xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b26b1cee2e6b0b730fda87dbd4a236810d424129)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/TargetParser/X86TargetParser.h"
73 #include <optional>
74 
75 using namespace clang;
76 using namespace CodeGen;
77 
78 static llvm::cl::opt<bool> LimitedCoverage(
79     "limited-coverage-experimental", llvm::cl::Hidden,
80     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
81 
82 static const char AnnotationSection[] = "llvm.metadata";
83 
84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
85   switch (CGM.getContext().getCXXABIKind()) {
86   case TargetCXXABI::AppleARM64:
87   case TargetCXXABI::Fuchsia:
88   case TargetCXXABI::GenericAArch64:
89   case TargetCXXABI::GenericARM:
90   case TargetCXXABI::iOS:
91   case TargetCXXABI::WatchOS:
92   case TargetCXXABI::GenericMIPS:
93   case TargetCXXABI::GenericItanium:
94   case TargetCXXABI::WebAssembly:
95   case TargetCXXABI::XL:
96     return CreateItaniumCXXABI(CGM);
97   case TargetCXXABI::Microsoft:
98     return CreateMicrosoftCXXABI(CGM);
99   }
100 
101   llvm_unreachable("invalid C++ ABI kind");
102 }
103 
104 static std::unique_ptr<TargetCodeGenInfo>
105 createTargetCodeGenInfo(CodeGenModule &CGM) {
106   const TargetInfo &Target = CGM.getTarget();
107   const llvm::Triple &Triple = Target.getTriple();
108   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
109 
110   switch (Triple.getArch()) {
111   default:
112     return createDefaultTargetCodeGenInfo(CGM);
113 
114   case llvm::Triple::le32:
115     return createPNaClTargetCodeGenInfo(CGM);
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145 
146     return createAArch64TargetCodeGenInfo(CGM, Kind);
147   }
148 
149   case llvm::Triple::wasm32:
150   case llvm::Triple::wasm64: {
151     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
152     if (Target.getABI() == "experimental-mv")
153       Kind = WebAssemblyABIKind::ExperimentalMV;
154     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
155   }
156 
157   case llvm::Triple::arm:
158   case llvm::Triple::armeb:
159   case llvm::Triple::thumb:
160   case llvm::Triple::thumbeb: {
161     if (Triple.getOS() == llvm::Triple::Win32)
162       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
163 
164     ARMABIKind Kind = ARMABIKind::AAPCS;
165     StringRef ABIStr = Target.getABI();
166     if (ABIStr == "apcs-gnu")
167       Kind = ARMABIKind::APCS;
168     else if (ABIStr == "aapcs16")
169       Kind = ARMABIKind::AAPCS16_VFP;
170     else if (CodeGenOpts.FloatABI == "hard" ||
171              (CodeGenOpts.FloatABI != "soft" &&
172               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
173                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
174                Triple.getEnvironment() == llvm::Triple::EABIHF)))
175       Kind = ARMABIKind::AAPCS_VFP;
176 
177     return createARMTargetCodeGenInfo(CGM, Kind);
178   }
179 
180   case llvm::Triple::ppc: {
181     if (Triple.isOSAIX())
182       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
183 
184     bool IsSoftFloat =
185         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
186     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
187   }
188   case llvm::Triple::ppcle: {
189     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
190     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
191   }
192   case llvm::Triple::ppc64:
193     if (Triple.isOSAIX())
194       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
195 
196     if (Triple.isOSBinFormatELF()) {
197       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
198       if (Target.getABI() == "elfv2")
199         Kind = PPC64_SVR4_ABIKind::ELFv2;
200       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
201 
202       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
203     }
204     return createPPC64TargetCodeGenInfo(CGM);
205   case llvm::Triple::ppc64le: {
206     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
207     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
208     if (Target.getABI() == "elfv1")
209       Kind = PPC64_SVR4_ABIKind::ELFv1;
210     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
211 
212     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
213   }
214 
215   case llvm::Triple::nvptx:
216   case llvm::Triple::nvptx64:
217     return createNVPTXTargetCodeGenInfo(CGM);
218 
219   case llvm::Triple::msp430:
220     return createMSP430TargetCodeGenInfo(CGM);
221 
222   case llvm::Triple::riscv32:
223   case llvm::Triple::riscv64: {
224     StringRef ABIStr = Target.getABI();
225     unsigned XLen = Target.getPointerWidth(LangAS::Default);
226     unsigned ABIFLen = 0;
227     if (ABIStr.endswith("f"))
228       ABIFLen = 32;
229     else if (ABIStr.endswith("d"))
230       ABIFLen = 64;
231     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
232   }
233 
234   case llvm::Triple::systemz: {
235     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
236     bool HasVector = !SoftFloat && Target.getABI() == "vector";
237     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
238   }
239 
240   case llvm::Triple::tce:
241   case llvm::Triple::tcele:
242     return createTCETargetCodeGenInfo(CGM);
243 
244   case llvm::Triple::x86: {
245     bool IsDarwinVectorABI = Triple.isOSDarwin();
246     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
247 
248     if (Triple.getOS() == llvm::Triple::Win32) {
249       return createWinX86_32TargetCodeGenInfo(
250           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
251           CodeGenOpts.NumRegisterParameters);
252     }
253     return createX86_32TargetCodeGenInfo(
254         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
255         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
256   }
257 
258   case llvm::Triple::x86_64: {
259     StringRef ABI = Target.getABI();
260     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
261                                : ABI == "avx"  ? X86AVXABILevel::AVX
262                                                : X86AVXABILevel::None);
263 
264     switch (Triple.getOS()) {
265     case llvm::Triple::Win32:
266       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
267     default:
268       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     }
270   }
271   case llvm::Triple::hexagon:
272     return createHexagonTargetCodeGenInfo(CGM);
273   case llvm::Triple::lanai:
274     return createLanaiTargetCodeGenInfo(CGM);
275   case llvm::Triple::r600:
276     return createAMDGPUTargetCodeGenInfo(CGM);
277   case llvm::Triple::amdgcn:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::sparc:
280     return createSparcV8TargetCodeGenInfo(CGM);
281   case llvm::Triple::sparcv9:
282     return createSparcV9TargetCodeGenInfo(CGM);
283   case llvm::Triple::xcore:
284     return createXCoreTargetCodeGenInfo(CGM);
285   case llvm::Triple::arc:
286     return createARCTargetCodeGenInfo(CGM);
287   case llvm::Triple::spir:
288   case llvm::Triple::spir64:
289     return createCommonSPIRTargetCodeGenInfo(CGM);
290   case llvm::Triple::spirv32:
291   case llvm::Triple::spirv64:
292     return createSPIRVTargetCodeGenInfo(CGM);
293   case llvm::Triple::ve:
294     return createVETargetCodeGenInfo(CGM);
295   case llvm::Triple::csky: {
296     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
297     bool hasFP64 =
298         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
299     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
300                                             : hasFP64   ? 64
301                                                         : 32);
302   }
303   case llvm::Triple::bpfeb:
304   case llvm::Triple::bpfel:
305     return createBPFTargetCodeGenInfo(CGM);
306   case llvm::Triple::loongarch32:
307   case llvm::Triple::loongarch64: {
308     StringRef ABIStr = Target.getABI();
309     unsigned ABIFRLen = 0;
310     if (ABIStr.endswith("f"))
311       ABIFRLen = 32;
312     else if (ABIStr.endswith("d"))
313       ABIFRLen = 64;
314     return createLoongArchTargetCodeGenInfo(
315         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
316   }
317   }
318 }
319 
320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
321   if (!TheTargetCodeGenInfo)
322     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
323   return *TheTargetCodeGenInfo;
324 }
325 
326 CodeGenModule::CodeGenModule(ASTContext &C,
327                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
328                              const HeaderSearchOptions &HSO,
329                              const PreprocessorOptions &PPO,
330                              const CodeGenOptions &CGO, llvm::Module &M,
331                              DiagnosticsEngine &diags,
332                              CoverageSourceInfo *CoverageInfo)
333     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
334       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
335       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
336       VMContext(M.getContext()), Types(*this), VTables(*this),
337       SanitizerMD(new SanitizerMetadata(*this)) {
338 
339   // Initialize the type cache.
340   llvm::LLVMContext &LLVMContext = M.getContext();
341   VoidTy = llvm::Type::getVoidTy(LLVMContext);
342   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
343   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
344   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
345   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
346   HalfTy = llvm::Type::getHalfTy(LLVMContext);
347   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
348   FloatTy = llvm::Type::getFloatTy(LLVMContext);
349   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
350   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
351   PointerAlignInBytes =
352       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
353           .getQuantity();
354   SizeSizeInBytes =
355     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
356   IntAlignInBytes =
357     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
358   CharTy =
359     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
360   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
361   IntPtrTy = llvm::IntegerType::get(LLVMContext,
362     C.getTargetInfo().getMaxPointerWidth());
363   Int8PtrTy = llvm::PointerType::get(LLVMContext, 0);
364   const llvm::DataLayout &DL = M.getDataLayout();
365   AllocaInt8PtrTy =
366       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
367   GlobalsInt8PtrTy =
368       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
369   ConstGlobalsPtrTy = llvm::PointerType::get(
370       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
371   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
372 
373   // Build C++20 Module initializers.
374   // TODO: Add Microsoft here once we know the mangling required for the
375   // initializers.
376   CXX20ModuleInits =
377       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
378                                        ItaniumMangleContext::MK_Itanium;
379 
380   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
381 
382   if (LangOpts.ObjC)
383     createObjCRuntime();
384   if (LangOpts.OpenCL)
385     createOpenCLRuntime();
386   if (LangOpts.OpenMP)
387     createOpenMPRuntime();
388   if (LangOpts.CUDA)
389     createCUDARuntime();
390   if (LangOpts.HLSL)
391     createHLSLRuntime();
392 
393   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
394   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
395       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
396     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
397                                getCXXABI().getMangleContext()));
398 
399   // If debug info or coverage generation is enabled, create the CGDebugInfo
400   // object.
401   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
402       CodeGenOpts.CoverageNotesFile.size() ||
403       CodeGenOpts.CoverageDataFile.size())
404     DebugInfo.reset(new CGDebugInfo(*this));
405 
406   Block.GlobalUniqueCount = 0;
407 
408   if (C.getLangOpts().ObjC)
409     ObjCData.reset(new ObjCEntrypoints());
410 
411   if (CodeGenOpts.hasProfileClangUse()) {
412     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
413         CodeGenOpts.ProfileInstrumentUsePath, *FS,
414         CodeGenOpts.ProfileRemappingFile);
415     // We're checking for profile read errors in CompilerInvocation, so if
416     // there was an error it should've already been caught. If it hasn't been
417     // somehow, trip an assertion.
418     assert(ReaderOrErr);
419     PGOReader = std::move(ReaderOrErr.get());
420   }
421 
422   // If coverage mapping generation is enabled, create the
423   // CoverageMappingModuleGen object.
424   if (CodeGenOpts.CoverageMapping)
425     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
426 
427   // Generate the module name hash here if needed.
428   if (CodeGenOpts.UniqueInternalLinkageNames &&
429       !getModule().getSourceFileName().empty()) {
430     std::string Path = getModule().getSourceFileName();
431     // Check if a path substitution is needed from the MacroPrefixMap.
432     for (const auto &Entry : LangOpts.MacroPrefixMap)
433       if (Path.rfind(Entry.first, 0) != std::string::npos) {
434         Path = Entry.second + Path.substr(Entry.first.size());
435         break;
436       }
437     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
438   }
439 }
440 
441 CodeGenModule::~CodeGenModule() {}
442 
443 void CodeGenModule::createObjCRuntime() {
444   // This is just isGNUFamily(), but we want to force implementors of
445   // new ABIs to decide how best to do this.
