xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b3732bb3b76a4e12212f5e672ab281bd96ff906d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
54     VMContext(M.getContext()),
55     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
56     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
57     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
58     BlockObjectAssign(0), BlockObjectDispose(0){
59 
60   if (!Features.ObjC1)
61     Runtime = 0;
62   else if (!Features.NeXTRuntime)
63     Runtime = CreateGNUObjCRuntime(*this);
64   else if (Features.ObjCNonFragileABI)
65     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
66   else
67     Runtime = CreateMacObjCRuntime(*this);
68 
69   if (!Features.CPlusPlus)
70     ABI = 0;
71   else createCXXABI();
72 
73   // If debug info generation is enabled, create the CGDebugInfo object.
74   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
75 }
76 
77 CodeGenModule::~CodeGenModule() {
78   delete Runtime;
79   delete ABI;
80   delete DebugInfo;
81 }
82 
83 void CodeGenModule::createObjCRuntime() {
84   if (!Features.NeXTRuntime)
85     Runtime = CreateGNUObjCRuntime(*this);
86   else if (Features.ObjCNonFragileABI)
87     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
88   else
89     Runtime = CreateMacObjCRuntime(*this);
90 }
91 
92 void CodeGenModule::createCXXABI() {
93   if (Context.Target.getCXXABI() == "microsoft")
94     ABI = CreateMicrosoftCXXABI(*this);
95   else
96     ABI = CreateItaniumCXXABI(*this);
97 }
98 
99 void CodeGenModule::Release() {
100   EmitDeferred();
101   EmitCXXGlobalInitFunc();
102   EmitCXXGlobalDtorFunc();
103   if (Runtime)
104     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
105       AddGlobalCtor(ObjCInitFunction);
106   EmitCtorList(GlobalCtors, "llvm.global_ctors");
107   EmitCtorList(GlobalDtors, "llvm.global_dtors");
108   EmitAnnotations();
109   EmitLLVMUsed();
110 
111   if (getCodeGenOpts().EmitDeclMetadata)
112     EmitDeclMetadata();
113 }
114 
115 bool CodeGenModule::isTargetDarwin() const {
116   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
117 }
118 
119 /// ErrorUnsupported - Print out an error that codegen doesn't support the
120 /// specified stmt yet.
121 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
122                                      bool OmitOnError) {
123   if (OmitOnError && getDiags().hasErrorOccurred())
124     return;
125   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
126                                                "cannot compile this %0 yet");
127   std::string Msg = Type;
128   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
129     << Msg << S->getSourceRange();
130 }
131 
132 /// ErrorUnsupported - Print out an error that codegen doesn't support the
133 /// specified decl yet.
134 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
135                                      bool OmitOnError) {
136   if (OmitOnError && getDiags().hasErrorOccurred())
137     return;
138   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
139                                                "cannot compile this %0 yet");
140   std::string Msg = Type;
141   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
142 }
143 
144 LangOptions::VisibilityMode
145 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
146   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
147     if (VD->getStorageClass() == VarDecl::PrivateExtern)
148       return LangOptions::Hidden;
149 
150   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
151     switch (attr->getVisibility()) {
152     default: assert(0 && "Unknown visibility!");
153     case VisibilityAttr::DefaultVisibility:
154       return LangOptions::Default;
155     case VisibilityAttr::HiddenVisibility:
156       return LangOptions::Hidden;
157     case VisibilityAttr::ProtectedVisibility:
158       return LangOptions::Protected;
159     }
160   }
161 
162   if (getLangOptions().CPlusPlus) {
163     // Entities subject to an explicit instantiation declaration get default
164     // visibility.
165     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
166       if (Function->getTemplateSpecializationKind()
167                                         == TSK_ExplicitInstantiationDeclaration)
168         return LangOptions::Default;
169     } else if (const ClassTemplateSpecializationDecl *ClassSpec
170                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
171       if (ClassSpec->getSpecializationKind()
172                                         == TSK_ExplicitInstantiationDeclaration)
173         return LangOptions::Default;
174     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
175       if (Record->getTemplateSpecializationKind()
176                                         == TSK_ExplicitInstantiationDeclaration)
177         return LangOptions::Default;
178     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
179       if (Var->isStaticDataMember() &&
180           (Var->getTemplateSpecializationKind()
181                                       == TSK_ExplicitInstantiationDeclaration))
182         return LangOptions::Default;
183     }
184 
185     // If -fvisibility-inlines-hidden was provided, then inline C++ member
186     // functions get "hidden" visibility by default.
187     if (getLangOptions().InlineVisibilityHidden)
188       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
189         if (Method->isInlined())
190           return LangOptions::Hidden;
191   }
192 
193   // If this decl is contained in a class, it should have the same visibility
194   // as the parent class.
195   if (const DeclContext *DC = D->getDeclContext())
196     if (DC->isRecord())
197       return getDeclVisibilityMode(cast<Decl>(DC));
198 
199   return getLangOptions().getVisibilityMode();
200 }
201 
202 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
203                                         const Decl *D) const {
204   // Internal definitions always have default visibility.
205   if (GV->hasLocalLinkage()) {
206     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
207     return;
208   }
209 
210   switch (getDeclVisibilityMode(D)) {
211   default: assert(0 && "Unknown visibility!");
212   case LangOptions::Default:
213     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
214   case LangOptions::Hidden:
215     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
216   case LangOptions::Protected:
217     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
218   }
219 }
220 
221 /// Set the symbol visibility of type information (vtable and RTTI)
222 /// associated with the given type.
223 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
224                                       const CXXRecordDecl *RD,
225                                       bool IsForRTTI) const {
226   setGlobalVisibility(GV, RD);
227 
228   if (!CodeGenOpts.HiddenWeakVTables)
229     return;
230 
231   // We want to drop the visibility to hidden for weak type symbols.
232   // This isn't possible if there might be unresolved references
233   // elsewhere that rely on this symbol being visible.
234 
235   // This should be kept roughly in sync with setThunkVisibility
236   // in CGVTables.cpp.
237 
238   // Preconditions.
239   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
240       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
241     return;
242 
243   // Don't override an explicit visibility attribute.
244   if (RD->hasAttr<VisibilityAttr>())
245     return;
246 
247   switch (RD->getTemplateSpecializationKind()) {
248   // We have to disable the optimization if this is an EI definition
249   // because there might be EI declarations in other shared objects.
250   case TSK_ExplicitInstantiationDefinition:
251   case TSK_ExplicitInstantiationDeclaration:
252     return;
253 
254   // Every use of a non-template class's type information has to emit it.
255   case TSK_Undeclared:
256     break;
257 
258   // In theory, implicit instantiations can ignore the possibility of
259   // an explicit instantiation declaration because there necessarily
260   // must be an EI definition somewhere with default visibility.  In
261   // practice, it's possible to have an explicit instantiation for
262   // an arbitrary template class, and linkers aren't necessarily able
263   // to deal with mixed-visibility symbols.
264   case TSK_ExplicitSpecialization:
265   case TSK_ImplicitInstantiation:
266     if (!CodeGenOpts.HiddenWeakTemplateVTables)
267       return;
268     break;
269   }
270 
271   // If there's a key function, there may be translation units
272   // that don't have the key function's definition.  But ignore
273   // this if we're emitting RTTI under -fno-rtti.
274   if (!IsForRTTI || Features.RTTI)
275     if (Context.getKeyFunction(RD))
276       return;
277 
278   // Otherwise, drop the visibility to hidden.
279   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
280 }
281 
282 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
283   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
284 
285   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
286   if (!Str.empty())
287     return Str;
288 
289   if (!getMangleContext().shouldMangleDeclName(ND)) {
290     IdentifierInfo *II = ND->getIdentifier();
291     assert(II && "Attempt to mangle unnamed decl.");
292 
293     Str = II->getName();
294     return Str;
295   }
296 
297   llvm::SmallString<256> Buffer;
298   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
299     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
300   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
301     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
302   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
303     getMangleContext().mangleBlock(GD, BD, Buffer);
304   else
305     getMangleContext().mangleName(ND, Buffer);
306 
307   // Allocate space for the mangled name.
