedeclForInline); 2364 }; 2365 if (CheckForInline(FD)) { 2366 B.addAttribute(llvm::Attribute::InlineHint); 2367 } else if (CodeGenOpts.getInlining() == 2368 CodeGenOptions::OnlyHintInlining && 2369 !FD->isInlined() && 2370 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2371 B.addAttribute(llvm::Attribute::NoInline); 2372 } 2373 } 2374 } 2375 2376 // Add other optimization related attributes if we are optimizing this 2377 // function. 2378 if (!D->hasAttr<OptimizeNoneAttr>()) { 2379 if (D->hasAttr<ColdAttr>()) { 2380 if (!ShouldAddOptNone) 2381 B.addAttribute(llvm::Attribute::OptimizeForSize); 2382 B.addAttribute(llvm::Attribute::Cold); 2383 } 2384 if (D->hasAttr<HotAttr>()) 2385 B.addAttribute(llvm::Attribute::Hot); 2386 if (D->hasAttr<MinSizeAttr>()) 2387 B.addAttribute(llvm::Attribute::MinSize); 2388 } 2389 2390 F->addFnAttrs(B); 2391 2392 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2393 if (alignment) 2394 F->setAlignment(llvm::Align(alignment)); 2395 2396 if (!D->hasAttr<AlignedAttr>()) 2397 if (LangOpts.FunctionAlignment) 2398 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2399 2400 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2401 // reserve a bit for differentiating between virtual and non-virtual member 2402 // functions. If the current target's C++ ABI requires this and this is a 2403 // member function, set its alignment accordingly. 2404 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2405 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2406 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2407 } 2408 2409 // In the cross-dso CFI mode with canonical jump tables, we want !type 2410 // attributes on definitions only. 2411 if (CodeGenOpts.SanitizeCfiCrossDso && 2412 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2413 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2414 // Skip available_externally functions. They won't be codegen'ed in the 2415 // current module anyway. 2416 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2417 CreateFunctionTypeMetadataForIcall(FD, F); 2418 } 2419 } 2420 2421 // Emit type metadata on member functions for member function pointer checks. 2422 // These are only ever necessary on definitions; we're guaranteed that the 2423 // definition will be present in the LTO unit as a result of LTO visibility. 2424 auto *MD = dyn_cast<CXXMethodDecl>(D); 2425 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2426 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2427 llvm::Metadata *Id = 2428 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2429 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2430 F->addTypeMetadata(0, Id); 2431 } 2432 } 2433 } 2434 2435 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2436 const Decl *D = GD.getDecl(); 2437 if (isa_and_nonnull<NamedDecl>(D)) 2438 setGVProperties(GV, GD); 2439 else 2440 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2441 2442 if (D && D->hasAttr<UsedAttr>()) 2443 addUsedOrCompilerUsedGlobal(GV); 2444 2445 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2446 VD && 2447 ((CodeGenOpts.KeepPersistentStorageVariables && 2448 (VD->getStorageDuration() == SD_Static || 2449 VD->getStorageDuration() == SD_Thread)) || 2450 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2451 VD->getType().isConstQualified()))) 2452 addUsedOrCompilerUsedGlobal(GV); 2453 } 2454 2455 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2456 llvm::AttrBuilder &Attrs, 2457 bool SetTargetFeatures) { 2458 // Add target-cpu and target-features attributes to functions. If 2459 // we have a decl for the function and it has a target attribute then 2460 // parse that and add it to the feature set. 2461 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2462 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2463 std::vector<std::string> Features; 2464 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2465 FD = FD ? FD->getMostRecentDecl() : FD; 2466 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2467 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2468 assert((!TD || !TV) && "both target_version and target specified"); 2469 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2470 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2471 bool AddedAttr = false; 2472 if (TD || TV || SD || TC) { 2473 llvm::StringMap<bool> FeatureMap; 2474 getContext().getFunctionFeatureMap(FeatureMap, GD); 2475 2476 // Produce the canonical string for this set of features. 2477 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2478 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2479 2480 // Now add the target-cpu and target-features to the function. 2481 // While we populated the feature map above, we still need to 2482 // get and parse the target attribute so we can get the cpu for 2483 // the function. 2484 if (TD) { 2485 ParsedTargetAttr ParsedAttr = 2486 Target.parseTargetAttr(TD->getFeaturesStr()); 2487 if (!ParsedAttr.CPU.empty() && 2488 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2489 TargetCPU = ParsedAttr.CPU; 2490 TuneCPU = ""; // Clear the tune CPU. 2491 } 2492 if (!ParsedAttr.Tune.empty() && 2493 getTarget().isValidCPUName(ParsedAttr.Tune)) 2494 TuneCPU = ParsedAttr.Tune; 2495 } 2496 2497 if (SD) { 2498 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2499 // favor this processor. 2500 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2501 } 2502 } else { 2503 // Otherwise just add the existing target cpu and target features to the 2504 // function. 2505 Features = getTarget().getTargetOpts().Features; 2506 } 2507 2508 if (!TargetCPU.empty()) { 2509 Attrs.addAttribute("target-cpu", TargetCPU); 2510 AddedAttr = true; 2511 } 2512 if (!TuneCPU.empty()) { 2513 Attrs.addAttribute("tune-cpu", TuneCPU); 2514 AddedAttr = true; 2515 } 2516 if (!Features.empty() && SetTargetFeatures) { 2517 llvm::erase_if(Features, [&](const std::string& F) { 2518 return getTarget().isReadOnlyFeature(F.substr(1)); 2519 }); 2520 llvm::sort(Features); 2521 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2522 AddedAttr = true; 2523 } 2524 2525 return AddedAttr; 2526 } 2527 2528 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2529 llvm::GlobalObject *GO) { 2530 const Decl *D = GD.getDecl(); 2531 SetCommonAttributes(GD, GO); 2532 2533 if (D) { 2534 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2535 if (D->hasAttr<RetainAttr>()) 2536 addUsedGlobal(GV); 2537 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2538 GV->addAttribute("bss-section", SA->getName()); 2539 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2540 GV->addAttribute("data-section", SA->getName()); 2541 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2542 GV->addAttribute("rodata-section", SA->getName()); 2543 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2544 GV->addAttribute("relro-section", SA->getName()); 2545 } 2546 2547 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2548 if (D->hasAttr<RetainAttr>()) 2549 addUsedGlobal(F); 2550 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2551 if (!D->getAttr<SectionAttr>()) 2552 F->addFnAttr("implicit-section-name", SA->getName()); 2553 2554 llvm::AttrBuilder Attrs(F->getContext()); 2555 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2556 // We know that GetCPUAndFeaturesAttributes will always have the 2557 // newest set, since it has the newest possible FunctionDecl, so the 2558 // new ones should replace the old. 2559 llvm::AttributeMask RemoveAttrs; 2560 RemoveAttrs.addAttribute("target-cpu"); 2561 RemoveAttrs.addAttribute("target-features"); 2562 RemoveAttrs.addAttribute("tune-cpu"); 2563 F->removeFnAttrs(RemoveAttrs); 2564 F->addFnAttrs(Attrs); 2565 } 2566 } 2567 2568 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2569 GO->setSection(CSA->getName()); 2570 else if (const auto *SA = D->getAttr<SectionAttr>()) 2571 GO->setSection(SA->getName()); 2572 } 2573 2574 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2575 } 2576 2577 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2578 llvm::Function *F, 2579 const CGFunctionInfo &FI) { 2580 const Decl *D = GD.getDecl(); 2581 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2582 SetLLVMFunctionAttributesForDefinition(D, F); 2583 2584 F->setLinkage(llvm::Function::InternalLinkage); 2585 2586 setNonAliasAttributes(GD, F); 2587 } 2588 2589 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2590 // Set linkage and visibility in case we never see a definition. 2591 LinkageInfo LV = ND->getLinkageAndVisibility(); 2592 // Don't set internal linkage on declarations. 2593 // "extern_weak" is overloaded in LLVM; we probably should have 2594 // separate linkage types for this. 2595 if (isExternallyVisible(LV.getLinkage()) && 2596 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2597 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2598 } 2599 2600 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2601 llvm::Function *F) { 2602 // Only if we are checking indirect calls. 2603 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2604 return; 2605 2606 // Non-static class methods are handled via vtable or member function pointer 2607 // checks elsewhere. 2608 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2609 return; 2610 2611 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2612 F->addTypeMetadata(0, MD); 2613 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2614 2615 // Emit a hash-based bit set entry for cross-DSO calls. 2616 if (CodeGenOpts.SanitizeCfiCrossDso) 2617 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2618 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2619 } 2620 2621 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2622 llvm::LLVMContext &Ctx = F->getContext(); 2623 llvm::MDBuilder MDB(Ctx); 2624 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2625 llvm::MDNode::get( 2626 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2627 } 2628 2629 static bool allowKCFIIdentifier(StringRef Name) { 2630 // KCFI type identifier constants are only necessary for external assembly 2631 // functions, which means it's safe to skip unusual names. Subset of 2632 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2633 return llvm::all_of(Name, [](const char &C) { 2634 return llvm::isAlnum(C) || C == '_' || C == '.'; 2635 }); 2636 } 2637 2638 void CodeGenModule::finalizeKCFITypes() { 2639 llvm::Module &M = getModule(); 2640 for (auto &F : M.functions()) { 2641 // Remove KCFI type metadata from non-address-taken local functions. 2642 bool AddressTaken = F.hasAddressTaken(); 2643 if (!AddressTaken && F.hasLocalLinkage()) 2644 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2645 2646 // Generate a constant with the expected KCFI type identifier for all 2647 // address-taken function declarations to support annotating indirectly 2648 // called assembly functions. 2649 if (!AddressTaken || !F.isDeclaration()) 2650 continue; 2651 2652 const llvm::ConstantInt *Type; 2653 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2654 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2655 else 2656 continue; 2657 2658 StringRef Name = F.getName(); 2659 if (!allowKCFIIdentifier(Name)) 2660 continue; 2661 2662 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2663 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2664 .str(); 2665 M.appendModuleInlineAsm(Asm); 2666 } 2667 } 2668 2669 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2670 bool IsIncompleteFunction, 2671 bool IsThunk) { 2672 2673 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2674 // If this is an intrinsic function, set the function's attributes 2675 // to the intrinsic's attributes. 2676 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2677 return; 2678 } 2679 2680 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2681 2682 if (!IsIncompleteFunction) 2683 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2684 IsThunk); 2685 2686 // Add the Returned attribute for "this", except for iOS 5 and earlier 2687 // where substantial code, including the libstdc++ dylib, was compiled with 2688 // GCC and does not actually return "this". 2689 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2690 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2691 assert(!F->arg_empty() && 2692 F->arg_begin()->getType() 2693 ->canLosslesslyBitCastTo(F->getReturnType()) && 2694 "unexpected this return"); 2695 F->addParamAttr(0, llvm::Attribute::Returned); 2696 } 2697 2698 // Only a few attributes are set on declarations; these may later be 2699 // overridden by a definition. 2700 2701 setLinkageForGV(F, FD); 2702 setGVProperties(F, FD); 2703 2704 // Setup target-specific attributes. 2705 if (!IsIncompleteFunction && F->isDeclaration()) 2706 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2707 2708 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2709 F->setSection(CSA->getName()); 2710 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2711 F->setSection(SA->getName()); 2712 2713 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2714 if (EA->isError()) 2715 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2716 else if (EA->isWarning()) 2717 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2718 } 2719 2720 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2721 if (FD->isInlineBuiltinDeclaration()) { 2722 const FunctionDecl *FDBody; 2723 bool HasBody = FD->hasBody(FDBody); 2724 (void)HasBody; 2725 assert(HasBody && "Inline builtin declarations should always have an " 2726 "available body!"); 2727 if (shouldEmitFunction(FDBody)) 2728 F->addFnAttr(llvm::Attribute::NoBuiltin); 2729 } 2730 2731 if (FD->isReplaceableGlobalAllocationFunction()) { 2732 // A replaceable global allocation function does not act like a builtin by 2733 // default, only if it is invoked by a new-expression or delete-expression. 2734 F->addFnAttr(llvm::Attribute::NoBuiltin); 2735 } 2736 2737 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2738 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2739 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2740 if (MD->isVirtual()) 2741 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2742 2743 // Don't emit entries for function declarations in the cross-DSO mode. This 2744 // is handled with better precision by the receiving DSO. But if jump tables 2745 // are non-canonical then we need type metadata in order to produce the local 2746 // jump table. 2747 if (!CodeGenOpts.SanitizeCfiCrossDso || 2748 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2749 CreateFunctionTypeMetadataForIcall(FD, F); 2750 2751 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2752 setKCFIType(FD, F); 2753 2754 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2755 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2756 2757 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2758 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2759 2760 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2761 // Annotate the callback behavior as metadata: 2762 // - The callback callee (as argument number). 2763 // - The callback payloads (as argument numbers). 2764 llvm::LLVMContext &Ctx = F->getContext(); 2765 llvm::MDBuilder MDB(Ctx); 2766 2767 // The payload indices are all but the first one in the encoding. The first 2768 // identifies the callback callee. 2769 int CalleeIdx = *CB->encoding_begin(); 2770 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2771 F->addMetadata(llvm::LLVMContext::MD_callback, 2772 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2773 CalleeIdx, PayloadIndices, 2774 /* VarArgsArePassed */ false)})); 2775 } 2776 } 2777 2778 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2779 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2780 "Only globals with definition can force usage."); 2781 LLVMUsed.emplace_back(GV); 2782 } 2783 2784 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2785 assert(!GV->isDeclaration() && 2786 "Only globals with definition can force usage."); 2787 LLVMCompilerUsed.emplace_back(GV); 2788 } 2789 2790 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2791 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2792 "Only globals with definition can force usage."); 2793 if (getTriple().isOSBinFormatELF()) 2794 LLVMCompilerUsed.emplace_back(GV); 2795 else 2796 LLVMUsed.emplace_back(GV); 2797 } 2798 2799 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2800 std::vector<llvm::WeakTrackingVH> &List) { 2801 // Don't create llvm.used if there is no need. 2802 if (List.empty()) 2803 return; 2804 2805 // Convert List to what ConstantArray needs. 2806 SmallVector<llvm::Constant*, 8> UsedArray; 2807 UsedArray.resize(List.size()); 2808 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2809 UsedArray[i] = 2810 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2811 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2812 } 2813 2814 if (UsedArray.empty()) 2815 return; 2816 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2817 2818 auto *GV = new llvm::GlobalVariable( 2819 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2820 llvm::ConstantArray::get(ATy, UsedArray), Name); 2821 2822 GV->setSection("llvm.metadata"); 2823 } 2824 2825 void CodeGenModule::emitLLVMUsed() { 2826 emitUsed(*this, "llvm.used", LLVMUsed); 2827 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2828 } 2829 2830 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2831 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2832 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2833 } 2834 2835 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2836 llvm::SmallString<32> Opt; 2837 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2838 if (Opt.empty()) 2839 return; 2840 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2841 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2842 } 2843 2844 void CodeGenModule::AddDependentLib(StringRef Lib) { 2845 auto &C = getLLVMContext(); 2846 if (getTarget().getTriple().isOSBinFormatELF()) { 2847 ELFDependentLibraries.push_back( 2848 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2849 return; 2850 } 2851 2852 llvm::SmallString<24> Opt; 2853 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2854 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2855 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2856 } 2857 2858 /// Add link options implied by the given module, including modules 2859 /// it depends on, using a postorder walk. 2860 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2861 SmallVectorImpl<llvm::MDNode *> &Metadata, 2862 llvm::SmallPtrSet<Module *, 16> &Visited) { 2863 // Import this module's parent. 2864 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2865 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2866 } 2867 2868 // Import this module's dependencies. 2869 for (Module *Import : llvm::reverse(Mod->Imports)) { 2870 if (Visited.insert(Import).second) 2871 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2872 } 2873 2874 // Add linker options to link against the libraries/frameworks 2875 // described by this module. 2876 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2877 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2878 2879 // For modules that use export_as for linking, use that module 2880 // name instead. 2881 if (Mod->UseExportAsModuleLinkName) 2882 return; 2883 2884 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2885 // Link against a framework. Frameworks are currently Darwin only, so we 2886 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2887 if (LL.IsFramework) { 2888 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2889 llvm::MDString::get(Context, LL.Library)}; 2890 2891 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2892 continue; 2893 } 2894 2895 // Link against a library. 2896 if (IsELF) { 2897 llvm::Metadata *Args[2] = { 2898 llvm::MDString::get(Context, "lib"), 2899 llvm::MDString::get(Context, LL.Library), 2900 }; 2901 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2902 } else { 2903 llvm::SmallString<24> Opt; 2904 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2905 auto *OptString = llvm::MDString::get(Context, Opt); 2906 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2907 } 2908 } 2909 } 2910 2911 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2912 // Emit the initializers in the order that sub-modules appear in the 2913 // source, first Global Module Fragments, if present. 2914 if (auto GMF = Primary->getGlobalModuleFragment()) { 2915 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2916 if (isa<ImportDecl>(D)) 2917 continue; 2918 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2919 EmitTopLevelDecl(D); 2920 } 2921 } 2922 // Second any associated with the module, itself. 2923 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2924 // Skip import decls, the inits for those are called explicitly. 2925 if (isa<ImportDecl>(D)) 2926 continue; 2927 EmitTopLevelDecl(D); 2928 } 2929 // Third any associated with the Privat eMOdule Fragment, if present. 2930 if (auto PMF = Primary->getPrivateModuleFragment()) { 2931 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2932 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2933 EmitTopLevelDecl(D); 2934 } 2935 } 2936 } 2937 2938 void CodeGenModule::EmitModuleLinkOptions() { 2939 // Collect the set of all of the modules we want to visit to emit link 2940 // options, which is essentially the imported modules and all of their 2941 // non-explicit child modules. 2942 llvm::SetVector<clang::Module *> LinkModules; 2943 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2944 SmallVector<clang::Module *, 16> Stack; 2945 2946 // Seed the stack with imported modules. 2947 for (Module *M : ImportedModules) { 2948 // Do not add any link flags when an implementation TU of a module imports 2949 // a header of that same module. 2950 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2951 !getLangOpts().isCompilingModule()) 2952 continue; 2953 if (Visited.insert(M).second) 2954 Stack.push_back(M); 2955 } 2956 2957 // Find all of the modules to import, making a little effort to prune 2958 // non-leaf modules. 2959 while (!Stack.empty()) { 2960 clang::Module *Mod = Stack.pop_back_val(); 2961 2962 bool AnyChildren = false; 2963 2964 // Visit the submodules of this module. 2965 for (const auto &SM : Mod->submodules()) { 2966 // Skip explicit children; they need to be explicitly imported to be 2967 // linked against. 2968 if (SM->IsExplicit) 2969 continue; 2970 2971 if (Visited.insert(SM).second) { 2972 Stack.push_back(SM); 2973 AnyChildren = true; 2974 } 2975 } 2976 2977 // We didn't find any children, so add this module to the list of 2978 // modules to link against. 2979 if (!AnyChildren) { 2980 LinkModules.insert(Mod); 2981 } 2982 } 2983 2984 // Add link options for all of the imported modules in reverse topological 2985 // order. We don't do anything to try to order import link flags with respect 2986 // to linker options inserted by things like #pragma comment(). 2987 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2988 Visited.clear(); 2989 for (Module *M : LinkModules) 2990 if (Visited.insert(M).second) 2991 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2992 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2993 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2994 2995 // Add the linker options metadata flag. 2996 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2997 for (auto *MD : LinkerOptionsMetadata) 2998 NMD->addOperand(MD); 2999 } 3000 3001 void CodeGenModule::EmitDeferred() { 3002 // Emit deferred declare target declarations. 