xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b47c36f8e113f238124fa00ae7d444d02f5b470e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/Version.h"
39 #include "clang/Frontend/CodeGenOptions.h"
40 #include "clang/Sema/SemaDiagnostic.h"
41 #include "llvm/ADT/APSInt.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/IR/CallingConv.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/CallSite.h"
49 #include "llvm/Support/ConvertUTF.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Target/Mangler.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return *CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return *CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0),
81       ConstantStringClassRef(0), NSConstantStringType(0),
82       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
83       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
84       LifetimeStartFn(0), LifetimeEndFn(0),
85       SanitizerBlacklist(
86           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
87       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
88                                           : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::checkAliases() {
176   bool Error = false;
177   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
178          E = Aliases.end(); I != E; ++I) {
179     const GlobalDecl &GD = *I;
180     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
181     const AliasAttr *AA = D->getAttr<AliasAttr>();
182     StringRef MangledName = getMangledName(GD);
183     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
184     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
185     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
186     if (GV->isDeclaration()) {
187       Error = true;
188       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
189     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
190       Error = true;
191       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
192     }
193   }
194   if (!Error)
195     return;
196 
197   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
198          E = Aliases.end(); I != E; ++I) {
199     const GlobalDecl &GD = *I;
200     StringRef MangledName = getMangledName(GD);
201     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
202     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
203     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
204     Alias->eraseFromParent();
205   }
206 }
207 
208 void CodeGenModule::Release() {
209   EmitDeferred();
210   checkAliases();
211   EmitCXXGlobalInitFunc();
212   EmitCXXGlobalDtorFunc();
213   EmitCXXThreadLocalInitFunc();
214   if (ObjCRuntime)
215     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
216       AddGlobalCtor(ObjCInitFunction);
217   EmitCtorList(GlobalCtors, "llvm.global_ctors");
218   EmitCtorList(GlobalDtors, "llvm.global_dtors");
219   EmitGlobalAnnotations();
220   EmitStaticExternCAliases();
221   EmitLLVMUsed();
222 
223   if (CodeGenOpts.Autolink &&
224       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
225     EmitModuleLinkOptions();
226   }
227   if (CodeGenOpts.DwarfVersion)
228     // We actually want the latest version when there are conflicts.
229     // We can change from Warning to Latest if such mode is supported.
230     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
231                               CodeGenOpts.DwarfVersion);
232 
233   SimplifyPersonality();
234 
235   if (getCodeGenOpts().EmitDeclMetadata)
236     EmitDeclMetadata();
237 
238   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
239     EmitCoverageFile();
240 
241   if (DebugInfo)
242     DebugInfo->finalize();
243 
244   EmitVersionIdentMetadata();
245 }
246 
247 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
248   // Make sure that this type is translated.
249   Types.UpdateCompletedType(TD);
250 }
251 
252 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
253   if (!TBAA)
254     return 0;
255   return TBAA->getTBAAInfo(QTy);
256 }
257 
258 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
259   if (!TBAA)
260     return 0;
261   return TBAA->getTBAAInfoForVTablePtr();
262 }
263 
264 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
265   if (!TBAA)
266     return 0;
267   return TBAA->getTBAAStructInfo(QTy);
268 }
269 
270 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
271   if (!TBAA)
272     return 0;
273   return TBAA->getTBAAStructTypeInfo(QTy);
274 }
275 
276 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
277                                                   llvm::MDNode *AccessN,
278                                                   uint64_t O) {
279   if (!TBAA)
280     return 0;
281   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
282 }
283 
284 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
285 /// and struct-path aware TBAA, the tag has the same format:
286 /// base type, access type and offset.
287 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
288 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
289                                         llvm::MDNode *TBAAInfo,
290                                         bool ConvertTypeToTag) {
291   if (ConvertTypeToTag && TBAA)
292     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
293                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
294   else
295     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
296 }
297 
298 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
299   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
300   getDiags().Report(Context.getFullLoc(loc), diagID);
301 }
302 
303 /// ErrorUnsupported - Print out an error that codegen doesn't support the
304 /// specified stmt yet.
305 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
306   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
307                                                "cannot compile this %0 yet");
308   std::string Msg = Type;
309   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
310     << Msg << S->getSourceRange();
311 }
312 
313 /// ErrorUnsupported - Print out an error that codegen doesn't support the
314 /// specified decl yet.
315 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
316   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
317                                                "cannot compile this %0 yet");
318   std::string Msg = Type;
319   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
320 }
321 
322 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
323   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
324 }
325 
326 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
327                                         const NamedDecl *D) const {
328   // Internal definitions always have default visibility.
329   if (GV->hasLocalLinkage()) {
330     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
331     return;
332   }
333 
334   // Set visibility for definitions.
335   LinkageInfo LV = D->getLinkageAndVisibility();
336   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
337     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
338 }
339 
340 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
341   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
342       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
343       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
344       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
345       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
346 }
347 
348 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
349     CodeGenOptions::TLSModel M) {
350   switch (M) {
351   case CodeGenOptions::GeneralDynamicTLSModel:
352     return llvm::GlobalVariable::GeneralDynamicTLSModel;
353   case CodeGenOptions::LocalDynamicTLSModel:
354     return llvm::GlobalVariable::LocalDynamicTLSModel;
355   case CodeGenOptions::InitialExecTLSModel:
356     return llvm::GlobalVariable::InitialExecTLSModel;
357   case CodeGenOptions::LocalExecTLSModel:
358     return llvm::GlobalVariable::LocalExecTLSModel;
359   }
360   llvm_unreachable("Invalid TLS model!");
361 }
362 
363 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
364                                const VarDecl &D) const {
365   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
366 
367   llvm::GlobalVariable::ThreadLocalMode TLM;
368   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
369 
370   // Override the TLS model if it is explicitly specified.
371   if (D.hasAttr<TLSModelAttr>()) {
372     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
373     TLM = GetLLVMTLSModel(Attr->getModel());
374   }
375 
376   GV->setThreadLocalMode(TLM);
377 }
378 
379 /// Set the symbol visibility of type information (vtable and RTTI)
380 /// associated with the given type.
381 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
382                                       const CXXRecordDecl *RD,
383                                       TypeVisibilityKind TVK) const {
384   setGlobalVisibility(GV, RD);
385 
386   if (!CodeGenOpts.HiddenWeakVTables)
387     return;
388 
389   // We never want to drop the visibility for RTTI names.
390   if (TVK == TVK_ForRTTIName)
391     return;
392 
393   // We want to drop the visibility to hidden for weak type symbols.
394   // This isn't possible if there might be unresolved references
395   // elsewhere that rely on this symbol being visible.
396 
397   // This should be kept roughly in sync with setThunkVisibility
398   // in CGVTables.cpp.
399 
400   // Preconditions.
401   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
402       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
403     return;
404 
405   // Don't override an explicit visibility attribute.
406   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
407     return;
408 
409   switch (RD->getTemplateSpecializationKind()) {
410   // We have to disable the optimization if this is an EI definition
411   // because there might be EI declarations in other shared objects.
412   case TSK_ExplicitInstantiationDefinition:
413   case TSK_ExplicitInstantiationDeclaration:
414     return;
415 
416   // Every use of a non-template class's type information has to emit it.
417   case TSK_Undeclared:
418     break;
419 
420   // In theory, implicit instantiations can ignore the possibility of
421   // an explicit instantiation declaration because there necessarily
422   // must be an EI definition somewhere with default visibility.  In
423   // practice, it's possible to have an explicit instantiation for
424   // an arbitrary template class, and linkers aren't necessarily able
425   // to deal with mixed-visibility symbols.
426   case TSK_ExplicitSpecialization:
427   case TSK_ImplicitInstantiation:
428     return;
429   }
430 
431   // If there's a key function, there may be translation units
432   // that don't have the key function's definition.  But ignore
433   // this if we're emitting RTTI under -fno-rtti.
434   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
435     // FIXME: what should we do if we "lose" the key function during
436     // the emission of the file?
437     if (Context.getCurrentKeyFunction(RD))
438       return;
439   }
440 
441   // Otherwise, drop the visibility to hidden.
442   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
443   GV->setUnnamedAddr(true);
444 }
445 
446 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
447   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
448 
449   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
450   if (!Str.empty())
451     return Str;
452 
453   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
454     IdentifierInfo *II = ND->getIdentifier();
455     assert(II && "Attempt to mangle unnamed decl.");
456 
457     Str = II->getName();
458     return Str;
459   }
460 
461   SmallString<256> Buffer;
462   llvm::raw_svector_ostream Out(Buffer);
463   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
464     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
465   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
466     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
467   else
468     getCXXABI().getMangleContext().mangleName(ND, Out);
469 
470   // Allocate space for the mangled name.
471   Out.flush();
472   size_t Length = Buffer.size();
473   char *Name = MangledNamesAllocator.Allocate<char>(Length);
474   std::copy(Buffer.begin(), Buffer.end(), Name);
475 
476   Str = StringRef(Name, Length);
477 
478   return Str;
479 }
480 
481 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
482                                         const BlockDecl *BD) {
483   MangleContext &MangleCtx = getCXXABI().getMangleContext();
484   const Decl *D = GD.getDecl();
485   llvm::raw_svector_ostream Out(Buffer.getBuffer());
486   if (D == 0)
487     MangleCtx.mangleGlobalBlock(BD,
488       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
489   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
490     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
491   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
492     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
493   else
494     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
495 }
496 
497 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
498   return getModule().getNamedValue(Name);
499 }
500 
501 /// AddGlobalCtor - Add a function to the list that will be called before
502 /// main() runs.
503 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
504   // FIXME: Type coercion of void()* types.
505   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
506 }
507 
508 /// AddGlobalDtor - Add a function to the list that will be called
509 /// when the module is unloaded.
510 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
511   // FIXME: Type coercion of void()* types.
512   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
513 }
514 
515 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
516   // Ctor function type is void()*.
517   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
518   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
519 
520   // Get the type of a ctor entry, { i32, void ()* }.
521   llvm::StructType *CtorStructTy =
522     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
523 
524   // Construct the constructor and destructor arrays.
525   SmallVector<llvm::Constant*, 8> Ctors;
526   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
527     llvm::Constant *S[] = {
528       llvm::ConstantInt::get(Int32Ty, I->second, false),
529       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
530     };
531     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
532   }
533 
534   if (!Ctors.empty()) {
535     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
536     new llvm::GlobalVariable(TheModule, AT, false,
537                              llvm::GlobalValue::AppendingLinkage,
538                              llvm::ConstantArray::get(AT, Ctors),
539                              GlobalName);
540   }
541 }
542 
543 llvm::GlobalValue::LinkageTypes
544 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
545   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
546 
547   if (isa<CXXDestructorDecl>(D) &&
548       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
549                                          GD.getDtorType()))
550     return llvm::Function::LinkOnceODRLinkage;
551 
552   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
553 
554   if (Linkage == GVA_Internal)
555     return llvm::Function::InternalLinkage;
556 
557   if (D->hasAttr<DLLExportAttr>())
558     return llvm::Function::DLLExportLinkage;
559 
560   if (D->hasAttr<WeakAttr>())
561     return llvm::Function::WeakAnyLinkage;
562 
563   // In C99 mode, 'inline' functions are guaranteed to have a strong
564   // definition somewhere else, so we can use available_externally linkage.
565   if (Linkage == GVA_C99Inline)
566     return llvm::Function::AvailableExternallyLinkage;
567 
568   // Note that Apple's kernel linker doesn't support symbol
569   // coalescing, so we need to avoid linkonce and weak linkages there.
570   // Normally, this means we just map to internal, but for explicit
571   // instantiations we'll map to external.