308   size_t Length = Buffer.size();
309   char *Name = MangledNamesAllocator.Allocate<char>(Length);
310   std::copy(Buffer.begin(), Buffer.end(), Name);
311 
312   Str = llvm::StringRef(Name, Length);
313 
314   return Str;
315 }
316 
317 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
318                                    const BlockDecl *BD) {
319   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
320 }
321 
322 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
323   return getModule().getNamedValue(Name);
324 }
325 
326 /// AddGlobalCtor - Add a function to the list that will be called before
327 /// main() runs.
328 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
329   // FIXME: Type coercion of void()* types.
330   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
331 }
332 
333 /// AddGlobalDtor - Add a function to the list that will be called
334 /// when the module is unloaded.
335 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
336   // FIXME: Type coercion of void()* types.
337   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
338 }
339 
340 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
341   // Ctor function type is void()*.
342   llvm::FunctionType* CtorFTy =
343     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
344                             std::vector<const llvm::Type*>(),
345                             false);
346   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
347 
348   // Get the type of a ctor entry, { i32, void ()* }.
349   llvm::StructType* CtorStructTy =
350     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
351                           llvm::PointerType::getUnqual(CtorFTy), NULL);
352 
353   // Construct the constructor and destructor arrays.
354   std::vector<llvm::Constant*> Ctors;
355   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
356     std::vector<llvm::Constant*> S;
357     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
358                 I->second, false));
359     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
360     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
361   }
362 
363   if (!Ctors.empty()) {
364     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
365     new llvm::GlobalVariable(TheModule, AT, false,
366                              llvm::GlobalValue::AppendingLinkage,
367                              llvm::ConstantArray::get(AT, Ctors),
368                              GlobalName);
369   }
370 }
371 
372 void CodeGenModule::EmitAnnotations() {
373   if (Annotations.empty())
374     return;
375 
376   // Create a new global variable for the ConstantStruct in the Module.
377   llvm::Constant *Array =
378   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
379                                                 Annotations.size()),
380                            Annotations);
381   llvm::GlobalValue *gv =
382   new llvm::GlobalVariable(TheModule, Array->getType(), false,
383                            llvm::GlobalValue::AppendingLinkage, Array,
384                            "llvm.global.annotations");
385   gv->setSection("llvm.metadata");
386 }
387 
388 llvm::GlobalValue::LinkageTypes
389 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
390   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
391 
392   if (Linkage == GVA_Internal)
393     return llvm::Function::InternalLinkage;
394 
395   if (D->hasAttr<DLLExportAttr>())
396     return llvm::Function::DLLExportLinkage;
397 
398   if (D->hasAttr<WeakAttr>())
399     return llvm::Function::WeakAnyLinkage;
400 
401   // In C99 mode, 'inline' functions are guaranteed to have a strong
402   // definition somewhere else, so we can use available_externally linkage.
403   if (Linkage == GVA_C99Inline)
404     return llvm::Function::AvailableExternallyLinkage;
405 
406   // In C++, the compiler has to emit a definition in every translation unit
407   // that references the function.  We should use linkonce_odr because
408   // a) if all references in this translation unit are optimized away, we
409   // don't need to codegen it.  b) if the function persists, it needs to be
410   // merged with other definitions. c) C++ has the ODR, so we know the
411   // definition is dependable.
412   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
413     return llvm::Function::LinkOnceODRLinkage;
414 
415   // An explicit instantiation of a template has weak linkage, since
416   // explicit instantiations can occur in multiple translation units
417   // and must all be equivalent. However, we are not allowed to
418   // throw away these explicit instantiations.
419   if (Linkage == GVA_ExplicitTemplateInstantiation)
420     return llvm::Function::WeakODRLinkage;
421 
422   // Otherwise, we have strong external linkage.
423   assert(Linkage == GVA_StrongExternal);
424   return llvm::Function::ExternalLinkage;
425 }
426 
427 
428 /// SetFunctionDefinitionAttributes - Set attributes for a global.
429 ///
430 /// FIXME: This is currently only done for aliases and functions, but not for
431 /// variables (these details are set in EmitGlobalVarDefinition for variables).
432 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
433                                                     llvm::GlobalValue *GV) {
434   SetCommonAttributes(D, GV);
435 }
436 
437 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
438                                               const CGFunctionInfo &Info,
439                                               llvm::Function *F) {
440   unsigned CallingConv;
441   AttributeListType AttributeList;
442   ConstructAttributeList(Info, D, AttributeList, CallingConv);
443   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
444                                           AttributeList.size()));
445   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
446 }
447 
448 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
449                                                            llvm::Function *F) {
450   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
451     F->addFnAttr(llvm::Attribute::NoUnwind);
452 
453   if (D->hasAttr<AlwaysInlineAttr>())
454     F->addFnAttr(llvm::Attribute::AlwaysInline);
455 
456   if (D->hasAttr<NoInlineAttr>())
457     F->addFnAttr(llvm::Attribute::NoInline);
458 
459   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
460     F->addFnAttr(llvm::Attribute::StackProtect);
461   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
462     F->addFnAttr(llvm::Attribute::StackProtectReq);
463 
464   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
465     unsigned width = Context.Target.getCharWidth();
466     F->setAlignment(AA->getAlignment() / width);
467     while ((AA = AA->getNext<AlignedAttr>()))
468       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
469   }
470   // C++ ABI requires 2-byte alignment for member functions.
471   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
472     F->setAlignment(2);
473 }
474 
475 void CodeGenModule::SetCommonAttributes(const Decl *D,
476                                         llvm::GlobalValue *GV) {
477   setGlobalVisibility(GV, D);
478 
479   if (D->hasAttr<UsedAttr>())
480     AddUsedGlobal(GV);
481 
482   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
483     GV->setSection(SA->getName());
484 
485   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
486 }
487 
488 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
489                                                   llvm::Function *F,
490                                                   const CGFunctionInfo &FI) {
491   SetLLVMFunctionAttributes(D, FI, F);
492   SetLLVMFunctionAttributesForDefinition(D, F);
493 
494   F->setLinkage(llvm::Function::InternalLinkage);
495 
496   SetCommonAttributes(D, F);
497 }
498 
499 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
500                                           llvm::Function *F,
501                                           bool IsIncompleteFunction) {
502   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
503 
504   if (!IsIncompleteFunction)
505     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
506 
507   // Only a few attributes are set on declarations; these may later be
508   // overridden by a definition.
509 
510   if (FD->hasAttr<DLLImportAttr>()) {
511     F->setLinkage(llvm::Function::DLLImportLinkage);
512   } else if (FD->hasAttr<WeakAttr>() ||
513              FD->hasAttr<WeakImportAttr>()) {
514     // "extern_weak" is overloaded in LLVM; we probably should have
515     // separate linkage types for this.
516     F->setLinkage(llvm::Function::ExternalWeakLinkage);
517   } else {
518     F->setLinkage(llvm::Function::ExternalLinkage);
519   }
520 
521   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
522     F->setSection(SA->getName());
523 }
524 
525 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
526   assert(!GV->isDeclaration() &&
527          "Only globals with definition can force usage.");
528   LLVMUsed.push_back(GV);
529 }
530 
531 void CodeGenModule::EmitLLVMUsed() {
532   // Don't create llvm.used if there is no need.
533   if (LLVMUsed.empty())
534     return;
535 
536   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
537 
538   // Convert LLVMUsed to what ConstantArray needs.
539   std::vector<llvm::Constant*> UsedArray;
540   UsedArray.resize(LLVMUsed.size());
541   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
542     UsedArray[i] =
543      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
544                                       i8PTy);
545   }
546 
547   if (UsedArray.empty())
548     return;
549   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
550 
551   llvm::GlobalVariable *GV =
552     new llvm::GlobalVariable(getModule(), ATy, false,
553                              llvm::GlobalValue::AppendingLinkage,
554                              llvm::ConstantArray::get(ATy, UsedArray),
555                              "llvm.used");
556 
557   GV->setSection("llvm.metadata");
558 }
559 
560 void CodeGenModule::EmitDeferred() {
561   // Emit code for any potentially referenced deferred decls.  Since a
562   // previously unused static decl may become used during the generation of code
563   // for a static function, iterate until no  changes are made.
564 
565   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
566     if (!DeferredVTables.empty()) {
567       const CXXRecordDecl *RD = DeferredVTables.back();
568       DeferredVTables.pop_back();
569       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
570       continue;
571     }
572 
573     GlobalDecl D = DeferredDeclsToEmit.back();
574     DeferredDeclsToEmit.pop_back();
575 
576     // Check to see if we've already emitted this.  This is necessary
577     // for a couple of reasons: first, decls can end up in the
578     // deferred-decls queue multiple times, and second, decls can end
579     // up with definitions in unusual ways (e.g. by an extern inline
580     // function acquiring a strong function redefinition).  Just
581     // ignore these cases.