446   switch (LangOpts.ObjCRuntime.getKind()) {
447   case ObjCRuntime::GNUstep:
448   case ObjCRuntime::GCC:
449   case ObjCRuntime::ObjFW:
450     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
451     return;
452 
453   case ObjCRuntime::FragileMacOSX:
454   case ObjCRuntime::MacOSX:
455   case ObjCRuntime::iOS:
456   case ObjCRuntime::WatchOS:
457     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
458     return;
459   }
460   llvm_unreachable("bad runtime kind");
461 }
462 
463 void CodeGenModule::createOpenCLRuntime() {
464   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
465 }
466 
467 void CodeGenModule::createOpenMPRuntime() {
468   // Select a specialized code generation class based on the target, if any.
469   // If it does not exist use the default implementation.
470   switch (getTriple().getArch()) {
471   case llvm::Triple::nvptx:
472   case llvm::Triple::nvptx64:
473   case llvm::Triple::amdgcn:
474     assert(getLangOpts().OpenMPIsTargetDevice &&
475            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
476     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
477     break;
478   default:
479     if (LangOpts.OpenMPSimd)
480       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
481     else
482       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
483     break;
484   }
485 }
486 
487 void CodeGenModule::createCUDARuntime() {
488   CUDARuntime.reset(CreateNVCUDARuntime(*this));
489 }
490 
491 void CodeGenModule::createHLSLRuntime() {
492   HLSLRuntime.reset(new CGHLSLRuntime(*this));
493 }
494 
495 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
496   Replacements[Name] = C;
497 }
498 
499 void CodeGenModule::applyReplacements() {
500   for (auto &I : Replacements) {
501     StringRef MangledName = I.first;
502     llvm::Constant *Replacement = I.second;
503     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
504     if (!Entry)
505       continue;
506     auto *OldF = cast<llvm::Function>(Entry);
507     auto *NewF = dyn_cast<llvm::Function>(Replacement);
508     if (!NewF) {
509       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
510         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
511       } else {
512         auto *CE = cast<llvm::ConstantExpr>(Replacement);
513         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
514                CE->getOpcode() == llvm::Instruction::GetElementPtr);
515         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
516       }
517     }
518 
519     // Replace old with new, but keep the old order.
520     OldF->replaceAllUsesWith(Replacement);
521     if (NewF) {
522       NewF->removeFromParent();
523       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
524                                                        NewF);
525     }
526     OldF->eraseFromParent();
527   }
528 }
529 
530 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
531   GlobalValReplacements.push_back(std::make_pair(GV, C));
532 }
533 
534 void CodeGenModule::applyGlobalValReplacements() {
535   for (auto &I : GlobalValReplacements) {
536     llvm::GlobalValue *GV = I.first;
537     llvm::Constant *C = I.second;
538 
539     GV->replaceAllUsesWith(C);
540     GV->eraseFromParent();
541   }
542 }
543 
544 // This is only used in aliases that we created and we know they have a
545 // linear structure.
546 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
547   const llvm::Constant *C;
548   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
549     C = GA->getAliasee();
550   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
551     C = GI->getResolver();
552   else
553     return GV;
554 
555   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
556   if (!AliaseeGV)
557     return nullptr;
558 
559   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
560   if (FinalGV == GV)
561     return nullptr;
562 
563   return FinalGV;
564 }
565 
566 static bool checkAliasedGlobal(
567     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
568     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
569     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
570     SourceRange AliasRange) {
571   GV = getAliasedGlobal(Alias);
572   if (!GV) {
573     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
574     return false;
575   }
576 
577   if (GV->hasCommonLinkage()) {
578     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
579     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
580       Diags.Report(Location, diag::err_alias_to_common);
581       return false;
582     }
583   }
584 
585   if (GV->isDeclaration()) {
586     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
587     Diags.Report(Location, diag::note_alias_requires_mangled_name)
588         << IsIFunc << IsIFunc;
589     // Provide a note if the given function is not found and exists as a
590     // mangled name.
591     for (const auto &[Decl, Name] : MangledDeclNames) {
592       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
593         if (ND->getName() == GV->getName()) {
594           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
595               << Name
596               << FixItHint::CreateReplacement(
597                      AliasRange,
598                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
599                          .str());
600         }
601       }
602     }
603     return false;
604   }
605 
606   if (IsIFunc) {
607     // Check resolver function type.
608     const auto *F = dyn_cast<llvm::Function>(GV);
609     if (!F) {
610       Diags.Report(Location, diag::err_alias_to_undefined)
611           << IsIFunc << IsIFunc;
612       return false;
613     }
614 
615     llvm::FunctionType *FTy = F->getFunctionType();
616     if (!FTy->getReturnType()->isPointerTy()) {
617       Diags.Report(Location, diag::err_ifunc_resolver_return);
618       return false;
619     }
620   }
621 
622   return true;
623 }
624 
625 void CodeGenModule::checkAliases() {
626   // Check if the constructed aliases are well formed. It is really unfortunate
627   // that we have to do this in CodeGen, but we only construct mangled names
628   // and aliases during codegen.
629   bool Error = false;
630   DiagnosticsEngine &Diags = getDiags();
631   for (const GlobalDecl &GD : Aliases) {
632     const auto *D = cast<ValueDecl>(GD.getDecl());
633     SourceLocation Location;
634     SourceRange Range;
635     bool IsIFunc = D->hasAttr<IFuncAttr>();
636     if (const Attr *A = D->getDefiningAttr()) {
637       Location = A->getLocation();
638       Range = A->getRange();
639     } else
640       llvm_unreachable("Not an alias or ifunc?");
641 
642     StringRef MangledName = getMangledName(GD);
643     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
644     const llvm::GlobalValue *GV = nullptr;
645     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
646                             MangledDeclNames, Range)) {
647       Error = true;
648       continue;
649     }
650 
651     llvm::Constant *Aliasee =
652         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
653                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
654 
655     llvm::GlobalValue *AliaseeGV;
656     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
657       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
658     else
659       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
660 
661     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
662       StringRef AliasSection = SA->getName();
663       if (AliasSection != AliaseeGV->getSection())
664         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
665             << AliasSection << IsIFunc << IsIFunc;
666     }
667 
668     // We have to handle alias to weak aliases in here. LLVM itself disallows
669     // this since the object semantics would not match the IL one. For
670     // compatibility with gcc we implement it by just pointing the alias
671     // to its aliasee's aliasee. We also warn, since the user is probably
672     // expecting the link to be weak.
673     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
674       if (GA->isInterposable()) {
675         Diags.Report(Location, diag::warn_alias_to_weak_alias)
676             << GV->getName() << GA->getName() << IsIFunc;
677         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
678             GA->getAliasee(), Alias->getType());
679 
680         if (IsIFunc)
681           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
682         else
683           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
684       }
685     }
686   }
687   if (!Error)
688     return;
689 
690   for (const GlobalDecl &GD : Aliases) {
691     StringRef MangledName = getMangledName(GD);
692     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
693     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
694     Alias->eraseFromParent();
695   }
696 }
697 
698 void CodeGenModule::clear() {
699   DeferredDeclsToEmit.clear();
700   EmittedDeferredDecls.clear();
701   if (OpenMPRuntime)
702     OpenMPRuntime->clear();
703 }
704 
705 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
706                                        StringRef MainFile) {
707   if (!hasDiagnostics())
708     return;
709   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
710     if (MainFile.empty())
711       MainFile = "<stdin>";
712     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
713   } else {
714     if (Mismatched > 0)
715       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
716 
717     if (Missing > 0)
718       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
719   }
720 }
721 
722 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
723                                              llvm::Module &M) {
724   if (!LO.VisibilityFromDLLStorageClass)
725     return;
726 
727   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
728       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
729   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
730       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
731   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
732       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
733   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
734       CodeGenModule::GetLLVMVisibility(
735           LO.getExternDeclNoDLLStorageClassVisibility());
736 
737   for (llvm::GlobalValue &GV : M.global_values()) {
738     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
739       continue;
740 
741     // Reset DSO locality before setting the visibility. This removes
742     // any effects that visibility options and annotations may have
743     // had on the DSO locality. Setting the visibility will implicitly set
744     // appropriate globals to DSO Local; however, this will be pessimistic
745     // w.r.t. to the normal compiler IRGen.
746     GV.setDSOLocal(false);
747 
748     if (GV.isDeclarationForLinker()) {
749       GV.setVisibility(GV.getDLLStorageClass() ==
750                                llvm::GlobalValue::DLLImportStorageClass
751                            ? ExternDeclDLLImportVisibility
752                            : ExternDeclNoDLLStorageClassVisibility);
753     } else {
754       GV.setVisibility(GV.getDLLStorageClass() ==
755                                llvm::GlobalValue::DLLExportStorageClass
756                            ? DLLExportVisibility
757                            : NoDLLStorageClassVisibility);
758     }
759 
760     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
761   }
762 }
763 
764 static bool isStackProtectorOn(const LangOptions &LangOpts,
765                                const llvm::Triple &Triple,
766                                clang::LangOptions::StackProtectorMode Mode) {
767   if (Triple.isAMDGPU() || Triple.isNVPTX())
768     return false;
769   return LangOpts.getStackProtector() == Mode;
770 }
771 
772 void CodeGenModule::Release() {
773   Module *Primary = getContext().getCurrentNamedModule();
774   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
775     EmitModuleInitializers(Primary);
776   EmitDeferred();
777   DeferredDecls.insert(EmittedDeferredDecls.begin(),
778                        EmittedDeferredDecls.end());
779   EmittedDeferredDecls.clear();
780   EmitVTablesOpportunistically();
781   applyGlobalValReplacements();
782   applyReplacements();
783   emitMultiVersionFunctions();
784 
785   if (Context.getLangOpts().IncrementalExtensions &&
786       GlobalTopLevelStmtBlockInFlight.first) {
787     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
788     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
789     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
790   }
791 
792   // Module implementations are initialized the same way as a regular TU that
793   // imports one or more modules.
794   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
795     EmitCXXModuleInitFunc(Primary);
796   else
797     EmitCXXGlobalInitFunc();
798   EmitCXXGlobalCleanUpFunc();
799   registerGlobalDtorsWithAtExit();
800   EmitCXXThreadLocalInitFunc();
801   if (ObjCRuntime)
802     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
803       AddGlobalCtor(ObjCInitFunction);
804   if (Context.getLangOpts().CUDA && CUDARuntime) {
805     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
806       AddGlobalCtor(CudaCtorFunction);
807   }
808   if (OpenMPRuntime) {
809     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
810             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
811       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
812     }
813     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
814     OpenMPRuntime->clear();
815   }
816   if (PGOReader) {
817     getModule().setProfileSummary(
818         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
819         llvm::ProfileSummary::PSK_Instr);
820     if (PGOStats.hasDiagnostics())
821       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
822   }
823   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
824     return L.LexOrder < R.LexOrder;
825   });
826   EmitCtorList(GlobalCtors, "llvm.global_ctors");
827   EmitCtorList(GlobalDtors, "llvm.global_dtors");
828   EmitGlobalAnnotations();
829   EmitStaticExternCAliases();
830   checkAliases();
831   EmitDeferredUnusedCoverageMappings();
832   CodeGenPGO(*this).setValueProfilingFlag(getModule());
833   if (CoverageMapping)
834     CoverageMapping->emit();
835   if (CodeGenOpts.SanitizeCfiCrossDso) {
836     CodeGenFunction(*this).EmitCfiCheckFail();
837     CodeGenFunction(*this).EmitCfiCheckStub();
838   }
839   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
840     finalizeKCFITypes();
841   emitAtAvailableLinkGuard();
842   if (Context.getTargetInfo().getTriple().isWasm())
843     EmitMainVoidAlias();
844 
845   if (getTriple().isAMDGPU()) {
846     // Emit amdgpu_code_object_version module flag, which is code object version
847     // times 100.