572 
573   // In C++, the compiler has to emit a definition in every translation unit
574   // that references the function.  We should use linkonce_odr because
575   // a) if all references in this translation unit are optimized away, we
576   // don't need to codegen it.  b) if the function persists, it needs to be
577   // merged with other definitions. c) C++ has the ODR, so we know the
578   // definition is dependable.
579   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
580     return !Context.getLangOpts().AppleKext
581              ? llvm::Function::LinkOnceODRLinkage
582              : llvm::Function::InternalLinkage;
583 
584   // An explicit instantiation of a template has weak linkage, since
585   // explicit instantiations can occur in multiple translation units
586   // and must all be equivalent. However, we are not allowed to
587   // throw away these explicit instantiations.
588   if (Linkage == GVA_ExplicitTemplateInstantiation)
589     return !Context.getLangOpts().AppleKext
590              ? llvm::Function::WeakODRLinkage
591              : llvm::Function::ExternalLinkage;
592 
593   // Otherwise, we have strong external linkage.
594   assert(Linkage == GVA_StrongExternal);
595   return llvm::Function::ExternalLinkage;
596 }
597 
598 
599 /// SetFunctionDefinitionAttributes - Set attributes for a global.
600 ///
601 /// FIXME: This is currently only done for aliases and functions, but not for
602 /// variables (these details are set in EmitGlobalVarDefinition for variables).
603 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
604                                                     llvm::GlobalValue *GV) {
605   SetCommonAttributes(D, GV);
606 }
607 
608 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
609                                               const CGFunctionInfo &Info,
610                                               llvm::Function *F) {
611   unsigned CallingConv;
612   AttributeListType AttributeList;
613   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
614   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
615   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
616 }
617 
618 /// Determines whether the language options require us to model
619 /// unwind exceptions.  We treat -fexceptions as mandating this
620 /// except under the fragile ObjC ABI with only ObjC exceptions
621 /// enabled.  This means, for example, that C with -fexceptions
622 /// enables this.
623 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
624   // If exceptions are completely disabled, obviously this is false.
625   if (!LangOpts.Exceptions) return false;
626 
627   // If C++ exceptions are enabled, this is true.
628   if (LangOpts.CXXExceptions) return true;
629 
630   // If ObjC exceptions are enabled, this depends on the ABI.
631   if (LangOpts.ObjCExceptions) {
632     return LangOpts.ObjCRuntime.hasUnwindExceptions();
633   }
634 
635   return true;
636 }
637 
638 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
639                                                            llvm::Function *F) {
640   llvm::AttrBuilder B;
641 
642   if (CodeGenOpts.UnwindTables)
643     B.addAttribute(llvm::Attribute::UWTable);
644 
645   if (!hasUnwindExceptions(LangOpts))
646     B.addAttribute(llvm::Attribute::NoUnwind);
647 
648   if (D->hasAttr<NakedAttr>()) {
649     // Naked implies noinline: we should not be inlining such functions.
650     B.addAttribute(llvm::Attribute::Naked);
651     B.addAttribute(llvm::Attribute::NoInline);
652   } else if (D->hasAttr<NoInlineAttr>()) {
653     B.addAttribute(llvm::Attribute::NoInline);
654   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
655               D->hasAttr<ForceInlineAttr>()) &&
656              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
657                                               llvm::Attribute::NoInline)) {
658     // (noinline wins over always_inline, and we can't specify both in IR)
659     B.addAttribute(llvm::Attribute::AlwaysInline);
660   }
661 
662   if (D->hasAttr<ColdAttr>()) {
663     B.addAttribute(llvm::Attribute::OptimizeForSize);
664     B.addAttribute(llvm::Attribute::Cold);
665   }
666 
667   if (D->hasAttr<MinSizeAttr>())
668     B.addAttribute(llvm::Attribute::MinSize);
669 
670   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
671     B.addAttribute(llvm::Attribute::StackProtect);
672   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
673     B.addAttribute(llvm::Attribute::StackProtectReq);
674 
675   // Add sanitizer attributes if function is not blacklisted.
676   if (!SanitizerBlacklist->isIn(*F)) {
677     // When AddressSanitizer is enabled, set SanitizeAddress attribute
678     // unless __attribute__((no_sanitize_address)) is used.
679     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
680       B.addAttribute(llvm::Attribute::SanitizeAddress);
681     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
682     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
683       B.addAttribute(llvm::Attribute::SanitizeThread);
684     }
685     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
686     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
687       B.addAttribute(llvm::Attribute::SanitizeMemory);
688   }
689 
690   F->addAttributes(llvm::AttributeSet::FunctionIndex,
691                    llvm::AttributeSet::get(
692                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
693 
694   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
695     F->setUnnamedAddr(true);
696   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
697     if (MD->isVirtual())
698       F->setUnnamedAddr(true);
699 
700   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
701   if (alignment)
702     F->setAlignment(alignment);
703 
704   // C++ ABI requires 2-byte alignment for member functions.
705   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
706     F->setAlignment(2);
707 }
708 
709 void CodeGenModule::SetCommonAttributes(const Decl *D,
710                                         llvm::GlobalValue *GV) {
711   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
712     setGlobalVisibility(GV, ND);
713   else
714     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
715 
716   if (D->hasAttr<UsedAttr>())
717     AddUsedGlobal(GV);
718 
719   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
720     GV->setSection(SA->getName());
721 
722   // Alias cannot have attributes. Filter them here.
723   if (!isa<llvm::GlobalAlias>(GV))
724     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
725 }
726 
727 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
728                                                   llvm::Function *F,
729                                                   const CGFunctionInfo &FI) {
730   SetLLVMFunctionAttributes(D, FI, F);
731   SetLLVMFunctionAttributesForDefinition(D, F);
732 
733   F->setLinkage(llvm::Function::InternalLinkage);
734 
735   SetCommonAttributes(D, F);
736 }
737 
738 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
739                                           llvm::Function *F,
740                                           bool IsIncompleteFunction) {
741   if (unsigned IID = F->getIntrinsicID()) {
742     // If this is an intrinsic function, set the function's attributes
743     // to the intrinsic's attributes.
744     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
745                                                     (llvm::Intrinsic::ID)IID));
746     return;
747   }
748 
749   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
750 
751   if (!IsIncompleteFunction)
752     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
753 
754   if (getCXXABI().HasThisReturn(GD)) {
755     assert(!F->arg_empty() &&
756            F->arg_begin()->getType()
757              ->canLosslesslyBitCastTo(F->getReturnType()) &&
758            "unexpected this return");
759     F->addAttribute(1, llvm::Attribute::Returned);
760   }
761 
762   // Only a few attributes are set on declarations; these may later be
763   // overridden by a definition.
764 
765   if (FD->hasAttr<DLLImportAttr>()) {
766     F->setLinkage(llvm::Function::DLLImportLinkage);
767   } else if (FD->hasAttr<WeakAttr>() ||
768              FD->isWeakImported()) {
769     // "extern_weak" is overloaded in LLVM; we probably should have
770     // separate linkage types for this.
771     F->setLinkage(llvm::Function::ExternalWeakLinkage);
772   } else {
773     F->setLinkage(llvm::Function::ExternalLinkage);
774 
775     LinkageInfo LV = FD->getLinkageAndVisibility();
776     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
777       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
778     }
779   }
780 
781   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
782     F->setSection(SA->getName());
783 
784   // A replaceable global allocation function does not act like a builtin by
785   // default, only if it is invoked by a new-expression or delete-expression.
786   if (FD->isReplaceableGlobalAllocationFunction())
787     F->addAttribute(llvm::AttributeSet::FunctionIndex,
788                     llvm::Attribute::NoBuiltin);
789 }
790 
791 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
792   assert(!GV->isDeclaration() &&
793          "Only globals with definition can force usage.");
794   LLVMUsed.push_back(GV);
795 }
796 
797 void CodeGenModule::EmitLLVMUsed() {
798   // Don't create llvm.used if there is no need.
799   if (LLVMUsed.empty())
800     return;
801 
802   // Convert LLVMUsed to what ConstantArray needs.
803   SmallVector<llvm::Constant*, 8> UsedArray;
804   UsedArray.resize(LLVMUsed.size());
805   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
806     UsedArray[i] =
807      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
808                                     Int8PtrTy);
809   }
810 
811   if (UsedArray.empty())
812     return;
813   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
814 
815   llvm::GlobalVariable *GV =
816     new llvm::GlobalVariable(getModule(), ATy, false,
817                              llvm::GlobalValue::AppendingLinkage,
818                              llvm::ConstantArray::get(ATy, UsedArray),
819                              "llvm.used");
820 
821   GV->setSection("llvm.metadata");
822 }
823 
824 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
825   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
826   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
827 }
828 
829 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
830   llvm::SmallString<32> Opt;
831   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
832   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
833   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
834 }
835 
836 void CodeGenModule::AddDependentLib(StringRef Lib) {
837   llvm::SmallString<24> Opt;
838   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
839   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
840   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
841 }
842 
843 /// \brief Add link options implied by the given module, including modules
844 /// it depends on, using a postorder walk.
845 static void addLinkOptionsPostorder(CodeGenModule &CGM,
846                                     Module *Mod,
847                                     SmallVectorImpl<llvm::Value *> &Metadata,
848                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
849   // Import this module's parent.
850   if (Mod->Parent && Visited.insert(Mod->Parent)) {
851     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
852   }
853 
854   // Import this module's dependencies.
855   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
856     if (Visited.insert(Mod->Imports[I-1]))
857       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
858   }
859 
860   // Add linker options to link against the libraries/frameworks
861   // described by this module.
862   llvm::LLVMContext &Context = CGM.getLLVMContext();
863   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
864     // Link against a framework.  Frameworks are currently Darwin only, so we
865     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
866     if (Mod->LinkLibraries[I-1].IsFramework) {
867       llvm::Value *Args[2] = {
868         llvm::MDString::get(Context, "-framework"),
869         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
870       };
871 
872       Metadata.push_back(llvm::MDNode::get(Context, Args));
873       continue;
874     }
875 
876     // Link against a library.
877     llvm::SmallString<24> Opt;
878     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
879       Mod->LinkLibraries[I-1].Library, Opt);
880     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
881     Metadata.push_back(llvm::MDNode::get(Context, OptString));
882   }
883 }
884 
885 void CodeGenModule::EmitModuleLinkOptions() {
886   // Collect the set of all of the modules we want to visit to emit link
887   // options, which is essentially the imported modules and all of their
888   // non-explicit child modules.
889   llvm::SetVector<clang::Module *> LinkModules;
890   llvm::SmallPtrSet<clang::Module *, 16> Visited;
891   SmallVector<clang::Module *, 16> Stack;
892 
893   // Seed the stack with imported modules.
894   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
895                                                MEnd = ImportedModules.end();
896        M != MEnd; ++M) {
897     if (Visited.insert(*M))
898       Stack.push_back(*M);
899   }
900 
901   // Find all of the modules to import, making a little effort to prune
902   // non-leaf modules.
903   while (!Stack.empty()) {
904     clang::Module *Mod = Stack.pop_back_val();
905 
906     bool AnyChildren = false;
907 
908     // Visit the submodules of this module.
909     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
910                                         SubEnd = Mod->submodule_end();
911          Sub != SubEnd; ++Sub) {
912       // Skip explicit children; they need to be explicitly imported to be
913       // linked against.
914       if ((*Sub)->IsExplicit)
915         continue;
916 
917       if (Visited.insert(*Sub)) {
918         Stack.push_back(*Sub);
919         AnyChildren = true;
920       }
921     }
922 
923     // We didn't find any children, so add this module to the list of
924     // modules to link against.
925     if (!AnyChildren) {
926       LinkModules.insert(Mod);
927     }
928   }
929 
930   // Add link options for all of the imported modules in reverse topological
931   // order.  We don't do anything to try to order import link flags with respect
932   // to linker options inserted by things like #pragma comment().