3003 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3004 getOpenMPRuntime().emitDeferredTargetDecls(); 3005 3006 // Emit code for any potentially referenced deferred decls. Since a 3007 // previously unused static decl may become used during the generation of code 3008 // for a static function, iterate until no changes are made. 3009 3010 if (!DeferredVTables.empty()) { 3011 EmitDeferredVTables(); 3012 3013 // Emitting a vtable doesn't directly cause more vtables to 3014 // become deferred, although it can cause functions to be 3015 // emitted that then need those vtables. 3016 assert(DeferredVTables.empty()); 3017 } 3018 3019 // Emit CUDA/HIP static device variables referenced by host code only. 3020 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3021 // needed for further handling. 3022 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3023 llvm::append_range(DeferredDeclsToEmit, 3024 getContext().CUDADeviceVarODRUsedByHost); 3025 3026 // Stop if we're out of both deferred vtables and deferred declarations. 3027 if (DeferredDeclsToEmit.empty()) 3028 return; 3029 3030 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3031 // work, it will not interfere with this. 3032 std::vector<GlobalDecl> CurDeclsToEmit; 3033 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3034 3035 for (GlobalDecl &D : CurDeclsToEmit) { 3036 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3037 // to get GlobalValue with exactly the type we need, not something that 3038 // might had been created for another decl with the same mangled name but 3039 // different type. 3040 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3041 GetAddrOfGlobal(D, ForDefinition)); 3042 3043 // In case of different address spaces, we may still get a cast, even with 3044 // IsForDefinition equal to true. Query mangled names table to get 3045 // GlobalValue. 3046 if (!GV) 3047 GV = GetGlobalValue(getMangledName(D)); 3048 3049 // Make sure GetGlobalValue returned non-null. 3050 assert(GV); 3051 3052 // Check to see if we've already emitted this. This is necessary 3053 // for a couple of reasons: first, decls can end up in the 3054 // deferred-decls queue multiple times, and second, decls can end 3055 // up with definitions in unusual ways (e.g. by an extern inline 3056 // function acquiring a strong function redefinition). Just 3057 // ignore these cases. 3058 if (!GV->isDeclaration()) 3059 continue; 3060 3061 // If this is OpenMP, check if it is legal to emit this global normally. 3062 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3063 continue; 3064 3065 // Otherwise, emit the definition and move on to the next one. 3066 EmitGlobalDefinition(D, GV); 3067 3068 // If we found out that we need to emit more decls, do that recursively. 3069 // This has the advantage that the decls are emitted in a DFS and related 3070 // ones are close together, which is convenient for testing. 3071 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3072 EmitDeferred(); 3073 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3074 } 3075 } 3076 } 3077 3078 void CodeGenModule::EmitVTablesOpportunistically() { 3079 // Try to emit external vtables as available_externally if they have emitted 3080 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3081 // is not allowed to create new references to things that need to be emitted 3082 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3083 3084 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3085 && "Only emit opportunistic vtables with optimizations"); 3086 3087 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3088 assert(getVTables().isVTableExternal(RD) && 3089 "This queue should only contain external vtables"); 3090 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3091 VTables.GenerateClassData(RD); 3092 } 3093 OpportunisticVTables.clear(); 3094 } 3095 3096 void CodeGenModule::EmitGlobalAnnotations() { 3097 if (Annotations.empty()) 3098 return; 3099 3100 // Create a new global variable for the ConstantStruct in the Module. 3101 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3102 Annotations[0]->getType(), Annotations.size()), Annotations); 3103 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3104 llvm::GlobalValue::AppendingLinkage, 3105 Array, "llvm.global.annotations"); 3106 gv->setSection(AnnotationSection); 3107 } 3108 3109 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3110 llvm::Constant *&AStr = AnnotationStrings[Str]; 3111 if (AStr) 3112 return AStr; 3113 3114 // Not found yet, create a new global. 3115 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3116 auto *gv = new llvm::GlobalVariable( 3117 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3118 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3119 ConstGlobalsPtrTy->getAddressSpace()); 3120 gv->setSection(AnnotationSection); 3121 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3122 AStr = gv; 3123 return gv; 3124 } 3125 3126 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3127 SourceManager &SM = getContext().getSourceManager(); 3128 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3129 if (PLoc.isValid()) 3130 return EmitAnnotationString(PLoc.getFilename()); 3131 return EmitAnnotationString(SM.getBufferName(Loc)); 3132 } 3133 3134 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3135 SourceManager &SM = getContext().getSourceManager(); 3136 PresumedLoc PLoc = SM.getPresumedLoc(L); 3137 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3138 SM.getExpansionLineNumber(L); 3139 return llvm::ConstantInt::get(Int32Ty, LineNo); 3140 } 3141 3142 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3143 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3144 if (Exprs.empty()) 3145 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3146 3147 llvm::FoldingSetNodeID ID; 3148 for (Expr *E : Exprs) { 3149 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3150 } 3151 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3152 if (Lookup) 3153 return Lookup; 3154 3155 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3156 LLVMArgs.reserve(Exprs.size()); 3157 ConstantEmitter ConstEmiter(*this); 3158 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3159 const auto *CE = cast<clang::ConstantExpr>(E); 3160 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3161 CE->getType()); 3162 }); 3163 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3164 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3165 llvm::GlobalValue::PrivateLinkage, Struct, 3166 ".args"); 3167 GV->setSection(AnnotationSection); 3168 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3169 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 3170 3171 Lookup = Bitcasted; 3172 return Bitcasted; 3173 } 3174 3175 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3176 const AnnotateAttr *AA, 3177 SourceLocation L) { 3178 // Get the globals for file name, annotation, and the line number. 3179 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3180 *UnitGV = EmitAnnotationUnit(L), 3181 *LineNoCst = EmitAnnotationLineNo(L), 3182 *Args = EmitAnnotationArgs(AA); 3183 3184 llvm::Constant *GVInGlobalsAS = GV; 3185 if (GV->getAddressSpace() != 3186 getDataLayout().getDefaultGlobalsAddressSpace()) { 3187 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3188 GV, GV->getValueType()->getPointerTo( 3189 getDataLayout().getDefaultGlobalsAddressSpace())); 3190 } 3191 3192 // Create the ConstantStruct for the global annotation. 3193 llvm::Constant *Fields[] = { 3194 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 3195 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 3196 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 3197 LineNoCst, 3198 Args, 3199 }; 3200 return llvm::ConstantStruct::getAnon(Fields); 3201 } 3202 3203 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3204 llvm::GlobalValue *GV) { 3205 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3206 // Get the struct elements for these annotations. 3207 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3208 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3209 } 3210 3211 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3212 SourceLocation Loc) const { 3213 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3214 // NoSanitize by function name. 3215 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3216 return true; 3217 // NoSanitize by location. Check "mainfile" prefix. 3218 auto &SM = Context.getSourceManager(); 3219 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3220 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3221 return true; 3222 3223 // Check "src" prefix. 3224 if (Loc.isValid()) 3225 return NoSanitizeL.containsLocation(Kind, Loc); 3226 // If location is unknown, this may be a compiler-generated function. Assume 3227 // it's located in the main file. 3228 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3229 } 3230 3231 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3232 llvm::GlobalVariable *GV, 3233 SourceLocation Loc, QualType Ty, 3234 StringRef Category) const { 3235 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3236 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3237 return true; 3238 auto &SM = Context.getSourceManager(); 3239 if (NoSanitizeL.containsMainFile( 3240 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3241 Category)) 3242 return true; 3243 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3244 return true; 3245 3246 // Check global type. 3247 if (!Ty.isNull()) { 3248 // Drill down the array types: if global variable of a fixed type is 3249 // not sanitized, we also don't instrument arrays of them. 3250 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3251 Ty = AT->getElementType(); 3252 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3253 // Only record types (classes, structs etc.) are ignored. 3254 if (Ty->isRecordType()) { 3255 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3256 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3257 return true; 3258 } 3259 } 3260 return false; 3261 } 3262 3263 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3264 StringRef Category) const { 3265 const auto &XRayFilter = getContext().getXRayFilter(); 3266 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3267 auto Attr = ImbueAttr::NONE; 3268 if (Loc.isValid()) 3269 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3270 if (Attr == ImbueAttr::NONE) 3271 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3272 switch (Attr) { 3273 case ImbueAttr::NONE: 3274 return false; 3275 case ImbueAttr::ALWAYS: 3276 Fn->addFnAttr("function-instrument", "xray-always"); 3277 break; 3278 case ImbueAttr::ALWAYS_ARG1: 3279 Fn->addFnAttr("function-instrument", "xray-always"); 3280 Fn->addFnAttr("xray-log-args", "1"); 3281 break; 3282 case ImbueAttr::NEVER: 3283 Fn->addFnAttr("function-instrument", "xray-never"); 3284 break; 3285 } 3286 return true; 3287 } 3288 3289 ProfileList::ExclusionType 3290 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3291 SourceLocation Loc) const { 3292 const auto &ProfileList = getContext().getProfileList(); 3293 // If the profile list is empty, then instrument everything. 3294 if (ProfileList.isEmpty()) 3295 return ProfileList::Allow; 3296 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3297 // First, check the function name. 3298 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3299 return *V; 3300 // Next, check the source location. 3301 if (Loc.isValid()) 3302 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3303 return *V; 3304 // If location is unknown, this may be a compiler-generated function. Assume 3305 // it's located in the main file. 3306 auto &SM = Context.getSourceManager(); 3307 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3308 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3309 return *V; 3310 return ProfileList.getDefault(Kind); 3311 } 3312 3313 ProfileList::ExclusionType 3314 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3315 SourceLocation Loc) const { 3316 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3317 if (V != ProfileList::Allow) 3318 return V; 3319 3320 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3321 if (NumGroups > 1) { 3322 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3323 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3324 return ProfileList::Skip; 3325 } 3326 return ProfileList::Allow; 3327 } 3328 3329 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3330 // Never defer when EmitAllDecls is specified. 3331 if (LangOpts.EmitAllDecls) 3332 return true; 3333 3334 const auto *VD = dyn_cast<VarDecl>(Global); 3335 if (VD && 3336 ((CodeGenOpts.KeepPersistentStorageVariables && 3337 (VD->getStorageDuration() == SD_Static || 3338 VD->getStorageDuration() == SD_Thread)) || 3339 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3340 VD->getType().isConstQualified()))) 3341 return true; 3342 3343 return getContext().DeclMustBeEmitted(Global); 3344 } 3345 3346 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3347 // In OpenMP 5.0 variables and function may be marked as 3348 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3349 // that they must be emitted on the host/device. To be sure we need to have 3350 // seen a declare target with an explicit mentioning of the function, we know 3351 // we have if the level of the declare target attribute is -1. Note that we 3352 // check somewhere else if we should emit this at all. 3353 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3354 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3355 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3356 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3357 return false; 3358 } 3359 3360 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3361 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3362 // Implicit template instantiations may change linkage if they are later 3363 // explicitly instantiated, so they should not be emitted eagerly. 3364 return false; 3365 } 3366 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3367 if (Context.getInlineVariableDefinitionKind(VD) == 3368 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3369 // A definition of an inline constexpr static data member may change 3370 // linkage later if it's redeclared outside the class. 3371 return false; 3372 if (CXX20ModuleInits && VD->getOwningModule() && 3373 !VD->getOwningModule()->isModuleMapModule()) { 3374 // For CXX20, module-owned initializers need to be deferred, since it is 3375 // not known at this point if they will be run for the current module or 3376 // as part of the initializer for an imported one. 3377 return false; 3378 } 3379 } 3380 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3381 // codegen for global variables, because they may be marked as threadprivate. 3382 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3383 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3384 !Global->getType().isConstantStorage(getContext(), false, false) && 3385 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3386 return false; 3387 3388 return true; 3389 } 3390 3391 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3392 StringRef Name = getMangledName(GD); 3393 3394 // The UUID descriptor should be pointer aligned. 3395 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3396 3397 // Look for an existing global. 3398 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3399 return ConstantAddress(GV, GV->getValueType(), Alignment); 3400 3401 ConstantEmitter Emitter(*this); 3402 llvm::Constant *Init; 3403 3404 APValue &V = GD->getAsAPValue(); 3405 if (!V.isAbsent()) { 3406 // If possible, emit the APValue version of the initializer. In particular, 3407 // this gets the type of the constant right. 3408 Init = Emitter.emitForInitializer( 3409 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3410 } else { 3411 // As a fallback, directly construct the constant. 3412 // FIXME: This may get padding wrong under esoteric struct layout rules. 3413 // MSVC appears to create a complete type 'struct __s_GUID' that it 3414 // presumably uses to represent these constants. 3415 MSGuidDecl::Parts Parts = GD->getParts(); 3416 llvm::Constant *Fields[4] = { 3417 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3418 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3419 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3420 llvm::ConstantDataArray::getRaw( 3421 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3422 Int8Ty)}; 3423 Init = llvm::ConstantStruct::getAnon(Fields); 3424 } 3425 3426 auto *GV = new llvm::GlobalVariable( 3427 getModule(), Init->getType(), 3428 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3429 if (supportsCOMDAT()) 3430 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3431 setDSOLocal(GV); 3432 3433 if (!V.isAbsent()) { 3434 Emitter.finalize(GV); 3435 return ConstantAddress(GV, GV->getValueType(), Alignment); 3436 } 3437 3438 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3439 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3440 GV, Ty->getPointerTo(GV->getAddressSpace())); 3441 return ConstantAddress(Addr, Ty, Alignment); 3442 } 3443 3444 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3445 const UnnamedGlobalConstantDecl *GCD) { 3446 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3447 3448 llvm::GlobalVariable **Entry = nullptr; 3449 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3450 if (*Entry) 3451 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3452 3453 ConstantEmitter Emitter(*this); 3454 llvm::Constant *Init; 3455 3456 const APValue &V = GCD->getValue(); 3457 3458 assert(!V.isAbsent()); 3459 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3460 GCD->getType()); 3461 3462 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3463 /*isConstant=*/true, 3464 llvm::GlobalValue::PrivateLinkage, Init, 3465 ".constant"); 3466 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3467 GV->setAlignment(Alignment.getAsAlign()); 3468 3469 Emitter.finalize(GV); 3470 3471 *Entry = GV; 3472 return ConstantAddress(GV, GV->getValueType(), Alignment); 3473 } 3474 3475 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3476 const TemplateParamObjectDecl *TPO) { 3477 StringRef Name = getMangledName(TPO); 3478 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3479 3480 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3481 return ConstantAddress(GV, GV->getValueType(), Alignment); 3482 3483 ConstantEmitter Emitter(*this); 3484 llvm::Constant *Init = Emitter.emitForInitializer( 3485 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3486 3487 if (!Init) { 3488 ErrorUnsupported(TPO, "template parameter object"); 3489 return ConstantAddress::invalid(); 3490 } 3491 3492 llvm::GlobalValue::LinkageTypes Linkage = 3493 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3494 ? llvm::GlobalValue::LinkOnceODRLinkage 3495 : llvm::GlobalValue::InternalLinkage; 3496 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3497 /*isConstant=*/true, Linkage, Init, Name); 3498 setGVProperties(GV, TPO); 3499 if (supportsCOMDAT()) 3500 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3501 Emitter.finalize(GV); 3502 3503 return ConstantAddress(GV, GV->getValueType(), Alignment); 3504 } 3505 3506 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3507 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3508 assert(AA && "No alias?"); 3509 3510 CharUnits Alignment = getContext().getDeclAlign(VD); 3511 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3512 3513 // See if there is already something with the target's name in the module. 3514 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3515 if (Entry) { 3516 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3517 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3518 return ConstantAddress(Ptr, DeclTy, Alignment); 3519 } 3520 3521 llvm::Constant *Aliasee; 3522 if (isa<llvm::FunctionType>(DeclTy)) 3523 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3524 GlobalDecl(cast<FunctionDecl>(VD)), 3525 /*ForVTable=*/false); 3526 else 3527 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3528 nullptr); 3529 3530 auto *F = cast<llvm::GlobalValue>(Aliasee); 3531 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3532 WeakRefReferences.insert(F); 3533 3534 return ConstantAddress(Aliasee, DeclTy, Alignment); 3535 } 3536 3537 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3538 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3539 3540 // Weak references don't produce any output by themselves. 3541 if (Global->hasAttr<WeakRefAttr>()) 3542 return; 3543 3544 // If this is an alias definition (which otherwise looks like a declaration) 3545 // emit it now. 3546 if (Global->hasAttr<AliasAttr>()) 3547 return EmitAliasDefinition(GD); 3548 3549 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3550 if (Global->hasAttr<IFuncAttr>()) 3551 return emitIFuncDefinition(GD); 3552 3553 // If this is a cpu_dispatch multiversion function, emit the resolver. 3554 if (Global->hasAttr<CPUDispatchAttr>()) 3555 return emitCPUDispatchDefinition(GD); 3556 3557 // If this is CUDA, be selective about which declarations we emit. 3558 if (LangOpts.CUDA) { 3559 if (LangOpts.CUDAIsDevice) { 3560 if (!Global->hasAttr<CUDADeviceAttr>() && 3561 !Global->hasAttr<CUDAGlobalAttr>() && 3562 !Global->hasAttr<CUDAConstantAttr>() && 3563 !Global->hasAttr<CUDASharedAttr>() && 3564 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3565 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3566 return; 3567 } else { 3568 // We need to emit host-side 'shadows' for all global 3569 // device-side variables because the CUDA runtime needs their 3570 // size and host-side address in order to provide access to 3571 // their device-side incarnations. 3572 3573 // So device-only functions are the only things we skip. 3574 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3575 Global->hasAttr<CUDADeviceAttr>()) 3576 return; 3577 3578 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3579 "Expected Variable or Function"); 3580 } 3581 } 3582 3583 if (LangOpts.OpenMP) { 3584 // If this is OpenMP, check if it is legal to emit this global normally. 3585 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3586 return; 3587 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3588 if (MustBeEmitted(Global)) 3589 EmitOMPDeclareReduction(DRD); 3590 return; 3591 } 3592 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3593 if (MustBeEmitted(Global)) 3594 EmitOMPDeclareMapper(DMD); 3595 return; 3596 } 3597 } 3598 3599 // Ignore declarations, they will be emitted on their first use. 3600 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3601 // Forward declarations are emitted lazily on first use. 3602 if (!FD->doesThisDeclarationHaveABody()) { 3603 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3604 return; 3605 3606 StringRef MangledName = getMangledName(GD); 3607 3608 // Compute the function info and LLVM type. 3609 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3610 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3611 3612 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3613 /*DontDefer=*/false); 3614 return; 3615 } 3616 } else { 3617 const auto *VD = cast<VarDecl>(Global); 3618 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3619 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3620 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3621 if (LangOpts.OpenMP) { 3622 // Emit declaration of the must-be-emitted declare target variable. 