848     if (getTarget().getTargetOpts().CodeObjectVersion !=
849         TargetOptions::COV_None) {
850       getModule().addModuleFlag(llvm::Module::Error,
851                                 "amdgpu_code_object_version",
852                                 getTarget().getTargetOpts().CodeObjectVersion);
853     }
854 
855     // Currently, "-mprintf-kind" option is only supported for HIP
856     if (LangOpts.HIP) {
857       auto *MDStr = llvm::MDString::get(
858           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
859                              TargetOptions::AMDGPUPrintfKind::Hostcall)
860                                 ? "hostcall"
861                                 : "buffered");
862       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
863                                 MDStr);
864     }
865   }
866 
867   // Emit a global array containing all external kernels or device variables
868   // used by host functions and mark it as used for CUDA/HIP. This is necessary
869   // to get kernels or device variables in archives linked in even if these
870   // kernels or device variables are only used in host functions.
871   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
872     SmallVector<llvm::Constant *, 8> UsedArray;
873     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
874       GlobalDecl GD;
875       if (auto *FD = dyn_cast<FunctionDecl>(D))
876         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
877       else
878         GD = GlobalDecl(D);
879       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
880           GetAddrOfGlobal(GD), Int8PtrTy));
881     }
882 
883     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
884 
885     auto *GV = new llvm::GlobalVariable(
886         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
887         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
888     addCompilerUsedGlobal(GV);
889   }
890 
891   emitLLVMUsed();
892   if (SanStats)
893     SanStats->finish();
894 
895   if (CodeGenOpts.Autolink &&
896       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
897     EmitModuleLinkOptions();
898   }
899 
900   // On ELF we pass the dependent library specifiers directly to the linker
901   // without manipulating them. This is in contrast to other platforms where
902   // they are mapped to a specific linker option by the compiler. This
903   // difference is a result of the greater variety of ELF linkers and the fact
904   // that ELF linkers tend to handle libraries in a more complicated fashion
905   // than on other platforms. This forces us to defer handling the dependent
906   // libs to the linker.
907   //
908   // CUDA/HIP device and host libraries are different. Currently there is no
909   // way to differentiate dependent libraries for host or device. Existing
910   // usage of #pragma comment(lib, *) is intended for host libraries on
911   // Windows. Therefore emit llvm.dependent-libraries only for host.
912   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
913     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
914     for (auto *MD : ELFDependentLibraries)
915       NMD->addOperand(MD);
916   }
917 
918   // Record mregparm value now so it is visible through rest of codegen.
919   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
920     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
921                               CodeGenOpts.NumRegisterParameters);
922 
923   if (CodeGenOpts.DwarfVersion) {
924     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
925                               CodeGenOpts.DwarfVersion);
926   }
927 
928   if (CodeGenOpts.Dwarf64)
929     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
930 
931   if (Context.getLangOpts().SemanticInterposition)
932     // Require various optimization to respect semantic interposition.
933     getModule().setSemanticInterposition(true);
934 
935   if (CodeGenOpts.EmitCodeView) {
936     // Indicate that we want CodeView in the metadata.
937     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
938   }
939   if (CodeGenOpts.CodeViewGHash) {
940     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
941   }
942   if (CodeGenOpts.ControlFlowGuard) {
943     // Function ID tables and checks for Control Flow Guard (cfguard=2).
944     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
945   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
946     // Function ID tables for Control Flow Guard (cfguard=1).
947     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
948   }
949   if (CodeGenOpts.EHContGuard) {
950     // Function ID tables for EH Continuation Guard.
951     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
952   }
953   if (Context.getLangOpts().Kernel) {
954     // Note if we are compiling with /kernel.
955     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
956   }
957   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
958     // We don't support LTO with 2 with different StrictVTablePointers
959     // FIXME: we could support it by stripping all the information introduced
960     // by StrictVTablePointers.
961 
962     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
963 
964     llvm::Metadata *Ops[2] = {
965               llvm::MDString::get(VMContext, "StrictVTablePointers"),
966               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
967                   llvm::Type::getInt32Ty(VMContext), 1))};
968 
969     getModule().addModuleFlag(llvm::Module::Require,
970                               "StrictVTablePointersRequirement",
971                               llvm::MDNode::get(VMContext, Ops));
972   }
973   if (getModuleDebugInfo())
974     // We support a single version in the linked module. The LLVM
975     // parser will drop debug info with a different version number
976     // (and warn about it, too).
977     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
978                               llvm::DEBUG_METADATA_VERSION);
979 
980   // We need to record the widths of enums and wchar_t, so that we can generate
981   // the correct build attributes in the ARM backend. wchar_size is also used by
982   // TargetLibraryInfo.
983   uint64_t WCharWidth =
984       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
985   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
986 
987   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
988   if (   Arch == llvm::Triple::arm
989       || Arch == llvm::Triple::armeb
990       || Arch == llvm::Triple::thumb
991       || Arch == llvm::Triple::thumbeb) {
992     // The minimum width of an enum in bytes
993     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
994     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
995   }
996 
997   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
998     StringRef ABIStr = Target.getABI();
999     llvm::LLVMContext &Ctx = TheModule.getContext();
1000     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1001                               llvm::MDString::get(Ctx, ABIStr));
1002   }
1003 
1004   if (CodeGenOpts.SanitizeCfiCrossDso) {
1005     // Indicate that we want cross-DSO control flow integrity checks.
1006     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1007   }
1008 
1009   if (CodeGenOpts.WholeProgramVTables) {
1010     // Indicate whether VFE was enabled for this module, so that the
1011     // vcall_visibility metadata added under whole program vtables is handled
1012     // appropriately in the optimizer.
1013     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1014                               CodeGenOpts.VirtualFunctionElimination);
1015   }
1016 
1017   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1018     getModule().addModuleFlag(llvm::Module::Override,
1019                               "CFI Canonical Jump Tables",
1020                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1021   }
1022 
1023   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1024     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1025     // KCFI assumes patchable-function-prefix is the same for all indirectly
1026     // called functions. Store the expected offset for code generation.
1027     if (CodeGenOpts.PatchableFunctionEntryOffset)
1028       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1029                                 CodeGenOpts.PatchableFunctionEntryOffset);
1030   }
1031 
1032   if (CodeGenOpts.CFProtectionReturn &&
1033       Target.checkCFProtectionReturnSupported(getDiags())) {
1034     // Indicate that we want to instrument return control flow protection.
1035     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1036                               1);
1037   }
1038 
1039   if (CodeGenOpts.CFProtectionBranch &&
1040       Target.checkCFProtectionBranchSupported(getDiags())) {
1041     // Indicate that we want to instrument branch control flow protection.
1042     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1043                               1);
1044   }
1045 
1046   if (CodeGenOpts.FunctionReturnThunks)
1047     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1048 
1049   if (CodeGenOpts.IndirectBranchCSPrefix)
1050     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1051 
1052   // Add module metadata for return address signing (ignoring
1053   // non-leaf/all) and stack tagging. These are actually turned on by function
1054   // attributes, but we use module metadata to emit build attributes. This is
1055   // needed for LTO, where the function attributes are inside bitcode
1056   // serialised into a global variable by the time build attributes are
1057   // emitted, so we can't access them. LTO objects could be compiled with
1058   // different flags therefore module flags are set to "Min" behavior to achieve
1059   // the same end result of the normal build where e.g BTI is off if any object
1060   // doesn't support it.
1061   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1062       LangOpts.getSignReturnAddressScope() !=
1063           LangOptions::SignReturnAddressScopeKind::None)
1064     getModule().addModuleFlag(llvm::Module::Override,
1065                               "sign-return-address-buildattr", 1);
1066   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1067     getModule().addModuleFlag(llvm::Module::Override,
1068                               "tag-stack-memory-buildattr", 1);
1069 
1070   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
1071       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
1072       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
1073       Arch == llvm::Triple::aarch64_be) {
1074     if (LangOpts.BranchTargetEnforcement)
1075       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1076                                 1);
1077     if (LangOpts.hasSignReturnAddress())
1078       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1079     if (LangOpts.isSignReturnAddressScopeAll())
1080       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1081                                 1);
1082     if (!LangOpts.isSignReturnAddressWithAKey())
1083       getModule().addModuleFlag(llvm::Module::Min,
1084                                 "sign-return-address-with-bkey", 1);
1085   }
1086 
1087   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1088     llvm::LLVMContext &Ctx = TheModule.getContext();
1089     getModule().addModuleFlag(
1090         llvm::Module::Error, "MemProfProfileFilename",
1091         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1092   }
1093 
1094   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1095     // Indicate whether __nvvm_reflect should be configured to flush denormal
1096     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1097     // property.)
1098     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1099                               CodeGenOpts.FP32DenormalMode.Output !=
1100                                   llvm::DenormalMode::IEEE);
1101   }
1102 
1103   if (LangOpts.EHAsynch)
1104     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1105 
1106   // Indicate whether this Module was compiled with -fopenmp
1107   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1108     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1109   if (getLangOpts().OpenMPIsTargetDevice)
1110     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1111                               LangOpts.OpenMP);
1112 
1113   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1114   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1115     EmitOpenCLMetadata();
1116     // Emit SPIR version.
1117     if (getTriple().isSPIR()) {
1118       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1119       // opencl.spir.version named metadata.
1120       // C++ for OpenCL has a distinct mapping for version compatibility with
1121       // OpenCL.
1122       auto Version = LangOpts.getOpenCLCompatibleVersion();
1123       llvm::Metadata *SPIRVerElts[] = {
1124           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1125               Int32Ty, Version / 100)),
1126           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1127               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1128       llvm::NamedMDNode *SPIRVerMD =
1129           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1130       llvm::LLVMContext &Ctx = TheModule.getContext();
1131       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1132     }
1133   }
1134 
1135   // HLSL related end of code gen work items.
1136   if (LangOpts.HLSL)
1137     getHLSLRuntime().finishCodeGen();
1138 
1139   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1140     assert(PLevel < 3 && "Invalid PIC Level");
1141     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1142     if (Context.getLangOpts().PIE)
1143       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1144   }
1145 
1146   if (getCodeGenOpts().CodeModel.size() > 0) {
1147     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1148                   .Case("tiny", llvm::CodeModel::Tiny)
1149                   .Case("small", llvm::CodeModel::Small)
1150                   .Case("kernel", llvm::CodeModel::Kernel)
1151                   .Case("medium", llvm::CodeModel::Medium)
1152                   .Case("large", llvm::CodeModel::Large)
1153                   .Default(~0u);
1154     if (CM != ~0u) {
1155       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1156       getModule().setCodeModel(codeModel);
1157 
1158       if (CM == llvm::CodeModel::Medium &&
1159           Context.getTargetInfo().getTriple().getArch() ==
1160               llvm::Triple::x86_64) {
1161         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1162       }
1163     }
1164   }
1165 
1166   if (CodeGenOpts.NoPLT)
1167     getModule().setRtLibUseGOT();
1168   if (getTriple().isOSBinFormatELF() &&
1169       CodeGenOpts.DirectAccessExternalData !=
1170           getModule().getDirectAccessExternalData()) {
1171     getModule().setDirectAccessExternalData(
1172         CodeGenOpts.DirectAccessExternalData);
1173   }
1174   if (CodeGenOpts.UnwindTables)
1175     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1176 
1177   switch (CodeGenOpts.getFramePointer()) {
1178   case CodeGenOptions::FramePointerKind::None:
1179     // 0 ("none") is the default.