582     //
583     // TODO: That said, looking this up multiple times is very wasteful.
584     llvm::StringRef Name = getMangledName(D);
585     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
586     assert(CGRef && "Deferred decl wasn't referenced?");
587 
588     if (!CGRef->isDeclaration())
589       continue;
590 
591     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
592     // purposes an alias counts as a definition.
593     if (isa<llvm::GlobalAlias>(CGRef))
594       continue;
595 
596     // Otherwise, emit the definition and move on to the next one.
597     EmitGlobalDefinition(D);
598   }
599 }
600 
601 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
602 /// annotation information for a given GlobalValue.  The annotation struct is
603 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
604 /// GlobalValue being annotated.  The second field is the constant string
605 /// created from the AnnotateAttr's annotation.  The third field is a constant
606 /// string containing the name of the translation unit.  The fourth field is
607 /// the line number in the file of the annotated value declaration.
608 ///
609 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
610 ///        appears to.
611 ///
612 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
613                                                 const AnnotateAttr *AA,
614                                                 unsigned LineNo) {
615   llvm::Module *M = &getModule();
616 
617   // get [N x i8] constants for the annotation string, and the filename string
618   // which are the 2nd and 3rd elements of the global annotation structure.
619   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
620   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
621                                                   AA->getAnnotation(), true);
622   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
623                                                   M->getModuleIdentifier(),
624                                                   true);
625 
626   // Get the two global values corresponding to the ConstantArrays we just
627   // created to hold the bytes of the strings.
628   llvm::GlobalValue *annoGV =
629     new llvm::GlobalVariable(*M, anno->getType(), false,
630                              llvm::GlobalValue::PrivateLinkage, anno,
631                              GV->getName());
632   // translation unit name string, emitted into the llvm.metadata section.
633   llvm::GlobalValue *unitGV =
634     new llvm::GlobalVariable(*M, unit->getType(), false,
635                              llvm::GlobalValue::PrivateLinkage, unit,
636                              ".str");
637 
638   // Create the ConstantStruct for the global annotation.
639   llvm::Constant *Fields[4] = {
640     llvm::ConstantExpr::getBitCast(GV, SBP),
641     llvm::ConstantExpr::getBitCast(annoGV, SBP),
642     llvm::ConstantExpr::getBitCast(unitGV, SBP),
643     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
644   };
645   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
646 }
647 
648 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
649   // Never defer when EmitAllDecls is specified.
650   if (Features.EmitAllDecls)
651     return false;
652 
653   return !getContext().DeclMustBeEmitted(Global);
654 }
655 
656 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
657   const AliasAttr *AA = VD->getAttr<AliasAttr>();
658   assert(AA && "No alias?");
659 
660   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
661 
662   // See if there is already something with the target's name in the module.
663   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
664 
665   llvm::Constant *Aliasee;
666   if (isa<llvm::FunctionType>(DeclTy))
667     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
668   else
669     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
670                                     llvm::PointerType::getUnqual(DeclTy), 0);
671   if (!Entry) {
672     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
673     F->setLinkage(llvm::Function::ExternalWeakLinkage);
674     WeakRefReferences.insert(F);
675   }
676 
677   return Aliasee;
678 }
679 
680 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
681   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
682 
683   // Weak references don't produce any output by themselves.
684   if (Global->hasAttr<WeakRefAttr>())
685     return;
686 
687   // If this is an alias definition (which otherwise looks like a declaration)
688   // emit it now.
689   if (Global->hasAttr<AliasAttr>())
690     return EmitAliasDefinition(GD);
691 
692   // Ignore declarations, they will be emitted on their first use.
693   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
694     if (FD->getIdentifier()) {
695       llvm::StringRef Name = FD->getName();
696       if (Name == "_Block_object_assign") {
697         BlockObjectAssignDecl = FD;
698       } else if (Name == "_Block_object_dispose") {
699         BlockObjectDisposeDecl = FD;
700       }
701     }
702 
703     // Forward declarations are emitted lazily on first use.
704     if (!FD->isThisDeclarationADefinition())
705       return;
706   } else {
707     const VarDecl *VD = cast<VarDecl>(Global);
708     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
709 
710     if (VD->getIdentifier()) {
711       llvm::StringRef Name = VD->getName();
712       if (Name == "_NSConcreteGlobalBlock") {
713         NSConcreteGlobalBlockDecl = VD;
714       } else if (Name == "_NSConcreteStackBlock") {
715         NSConcreteStackBlockDecl = VD;
716       }
717     }
718 
719 
720     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
721       return;
722   }
723 
724   // Defer code generation when possible if this is a static definition, inline
725   // function etc.  These we only want to emit if they are used.
726   if (!MayDeferGeneration(Global)) {
727     // Emit the definition if it can't be deferred.
728     EmitGlobalDefinition(GD);
729     return;
730   }
731 
732   // If we're deferring emission of a C++ variable with an
733   // initializer, remember the order in which it appeared in the file.
734   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
735       cast<VarDecl>(Global)->hasInit()) {
736     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
737     CXXGlobalInits.push_back(0);
738   }
739 
740   // If the value has already been used, add it directly to the
741   // DeferredDeclsToEmit list.
742   llvm::StringRef MangledName = getMangledName(GD);
743   if (GetGlobalValue(MangledName))
744     DeferredDeclsToEmit.push_back(GD);
745   else {
746     // Otherwise, remember that we saw a deferred decl with this name.  The
747     // first use of the mangled name will cause it to move into
748     // DeferredDeclsToEmit.
749     DeferredDecls[MangledName] = GD;
750   }
751 }
752 
753 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
754   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
755 
756   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
757                                  Context.getSourceManager(),
758                                  "Generating code for declaration");
759 
760   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
761     // At -O0, don't generate IR for functions with available_externally
762     // linkage.
763     if (CodeGenOpts.OptimizationLevel == 0 &&
764         !Function->hasAttr<AlwaysInlineAttr>() &&
765         getFunctionLinkage(Function)
766                                   == llvm::Function::AvailableExternallyLinkage)
767       return;
768 
769     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
770       if (Method->isVirtual())
771         getVTables().EmitThunks(GD);
772 
773       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
774         return EmitCXXConstructor(CD, GD.getCtorType());
775 
776       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
777         return EmitCXXDestructor(DD, GD.getDtorType());
778     }
779 
780     return EmitGlobalFunctionDefinition(GD);
781   }
782 
783   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
784     return EmitGlobalVarDefinition(VD);
785 
786   assert(0 && "Invalid argument to EmitGlobalDefinition()");
787 }
788 
789 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
790 /// module, create and return an llvm Function with the specified type. If there
791 /// is something in the module with the specified name, return it potentially
792 /// bitcasted to the right type.
793 ///
794 /// If D is non-null, it specifies a decl that correspond to this.  This is used
795 /// to set the attributes on the function when it is first created.
796 llvm::Constant *
797 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
798                                        const llvm::Type *Ty,
799                                        GlobalDecl D) {
800   // Lookup the entry, lazily creating it if necessary.
801   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
802   if (Entry) {
803     if (WeakRefReferences.count(Entry)) {
804       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
805       if (FD && !FD->hasAttr<WeakAttr>())
806         Entry->setLinkage(llvm::Function::ExternalLinkage);
807 
808       WeakRefReferences.erase(Entry);
809     }
810 
811     if (Entry->getType()->getElementType() == Ty)
812       return Entry;
813 
814     // Make sure the result is of the correct type.
815     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
816     return llvm::ConstantExpr::getBitCast(Entry, PTy);
817   }
818 
819   // This function doesn't have a complete type (for example, the return
820   // type is an incomplete struct). Use a fake type instead, and make
821   // sure not to try to set attributes.
822   bool IsIncompleteFunction = false;
823 
824   const llvm::FunctionType *FTy;
825   if (isa<llvm::FunctionType>(Ty)) {
826     FTy = cast<llvm::FunctionType>(Ty);
827   } else {
828     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
829                                   std::vector<const llvm::Type*>(), false);
830     IsIncompleteFunction = true;
831   }
832 
833   llvm::Function *F = llvm::Function::Create(FTy,
834                                              llvm::Function::ExternalLinkage,
835                                              MangledName, &getModule());
836   assert(F->getName() == MangledName && "name was uniqued!");
837   if (D.getDecl())
838     SetFunctionAttributes(D, F, IsIncompleteFunction);
839 
840   // This is the first use or definition of a mangled name.  If there is a
841   // deferred decl with this name, remember that we need to emit it at the end
842   // of the file.