3623 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3624 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3625 3626 // If this variable has external storage and doesn't require special 3627 // link handling we defer to its canonical definition. 3628 if (VD->hasExternalStorage() && 3629 Res != OMPDeclareTargetDeclAttr::MT_Link) 3630 return; 3631 3632 bool UnifiedMemoryEnabled = 3633 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3634 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3635 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3636 !UnifiedMemoryEnabled) { 3637 (void)GetAddrOfGlobalVar(VD); 3638 } else { 3639 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3640 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3641 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3642 UnifiedMemoryEnabled)) && 3643 "Link clause or to clause with unified memory expected."); 3644 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3645 } 3646 3647 return; 3648 } 3649 } 3650 // If this declaration may have caused an inline variable definition to 3651 // change linkage, make sure that it's emitted. 3652 if (Context.getInlineVariableDefinitionKind(VD) == 3653 ASTContext::InlineVariableDefinitionKind::Strong) 3654 GetAddrOfGlobalVar(VD); 3655 return; 3656 } 3657 } 3658 3659 // Defer code generation to first use when possible, e.g. if this is an inline 3660 // function. If the global must always be emitted, do it eagerly if possible 3661 // to benefit from cache locality. 3662 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3663 // Emit the definition if it can't be deferred. 3664 EmitGlobalDefinition(GD); 3665 addEmittedDeferredDecl(GD); 3666 return; 3667 } 3668 3669 // If we're deferring emission of a C++ variable with an 3670 // initializer, remember the order in which it appeared in the file. 3671 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3672 cast<VarDecl>(Global)->hasInit()) { 3673 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3674 CXXGlobalInits.push_back(nullptr); 3675 } 3676 3677 StringRef MangledName = getMangledName(GD); 3678 if (GetGlobalValue(MangledName) != nullptr) { 3679 // The value has already been used and should therefore be emitted. 3680 addDeferredDeclToEmit(GD); 3681 } else if (MustBeEmitted(Global)) { 3682 // The value must be emitted, but cannot be emitted eagerly. 3683 assert(!MayBeEmittedEagerly(Global)); 3684 addDeferredDeclToEmit(GD); 3685 } else { 3686 // Otherwise, remember that we saw a deferred decl with this name. The 3687 // first use of the mangled name will cause it to move into 3688 // DeferredDeclsToEmit. 3689 DeferredDecls[MangledName] = GD; 3690 } 3691 } 3692 3693 // Check if T is a class type with a destructor that's not dllimport. 3694 static bool HasNonDllImportDtor(QualType T) { 3695 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3696 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3697 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3698 return true; 3699 3700 return false; 3701 } 3702 3703 namespace { 3704 struct FunctionIsDirectlyRecursive 3705 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3706 const StringRef Name; 3707 const Builtin::Context &BI; 3708 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3709 : Name(N), BI(C) {} 3710 3711 bool VisitCallExpr(const CallExpr *E) { 3712 const FunctionDecl *FD = E->getDirectCallee(); 3713 if (!FD) 3714 return false; 3715 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3716 if (Attr && Name == Attr->getLabel()) 3717 return true; 3718 unsigned BuiltinID = FD->getBuiltinID(); 3719 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3720 return false; 3721 StringRef BuiltinName = BI.getName(BuiltinID); 3722 if (BuiltinName.startswith("__builtin_") && 3723 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3724 return true; 3725 } 3726 return false; 3727 } 3728 3729 bool VisitStmt(const Stmt *S) { 3730 for (const Stmt *Child : S->children()) 3731 if (Child && this->Visit(Child)) 3732 return true; 3733 return false; 3734 } 3735 }; 3736 3737 // Make sure we're not referencing non-imported vars or functions. 3738 struct DLLImportFunctionVisitor 3739 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3740 bool SafeToInline = true; 3741 3742 bool shouldVisitImplicitCode() const { return true; } 3743 3744 bool VisitVarDecl(VarDecl *VD) { 3745 if (VD->getTLSKind()) { 3746 // A thread-local variable cannot be imported. 3747 SafeToInline = false; 3748 return SafeToInline; 3749 } 3750 3751 // A variable definition might imply a destructor call. 3752 if (VD->isThisDeclarationADefinition()) 3753 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3754 3755 return SafeToInline; 3756 } 3757 3758 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3759 if (const auto *D = E->getTemporary()->getDestructor()) 3760 SafeToInline = D->hasAttr<DLLImportAttr>(); 3761 return SafeToInline; 3762 } 3763 3764 bool VisitDeclRefExpr(DeclRefExpr *E) { 3765 ValueDecl *VD = E->getDecl(); 3766 if (isa<FunctionDecl>(VD)) 3767 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3768 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3769 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3770 return SafeToInline; 3771 } 3772 3773 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3774 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3775 return SafeToInline; 3776 } 3777 3778 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3779 CXXMethodDecl *M = E->getMethodDecl(); 3780 if (!M) { 3781 // Call through a pointer to member function. This is safe to inline. 3782 SafeToInline = true; 3783 } else { 3784 SafeToInline = M->hasAttr<DLLImportAttr>(); 3785 } 3786 return SafeToInline; 3787 } 3788 3789 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3790 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3791 return SafeToInline; 3792 } 3793 3794 bool VisitCXXNewExpr(CXXNewExpr *E) { 3795 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3796 return SafeToInline; 3797 } 3798 }; 3799 } 3800 3801 // isTriviallyRecursive - Check if this function calls another 3802 // decl that, because of the asm attribute or the other decl being a builtin, 3803 // ends up pointing to itself. 3804 bool 3805 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3806 StringRef Name; 3807 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3808 // asm labels are a special kind of mangling we have to support. 3809 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3810 if (!Attr) 3811 return false; 3812 Name = Attr->getLabel(); 3813 } else { 3814 Name = FD->getName(); 3815 } 3816 3817 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3818 const Stmt *Body = FD->getBody(); 3819 return Body ? Walker.Visit(Body) : false; 3820 } 3821 3822 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3823 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3824 return true; 3825 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3826 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3827 return false; 3828 3829 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3830 // Check whether it would be safe to inline this dllimport function. 3831 DLLImportFunctionVisitor Visitor; 3832 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3833 if (!Visitor.SafeToInline) 3834 return false; 3835 3836 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3837 // Implicit destructor invocations aren't captured in the AST, so the 3838 // check above can't see them. Check for them manually here. 3839 for (const Decl *Member : Dtor->getParent()->decls()) 3840 if (isa<FieldDecl>(Member)) 3841 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3842 return false; 3843 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3844 if (HasNonDllImportDtor(B.getType())) 3845 return false; 3846 } 3847 } 3848 3849 // Inline builtins declaration must be emitted. They often are fortified 3850 // functions. 3851 if (F->isInlineBuiltinDeclaration()) 3852 return true; 3853 3854 // PR9614. Avoid cases where the source code is lying to us. An available 3855 // externally function should have an equivalent function somewhere else, 3856 // but a function that calls itself through asm label/`__builtin_` trickery is 3857 // clearly not equivalent to the real implementation. 3858 // This happens in glibc's btowc and in some configure checks. 3859 return !isTriviallyRecursive(F); 3860 } 3861 3862 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3863 return CodeGenOpts.OptimizationLevel > 0; 3864 } 3865 3866 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3867 llvm::GlobalValue *GV) { 3868 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3869 3870 if (FD->isCPUSpecificMultiVersion()) { 3871 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3872 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3873 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3874 } else if (FD->isTargetClonesMultiVersion()) { 3875 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3876 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3877 if (Clone->isFirstOfVersion(I)) 3878 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3879 // Ensure that the resolver function is also emitted. 3880 GetOrCreateMultiVersionResolver(GD); 3881 } else 3882 EmitGlobalFunctionDefinition(GD, GV); 3883 } 3884 3885 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3886 const auto *D = cast<ValueDecl>(GD.getDecl()); 3887 3888 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3889 Context.getSourceManager(), 3890 "Generating code for declaration"); 3891 3892 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3893 // At -O0, don't generate IR for functions with available_externally 3894 // linkage. 3895 if (!shouldEmitFunction(GD)) 3896 return; 3897 3898 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3899 std::string Name; 3900 llvm::raw_string_ostream OS(Name); 3901 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3902 /*Qualified=*/true); 3903 return Name; 3904 }); 3905 3906 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3907 // Make sure to emit the definition(s) before we emit the thunks. 3908 // This is necessary for the generation of certain thunks. 3909 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3910 ABI->emitCXXStructor(GD); 3911 else if (FD->isMultiVersion()) 3912 EmitMultiVersionFunctionDefinition(GD, GV); 3913 else 3914 EmitGlobalFunctionDefinition(GD, GV); 3915 3916 if (Method->isVirtual()) 3917 getVTables().EmitThunks(GD); 3918 3919 return; 3920 } 3921 3922 if (FD->isMultiVersion()) 3923 return EmitMultiVersionFunctionDefinition(GD, GV); 3924 return EmitGlobalFunctionDefinition(GD, GV); 3925 } 3926 3927 if (const auto *VD = dyn_cast<VarDecl>(D)) 3928 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3929 3930 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3931 } 3932 3933 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3934 llvm::Function *NewFn); 3935 3936 static unsigned 3937 TargetMVPriority(const TargetInfo &TI, 3938 const CodeGenFunction::MultiVersionResolverOption &RO) { 3939 unsigned Priority = 0; 3940 unsigned NumFeatures = 0; 3941 for (StringRef Feat : RO.Conditions.Features) { 3942 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3943 NumFeatures++; 3944 } 3945 3946 if (!RO.Conditions.Architecture.empty()) 3947 Priority = std::max( 3948 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3949 3950 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3951 3952 return Priority; 3953 } 3954 3955 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3956 // TU can forward declare the function without causing problems. Particularly 3957 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3958 // work with internal linkage functions, so that the same function name can be 3959 // used with internal linkage in multiple TUs. 3960 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3961 GlobalDecl GD) { 3962 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3963 if (FD->getFormalLinkage() == InternalLinkage) 3964 return llvm::GlobalValue::InternalLinkage; 3965 return llvm::GlobalValue::WeakODRLinkage; 3966 } 3967 3968 void CodeGenModule::emitMultiVersionFunctions() { 3969 std::vector<GlobalDecl> MVFuncsToEmit; 3970 MultiVersionFuncs.swap(MVFuncsToEmit); 3971 for (GlobalDecl GD : MVFuncsToEmit) { 3972 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3973 assert(FD && "Expected a FunctionDecl"); 3974 3975 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3976 if (FD->isTargetMultiVersion()) { 3977 getContext().forEachMultiversionedFunctionVersion( 3978 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3979 GlobalDecl CurGD{ 3980 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3981 StringRef MangledName = getMangledName(CurGD); 3982 llvm::Constant *Func = GetGlobalValue(MangledName); 3983 if (!Func) { 3984 if (CurFD->isDefined()) { 3985 EmitGlobalFunctionDefinition(CurGD, nullptr); 3986 Func = GetGlobalValue(MangledName); 3987 } else { 3988 const CGFunctionInfo &FI = 3989 getTypes().arrangeGlobalDeclaration(GD); 3990 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3991 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3992 /*DontDefer=*/false, ForDefinition); 3993 } 3994 assert(Func && "This should have just been created"); 3995 } 3996 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 3997 const auto *TA = CurFD->getAttr<TargetAttr>(); 3998 llvm::SmallVector<StringRef, 8> Feats; 3999 TA->getAddedFeatures(Feats); 4000 Options.emplace_back(cast<llvm::Function>(Func), 4001 TA->getArchitecture(), Feats); 4002 } else { 4003 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4004 llvm::SmallVector<StringRef, 8> Feats; 4005 TVA->getFeatures(Feats); 4006 Options.emplace_back(cast<llvm::Function>(Func), 4007 /*Architecture*/ "", Feats); 4008 } 4009 }); 4010 } else if (FD->isTargetClonesMultiVersion()) { 4011 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4012 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4013 ++VersionIndex) { 4014 if (!TC->isFirstOfVersion(VersionIndex)) 4015 continue; 4016 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4017 VersionIndex}; 4018 StringRef Version = TC->getFeatureStr(VersionIndex); 4019 StringRef MangledName = getMangledName(CurGD); 4020 llvm::Constant *Func = GetGlobalValue(MangledName); 4021 if (!Func) { 4022 if (FD->isDefined()) { 4023 EmitGlobalFunctionDefinition(CurGD, nullptr); 4024 Func = GetGlobalValue(MangledName); 4025 } else { 4026 const CGFunctionInfo &FI = 4027 getTypes().arrangeGlobalDeclaration(CurGD); 4028 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4029 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4030 /*DontDefer=*/false, ForDefinition); 4031 } 4032 assert(Func && "This should have just been created"); 4033 } 4034 4035 StringRef Architecture; 4036 llvm::SmallVector<StringRef, 1> Feature; 4037 4038 if (getTarget().getTriple().isAArch64()) { 4039 if (Version != "default") { 4040 llvm::SmallVector<StringRef, 8> VerFeats; 4041 Version.split(VerFeats, "+"); 4042 for (auto &CurFeat : VerFeats) 4043 Feature.push_back(CurFeat.trim()); 4044 } 4045 } else { 4046 if (Version.startswith("arch=")) 4047 Architecture = Version.drop_front(sizeof("arch=") - 1); 4048 else if (Version != "default") 4049 Feature.push_back(Version); 4050 } 4051 4052 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4053 } 4054 } else { 4055 assert(0 && "Expected a target or target_clones multiversion function"); 4056 continue; 4057 } 4058 4059 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4060 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 4061 ResolverConstant = IFunc->getResolver(); 4062 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4063 4064 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4065 4066 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4067 ResolverFunc->setComdat( 4068 getModule().getOrInsertComdat(ResolverFunc->getName())); 4069 4070 const TargetInfo &TI = getTarget(); 4071 llvm::stable_sort( 4072 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4073 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4074 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4075 }); 4076 CodeGenFunction CGF(*this); 4077 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4078 } 4079 4080 // Ensure that any additions to the deferred decls list caused by emitting a 4081 // variant are emitted. This can happen when the variant itself is inline and 4082 // calls a function without linkage. 4083 if (!MVFuncsToEmit.empty()) 4084 EmitDeferred(); 4085 4086 // Ensure that any additions to the multiversion funcs list from either the 4087 // deferred decls or the multiversion functions themselves are emitted. 4088 if (!MultiVersionFuncs.empty()) 4089 emitMultiVersionFunctions(); 4090 } 4091 4092 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4093 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4094 assert(FD && "Not a FunctionDecl?"); 4095 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4096 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4097 assert(DD && "Not a cpu_dispatch Function?"); 4098 4099 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4100 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4101 4102 StringRef ResolverName = getMangledName(GD); 4103 UpdateMultiVersionNames(GD, FD, ResolverName); 4104 4105 llvm::Type *ResolverType; 4106 GlobalDecl ResolverGD; 4107 if (getTarget().supportsIFunc()) { 4108 ResolverType = llvm::FunctionType::get( 4109 llvm::PointerType::get(DeclTy, 4110 getTypes().getTargetAddressSpace(FD->getType())), 4111 false); 4112 } 4113 else { 4114 ResolverType = DeclTy; 4115 ResolverGD = GD; 4116 } 4117 4118 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4119 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4120 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4121 if (supportsCOMDAT()) 4122 ResolverFunc->setComdat( 4123 getModule().getOrInsertComdat(ResolverFunc->getName())); 4124 4125 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4126 const TargetInfo &Target = getTarget(); 4127 unsigned Index = 0; 4128 for (const IdentifierInfo *II : DD->cpus()) { 4129 // Get the name of the target function so we can look it up/create it. 4130 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4131 getCPUSpecificMangling(*this, II->getName()); 4132 4133 llvm::Constant *Func = GetGlobalValue(MangledName); 4134 4135 if (!Func) { 4136 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4137 if (ExistingDecl.getDecl() && 4138 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4139 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4140 Func = GetGlobalValue(MangledName); 4141 } else { 4142 if (!ExistingDecl.getDecl()) 4143 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4144 4145 Func = GetOrCreateLLVMFunction( 4146 MangledName, DeclTy, ExistingDecl, 4147 /*ForVTable=*/false, /*DontDefer=*/true, 4148 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4149 } 4150 } 4151 4152 llvm::SmallVector<StringRef, 32> Features; 4153 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4154 llvm::transform(Features, Features.begin(), 4155 [](StringRef Str) { return Str.substr(1); }); 4156 llvm::erase_if(Features, [&Target](StringRef Feat) { 4157 return !Target.validateCpuSupports(Feat); 4158 }); 4159 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4160 ++Index; 4161 } 4162 4163 llvm::stable_sort( 4164 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4165 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4166 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4167 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4168 }); 4169 4170 // If the list contains multiple 'default' versions, such as when it contains 4171 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4172 // always run on at least a 'pentium'). We do this by deleting the 'least 4173 // advanced' (read, lowest mangling letter). 4174 while (Options.size() > 1 && 4175 llvm::all_of(llvm::X86::getCpuSupportsMask( 4176 (Options.end() - 2)->Conditions.Features), 4177 [](auto X) { return X == 0; })) { 4178 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4179 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4180 if (LHSName.compare(RHSName) < 0) 4181 Options.erase(Options.end() - 2); 4182 else 4183 Options.erase(Options.end() - 1); 4184 } 4185 4186 CodeGenFunction CGF(*this); 4187 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4188 4189 if (getTarget().supportsIFunc()) { 4190 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4191 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4192 4193 // Fix up function declarations that were created for cpu_specific before 4194 // cpu_dispatch was known 4195 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4196 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4197 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4198 &getModule()); 4199 GI->takeName(IFunc); 4200 IFunc->replaceAllUsesWith(GI); 4201 IFunc->eraseFromParent(); 4202 IFunc = GI; 4203 } 4204 4205 std::string AliasName = getMangledNameImpl( 4206 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4207 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4208 if (!AliasFunc) { 4209 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4210 &getModule()); 4211 SetCommonAttributes(GD, GA); 4212 } 4213 } 4214 } 4215 4216 /// If a dispatcher for the specified mangled name is not in the module, create 4217 /// and return an llvm Function with the specified type. 4218 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4219 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4220 assert(FD && "Not a FunctionDecl?"); 4221 4222 std::string MangledName = 4223 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4224 4225 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4226 // a separate resolver). 4227 std::string ResolverName = MangledName; 4228 if (getTarget().supportsIFunc()) 4229 ResolverName += ".ifunc"; 4230 else if (FD->isTargetMultiVersion()) 4231 ResolverName += ".resolver"; 4232 4233 // If the resolver has already been created, just return it. 4234 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4235 return ResolverGV; 4236 4237 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4238 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4239 4240 // The resolver needs to be created. For target and target_clones, defer 4241 // creation until the end of the TU. 4242 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4243 MultiVersionFuncs.push_back(GD); 4244 4245 // For cpu_specific, don't create an ifunc yet because we don't know if the 4246 // cpu_dispatch will be emitted in this translation unit. 4247 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4248 llvm::Type *ResolverType = llvm::FunctionType::get( 4249 llvm::PointerType::get(DeclTy, 4250 getTypes().getTargetAddressSpace(FD->getType())), 4251 false); 4252 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4253 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4254 /*ForVTable=*/false); 4255 llvm::GlobalIFunc *GIF = 4256 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4257 "", Resolver, &getModule()); 4258 GIF->setName(ResolverName); 4259 SetCommonAttributes(FD, GIF); 4260 4261 return GIF; 4262 } 4263 4264 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4265 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4266 assert(isa<llvm::GlobalValue>(Resolver) && 4267 "Resolver should be created for the first time"); 4268 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4269 return Resolver; 4270 } 4271 4272 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4273 /// module, create and return an llvm Function with the specified type. If there 4274 /// is something in the module with the specified name, return it potentially 4275 /// bitcasted to the right type. 4276 /// 4277 /// If D is non-null, it specifies a decl that correspond to this. This is used 4278 /// to set the attributes on the function when it is first created. 