1180     break;
1181   case CodeGenOptions::FramePointerKind::NonLeaf:
1182     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1183     break;
1184   case CodeGenOptions::FramePointerKind::All:
1185     getModule().setFramePointer(llvm::FramePointerKind::All);
1186     break;
1187   }
1188 
1189   SimplifyPersonality();
1190 
1191   if (getCodeGenOpts().EmitDeclMetadata)
1192     EmitDeclMetadata();
1193 
1194   if (getCodeGenOpts().CoverageNotesFile.size() ||
1195       getCodeGenOpts().CoverageDataFile.size())
1196     EmitCoverageFile();
1197 
1198   if (CGDebugInfo *DI = getModuleDebugInfo())
1199     DI->finalize();
1200 
1201   if (getCodeGenOpts().EmitVersionIdentMetadata)
1202     EmitVersionIdentMetadata();
1203 
1204   if (!getCodeGenOpts().RecordCommandLine.empty())
1205     EmitCommandLineMetadata();
1206 
1207   if (!getCodeGenOpts().StackProtectorGuard.empty())
1208     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1209   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1210     getModule().setStackProtectorGuardReg(
1211         getCodeGenOpts().StackProtectorGuardReg);
1212   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1213     getModule().setStackProtectorGuardSymbol(
1214         getCodeGenOpts().StackProtectorGuardSymbol);
1215   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1216     getModule().setStackProtectorGuardOffset(
1217         getCodeGenOpts().StackProtectorGuardOffset);
1218   if (getCodeGenOpts().StackAlignment)
1219     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1220   if (getCodeGenOpts().SkipRaxSetup)
1221     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1222   if (getLangOpts().RegCall4)
1223     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1224 
1225   if (getContext().getTargetInfo().getMaxTLSAlign())
1226     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1227                               getContext().getTargetInfo().getMaxTLSAlign());
1228 
1229   getTargetCodeGenInfo().emitTargetGlobals(*this);
1230 
1231   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1232 
1233   EmitBackendOptionsMetadata(getCodeGenOpts());
1234 
1235   // If there is device offloading code embed it in the host now.
1236   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1237 
1238   // Set visibility from DLL storage class
1239   // We do this at the end of LLVM IR generation; after any operation
1240   // that might affect the DLL storage class or the visibility, and
1241   // before anything that might act on these.
1242   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1243 }
1244 
1245 void CodeGenModule::EmitOpenCLMetadata() {
1246   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1247   // opencl.ocl.version named metadata node.
1248   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1249   auto Version = LangOpts.getOpenCLCompatibleVersion();
1250   llvm::Metadata *OCLVerElts[] = {
1251       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1252           Int32Ty, Version / 100)),
1253       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1254           Int32Ty, (Version % 100) / 10))};
1255   llvm::NamedMDNode *OCLVerMD =
1256       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1257   llvm::LLVMContext &Ctx = TheModule.getContext();
1258   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1259 }
1260 
1261 void CodeGenModule::EmitBackendOptionsMetadata(
1262     const CodeGenOptions &CodeGenOpts) {
1263   if (getTriple().isRISCV()) {
1264     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1265                               CodeGenOpts.SmallDataLimit);
1266   }
1267 }
1268 
1269 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1270   // Make sure that this type is translated.
1271   Types.UpdateCompletedType(TD);
1272 }
1273 
1274 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1275   // Make sure that this type is translated.
1276   Types.RefreshTypeCacheForClass(RD);
1277 }
1278 
1279 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1280   if (!TBAA)
1281     return nullptr;
1282   return TBAA->getTypeInfo(QTy);
1283 }
1284 
1285 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1286   if (!TBAA)
1287     return TBAAAccessInfo();
1288   if (getLangOpts().CUDAIsDevice) {
1289     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1290     // access info.
1291     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1292       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1293           nullptr)
1294         return TBAAAccessInfo();
1295     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1296       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1297           nullptr)
1298         return TBAAAccessInfo();
1299     }
1300   }
1301   return TBAA->getAccessInfo(AccessType);
1302 }
1303 
1304 TBAAAccessInfo
1305 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1306   if (!TBAA)
1307     return TBAAAccessInfo();
1308   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1309 }
1310 
1311 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1312   if (!TBAA)
1313     return nullptr;
1314   return TBAA->getTBAAStructInfo(QTy);
1315 }
1316 
1317 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1318   if (!TBAA)
1319     return nullptr;
1320   return TBAA->getBaseTypeInfo(QTy);
1321 }
1322 
1323 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1324   if (!TBAA)
1325     return nullptr;
1326   return TBAA->getAccessTagInfo(Info);
1327 }
1328 
1329 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1330                                                    TBAAAccessInfo TargetInfo) {
1331   if (!TBAA)
1332     return TBAAAccessInfo();
1333   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1334 }
1335 
1336 TBAAAccessInfo
1337 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1338                                                    TBAAAccessInfo InfoB) {
1339   if (!TBAA)
1340     return TBAAAccessInfo();
1341   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1342 }
1343 
1344 TBAAAccessInfo
1345 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1346                                               TBAAAccessInfo SrcInfo) {
1347   if (!TBAA)
1348     return TBAAAccessInfo();
1349   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1350 }
1351 
1352 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1353                                                 TBAAAccessInfo TBAAInfo) {
1354   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1355     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1356 }
1357 
1358 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1359     llvm::Instruction *I, const CXXRecordDecl *RD) {
1360   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1361                  llvm::MDNode::get(getLLVMContext(), {}));
1362 }
1363 
1364 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1365   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1366   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1367 }
1368 
1369 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1370 /// specified stmt yet.
1371 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1372   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1373                                                "cannot compile this %0 yet");
1374   std::string Msg = Type;
1375   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1376       << Msg << S->getSourceRange();
1377 }
1378 
1379 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1380 /// specified decl yet.
1381 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1382   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1383                                                "cannot compile this %0 yet");
1384   std::string Msg = Type;
1385   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1386 }
1387 
1388 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1389   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1390 }
1391 
1392 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1393                                         const NamedDecl *D) const {
1394   // Internal definitions always have default visibility.
1395   if (GV->hasLocalLinkage()) {
1396     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1397     return;
1398   }
1399   if (!D)
1400     return;
1401 
1402   // Set visibility for definitions, and for declarations if requested globally
1403   // or set explicitly.
1404   LinkageInfo LV = D->getLinkageAndVisibility();
1405 
1406   // OpenMP declare target variables must be visible to the host so they can
1407   // be registered. We require protected visibility unless the variable has
1408   // the DT_nohost modifier and does not need to be registered.
1409   if (Context.getLangOpts().OpenMP &&
1410       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1411       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1412       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1413           OMPDeclareTargetDeclAttr::DT_NoHost &&
1414       LV.getVisibility() == HiddenVisibility) {
1415     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1416     return;
1417   }
1418 
1419   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1420     // Reject incompatible dlllstorage and visibility annotations.
1421     if (!LV.isVisibilityExplicit())
1422       return;
1423     if (GV->hasDLLExportStorageClass()) {
1424       if (LV.getVisibility() == HiddenVisibility)
1425         getDiags().Report(D->getLocation(),
1426                           diag::err_hidden_visibility_dllexport);
1427     } else if (LV.getVisibility() != DefaultVisibility) {
1428       getDiags().Report(D->getLocation(),
1429                         diag::err_non_default_visibility_dllimport);
1430     }
1431     return;
1432   }
1433 
1434   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1435       !GV->isDeclarationForLinker())
1436     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1437 }
1438 
1439 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1440                                  llvm::GlobalValue *GV) {
1441   if (GV->hasLocalLinkage())
1442     return true;
1443 
1444   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1445     return true;
1446 
1447   // DLLImport explicitly marks the GV as external.
1448   if (GV->hasDLLImportStorageClass())
1449     return false;
1450 
1451   const llvm::Triple &TT = CGM.getTriple();
1452   const auto &CGOpts = CGM.getCodeGenOpts();
1453   if (TT.isWindowsGNUEnvironment()) {
1454     // In MinGW, variables without DLLImport can still be automatically
1455     // imported from a DLL by the linker; don't mark variables that
1456     // potentially could come from another DLL as DSO local.
1457 
1458     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1459     // (and this actually happens in the public interface of libstdc++), so
1460     // such variables can't be marked as DSO local. (Native TLS variables
1461     // can't be dllimported at all, though.)
1462     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1463         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1464         CGOpts.AutoImport)
1465       return false;
1466   }
1467 
1468   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1469   // remain unresolved in the link, they can be resolved to zero, which is
1470   // outside the current DSO.
1471   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1472     return false;
1473 
1474   // Every other GV is local on COFF.
1475   // Make an exception for windows OS in the triple: Some firmware builds use
1476   // *-win32-macho triples. This (accidentally?) produced windows relocations
1477   // without GOT tables in older clang versions; Keep this behaviour.
1478   // FIXME: even thread local variables?
1479   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1480     return true;
1481 
1482   // Only handle COFF and ELF for now.
1483   if (!TT.isOSBinFormatELF())
1484     return false;
1485 
1486   // If this is not an executable, don't assume anything is local.
1487   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1488   const auto &LOpts = CGM.getLangOpts();
1489   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1490     // On ELF, if -fno-semantic-interposition is specified and the target
1491     // supports local aliases, there will be neither CC1
1492     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1493     // dso_local on the function if using a local alias is preferable (can avoid
1494     // PLT indirection).
1495     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1496       return false;
1497     return !(CGM.getLangOpts().SemanticInterposition ||
1498              CGM.getLangOpts().HalfNoSemanticInterposition);
1499   }
1500 
1501   // A definition cannot be preempted from an executable.
1502   if (!GV->isDeclarationForLinker())
1503     return true;
1504 
1505   // Most PIC code sequences that assume that a symbol is local cannot produce a
1506   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1507   // depended, it seems worth it to handle it here.
1508   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1509     return false;
1510 
1511   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1512   if (TT.isPPC64())
1513     return false;
1514 
1515   if (CGOpts.DirectAccessExternalData) {
1516     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1517     // for non-thread-local variables. If the symbol is not defined in the
1518     // executable, a copy relocation will be needed at link time. dso_local is
1519     // excluded for thread-local variables because they generally don't support
1520     // copy relocations.
1521     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1522       if (!Var->isThreadLocal())
1523         return true;
1524 
1525     // -fno-pic sets dso_local on a function declaration to allow direct
1526     // accesses when taking its address (similar to a data symbol). If the
1527     // function is not defined in the executable, a canonical PLT entry will be
1528     // needed at link time. -fno-direct-access-external-data can avoid the
1529     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1530     // it could just cause trouble without providing perceptible benefits.
1531     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1532       return true;
1533   }
1534 
1535   // If we can use copy relocations we can assume it is local.
1536 
1537   // Otherwise don't assume it is local.
1538   return false;
1539 }
1540 
1541 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1542   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1543 }
1544 
1545 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1546                                           GlobalDecl GD) const {
1547   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1548   // C++ destructors have a few C++ ABI specific special cases.