843   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
844   if (DDI != DeferredDecls.end()) {
845     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
846     // list, and remove it from DeferredDecls (since we don't need it anymore).
847     DeferredDeclsToEmit.push_back(DDI->second);
848     DeferredDecls.erase(DDI);
849   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
850     // If this the first reference to a C++ inline function in a class, queue up
851     // the deferred function body for emission.  These are not seen as
852     // top-level declarations.
853     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
854       DeferredDeclsToEmit.push_back(D);
855     // A called constructor which has no definition or declaration need be
856     // synthesized.
857     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
858       if (CD->isImplicit()) {
859         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
860         DeferredDeclsToEmit.push_back(D);
861       }
862     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
863       if (DD->isImplicit()) {
864         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
865         DeferredDeclsToEmit.push_back(D);
866       }
867     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
868       if (MD->isCopyAssignment() && MD->isImplicit()) {
869         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
870         DeferredDeclsToEmit.push_back(D);
871       }
872     }
873   }
874 
875   // Make sure the result is of the requested type.
876   if (!IsIncompleteFunction) {
877     assert(F->getType()->getElementType() == Ty);
878     return F;
879   }
880 
881   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
882   return llvm::ConstantExpr::getBitCast(F, PTy);
883 }
884 
885 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
886 /// non-null, then this function will use the specified type if it has to
887 /// create it (this occurs when we see a definition of the function).
888 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
889                                                  const llvm::Type *Ty) {
890   // If there was no specific requested type, just convert it now.
891   if (!Ty)
892     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
893 
894   llvm::StringRef MangledName = getMangledName(GD);
895   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
896 }
897 
898 /// CreateRuntimeFunction - Create a new runtime function with the specified
899 /// type and name.
900 llvm::Constant *
901 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
902                                      llvm::StringRef Name) {
903   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
904 }
905 
906 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
907   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
908     return false;
909   if (Context.getLangOptions().CPlusPlus &&
910       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
911     // FIXME: We should do something fancier here!
912     return false;
913   }
914   return true;
915 }
916 
917 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
918 /// create and return an llvm GlobalVariable with the specified type.  If there
919 /// is something in the module with the specified name, return it potentially
920 /// bitcasted to the right type.
921 ///
922 /// If D is non-null, it specifies a decl that correspond to this.  This is used
923 /// to set the attributes on the global when it is first created.
924 llvm::Constant *
925 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
926                                      const llvm::PointerType *Ty,
927                                      const VarDecl *D) {
928   // Lookup the entry, lazily creating it if necessary.
929   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
930   if (Entry) {
931     if (WeakRefReferences.count(Entry)) {
932       if (D && !D->hasAttr<WeakAttr>())
933         Entry->setLinkage(llvm::Function::ExternalLinkage);
934 
935       WeakRefReferences.erase(Entry);
936     }
937 
938     if (Entry->getType() == Ty)
939       return Entry;
940 
941     // Make sure the result is of the correct type.
942     return llvm::ConstantExpr::getBitCast(Entry, Ty);
943   }
944 
945   // This is the first use or definition of a mangled name.  If there is a
946   // deferred decl with this name, remember that we need to emit it at the end
947   // of the file.
948   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
949   if (DDI != DeferredDecls.end()) {
950     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
951     // list, and remove it from DeferredDecls (since we don't need it anymore).
952     DeferredDeclsToEmit.push_back(DDI->second);
953     DeferredDecls.erase(DDI);
954   }
955 
956   llvm::GlobalVariable *GV =
957     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
958                              llvm::GlobalValue::ExternalLinkage,
959                              0, MangledName, 0,
960                              false, Ty->getAddressSpace());
961 
962   // Handle things which are present even on external declarations.
963   if (D) {
964     // FIXME: This code is overly simple and should be merged with other global
965     // handling.
966     GV->setConstant(DeclIsConstantGlobal(Context, D));
967 
968     // FIXME: Merge with other attribute handling code.
969     if (D->getStorageClass() == VarDecl::PrivateExtern)
970       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
971 
972     if (D->hasAttr<WeakAttr>() ||
973         D->hasAttr<WeakImportAttr>())
974       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
975 
976     GV->setThreadLocal(D->isThreadSpecified());
977   }
978 
979   return GV;
980 }
981 
982 
983 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
984 /// given global variable.  If Ty is non-null and if the global doesn't exist,
985 /// then it will be greated with the specified type instead of whatever the
986 /// normal requested type would be.
987 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
988                                                   const llvm::Type *Ty) {
989   assert(D->hasGlobalStorage() && "Not a global variable");
990   QualType ASTTy = D->getType();
991   if (Ty == 0)
992     Ty = getTypes().ConvertTypeForMem(ASTTy);
993 
994   const llvm::PointerType *PTy =
995     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
996 
997   llvm::StringRef MangledName = getMangledName(D);
998   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
999 }
1000 
1001 /// CreateRuntimeVariable - Create a new runtime global variable with the
1002 /// specified type and name.
1003 llvm::Constant *
1004 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1005                                      llvm::StringRef Name) {
1006   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1007 }
1008 
1009 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1010   assert(!D->getInit() && "Cannot emit definite definitions here!");
1011 
1012   if (MayDeferGeneration(D)) {
1013     // If we have not seen a reference to this variable yet, place it
1014     // into the deferred declarations table to be emitted if needed
1015     // later.
1016     llvm::StringRef MangledName = getMangledName(D);
1017     if (!GetGlobalValue(MangledName)) {
1018       DeferredDecls[MangledName] = D;
1019       return;
1020     }
1021   }
1022 
1023   // The tentative definition is the only definition.
1024   EmitGlobalVarDefinition(D);
1025 }
1026 
1027 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1028   if (DefinitionRequired)
1029     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1030 }
1031 
1032 llvm::GlobalVariable::LinkageTypes
1033 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1034   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1035     return llvm::GlobalVariable::InternalLinkage;
1036 
1037   if (const CXXMethodDecl *KeyFunction
1038                                     = RD->getASTContext().getKeyFunction(RD)) {
1039     // If this class has a key function, use that to determine the linkage of
1040     // the vtable.
1041     const FunctionDecl *Def = 0;
1042     if (KeyFunction->hasBody(Def))
1043       KeyFunction = cast<CXXMethodDecl>(Def);
1044 
1045     switch (KeyFunction->getTemplateSpecializationKind()) {
1046       case TSK_Undeclared:
1047       case TSK_ExplicitSpecialization:
1048         if (KeyFunction->isInlined())
1049           return llvm::GlobalVariable::WeakODRLinkage;
1050 
1051         return llvm::GlobalVariable::ExternalLinkage;
1052 
1053       case TSK_ImplicitInstantiation:
1054       case TSK_ExplicitInstantiationDefinition:
1055         return llvm::GlobalVariable::WeakODRLinkage;
1056 
1057       case TSK_ExplicitInstantiationDeclaration:
1058         // FIXME: Use available_externally linkage. However, this currently
1059         // breaks LLVM's build due to undefined symbols.
1060         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1061         return llvm::GlobalVariable::WeakODRLinkage;
1062     }
1063   }
1064 
1065   switch (RD->getTemplateSpecializationKind()) {
1066   case TSK_Undeclared:
1067   case TSK_ExplicitSpecialization:
1068   case TSK_ImplicitInstantiation:
1069   case TSK_ExplicitInstantiationDefinition:
1070     return llvm::GlobalVariable::WeakODRLinkage;
1071 
1072   case TSK_ExplicitInstantiationDeclaration:
1073     // FIXME: Use available_externally linkage. However, this currently
1074     // breaks LLVM's build due to undefined symbols.
1075     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1076     return llvm::GlobalVariable::WeakODRLinkage;
1077   }
1078 
1079   // Silence GCC warning.