933   SmallVector<llvm::Value *, 16> MetadataArgs;
934   Visited.clear();
935   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
936                                                MEnd = LinkModules.end();
937        M != MEnd; ++M) {
938     if (Visited.insert(*M))
939       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
940   }
941   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
942   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
943 
944   // Add the linker options metadata flag.
945   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
946                             llvm::MDNode::get(getLLVMContext(),
947                                               LinkerOptionsMetadata));
948 }
949 
950 void CodeGenModule::EmitDeferred() {
951   // Emit code for any potentially referenced deferred decls.  Since a
952   // previously unused static decl may become used during the generation of code
953   // for a static function, iterate until no changes are made.
954 
955   while (true) {
956     if (!DeferredVTables.empty()) {
957       EmitDeferredVTables();
958 
959       // Emitting a v-table doesn't directly cause more v-tables to
960       // become deferred, although it can cause functions to be
961       // emitted that then need those v-tables.
962       assert(DeferredVTables.empty());
963     }
964 
965     // Stop if we're out of both deferred v-tables and deferred declarations.
966     if (DeferredDeclsToEmit.empty()) break;
967 
968     GlobalDecl D = DeferredDeclsToEmit.back();
969     DeferredDeclsToEmit.pop_back();
970 
971     // Check to see if we've already emitted this.  This is necessary
972     // for a couple of reasons: first, decls can end up in the
973     // deferred-decls queue multiple times, and second, decls can end
974     // up with definitions in unusual ways (e.g. by an extern inline
975     // function acquiring a strong function redefinition).  Just
976     // ignore these cases.
977     //
978     // TODO: That said, looking this up multiple times is very wasteful.
979     StringRef Name = getMangledName(D);
980     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
981     assert(CGRef && "Deferred decl wasn't referenced?");
982 
983     if (!CGRef->isDeclaration())
984       continue;
985 
986     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
987     // purposes an alias counts as a definition.
988     if (isa<llvm::GlobalAlias>(CGRef))
989       continue;
990 
991     // Otherwise, emit the definition and move on to the next one.
992     EmitGlobalDefinition(D);
993   }
994 }
995 
996 void CodeGenModule::EmitGlobalAnnotations() {
997   if (Annotations.empty())
998     return;
999 
1000   // Create a new global variable for the ConstantStruct in the Module.
1001   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1002     Annotations[0]->getType(), Annotations.size()), Annotations);
1003   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1004     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1005     "llvm.global.annotations");
1006   gv->setSection(AnnotationSection);
1007 }
1008 
1009 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1010   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
1011   if (i != AnnotationStrings.end())
1012     return i->second;
1013 
1014   // Not found yet, create a new global.
1015   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1016   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1017     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1018   gv->setSection(AnnotationSection);
1019   gv->setUnnamedAddr(true);
1020   AnnotationStrings[Str] = gv;
1021   return gv;
1022 }
1023 
1024 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1025   SourceManager &SM = getContext().getSourceManager();
1026   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1027   if (PLoc.isValid())
1028     return EmitAnnotationString(PLoc.getFilename());
1029   return EmitAnnotationString(SM.getBufferName(Loc));
1030 }
1031 
1032 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1033   SourceManager &SM = getContext().getSourceManager();
1034   PresumedLoc PLoc = SM.getPresumedLoc(L);
1035   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1036     SM.getExpansionLineNumber(L);
1037   return llvm::ConstantInt::get(Int32Ty, LineNo);
1038 }
1039 
1040 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1041                                                 const AnnotateAttr *AA,
1042                                                 SourceLocation L) {
1043   // Get the globals for file name, annotation, and the line number.
1044   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1045                  *UnitGV = EmitAnnotationUnit(L),
1046                  *LineNoCst = EmitAnnotationLineNo(L);
1047 
1048   // Create the ConstantStruct for the global annotation.
1049   llvm::Constant *Fields[4] = {
1050     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1051     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1052     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1053     LineNoCst
1054   };
1055   return llvm::ConstantStruct::getAnon(Fields);
1056 }
1057 
1058 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1059                                          llvm::GlobalValue *GV) {
1060   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1061   // Get the struct elements for these annotations.
1062   for (specific_attr_iterator<AnnotateAttr>
1063        ai = D->specific_attr_begin<AnnotateAttr>(),
1064        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1065     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1066 }
1067 
1068 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1069   // Never defer when EmitAllDecls is specified.
1070   if (LangOpts.EmitAllDecls)
1071     return false;
1072 
1073   return !getContext().DeclMustBeEmitted(Global);
1074 }
1075 
1076 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1077     const CXXUuidofExpr* E) {
1078   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1079   // well-formed.
1080   StringRef Uuid = E->getUuidAsStringRef(Context);
1081   std::string Name = "_GUID_" + Uuid.lower();
1082   std::replace(Name.begin(), Name.end(), '-', '_');
1083 
1084   // Look for an existing global.
1085   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1086     return GV;
1087 
1088   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1089   assert(Init && "failed to initialize as constant");
1090 
1091   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1092       getModule(), Init->getType(),
1093       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1094   return GV;
1095 }
1096 
1097 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1098   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1099   assert(AA && "No alias?");
1100 
1101   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1102 
1103   // See if there is already something with the target's name in the module.
1104   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1105   if (Entry) {
1106     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1107     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1108   }
1109 
1110   llvm::Constant *Aliasee;
1111   if (isa<llvm::FunctionType>(DeclTy))
1112     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1113                                       GlobalDecl(cast<FunctionDecl>(VD)),
1114                                       /*ForVTable=*/false);
1115   else
1116     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1117                                     llvm::PointerType::getUnqual(DeclTy), 0);
1118 
1119   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1120   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1121   WeakRefReferences.insert(F);
1122 
1123   return Aliasee;
1124 }
1125 
1126 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1127   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1128 
1129   // Weak references don't produce any output by themselves.
1130   if (Global->hasAttr<WeakRefAttr>())
1131     return;
1132 
1133   // If this is an alias definition (which otherwise looks like a declaration)
1134   // emit it now.
1135   if (Global->hasAttr<AliasAttr>())
1136     return EmitAliasDefinition(GD);
1137 
1138   // If this is CUDA, be selective about which declarations we emit.
1139   if (LangOpts.CUDA) {
1140     if (CodeGenOpts.CUDAIsDevice) {
1141       if (!Global->hasAttr<CUDADeviceAttr>() &&
1142           !Global->hasAttr<CUDAGlobalAttr>() &&
1143           !Global->hasAttr<CUDAConstantAttr>() &&
1144           !Global->hasAttr<CUDASharedAttr>())
1145         return;
1146     } else {
1147       if (!Global->hasAttr<CUDAHostAttr>() && (
1148             Global->hasAttr<CUDADeviceAttr>() ||
1149             Global->hasAttr<CUDAConstantAttr>() ||
1150             Global->hasAttr<CUDASharedAttr>()))
1151         return;
1152     }
1153   }
1154 
1155   // Ignore declarations, they will be emitted on their first use.
1156   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1157     // Forward declarations are emitted lazily on first use.
1158     if (!FD->doesThisDeclarationHaveABody()) {
1159       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1160         return;
1161 
1162       const FunctionDecl *InlineDefinition = 0;
1163       FD->getBody(InlineDefinition);
1164 
1165       StringRef MangledName = getMangledName(GD);
1166       DeferredDecls.erase(MangledName);
1167       EmitGlobalDefinition(InlineDefinition);
1168       return;
1169     }
1170   } else {
1171     const VarDecl *VD = cast<VarDecl>(Global);
1172     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1173 
1174     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1175       return;
1176   }
1177 
1178   // Defer code generation when possible if this is a static definition, inline
1179   // function etc.  These we only want to emit if they are used.
1180   if (!MayDeferGeneration(Global)) {
1181     // Emit the definition if it can't be deferred.
1182     EmitGlobalDefinition(GD);
1183     return;
1184   }
1185 
1186   // If we're deferring emission of a C++ variable with an
1187   // initializer, remember the order in which it appeared in the file.
1188   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1189       cast<VarDecl>(Global)->hasInit()) {
1190     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1191     CXXGlobalInits.push_back(0);
1192   }
1193 
1194   // If the value has already been used, add it directly to the
1195   // DeferredDeclsToEmit list.
1196   StringRef MangledName = getMangledName(GD);
1197   if (GetGlobalValue(MangledName))
1198     DeferredDeclsToEmit.push_back(GD);
1199   else {
1200     // Otherwise, remember that we saw a deferred decl with this name.  The
1201     // first use of the mangled name will cause it to move into
1202     // DeferredDeclsToEmit.
1203     DeferredDecls[MangledName] = GD;
1204   }
1205 }
1206 
1207 namespace {
1208   struct FunctionIsDirectlyRecursive :
1209     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1210     const StringRef Name;
1211     const Builtin::Context &BI;
1212     bool Result;
1213     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1214       Name(N), BI(C), Result(false) {
1215     }
1216     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1217 
1218     bool TraverseCallExpr(CallExpr *E) {
1219       const FunctionDecl *FD = E->getDirectCallee();
1220       if (!FD)
1221         return true;
1222       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1223       if (Attr && Name == Attr->getLabel()) {
1224         Result = true;
1225         return false;
1226       }
1227       unsigned BuiltinID = FD->getBuiltinID();
1228       if (!BuiltinID)
1229         return true;
1230       StringRef BuiltinName = BI.GetName(BuiltinID);
1231       if (BuiltinName.startswith("__builtin_") &&
1232           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1233         Result = true;
1234         return false;
1235       }
1236       return true;
1237     }
1238   };
1239 }
1240 
1241 // isTriviallyRecursive - Check if this function calls another
1242 // decl that, because of the asm attribute or the other decl being a builtin,
1243 // ends up pointing to itself.
1244 bool
1245 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1246   StringRef Name;
1247   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1248     // asm labels are a special kind of mangling we have to support.
1249     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1250     if (!Attr)
1251       return false;
1252     Name = Attr->getLabel();
1253   } else {
1254     Name = FD->getName();
1255   }
1256 
1257   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1258   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1259   return Walker.Result;
1260 }
1261 
1262 bool
1263 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1264   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1265     return true;
1266   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1267   if (CodeGenOpts.OptimizationLevel == 0 &&
1268       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1269     return false;
1270   // PR9614. Avoid cases where the source code is lying to us. An available
1271   // externally function should have an equivalent function somewhere else,
1272   // but a function that calls itself is clearly not equivalent to the real
1273   // implementation.
1274   // This happens in glibc's btowc and in some configure checks.
1275   return !isTriviallyRecursive(F);
1276 }
1277 
1278 /// If the type for the method's class was generated by
1279 /// CGDebugInfo::createContextChain(), the cache contains only a
1280 /// limited DIType without any declarations. Since EmitFunctionStart()
1281 /// needs to find the canonical declaration for each method, we need
1282 /// to construct the complete type prior to emitting the method.
1283 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1284   if (!D->isInstance())
1285     return;
1286 
1287   if (CGDebugInfo *DI = getModuleDebugInfo())
1288     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1289       const PointerType *ThisPtr =
1290         cast<PointerType>(D->getThisType(getContext()));
1291       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1292     }
1293 }
1294 
1295 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1296   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1297 
1298   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1299                                  Context.getSourceManager(),
1300                                  "Generating code for declaration");
1301 
1302   if (isa<FunctionDecl>(D)) {
1303     // At -O0, don't generate IR for functions with available_externally
1304     // linkage.
1305     if (!shouldEmitFunction(GD))
1306       return;
1307 
1308     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1309       CompleteDIClassType(Method);
1310       // Make sure to emit the definition(s) before we emit the thunks.
1311       // This is necessary for the generation of certain thunks.