1549   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1550     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1551     return;
1552   }
1553   setDLLImportDLLExport(GV, D);
1554 }
1555 
1556 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1557                                           const NamedDecl *D) const {
1558   if (D && D->isExternallyVisible()) {
1559     if (D->hasAttr<DLLImportAttr>())
1560       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1561     else if ((D->hasAttr<DLLExportAttr>() ||
1562               shouldMapVisibilityToDLLExport(D)) &&
1563              !GV->isDeclarationForLinker())
1564       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1565   }
1566 }
1567 
1568 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1569                                     GlobalDecl GD) const {
1570   setDLLImportDLLExport(GV, GD);
1571   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1572 }
1573 
1574 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1575                                     const NamedDecl *D) const {
1576   setDLLImportDLLExport(GV, D);
1577   setGVPropertiesAux(GV, D);
1578 }
1579 
1580 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1581                                        const NamedDecl *D) const {
1582   setGlobalVisibility(GV, D);
1583   setDSOLocal(GV);
1584   GV->setPartition(CodeGenOpts.SymbolPartition);
1585 }
1586 
1587 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1588   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1589       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1590       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1591       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1592       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1593 }
1594 
1595 llvm::GlobalVariable::ThreadLocalMode
1596 CodeGenModule::GetDefaultLLVMTLSModel() const {
1597   switch (CodeGenOpts.getDefaultTLSModel()) {
1598   case CodeGenOptions::GeneralDynamicTLSModel:
1599     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1600   case CodeGenOptions::LocalDynamicTLSModel:
1601     return llvm::GlobalVariable::LocalDynamicTLSModel;
1602   case CodeGenOptions::InitialExecTLSModel:
1603     return llvm::GlobalVariable::InitialExecTLSModel;
1604   case CodeGenOptions::LocalExecTLSModel:
1605     return llvm::GlobalVariable::LocalExecTLSModel;
1606   }
1607   llvm_unreachable("Invalid TLS model!");
1608 }
1609 
1610 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1611   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1612 
1613   llvm::GlobalValue::ThreadLocalMode TLM;
1614   TLM = GetDefaultLLVMTLSModel();
1615 
1616   // Override the TLS model if it is explicitly specified.
1617   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1618     TLM = GetLLVMTLSModel(Attr->getModel());
1619   }
1620 
1621   GV->setThreadLocalMode(TLM);
1622 }
1623 
1624 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1625                                           StringRef Name) {
1626   const TargetInfo &Target = CGM.getTarget();
1627   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1628 }
1629 
1630 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1631                                                  const CPUSpecificAttr *Attr,
1632                                                  unsigned CPUIndex,
1633                                                  raw_ostream &Out) {
1634   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1635   // supported.
1636   if (Attr)
1637     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1638   else if (CGM.getTarget().supportsIFunc())
1639     Out << ".resolver";
1640 }
1641 
1642 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1643                                         const TargetVersionAttr *Attr,
1644                                         raw_ostream &Out) {
1645   if (Attr->isDefaultVersion())
1646     return;
1647   Out << "._";
1648   const TargetInfo &TI = CGM.getTarget();
1649   llvm::SmallVector<StringRef, 8> Feats;
1650   Attr->getFeatures(Feats);
1651   llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1652     return TI.multiVersionSortPriority(FeatL) <
1653            TI.multiVersionSortPriority(FeatR);
1654   });
1655   for (const auto &Feat : Feats) {
1656     Out << 'M';
1657     Out << Feat;
1658   }
1659 }
1660 
1661 static void AppendTargetMangling(const CodeGenModule &CGM,
1662                                  const TargetAttr *Attr, raw_ostream &Out) {
1663   if (Attr->isDefaultVersion())
1664     return;
1665 
1666   Out << '.';
1667   const TargetInfo &Target = CGM.getTarget();
1668   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1669   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1670     // Multiversioning doesn't allow "no-${feature}", so we can
1671     // only have "+" prefixes here.
1672     assert(LHS.startswith("+") && RHS.startswith("+") &&
1673            "Features should always have a prefix.");
1674     return Target.multiVersionSortPriority(LHS.substr(1)) >
1675            Target.multiVersionSortPriority(RHS.substr(1));
1676   });
1677 
1678   bool IsFirst = true;
1679 
1680   if (!Info.CPU.empty()) {
1681     IsFirst = false;
1682     Out << "arch_" << Info.CPU;
1683   }
1684 
1685   for (StringRef Feat : Info.Features) {
1686     if (!IsFirst)
1687       Out << '_';
1688     IsFirst = false;
1689     Out << Feat.substr(1);
1690   }
1691 }
1692 
1693 // Returns true if GD is a function decl with internal linkage and
1694 // needs a unique suffix after the mangled name.
1695 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1696                                         CodeGenModule &CGM) {
1697   const Decl *D = GD.getDecl();
1698   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1699          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1700 }
1701 
1702 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1703                                        const TargetClonesAttr *Attr,
1704                                        unsigned VersionIndex,
1705                                        raw_ostream &Out) {
1706   const TargetInfo &TI = CGM.getTarget();
1707   if (TI.getTriple().isAArch64()) {
1708     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1709     if (FeatureStr == "default")
1710       return;
1711     Out << "._";
1712     SmallVector<StringRef, 8> Features;
1713     FeatureStr.split(Features, "+");
1714     llvm::stable_sort(Features,
1715                       [&TI](const StringRef FeatL, const StringRef FeatR) {
1716                         return TI.multiVersionSortPriority(FeatL) <
1717                                TI.multiVersionSortPriority(FeatR);
1718                       });
1719     for (auto &Feat : Features) {
1720       Out << 'M';
1721       Out << Feat;
1722     }
1723   } else {
1724     Out << '.';
1725     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1726     if (FeatureStr.startswith("arch="))
1727       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1728     else
1729       Out << FeatureStr;
1730 
1731     Out << '.' << Attr->getMangledIndex(VersionIndex);
1732   }
1733 }
1734 
1735 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1736                                       const NamedDecl *ND,
1737                                       bool OmitMultiVersionMangling = false) {
1738   SmallString<256> Buffer;
1739   llvm::raw_svector_ostream Out(Buffer);
1740   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1741   if (!CGM.getModuleNameHash().empty())
1742     MC.needsUniqueInternalLinkageNames();
1743   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1744   if (ShouldMangle)
1745     MC.mangleName(GD.getWithDecl(ND), Out);
1746   else {
1747     IdentifierInfo *II = ND->getIdentifier();
1748     assert(II && "Attempt to mangle unnamed decl.");
1749     const auto *FD = dyn_cast<FunctionDecl>(ND);
1750 
1751     if (FD &&
1752         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1753       if (CGM.getLangOpts().RegCall4)
1754         Out << "__regcall4__" << II->getName();
1755       else
1756         Out << "__regcall3__" << II->getName();
1757     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1758                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1759       Out << "__device_stub__" << II->getName();
1760     } else {
1761       Out << II->getName();
1762     }
1763   }
1764 
1765   // Check if the module name hash should be appended for internal linkage
1766   // symbols.   This should come before multi-version target suffixes are
1767   // appended. This is to keep the name and module hash suffix of the
1768   // internal linkage function together.  The unique suffix should only be
1769   // added when name mangling is done to make sure that the final name can
1770   // be properly demangled.  For example, for C functions without prototypes,
1771   // name mangling is not done and the unique suffix should not be appeneded
1772   // then.
1773   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1774     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1775            "Hash computed when not explicitly requested");
1776     Out << CGM.getModuleNameHash();
1777   }
1778 
1779   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1780     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1781       switch (FD->getMultiVersionKind()) {
1782       case MultiVersionKind::CPUDispatch:
1783       case MultiVersionKind::CPUSpecific:
1784         AppendCPUSpecificCPUDispatchMangling(CGM,
1785                                              FD->getAttr<CPUSpecificAttr>(),
1786                                              GD.getMultiVersionIndex(), Out);
1787         break;
1788       case MultiVersionKind::Target:
1789         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1790         break;
1791       case MultiVersionKind::TargetVersion:
1792         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1793         break;
1794       case MultiVersionKind::TargetClones:
1795         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1796                                    GD.getMultiVersionIndex(), Out);
1797         break;
1798       case MultiVersionKind::None:
1799         llvm_unreachable("None multiversion type isn't valid here");
1800       }
1801     }
1802 
1803   // Make unique name for device side static file-scope variable for HIP.
1804   if (CGM.getContext().shouldExternalize(ND) &&
1805       CGM.getLangOpts().GPURelocatableDeviceCode &&
1806       CGM.getLangOpts().CUDAIsDevice)
1807     CGM.printPostfixForExternalizedDecl(Out, ND);
1808 
1809   return std::string(Out.str());
1810 }
1811 
1812 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1813                                             const FunctionDecl *FD,
1814                                             StringRef &CurName) {
1815   if (!FD->isMultiVersion())
1816     return;
1817 
1818   // Get the name of what this would be without the 'target' attribute.  This
1819   // allows us to lookup the version that was emitted when this wasn't a
1820   // multiversion function.
1821   std::string NonTargetName =
1822       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1823   GlobalDecl OtherGD;
1824   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1825     assert(OtherGD.getCanonicalDecl()
1826                .getDecl()
1827                ->getAsFunction()
1828                ->isMultiVersion() &&
1829            "Other GD should now be a multiversioned function");
1830     // OtherFD is the version of this function that was mangled BEFORE
1831     // becoming a MultiVersion function.  It potentially needs to be updated.
1832     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1833                                       .getDecl()
1834                                       ->getAsFunction()
1835                                       ->getMostRecentDecl();
1836     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1837     // This is so that if the initial version was already the 'default'
1838     // version, we don't try to update it.
1839     if (OtherName != NonTargetName) {
1840       // Remove instead of erase, since others may have stored the StringRef
1841       // to this.
1842       const auto ExistingRecord = Manglings.find(NonTargetName);
1843       if (ExistingRecord != std::end(Manglings))
1844         Manglings.remove(&(*ExistingRecord));
1845       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1846       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1847           Result.first->first();
1848       // If this is the current decl is being created, make sure we update the name.
1849       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1850         CurName = OtherNameRef;
1851       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1852         Entry->setName(OtherName);
1853     }
1854   }
1855 }
1856 
1857 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1858   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1859 
1860   // Some ABIs don't have constructor variants.  Make sure that base and
1861   // complete constructors get mangled the same.
1862   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1863     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1864       CXXCtorType OrigCtorType = GD.getCtorType();
1865       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1866       if (OrigCtorType == Ctor_Base)
1867         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1868     }
1869   }
1870 
1871   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1872   // static device variable depends on whether the variable is referenced by
1873   // a host or device host function. Therefore the mangled name cannot be
1874   // cached.
1875   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1876     auto FoundName = MangledDeclNames.find(CanonicalGD);
1877     if (FoundName != MangledDeclNames.end())
1878       return FoundName->second;
1879   }
1880 
1881   // Keep the first result in the case of a mangling collision.
1882   const auto *ND = cast<NamedDecl>(GD.getDecl());
1883   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1884 
1885   // Ensure either we have different ABIs between host and device compilations,
1886   // says host compilation following MSVC ABI but device compilation follows
1887   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1888   // mangling should be the same after name stubbing. The later checking is
1889   // very important as the device kernel name being mangled in host-compilation
1890   // is used to resolve the device binaries to be executed. Inconsistent naming
1891   // result in undefined behavior. Even though we cannot check that naming
1892   // directly between host- and device-compilations, the host- and
1893   // device-mangling in host compilation could help catching certain ones.