4279 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4280 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4281 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4282 ForDefinition_t IsForDefinition) { 4283 const Decl *D = GD.getDecl(); 4284 4285 // Any attempts to use a MultiVersion function should result in retrieving 4286 // the iFunc instead. Name Mangling will handle the rest of the changes. 4287 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4288 // For the device mark the function as one that should be emitted. 4289 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4290 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4291 !DontDefer && !IsForDefinition) { 4292 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4293 GlobalDecl GDDef; 4294 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4295 GDDef = GlobalDecl(CD, GD.getCtorType()); 4296 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4297 GDDef = GlobalDecl(DD, GD.getDtorType()); 4298 else 4299 GDDef = GlobalDecl(FDDef); 4300 EmitGlobal(GDDef); 4301 } 4302 } 4303 4304 if (FD->isMultiVersion()) { 4305 UpdateMultiVersionNames(GD, FD, MangledName); 4306 if (!IsForDefinition) 4307 return GetOrCreateMultiVersionResolver(GD); 4308 } 4309 } 4310 4311 // Lookup the entry, lazily creating it if necessary. 4312 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4313 if (Entry) { 4314 if (WeakRefReferences.erase(Entry)) { 4315 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4316 if (FD && !FD->hasAttr<WeakAttr>()) 4317 Entry->setLinkage(llvm::Function::ExternalLinkage); 4318 } 4319 4320 // Handle dropped DLL attributes. 4321 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4322 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4323 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4324 setDSOLocal(Entry); 4325 } 4326 4327 // If there are two attempts to define the same mangled name, issue an 4328 // error. 4329 if (IsForDefinition && !Entry->isDeclaration()) { 4330 GlobalDecl OtherGD; 4331 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4332 // to make sure that we issue an error only once. 4333 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4334 (GD.getCanonicalDecl().getDecl() != 4335 OtherGD.getCanonicalDecl().getDecl()) && 4336 DiagnosedConflictingDefinitions.insert(GD).second) { 4337 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4338 << MangledName; 4339 getDiags().Report(OtherGD.getDecl()->getLocation(), 4340 diag::note_previous_definition); 4341 } 4342 } 4343 4344 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4345 (Entry->getValueType() == Ty)) { 4346 return Entry; 4347 } 4348 4349 // Make sure the result is of the correct type. 4350 // (If function is requested for a definition, we always need to create a new 4351 // function, not just return a bitcast.) 4352 if (!IsForDefinition) 4353 return llvm::ConstantExpr::getBitCast( 4354 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4355 } 4356 4357 // This function doesn't have a complete type (for example, the return 4358 // type is an incomplete struct). Use a fake type instead, and make 4359 // sure not to try to set attributes. 4360 bool IsIncompleteFunction = false; 4361 4362 llvm::FunctionType *FTy; 4363 if (isa<llvm::FunctionType>(Ty)) { 4364 FTy = cast<llvm::FunctionType>(Ty); 4365 } else { 4366 FTy = llvm::FunctionType::get(VoidTy, false); 4367 IsIncompleteFunction = true; 4368 } 4369 4370 llvm::Function *F = 4371 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4372 Entry ? StringRef() : MangledName, &getModule()); 4373 4374 // If we already created a function with the same mangled name (but different 4375 // type) before, take its name and add it to the list of functions to be 4376 // replaced with F at the end of CodeGen. 4377 // 4378 // This happens if there is a prototype for a function (e.g. "int f()") and 4379 // then a definition of a different type (e.g. "int f(int x)"). 4380 if (Entry) { 4381 F->takeName(Entry); 4382 4383 // This might be an implementation of a function without a prototype, in 4384 // which case, try to do special replacement of calls which match the new 4385 // prototype. The really key thing here is that we also potentially drop 4386 // arguments from the call site so as to make a direct call, which makes the 4387 // inliner happier and suppresses a number of optimizer warnings (!) about 4388 // dropping arguments. 4389 if (!Entry->use_empty()) { 4390 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4391 Entry->removeDeadConstantUsers(); 4392 } 4393 4394 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4395 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4396 addGlobalValReplacement(Entry, BC); 4397 } 4398 4399 assert(F->getName() == MangledName && "name was uniqued!"); 4400 if (D) 4401 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4402 if (ExtraAttrs.hasFnAttrs()) { 4403 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4404 F->addFnAttrs(B); 4405 } 4406 4407 if (!DontDefer) { 4408 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4409 // each other bottoming out with the base dtor. Therefore we emit non-base 4410 // dtors on usage, even if there is no dtor definition in the TU. 4411 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4412 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4413 GD.getDtorType())) 4414 addDeferredDeclToEmit(GD); 4415 4416 // This is the first use or definition of a mangled name. If there is a 4417 // deferred decl with this name, remember that we need to emit it at the end 4418 // of the file. 4419 auto DDI = DeferredDecls.find(MangledName); 4420 if (DDI != DeferredDecls.end()) { 4421 // Move the potentially referenced deferred decl to the 4422 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4423 // don't need it anymore). 4424 addDeferredDeclToEmit(DDI->second); 4425 DeferredDecls.erase(DDI); 4426 4427 // Otherwise, there are cases we have to worry about where we're 4428 // using a declaration for which we must emit a definition but where 4429 // we might not find a top-level definition: 4430 // - member functions defined inline in their classes 4431 // - friend functions defined inline in some class 4432 // - special member functions with implicit definitions 4433 // If we ever change our AST traversal to walk into class methods, 4434 // this will be unnecessary. 4435 // 4436 // We also don't emit a definition for a function if it's going to be an 4437 // entry in a vtable, unless it's already marked as used. 4438 } else if (getLangOpts().CPlusPlus && D) { 4439 // Look for a declaration that's lexically in a record. 4440 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4441 FD = FD->getPreviousDecl()) { 4442 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4443 if (FD->doesThisDeclarationHaveABody()) { 4444 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4445 break; 4446 } 4447 } 4448 } 4449 } 4450 } 4451 4452 // Make sure the result is of the requested type. 4453 if (!IsIncompleteFunction) { 4454 assert(F->getFunctionType() == Ty); 4455 return F; 4456 } 4457 4458 return llvm::ConstantExpr::getBitCast(F, 4459 Ty->getPointerTo(F->getAddressSpace())); 4460 } 4461 4462 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4463 /// non-null, then this function will use the specified type if it has to 4464 /// create it (this occurs when we see a definition of the function). 4465 llvm::Constant * 4466 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4467 bool DontDefer, 4468 ForDefinition_t IsForDefinition) { 4469 // If there was no specific requested type, just convert it now. 4470 if (!Ty) { 4471 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4472 Ty = getTypes().ConvertType(FD->getType()); 4473 } 4474 4475 // Devirtualized destructor calls may come through here instead of via 4476 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4477 // of the complete destructor when necessary. 4478 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4479 if (getTarget().getCXXABI().isMicrosoft() && 4480 GD.getDtorType() == Dtor_Complete && 4481 DD->getParent()->getNumVBases() == 0) 4482 GD = GlobalDecl(DD, Dtor_Base); 4483 } 4484 4485 StringRef MangledName = getMangledName(GD); 4486 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4487 /*IsThunk=*/false, llvm::AttributeList(), 4488 IsForDefinition); 4489 // Returns kernel handle for HIP kernel stub function. 4490 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4491 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4492 auto *Handle = getCUDARuntime().getKernelHandle( 4493 cast<llvm::Function>(F->stripPointerCasts()), GD); 4494 if (IsForDefinition) 4495 return F; 4496 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4497 } 4498 return F; 4499 } 4500 4501 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4502 llvm::GlobalValue *F = 4503 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4504 4505 return llvm::ConstantExpr::getBitCast( 4506 llvm::NoCFIValue::get(F), 4507 llvm::PointerType::get(VMContext, F->getAddressSpace())); 4508 } 4509 4510 static const FunctionDecl * 4511 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4512 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4513 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4514 4515 IdentifierInfo &CII = C.Idents.get(Name); 4516 for (const auto *Result : DC->lookup(&CII)) 4517 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4518 return FD; 4519 4520 if (!C.getLangOpts().CPlusPlus) 4521 return nullptr; 4522 4523 // Demangle the premangled name from getTerminateFn() 4524 IdentifierInfo &CXXII = 4525 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4526 ? C.Idents.get("terminate") 4527 : C.Idents.get(Name); 4528 4529 for (const auto &N : {"__cxxabiv1", "std"}) { 4530 IdentifierInfo &NS = C.Idents.get(N); 4531 for (const auto *Result : DC->lookup(&NS)) { 4532 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4533 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4534 for (const auto *Result : LSD->lookup(&NS)) 4535 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4536 break; 4537 4538 if (ND) 4539 for (const auto *Result : ND->lookup(&CXXII)) 4540 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4541 return FD; 4542 } 4543 } 4544 4545 return nullptr; 4546 } 4547 4548 /// CreateRuntimeFunction - Create a new runtime function with the specified 4549 /// type and name. 4550 llvm::FunctionCallee 4551 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4552 llvm::AttributeList ExtraAttrs, bool Local, 4553 bool AssumeConvergent) { 4554 if (AssumeConvergent) { 4555 ExtraAttrs = 4556 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4557 } 4558 4559 llvm::Constant *C = 4560 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4561 /*DontDefer=*/false, /*IsThunk=*/false, 4562 ExtraAttrs); 4563 4564 if (auto *F = dyn_cast<llvm::Function>(C)) { 4565 if (F->empty()) { 4566 F->setCallingConv(getRuntimeCC()); 4567 4568 // In Windows Itanium environments, try to mark runtime functions 4569 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4570 // will link their standard library statically or dynamically. Marking 4571 // functions imported when they are not imported can cause linker errors 4572 // and warnings. 4573 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4574 !getCodeGenOpts().LTOVisibilityPublicStd) { 4575 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4576 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4577 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4578 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4579 } 4580 } 4581 setDSOLocal(F); 4582 } 4583 } 4584 4585 return {FTy, C}; 4586 } 4587 4588 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4589 /// create and return an llvm GlobalVariable with the specified type and address 4590 /// space. If there is something in the module with the specified name, return 4591 /// it potentially bitcasted to the right type. 4592 /// 4593 /// If D is non-null, it specifies a decl that correspond to this. This is used 4594 /// to set the attributes on the global when it is first created. 4595 /// 4596 /// If IsForDefinition is true, it is guaranteed that an actual global with 4597 /// type Ty will be returned, not conversion of a variable with the same 4598 /// mangled name but some other type. 4599 llvm::Constant * 4600 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4601 LangAS AddrSpace, const VarDecl *D, 4602 ForDefinition_t IsForDefinition) { 4603 // Lookup the entry, lazily creating it if necessary. 4604 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4605 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4606 if (Entry) { 4607 if (WeakRefReferences.erase(Entry)) { 4608 if (D && !D->hasAttr<WeakAttr>()) 4609 Entry->setLinkage(llvm::Function::ExternalLinkage); 4610 } 4611 4612 // Handle dropped DLL attributes. 4613 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4614 !shouldMapVisibilityToDLLExport(D)) 4615 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4616 4617 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4618 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4619 4620 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4621 return Entry; 4622 4623 // If there are two attempts to define the same mangled name, issue an 4624 // error. 4625 if (IsForDefinition && !Entry->isDeclaration()) { 4626 GlobalDecl OtherGD; 4627 const VarDecl *OtherD; 4628 4629 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4630 // to make sure that we issue an error only once. 4631 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4632 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4633 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4634 OtherD->hasInit() && 4635 DiagnosedConflictingDefinitions.insert(D).second) { 4636 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4637 << MangledName; 4638 getDiags().Report(OtherGD.getDecl()->getLocation(), 4639 diag::note_previous_definition); 4640 } 4641 } 4642 4643 // Make sure the result is of the correct type. 4644 if (Entry->getType()->getAddressSpace() != TargetAS) { 4645 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4646 Ty->getPointerTo(TargetAS)); 4647 } 4648 4649 // (If global is requested for a definition, we always need to create a new 4650 // global, not just return a bitcast.) 4651 if (!IsForDefinition) 4652 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4653 } 4654 4655 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4656 4657 auto *GV = new llvm::GlobalVariable( 4658 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4659 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4660 getContext().getTargetAddressSpace(DAddrSpace)); 4661 4662 // If we already created a global with the same mangled name (but different 4663 // type) before, take its name and remove it from its parent. 4664 if (Entry) { 4665 GV->takeName(Entry); 4666 4667 if (!Entry->use_empty()) { 4668 llvm::Constant *NewPtrForOldDecl = 4669 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4670 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4671 } 4672 4673 Entry->eraseFromParent(); 4674 } 4675 4676 // This is the first use or definition of a mangled name. If there is a 4677 // deferred decl with this name, remember that we need to emit it at the end 4678 // of the file. 4679 auto DDI = DeferredDecls.find(MangledName); 4680 if (DDI != DeferredDecls.end()) { 4681 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4682 // list, and remove it from DeferredDecls (since we don't need it anymore). 4683 addDeferredDeclToEmit(DDI->second); 4684 DeferredDecls.erase(DDI); 4685 } 4686 4687 // Handle things which are present even on external declarations. 4688 if (D) { 4689 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4690 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4691 4692 // FIXME: This code is overly simple and should be merged with other global 4693 // handling. 4694 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4695 4696 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4697 4698 setLinkageForGV(GV, D); 4699 4700 if (D->getTLSKind()) { 4701 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4702 CXXThreadLocals.push_back(D); 4703 setTLSMode(GV, *D); 4704 } 4705 4706 setGVProperties(GV, D); 4707 4708 // If required by the ABI, treat declarations of static data members with 4709 // inline initializers as definitions. 4710 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4711 EmitGlobalVarDefinition(D); 4712 } 4713 4714 // Emit section information for extern variables. 4715 if (D->hasExternalStorage()) { 4716 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4717 GV->setSection(SA->getName()); 4718 } 4719 4720 // Handle XCore specific ABI requirements. 4721 if (getTriple().getArch() == llvm::Triple::xcore && 4722 D->getLanguageLinkage() == CLanguageLinkage && 4723 D->getType().isConstant(Context) && 4724 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4725 GV->setSection(".cp.rodata"); 4726 4727 // Check if we a have a const declaration with an initializer, we may be 4728 // able to emit it as available_externally to expose it's value to the 4729 // optimizer. 4730 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4731 D->getType().isConstQualified() && !GV->hasInitializer() && 4732 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4733 const auto *Record = 4734 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4735 bool HasMutableFields = Record && Record->hasMutableFields(); 4736 if (!HasMutableFields) { 4737 const VarDecl *InitDecl; 4738 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4739 if (InitExpr) { 4740 ConstantEmitter emitter(*this); 4741 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4742 if (Init) { 4743 auto *InitType = Init->getType(); 4744 if (GV->getValueType() != InitType) { 4745 // The type of the initializer does not match the definition. 4746 // This happens when an initializer has a different type from 4747 // the type of the global (because of padding at the end of a 4748 // structure for instance). 4749 GV->setName(StringRef()); 4750 // Make a new global with the correct type, this is now guaranteed 4751 // to work. 4752 auto *NewGV = cast<llvm::GlobalVariable>( 4753 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4754 ->stripPointerCasts()); 4755 4756 // Erase the old global, since it is no longer used. 4757 GV->eraseFromParent(); 4758 GV = NewGV; 4759 } else { 4760 GV->setInitializer(Init); 4761 GV->setConstant(true); 4762 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4763 } 4764 emitter.finalize(GV); 4765 } 4766 } 4767 } 4768 } 4769 } 4770 4771 if (D && 4772 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4773 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4774 // External HIP managed variables needed to be recorded for transformation 4775 // in both device and host compilations. 4776 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4777 D->hasExternalStorage()) 4778 getCUDARuntime().handleVarRegistration(D, *GV); 4779 } 4780 4781 if (D) 4782 SanitizerMD->reportGlobal(GV, *D); 4783 4784 LangAS ExpectedAS = 4785 D ? D->getType().getAddressSpace() 4786 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4787 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4788 if (DAddrSpace != ExpectedAS) { 4789 return getTargetCodeGenInfo().performAddrSpaceCast( 4790 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4791 } 4792 4793 return GV; 4794 } 4795 4796 llvm::Constant * 4797 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4798 const Decl *D = GD.getDecl(); 4799 4800 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4801 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4802 /*DontDefer=*/false, IsForDefinition); 4803 4804 if (isa<CXXMethodDecl>(D)) { 4805 auto FInfo = 4806 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4807 auto Ty = getTypes().GetFunctionType(*FInfo); 4808 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4809 IsForDefinition); 4810 } 4811 4812 if (isa<FunctionDecl>(D)) { 4813 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4814 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4815 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4816 IsForDefinition); 4817 } 4818 4819 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4820 } 4821 4822 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4823 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4824 llvm::Align Alignment) { 4825 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4826 llvm::GlobalVariable *OldGV = nullptr; 4827 4828 if (GV) { 4829 // Check if the variable has the right type. 4830 if (GV->getValueType() == Ty) 4831 return GV; 4832 4833 // Because C++ name mangling, the only way we can end up with an already 4834 // existing global with the same name is if it has been declared extern "C". 4835 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4836 OldGV = GV; 4837 } 4838 4839 // Create a new variable. 4840 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4841 Linkage, nullptr, Name); 4842 4843 if (OldGV) { 4844 // Replace occurrences of the old variable if needed. 4845 GV->takeName(OldGV); 4846 4847 if (!OldGV->use_empty()) { 4848 llvm::Constant *NewPtrForOldDecl = 4849 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4850 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4851 } 4852 4853 OldGV->eraseFromParent(); 4854 } 4855 4856 if (supportsCOMDAT() && GV->isWeakForLinker() && 4857 !GV->hasAvailableExternallyLinkage()) 4858 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4859 4860 GV->setAlignment(Alignment); 4861 4862 return GV; 4863 } 4864 4865 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4866 /// given global variable. If Ty is non-null and if the global doesn't exist, 4867 /// then it will be created with the specified type instead of whatever the 4868 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4869 /// that an actual global with type Ty will be returned, not conversion of a 4870 /// variable with the same mangled name but some other type. 4871 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4872 llvm::Type *Ty, 4873 ForDefinition_t IsForDefinition) { 4874 assert(D->hasGlobalStorage() && "Not a global variable"); 4875 QualType ASTTy = D->getType(); 4876 if (!Ty) 4877 Ty = getTypes().ConvertTypeForMem(ASTTy); 4878 4879 StringRef MangledName = getMangledName(D); 4880 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4881 IsForDefinition); 4882 } 4883 4884 /// CreateRuntimeVariable - Create a new runtime global variable with the 4885 /// specified type and name. 4886 llvm::Constant * 4887 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4888 StringRef Name) { 4889 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4890 : LangAS::Default; 4891 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4892 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4893 return Ret; 4894 } 4895 4896 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4897 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4898 4899 StringRef MangledName = getMangledName(D); 4900 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4901 4902 // We already have a definition, not declaration, with the same mangled name. 4903 // Emitting of declaration is not required (and actually overwrites emitted 4904 // definition). 