1312       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1313         EmitCXXConstructor(CD, GD.getCtorType());
1314       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1315         EmitCXXDestructor(DD, GD.getDtorType());
1316       else
1317         EmitGlobalFunctionDefinition(GD);
1318 
1319       if (Method->isVirtual())
1320         getVTables().EmitThunks(GD);
1321 
1322       return;
1323     }
1324 
1325     return EmitGlobalFunctionDefinition(GD);
1326   }
1327 
1328   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1329     return EmitGlobalVarDefinition(VD);
1330 
1331   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1332 }
1333 
1334 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1335 /// module, create and return an llvm Function with the specified type. If there
1336 /// is something in the module with the specified name, return it potentially
1337 /// bitcasted to the right type.
1338 ///
1339 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1340 /// to set the attributes on the function when it is first created.
1341 llvm::Constant *
1342 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1343                                        llvm::Type *Ty,
1344                                        GlobalDecl GD, bool ForVTable,
1345                                        llvm::AttributeSet ExtraAttrs) {
1346   const Decl *D = GD.getDecl();
1347 
1348   // Lookup the entry, lazily creating it if necessary.
1349   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1350   if (Entry) {
1351     if (WeakRefReferences.erase(Entry)) {
1352       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1353       if (FD && !FD->hasAttr<WeakAttr>())
1354         Entry->setLinkage(llvm::Function::ExternalLinkage);
1355     }
1356 
1357     if (Entry->getType()->getElementType() == Ty)
1358       return Entry;
1359 
1360     // Make sure the result is of the correct type.
1361     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1362   }
1363 
1364   // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1365   // each other bottoming out with the base dtor.  Therefore we emit non-base
1366   // dtors on usage, even if there is no dtor definition in the TU.
1367   if (D && isa<CXXDestructorDecl>(D) &&
1368       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1369                                          GD.getDtorType()))
1370     DeferredDeclsToEmit.push_back(GD);
1371 
1372   // This function doesn't have a complete type (for example, the return
1373   // type is an incomplete struct). Use a fake type instead, and make
1374   // sure not to try to set attributes.
1375   bool IsIncompleteFunction = false;
1376 
1377   llvm::FunctionType *FTy;
1378   if (isa<llvm::FunctionType>(Ty)) {
1379     FTy = cast<llvm::FunctionType>(Ty);
1380   } else {
1381     FTy = llvm::FunctionType::get(VoidTy, false);
1382     IsIncompleteFunction = true;
1383   }
1384 
1385   llvm::Function *F = llvm::Function::Create(FTy,
1386                                              llvm::Function::ExternalLinkage,
1387                                              MangledName, &getModule());
1388   assert(F->getName() == MangledName && "name was uniqued!");
1389   if (D)
1390     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1391   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1392     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1393     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1394                      llvm::AttributeSet::get(VMContext,
1395                                              llvm::AttributeSet::FunctionIndex,
1396                                              B));
1397   }
1398 
1399   // This is the first use or definition of a mangled name.  If there is a
1400   // deferred decl with this name, remember that we need to emit it at the end
1401   // of the file.
1402   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1403   if (DDI != DeferredDecls.end()) {
1404     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1405     // list, and remove it from DeferredDecls (since we don't need it anymore).
1406     DeferredDeclsToEmit.push_back(DDI->second);
1407     DeferredDecls.erase(DDI);
1408 
1409   // Otherwise, if this is a sized deallocation function, emit a weak definition
1410   // for it at the end of the translation unit.
1411   } else if (D && cast<FunctionDecl>(D)
1412                       ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1413     DeferredDeclsToEmit.push_back(GD);
1414 
1415   // Otherwise, there are cases we have to worry about where we're
1416   // using a declaration for which we must emit a definition but where
1417   // we might not find a top-level definition:
1418   //   - member functions defined inline in their classes
1419   //   - friend functions defined inline in some class
1420   //   - special member functions with implicit definitions
1421   // If we ever change our AST traversal to walk into class methods,
1422   // this will be unnecessary.
1423   //
1424   // We also don't emit a definition for a function if it's going to be an entry
1425   // in a vtable, unless it's already marked as used.
1426   } else if (getLangOpts().CPlusPlus && D) {
1427     // Look for a declaration that's lexically in a record.
1428     const FunctionDecl *FD = cast<FunctionDecl>(D);
1429     FD = FD->getMostRecentDecl();
1430     do {
1431       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1432         if (FD->isImplicit() && !ForVTable) {
1433           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1434           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1435           break;
1436         } else if (FD->doesThisDeclarationHaveABody()) {
1437           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1438           break;
1439         }
1440       }
1441       FD = FD->getPreviousDecl();
1442     } while (FD);
1443   }
1444 
1445   // Make sure the result is of the requested type.
1446   if (!IsIncompleteFunction) {
1447     assert(F->getType()->getElementType() == Ty);
1448     return F;
1449   }
1450 
1451   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1452   return llvm::ConstantExpr::getBitCast(F, PTy);
1453 }
1454 
1455 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1456 /// non-null, then this function will use the specified type if it has to
1457 /// create it (this occurs when we see a definition of the function).
1458 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1459                                                  llvm::Type *Ty,
1460                                                  bool ForVTable) {
1461   // If there was no specific requested type, just convert it now.
1462   if (!Ty)
1463     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1464 
1465   StringRef MangledName = getMangledName(GD);
1466   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1467 }
1468 
1469 /// CreateRuntimeFunction - Create a new runtime function with the specified
1470 /// type and name.
1471 llvm::Constant *
1472 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1473                                      StringRef Name,
1474                                      llvm::AttributeSet ExtraAttrs) {
1475   llvm::Constant *C
1476     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1477                               ExtraAttrs);
1478   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1479     if (F->empty())
1480       F->setCallingConv(getRuntimeCC());
1481   return C;
1482 }
1483 
1484 /// isTypeConstant - Determine whether an object of this type can be emitted
1485 /// as a constant.
1486 ///
1487 /// If ExcludeCtor is true, the duration when the object's constructor runs
1488 /// will not be considered. The caller will need to verify that the object is
1489 /// not written to during its construction.
1490 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1491   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1492     return false;
1493 
1494   if (Context.getLangOpts().CPlusPlus) {
1495     if (const CXXRecordDecl *Record
1496           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1497       return ExcludeCtor && !Record->hasMutableFields() &&
1498              Record->hasTrivialDestructor();
1499   }
1500 
1501   return true;
1502 }
1503 
1504 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1505 /// create and return an llvm GlobalVariable with the specified type.  If there
1506 /// is something in the module with the specified name, return it potentially
1507 /// bitcasted to the right type.
1508 ///
1509 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1510 /// to set the attributes on the global when it is first created.
1511 llvm::Constant *
1512 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1513                                      llvm::PointerType *Ty,
1514                                      const VarDecl *D,
1515                                      bool UnnamedAddr) {
1516   // Lookup the entry, lazily creating it if necessary.
1517   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1518   if (Entry) {
1519     if (WeakRefReferences.erase(Entry)) {
1520       if (D && !D->hasAttr<WeakAttr>())
1521         Entry->setLinkage(llvm::Function::ExternalLinkage);
1522     }
1523 
1524     if (UnnamedAddr)
1525       Entry->setUnnamedAddr(true);
1526 
1527     if (Entry->getType() == Ty)
1528       return Entry;
1529 
1530     // Make sure the result is of the correct type.
1531     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1532   }
1533 
1534   // This is the first use or definition of a mangled name.  If there is a
1535   // deferred decl with this name, remember that we need to emit it at the end
1536   // of the file.
1537   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1538   if (DDI != DeferredDecls.end()) {
1539     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1540     // list, and remove it from DeferredDecls (since we don't need it anymore).
1541     DeferredDeclsToEmit.push_back(DDI->second);
1542     DeferredDecls.erase(DDI);
1543   }
1544 
1545   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1546   llvm::GlobalVariable *GV =
1547     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1548                              llvm::GlobalValue::ExternalLinkage,
1549                              0, MangledName, 0,
1550                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1551 
1552   // Handle things which are present even on external declarations.
1553   if (D) {
1554     // FIXME: This code is overly simple and should be merged with other global
1555     // handling.
1556     GV->setConstant(isTypeConstant(D->getType(), false));
1557 
1558     // Set linkage and visibility in case we never see a definition.
1559     LinkageInfo LV = D->getLinkageAndVisibility();
1560     if (LV.getLinkage() != ExternalLinkage) {
1561       // Don't set internal linkage on declarations.
1562     } else {
1563       if (D->hasAttr<DLLImportAttr>())
1564         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1565       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1566         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1567 
1568       // Set visibility on a declaration only if it's explicit.
1569       if (LV.isVisibilityExplicit())
1570         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1571     }
1572 
1573     if (D->getTLSKind()) {
1574       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1575         CXXThreadLocals.push_back(std::make_pair(D, GV));
1576       setTLSMode(GV, *D);
1577     }
1578   }
1579 
1580   if (AddrSpace != Ty->getAddressSpace())
1581     return llvm::ConstantExpr::getBitCast(GV, Ty);
1582   else
1583     return GV;
1584 }
1585 
1586 
1587 llvm::GlobalVariable *
1588 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1589                                       llvm::Type *Ty,
1590                                       llvm::GlobalValue::LinkageTypes Linkage) {
1591   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1592   llvm::GlobalVariable *OldGV = 0;
1593 
1594 
1595   if (GV) {
1596     // Check if the variable has the right type.
1597     if (GV->getType()->getElementType() == Ty)
1598       return GV;
1599 
1600     // Because C++ name mangling, the only way we can end up with an already
1601     // existing global with the same name is if it has been declared extern "C".
1602     assert(GV->isDeclaration() && "Declaration has wrong type!");
1603     OldGV = GV;
1604   }
1605 
1606   // Create a new variable.
1607   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1608                                 Linkage, 0, Name);
1609 
1610   if (OldGV) {
1611     // Replace occurrences of the old variable if needed.
1612     GV->takeName(OldGV);
1613 
1614     if (!OldGV->use_empty()) {
1615       llvm::Constant *NewPtrForOldDecl =
1616       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1617       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1618     }
1619 
1620     OldGV->eraseFromParent();
1621   }
1622 
1623   return GV;
1624 }
1625 
1626 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1627 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1628 /// then it will be created with the specified type instead of whatever the
1629 /// normal requested type would be.
1630 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1631                                                   llvm::Type *Ty) {
1632   assert(D->hasGlobalStorage() && "Not a global variable");
1633   QualType ASTTy = D->getType();
1634   if (Ty == 0)
1635     Ty = getTypes().ConvertTypeForMem(ASTTy);
1636 
1637   llvm::PointerType *PTy =
1638     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1639 
1640   StringRef MangledName = getMangledName(D);
1641   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1642 }
1643 
1644 /// CreateRuntimeVariable - Create a new runtime global variable with the
1645 /// specified type and name.
1646 llvm::Constant *
1647 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1648                                      StringRef Name) {
1649   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1650                                true);
1651 }
1652 
1653 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1654   assert(!D->getInit() && "Cannot emit definite definitions here!");
1655 
1656   if (MayDeferGeneration(D)) {
1657     // If we have not seen a reference to this variable yet, place it
1658     // into the deferred declarations table to be emitted if needed
1659     // later.
1660     StringRef MangledName = getMangledName(D);
1661     if (!GetGlobalValue(MangledName)) {
1662       DeferredDecls[MangledName] = D;
1663       return;
1664     }
1665   }
1666 
1667   // The tentative definition is the only definition.