1080   return llvm::GlobalVariable::WeakODRLinkage;
1081 }
1082 
1083 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1084     return CharUnits::fromQuantity(
1085       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1086 }
1087 
1088 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1089   llvm::Constant *Init = 0;
1090   QualType ASTTy = D->getType();
1091   bool NonConstInit = false;
1092 
1093   const Expr *InitExpr = D->getAnyInitializer();
1094 
1095   if (!InitExpr) {
1096     // This is a tentative definition; tentative definitions are
1097     // implicitly initialized with { 0 }.
1098     //
1099     // Note that tentative definitions are only emitted at the end of
1100     // a translation unit, so they should never have incomplete
1101     // type. In addition, EmitTentativeDefinition makes sure that we
1102     // never attempt to emit a tentative definition if a real one
1103     // exists. A use may still exists, however, so we still may need
1104     // to do a RAUW.
1105     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1106     Init = EmitNullConstant(D->getType());
1107   } else {
1108     Init = EmitConstantExpr(InitExpr, D->getType());
1109     if (!Init) {
1110       QualType T = InitExpr->getType();
1111       if (D->getType()->isReferenceType())
1112         T = D->getType();
1113 
1114       if (getLangOptions().CPlusPlus) {
1115         EmitCXXGlobalVarDeclInitFunc(D);
1116         Init = EmitNullConstant(T);
1117         NonConstInit = true;
1118       } else {
1119         ErrorUnsupported(D, "static initializer");
1120         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1121       }
1122     } else {
1123       // We don't need an initializer, so remove the entry for the delayed
1124       // initializer position (just in case this entry was delayed).
1125       if (getLangOptions().CPlusPlus)
1126         DelayedCXXInitPosition.erase(D);
1127     }
1128   }
1129 
1130   const llvm::Type* InitType = Init->getType();
1131   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1132 
1133   // Strip off a bitcast if we got one back.
1134   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1135     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1136            // all zero index gep.
1137            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1138     Entry = CE->getOperand(0);
1139   }
1140 
1141   // Entry is now either a Function or GlobalVariable.
1142   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1143 
1144   // We have a definition after a declaration with the wrong type.
1145   // We must make a new GlobalVariable* and update everything that used OldGV
1146   // (a declaration or tentative definition) with the new GlobalVariable*
1147   // (which will be a definition).
1148   //
1149   // This happens if there is a prototype for a global (e.g.
1150   // "extern int x[];") and then a definition of a different type (e.g.
1151   // "int x[10];"). This also happens when an initializer has a different type
1152   // from the type of the global (this happens with unions).
1153   if (GV == 0 ||
1154       GV->getType()->getElementType() != InitType ||
1155       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1156 
1157     // Move the old entry aside so that we'll create a new one.
1158     Entry->setName(llvm::StringRef());
1159 
1160     // Make a new global with the correct type, this is now guaranteed to work.
1161     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1162 
1163     // Replace all uses of the old global with the new global
1164     llvm::Constant *NewPtrForOldDecl =
1165         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1166     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1167 
1168     // Erase the old global, since it is no longer used.
1169     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1170   }
1171 
1172   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1173     SourceManager &SM = Context.getSourceManager();
1174     AddAnnotation(EmitAnnotateAttr(GV, AA,
1175                               SM.getInstantiationLineNumber(D->getLocation())));
1176   }
1177 
1178   GV->setInitializer(Init);
1179 
1180   // If it is safe to mark the global 'constant', do so now.
1181   GV->setConstant(false);
1182   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1183     GV->setConstant(true);
1184 
1185   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1186 
1187   // Set the llvm linkage type as appropriate.
1188   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1189   if (Linkage == GVA_Internal)
1190     GV->setLinkage(llvm::Function::InternalLinkage);
1191   else if (D->hasAttr<DLLImportAttr>())
1192     GV->setLinkage(llvm::Function::DLLImportLinkage);
1193   else if (D->hasAttr<DLLExportAttr>())
1194     GV->setLinkage(llvm::Function::DLLExportLinkage);
1195   else if (D->hasAttr<WeakAttr>()) {
1196     if (GV->isConstant())
1197       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1198     else
1199       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1200   } else if (Linkage == GVA_TemplateInstantiation ||
1201              Linkage == GVA_ExplicitTemplateInstantiation)
1202     // FIXME: It seems like we can provide more specific linkage here
1203     // (LinkOnceODR, WeakODR).
1204     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1205   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1206            !D->hasExternalStorage() && !D->getInit() &&
1207            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1208     // Thread local vars aren't considered common linkage.
1209     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1210     // common vars aren't constant even if declared const.
1211     GV->setConstant(false);
1212   } else
1213     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1214 
1215   SetCommonAttributes(D, GV);
1216 
1217   // Emit global variable debug information.
1218   if (CGDebugInfo *DI = getDebugInfo()) {
1219     DI->setLocation(D->getLocation());
1220     DI->EmitGlobalVariable(GV, D);
1221   }
1222 }
1223 
1224 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1225 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1226 /// existing call uses of the old function in the module, this adjusts them to
1227 /// call the new function directly.
1228 ///
1229 /// This is not just a cleanup: the always_inline pass requires direct calls to
1230 /// functions to be able to inline them.  If there is a bitcast in the way, it
1231 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1232 /// run at -O0.
1233 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1234                                                       llvm::Function *NewFn) {
1235   // If we're redefining a global as a function, don't transform it.
1236   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1237   if (OldFn == 0) return;
1238 
1239   const llvm::Type *NewRetTy = NewFn->getReturnType();
1240   llvm::SmallVector<llvm::Value*, 4> ArgList;
1241 
1242   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1243        UI != E; ) {
1244     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1245     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1246     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1247     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1248     llvm::CallSite CS(CI);
1249     if (!CI || !CS.isCallee(I)) continue;
1250 
1251     // If the return types don't match exactly, and if the call isn't dead, then
1252     // we can't transform this call.
1253     if (CI->getType() != NewRetTy && !CI->use_empty())
1254       continue;
1255 
1256     // If the function was passed too few arguments, don't transform.  If extra
1257     // arguments were passed, we silently drop them.  If any of the types
1258     // mismatch, we don't transform.
1259     unsigned ArgNo = 0;
1260     bool DontTransform = false;
1261     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1262          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1263       if (CS.arg_size() == ArgNo ||
1264           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1265         DontTransform = true;
1266         break;
1267       }
1268     }
1269     if (DontTransform)
1270       continue;
1271 
1272     // Okay, we can transform this.  Create the new call instruction and copy
1273     // over the required information.
1274     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1275     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1276                                                      ArgList.end(), "", CI);
1277     ArgList.clear();
1278     if (!NewCall->getType()->isVoidTy())
1279       NewCall->takeName(CI);
1280     NewCall->setAttributes(CI->getAttributes());
1281     NewCall->setCallingConv(CI->getCallingConv());
1282 
1283     // Finally, remove the old call, replacing any uses with the new one.
1284     if (!CI->use_empty())
1285       CI->replaceAllUsesWith(NewCall);
1286 
1287     // Copy debug location attached to CI.
1288     if (!CI->getDebugLoc().isUnknown())
1289       NewCall->setDebugLoc(CI->getDebugLoc());
1290     CI->eraseFromParent();
1291   }
1292 }
1293 
1294 
1295 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1296   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1297   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1298   getMangleContext().mangleInitDiscriminator();
1299   // Get or create the prototype for the function.
1300   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1301 
1302   // Strip off a bitcast if we got one back.
1303   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1304     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1305     Entry = CE->getOperand(0);
1306   }
1307 
1308 
1309   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1310     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1311 
1312     // If the types mismatch then we have to rewrite the definition.
1313     assert(OldFn->isDeclaration() &&
1314            "Shouldn't replace non-declaration");
1315 
1316     // F is the Function* for the one with the wrong type, we must make a new
1317     // Function* and update everything that used F (a declaration) with the new
1318     // Function* (which will be a definition).
1319     //
1320     // This happens if there is a prototype for a function
1321     // (e.g. "int f()") and then a definition of a different type
1322     // (e.g. "int f(int x)").  Move the old function aside so that it
1323     // doesn't interfere with GetAddrOfFunction.
1324     OldFn->setName(llvm::StringRef());
1325     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1326 
1327     // If this is an implementation of a function without a prototype, try to
1328     // replace any existing uses of the function (which may be calls) with uses
1329     // of the new function
1330     if (D->getType()->isFunctionNoProtoType()) {
1331       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1332       OldFn->removeDeadConstantUsers();
1333     }
1334 
1335     // Replace uses of F with the Function we will endow with a body.