4905 if (GV && !GV->isDeclaration()) 4906 return; 4907 4908 // If we have not seen a reference to this variable yet, place it into the 4909 // deferred declarations table to be emitted if needed later. 4910 if (!MustBeEmitted(D) && !GV) { 4911 DeferredDecls[MangledName] = D; 4912 return; 4913 } 4914 4915 // The tentative definition is the only definition. 4916 EmitGlobalVarDefinition(D); 4917 } 4918 4919 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4920 EmitExternalVarDeclaration(D); 4921 } 4922 4923 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4924 return Context.toCharUnitsFromBits( 4925 getDataLayout().getTypeStoreSizeInBits(Ty)); 4926 } 4927 4928 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4929 if (LangOpts.OpenCL) { 4930 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4931 assert(AS == LangAS::opencl_global || 4932 AS == LangAS::opencl_global_device || 4933 AS == LangAS::opencl_global_host || 4934 AS == LangAS::opencl_constant || 4935 AS == LangAS::opencl_local || 4936 AS >= LangAS::FirstTargetAddressSpace); 4937 return AS; 4938 } 4939 4940 if (LangOpts.SYCLIsDevice && 4941 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4942 return LangAS::sycl_global; 4943 4944 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4945 if (D) { 4946 if (D->hasAttr<CUDAConstantAttr>()) 4947 return LangAS::cuda_constant; 4948 if (D->hasAttr<CUDASharedAttr>()) 4949 return LangAS::cuda_shared; 4950 if (D->hasAttr<CUDADeviceAttr>()) 4951 return LangAS::cuda_device; 4952 if (D->getType().isConstQualified()) 4953 return LangAS::cuda_constant; 4954 } 4955 return LangAS::cuda_device; 4956 } 4957 4958 if (LangOpts.OpenMP) { 4959 LangAS AS; 4960 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4961 return AS; 4962 } 4963 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4964 } 4965 4966 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4967 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4968 if (LangOpts.OpenCL) 4969 return LangAS::opencl_constant; 4970 if (LangOpts.SYCLIsDevice) 4971 return LangAS::sycl_global; 4972 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4973 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4974 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4975 // with OpVariable instructions with Generic storage class which is not 4976 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4977 // UniformConstant storage class is not viable as pointers to it may not be 4978 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4979 return LangAS::cuda_device; 4980 if (auto AS = getTarget().getConstantAddressSpace()) 4981 return *AS; 4982 return LangAS::Default; 4983 } 4984 4985 // In address space agnostic languages, string literals are in default address 4986 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4987 // emitted in constant address space in LLVM IR. To be consistent with other 4988 // parts of AST, string literal global variables in constant address space 4989 // need to be casted to default address space before being put into address 4990 // map and referenced by other part of CodeGen. 4991 // In OpenCL, string literals are in constant address space in AST, therefore 4992 // they should not be casted to default address space. 4993 static llvm::Constant * 4994 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4995 llvm::GlobalVariable *GV) { 4996 llvm::Constant *Cast = GV; 4997 if (!CGM.getLangOpts().OpenCL) { 4998 auto AS = CGM.GetGlobalConstantAddressSpace(); 4999 if (AS != LangAS::Default) 5000 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5001 CGM, GV, AS, LangAS::Default, 5002 GV->getValueType()->getPointerTo( 5003 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5004 } 5005 return Cast; 5006 } 5007 5008 template<typename SomeDecl> 5009 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5010 llvm::GlobalValue *GV) { 5011 if (!getLangOpts().CPlusPlus) 5012 return; 5013 5014 // Must have 'used' attribute, or else inline assembly can't rely on 5015 // the name existing. 5016 if (!D->template hasAttr<UsedAttr>()) 5017 return; 5018 5019 // Must have internal linkage and an ordinary name. 5020 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 5021 return; 5022 5023 // Must be in an extern "C" context. Entities declared directly within 5024 // a record are not extern "C" even if the record is in such a context. 5025 const SomeDecl *First = D->getFirstDecl(); 5026 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5027 return; 5028 5029 // OK, this is an internal linkage entity inside an extern "C" linkage 5030 // specification. Make a note of that so we can give it the "expected" 5031 // mangled name if nothing else is using that name. 5032 std::pair<StaticExternCMap::iterator, bool> R = 5033 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5034 5035 // If we have multiple internal linkage entities with the same name 5036 // in extern "C" regions, none of them gets that name. 5037 if (!R.second) 5038 R.first->second = nullptr; 5039 } 5040 5041 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5042 if (!CGM.supportsCOMDAT()) 5043 return false; 5044 5045 if (D.hasAttr<SelectAnyAttr>()) 5046 return true; 5047 5048 GVALinkage Linkage; 5049 if (auto *VD = dyn_cast<VarDecl>(&D)) 5050 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5051 else 5052 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5053 5054 switch (Linkage) { 5055 case GVA_Internal: 5056 case GVA_AvailableExternally: 5057 case GVA_StrongExternal: 5058 return false; 5059 case GVA_DiscardableODR: 5060 case GVA_StrongODR: 5061 return true; 5062 } 5063 llvm_unreachable("No such linkage"); 5064 } 5065 5066 bool CodeGenModule::supportsCOMDAT() const { 5067 return getTriple().supportsCOMDAT(); 5068 } 5069 5070 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5071 llvm::GlobalObject &GO) { 5072 if (!shouldBeInCOMDAT(*this, D)) 5073 return; 5074 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5075 } 5076 5077 /// Pass IsTentative as true if you want to create a tentative definition. 5078 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5079 bool IsTentative) { 5080 // OpenCL global variables of sampler type are translated to function calls, 5081 // therefore no need to be translated. 5082 QualType ASTTy = D->getType(); 5083 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5084 return; 5085 5086 // If this is OpenMP device, check if it is legal to emit this global 5087 // normally. 5088 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5089 OpenMPRuntime->emitTargetGlobalVariable(D)) 5090 return; 5091 5092 llvm::TrackingVH<llvm::Constant> Init; 5093 bool NeedsGlobalCtor = false; 5094 // Whether the definition of the variable is available externally. 5095 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5096 // since this is the job for its original source. 5097 bool IsDefinitionAvailableExternally = 5098 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5099 bool NeedsGlobalDtor = 5100 !IsDefinitionAvailableExternally && 5101 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5102 5103 const VarDecl *InitDecl; 5104 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5105 5106 std::optional<ConstantEmitter> emitter; 5107 5108 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5109 // as part of their declaration." Sema has already checked for 5110 // error cases, so we just need to set Init to UndefValue. 5111 bool IsCUDASharedVar = 5112 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5113 // Shadows of initialized device-side global variables are also left 5114 // undefined. 5115 // Managed Variables should be initialized on both host side and device side. 5116 bool IsCUDAShadowVar = 5117 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5118 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5119 D->hasAttr<CUDASharedAttr>()); 5120 bool IsCUDADeviceShadowVar = 5121 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5122 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5123 D->getType()->isCUDADeviceBuiltinTextureType()); 5124 if (getLangOpts().CUDA && 5125 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5126 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5127 else if (D->hasAttr<LoaderUninitializedAttr>()) 5128 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5129 else if (!InitExpr) { 5130 // This is a tentative definition; tentative definitions are 5131 // implicitly initialized with { 0 }. 5132 // 5133 // Note that tentative definitions are only emitted at the end of 5134 // a translation unit, so they should never have incomplete 5135 // type. In addition, EmitTentativeDefinition makes sure that we 5136 // never attempt to emit a tentative definition if a real one 5137 // exists. A use may still exists, however, so we still may need 5138 // to do a RAUW. 5139 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5140 Init = EmitNullConstant(D->getType()); 5141 } else { 5142 initializedGlobalDecl = GlobalDecl(D); 5143 emitter.emplace(*this); 5144 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5145 if (!Initializer) { 5146 QualType T = InitExpr->getType(); 5147 if (D->getType()->isReferenceType()) 5148 T = D->getType(); 5149 5150 if (getLangOpts().CPlusPlus) { 5151 if (InitDecl->hasFlexibleArrayInit(getContext())) 5152 ErrorUnsupported(D, "flexible array initializer"); 5153 Init = EmitNullConstant(T); 5154 5155 if (!IsDefinitionAvailableExternally) 5156 NeedsGlobalCtor = true; 5157 } else { 5158 ErrorUnsupported(D, "static initializer"); 5159 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5160 } 5161 } else { 5162 Init = Initializer; 5163 // We don't need an initializer, so remove the entry for the delayed 5164 // initializer position (just in case this entry was delayed) if we 5165 // also don't need to register a destructor. 5166 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5167 DelayedCXXInitPosition.erase(D); 5168 5169 #ifndef NDEBUG 5170 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5171 InitDecl->getFlexibleArrayInitChars(getContext()); 5172 CharUnits CstSize = CharUnits::fromQuantity( 5173 getDataLayout().getTypeAllocSize(Init->getType())); 5174 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5175 #endif 5176 } 5177 } 5178 5179 llvm::Type* InitType = Init->getType(); 5180 llvm::Constant *Entry = 5181 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5182 5183 // Strip off pointer casts if we got them. 5184 Entry = Entry->stripPointerCasts(); 5185 5186 // Entry is now either a Function or GlobalVariable. 5187 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5188 5189 // We have a definition after a declaration with the wrong type. 5190 // We must make a new GlobalVariable* and update everything that used OldGV 5191 // (a declaration or tentative definition) with the new GlobalVariable* 5192 // (which will be a definition). 5193 // 5194 // This happens if there is a prototype for a global (e.g. 5195 // "extern int x[];") and then a definition of a different type (e.g. 5196 // "int x[10];"). This also happens when an initializer has a different type 5197 // from the type of the global (this happens with unions). 5198 if (!GV || GV->getValueType() != InitType || 5199 GV->getType()->getAddressSpace() != 5200 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5201 5202 // Move the old entry aside so that we'll create a new one. 5203 Entry->setName(StringRef()); 5204 5205 // Make a new global with the correct type, this is now guaranteed to work. 5206 GV = cast<llvm::GlobalVariable>( 5207 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5208 ->stripPointerCasts()); 5209 5210 // Replace all uses of the old global with the new global 5211 llvm::Constant *NewPtrForOldDecl = 5212 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5213 Entry->getType()); 5214 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5215 5216 // Erase the old global, since it is no longer used. 5217 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5218 } 5219 5220 MaybeHandleStaticInExternC(D, GV); 5221 5222 if (D->hasAttr<AnnotateAttr>()) 5223 AddGlobalAnnotations(D, GV); 5224 5225 // Set the llvm linkage type as appropriate. 5226 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5227 5228 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5229 // the device. [...]" 5230 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5231 // __device__, declares a variable that: [...] 5232 // Is accessible from all the threads within the grid and from the host 5233 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5234 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5235 if (LangOpts.CUDA) { 5236 if (LangOpts.CUDAIsDevice) { 5237 if (Linkage != llvm::GlobalValue::InternalLinkage && 5238 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5239 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5240 D->getType()->isCUDADeviceBuiltinTextureType())) 5241 GV->setExternallyInitialized(true); 5242 } else { 5243 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5244 } 5245 getCUDARuntime().handleVarRegistration(D, *GV); 5246 } 5247 5248 GV->setInitializer(Init); 5249 if (emitter) 5250 emitter->finalize(GV); 5251 5252 // If it is safe to mark the global 'constant', do so now. 5253 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5254 D->getType().isConstantStorage(getContext(), true, true)); 5255 5256 // If it is in a read-only section, mark it 'constant'. 5257 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5258 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5259 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5260 GV->setConstant(true); 5261 } 5262 5263 CharUnits AlignVal = getContext().getDeclAlign(D); 5264 // Check for alignment specifed in an 'omp allocate' directive. 5265 if (std::optional<CharUnits> AlignValFromAllocate = 5266 getOMPAllocateAlignment(D)) 5267 AlignVal = *AlignValFromAllocate; 5268 GV->setAlignment(AlignVal.getAsAlign()); 5269 5270 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5271 // function is only defined alongside the variable, not also alongside 5272 // callers. Normally, all accesses to a thread_local go through the 5273 // thread-wrapper in order to ensure initialization has occurred, underlying 5274 // variable will never be used other than the thread-wrapper, so it can be 5275 // converted to internal linkage. 5276 // 5277 // However, if the variable has the 'constinit' attribute, it _can_ be 5278 // referenced directly, without calling the thread-wrapper, so the linkage 5279 // must not be changed. 5280 // 5281 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5282 // weak or linkonce, the de-duplication semantics are important to preserve, 5283 // so we don't change the linkage. 5284 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5285 Linkage == llvm::GlobalValue::ExternalLinkage && 5286 Context.getTargetInfo().getTriple().isOSDarwin() && 5287 !D->hasAttr<ConstInitAttr>()) 5288 Linkage = llvm::GlobalValue::InternalLinkage; 5289 5290 GV->setLinkage(Linkage); 5291 if (D->hasAttr<DLLImportAttr>()) 5292 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5293 else if (D->hasAttr<DLLExportAttr>()) 5294 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5295 else 5296 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5297 5298 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5299 // common vars aren't constant even if declared const. 5300 GV->setConstant(false); 5301 // Tentative definition of global variables may be initialized with 5302 // non-zero null pointers. In this case they should have weak linkage 5303 // since common linkage must have zero initializer and must not have 5304 // explicit section therefore cannot have non-zero initial value. 5305 if (!GV->getInitializer()->isNullValue()) 5306 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5307 } 5308 5309 setNonAliasAttributes(D, GV); 5310 5311 if (D->getTLSKind() && !GV->isThreadLocal()) { 5312 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5313 CXXThreadLocals.push_back(D); 5314 setTLSMode(GV, *D); 5315 } 5316 5317 maybeSetTrivialComdat(*D, *GV); 5318 5319 // Emit the initializer function if necessary. 5320 if (NeedsGlobalCtor || NeedsGlobalDtor) 5321 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5322 5323 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5324 5325 // Emit global variable debug information. 5326 if (CGDebugInfo *DI = getModuleDebugInfo()) 5327 if (getCodeGenOpts().hasReducedDebugInfo()) 5328 DI->EmitGlobalVariable(GV, D); 5329 } 5330 5331 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5332 if (CGDebugInfo *DI = getModuleDebugInfo()) 5333 if (getCodeGenOpts().hasReducedDebugInfo()) { 5334 QualType ASTTy = D->getType(); 5335 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5336 llvm::Constant *GV = 5337 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5338 DI->EmitExternalVariable( 5339 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5340 } 5341 } 5342 5343 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5344 CodeGenModule &CGM, const VarDecl *D, 5345 bool NoCommon) { 5346 // Don't give variables common linkage if -fno-common was specified unless it 5347 // was overridden by a NoCommon attribute. 5348 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5349 return true; 5350 5351 // C11 6.9.2/2: 5352 // A declaration of an identifier for an object that has file scope without 5353 // an initializer, and without a storage-class specifier or with the 5354 // storage-class specifier static, constitutes a tentative definition. 5355 if (D->getInit() || D->hasExternalStorage()) 5356 return true; 5357 5358 // A variable cannot be both common and exist in a section. 5359 if (D->hasAttr<SectionAttr>()) 5360 return true; 5361 5362 // A variable cannot be both common and exist in a section. 5363 // We don't try to determine which is the right section in the front-end. 5364 // If no specialized section name is applicable, it will resort to default. 5365 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5366 D->hasAttr<PragmaClangDataSectionAttr>() || 5367 D->hasAttr<PragmaClangRelroSectionAttr>() || 5368 D->hasAttr<PragmaClangRodataSectionAttr>()) 5369 return true; 5370 5371 // Thread local vars aren't considered common linkage. 5372 if (D->getTLSKind()) 5373 return true; 5374 5375 // Tentative definitions marked with WeakImportAttr are true definitions. 5376 if (D->hasAttr<WeakImportAttr>()) 5377 return true; 5378 5379 // A variable cannot be both common and exist in a comdat. 5380 if (shouldBeInCOMDAT(CGM, *D)) 5381 return true; 5382 5383 // Declarations with a required alignment do not have common linkage in MSVC 5384 // mode. 5385 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5386 if (D->hasAttr<AlignedAttr>()) 5387 return true; 5388 QualType VarType = D->getType(); 5389 if (Context.isAlignmentRequired(VarType)) 5390 return true; 5391 5392 if (const auto *RT = VarType->getAs<RecordType>()) { 5393 const RecordDecl *RD = RT->getDecl(); 5394 for (const FieldDecl *FD : RD->fields()) { 5395 if (FD->isBitField()) 5396 continue; 5397 if (FD->hasAttr<AlignedAttr>()) 5398 return true; 5399 if (Context.isAlignmentRequired(FD->getType())) 5400 return true; 5401 } 5402 } 5403 } 5404 5405 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5406 // common symbols, so symbols with greater alignment requirements cannot be 5407 // common. 5408 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5409 // alignments for common symbols via the aligncomm directive, so this 5410 // restriction only applies to MSVC environments. 5411 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5412 Context.getTypeAlignIfKnown(D->getType()) > 5413 Context.toBits(CharUnits::fromQuantity(32))) 5414 return true; 5415 5416 return false; 5417 } 5418 5419 llvm::GlobalValue::LinkageTypes 5420 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5421 GVALinkage Linkage) { 5422 if (Linkage == GVA_Internal) 5423 return llvm::Function::InternalLinkage; 5424 5425 if (D->hasAttr<WeakAttr>()) 5426 return llvm::GlobalVariable::WeakAnyLinkage; 5427 5428 if (const auto *FD = D->getAsFunction()) 5429 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5430 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5431 5432 // We are guaranteed to have a strong definition somewhere else, 5433 // so we can use available_externally linkage. 5434 if (Linkage == GVA_AvailableExternally) 5435 return llvm::GlobalValue::AvailableExternallyLinkage; 5436 5437 // Note that Apple's kernel linker doesn't support symbol 5438 // coalescing, so we need to avoid linkonce and weak linkages there. 5439 // Normally, this means we just map to internal, but for explicit 5440 // instantiations we'll map to external. 5441 5442 // In C++, the compiler has to emit a definition in every translation unit 5443 // that references the function. We should use linkonce_odr because 5444 // a) if all references in this translation unit are optimized away, we 5445 // don't need to codegen it. b) if the function persists, it needs to be 5446 // merged with other definitions. c) C++ has the ODR, so we know the 5447 // definition is dependable. 5448 if (Linkage == GVA_DiscardableODR) 5449 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5450 : llvm::Function::InternalLinkage; 5451 5452 // An explicit instantiation of a template has weak linkage, since 5453 // explicit instantiations can occur in multiple translation units 5454 // and must all be equivalent. However, we are not allowed to 5455 // throw away these explicit instantiations. 5456 // 5457 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5458 // so say that CUDA templates are either external (for kernels) or internal. 5459 // This lets llvm perform aggressive inter-procedural optimizations. For 5460 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5461 // therefore we need to follow the normal linkage paradigm. 5462 if (Linkage == GVA_StrongODR) { 5463 if (getLangOpts().AppleKext) 5464 return llvm::Function::ExternalLinkage; 5465 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5466 !getLangOpts().GPURelocatableDeviceCode) 5467 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5468 : llvm::Function::InternalLinkage; 5469 return llvm::Function::WeakODRLinkage; 5470 } 5471 5472 // C++ doesn't have tentative definitions and thus cannot have common 5473 // linkage. 5474 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5475 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5476 CodeGenOpts.NoCommon)) 5477 return llvm::GlobalVariable::CommonLinkage; 5478 5479 // selectany symbols are externally visible, so use weak instead of 5480 // linkonce. MSVC optimizes away references to const selectany globals, so 5481 // all definitions should be the same and ODR linkage should be used. 5482 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5483 if (D->hasAttr<SelectAnyAttr>()) 5484 return llvm::GlobalVariable::WeakODRLinkage; 5485 5486 // Otherwise, we have strong external linkage. 