1668   EmitGlobalVarDefinition(D);
1669 }
1670 
1671 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1672     return Context.toCharUnitsFromBits(
1673       TheDataLayout.getTypeStoreSizeInBits(Ty));
1674 }
1675 
1676 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1677                                                  unsigned AddrSpace) {
1678   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1679     if (D->hasAttr<CUDAConstantAttr>())
1680       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1681     else if (D->hasAttr<CUDASharedAttr>())
1682       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1683     else
1684       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1685   }
1686 
1687   return AddrSpace;
1688 }
1689 
1690 template<typename SomeDecl>
1691 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1692                                                llvm::GlobalValue *GV) {
1693   if (!getLangOpts().CPlusPlus)
1694     return;
1695 
1696   // Must have 'used' attribute, or else inline assembly can't rely on
1697   // the name existing.
1698   if (!D->template hasAttr<UsedAttr>())
1699     return;
1700 
1701   // Must have internal linkage and an ordinary name.
1702   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1703     return;
1704 
1705   // Must be in an extern "C" context. Entities declared directly within
1706   // a record are not extern "C" even if the record is in such a context.
1707   const SomeDecl *First = D->getFirstDecl();
1708   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1709     return;
1710 
1711   // OK, this is an internal linkage entity inside an extern "C" linkage
1712   // specification. Make a note of that so we can give it the "expected"
1713   // mangled name if nothing else is using that name.
1714   std::pair<StaticExternCMap::iterator, bool> R =
1715       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1716 
1717   // If we have multiple internal linkage entities with the same name
1718   // in extern "C" regions, none of them gets that name.
1719   if (!R.second)
1720     R.first->second = 0;
1721 }
1722 
1723 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1724   llvm::Constant *Init = 0;
1725   QualType ASTTy = D->getType();
1726   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1727   bool NeedsGlobalCtor = false;
1728   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1729 
1730   const VarDecl *InitDecl;
1731   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1732 
1733   if (!InitExpr) {
1734     // This is a tentative definition; tentative definitions are
1735     // implicitly initialized with { 0 }.
1736     //
1737     // Note that tentative definitions are only emitted at the end of
1738     // a translation unit, so they should never have incomplete
1739     // type. In addition, EmitTentativeDefinition makes sure that we
1740     // never attempt to emit a tentative definition if a real one
1741     // exists. A use may still exists, however, so we still may need
1742     // to do a RAUW.
1743     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1744     Init = EmitNullConstant(D->getType());
1745   } else {
1746     initializedGlobalDecl = GlobalDecl(D);
1747     Init = EmitConstantInit(*InitDecl);
1748 
1749     if (!Init) {
1750       QualType T = InitExpr->getType();
1751       if (D->getType()->isReferenceType())
1752         T = D->getType();
1753 
1754       if (getLangOpts().CPlusPlus) {
1755         Init = EmitNullConstant(T);
1756         NeedsGlobalCtor = true;
1757       } else {
1758         ErrorUnsupported(D, "static initializer");
1759         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1760       }
1761     } else {
1762       // We don't need an initializer, so remove the entry for the delayed
1763       // initializer position (just in case this entry was delayed) if we
1764       // also don't need to register a destructor.
1765       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1766         DelayedCXXInitPosition.erase(D);
1767     }
1768   }
1769 
1770   llvm::Type* InitType = Init->getType();
1771   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1772 
1773   // Strip off a bitcast if we got one back.
1774   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1775     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1776            // all zero index gep.
1777            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1778     Entry = CE->getOperand(0);
1779   }
1780 
1781   // Entry is now either a Function or GlobalVariable.
1782   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1783 
1784   // We have a definition after a declaration with the wrong type.
1785   // We must make a new GlobalVariable* and update everything that used OldGV
1786   // (a declaration or tentative definition) with the new GlobalVariable*
1787   // (which will be a definition).
1788   //
1789   // This happens if there is a prototype for a global (e.g.
1790   // "extern int x[];") and then a definition of a different type (e.g.
1791   // "int x[10];"). This also happens when an initializer has a different type
1792   // from the type of the global (this happens with unions).
1793   if (GV == 0 ||
1794       GV->getType()->getElementType() != InitType ||
1795       GV->getType()->getAddressSpace() !=
1796        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1797 
1798     // Move the old entry aside so that we'll create a new one.
1799     Entry->setName(StringRef());
1800 
1801     // Make a new global with the correct type, this is now guaranteed to work.
1802     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1803 
1804     // Replace all uses of the old global with the new global
1805     llvm::Constant *NewPtrForOldDecl =
1806         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1807     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1808 
1809     // Erase the old global, since it is no longer used.
1810     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1811   }
1812 
1813   MaybeHandleStaticInExternC(D, GV);
1814 
1815   if (D->hasAttr<AnnotateAttr>())
1816     AddGlobalAnnotations(D, GV);
1817 
1818   GV->setInitializer(Init);
1819 
1820   // If it is safe to mark the global 'constant', do so now.
1821   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1822                   isTypeConstant(D->getType(), true));
1823 
1824   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1825 
1826   // Set the llvm linkage type as appropriate.
1827   llvm::GlobalValue::LinkageTypes Linkage =
1828     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1829   GV->setLinkage(Linkage);
1830   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1831     // common vars aren't constant even if declared const.
1832     GV->setConstant(false);
1833 
1834   SetCommonAttributes(D, GV);
1835 
1836   // Emit the initializer function if necessary.
1837   if (NeedsGlobalCtor || NeedsGlobalDtor)
1838     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1839 
1840   // If we are compiling with ASan, add metadata indicating dynamically
1841   // initialized globals.
1842   if (SanOpts.Address && NeedsGlobalCtor) {
1843     llvm::Module &M = getModule();
1844 
1845     llvm::NamedMDNode *DynamicInitializers =
1846         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1847     llvm::Value *GlobalToAdd[] = { GV };
1848     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1849     DynamicInitializers->addOperand(ThisGlobal);
1850   }
1851 
1852   // Emit global variable debug information.
1853   if (CGDebugInfo *DI = getModuleDebugInfo())
1854     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1855       DI->EmitGlobalVariable(GV, D);
1856 }
1857 
1858 llvm::GlobalValue::LinkageTypes
1859 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1860   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1861   if (Linkage == GVA_Internal)
1862     return llvm::Function::InternalLinkage;
1863   else if (D->hasAttr<DLLImportAttr>())
1864     return llvm::Function::DLLImportLinkage;
1865   else if (D->hasAttr<DLLExportAttr>())
1866     return llvm::Function::DLLExportLinkage;
1867   else if (D->hasAttr<SelectAnyAttr>()) {
1868     // selectany symbols are externally visible, so use weak instead of
1869     // linkonce.  MSVC optimizes away references to const selectany globals, so
1870     // all definitions should be the same and ODR linkage should be used.
1871     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1872     return llvm::GlobalVariable::WeakODRLinkage;
1873   } else if (D->hasAttr<WeakAttr>()) {
1874     if (isConstant)
1875       return llvm::GlobalVariable::WeakODRLinkage;
1876     else
1877       return llvm::GlobalVariable::WeakAnyLinkage;
1878   } else if (Linkage == GVA_TemplateInstantiation ||
1879              Linkage == GVA_ExplicitTemplateInstantiation)
1880     return llvm::GlobalVariable::WeakODRLinkage;
1881   else if (!getLangOpts().CPlusPlus &&
1882            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1883              D->getAttr<CommonAttr>()) &&
1884            !D->hasExternalStorage() && !D->getInit() &&
1885            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1886            !D->getAttr<WeakImportAttr>()) {
1887     // Thread local vars aren't considered common linkage.
1888     return llvm::GlobalVariable::CommonLinkage;
1889   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1890              getTarget().getTriple().isMacOSX())
1891     // On Darwin, the backing variable for a C++11 thread_local variable always
1892     // has internal linkage; all accesses should just be calls to the
1893     // Itanium-specified entry point, which has the normal linkage of the
1894     // variable.
1895     return llvm::GlobalValue::InternalLinkage;
1896   return llvm::GlobalVariable::ExternalLinkage;
1897 }
1898 
1899 /// Replace the uses of a function that was declared with a non-proto type.
1900 /// We want to silently drop extra arguments from call sites
1901 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1902                                           llvm::Function *newFn) {
1903   // Fast path.
1904   if (old->use_empty()) return;
1905 
1906   llvm::Type *newRetTy = newFn->getReturnType();
1907   SmallVector<llvm::Value*, 4> newArgs;
1908 
1909   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1910          ui != ue; ) {
1911     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1912     llvm::User *user = *use;
1913 
1914     // Recognize and replace uses of bitcasts.  Most calls to
1915     // unprototyped functions will use bitcasts.
1916     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1917       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1918         replaceUsesOfNonProtoConstant(bitcast, newFn);
1919       continue;
1920     }
1921 
1922     // Recognize calls to the function.
1923     llvm::CallSite callSite(user);
1924     if (!callSite) continue;
1925     if (!callSite.isCallee(use)) continue;
1926 
1927     // If the return types don't match exactly, then we can't
1928     // transform this call unless it's dead.
1929     if (callSite->getType() != newRetTy && !callSite->use_empty())
1930       continue;
1931 
1932     // Get the call site's attribute list.
1933     SmallVector<llvm::AttributeSet, 8> newAttrs;
1934     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1935 
1936     // Collect any return attributes from the call.
1937     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1938       newAttrs.push_back(
1939         llvm::AttributeSet::get(newFn->getContext(),
1940                                 oldAttrs.getRetAttributes()));
1941 
1942     // If the function was passed too few arguments, don't transform.
1943     unsigned newNumArgs = newFn->arg_size();
1944     if (callSite.arg_size() < newNumArgs) continue;
1945 
1946     // If extra arguments were passed, we silently drop them.
1947     // If any of the types mismatch, we don't transform.
1948     unsigned argNo = 0;
1949     bool dontTransform = false;
1950     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1951            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1952       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1953         dontTransform = true;
1954         break;
1955       }
1956 
1957       // Add any parameter attributes.
1958       if (oldAttrs.hasAttributes(argNo + 1))
1959         newAttrs.
1960           push_back(llvm::
1961                     AttributeSet::get(newFn->getContext(),
1962                                       oldAttrs.getParamAttributes(argNo + 1)));
1963     }
1964     if (dontTransform)
1965       continue;
1966 
1967     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1968       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1969                                                  oldAttrs.getFnAttributes()));
1970 
1971     // Okay, we can transform this.  Create the new call instruction and copy
1972     // over the required information.
1973     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1974 
1975     llvm::CallSite newCall;
1976     if (callSite.isCall()) {
1977       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1978                                        callSite.getInstruction());
1979     } else {
1980       llvm::InvokeInst *oldInvoke =
1981         cast<llvm::InvokeInst>(callSite.getInstruction());
1982       newCall = llvm::InvokeInst::Create(newFn,
1983                                          oldInvoke->getNormalDest(),
1984                                          oldInvoke->getUnwindDest(),
1985                                          newArgs, "",
1986                                          callSite.getInstruction());
1987     }
1988     newArgs.clear(); // for the next iteration
1989 
1990     if (!newCall->getType()->isVoidTy())
1991       newCall->takeName(callSite.getInstruction());
1992     newCall.setAttributes(
1993                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1994     newCall.setCallingConv(callSite.getCallingConv());
1995 
1996     // Finally, remove the old call, replacing any uses with the new one.
1997     if (!callSite->use_empty())
1998       callSite->replaceAllUsesWith(newCall.getInstruction());
1999 
2000     // Copy debug location attached to CI.
2001     if (!callSite->getDebugLoc().isUnknown())
2002       newCall->setDebugLoc(callSite->getDebugLoc());
2003     callSite->eraseFromParent();
2004   }
2005 }
2006 
2007 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2008 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2009 /// existing call uses of the old function in the module, this adjusts them to
2010 /// call the new function directly.
2011 ///
2012 /// This is not just a cleanup: the always_inline pass requires direct calls to
2013 /// functions to be able to inline them.  If there is a bitcast in the way, it
2014 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2015 /// run at -O0.
2016 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2017                                                       llvm::Function *NewFn) {
2018   // If we're redefining a global as a function, don't transform it.