1894   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1895          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1896          (getContext().getAuxTargetInfo() &&
1897           (getContext().getAuxTargetInfo()->getCXXABI() !=
1898            getContext().getTargetInfo().getCXXABI())) ||
1899          getCUDARuntime().getDeviceSideName(ND) ==
1900              getMangledNameImpl(
1901                  *this,
1902                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1903                  ND));
1904 
1905   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1906   return MangledDeclNames[CanonicalGD] = Result.first->first();
1907 }
1908 
1909 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1910                                              const BlockDecl *BD) {
1911   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1912   const Decl *D = GD.getDecl();
1913 
1914   SmallString<256> Buffer;
1915   llvm::raw_svector_ostream Out(Buffer);
1916   if (!D)
1917     MangleCtx.mangleGlobalBlock(BD,
1918       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1919   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1920     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1921   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1922     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1923   else
1924     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1925 
1926   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1927   return Result.first->first();
1928 }
1929 
1930 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1931   auto it = MangledDeclNames.begin();
1932   while (it != MangledDeclNames.end()) {
1933     if (it->second == Name)
1934       return it->first;
1935     it++;
1936   }
1937   return GlobalDecl();
1938 }
1939 
1940 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1941   return getModule().getNamedValue(Name);
1942 }
1943 
1944 /// AddGlobalCtor - Add a function to the list that will be called before
1945 /// main() runs.
1946 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1947                                   unsigned LexOrder,
1948                                   llvm::Constant *AssociatedData) {
1949   // FIXME: Type coercion of void()* types.
1950   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1951 }
1952 
1953 /// AddGlobalDtor - Add a function to the list that will be called
1954 /// when the module is unloaded.
1955 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1956                                   bool IsDtorAttrFunc) {
1957   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1958       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1959     DtorsUsingAtExit[Priority].push_back(Dtor);
1960     return;
1961   }
1962 
1963   // FIXME: Type coercion of void()* types.
1964   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1965 }
1966 
1967 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1968   if (Fns.empty()) return;
1969 
1970   // Ctor function type is void()*.
1971   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1972   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1973       TheModule.getDataLayout().getProgramAddressSpace());
1974 
1975   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1976   llvm::StructType *CtorStructTy = llvm::StructType::get(
1977       Int32Ty, CtorPFTy, VoidPtrTy);
1978 
1979   // Construct the constructor and destructor arrays.
1980   ConstantInitBuilder builder(*this);
1981   auto ctors = builder.beginArray(CtorStructTy);
1982   for (const auto &I : Fns) {
1983     auto ctor = ctors.beginStruct(CtorStructTy);
1984     ctor.addInt(Int32Ty, I.Priority);
1985     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1986     if (I.AssociatedData)
1987       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1988     else
1989       ctor.addNullPointer(VoidPtrTy);
1990     ctor.finishAndAddTo(ctors);
1991   }
1992 
1993   auto list =
1994     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1995                                 /*constant*/ false,
1996                                 llvm::GlobalValue::AppendingLinkage);
1997 
1998   // The LTO linker doesn't seem to like it when we set an alignment
1999   // on appending variables.  Take it off as a workaround.
2000   list->setAlignment(std::nullopt);
2001 
2002   Fns.clear();
2003 }
2004 
2005 llvm::GlobalValue::LinkageTypes
2006 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2007   const auto *D = cast<FunctionDecl>(GD.getDecl());
2008 
2009   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2010 
2011   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2012     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2013 
2014   return getLLVMLinkageForDeclarator(D, Linkage);
2015 }
2016 
2017 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2018   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2019   if (!MDS) return nullptr;
2020 
2021   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2022 }
2023 
2024 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2025   if (auto *FnType = T->getAs<FunctionProtoType>())
2026     T = getContext().getFunctionType(
2027         FnType->getReturnType(), FnType->getParamTypes(),
2028         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2029 
2030   std::string OutName;
2031   llvm::raw_string_ostream Out(OutName);
2032   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2033       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2034 
2035   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2036     Out << ".normalized";
2037 
2038   return llvm::ConstantInt::get(Int32Ty,
2039                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2040 }
2041 
2042 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2043                                               const CGFunctionInfo &Info,
2044                                               llvm::Function *F, bool IsThunk) {
2045   unsigned CallingConv;
2046   llvm::AttributeList PAL;
2047   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2048                          /*AttrOnCallSite=*/false, IsThunk);
2049   F->setAttributes(PAL);
2050   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2051 }
2052 
2053 static void removeImageAccessQualifier(std::string& TyName) {
2054   std::string ReadOnlyQual("__read_only");
2055   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2056   if (ReadOnlyPos != std::string::npos)
2057     // "+ 1" for the space after access qualifier.
2058     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2059   else {
2060     std::string WriteOnlyQual("__write_only");
2061     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2062     if (WriteOnlyPos != std::string::npos)
2063       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2064     else {
2065       std::string ReadWriteQual("__read_write");
2066       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2067       if (ReadWritePos != std::string::npos)
2068         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2069     }
2070   }
2071 }
2072 
2073 // Returns the address space id that should be produced to the
2074 // kernel_arg_addr_space metadata. This is always fixed to the ids
2075 // as specified in the SPIR 2.0 specification in order to differentiate
2076 // for example in clGetKernelArgInfo() implementation between the address
2077 // spaces with targets without unique mapping to the OpenCL address spaces
2078 // (basically all single AS CPUs).
2079 static unsigned ArgInfoAddressSpace(LangAS AS) {
2080   switch (AS) {
2081   case LangAS::opencl_global:
2082     return 1;
2083   case LangAS::opencl_constant:
2084     return 2;
2085   case LangAS::opencl_local:
2086     return 3;
2087   case LangAS::opencl_generic:
2088     return 4; // Not in SPIR 2.0 specs.
2089   case LangAS::opencl_global_device:
2090     return 5;
2091   case LangAS::opencl_global_host:
2092     return 6;
2093   default:
2094     return 0; // Assume private.
2095   }
2096 }
2097 
2098 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2099                                          const FunctionDecl *FD,
2100                                          CodeGenFunction *CGF) {
2101   assert(((FD && CGF) || (!FD && !CGF)) &&
2102          "Incorrect use - FD and CGF should either be both null or not!");
2103   // Create MDNodes that represent the kernel arg metadata.
2104   // Each MDNode is a list in the form of "key", N number of values which is
2105   // the same number of values as their are kernel arguments.
2106 
2107   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2108 
2109   // MDNode for the kernel argument address space qualifiers.
2110   SmallVector<llvm::Metadata *, 8> addressQuals;
2111 
2112   // MDNode for the kernel argument access qualifiers (images only).
2113   SmallVector<llvm::Metadata *, 8> accessQuals;
2114 
2115   // MDNode for the kernel argument type names.
2116   SmallVector<llvm::Metadata *, 8> argTypeNames;
2117 
2118   // MDNode for the kernel argument base type names.
2119   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2120 
2121   // MDNode for the kernel argument type qualifiers.
2122   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2123 
2124   // MDNode for the kernel argument names.
2125   SmallVector<llvm::Metadata *, 8> argNames;
2126 
2127   if (FD && CGF)
2128     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2129       const ParmVarDecl *parm = FD->getParamDecl(i);
2130       // Get argument name.
2131       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2132 
2133       if (!getLangOpts().OpenCL)
2134         continue;
2135       QualType ty = parm->getType();
2136       std::string typeQuals;
2137 
2138       // Get image and pipe access qualifier:
2139       if (ty->isImageType() || ty->isPipeType()) {
2140         const Decl *PDecl = parm;
2141         if (const auto *TD = ty->getAs<TypedefType>())
2142           PDecl = TD->getDecl();
2143         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2144         if (A && A->isWriteOnly())
2145           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2146         else if (A && A->isReadWrite())
2147           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2148         else
2149           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2150       } else
2151         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2152 
2153       auto getTypeSpelling = [&](QualType Ty) {
2154         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2155 
2156         if (Ty.isCanonical()) {
2157           StringRef typeNameRef = typeName;
2158           // Turn "unsigned type" to "utype"
2159           if (typeNameRef.consume_front("unsigned "))
2160             return std::string("u") + typeNameRef.str();
2161           if (typeNameRef.consume_front("signed "))
2162             return typeNameRef.str();
2163         }
2164 
2165         return typeName;
2166       };
2167 
2168       if (ty->isPointerType()) {
2169         QualType pointeeTy = ty->getPointeeType();
2170 
2171         // Get address qualifier.
2172         addressQuals.push_back(
2173             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2174                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2175 
2176         // Get argument type name.
2177         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2178         std::string baseTypeName =
2179             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2180         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2181         argBaseTypeNames.push_back(
2182             llvm::MDString::get(VMContext, baseTypeName));
2183 
2184         // Get argument type qualifiers:
2185         if (ty.isRestrictQualified())
2186           typeQuals = "restrict";
2187         if (pointeeTy.isConstQualified() ||
2188             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2189           typeQuals += typeQuals.empty() ? "const" : " const";
2190         if (pointeeTy.isVolatileQualified())
2191           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2192       } else {
2193         uint32_t AddrSpc = 0;
2194         bool isPipe = ty->isPipeType();
2195         if (ty->isImageType() || isPipe)
2196           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2197 
2198         addressQuals.push_back(
2199             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2200 
2201         // Get argument type name.
2202         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2203         std::string typeName = getTypeSpelling(ty);
2204         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2205 
2206         // Remove access qualifiers on images
2207         // (as they are inseparable from type in clang implementation,
2208         // but OpenCL spec provides a special query to get access qualifier
2209         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2210         if (ty->isImageType()) {
2211           removeImageAccessQualifier(typeName);
2212           removeImageAccessQualifier(baseTypeName);
2213         }
2214 
2215         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2216         argBaseTypeNames.push_back(
2217             llvm::MDString::get(VMContext, baseTypeName));
2218 
2219         if (isPipe)
2220           typeQuals = "pipe";
2221       }
2222       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2223     }
2224 
2225   if (getLangOpts().OpenCL) {
2226     Fn->setMetadata("kernel_arg_addr_space",
2227                     llvm::MDNode::get(VMContext, addressQuals));
2228     Fn->setMetadata("kernel_arg_access_qual",
2229                     llvm::MDNode::get(VMContext, accessQuals));
2230     Fn->setMetadata("kernel_arg_type",
2231                     llvm::MDNode::get(VMContext, argTypeNames));
2232     Fn->setMetadata("kernel_arg_base_type",
2233                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2234     Fn->setMetadata("kernel_arg_type_qual",
2235                     llvm::MDNode::get(VMContext, argTypeQuals));
2236   }
2237   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2238       getCodeGenOpts().HIPSaveKernelArgName)
2239     Fn->setMetadata("kernel_arg_name",
2240                     llvm::MDNode::get(VMContext, argNames));
2241 }
2242 
2243 /// Determines whether the language options require us to model
2244 /// unwind exceptions.  We treat -fexceptions as mandating this
2245 /// except under the fragile ObjC ABI with only ObjC exceptions
2246 /// enabled.  This means, for example, that C with -fexceptions
2247 /// enables this.
2248 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2249   // If exceptions are completely disabled, obviously this is false.
2250   if (!LangOpts.Exceptions) return false;
2251 
2252   // If C++ exceptions are enabled, this is true.
2253   if (LangOpts.CXXExceptions) return true;
2254 
2255   // If ObjC exceptions are enabled, this depends on the ABI.
2256   if (LangOpts.ObjCExceptions) {
2257     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2258   }
2259 
2260   return true;
2261 }
2262 
2263 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2264                                                       const CXXMethodDecl *MD) {
2265   // Check that the type metadata can ever actually be used by a call.
2266   if (!CGM.getCodeGenOpts().LTOUnit ||
2267       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2268     return false;
2269 
2270   // Only functions whose address can be taken with a member function pointer
2271   // need this sort of type metadata.