5487 assert(Linkage == GVA_StrongExternal); 5488 return llvm::GlobalVariable::ExternalLinkage; 5489 } 5490 5491 llvm::GlobalValue::LinkageTypes 5492 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5493 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5494 return getLLVMLinkageForDeclarator(VD, Linkage); 5495 } 5496 5497 /// Replace the uses of a function that was declared with a non-proto type. 5498 /// We want to silently drop extra arguments from call sites 5499 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5500 llvm::Function *newFn) { 5501 // Fast path. 5502 if (old->use_empty()) return; 5503 5504 llvm::Type *newRetTy = newFn->getReturnType(); 5505 SmallVector<llvm::Value*, 4> newArgs; 5506 5507 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5508 ui != ue; ) { 5509 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5510 llvm::User *user = use->getUser(); 5511 5512 // Recognize and replace uses of bitcasts. Most calls to 5513 // unprototyped functions will use bitcasts. 5514 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5515 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5516 replaceUsesOfNonProtoConstant(bitcast, newFn); 5517 continue; 5518 } 5519 5520 // Recognize calls to the function. 5521 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5522 if (!callSite) continue; 5523 if (!callSite->isCallee(&*use)) 5524 continue; 5525 5526 // If the return types don't match exactly, then we can't 5527 // transform this call unless it's dead. 5528 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5529 continue; 5530 5531 // Get the call site's attribute list. 5532 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5533 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5534 5535 // If the function was passed too few arguments, don't transform. 5536 unsigned newNumArgs = newFn->arg_size(); 5537 if (callSite->arg_size() < newNumArgs) 5538 continue; 5539 5540 // If extra arguments were passed, we silently drop them. 5541 // If any of the types mismatch, we don't transform. 5542 unsigned argNo = 0; 5543 bool dontTransform = false; 5544 for (llvm::Argument &A : newFn->args()) { 5545 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5546 dontTransform = true; 5547 break; 5548 } 5549 5550 // Add any parameter attributes. 5551 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5552 argNo++; 5553 } 5554 if (dontTransform) 5555 continue; 5556 5557 // Okay, we can transform this. Create the new call instruction and copy 5558 // over the required information. 5559 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5560 5561 // Copy over any operand bundles. 5562 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5563 callSite->getOperandBundlesAsDefs(newBundles); 5564 5565 llvm::CallBase *newCall; 5566 if (isa<llvm::CallInst>(callSite)) { 5567 newCall = 5568 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5569 } else { 5570 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5571 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5572 oldInvoke->getUnwindDest(), newArgs, 5573 newBundles, "", callSite); 5574 } 5575 newArgs.clear(); // for the next iteration 5576 5577 if (!newCall->getType()->isVoidTy()) 5578 newCall->takeName(callSite); 5579 newCall->setAttributes( 5580 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5581 oldAttrs.getRetAttrs(), newArgAttrs)); 5582 newCall->setCallingConv(callSite->getCallingConv()); 5583 5584 // Finally, remove the old call, replacing any uses with the new one. 5585 if (!callSite->use_empty()) 5586 callSite->replaceAllUsesWith(newCall); 5587 5588 // Copy debug location attached to CI. 5589 if (callSite->getDebugLoc()) 5590 newCall->setDebugLoc(callSite->getDebugLoc()); 5591 5592 callSite->eraseFromParent(); 5593 } 5594 } 5595 5596 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5597 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5598 /// existing call uses of the old function in the module, this adjusts them to 5599 /// call the new function directly. 5600 /// 5601 /// This is not just a cleanup: the always_inline pass requires direct calls to 5602 /// functions to be able to inline them. If there is a bitcast in the way, it 5603 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5604 /// run at -O0. 5605 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5606 llvm::Function *NewFn) { 5607 // If we're redefining a global as a function, don't transform it. 5608 if (!isa<llvm::Function>(Old)) return; 5609 5610 replaceUsesOfNonProtoConstant(Old, NewFn); 5611 } 5612 5613 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5614 auto DK = VD->isThisDeclarationADefinition(); 5615 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5616 return; 5617 5618 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5619 // If we have a definition, this might be a deferred decl. If the 5620 // instantiation is explicit, make sure we emit it at the end. 5621 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5622 GetAddrOfGlobalVar(VD); 5623 5624 EmitTopLevelDecl(VD); 5625 } 5626 5627 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5628 llvm::GlobalValue *GV) { 5629 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5630 5631 // Compute the function info and LLVM type. 5632 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5633 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5634 5635 // Get or create the prototype for the function. 5636 if (!GV || (GV->getValueType() != Ty)) 5637 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5638 /*DontDefer=*/true, 5639 ForDefinition)); 5640 5641 // Already emitted. 5642 if (!GV->isDeclaration()) 5643 return; 5644 5645 // We need to set linkage and visibility on the function before 5646 // generating code for it because various parts of IR generation 5647 // want to propagate this information down (e.g. to local static 5648 // declarations). 5649 auto *Fn = cast<llvm::Function>(GV); 5650 setFunctionLinkage(GD, Fn); 5651 5652 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5653 setGVProperties(Fn, GD); 5654 5655 MaybeHandleStaticInExternC(D, Fn); 5656 5657 maybeSetTrivialComdat(*D, *Fn); 5658 5659 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5660 5661 setNonAliasAttributes(GD, Fn); 5662 SetLLVMFunctionAttributesForDefinition(D, Fn); 5663 5664 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5665 AddGlobalCtor(Fn, CA->getPriority()); 5666 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5667 AddGlobalDtor(Fn, DA->getPriority(), true); 5668 if (D->hasAttr<AnnotateAttr>()) 5669 AddGlobalAnnotations(D, Fn); 5670 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5671 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5672 } 5673 5674 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5675 const auto *D = cast<ValueDecl>(GD.getDecl()); 5676 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5677 assert(AA && "Not an alias?"); 5678 5679 StringRef MangledName = getMangledName(GD); 5680 5681 if (AA->getAliasee() == MangledName) { 5682 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5683 return; 5684 } 5685 5686 // If there is a definition in the module, then it wins over the alias. 5687 // This is dubious, but allow it to be safe. Just ignore the alias. 5688 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5689 if (Entry && !Entry->isDeclaration()) 5690 return; 5691 5692 Aliases.push_back(GD); 5693 5694 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5695 5696 // Create a reference to the named value. This ensures that it is emitted 5697 // if a deferred decl. 5698 llvm::Constant *Aliasee; 5699 llvm::GlobalValue::LinkageTypes LT; 5700 if (isa<llvm::FunctionType>(DeclTy)) { 5701 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5702 /*ForVTable=*/false); 5703 LT = getFunctionLinkage(GD); 5704 } else { 5705 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5706 /*D=*/nullptr); 5707 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5708 LT = getLLVMLinkageVarDefinition(VD); 5709 else 5710 LT = getFunctionLinkage(GD); 5711 } 5712 5713 // Create the new alias itself, but don't set a name yet. 5714 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5715 auto *GA = 5716 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5717 5718 if (Entry) { 5719 if (GA->getAliasee() == Entry) { 5720 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5721 return; 5722 } 5723 5724 assert(Entry->isDeclaration()); 5725 5726 // If there is a declaration in the module, then we had an extern followed 5727 // by the alias, as in: 5728 // extern int test6(); 5729 // ... 5730 // int test6() __attribute__((alias("test7"))); 5731 // 5732 // Remove it and replace uses of it with the alias. 5733 GA->takeName(Entry); 5734 5735 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5736 Entry->getType())); 5737 Entry->eraseFromParent(); 5738 } else { 5739 GA->setName(MangledName); 5740 } 5741 5742 // Set attributes which are particular to an alias; this is a 5743 // specialization of the attributes which may be set on a global 5744 // variable/function. 5745 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5746 D->isWeakImported()) { 5747 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5748 } 5749 5750 if (const auto *VD = dyn_cast<VarDecl>(D)) 5751 if (VD->getTLSKind()) 5752 setTLSMode(GA, *VD); 5753 5754 SetCommonAttributes(GD, GA); 5755 5756 // Emit global alias debug information. 5757 if (isa<VarDecl>(D)) 5758 if (CGDebugInfo *DI = getModuleDebugInfo()) 5759 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5760 } 5761 5762 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5763 const auto *D = cast<ValueDecl>(GD.getDecl()); 5764 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5765 assert(IFA && "Not an ifunc?"); 5766 5767 StringRef MangledName = getMangledName(GD); 5768 5769 if (IFA->getResolver() == MangledName) { 5770 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5771 return; 5772 } 5773 5774 // Report an error if some definition overrides ifunc. 5775 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5776 if (Entry && !Entry->isDeclaration()) { 5777 GlobalDecl OtherGD; 5778 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5779 DiagnosedConflictingDefinitions.insert(GD).second) { 5780 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5781 << MangledName; 5782 Diags.Report(OtherGD.getDecl()->getLocation(), 5783 diag::note_previous_definition); 5784 } 5785 return; 5786 } 5787 5788 Aliases.push_back(GD); 5789 5790 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5791 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5792 llvm::Constant *Resolver = 5793 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5794 /*ForVTable=*/false); 5795 llvm::GlobalIFunc *GIF = 5796 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5797 "", Resolver, &getModule()); 5798 if (Entry) { 5799 if (GIF->getResolver() == Entry) { 5800 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5801 return; 5802 } 5803 assert(Entry->isDeclaration()); 5804 5805 // If there is a declaration in the module, then we had an extern followed 5806 // by the ifunc, as in: 5807 // extern int test(); 5808 // ... 5809 // int test() __attribute__((ifunc("resolver"))); 5810 // 5811 // Remove it and replace uses of it with the ifunc. 5812 GIF->takeName(Entry); 5813 5814 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5815 Entry->getType())); 5816 Entry->eraseFromParent(); 5817 } else 5818 GIF->setName(MangledName); 5819 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5820 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5821 } 5822 SetCommonAttributes(GD, GIF); 5823 } 5824 5825 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5826 ArrayRef<llvm::Type*> Tys) { 5827 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5828 Tys); 5829 } 5830 5831 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5832 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5833 const StringLiteral *Literal, bool TargetIsLSB, 5834 bool &IsUTF16, unsigned &StringLength) { 5835 StringRef String = Literal->getString(); 5836 unsigned NumBytes = String.size(); 5837 5838 // Check for simple case. 5839 if (!Literal->containsNonAsciiOrNull()) { 5840 StringLength = NumBytes; 5841 return *Map.insert(std::make_pair(String, nullptr)).first; 5842 } 5843 5844 // Otherwise, convert the UTF8 literals into a string of shorts. 5845 IsUTF16 = true; 5846 5847 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5848 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5849 llvm::UTF16 *ToPtr = &ToBuf[0]; 5850 5851 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5852 ToPtr + NumBytes, llvm::strictConversion); 5853 5854 // ConvertUTF8toUTF16 returns the length in ToPtr. 5855 StringLength = ToPtr - &ToBuf[0]; 5856 5857 // Add an explicit null. 5858 *ToPtr = 0; 5859 return *Map.insert(std::make_pair( 5860 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5861 (StringLength + 1) * 2), 5862 nullptr)).first; 5863 } 5864 5865 ConstantAddress 5866 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5867 unsigned StringLength = 0; 5868 bool isUTF16 = false; 5869 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5870 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5871 getDataLayout().isLittleEndian(), isUTF16, 5872 StringLength); 5873 5874 if (auto *C = Entry.second) 5875 return ConstantAddress( 5876 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5877 5878 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5879 llvm::Constant *Zeros[] = { Zero, Zero }; 5880 5881 const ASTContext &Context = getContext(); 5882 const llvm::Triple &Triple = getTriple(); 5883 5884 const auto CFRuntime = getLangOpts().CFRuntime; 5885 const bool IsSwiftABI = 5886 static_cast<unsigned>(CFRuntime) >= 5887 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5888 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5889 5890 // If we don't already have it, get __CFConstantStringClassReference. 5891 if (!CFConstantStringClassRef) { 5892 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5893 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5894 Ty = llvm::ArrayType::get(Ty, 0); 5895 5896 switch (CFRuntime) { 5897 default: break; 5898 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5899 case LangOptions::CoreFoundationABI::Swift5_0: 5900 CFConstantStringClassName = 5901 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5902 : "$s10Foundation19_NSCFConstantStringCN"; 5903 Ty = IntPtrTy; 5904 break; 5905 case LangOptions::CoreFoundationABI::Swift4_2: 5906 CFConstantStringClassName = 5907 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5908 : "$S10Foundation19_NSCFConstantStringCN"; 5909 Ty = IntPtrTy; 5910 break; 5911 case LangOptions::CoreFoundationABI::Swift4_1: 5912 CFConstantStringClassName = 5913 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5914 : "__T010Foundation19_NSCFConstantStringCN"; 5915 Ty = IntPtrTy; 5916 break; 5917 } 5918 5919 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5920 5921 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5922 llvm::GlobalValue *GV = nullptr; 5923 5924 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5925 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5926 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5927 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5928 5929 const VarDecl *VD = nullptr; 5930 for (const auto *Result : DC->lookup(&II)) 5931 if ((VD = dyn_cast<VarDecl>(Result))) 5932 break; 5933 5934 if (Triple.isOSBinFormatELF()) { 5935 if (!VD) 5936 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5937 } else { 5938 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5939 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5940 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5941 else 5942 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5943 } 5944 5945 setDSOLocal(GV); 5946 } 5947 } 5948 5949 // Decay array -> ptr 5950 CFConstantStringClassRef = 5951 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5952 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5953 } 5954 5955 QualType CFTy = Context.getCFConstantStringType(); 5956 5957 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5958 5959 ConstantInitBuilder Builder(*this); 5960 auto Fields = Builder.beginStruct(STy); 5961 5962 // Class pointer. 5963 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5964 5965 // Flags. 5966 if (IsSwiftABI) { 5967 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5968 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5969 } else { 5970 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5971 } 5972 5973 // String pointer. 5974 llvm::Constant *C = nullptr; 5975 if (isUTF16) { 5976 auto Arr = llvm::ArrayRef( 5977 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5978 Entry.first().size() / 2); 5979 C = llvm::ConstantDataArray::get(VMContext, Arr); 5980 } else { 5981 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5982 } 5983 5984 // Note: -fwritable-strings doesn't make the backing store strings of 5985 // CFStrings writable. 5986 auto *GV = 5987 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5988 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5989 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5990 // Don't enforce the target's minimum global alignment, since the only use 5991 // of the string is via this class initializer. 5992 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5993 : Context.getTypeAlignInChars(Context.CharTy); 5994 GV->setAlignment(Align.getAsAlign()); 5995 5996 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5997 // Without it LLVM can merge the string with a non unnamed_addr one during 5998 // LTO. Doing that changes the section it ends in, which surprises ld64. 5999 if (Triple.isOSBinFormatMachO()) 6000 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6001 : "__TEXT,__cstring,cstring_literals"); 6002 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6003 // the static linker to adjust permissions to read-only later on. 6004 else if (Triple.isOSBinFormatELF()) 6005 GV->setSection(".rodata"); 6006 6007 // String. 6008 llvm::Constant *Str = 6009 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6010 6011 if (isUTF16) 6012 // Cast the UTF16 string to the correct type. 6013 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 6014 Fields.add(Str); 6015 6016 // String length. 6017 llvm::IntegerType *LengthTy = 6018 llvm::IntegerType::get(getModule().getContext(), 6019 Context.getTargetInfo().getLongWidth()); 6020 if (IsSwiftABI) { 6021 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6022 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6023 LengthTy = Int32Ty; 6024 else 6025 LengthTy = IntPtrTy; 6026 } 6027 Fields.addInt(LengthTy, StringLength); 6028 6029 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6030 // properly aligned on 32-bit platforms. 6031 CharUnits Alignment = 6032 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6033 6034 // The struct. 6035 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6036 /*isConstant=*/false, 6037 llvm::GlobalVariable::PrivateLinkage); 6038 GV->addAttribute("objc_arc_inert"); 6039 switch (Triple.getObjectFormat()) { 6040 case llvm::Triple::UnknownObjectFormat: 6041 llvm_unreachable("unknown file format"); 6042 case llvm::Triple::DXContainer: 6043 case llvm::Triple::GOFF: 6044 case llvm::Triple::SPIRV: 6045 case llvm::Triple::XCOFF: 6046 llvm_unreachable("unimplemented"); 6047 case llvm::Triple::COFF: 6048 case llvm::Triple::ELF: 6049 case llvm::Triple::Wasm: 6050 GV->setSection("cfstring"); 6051 break; 6052 case llvm::Triple::MachO: 6053 GV->setSection("__DATA,__cfstring"); 6054 break; 6055 } 6056 Entry.second = GV; 6057 6058 return ConstantAddress(GV, GV->getValueType(), Alignment); 6059 } 6060 6061 bool CodeGenModule::getExpressionLocationsEnabled() const { 6062 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6063 } 6064 6065 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6066 if (ObjCFastEnumerationStateType.isNull()) { 6067 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6068 D->startDefinition(); 6069 6070 QualType FieldTypes[] = { 6071 Context.UnsignedLongTy, 6072 Context.getPointerType(Context.getObjCIdType()), 6073 Context.getPointerType(Context.UnsignedLongTy), 6074 Context.getConstantArrayType(Context.UnsignedLongTy, 6075 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 6076 }; 6077 6078 for (size_t i = 0; i < 4; ++i) { 6079 FieldDecl *Field = FieldDecl::Create(Context, 6080 D, 6081 SourceLocation(), 6082 SourceLocation(), nullptr, 6083 FieldTypes[i], /*TInfo=*/nullptr, 6084 /*BitWidth=*/nullptr, 6085 /*Mutable=*/false, 6086 ICIS_NoInit); 6087 Field->setAccess(AS_public); 6088 D->addDecl(Field); 6089 } 6090 6091 D->completeDefinition(); 6092 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6093 } 6094 6095 return ObjCFastEnumerationStateType; 6096 } 6097 6098 llvm::Constant * 6099 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6100 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6101 6102 // Don't emit it as the address of the string, emit the string data itself 6103 // as an inline array. 6104 if (E->getCharByteWidth() == 1) { 6105 SmallString<64> Str(E->getString()); 6106 6107 // Resize the string to the right size, which is indicated by its type. 6108 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6109 assert(CAT && "String literal not of constant array type!"); 6110 Str.resize(CAT->getSize().getZExtValue()); 6111 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6112 } 6113 6114 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6115 llvm::Type *ElemTy = AType->getElementType(); 6116 unsigned NumElements = AType->getNumElements(); 6117 6118 // Wide strings have either 2-byte or 4-byte elements. 6119 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6120 SmallVector<uint16_t, 32> Elements; 6121 Elements.reserve(NumElements); 6122 6123 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6124 Elements.push_back(E->getCodeUnit(i)); 6125 Elements.resize(NumElements); 6126 return llvm::ConstantDataArray::get(VMContext, Elements); 6127 } 6128 6129 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6130 SmallVector<uint32_t, 32> Elements; 6131 Elements.reserve(NumElements); 6132 6133 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6134 Elements.push_back(E->getCodeUnit(i)); 6135 Elements.resize(NumElements); 6136 return llvm::ConstantDataArray::get(VMContext, Elements); 6137 } 6138 6139 static llvm::GlobalVariable * 6140 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6141 CodeGenModule &CGM, StringRef GlobalName, 6142 CharUnits Alignment) { 6143 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6144 CGM.GetGlobalConstantAddressSpace()); 6145 6146 llvm::Module &M = CGM.getModule(); 6147 // Create a global variable for this string 6148 auto *GV = new llvm::GlobalVariable( 6149 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6150 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6151 GV->setAlignment(Alignment.getAsAlign()); 6152 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6153 if (GV->isWeakForLinker()) { 6154 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6155 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6156 } 6157 CGM.setDSOLocal(GV); 6158 6159 return GV; 6160 } 6161 6162 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6163 /// constant array for the given string literal. 6164 ConstantAddress 6165 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6166 StringRef Name) { 6167 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6168 6169 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6170 llvm::GlobalVariable **Entry = nullptr; 6171 if (!LangOpts.WritableStrings) { 6172 Entry = &ConstantStringMap[C]; 6173 if (auto GV = *Entry) { 6174 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6175 GV->setAlignment(Alignment.getAsAlign()); 6176 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6177 GV->getValueType(), Alignment); 6178 } 6179 } 6180 6181 SmallString<256> MangledNameBuffer; 6182 StringRef GlobalVariableName; 6183 llvm::GlobalValue::LinkageTypes LT; 6184 6185 // Mangle the string literal if that's how the ABI merges duplicate strings. 