1336     if (!Entry->use_empty()) {
1337       llvm::Constant *NewPtrForOldDecl =
1338         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1339       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1340     }
1341 
1342     // Ok, delete the old function now, which is dead.
1343     OldFn->eraseFromParent();
1344 
1345     Entry = NewFn;
1346   }
1347 
1348   llvm::Function *Fn = cast<llvm::Function>(Entry);
1349   setFunctionLinkage(D, Fn);
1350 
1351   CodeGenFunction(*this).GenerateCode(D, Fn);
1352 
1353   SetFunctionDefinitionAttributes(D, Fn);
1354   SetLLVMFunctionAttributesForDefinition(D, Fn);
1355 
1356   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1357     AddGlobalCtor(Fn, CA->getPriority());
1358   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1359     AddGlobalDtor(Fn, DA->getPriority());
1360 }
1361 
1362 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1363   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1364   const AliasAttr *AA = D->getAttr<AliasAttr>();
1365   assert(AA && "Not an alias?");
1366 
1367   llvm::StringRef MangledName = getMangledName(GD);
1368 
1369   // If there is a definition in the module, then it wins over the alias.
1370   // This is dubious, but allow it to be safe.  Just ignore the alias.
1371   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1372   if (Entry && !Entry->isDeclaration())
1373     return;
1374 
1375   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1376 
1377   // Create a reference to the named value.  This ensures that it is emitted
1378   // if a deferred decl.
1379   llvm::Constant *Aliasee;
1380   if (isa<llvm::FunctionType>(DeclTy))
1381     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1382   else
1383     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1384                                     llvm::PointerType::getUnqual(DeclTy), 0);
1385 
1386   // Create the new alias itself, but don't set a name yet.
1387   llvm::GlobalValue *GA =
1388     new llvm::GlobalAlias(Aliasee->getType(),
1389                           llvm::Function::ExternalLinkage,
1390                           "", Aliasee, &getModule());
1391 
1392   if (Entry) {
1393     assert(Entry->isDeclaration());
1394 
1395     // If there is a declaration in the module, then we had an extern followed
1396     // by the alias, as in:
1397     //   extern int test6();
1398     //   ...
1399     //   int test6() __attribute__((alias("test7")));
1400     //
1401     // Remove it and replace uses of it with the alias.
1402     GA->takeName(Entry);
1403 
1404     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1405                                                           Entry->getType()));
1406     Entry->eraseFromParent();
1407   } else {
1408     GA->setName(MangledName);
1409   }
1410 
1411   // Set attributes which are particular to an alias; this is a
1412   // specialization of the attributes which may be set on a global
1413   // variable/function.
1414   if (D->hasAttr<DLLExportAttr>()) {
1415     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1416       // The dllexport attribute is ignored for undefined symbols.
1417       if (FD->hasBody())
1418         GA->setLinkage(llvm::Function::DLLExportLinkage);
1419     } else {
1420       GA->setLinkage(llvm::Function::DLLExportLinkage);
1421     }
1422   } else if (D->hasAttr<WeakAttr>() ||
1423              D->hasAttr<WeakRefAttr>() ||
1424              D->hasAttr<WeakImportAttr>()) {
1425     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1426   }
1427 
1428   SetCommonAttributes(D, GA);
1429 }
1430 
1431 /// getBuiltinLibFunction - Given a builtin id for a function like
1432 /// "__builtin_fabsf", return a Function* for "fabsf".
1433 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1434                                                   unsigned BuiltinID) {
1435   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1436           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1437          "isn't a lib fn");
1438 
1439   // Get the name, skip over the __builtin_ prefix (if necessary).
1440   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1441   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1442     Name += 10;
1443 
1444   const llvm::FunctionType *Ty =
1445     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1446 
1447   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1448 }
1449 
1450 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1451                                             unsigned NumTys) {
1452   return llvm::Intrinsic::getDeclaration(&getModule(),
1453                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1454 }
1455 
1456 
1457 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1458                                            const llvm::Type *SrcType,
1459                                            const llvm::Type *SizeType) {
1460   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1461   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1462 }
1463 
1464 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1465                                             const llvm::Type *SrcType,
1466                                             const llvm::Type *SizeType) {
1467   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1468   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1469 }
1470 
1471 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1472                                            const llvm::Type *SizeType) {
1473   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1474   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1475 }
1476 
1477 static llvm::StringMapEntry<llvm::Constant*> &
1478 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1479                          const StringLiteral *Literal,
1480                          bool TargetIsLSB,
1481                          bool &IsUTF16,
1482                          unsigned &StringLength) {
1483   unsigned NumBytes = Literal->getByteLength();
1484 
1485   // Check for simple case.
1486   if (!Literal->containsNonAsciiOrNull()) {
1487     StringLength = NumBytes;
1488     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1489                                                 StringLength));
1490   }
1491 
1492   // Otherwise, convert the UTF8 literals into a byte string.
1493   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1494   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1495   UTF16 *ToPtr = &ToBuf[0];
1496 
1497   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1498                                                &ToPtr, ToPtr + NumBytes,
1499                                                strictConversion);
1500 
1501   // Check for conversion failure.
1502   if (Result != conversionOK) {
1503     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1504     // this duplicate code.
1505     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1506     StringLength = NumBytes;
1507     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1508                                                 StringLength));
1509   }
1510 
1511   // ConvertUTF8toUTF16 returns the length in ToPtr.
1512   StringLength = ToPtr - &ToBuf[0];
1513 
1514   // Render the UTF-16 string into a byte array and convert to the target byte
1515   // order.
1516   //
1517   // FIXME: This isn't something we should need to do here.
1518   llvm::SmallString<128> AsBytes;
1519   AsBytes.reserve(StringLength * 2);
1520   for (unsigned i = 0; i != StringLength; ++i) {
1521     unsigned short Val = ToBuf[i];
1522     if (TargetIsLSB) {
1523       AsBytes.push_back(Val & 0xFF);
1524       AsBytes.push_back(Val >> 8);
1525     } else {
1526       AsBytes.push_back(Val >> 8);
1527       AsBytes.push_back(Val & 0xFF);
1528     }
1529   }
1530   // Append one extra null character, the second is automatically added by our
1531   // caller.
1532   AsBytes.push_back(0);
1533 
1534   IsUTF16 = true;
1535   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1536 }
1537 
1538 llvm::Constant *
1539 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1540   unsigned StringLength = 0;
1541   bool isUTF16 = false;
1542   llvm::StringMapEntry<llvm::Constant*> &Entry =
1543     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1544                              getTargetData().isLittleEndian(),
1545                              isUTF16, StringLength);
1546 
1547   if (llvm::Constant *C = Entry.getValue())
1548     return C;
1549 
1550   llvm::Constant *Zero =
1551       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1552   llvm::Constant *Zeros[] = { Zero, Zero };
1553 
1554   // If we don't already have it, get __CFConstantStringClassReference.
1555   if (!CFConstantStringClassRef) {
1556     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1557     Ty = llvm::ArrayType::get(Ty, 0);
1558     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1559                                            "__CFConstantStringClassReference");
1560     // Decay array -> ptr
1561     CFConstantStringClassRef =
1562       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1563   }
1564 
1565   QualType CFTy = getContext().getCFConstantStringType();
1566 
1567   const llvm::StructType *STy =
1568     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1569 
1570   std::vector<llvm::Constant*> Fields(4);
1571 
1572   // Class pointer.
1573   Fields[0] = CFConstantStringClassRef;
1574 
1575   // Flags.
1576   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1577   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1578     llvm::ConstantInt::get(Ty, 0x07C8);
1579 
1580   // String pointer.
1581   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1582 
1583   llvm::GlobalValue::LinkageTypes Linkage;
1584   bool isConstant;
1585   if (isUTF16) {
1586     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1587     Linkage = llvm::GlobalValue::InternalLinkage;
1588     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1589     // does make plain ascii ones writable.
1590     isConstant = true;
1591   } else {
1592     Linkage = llvm::GlobalValue::PrivateLinkage;
1593     isConstant = !Features.WritableStrings;
1594   }
1595 
1596   llvm::GlobalVariable *GV =
1597     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1598                              ".str");
1599   if (isUTF16) {
1600     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1601     GV->setAlignment(Align.getQuantity());
1602   }
1603   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1604 
1605   // String length.