2019   if (!isa<llvm::Function>(Old)) return;
2020 
2021   replaceUsesOfNonProtoConstant(Old, NewFn);
2022 }
2023 
2024 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2025   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2026   // If we have a definition, this might be a deferred decl. If the
2027   // instantiation is explicit, make sure we emit it at the end.
2028   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2029     GetAddrOfGlobalVar(VD);
2030 
2031   EmitTopLevelDecl(VD);
2032 }
2033 
2034 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2035   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2036 
2037   // Compute the function info and LLVM type.
2038   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2039   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2040 
2041   // Get or create the prototype for the function.
2042   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2043 
2044   // Strip off a bitcast if we got one back.
2045   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2046     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2047     Entry = CE->getOperand(0);
2048   }
2049 
2050 
2051   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2052     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2053 
2054     // If the types mismatch then we have to rewrite the definition.
2055     assert(OldFn->isDeclaration() &&
2056            "Shouldn't replace non-declaration");
2057 
2058     // F is the Function* for the one with the wrong type, we must make a new
2059     // Function* and update everything that used F (a declaration) with the new
2060     // Function* (which will be a definition).
2061     //
2062     // This happens if there is a prototype for a function
2063     // (e.g. "int f()") and then a definition of a different type
2064     // (e.g. "int f(int x)").  Move the old function aside so that it
2065     // doesn't interfere with GetAddrOfFunction.
2066     OldFn->setName(StringRef());
2067     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2068 
2069     // This might be an implementation of a function without a
2070     // prototype, in which case, try to do special replacement of
2071     // calls which match the new prototype.  The really key thing here
2072     // is that we also potentially drop arguments from the call site
2073     // so as to make a direct call, which makes the inliner happier
2074     // and suppresses a number of optimizer warnings (!) about
2075     // dropping arguments.
2076     if (!OldFn->use_empty()) {
2077       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2078       OldFn->removeDeadConstantUsers();
2079     }
2080 
2081     // Replace uses of F with the Function we will endow with a body.
2082     if (!Entry->use_empty()) {
2083       llvm::Constant *NewPtrForOldDecl =
2084         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2085       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2086     }
2087 
2088     // Ok, delete the old function now, which is dead.
2089     OldFn->eraseFromParent();
2090 
2091     Entry = NewFn;
2092   }
2093 
2094   // We need to set linkage and visibility on the function before
2095   // generating code for it because various parts of IR generation
2096   // want to propagate this information down (e.g. to local static
2097   // declarations).
2098   llvm::Function *Fn = cast<llvm::Function>(Entry);
2099   setFunctionLinkage(GD, Fn);
2100 
2101   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2102   setGlobalVisibility(Fn, D);
2103 
2104   MaybeHandleStaticInExternC(D, Fn);
2105 
2106   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2107 
2108   SetFunctionDefinitionAttributes(D, Fn);
2109   SetLLVMFunctionAttributesForDefinition(D, Fn);
2110 
2111   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2112     AddGlobalCtor(Fn, CA->getPriority());
2113   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2114     AddGlobalDtor(Fn, DA->getPriority());
2115   if (D->hasAttr<AnnotateAttr>())
2116     AddGlobalAnnotations(D, Fn);
2117 }
2118 
2119 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2120   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2121   const AliasAttr *AA = D->getAttr<AliasAttr>();
2122   assert(AA && "Not an alias?");
2123 
2124   StringRef MangledName = getMangledName(GD);
2125 
2126   // If there is a definition in the module, then it wins over the alias.
2127   // This is dubious, but allow it to be safe.  Just ignore the alias.
2128   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2129   if (Entry && !Entry->isDeclaration())
2130     return;
2131 
2132   Aliases.push_back(GD);
2133 
2134   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2135 
2136   // Create a reference to the named value.  This ensures that it is emitted
2137   // if a deferred decl.
2138   llvm::Constant *Aliasee;
2139   if (isa<llvm::FunctionType>(DeclTy))
2140     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2141                                       /*ForVTable=*/false);
2142   else
2143     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2144                                     llvm::PointerType::getUnqual(DeclTy), 0);
2145 
2146   // Create the new alias itself, but don't set a name yet.
2147   llvm::GlobalValue *GA =
2148     new llvm::GlobalAlias(Aliasee->getType(),
2149                           llvm::Function::ExternalLinkage,
2150                           "", Aliasee, &getModule());
2151 
2152   if (Entry) {
2153     assert(Entry->isDeclaration());
2154 
2155     // If there is a declaration in the module, then we had an extern followed
2156     // by the alias, as in:
2157     //   extern int test6();
2158     //   ...
2159     //   int test6() __attribute__((alias("test7")));
2160     //
2161     // Remove it and replace uses of it with the alias.
2162     GA->takeName(Entry);
2163 
2164     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2165                                                           Entry->getType()));
2166     Entry->eraseFromParent();
2167   } else {
2168     GA->setName(MangledName);
2169   }
2170 
2171   // Set attributes which are particular to an alias; this is a
2172   // specialization of the attributes which may be set on a global
2173   // variable/function.
2174   if (D->hasAttr<DLLExportAttr>()) {
2175     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2176       // The dllexport attribute is ignored for undefined symbols.
2177       if (FD->hasBody())
2178         GA->setLinkage(llvm::Function::DLLExportLinkage);
2179     } else {
2180       GA->setLinkage(llvm::Function::DLLExportLinkage);
2181     }
2182   } else if (D->hasAttr<WeakAttr>() ||
2183              D->hasAttr<WeakRefAttr>() ||
2184              D->isWeakImported()) {
2185     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2186   }
2187 
2188   SetCommonAttributes(D, GA);
2189 }
2190 
2191 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2192                                             ArrayRef<llvm::Type*> Tys) {
2193   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2194                                          Tys);
2195 }
2196 
2197 static llvm::StringMapEntry<llvm::Constant*> &
2198 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2199                          const StringLiteral *Literal,
2200                          bool TargetIsLSB,
2201                          bool &IsUTF16,
2202                          unsigned &StringLength) {
2203   StringRef String = Literal->getString();
2204   unsigned NumBytes = String.size();
2205 
2206   // Check for simple case.
2207   if (!Literal->containsNonAsciiOrNull()) {
2208     StringLength = NumBytes;
2209     return Map.GetOrCreateValue(String);
2210   }
2211 
2212   // Otherwise, convert the UTF8 literals into a string of shorts.
2213   IsUTF16 = true;
2214 
2215   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2216   const UTF8 *FromPtr = (const UTF8 *)String.data();
2217   UTF16 *ToPtr = &ToBuf[0];
2218 
2219   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2220                            &ToPtr, ToPtr + NumBytes,
2221                            strictConversion);
2222 
2223   // ConvertUTF8toUTF16 returns the length in ToPtr.
2224   StringLength = ToPtr - &ToBuf[0];
2225 
2226   // Add an explicit null.
2227   *ToPtr = 0;
2228   return Map.
2229     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2230                                (StringLength + 1) * 2));
2231 }
2232 
2233 static llvm::StringMapEntry<llvm::Constant*> &
2234 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2235                        const StringLiteral *Literal,
2236                        unsigned &StringLength) {
2237   StringRef String = Literal->getString();
2238   StringLength = String.size();
2239   return Map.GetOrCreateValue(String);
2240 }
2241 
2242 llvm::Constant *
2243 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2244   unsigned StringLength = 0;
2245   bool isUTF16 = false;
2246   llvm::StringMapEntry<llvm::Constant*> &Entry =
2247     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2248                              getDataLayout().isLittleEndian(),
2249                              isUTF16, StringLength);
2250 
2251   if (llvm::Constant *C = Entry.getValue())
2252     return C;
2253 
2254   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2255   llvm::Constant *Zeros[] = { Zero, Zero };
2256   llvm::Value *V;
2257 
2258   // If we don't already have it, get __CFConstantStringClassReference.
2259   if (!CFConstantStringClassRef) {
2260     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2261     Ty = llvm::ArrayType::get(Ty, 0);
2262     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2263                                            "__CFConstantStringClassReference");
2264     // Decay array -> ptr
2265     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2266     CFConstantStringClassRef = V;
2267   }
2268   else
2269     V = CFConstantStringClassRef;
2270 
2271   QualType CFTy = getContext().getCFConstantStringType();
2272 
2273   llvm::StructType *STy =
2274     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2275 
2276   llvm::Constant *Fields[4];
2277 
2278   // Class pointer.
2279   Fields[0] = cast<llvm::ConstantExpr>(V);
2280 
2281   // Flags.
2282   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2283   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2284     llvm::ConstantInt::get(Ty, 0x07C8);
2285 
2286   // String pointer.
2287   llvm::Constant *C = 0;
2288   if (isUTF16) {
2289     ArrayRef<uint16_t> Arr =
2290       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2291                                      const_cast<char *>(Entry.getKey().data())),
2292                                    Entry.getKey().size() / 2);
2293     C = llvm::ConstantDataArray::get(VMContext, Arr);
2294   } else {
2295     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2296   }
2297 
2298   llvm::GlobalValue::LinkageTypes Linkage;
2299   if (isUTF16)
2300     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2301     Linkage = llvm::GlobalValue::InternalLinkage;
2302   else
2303     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2304     // when using private linkage. It is not clear if this is a bug in ld
2305     // or a reasonable new restriction.
2306     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2307 
2308   // Note: -fwritable-strings doesn't make the backing store strings of
2309   // CFStrings writable. (See <rdar://problem/10657500>)
2310   llvm::GlobalVariable *GV =
2311     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2312                              Linkage, C, ".str");
2313   GV->setUnnamedAddr(true);
2314   // Don't enforce the target's minimum global alignment, since the only use
2315   // of the string is via this class initializer.
2316   if (isUTF16) {
2317     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2318     GV->setAlignment(Align.getQuantity());
2319   } else {
2320     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2321     GV->setAlignment(Align.getQuantity());
2322   }
2323 
2324   // String.
2325   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2326 
2327   if (isUTF16)
2328     // Cast the UTF16 string to the correct type.
2329     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2330 
2331   // String length.
2332   Ty = getTypes().ConvertType(getContext().LongTy);
2333   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2334 
2335   // The struct.
2336   C = llvm::ConstantStruct::get(STy, Fields);
2337   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2338                                 llvm::GlobalVariable::PrivateLinkage, C,
2339                                 "_unnamed_cfstring_");
2340   if (const char *Sect = getTarget().getCFStringSection())
2341     GV->setSection(Sect);
2342   Entry.setValue(GV);
2343 
2344   return GV;
2345 }
2346 
2347 static RecordDecl *
2348 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2349                  DeclContext *DC, IdentifierInfo *Id) {
2350   SourceLocation Loc;
2351   if (Ctx.getLangOpts().CPlusPlus)
2352     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2353   else
2354     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2355 }
2356 
2357 llvm::Constant *
2358 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2359   unsigned StringLength = 0;
2360   llvm::StringMapEntry<llvm::Constant*> &Entry =
2361     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2362 
2363   if (llvm::Constant *C = Entry.getValue())
2364     return C;
2365 
2366   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2367   llvm::Constant *Zeros[] = { Zero, Zero };
2368   llvm::Value *V;
2369   // If we don't already have it, get _NSConstantStringClassReference.
2370   if (!ConstantStringClassRef) {
2371     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2372     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2373     llvm::Constant *GV;
2374     if (LangOpts.ObjCRuntime.isNonFragile()) {
2375       std::string str =
2376         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2377                             : "OBJC_CLASS_$_" + StringClass;
2378       GV = getObjCRuntime().GetClassGlobal(str);
2379       // Make sure the result is of the correct type.