6186 // Don't do it if they are writable, since we don't want writes in one TU to 6187 // affect strings in another. 6188 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6189 !LangOpts.WritableStrings) { 6190 llvm::raw_svector_ostream Out(MangledNameBuffer); 6191 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6192 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6193 GlobalVariableName = MangledNameBuffer; 6194 } else { 6195 LT = llvm::GlobalValue::PrivateLinkage; 6196 GlobalVariableName = Name; 6197 } 6198 6199 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6200 6201 CGDebugInfo *DI = getModuleDebugInfo(); 6202 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6203 DI->AddStringLiteralDebugInfo(GV, S); 6204 6205 if (Entry) 6206 *Entry = GV; 6207 6208 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6209 6210 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6211 GV->getValueType(), Alignment); 6212 } 6213 6214 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6215 /// array for the given ObjCEncodeExpr node. 6216 ConstantAddress 6217 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6218 std::string Str; 6219 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6220 6221 return GetAddrOfConstantCString(Str); 6222 } 6223 6224 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6225 /// the literal and a terminating '\0' character. 6226 /// The result has pointer to array type. 6227 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6228 const std::string &Str, const char *GlobalName) { 6229 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6230 CharUnits Alignment = 6231 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6232 6233 llvm::Constant *C = 6234 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6235 6236 // Don't share any string literals if strings aren't constant. 6237 llvm::GlobalVariable **Entry = nullptr; 6238 if (!LangOpts.WritableStrings) { 6239 Entry = &ConstantStringMap[C]; 6240 if (auto GV = *Entry) { 6241 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6242 GV->setAlignment(Alignment.getAsAlign()); 6243 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6244 GV->getValueType(), Alignment); 6245 } 6246 } 6247 6248 // Get the default prefix if a name wasn't specified. 6249 if (!GlobalName) 6250 GlobalName = ".str"; 6251 // Create a global variable for this. 6252 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6253 GlobalName, Alignment); 6254 if (Entry) 6255 *Entry = GV; 6256 6257 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6258 GV->getValueType(), Alignment); 6259 } 6260 6261 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6262 const MaterializeTemporaryExpr *E, const Expr *Init) { 6263 assert((E->getStorageDuration() == SD_Static || 6264 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6265 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6266 6267 // If we're not materializing a subobject of the temporary, keep the 6268 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6269 QualType MaterializedType = Init->getType(); 6270 if (Init == E->getSubExpr()) 6271 MaterializedType = E->getType(); 6272 6273 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6274 6275 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6276 if (!InsertResult.second) { 6277 // We've seen this before: either we already created it or we're in the 6278 // process of doing so. 6279 if (!InsertResult.first->second) { 6280 // We recursively re-entered this function, probably during emission of 6281 // the initializer. Create a placeholder. We'll clean this up in the 6282 // outer call, at the end of this function. 6283 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6284 InsertResult.first->second = new llvm::GlobalVariable( 6285 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6286 nullptr); 6287 } 6288 return ConstantAddress(InsertResult.first->second, 6289 llvm::cast<llvm::GlobalVariable>( 6290 InsertResult.first->second->stripPointerCasts()) 6291 ->getValueType(), 6292 Align); 6293 } 6294 6295 // FIXME: If an externally-visible declaration extends multiple temporaries, 6296 // we need to give each temporary the same name in every translation unit (and 6297 // we also need to make the temporaries externally-visible). 6298 SmallString<256> Name; 6299 llvm::raw_svector_ostream Out(Name); 6300 getCXXABI().getMangleContext().mangleReferenceTemporary( 6301 VD, E->getManglingNumber(), Out); 6302 6303 APValue *Value = nullptr; 6304 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6305 // If the initializer of the extending declaration is a constant 6306 // initializer, we should have a cached constant initializer for this 6307 // temporary. Note that this might have a different value from the value 6308 // computed by evaluating the initializer if the surrounding constant 6309 // expression modifies the temporary. 6310 Value = E->getOrCreateValue(false); 6311 } 6312 6313 // Try evaluating it now, it might have a constant initializer. 6314 Expr::EvalResult EvalResult; 6315 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6316 !EvalResult.hasSideEffects()) 6317 Value = &EvalResult.Val; 6318 6319 LangAS AddrSpace = 6320 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6321 6322 std::optional<ConstantEmitter> emitter; 6323 llvm::Constant *InitialValue = nullptr; 6324 bool Constant = false; 6325 llvm::Type *Type; 6326 if (Value) { 6327 // The temporary has a constant initializer, use it. 6328 emitter.emplace(*this); 6329 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6330 MaterializedType); 6331 Constant = 6332 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6333 /*ExcludeDtor*/ false); 6334 Type = InitialValue->getType(); 6335 } else { 6336 // No initializer, the initialization will be provided when we 6337 // initialize the declaration which performed lifetime extension. 6338 Type = getTypes().ConvertTypeForMem(MaterializedType); 6339 } 6340 6341 // Create a global variable for this lifetime-extended temporary. 6342 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6343 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6344 const VarDecl *InitVD; 6345 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6346 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6347 // Temporaries defined inside a class get linkonce_odr linkage because the 6348 // class can be defined in multiple translation units. 6349 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6350 } else { 6351 // There is no need for this temporary to have external linkage if the 6352 // VarDecl has external linkage. 6353 Linkage = llvm::GlobalVariable::InternalLinkage; 6354 } 6355 } 6356 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6357 auto *GV = new llvm::GlobalVariable( 6358 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6359 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6360 if (emitter) emitter->finalize(GV); 6361 // Don't assign dllimport or dllexport to local linkage globals. 6362 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6363 setGVProperties(GV, VD); 6364 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6365 // The reference temporary should never be dllexport. 6366 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6367 } 6368 GV->setAlignment(Align.getAsAlign()); 6369 if (supportsCOMDAT() && GV->isWeakForLinker()) 6370 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6371 if (VD->getTLSKind()) 6372 setTLSMode(GV, *VD); 6373 llvm::Constant *CV = GV; 6374 if (AddrSpace != LangAS::Default) 6375 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6376 *this, GV, AddrSpace, LangAS::Default, 6377 Type->getPointerTo( 6378 getContext().getTargetAddressSpace(LangAS::Default))); 6379 6380 // Update the map with the new temporary. If we created a placeholder above, 6381 // replace it with the new global now. 6382 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6383 if (Entry) { 6384 Entry->replaceAllUsesWith( 6385 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6386 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6387 } 6388 Entry = CV; 6389 6390 return ConstantAddress(CV, Type, Align); 6391 } 6392 6393 /// EmitObjCPropertyImplementations - Emit information for synthesized 6394 /// properties for an implementation. 6395 void CodeGenModule::EmitObjCPropertyImplementations(const 6396 ObjCImplementationDecl *D) { 6397 for (const auto *PID : D->property_impls()) { 6398 // Dynamic is just for type-checking. 6399 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6400 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6401 6402 // Determine which methods need to be implemented, some may have 6403 // been overridden. Note that ::isPropertyAccessor is not the method 6404 // we want, that just indicates if the decl came from a 6405 // property. What we want to know is if the method is defined in 6406 // this implementation. 6407 auto *Getter = PID->getGetterMethodDecl(); 6408 if (!Getter || Getter->isSynthesizedAccessorStub()) 6409 CodeGenFunction(*this).GenerateObjCGetter( 6410 const_cast<ObjCImplementationDecl *>(D), PID); 6411 auto *Setter = PID->getSetterMethodDecl(); 6412 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6413 CodeGenFunction(*this).GenerateObjCSetter( 6414 const_cast<ObjCImplementationDecl *>(D), PID); 6415 } 6416 } 6417 } 6418 6419 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6420 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6421 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6422 ivar; ivar = ivar->getNextIvar()) 6423 if (ivar->getType().isDestructedType()) 6424 return true; 6425 6426 return false; 6427 } 6428 6429 static bool AllTrivialInitializers(CodeGenModule &CGM, 6430 ObjCImplementationDecl *D) { 6431 CodeGenFunction CGF(CGM); 6432 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6433 E = D->init_end(); B != E; ++B) { 6434 CXXCtorInitializer *CtorInitExp = *B; 6435 Expr *Init = CtorInitExp->getInit(); 6436 if (!CGF.isTrivialInitializer(Init)) 6437 return false; 6438 } 6439 return true; 6440 } 6441 6442 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6443 /// for an implementation. 6444 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6445 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6446 if (needsDestructMethod(D)) { 6447 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6448 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6449 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6450 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6451 getContext().VoidTy, nullptr, D, 6452 /*isInstance=*/true, /*isVariadic=*/false, 6453 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6454 /*isImplicitlyDeclared=*/true, 6455 /*isDefined=*/false, ObjCMethodDecl::Required); 6456 D->addInstanceMethod(DTORMethod); 6457 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6458 D->setHasDestructors(true); 6459 } 6460 6461 // If the implementation doesn't have any ivar initializers, we don't need 6462 // a .cxx_construct. 6463 if (D->getNumIvarInitializers() == 0 || 6464 AllTrivialInitializers(*this, D)) 6465 return; 6466 6467 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6468 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6469 // The constructor returns 'self'. 6470 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6471 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6472 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6473 /*isVariadic=*/false, 6474 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6475 /*isImplicitlyDeclared=*/true, 6476 /*isDefined=*/false, ObjCMethodDecl::Required); 6477 D->addInstanceMethod(CTORMethod); 6478 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6479 D->setHasNonZeroConstructors(true); 6480 } 6481 6482 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6483 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6484 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6485 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6486 ErrorUnsupported(LSD, "linkage spec"); 6487 return; 6488 } 6489 6490 EmitDeclContext(LSD); 6491 } 6492 6493 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6494 // Device code should not be at top level. 6495 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6496 return; 6497 6498 std::unique_ptr<CodeGenFunction> &CurCGF = 6499 GlobalTopLevelStmtBlockInFlight.first; 6500 6501 // We emitted a top-level stmt but after it there is initialization. 6502 // Stop squashing the top-level stmts into a single function. 6503 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6504 CurCGF->FinishFunction(D->getEndLoc()); 6505 CurCGF = nullptr; 6506 } 6507 6508 if (!CurCGF) { 6509 // void __stmts__N(void) 6510 // FIXME: Ask the ABI name mangler to pick a name. 6511 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6512 FunctionArgList Args; 6513 QualType RetTy = getContext().VoidTy; 6514 const CGFunctionInfo &FnInfo = 6515 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6516 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6517 llvm::Function *Fn = llvm::Function::Create( 6518 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6519 6520 CurCGF.reset(new CodeGenFunction(*this)); 6521 GlobalTopLevelStmtBlockInFlight.second = D; 6522 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6523 D->getBeginLoc(), D->getBeginLoc()); 6524 CXXGlobalInits.push_back(Fn); 6525 } 6526 6527 CurCGF->EmitStmt(D->getStmt()); 6528 } 6529 6530 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6531 for (auto *I : DC->decls()) { 6532 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6533 // are themselves considered "top-level", so EmitTopLevelDecl on an 6534 // ObjCImplDecl does not recursively visit them. We need to do that in 6535 // case they're nested inside another construct (LinkageSpecDecl / 6536 // ExportDecl) that does stop them from being considered "top-level". 6537 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6538 for (auto *M : OID->methods()) 6539 EmitTopLevelDecl(M); 6540 } 6541 6542 EmitTopLevelDecl(I); 6543 } 6544 } 6545 6546 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6547 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6548 // Ignore dependent declarations. 6549 if (D->isTemplated()) 6550 return; 6551 6552 // Consteval function shouldn't be emitted. 6553 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6554 return; 6555 6556 switch (D->getKind()) { 6557 case Decl::CXXConversion: 6558 case Decl::CXXMethod: 6559 case Decl::Function: 6560 EmitGlobal(cast<FunctionDecl>(D)); 6561 // Always provide some coverage mapping 6562 // even for the functions that aren't emitted. 6563 AddDeferredUnusedCoverageMapping(D); 6564 break; 6565 6566 case Decl::CXXDeductionGuide: 6567 // Function-like, but does not result in code emission. 6568 break; 6569 6570 case Decl::Var: 6571 case Decl::Decomposition: 6572 case Decl::VarTemplateSpecialization: 6573 EmitGlobal(cast<VarDecl>(D)); 6574 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6575 for (auto *B : DD->bindings()) 6576 if (auto *HD = B->getHoldingVar()) 6577 EmitGlobal(HD); 6578 break; 6579 6580 // Indirect fields from global anonymous structs and unions can be 6581 // ignored; only the actual variable requires IR gen support. 6582 case Decl::IndirectField: 6583 break; 6584 6585 // C++ Decls 6586 case Decl::Namespace: 6587 EmitDeclContext(cast<NamespaceDecl>(D)); 6588 break; 6589 case Decl::ClassTemplateSpecialization: { 6590 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6591 if (CGDebugInfo *DI = getModuleDebugInfo()) 6592 if (Spec->getSpecializationKind() == 6593 TSK_ExplicitInstantiationDefinition && 6594 Spec->hasDefinition()) 6595 DI->completeTemplateDefinition(*Spec); 6596 } [[fallthrough]]; 6597 case Decl::CXXRecord: { 6598 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6599 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6600 if (CRD->hasDefinition()) 6601 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6602 if (auto *ES = D->getASTContext().getExternalSource()) 6603 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6604 DI->completeUnusedClass(*CRD); 6605 } 6606 // Emit any static data members, they may be definitions. 6607 for (auto *I : CRD->decls()) 6608 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6609 EmitTopLevelDecl(I); 6610 break; 6611 } 6612 // No code generation needed. 6613 case Decl::UsingShadow: 6614 case Decl::ClassTemplate: 6615 case Decl::VarTemplate: 6616 case Decl::Concept: 6617 case Decl::VarTemplatePartialSpecialization: 6618 case Decl::FunctionTemplate: 6619 case Decl::TypeAliasTemplate: 6620 case Decl::Block: 6621 case Decl::Empty: 6622 case Decl::Binding: 6623 break; 6624 case Decl::Using: // using X; [C++] 6625 if (CGDebugInfo *DI = getModuleDebugInfo()) 6626 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6627 break; 6628 case Decl::UsingEnum: // using enum X; [C++] 6629 if (CGDebugInfo *DI = getModuleDebugInfo()) 6630 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6631 break; 6632 case Decl::NamespaceAlias: 6633 if (CGDebugInfo *DI = getModuleDebugInfo()) 6634 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6635 break; 6636 case Decl::UsingDirective: // using namespace X; [C++] 6637 if (CGDebugInfo *DI = getModuleDebugInfo()) 6638 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6639 break; 6640 case Decl::CXXConstructor: 6641 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6642 break; 6643 case Decl::CXXDestructor: 6644 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6645 break; 6646 6647 case Decl::StaticAssert: 6648 // Nothing to do. 6649 break; 6650 6651 // Objective-C Decls 6652 6653 // Forward declarations, no (immediate) code generation. 6654 case Decl::ObjCInterface: 6655 case Decl::ObjCCategory: 6656 break; 6657 6658 case Decl::ObjCProtocol: { 6659 auto *Proto = cast<ObjCProtocolDecl>(D); 6660 if (Proto->isThisDeclarationADefinition()) 6661 ObjCRuntime->GenerateProtocol(Proto); 6662 break; 6663 } 6664 6665 case Decl::ObjCCategoryImpl: 6666 // Categories have properties but don't support synthesize so we 6667 // can ignore them here. 6668 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6669 break; 6670 6671 case Decl::ObjCImplementation: { 6672 auto *OMD = cast<ObjCImplementationDecl>(D); 6673 EmitObjCPropertyImplementations(OMD); 6674 EmitObjCIvarInitializations(OMD); 6675 ObjCRuntime->GenerateClass(OMD); 6676 // Emit global variable debug information. 6677 if (CGDebugInfo *DI = getModuleDebugInfo()) 6678 if (getCodeGenOpts().hasReducedDebugInfo()) 6679 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6680 OMD->getClassInterface()), OMD->getLocation()); 6681 break; 6682 } 6683 case Decl::ObjCMethod: { 6684 auto *OMD = cast<ObjCMethodDecl>(D); 6685 // If this is not a prototype, emit the body. 6686 if (OMD->getBody()) 6687 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6688 break; 6689 } 6690 case Decl::ObjCCompatibleAlias: 6691 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6692 break; 6693 6694 case Decl::PragmaComment: { 6695 const auto *PCD = cast<PragmaCommentDecl>(D); 6696 switch (PCD->getCommentKind()) { 6697 case PCK_Unknown: 6698 llvm_unreachable("unexpected pragma comment kind"); 6699 case PCK_Linker: 6700 AppendLinkerOptions(PCD->getArg()); 6701 break; 6702 case PCK_Lib: 6703 AddDependentLib(PCD->getArg()); 6704 break; 6705 case PCK_Compiler: 6706 case PCK_ExeStr: 6707 case PCK_User: 6708 break; // We ignore all of these. 6709 } 6710 break; 6711 } 6712 6713 case Decl::PragmaDetectMismatch: { 6714 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6715 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6716 break; 6717 } 6718 6719 case Decl::LinkageSpec: 6720 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6721 break; 6722 6723 case Decl::FileScopeAsm: { 6724 // File-scope asm is ignored during device-side CUDA compilation. 6725 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6726 break; 6727 // File-scope asm is ignored during device-side OpenMP compilation. 6728 if (LangOpts.OpenMPIsTargetDevice) 6729 break; 6730 // File-scope asm is ignored during device-side SYCL compilation. 6731 if (LangOpts.SYCLIsDevice) 6732 break; 6733 auto *AD = cast<FileScopeAsmDecl>(D); 6734 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6735 break; 6736 } 6737 6738 case Decl::TopLevelStmt: 6739 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6740 break; 6741 6742 case Decl::Import: { 6743 auto *Import = cast<ImportDecl>(D); 6744 6745 // If we've already imported this module, we're done. 6746 if (!ImportedModules.insert(Import->getImportedModule())) 6747 break; 6748 6749 // Emit debug information for direct imports. 6750 if (!Import->getImportedOwningModule()) { 6751 if (CGDebugInfo *DI = getModuleDebugInfo()) 6752 DI->EmitImportDecl(*Import); 6753 } 6754 6755 // For C++ standard modules we are done - we will call the module 6756 // initializer for imported modules, and that will likewise call those for 6757 // any imports it has. 6758 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6759 !Import->getImportedOwningModule()->isModuleMapModule()) 6760 break; 6761 6762 // For clang C++ module map modules the initializers for sub-modules are 6763 // emitted here. 6764 6765 // Find all of the submodules and emit the module initializers. 6766 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6767 SmallVector<clang::Module *, 16> Stack; 6768 Visited.insert(Import->getImportedModule()); 6769 Stack.push_back(Import->getImportedModule()); 6770 6771 while (!Stack.empty()) { 6772 clang::Module *Mod = Stack.pop_back_val(); 6773 if (!EmittedModuleInitializers.insert(Mod).second) 6774 continue; 6775 6776 for (auto *D : Context.getModuleInitializers(Mod)) 6777 EmitTopLevelDecl(D); 6778 6779 // Visit the submodules of this module. 6780 for (auto *Submodule : Mod->submodules()) { 6781 // Skip explicit children; they need to be explicitly imported to emit 6782 // the initializers. 6783 if (Submodule->IsExplicit) 6784 continue; 6785 6786 if (Visited.insert(Submodule).second) 6787 Stack.push_back(Submodule); 6788 } 6789 } 6790 break; 6791 } 6792 6793 case Decl::Export: 6794 EmitDeclContext(cast<ExportDecl>(D)); 6795 break; 6796 6797 case Decl::OMPThreadPrivate: 6798 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6799 break; 6800 6801 case Decl::OMPAllocate: 6802 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6803 break; 6804 6805 case Decl::OMPDeclareReduction: 6806 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6807 break; 6808 6809 case Decl::OMPDeclareMapper: 6810 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6811 break; 6812 6813 case Decl::OMPRequires: 6814 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6815 break; 6816 6817 case Decl::Typedef: 6818 case Decl::TypeAlias: // using foo = bar; [C++11] 6819 if (CGDebugInfo *DI = getModuleDebugInfo()) 6820 DI->EmitAndRetainType( 6821 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6822 break; 6823 6824 case Decl::Record: 6825 if (CGDebugInfo *DI = getModuleDebugInfo()) 6826 if (cast<RecordDecl>(D)->getDefinition()) 6827 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6828 break; 6829 6830 case Decl::Enum: 6831 if (CGDebugInfo *DI = getModuleDebugInfo()) 6832 if (cast<EnumDecl>(D)->getDefinition()) 6833 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6834 break; 6835 6836 case Decl::HLSLBuffer: 6837 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6838 break; 6839 6840 default: 6841 // Make sure we handled everything we should, every other kind is a 6842 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6843 // function. Need to recode Decl::Kind to do that easily. 