2272   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2273          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2274 }
2275 
2276 SmallVector<const CXXRecordDecl *, 0>
2277 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2278   llvm::SetVector<const CXXRecordDecl *> MostBases;
2279 
2280   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2281   CollectMostBases = [&](const CXXRecordDecl *RD) {
2282     if (RD->getNumBases() == 0)
2283       MostBases.insert(RD);
2284     for (const CXXBaseSpecifier &B : RD->bases())
2285       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2286   };
2287   CollectMostBases(RD);
2288   return MostBases.takeVector();
2289 }
2290 
2291 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2292                                                            llvm::Function *F) {
2293   llvm::AttrBuilder B(F->getContext());
2294 
2295   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2296     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2297 
2298   if (CodeGenOpts.StackClashProtector)
2299     B.addAttribute("probe-stack", "inline-asm");
2300 
2301   if (!hasUnwindExceptions(LangOpts))
2302     B.addAttribute(llvm::Attribute::NoUnwind);
2303 
2304   if (D && D->hasAttr<NoStackProtectorAttr>())
2305     ; // Do nothing.
2306   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2307            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2308     B.addAttribute(llvm::Attribute::StackProtectStrong);
2309   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2310     B.addAttribute(llvm::Attribute::StackProtect);
2311   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2312     B.addAttribute(llvm::Attribute::StackProtectStrong);
2313   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2314     B.addAttribute(llvm::Attribute::StackProtectReq);
2315 
2316   if (!D) {
2317     // If we don't have a declaration to control inlining, the function isn't
2318     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2319     // disabled, mark the function as noinline.
2320     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2321         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2322       B.addAttribute(llvm::Attribute::NoInline);
2323 
2324     F->addFnAttrs(B);
2325     return;
2326   }
2327 
2328   // Handle SME attributes that apply to function definitions,
2329   // rather than to function prototypes.
2330   if (D->hasAttr<ArmLocallyStreamingAttr>())
2331     B.addAttribute("aarch64_pstate_sm_body");
2332 
2333   if (D->hasAttr<ArmNewZAAttr>())
2334     B.addAttribute("aarch64_pstate_za_new");
2335 
2336   // Track whether we need to add the optnone LLVM attribute,
2337   // starting with the default for this optimization level.
2338   bool ShouldAddOptNone =
2339       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2340   // We can't add optnone in the following cases, it won't pass the verifier.
2341   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2342   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2343 
2344   // Add optnone, but do so only if the function isn't always_inline.
2345   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2346       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2347     B.addAttribute(llvm::Attribute::OptimizeNone);
2348 
2349     // OptimizeNone implies noinline; we should not be inlining such functions.
2350     B.addAttribute(llvm::Attribute::NoInline);
2351 
2352     // We still need to handle naked functions even though optnone subsumes
2353     // much of their semantics.
2354     if (D->hasAttr<NakedAttr>())
2355       B.addAttribute(llvm::Attribute::Naked);
2356 
2357     // OptimizeNone wins over OptimizeForSize and MinSize.
2358     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2359     F->removeFnAttr(llvm::Attribute::MinSize);
2360   } else if (D->hasAttr<NakedAttr>()) {
2361     // Naked implies noinline: we should not be inlining such functions.
2362     B.addAttribute(llvm::Attribute::Naked);
2363     B.addAttribute(llvm::Attribute::NoInline);
2364   } else if (D->hasAttr<NoDuplicateAttr>()) {
2365     B.addAttribute(llvm::Attribute::NoDuplicate);
2366   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2367     // Add noinline if the function isn't always_inline.
2368     B.addAttribute(llvm::Attribute::NoInline);
2369   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2370              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2371     // (noinline wins over always_inline, and we can't specify both in IR)
2372     B.addAttribute(llvm::Attribute::AlwaysInline);
2373   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2374     // If we're not inlining, then force everything that isn't always_inline to
2375     // carry an explicit noinline attribute.
2376     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2377       B.addAttribute(llvm::Attribute::NoInline);
2378   } else {
2379     // Otherwise, propagate the inline hint attribute and potentially use its
2380     // absence to mark things as noinline.
2381     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2382       // Search function and template pattern redeclarations for inline.
2383       auto CheckForInline = [](const FunctionDecl *FD) {
2384         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2385           return Redecl->isInlineSpecified();
2386         };
2387         if (any_of(FD->redecls(), CheckRedeclForInline))
2388           return true;
2389         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2390         if (!Pattern)
2391           return false;
2392         return any_of(Pattern->redecls(), CheckRedeclForInline);
2393       };
2394       if (CheckForInline(FD)) {
2395         B.addAttribute(llvm::Attribute::InlineHint);
2396       } else if (CodeGenOpts.getInlining() ==
2397                      CodeGenOptions::OnlyHintInlining &&
2398                  !FD->isInlined() &&
2399                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2400         B.addAttribute(llvm::Attribute::NoInline);
2401       }
2402     }
2403   }
2404 
2405   // Add other optimization related attributes if we are optimizing this
2406   // function.
2407   if (!D->hasAttr<OptimizeNoneAttr>()) {
2408     if (D->hasAttr<ColdAttr>()) {
2409       if (!ShouldAddOptNone)
2410         B.addAttribute(llvm::Attribute::OptimizeForSize);
2411       B.addAttribute(llvm::Attribute::Cold);
2412     }
2413     if (D->hasAttr<HotAttr>())
2414       B.addAttribute(llvm::Attribute::Hot);
2415     if (D->hasAttr<MinSizeAttr>())
2416       B.addAttribute(llvm::Attribute::MinSize);
2417   }
2418 
2419   F->addFnAttrs(B);
2420 
2421   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2422   if (alignment)
2423     F->setAlignment(llvm::Align(alignment));
2424 
2425   if (!D->hasAttr<AlignedAttr>())
2426     if (LangOpts.FunctionAlignment)
2427       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2428 
2429   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2430   // reserve a bit for differentiating between virtual and non-virtual member
2431   // functions. If the current target's C++ ABI requires this and this is a
2432   // member function, set its alignment accordingly.
2433   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2434     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2435       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2436   }
2437 
2438   // In the cross-dso CFI mode with canonical jump tables, we want !type
2439   // attributes on definitions only.
2440   if (CodeGenOpts.SanitizeCfiCrossDso &&
2441       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2442     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2443       // Skip available_externally functions. They won't be codegen'ed in the
2444       // current module anyway.
2445       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2446         CreateFunctionTypeMetadataForIcall(FD, F);
2447     }
2448   }
2449 
2450   // Emit type metadata on member functions for member function pointer checks.
2451   // These are only ever necessary on definitions; we're guaranteed that the
2452   // definition will be present in the LTO unit as a result of LTO visibility.
2453   auto *MD = dyn_cast<CXXMethodDecl>(D);
2454   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2455     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2456       llvm::Metadata *Id =
2457           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2458               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2459       F->addTypeMetadata(0, Id);
2460     }
2461   }
2462 }
2463 
2464 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2465   const Decl *D = GD.getDecl();
2466   if (isa_and_nonnull<NamedDecl>(D))
2467     setGVProperties(GV, GD);
2468   else
2469     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2470 
2471   if (D && D->hasAttr<UsedAttr>())
2472     addUsedOrCompilerUsedGlobal(GV);
2473 
2474   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2475       VD &&
2476       ((CodeGenOpts.KeepPersistentStorageVariables &&
2477         (VD->getStorageDuration() == SD_Static ||
2478          VD->getStorageDuration() == SD_Thread)) ||
2479        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2480         VD->getType().isConstQualified())))
2481     addUsedOrCompilerUsedGlobal(GV);
2482 }
2483 
2484 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2485                                                 llvm::AttrBuilder &Attrs,
2486                                                 bool SetTargetFeatures) {
2487   // Add target-cpu and target-features attributes to functions. If
2488   // we have a decl for the function and it has a target attribute then
2489   // parse that and add it to the feature set.
2490   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2491   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2492   std::vector<std::string> Features;
2493   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2494   FD = FD ? FD->getMostRecentDecl() : FD;
2495   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2496   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2497   assert((!TD || !TV) && "both target_version and target specified");
2498   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2499   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2500   bool AddedAttr = false;
2501   if (TD || TV || SD || TC) {
2502     llvm::StringMap<bool> FeatureMap;
2503     getContext().getFunctionFeatureMap(FeatureMap, GD);
2504 
2505     // Produce the canonical string for this set of features.
2506     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2507       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2508 
2509     // Now add the target-cpu and target-features to the function.
2510     // While we populated the feature map above, we still need to
2511     // get and parse the target attribute so we can get the cpu for
2512     // the function.
2513     if (TD) {
2514       ParsedTargetAttr ParsedAttr =
2515           Target.parseTargetAttr(TD->getFeaturesStr());
2516       if (!ParsedAttr.CPU.empty() &&
2517           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2518         TargetCPU = ParsedAttr.CPU;
2519         TuneCPU = ""; // Clear the tune CPU.
2520       }
2521       if (!ParsedAttr.Tune.empty() &&
2522           getTarget().isValidCPUName(ParsedAttr.Tune))
2523         TuneCPU = ParsedAttr.Tune;
2524     }
2525 
2526     if (SD) {
2527       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2528       // favor this processor.
2529       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2530     }
2531   } else {
2532     // Otherwise just add the existing target cpu and target features to the
2533     // function.
2534     Features = getTarget().getTargetOpts().Features;
2535   }
2536 
2537   if (!TargetCPU.empty()) {
2538     Attrs.addAttribute("target-cpu", TargetCPU);
2539     AddedAttr = true;
2540   }
2541   if (!TuneCPU.empty()) {
2542     Attrs.addAttribute("tune-cpu", TuneCPU);
2543     AddedAttr = true;
2544   }
2545   if (!Features.empty() && SetTargetFeatures) {
2546     llvm::erase_if(Features, [&](const std::string& F) {
2547        return getTarget().isReadOnlyFeature(F.substr(1));
2548     });
2549     llvm::sort(Features);
2550     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2551     AddedAttr = true;
2552   }
2553 
2554   return AddedAttr;
2555 }
2556 
2557 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2558                                           llvm::GlobalObject *GO) {
2559   const Decl *D = GD.getDecl();
2560   SetCommonAttributes(GD, GO);
2561 
2562   if (D) {
2563     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2564       if (D->hasAttr<RetainAttr>())
2565         addUsedGlobal(GV);
2566       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2567         GV->addAttribute("bss-section", SA->getName());
2568       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2569         GV->addAttribute("data-section", SA->getName());
2570       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2571         GV->addAttribute("rodata-section", SA->getName());
2572       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2573         GV->addAttribute("relro-section", SA->getName());
2574     }
2575 
2576     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2577       if (D->hasAttr<RetainAttr>())
2578         addUsedGlobal(F);
2579       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2580         if (!D->getAttr<SectionAttr>())
2581           F->addFnAttr("implicit-section-name", SA->getName());
2582 
2583       llvm::AttrBuilder Attrs(F->getContext());
2584       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2585         // We know that GetCPUAndFeaturesAttributes will always have the
2586         // newest set, since it has the newest possible FunctionDecl, so the
2587         // new ones should replace the old.