2380       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2381       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2382       ConstantStringClassRef = V;
2383     } else {
2384       std::string str =
2385         StringClass.empty() ? "_NSConstantStringClassReference"
2386                             : "_" + StringClass + "ClassReference";
2387       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2388       GV = CreateRuntimeVariable(PTy, str);
2389       // Decay array -> ptr
2390       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2391       ConstantStringClassRef = V;
2392     }
2393   }
2394   else
2395     V = ConstantStringClassRef;
2396 
2397   if (!NSConstantStringType) {
2398     // Construct the type for a constant NSString.
2399     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2400                                      Context.getTranslationUnitDecl(),
2401                                    &Context.Idents.get("__builtin_NSString"));
2402     D->startDefinition();
2403 
2404     QualType FieldTypes[3];
2405 
2406     // const int *isa;
2407     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2408     // const char *str;
2409     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2410     // unsigned int length;
2411     FieldTypes[2] = Context.UnsignedIntTy;
2412 
2413     // Create fields
2414     for (unsigned i = 0; i < 3; ++i) {
2415       FieldDecl *Field = FieldDecl::Create(Context, D,
2416                                            SourceLocation(),
2417                                            SourceLocation(), 0,
2418                                            FieldTypes[i], /*TInfo=*/0,
2419                                            /*BitWidth=*/0,
2420                                            /*Mutable=*/false,
2421                                            ICIS_NoInit);
2422       Field->setAccess(AS_public);
2423       D->addDecl(Field);
2424     }
2425 
2426     D->completeDefinition();
2427     QualType NSTy = Context.getTagDeclType(D);
2428     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2429   }
2430 
2431   llvm::Constant *Fields[3];
2432 
2433   // Class pointer.
2434   Fields[0] = cast<llvm::ConstantExpr>(V);
2435 
2436   // String pointer.
2437   llvm::Constant *C =
2438     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2439 
2440   llvm::GlobalValue::LinkageTypes Linkage;
2441   bool isConstant;
2442   Linkage = llvm::GlobalValue::PrivateLinkage;
2443   isConstant = !LangOpts.WritableStrings;
2444 
2445   llvm::GlobalVariable *GV =
2446   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2447                            ".str");
2448   GV->setUnnamedAddr(true);
2449   // Don't enforce the target's minimum global alignment, since the only use
2450   // of the string is via this class initializer.
2451   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2452   GV->setAlignment(Align.getQuantity());
2453   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2454 
2455   // String length.
2456   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2457   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2458 
2459   // The struct.
2460   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2461   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2462                                 llvm::GlobalVariable::PrivateLinkage, C,
2463                                 "_unnamed_nsstring_");
2464   // FIXME. Fix section.
2465   if (const char *Sect =
2466         LangOpts.ObjCRuntime.isNonFragile()
2467           ? getTarget().getNSStringNonFragileABISection()
2468           : getTarget().getNSStringSection())
2469     GV->setSection(Sect);
2470   Entry.setValue(GV);
2471 
2472   return GV;
2473 }
2474 
2475 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2476   if (ObjCFastEnumerationStateType.isNull()) {
2477     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2478                                      Context.getTranslationUnitDecl(),
2479                       &Context.Idents.get("__objcFastEnumerationState"));
2480     D->startDefinition();
2481 
2482     QualType FieldTypes[] = {
2483       Context.UnsignedLongTy,
2484       Context.getPointerType(Context.getObjCIdType()),
2485       Context.getPointerType(Context.UnsignedLongTy),
2486       Context.getConstantArrayType(Context.UnsignedLongTy,
2487                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2488     };
2489 
2490     for (size_t i = 0; i < 4; ++i) {
2491       FieldDecl *Field = FieldDecl::Create(Context,
2492                                            D,
2493                                            SourceLocation(),
2494                                            SourceLocation(), 0,
2495                                            FieldTypes[i], /*TInfo=*/0,
2496                                            /*BitWidth=*/0,
2497                                            /*Mutable=*/false,
2498                                            ICIS_NoInit);
2499       Field->setAccess(AS_public);
2500       D->addDecl(Field);
2501     }
2502 
2503     D->completeDefinition();
2504     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2505   }
2506 
2507   return ObjCFastEnumerationStateType;
2508 }
2509 
2510 llvm::Constant *
2511 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2512   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2513 
2514   // Don't emit it as the address of the string, emit the string data itself
2515   // as an inline array.
2516   if (E->getCharByteWidth() == 1) {
2517     SmallString<64> Str(E->getString());
2518 
2519     // Resize the string to the right size, which is indicated by its type.
2520     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2521     Str.resize(CAT->getSize().getZExtValue());
2522     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2523   }
2524 
2525   llvm::ArrayType *AType =
2526     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2527   llvm::Type *ElemTy = AType->getElementType();
2528   unsigned NumElements = AType->getNumElements();
2529 
2530   // Wide strings have either 2-byte or 4-byte elements.
2531   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2532     SmallVector<uint16_t, 32> Elements;
2533     Elements.reserve(NumElements);
2534 
2535     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2536       Elements.push_back(E->getCodeUnit(i));
2537     Elements.resize(NumElements);
2538     return llvm::ConstantDataArray::get(VMContext, Elements);
2539   }
2540 
2541   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2542   SmallVector<uint32_t, 32> Elements;
2543   Elements.reserve(NumElements);
2544 
2545   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2546     Elements.push_back(E->getCodeUnit(i));
2547   Elements.resize(NumElements);
2548   return llvm::ConstantDataArray::get(VMContext, Elements);
2549 }
2550 
2551 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2552 /// constant array for the given string literal.
2553 llvm::Constant *
2554 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2555   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2556   if (S->isAscii() || S->isUTF8()) {
2557     SmallString<64> Str(S->getString());
2558 
2559     // Resize the string to the right size, which is indicated by its type.
2560     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2561     Str.resize(CAT->getSize().getZExtValue());
2562     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2563   }
2564 
2565   // FIXME: the following does not memoize wide strings.
2566   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2567   llvm::GlobalVariable *GV =
2568     new llvm::GlobalVariable(getModule(),C->getType(),
2569                              !LangOpts.WritableStrings,
2570                              llvm::GlobalValue::PrivateLinkage,
2571                              C,".str");
2572 
2573   GV->setAlignment(Align.getQuantity());
2574   GV->setUnnamedAddr(true);
2575   return GV;
2576 }
2577 
2578 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2579 /// array for the given ObjCEncodeExpr node.
2580 llvm::Constant *
2581 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2582   std::string Str;
2583   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2584 
2585   return GetAddrOfConstantCString(Str);
2586 }
2587 
2588 
2589 /// GenerateWritableString -- Creates storage for a string literal.
2590 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2591                                              bool constant,
2592                                              CodeGenModule &CGM,
2593                                              const char *GlobalName,
2594                                              unsigned Alignment) {
2595   // Create Constant for this string literal. Don't add a '\0'.
2596   llvm::Constant *C =
2597       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2598 
2599   // Create a global variable for this string
2600   llvm::GlobalVariable *GV =
2601     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2602                              llvm::GlobalValue::PrivateLinkage,
2603                              C, GlobalName);
2604   GV->setAlignment(Alignment);
2605   GV->setUnnamedAddr(true);
2606   return GV;
2607 }
2608 
2609 /// GetAddrOfConstantString - Returns a pointer to a character array
2610 /// containing the literal. This contents are exactly that of the
2611 /// given string, i.e. it will not be null terminated automatically;
2612 /// see GetAddrOfConstantCString. Note that whether the result is
2613 /// actually a pointer to an LLVM constant depends on
2614 /// Feature.WriteableStrings.
2615 ///
2616 /// The result has pointer to array type.
2617 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2618                                                        const char *GlobalName,
2619                                                        unsigned Alignment) {
2620   // Get the default prefix if a name wasn't specified.
2621   if (!GlobalName)
2622     GlobalName = ".str";
2623 
2624   if (Alignment == 0)
2625     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2626       .getQuantity();
2627 
2628   // Don't share any string literals if strings aren't constant.
2629   if (LangOpts.WritableStrings)
2630     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2631 
2632   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2633     ConstantStringMap.GetOrCreateValue(Str);
2634 
2635   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2636     if (Alignment > GV->getAlignment()) {
2637       GV->setAlignment(Alignment);
2638     }
2639     return GV;
2640   }
2641 
2642   // Create a global variable for this.
2643   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2644                                                    Alignment);
2645   Entry.setValue(GV);
2646   return GV;
2647 }
2648 
2649 /// GetAddrOfConstantCString - Returns a pointer to a character
2650 /// array containing the literal and a terminating '\0'
2651 /// character. The result has pointer to array type.
2652 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2653                                                         const char *GlobalName,
2654                                                         unsigned Alignment) {
2655   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2656   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2657 }
2658 
2659 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2660     const MaterializeTemporaryExpr *E, const Expr *Init) {
2661   assert((E->getStorageDuration() == SD_Static ||
2662           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2663   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2664 
2665   // If we're not materializing a subobject of the temporary, keep the
2666   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2667   QualType MaterializedType = Init->getType();
2668   if (Init == E->GetTemporaryExpr())
2669     MaterializedType = E->getType();
2670 
2671   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2672   if (Slot)
2673     return Slot;
2674 
2675   // FIXME: If an externally-visible declaration extends multiple temporaries,
2676   // we need to give each temporary the same name in every translation unit (and
2677   // we also need to make the temporaries externally-visible).
2678   SmallString<256> Name;
2679   llvm::raw_svector_ostream Out(Name);
2680   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2681   Out.flush();
2682 
2683   APValue *Value = 0;
2684   if (E->getStorageDuration() == SD_Static) {
2685     // We might have a cached constant initializer for this temporary. Note
2686     // that this might have a different value from the value computed by
2687     // evaluating the initializer if the surrounding constant expression
2688     // modifies the temporary.
2689     Value = getContext().getMaterializedTemporaryValue(E, false);
2690     if (Value && Value->isUninit())
2691       Value = 0;
2692   }
2693 
2694   // Try evaluating it now, it might have a constant initializer.
2695   Expr::EvalResult EvalResult;
2696   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2697       !EvalResult.hasSideEffects())
2698     Value = &EvalResult.Val;
2699 
2700   llvm::Constant *InitialValue = 0;
2701   bool Constant = false;
2702   llvm::Type *Type;
2703   if (Value) {
2704     // The temporary has a constant initializer, use it.
2705     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2706     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2707     Type = InitialValue->getType();
2708   } else {
2709     // No initializer, the initialization will be provided when we
2710     // initialize the declaration which performed lifetime extension.
2711     Type = getTypes().ConvertTypeForMem(MaterializedType);
2712   }
2713 
2714   // Create a global variable for this lifetime-extended temporary.
2715   llvm::GlobalVariable *GV =
2716     new llvm::GlobalVariable(getModule(), Type, Constant,
2717                              llvm::GlobalValue::PrivateLinkage,
2718                              InitialValue, Name.c_str());
2719   GV->setAlignment(
2720       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2721   if (VD->getTLSKind())
2722     setTLSMode(GV, *VD);
2723   Slot = GV;
2724   return GV;
2725 }
2726 
2727 /// EmitObjCPropertyImplementations - Emit information for synthesized
2728 /// properties for an implementation.
2729 void CodeGenModule::EmitObjCPropertyImplementations(const
2730                                                     ObjCImplementationDecl *D) {
2731   for (ObjCImplementationDecl::propimpl_iterator
2732          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2733     ObjCPropertyImplDecl *PID = *i;
2734 
2735     // Dynamic is just for type-checking.
2736     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2737       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2738 
2739       // Determine which methods need to be implemented, some may have
2740       // been overridden. Note that ::isPropertyAccessor is not the method
2741       // we want, that just indicates if the decl came from a
2742       // property. What we want to know is if the method is defined in
2743       // this implementation.