6844 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6845 break; 6846 } 6847 } 6848 6849 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6850 // Do we need to generate coverage mapping? 6851 if (!CodeGenOpts.CoverageMapping) 6852 return; 6853 switch (D->getKind()) { 6854 case Decl::CXXConversion: 6855 case Decl::CXXMethod: 6856 case Decl::Function: 6857 case Decl::ObjCMethod: 6858 case Decl::CXXConstructor: 6859 case Decl::CXXDestructor: { 6860 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6861 break; 6862 SourceManager &SM = getContext().getSourceManager(); 6863 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6864 break; 6865 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6866 if (I == DeferredEmptyCoverageMappingDecls.end()) 6867 DeferredEmptyCoverageMappingDecls[D] = true; 6868 break; 6869 } 6870 default: 6871 break; 6872 }; 6873 } 6874 6875 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6876 // Do we need to generate coverage mapping? 6877 if (!CodeGenOpts.CoverageMapping) 6878 return; 6879 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6880 if (Fn->isTemplateInstantiation()) 6881 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6882 } 6883 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6884 if (I == DeferredEmptyCoverageMappingDecls.end()) 6885 DeferredEmptyCoverageMappingDecls[D] = false; 6886 else 6887 I->second = false; 6888 } 6889 6890 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6891 // We call takeVector() here to avoid use-after-free. 6892 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6893 // we deserialize function bodies to emit coverage info for them, and that 6894 // deserializes more declarations. How should we handle that case? 6895 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6896 if (!Entry.second) 6897 continue; 6898 const Decl *D = Entry.first; 6899 switch (D->getKind()) { 6900 case Decl::CXXConversion: 6901 case Decl::CXXMethod: 6902 case Decl::Function: 6903 case Decl::ObjCMethod: { 6904 CodeGenPGO PGO(*this); 6905 GlobalDecl GD(cast<FunctionDecl>(D)); 6906 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6907 getFunctionLinkage(GD)); 6908 break; 6909 } 6910 case Decl::CXXConstructor: { 6911 CodeGenPGO PGO(*this); 6912 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6913 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6914 getFunctionLinkage(GD)); 6915 break; 6916 } 6917 case Decl::CXXDestructor: { 6918 CodeGenPGO PGO(*this); 6919 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6920 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6921 getFunctionLinkage(GD)); 6922 break; 6923 } 6924 default: 6925 break; 6926 }; 6927 } 6928 } 6929 6930 void CodeGenModule::EmitMainVoidAlias() { 6931 // In order to transition away from "__original_main" gracefully, emit an 6932 // alias for "main" in the no-argument case so that libc can detect when 6933 // new-style no-argument main is in used. 6934 if (llvm::Function *F = getModule().getFunction("main")) { 6935 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6936 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6937 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6938 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6939 } 6940 } 6941 } 6942 6943 /// Turns the given pointer into a constant. 6944 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6945 const void *Ptr) { 6946 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6947 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6948 return llvm::ConstantInt::get(i64, PtrInt); 6949 } 6950 6951 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6952 llvm::NamedMDNode *&GlobalMetadata, 6953 GlobalDecl D, 6954 llvm::GlobalValue *Addr) { 6955 if (!GlobalMetadata) 6956 GlobalMetadata = 6957 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6958 6959 // TODO: should we report variant information for ctors/dtors? 6960 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6961 llvm::ConstantAsMetadata::get(GetPointerConstant( 6962 CGM.getLLVMContext(), D.getDecl()))}; 6963 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6964 } 6965 6966 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6967 llvm::GlobalValue *CppFunc) { 6968 // Store the list of ifuncs we need to replace uses in. 6969 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6970 // List of ConstantExprs that we should be able to delete when we're done 6971 // here. 6972 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6973 6974 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6975 if (Elem == CppFunc) 6976 return false; 6977 6978 // First make sure that all users of this are ifuncs (or ifuncs via a 6979 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6980 // later. 6981 for (llvm::User *User : Elem->users()) { 6982 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6983 // ifunc directly. In any other case, just give up, as we don't know what we 6984 // could break by changing those. 6985 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6986 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6987 return false; 6988 6989 for (llvm::User *CEUser : ConstExpr->users()) { 6990 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6991 IFuncs.push_back(IFunc); 6992 } else { 6993 return false; 6994 } 6995 } 6996 CEs.push_back(ConstExpr); 6997 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6998 IFuncs.push_back(IFunc); 6999 } else { 7000 // This user is one we don't know how to handle, so fail redirection. This 7001 // will result in an ifunc retaining a resolver name that will ultimately 7002 // fail to be resolved to a defined function. 7003 return false; 7004 } 7005 } 7006 7007 // Now we know this is a valid case where we can do this alias replacement, we 7008 // need to remove all of the references to Elem (and the bitcasts!) so we can 7009 // delete it. 7010 for (llvm::GlobalIFunc *IFunc : IFuncs) 7011 IFunc->setResolver(nullptr); 7012 for (llvm::ConstantExpr *ConstExpr : CEs) 7013 ConstExpr->destroyConstant(); 7014 7015 // We should now be out of uses for the 'old' version of this function, so we 7016 // can erase it as well. 7017 Elem->eraseFromParent(); 7018 7019 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7020 // The type of the resolver is always just a function-type that returns the 7021 // type of the IFunc, so create that here. If the type of the actual 7022 // resolver doesn't match, it just gets bitcast to the right thing. 7023 auto *ResolverTy = 7024 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7025 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7026 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7027 IFunc->setResolver(Resolver); 7028 } 7029 return true; 7030 } 7031 7032 /// For each function which is declared within an extern "C" region and marked 7033 /// as 'used', but has internal linkage, create an alias from the unmangled 7034 /// name to the mangled name if possible. People expect to be able to refer 7035 /// to such functions with an unmangled name from inline assembly within the 7036 /// same translation unit. 7037 void CodeGenModule::EmitStaticExternCAliases() { 7038 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7039 return; 7040 for (auto &I : StaticExternCValues) { 7041 IdentifierInfo *Name = I.first; 7042 llvm::GlobalValue *Val = I.second; 7043 7044 // If Val is null, that implies there were multiple declarations that each 7045 // had a claim to the unmangled name. In this case, generation of the alias 7046 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7047 if (!Val) 7048 break; 7049 7050 llvm::GlobalValue *ExistingElem = 7051 getModule().getNamedValue(Name->getName()); 7052 7053 // If there is either not something already by this name, or we were able to 7054 // replace all uses from IFuncs, create the alias. 7055 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7056 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7057 } 7058 } 7059 7060 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7061 GlobalDecl &Result) const { 7062 auto Res = Manglings.find(MangledName); 7063 if (Res == Manglings.end()) 7064 return false; 7065 Result = Res->getValue(); 7066 return true; 7067 } 7068 7069 /// Emits metadata nodes associating all the global values in the 7070 /// current module with the Decls they came from. This is useful for 7071 /// projects using IR gen as a subroutine. 7072 /// 7073 /// Since there's currently no way to associate an MDNode directly 7074 /// with an llvm::GlobalValue, we create a global named metadata 7075 /// with the name 'clang.global.decl.ptrs'. 7076 void CodeGenModule::EmitDeclMetadata() { 7077 llvm::NamedMDNode *GlobalMetadata = nullptr; 7078 7079 for (auto &I : MangledDeclNames) { 7080 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7081 // Some mangled names don't necessarily have an associated GlobalValue 7082 // in this module, e.g. if we mangled it for DebugInfo. 7083 if (Addr) 7084 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7085 } 7086 } 7087 7088 /// Emits metadata nodes for all the local variables in the current 7089 /// function. 7090 void CodeGenFunction::EmitDeclMetadata() { 7091 if (LocalDeclMap.empty()) return; 7092 7093 llvm::LLVMContext &Context = getLLVMContext(); 7094 7095 // Find the unique metadata ID for this name. 7096 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7097 7098 llvm::NamedMDNode *GlobalMetadata = nullptr; 7099 7100 for (auto &I : LocalDeclMap) { 7101 const Decl *D = I.first; 7102 llvm::Value *Addr = I.second.getPointer(); 7103 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7104 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7105 Alloca->setMetadata( 7106 DeclPtrKind, llvm::MDNode::get( 7107 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7108 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7109 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7110 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7111 } 7112 } 7113 } 7114 7115 void CodeGenModule::EmitVersionIdentMetadata() { 7116 llvm::NamedMDNode *IdentMetadata = 7117 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7118 std::string Version = getClangFullVersion(); 7119 llvm::LLVMContext &Ctx = TheModule.getContext(); 7120 7121 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7122 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7123 } 7124 7125 void CodeGenModule::EmitCommandLineMetadata() { 7126 llvm::NamedMDNode *CommandLineMetadata = 7127 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7128 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7129 llvm::LLVMContext &Ctx = TheModule.getContext(); 7130 7131 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7132 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7133 } 7134 7135 void CodeGenModule::EmitCoverageFile() { 7136 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7137 if (!CUNode) 7138 return; 7139 7140 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7141 llvm::LLVMContext &Ctx = TheModule.getContext(); 7142 auto *CoverageDataFile = 7143 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7144 auto *CoverageNotesFile = 7145 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7146 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7147 llvm::MDNode *CU = CUNode->getOperand(i); 7148 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7149 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7150 } 7151 } 7152 7153 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7154 bool ForEH) { 7155 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7156 // FIXME: should we even be calling this method if RTTI is disabled 7157 // and it's not for EH? 7158 if (!shouldEmitRTTI(ForEH)) 7159 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7160 7161 if (ForEH && Ty->isObjCObjectPointerType() && 7162 LangOpts.ObjCRuntime.isGNUFamily()) 7163 return ObjCRuntime->GetEHType(Ty); 7164 7165 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7166 } 7167 7168 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7169 // Do not emit threadprivates in simd-only mode. 7170 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7171 return; 7172 for (auto RefExpr : D->varlists()) { 7173 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7174 bool PerformInit = 7175 VD->getAnyInitializer() && 7176 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7177 /*ForRef=*/false); 7178 7179 Address Addr(GetAddrOfGlobalVar(VD), 7180 getTypes().ConvertTypeForMem(VD->getType()), 7181 getContext().getDeclAlign(VD)); 7182 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7183 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7184 CXXGlobalInits.push_back(InitFunction); 7185 } 7186 } 7187 7188 llvm::Metadata * 7189 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7190 StringRef Suffix) { 7191 if (auto *FnType = T->getAs<FunctionProtoType>()) 7192 T = getContext().getFunctionType( 7193 FnType->getReturnType(), FnType->getParamTypes(), 7194 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7195 7196 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7197 if (InternalId) 7198 return InternalId; 7199 7200 if (isExternallyVisible(T->getLinkage())) { 7201 std::string OutName; 7202 llvm::raw_string_ostream Out(OutName); 7203 getCXXABI().getMangleContext().mangleTypeName( 7204 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7205 7206 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7207 Out << ".normalized"; 7208 7209 Out << Suffix; 7210 7211 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7212 } else { 7213 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7214 llvm::ArrayRef<llvm::Metadata *>()); 7215 } 7216 7217 return InternalId; 7218 } 7219 7220 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7221 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7222 } 7223 7224 llvm::Metadata * 7225 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7226 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7227 } 7228 7229 // Generalize pointer types to a void pointer with the qualifiers of the 7230 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7231 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7232 // 'void *'. 7233 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7234 if (!Ty->isPointerType()) 7235 return Ty; 7236 7237 return Ctx.getPointerType( 7238 QualType(Ctx.VoidTy).withCVRQualifiers( 7239 Ty->getPointeeType().getCVRQualifiers())); 7240 } 7241 7242 // Apply type generalization to a FunctionType's return and argument types 7243 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7244 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7245 SmallVector<QualType, 8> GeneralizedParams; 7246 for (auto &Param : FnType->param_types()) 7247 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7248 7249 return Ctx.getFunctionType( 7250 GeneralizeType(Ctx, FnType->getReturnType()), 7251 GeneralizedParams, FnType->getExtProtoInfo()); 7252 } 7253 7254 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7255 return Ctx.getFunctionNoProtoType( 7256 GeneralizeType(Ctx, FnType->getReturnType())); 7257 7258 llvm_unreachable("Encountered unknown FunctionType"); 7259 } 7260 7261 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7262 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7263 GeneralizedMetadataIdMap, ".generalized"); 7264 } 7265 7266 /// Returns whether this module needs the "all-vtables" type identifier. 7267 bool CodeGenModule::NeedAllVtablesTypeId() const { 7268 // Returns true if at least one of vtable-based CFI checkers is enabled and 7269 // is not in the trapping mode. 7270 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7271 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7272 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7273 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7274 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7275 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7276 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7277 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7278 } 7279 7280 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7281 CharUnits Offset, 7282 const CXXRecordDecl *RD) { 7283 llvm::Metadata *MD = 7284 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7285 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7286 7287 if (CodeGenOpts.SanitizeCfiCrossDso) 7288 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7289 VTable->addTypeMetadata(Offset.getQuantity(), 7290 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7291 7292 if (NeedAllVtablesTypeId()) { 7293 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7294 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7295 } 7296 } 7297 7298 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7299 if (!SanStats) 7300 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7301 7302 return *SanStats; 7303 } 7304 7305 llvm::Value * 7306 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7307 CodeGenFunction &CGF) { 7308 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7309 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7310 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7311 auto *Call = CGF.EmitRuntimeCall( 7312 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7313 return Call; 7314 } 7315 7316 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7317 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7318 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7319 /* forPointeeType= */ true); 7320 } 7321 7322 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7323 LValueBaseInfo *BaseInfo, 7324 TBAAAccessInfo *TBAAInfo, 7325 bool forPointeeType) { 7326 if (TBAAInfo) 7327 *TBAAInfo = getTBAAAccessInfo(T); 7328 7329 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7330 // that doesn't return the information we need to compute BaseInfo. 7331 7332 // Honor alignment typedef attributes even on incomplete types. 7333 // We also honor them straight for C++ class types, even as pointees; 7334 // there's an expressivity gap here. 7335 if (auto TT = T->getAs<TypedefType>()) { 7336 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7337 if (BaseInfo) 7338 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7339 return getContext().toCharUnitsFromBits(Align); 7340 } 7341 } 7342 7343 bool AlignForArray = T->isArrayType(); 7344 7345 // Analyze the base element type, so we don't get confused by incomplete 7346 // array types. 7347 T = getContext().getBaseElementType(T); 7348 7349 if (T->isIncompleteType()) { 7350 // We could try to replicate the logic from 7351 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7352 // type is incomplete, so it's impossible to test. We could try to reuse 7353 // getTypeAlignIfKnown, but that doesn't return the information we need 7354 // to set BaseInfo. So just ignore the possibility that the alignment is 7355 // greater than one. 7356 if (BaseInfo) 7357 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7358 return CharUnits::One(); 7359 } 7360 7361 if (BaseInfo) 7362 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7363 7364 CharUnits Alignment; 7365 const CXXRecordDecl *RD; 7366 if (T.getQualifiers().hasUnaligned()) { 7367 Alignment = CharUnits::One(); 7368 } else if (forPointeeType && !AlignForArray && 7369 (RD = T->getAsCXXRecordDecl())) { 7370 // For C++ class pointees, we don't know whether we're pointing at a 7371 // base or a complete object, so we generally need to use the 7372 // non-virtual alignment. 7373 Alignment = getClassPointerAlignment(RD); 7374 } else { 7375 Alignment = getContext().getTypeAlignInChars(T); 7376 } 7377 7378 // Cap to the global maximum type alignment unless the alignment 7379 // was somehow explicit on the type. 7380 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7381 if (Alignment.getQuantity() > MaxAlign && 7382 !getContext().isAlignmentRequired(T)) 7383 Alignment = CharUnits::fromQuantity(MaxAlign); 7384 } 7385 return Alignment; 7386 } 7387 7388 bool CodeGenModule::stopAutoInit() { 7389 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7390 if (StopAfter) { 7391 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7392 // used 7393 if (NumAutoVarInit >= StopAfter) { 7394 return true; 7395 } 7396 if (!NumAutoVarInit) { 7397 unsigned DiagID = getDiags().getCustomDiagID( 7398 DiagnosticsEngine::Warning, 7399 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7400 "number of times ftrivial-auto-var-init=%1 gets applied."); 7401 getDiags().Report(DiagID) 7402 << StopAfter 7403 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7404 LangOptions::TrivialAutoVarInitKind::Zero 7405 ? "zero" 7406 : "pattern"); 7407 } 7408 ++NumAutoVarInit; 7409 } 7410 return false; 7411 } 7412 7413 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7414 const Decl *D) const { 7415 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7416 // postfix beginning with '.' since the symbol name can be demangled. 7417 if (LangOpts.HIP) 7418 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7419 else 7420 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7421 7422 // If the CUID is not specified we try to generate a unique postfix. 7423 if (getLangOpts().CUID.empty()) { 7424 SourceManager &SM = getContext().getSourceManager(); 7425 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7426 assert(PLoc.isValid() && "Source location is expected to be valid."); 7427 7428 // Get the hash of the user defined macros. 7429 llvm::MD5 Hash; 7430 llvm::MD5::MD5Result Result; 7431 for (const auto &Arg : PreprocessorOpts.Macros) 7432 Hash.update(Arg.first); 7433 Hash.final(Result); 7434 7435 // Get the UniqueID for the file containing the decl. 7436 llvm::sys::fs::UniqueID ID; 7437 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7438 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7439 assert(PLoc.isValid() && "Source location is expected to be valid."); 7440 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7441 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7442 << PLoc.getFilename() << EC.message(); 7443 } 7444 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7445 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7446 } else { 7447 OS << getContext().getCUIDHash(); 7448 } 7449 } 7450 7451 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7452 assert(DeferredDeclsToEmit.empty() && 7453 "Should have emitted all decls deferred to emit."); 7454 assert(NewBuilder->DeferredDecls.empty() && 7455 "Newly created module should not have deferred decls"); 7456 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7457 assert(EmittedDeferredDecls.empty() && 7458 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7459 7460 assert(NewBuilder->DeferredVTables.empty() && 7461 "Newly created module should not have deferred vtables"); 7462 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7463 7464 assert(NewBuilder->MangledDeclNames.empty() && 7465 "Newly created module should not have mangled decl names"); 7466 assert(NewBuilder->Manglings.empty() && 7467 "Newly created module should not have manglings"); 7468 NewBuilder->Manglings = std::move(Manglings); 7469 7470 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7471 7472 NewBuilder->TBAA = std::move(TBAA); 7473 7474 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7475 } 7476