1606   Ty = getTypes().ConvertType(getContext().LongTy);
1607   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1608 
1609   // The struct.
1610   C = llvm::ConstantStruct::get(STy, Fields);
1611   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1612                                 llvm::GlobalVariable::PrivateLinkage, C,
1613                                 "_unnamed_cfstring_");
1614   if (const char *Sect = getContext().Target.getCFStringSection())
1615     GV->setSection(Sect);
1616   Entry.setValue(GV);
1617 
1618   return GV;
1619 }
1620 
1621 llvm::Constant *
1622 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1623   unsigned StringLength = 0;
1624   bool isUTF16 = false;
1625   llvm::StringMapEntry<llvm::Constant*> &Entry =
1626     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1627                              getTargetData().isLittleEndian(),
1628                              isUTF16, StringLength);
1629 
1630   if (llvm::Constant *C = Entry.getValue())
1631     return C;
1632 
1633   llvm::Constant *Zero =
1634   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1635   llvm::Constant *Zeros[] = { Zero, Zero };
1636 
1637   // If we don't already have it, get _NSConstantStringClassReference.
1638   if (!NSConstantStringClassRef) {
1639     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1640     Ty = llvm::ArrayType::get(Ty, 0);
1641     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1642                                         Features.ObjCNonFragileABI ?
1643                                         "OBJC_CLASS_$_NSConstantString" :
1644                                         "_NSConstantStringClassReference");
1645     // Decay array -> ptr
1646     NSConstantStringClassRef =
1647       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1648   }
1649 
1650   QualType NSTy = getContext().getNSConstantStringType();
1651 
1652   const llvm::StructType *STy =
1653   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1654 
1655   std::vector<llvm::Constant*> Fields(3);
1656 
1657   // Class pointer.
1658   Fields[0] = NSConstantStringClassRef;
1659 
1660   // String pointer.
1661   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1662 
1663   llvm::GlobalValue::LinkageTypes Linkage;
1664   bool isConstant;
1665   if (isUTF16) {
1666     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1667     Linkage = llvm::GlobalValue::InternalLinkage;
1668     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1669     // does make plain ascii ones writable.
1670     isConstant = true;
1671   } else {
1672     Linkage = llvm::GlobalValue::PrivateLinkage;
1673     isConstant = !Features.WritableStrings;
1674   }
1675 
1676   llvm::GlobalVariable *GV =
1677   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1678                            ".str");
1679   if (isUTF16) {
1680     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1681     GV->setAlignment(Align.getQuantity());
1682   }
1683   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1684 
1685   // String length.
1686   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1687   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1688 
1689   // The struct.
1690   C = llvm::ConstantStruct::get(STy, Fields);
1691   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1692                                 llvm::GlobalVariable::PrivateLinkage, C,
1693                                 "_unnamed_nsstring_");
1694   // FIXME. Fix section.
1695   if (const char *Sect =
1696         Features.ObjCNonFragileABI
1697           ? getContext().Target.getNSStringNonFragileABISection()
1698           : getContext().Target.getNSStringSection())
1699     GV->setSection(Sect);
1700   Entry.setValue(GV);
1701 
1702   return GV;
1703 }
1704 
1705 /// GetStringForStringLiteral - Return the appropriate bytes for a
1706 /// string literal, properly padded to match the literal type.
1707 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1708   const char *StrData = E->getStrData();
1709   unsigned Len = E->getByteLength();
1710 
1711   const ConstantArrayType *CAT =
1712     getContext().getAsConstantArrayType(E->getType());
1713   assert(CAT && "String isn't pointer or array!");
1714 
1715   // Resize the string to the right size.
1716   std::string Str(StrData, StrData+Len);
1717   uint64_t RealLen = CAT->getSize().getZExtValue();
1718 
1719   if (E->isWide())
1720     RealLen *= getContext().Target.getWCharWidth()/8;
1721 
1722   Str.resize(RealLen, '\0');
1723 
1724   return Str;
1725 }
1726 
1727 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1728 /// constant array for the given string literal.
1729 llvm::Constant *
1730 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1731   // FIXME: This can be more efficient.
1732   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1733   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1734   if (S->isWide()) {
1735     llvm::Type *DestTy =
1736         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1737     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1738   }
1739   return C;
1740 }
1741 
1742 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1743 /// array for the given ObjCEncodeExpr node.
1744 llvm::Constant *
1745 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1746   std::string Str;
1747   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1748 
1749   return GetAddrOfConstantCString(Str);
1750 }
1751 
1752 
1753 /// GenerateWritableString -- Creates storage for a string literal.
1754 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1755                                              bool constant,
1756                                              CodeGenModule &CGM,
1757                                              const char *GlobalName) {
1758   // Create Constant for this string literal. Don't add a '\0'.
1759   llvm::Constant *C =
1760       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1761 
1762   // Create a global variable for this string
1763   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1764                                   llvm::GlobalValue::PrivateLinkage,
1765                                   C, GlobalName);
1766 }
1767 
1768 /// GetAddrOfConstantString - Returns a pointer to a character array
1769 /// containing the literal. This contents are exactly that of the
1770 /// given string, i.e. it will not be null terminated automatically;
1771 /// see GetAddrOfConstantCString. Note that whether the result is
1772 /// actually a pointer to an LLVM constant depends on
1773 /// Feature.WriteableStrings.
1774 ///
1775 /// The result has pointer to array type.
1776 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1777                                                        const char *GlobalName) {
1778   bool IsConstant = !Features.WritableStrings;
1779 
1780   // Get the default prefix if a name wasn't specified.
1781   if (!GlobalName)
1782     GlobalName = ".str";
1783 
1784   // Don't share any string literals if strings aren't constant.
1785   if (!IsConstant)
1786     return GenerateStringLiteral(str, false, *this, GlobalName);
1787 
1788   llvm::StringMapEntry<llvm::Constant *> &Entry =
1789     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1790 
1791   if (Entry.getValue())
1792     return Entry.getValue();
1793 
1794   // Create a global variable for this.
1795   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1796   Entry.setValue(C);
1797   return C;
1798 }
1799 
1800 /// GetAddrOfConstantCString - Returns a pointer to a character
1801 /// array containing the literal and a terminating '\-'
1802 /// character. The result has pointer to array type.
1803 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1804                                                         const char *GlobalName){
1805   return GetAddrOfConstantString(str + '\0', GlobalName);
1806 }
1807 
1808 /// EmitObjCPropertyImplementations - Emit information for synthesized
1809 /// properties for an implementation.
1810 void CodeGenModule::EmitObjCPropertyImplementations(const
1811                                                     ObjCImplementationDecl *D) {
1812   for (ObjCImplementationDecl::propimpl_iterator
1813          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1814     ObjCPropertyImplDecl *PID = *i;
1815 
1816     // Dynamic is just for type-checking.
1817     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1818       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1819 
1820       // Determine which methods need to be implemented, some may have
1821       // been overridden. Note that ::isSynthesized is not the method
1822       // we want, that just indicates if the decl came from a
1823       // property. What we want to know is if the method is defined in
1824       // this implementation.
1825       if (!D->getInstanceMethod(PD->getGetterName()))
1826         CodeGenFunction(*this).GenerateObjCGetter(
1827                                  const_cast<ObjCImplementationDecl *>(D), PID);
1828       if (!PD->isReadOnly() &&
1829           !D->getInstanceMethod(PD->getSetterName()))
1830         CodeGenFunction(*this).GenerateObjCSetter(
1831                                  const_cast<ObjCImplementationDecl *>(D), PID);
1832     }
1833   }
1834 }
1835 
1836 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1837 /// for an implementation.
1838 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1839   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1840     return;
1841   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1842   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1843   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1844   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1845   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1846                                                   D->getLocation(),
1847                                                   D->getLocation(), cxxSelector,
1848                                                   getContext().VoidTy, 0,
1849                                                   DC, true, false, true, false,
1850                                                   ObjCMethodDecl::Required);
1851   D->addInstanceMethod(DTORMethod);
1852   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1853 
1854   II = &getContext().Idents.get(".cxx_construct");
1855   cxxSelector = getContext().Selectors.getSelector(0, &II);
1856   // The constructor returns 'self'.