2744       if (!D->getInstanceMethod(PD->getGetterName()))
2745         CodeGenFunction(*this).GenerateObjCGetter(
2746                                  const_cast<ObjCImplementationDecl *>(D), PID);
2747       if (!PD->isReadOnly() &&
2748           !D->getInstanceMethod(PD->getSetterName()))
2749         CodeGenFunction(*this).GenerateObjCSetter(
2750                                  const_cast<ObjCImplementationDecl *>(D), PID);
2751     }
2752   }
2753 }
2754 
2755 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2756   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2757   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2758        ivar; ivar = ivar->getNextIvar())
2759     if (ivar->getType().isDestructedType())
2760       return true;
2761 
2762   return false;
2763 }
2764 
2765 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2766 /// for an implementation.
2767 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2768   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2769   if (needsDestructMethod(D)) {
2770     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2771     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2772     ObjCMethodDecl *DTORMethod =
2773       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2774                              cxxSelector, getContext().VoidTy, 0, D,
2775                              /*isInstance=*/true, /*isVariadic=*/false,
2776                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2777                              /*isDefined=*/false, ObjCMethodDecl::Required);
2778     D->addInstanceMethod(DTORMethod);
2779     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2780     D->setHasDestructors(true);
2781   }
2782 
2783   // If the implementation doesn't have any ivar initializers, we don't need
2784   // a .cxx_construct.
2785   if (D->getNumIvarInitializers() == 0)
2786     return;
2787 
2788   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2789   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2790   // The constructor returns 'self'.
2791   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2792                                                 D->getLocation(),
2793                                                 D->getLocation(),
2794                                                 cxxSelector,
2795                                                 getContext().getObjCIdType(), 0,
2796                                                 D, /*isInstance=*/true,
2797                                                 /*isVariadic=*/false,
2798                                                 /*isPropertyAccessor=*/true,
2799                                                 /*isImplicitlyDeclared=*/true,
2800                                                 /*isDefined=*/false,
2801                                                 ObjCMethodDecl::Required);
2802   D->addInstanceMethod(CTORMethod);
2803   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2804   D->setHasNonZeroConstructors(true);
2805 }
2806 
2807 /// EmitNamespace - Emit all declarations in a namespace.
2808 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2809   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2810        I != E; ++I) {
2811     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2812       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2813           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2814         continue;
2815     EmitTopLevelDecl(*I);
2816   }
2817 }
2818 
2819 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2820 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2821   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2822       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2823     ErrorUnsupported(LSD, "linkage spec");
2824     return;
2825   }
2826 
2827   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2828        I != E; ++I) {
2829     // Meta-data for ObjC class includes references to implemented methods.
2830     // Generate class's method definitions first.
2831     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2832       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2833            MEnd = OID->meth_end();
2834            M != MEnd; ++M)
2835         EmitTopLevelDecl(*M);
2836     }
2837     EmitTopLevelDecl(*I);
2838   }
2839 }
2840 
2841 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2842 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2843   // Ignore dependent declarations.
2844   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2845     return;
2846 
2847   switch (D->getKind()) {
2848   case Decl::CXXConversion:
2849   case Decl::CXXMethod:
2850   case Decl::Function:
2851     // Skip function templates
2852     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2853         cast<FunctionDecl>(D)->isLateTemplateParsed())
2854       return;
2855 
2856     EmitGlobal(cast<FunctionDecl>(D));
2857     break;
2858 
2859   case Decl::Var:
2860     // Skip variable templates
2861     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2862       return;
2863   case Decl::VarTemplateSpecialization:
2864     EmitGlobal(cast<VarDecl>(D));
2865     break;
2866 
2867   // Indirect fields from global anonymous structs and unions can be
2868   // ignored; only the actual variable requires IR gen support.
2869   case Decl::IndirectField:
2870     break;
2871 
2872   // C++ Decls
2873   case Decl::Namespace:
2874     EmitNamespace(cast<NamespaceDecl>(D));
2875     break;
2876     // No code generation needed.
2877   case Decl::UsingShadow:
2878   case Decl::Using:
2879   case Decl::ClassTemplate:
2880   case Decl::VarTemplate:
2881   case Decl::VarTemplatePartialSpecialization:
2882   case Decl::FunctionTemplate:
2883   case Decl::TypeAliasTemplate:
2884   case Decl::Block:
2885   case Decl::Empty:
2886     break;
2887   case Decl::NamespaceAlias:
2888     if (CGDebugInfo *DI = getModuleDebugInfo())
2889         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2890     return;
2891   case Decl::UsingDirective: // using namespace X; [C++]
2892     if (CGDebugInfo *DI = getModuleDebugInfo())
2893       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2894     return;
2895   case Decl::CXXConstructor:
2896     // Skip function templates
2897     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2898         cast<FunctionDecl>(D)->isLateTemplateParsed())
2899       return;
2900 
2901     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2902     break;
2903   case Decl::CXXDestructor:
2904     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2905       return;
2906     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2907     break;
2908 
2909   case Decl::StaticAssert:
2910     // Nothing to do.
2911     break;
2912 
2913   // Objective-C Decls
2914 
2915   // Forward declarations, no (immediate) code generation.
2916   case Decl::ObjCInterface:
2917   case Decl::ObjCCategory:
2918     break;
2919 
2920   case Decl::ObjCProtocol: {
2921     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2922     if (Proto->isThisDeclarationADefinition())
2923       ObjCRuntime->GenerateProtocol(Proto);
2924     break;
2925   }
2926 
2927   case Decl::ObjCCategoryImpl:
2928     // Categories have properties but don't support synthesize so we
2929     // can ignore them here.
2930     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2931     break;
2932 
2933   case Decl::ObjCImplementation: {
2934     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2935     EmitObjCPropertyImplementations(OMD);
2936     EmitObjCIvarInitializations(OMD);
2937     ObjCRuntime->GenerateClass(OMD);
2938     // Emit global variable debug information.
2939     if (CGDebugInfo *DI = getModuleDebugInfo())
2940       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2941         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2942             OMD->getClassInterface()), OMD->getLocation());
2943     break;
2944   }
2945   case Decl::ObjCMethod: {
2946     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2947     // If this is not a prototype, emit the body.
2948     if (OMD->getBody())
2949       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2950     break;
2951   }
2952   case Decl::ObjCCompatibleAlias:
2953     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2954     break;
2955 
2956   case Decl::LinkageSpec:
2957     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2958     break;
2959 
2960   case Decl::FileScopeAsm: {
2961     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2962     StringRef AsmString = AD->getAsmString()->getString();
2963 
2964     const std::string &S = getModule().getModuleInlineAsm();
2965     if (S.empty())
2966       getModule().setModuleInlineAsm(AsmString);
2967     else if (S.end()[-1] == '\n')
2968       getModule().setModuleInlineAsm(S + AsmString.str());
2969     else
2970       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2971     break;
2972   }
2973 
2974   case Decl::Import: {
2975     ImportDecl *Import = cast<ImportDecl>(D);
2976 
2977     // Ignore import declarations that come from imported modules.
2978     if (clang::Module *Owner = Import->getOwningModule()) {
2979       if (getLangOpts().CurrentModule.empty() ||
2980           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2981         break;
2982     }
2983 
2984     ImportedModules.insert(Import->getImportedModule());
2985     break;
2986  }
2987 
2988   default:
2989     // Make sure we handled everything we should, every other kind is a
2990     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2991     // function. Need to recode Decl::Kind to do that easily.
2992     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2993   }
2994 }
2995 
2996 /// Turns the given pointer into a constant.
2997 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2998                                           const void *Ptr) {
2999   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3000   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3001   return llvm::ConstantInt::get(i64, PtrInt);
3002 }
3003 
3004 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3005                                    llvm::NamedMDNode *&GlobalMetadata,
3006                                    GlobalDecl D,
3007                                    llvm::GlobalValue *Addr) {
3008   if (!GlobalMetadata)
3009     GlobalMetadata =
3010       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3011 
3012   // TODO: should we report variant information for ctors/dtors?
3013   llvm::Value *Ops[] = {
3014     Addr,
3015     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3016   };
3017   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3018 }
3019 
3020 /// For each function which is declared within an extern "C" region and marked
3021 /// as 'used', but has internal linkage, create an alias from the unmangled
3022 /// name to the mangled name if possible. People expect to be able to refer
3023 /// to such functions with an unmangled name from inline assembly within the
3024 /// same translation unit.
3025 void CodeGenModule::EmitStaticExternCAliases() {
3026   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3027                                   E = StaticExternCValues.end();
3028        I != E; ++I) {
3029     IdentifierInfo *Name = I->first;
3030     llvm::GlobalValue *Val = I->second;
3031     if (Val && !getModule().getNamedValue(Name->getName()))
3032       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3033                                           Name->getName(), Val, &getModule()));
3034   }
3035 }
3036 
3037 /// Emits metadata nodes associating all the global values in the
3038 /// current module with the Decls they came from.  This is useful for
3039 /// projects using IR gen as a subroutine.
3040 ///
3041 /// Since there's currently no way to associate an MDNode directly
3042 /// with an llvm::GlobalValue, we create a global named metadata
3043 /// with the name 'clang.global.decl.ptrs'.
3044 void CodeGenModule::EmitDeclMetadata() {
3045   llvm::NamedMDNode *GlobalMetadata = 0;
3046 
3047   // StaticLocalDeclMap
3048   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3049          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3050        I != E; ++I) {
3051     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3052     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3053   }
3054 }
3055 
3056 /// Emits metadata nodes for all the local variables in the current
3057 /// function.
3058 void CodeGenFunction::EmitDeclMetadata() {
3059   if (LocalDeclMap.empty()) return;
3060 
3061   llvm::LLVMContext &Context = getLLVMContext();
3062 
3063   // Find the unique metadata ID for this name.
3064   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3065 
3066   llvm::NamedMDNode *GlobalMetadata = 0;
3067 
3068   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3069          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3070     const Decl *D = I->first;
3071     llvm::Value *Addr = I->second;
3072 
3073     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3074       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3075       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3076     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3077       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3078       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3079     }
3080   }
3081 }
3082 
3083 void CodeGenModule::EmitVersionIdentMetadata() {
3084   llvm::NamedMDNode *IdentMetadata =
3085     TheModule.getOrInsertNamedMetadata("llvm.ident");
3086   std::string Version = getClangFullVersion();
3087   llvm::LLVMContext &Ctx = TheModule.getContext();
3088 
3089   llvm::Value *IdentNode[] = {
3090     llvm::MDString::get(Ctx, Version)
3091   };
3092   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3093 }
3094 
3095 void CodeGenModule::EmitCoverageFile() {
3096   if (!getCodeGenOpts().CoverageFile.empty()) {
3097     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3098       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3099       llvm::LLVMContext &Ctx = TheModule.getContext();
3100       llvm::MDString *CoverageFile =
3101           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3102       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3103         llvm::MDNode *CU = CUNode->getOperand(i);
3104         llvm::Value *node[] = { CoverageFile, CU };
3105         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3106         GCov->addOperand(N);
3107       }
3108     }
3109   }
3110 }
3111 
3112 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3113                                                      QualType GuidType) {
3114   // Sema has checked that all uuid strings are of the form
3115   // "12345678-1234-1234-1234-1234567890ab".
3116   assert(Uuid.size() == 36);
3117   for (unsigned i = 0; i < 36; ++i) {
3118     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3119     else                                         assert(isHexDigit(Uuid[i]));
3120   }
3121 
3122   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3123 
3124   llvm::Constant *Field3[8];
3125   for (unsigned Idx = 0; Idx < 8; ++Idx)
3126     Field3[Idx] = llvm::ConstantInt::get(
3127         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3128 
3129   llvm::Constant *Fields[4] = {
3130     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3131     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3132     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3133     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3134   };
3135 
3136   return llvm::ConstantStruct::getAnon(Fields);
3137 }
3138