1857   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1858                                                 D->getLocation(),
1859                                                 D->getLocation(), cxxSelector,
1860                                                 getContext().getObjCIdType(), 0,
1861                                                 DC, true, false, true, false,
1862                                                 ObjCMethodDecl::Required);
1863   D->addInstanceMethod(CTORMethod);
1864   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1865 
1866 
1867 }
1868 
1869 /// EmitNamespace - Emit all declarations in a namespace.
1870 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1871   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1872        I != E; ++I)
1873     EmitTopLevelDecl(*I);
1874 }
1875 
1876 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1877 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1878   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1879       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1880     ErrorUnsupported(LSD, "linkage spec");
1881     return;
1882   }
1883 
1884   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1885        I != E; ++I)
1886     EmitTopLevelDecl(*I);
1887 }
1888 
1889 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1890 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1891   // If an error has occurred, stop code generation, but continue
1892   // parsing and semantic analysis (to ensure all warnings and errors
1893   // are emitted).
1894   if (Diags.hasErrorOccurred())
1895     return;
1896 
1897   // Ignore dependent declarations.
1898   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1899     return;
1900 
1901   switch (D->getKind()) {
1902   case Decl::CXXConversion:
1903   case Decl::CXXMethod:
1904   case Decl::Function:
1905     // Skip function templates
1906     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1907       return;
1908 
1909     EmitGlobal(cast<FunctionDecl>(D));
1910     break;
1911 
1912   case Decl::Var:
1913     EmitGlobal(cast<VarDecl>(D));
1914     break;
1915 
1916   // C++ Decls
1917   case Decl::Namespace:
1918     EmitNamespace(cast<NamespaceDecl>(D));
1919     break;
1920     // No code generation needed.
1921   case Decl::UsingShadow:
1922   case Decl::Using:
1923   case Decl::UsingDirective:
1924   case Decl::ClassTemplate:
1925   case Decl::FunctionTemplate:
1926   case Decl::NamespaceAlias:
1927     break;
1928   case Decl::CXXConstructor:
1929     // Skip function templates
1930     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1931       return;
1932 
1933     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1934     break;
1935   case Decl::CXXDestructor:
1936     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1937     break;
1938 
1939   case Decl::StaticAssert:
1940     // Nothing to do.
1941     break;
1942 
1943   // Objective-C Decls
1944 
1945   // Forward declarations, no (immediate) code generation.
1946   case Decl::ObjCClass:
1947   case Decl::ObjCForwardProtocol:
1948   case Decl::ObjCCategory:
1949   case Decl::ObjCInterface:
1950     break;
1951 
1952   case Decl::ObjCProtocol:
1953     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1954     break;
1955 
1956   case Decl::ObjCCategoryImpl:
1957     // Categories have properties but don't support synthesize so we
1958     // can ignore them here.
1959     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1960     break;
1961 
1962   case Decl::ObjCImplementation: {
1963     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1964     EmitObjCPropertyImplementations(OMD);
1965     EmitObjCIvarInitializations(OMD);
1966     Runtime->GenerateClass(OMD);
1967     break;
1968   }
1969   case Decl::ObjCMethod: {
1970     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1971     // If this is not a prototype, emit the body.
1972     if (OMD->getBody())
1973       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1974     break;
1975   }
1976   case Decl::ObjCCompatibleAlias:
1977     // compatibility-alias is a directive and has no code gen.
1978     break;
1979 
1980   case Decl::LinkageSpec:
1981     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1982     break;
1983 
1984   case Decl::FileScopeAsm: {
1985     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1986     llvm::StringRef AsmString = AD->getAsmString()->getString();
1987 
1988     const std::string &S = getModule().getModuleInlineAsm();
1989     if (S.empty())
1990       getModule().setModuleInlineAsm(AsmString);
1991     else
1992       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1993     break;
1994   }
1995 
1996   default:
1997     // Make sure we handled everything we should, every other kind is a
1998     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1999     // function. Need to recode Decl::Kind to do that easily.
2000     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2001   }
2002 }
2003 
2004 /// Turns the given pointer into a constant.
2005 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2006                                           const void *Ptr) {
2007   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2008   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2009   return llvm::ConstantInt::get(i64, PtrInt);
2010 }
2011 
2012 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2013                                    llvm::NamedMDNode *&GlobalMetadata,
2014                                    GlobalDecl D,
2015                                    llvm::GlobalValue *Addr) {
2016   if (!GlobalMetadata)
2017     GlobalMetadata =
2018       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2019 
2020   // TODO: should we report variant information for ctors/dtors?
2021   llvm::Value *Ops[] = {
2022     Addr,
2023     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2024   };
2025   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2026 }
2027 
2028 /// Emits metadata nodes associating all the global values in the
2029 /// current module with the Decls they came from.  This is useful for
2030 /// projects using IR gen as a subroutine.
2031 ///
2032 /// Since there's currently no way to associate an MDNode directly
2033 /// with an llvm::GlobalValue, we create a global named metadata
2034 /// with the name 'clang.global.decl.ptrs'.
2035 void CodeGenModule::EmitDeclMetadata() {
2036   llvm::NamedMDNode *GlobalMetadata = 0;
2037 
2038   // StaticLocalDeclMap
2039   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2040          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2041        I != E; ++I) {
2042     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2043     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2044   }
2045 }
2046 
2047 /// Emits metadata nodes for all the local variables in the current
2048 /// function.
2049 void CodeGenFunction::EmitDeclMetadata() {
2050   if (LocalDeclMap.empty()) return;
2051 
2052   llvm::LLVMContext &Context = getLLVMContext();
2053 
2054   // Find the unique metadata ID for this name.
2055   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2056 
2057   llvm::NamedMDNode *GlobalMetadata = 0;
2058 
2059   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2060          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2061     const Decl *D = I->first;
2062     llvm::Value *Addr = I->second;
2063 
2064     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2065       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2066       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2067     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2068       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2069       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2070     }
2071   }
2072 }
2073 
2074 ///@name Custom Runtime Function Interfaces
2075 ///@{
2076 //
2077 // FIXME: These can be eliminated once we can have clients just get the required
2078 // AST nodes from the builtin tables.
2079 
2080 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2081   if (BlockObjectDispose)
2082     return BlockObjectDispose;
2083 
2084   // If we saw an explicit decl, use that.
2085   if (BlockObjectDisposeDecl) {
2086     return BlockObjectDispose = GetAddrOfFunction(
2087       BlockObjectDisposeDecl,
2088       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2089   }
2090 
2091   // Otherwise construct the function by hand.
2092   const llvm::FunctionType *FTy;
2093   std::vector<const llvm::Type*> ArgTys;
2094   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2095   ArgTys.push_back(PtrToInt8Ty);
2096   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2097   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2098   return BlockObjectDispose =
2099     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2100 }
2101 
2102 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2103   if (BlockObjectAssign)
2104     return BlockObjectAssign;
2105 
2106   // If we saw an explicit decl, use that.
2107   if (BlockObjectAssignDecl) {
2108     return BlockObjectAssign = GetAddrOfFunction(
2109       BlockObjectAssignDecl,
2110       getTypes().GetFunctionType(BlockObjectAssignDecl));
2111   }
2112 
2113   // Otherwise construct the function by hand.
2114   const llvm::FunctionType *FTy;
2115   std::vector<const llvm::Type*> ArgTys;
2116   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2117   ArgTys.push_back(PtrToInt8Ty);
2118   ArgTys.push_back(PtrToInt8Ty);
2119   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2120   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2121   return BlockObjectAssign =
2122     CreateRuntimeFunction(FTy, "_Block_object_assign");
2123 }
2124 
2125 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2126   if (NSConcreteGlobalBlock)
2127     return NSConcreteGlobalBlock;
2128 
2129   // If we saw an explicit decl, use that.
2130   if (NSConcreteGlobalBlockDecl) {
2131     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2132       NSConcreteGlobalBlockDecl,
2133       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2134   }
2135 
2136   // Otherwise construct the variable by hand.
2137   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2138     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2139 }
2140 
2141 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2142   if (NSConcreteStackBlock)
2143     return NSConcreteStackBlock;
2144 
2145   // If we saw an explicit decl, use that.
2146   if (NSConcreteStackBlockDecl) {
2147     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2148       NSConcreteStackBlockDecl,
2149       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2150   }
2151 
2152   // Otherwise construct the variable by hand.
2153   return NSConcreteStackBlock = CreateRuntimeVariable(
2154     PtrToInt8Ty, "_NSConcreteStackBlock");
2155 }
2156 
2157 ///@}
2158