2588         llvm::AttributeMask RemoveAttrs;
2589         RemoveAttrs.addAttribute("target-cpu");
2590         RemoveAttrs.addAttribute("target-features");
2591         RemoveAttrs.addAttribute("tune-cpu");
2592         F->removeFnAttrs(RemoveAttrs);
2593         F->addFnAttrs(Attrs);
2594       }
2595     }
2596 
2597     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2598       GO->setSection(CSA->getName());
2599     else if (const auto *SA = D->getAttr<SectionAttr>())
2600       GO->setSection(SA->getName());
2601   }
2602 
2603   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2604 }
2605 
2606 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2607                                                   llvm::Function *F,
2608                                                   const CGFunctionInfo &FI) {
2609   const Decl *D = GD.getDecl();
2610   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2611   SetLLVMFunctionAttributesForDefinition(D, F);
2612 
2613   F->setLinkage(llvm::Function::InternalLinkage);
2614 
2615   setNonAliasAttributes(GD, F);
2616 }
2617 
2618 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2619   // Set linkage and visibility in case we never see a definition.
2620   LinkageInfo LV = ND->getLinkageAndVisibility();
2621   // Don't set internal linkage on declarations.
2622   // "extern_weak" is overloaded in LLVM; we probably should have
2623   // separate linkage types for this.
2624   if (isExternallyVisible(LV.getLinkage()) &&
2625       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2626     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2627 }
2628 
2629 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2630                                                        llvm::Function *F) {
2631   // Only if we are checking indirect calls.
2632   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2633     return;
2634 
2635   // Non-static class methods are handled via vtable or member function pointer
2636   // checks elsewhere.
2637   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2638     return;
2639 
2640   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2641   F->addTypeMetadata(0, MD);
2642   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2643 
2644   // Emit a hash-based bit set entry for cross-DSO calls.
2645   if (CodeGenOpts.SanitizeCfiCrossDso)
2646     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2647       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2648 }
2649 
2650 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2651   llvm::LLVMContext &Ctx = F->getContext();
2652   llvm::MDBuilder MDB(Ctx);
2653   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2654                  llvm::MDNode::get(
2655                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2656 }
2657 
2658 static bool allowKCFIIdentifier(StringRef Name) {
2659   // KCFI type identifier constants are only necessary for external assembly
2660   // functions, which means it's safe to skip unusual names. Subset of
2661   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2662   return llvm::all_of(Name, [](const char &C) {
2663     return llvm::isAlnum(C) || C == '_' || C == '.';
2664   });
2665 }
2666 
2667 void CodeGenModule::finalizeKCFITypes() {
2668   llvm::Module &M = getModule();
2669   for (auto &F : M.functions()) {
2670     // Remove KCFI type metadata from non-address-taken local functions.
2671     bool AddressTaken = F.hasAddressTaken();
2672     if (!AddressTaken && F.hasLocalLinkage())
2673       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2674 
2675     // Generate a constant with the expected KCFI type identifier for all
2676     // address-taken function declarations to support annotating indirectly
2677     // called assembly functions.
2678     if (!AddressTaken || !F.isDeclaration())
2679       continue;
2680 
2681     const llvm::ConstantInt *Type;
2682     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2683       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2684     else
2685       continue;
2686 
2687     StringRef Name = F.getName();
2688     if (!allowKCFIIdentifier(Name))
2689       continue;
2690 
2691     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2692                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2693                           .str();
2694     M.appendModuleInlineAsm(Asm);
2695   }
2696 }
2697 
2698 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2699                                           bool IsIncompleteFunction,
2700                                           bool IsThunk) {
2701 
2702   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2703     // If this is an intrinsic function, set the function's attributes
2704     // to the intrinsic's attributes.
2705     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2706     return;
2707   }
2708 
2709   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2710 
2711   if (!IsIncompleteFunction)
2712     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2713                               IsThunk);
2714 
2715   // Add the Returned attribute for "this", except for iOS 5 and earlier
2716   // where substantial code, including the libstdc++ dylib, was compiled with
2717   // GCC and does not actually return "this".
2718   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2719       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2720     assert(!F->arg_empty() &&
2721            F->arg_begin()->getType()
2722              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2723            "unexpected this return");
2724     F->addParamAttr(0, llvm::Attribute::Returned);
2725   }
2726 
2727   // Only a few attributes are set on declarations; these may later be
2728   // overridden by a definition.
2729 
2730   setLinkageForGV(F, FD);
2731   setGVProperties(F, FD);
2732 
2733   // Setup target-specific attributes.
2734   if (!IsIncompleteFunction && F->isDeclaration())
2735     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2736 
2737   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2738     F->setSection(CSA->getName());
2739   else if (const auto *SA = FD->getAttr<SectionAttr>())
2740      F->setSection(SA->getName());
2741 
2742   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2743     if (EA->isError())
2744       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2745     else if (EA->isWarning())
2746       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2747   }
2748 
2749   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2750   if (FD->isInlineBuiltinDeclaration()) {
2751     const FunctionDecl *FDBody;
2752     bool HasBody = FD->hasBody(FDBody);
2753     (void)HasBody;
2754     assert(HasBody && "Inline builtin declarations should always have an "
2755                       "available body!");
2756     if (shouldEmitFunction(FDBody))
2757       F->addFnAttr(llvm::Attribute::NoBuiltin);
2758   }
2759 
2760   if (FD->isReplaceableGlobalAllocationFunction()) {
2761     // A replaceable global allocation function does not act like a builtin by
2762     // default, only if it is invoked by a new-expression or delete-expression.
2763     F->addFnAttr(llvm::Attribute::NoBuiltin);
2764   }
2765 
2766   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2767     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2768   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2769     if (MD->isVirtual())
2770       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2771 
2772   // Don't emit entries for function declarations in the cross-DSO mode. This
2773   // is handled with better precision by the receiving DSO. But if jump tables
2774   // are non-canonical then we need type metadata in order to produce the local
2775   // jump table.
2776   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2777       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2778     CreateFunctionTypeMetadataForIcall(FD, F);
2779 
2780   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2781     setKCFIType(FD, F);
2782 
2783   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2784     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2785 
2786   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2787     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2788 
2789   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2790     // Annotate the callback behavior as metadata:
2791     //  - The callback callee (as argument number).
2792     //  - The callback payloads (as argument numbers).
2793     llvm::LLVMContext &Ctx = F->getContext();
2794     llvm::MDBuilder MDB(Ctx);
2795 
2796     // The payload indices are all but the first one in the encoding. The first
2797     // identifies the callback callee.
2798     int CalleeIdx = *CB->encoding_begin();
2799     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2800     F->addMetadata(llvm::LLVMContext::MD_callback,
2801                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2802                                                CalleeIdx, PayloadIndices,
2803                                                /* VarArgsArePassed */ false)}));
2804   }
2805 }
2806 
2807 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2808   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2809          "Only globals with definition can force usage.");
2810   LLVMUsed.emplace_back(GV);
2811 }
2812 
2813 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2814   assert(!GV->isDeclaration() &&
2815          "Only globals with definition can force usage.");
2816   LLVMCompilerUsed.emplace_back(GV);
2817 }
2818 
2819 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2820   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2821          "Only globals with definition can force usage.");
2822   if (getTriple().isOSBinFormatELF())
2823     LLVMCompilerUsed.emplace_back(GV);
2824   else
2825     LLVMUsed.emplace_back(GV);
2826 }
2827 
2828 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2829                      std::vector<llvm::WeakTrackingVH> &List) {
2830   // Don't create llvm.used if there is no need.
2831   if (List.empty())
2832     return;
2833 
2834   // Convert List to what ConstantArray needs.
2835   SmallVector<llvm::Constant*, 8> UsedArray;
2836   UsedArray.resize(List.size());
2837   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2838     UsedArray[i] =
2839         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2840             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2841   }
2842 
2843   if (UsedArray.empty())
2844     return;
2845   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2846 
2847   auto *GV = new llvm::GlobalVariable(
2848       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2849       llvm::ConstantArray::get(ATy, UsedArray), Name);
2850 
2851   GV->setSection("llvm.metadata");
2852 }
2853 
2854 void CodeGenModule::emitLLVMUsed() {
2855   emitUsed(*this, "llvm.used", LLVMUsed);
2856   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2857 }
2858 
2859 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2860   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2861   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2862 }
2863 
2864 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2865   llvm::SmallString<32> Opt;
2866   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2867   if (Opt.empty())
2868     return;
2869   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2870   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2871 }
2872 
2873 void CodeGenModule::AddDependentLib(StringRef Lib) {
2874   auto &C = getLLVMContext();
2875   if (getTarget().getTriple().isOSBinFormatELF()) {
2876       ELFDependentLibraries.push_back(
2877         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2878     return;
2879   }
2880 
2881   llvm::SmallString<24> Opt;
2882   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2883   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2884   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2885 }
2886 
2887 /// Add link options implied by the given module, including modules
2888 /// it depends on, using a postorder walk.
2889 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2890                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2891                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2892   // Import this module's parent.
2893   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2894     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2895   }
2896 
2897   // Import this module's dependencies.
2898   for (Module *Import : llvm::reverse(Mod->Imports)) {
2899     if (Visited.insert(Import).second)
2900       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2901   }
2902 
2903   // Add linker options to link against the libraries/frameworks
2904   // described by this module.
2905   llvm::LLVMContext &Context = CGM.getLLVMContext();
2906   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2907 
2908   // For modules that use export_as for linking, use that module
2909   // name instead.
2910   if (Mod->UseExportAsModuleLinkName)
2911     return;
2912 
2913   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2914     // Link against a framework.  Frameworks are currently Darwin only, so we
2915     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2916     if (LL.IsFramework) {
2917       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2918                                  llvm::MDString::get(Context, LL.Library)};
2919 
2920       Metadata.push_back(llvm::MDNode::get(Context, Args));
2921       continue;
2922     }
2923 
2924     // Link against a library.
2925     if (IsELF) {
2926       llvm::Metadata *Args[2] = {
2927           llvm::MDString::get(Context, "lib"),
2928           llvm::MDString::get(Context, LL.Library),
2929       };
2930       Metadata.push_back(llvm::MDNode::get(Context, Args));
2931     } else {
2932       llvm::SmallString<24> Opt;
2933       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2934       auto *OptString = llvm::MDString::get(Context, Opt);
2935       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2936     }
2937   }
2938 }
2939 
2940 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2941   assert(Primary->isNamedModuleUnit() &&
2942          "We should only emit module initializers for named modules.");
2943 
2944   // Emit the initializers in the order that sub-modules appear in the
2945   // source, first Global Module Fragments, if present.
2946   if (auto GMF = Primary->getGlobalModuleFragment()) {
2947     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2948       if (isa<ImportDecl>(D))
2949         continue;
2950       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2951       EmitTopLevelDecl(D);
2952     }
2953   }
2954   // Second any associated with the module, itself.
2955   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2956     // Skip import decls, the inits for those are called explicitly.
2957     if (isa<ImportDecl>(D))
2958       continue;
2959     EmitTopLevelDecl(D);
2960   }
2961   // Third any associated with the Privat eMOdule Fragment, if present.
2962   if (auto PMF = Primary->getPrivateModuleFragment()) {
2963     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2964       // Skip import decls, the inits for those are called explicitly.
2965       if (isa<ImportDecl>(D))
2966         continue;
2967       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2968       EmitTopLevelDecl(D);
2969     }
2970   }
2971 }
2972 
2973 void CodeGenModule::EmitModuleLinkOptions() {
2974   // Collect the set of all of the modules we want to visit to emit link
2975   // options, which is essentially the imported modules and all of their
2976   // non-explicit child modules.
2977   llvm::SetVector<clang::Module *> LinkModules;
2978   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2979   SmallVector<clang::Module *, 16> Stack;
2980 
2981   // Seed the stack with imported modules.
2982   for (Module *M : ImportedModules) {
2983     // Do not add any link flags when an implementation TU of a module imports
2984     // a header of that same module.
2985     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2986         !getLangOpts().isCompilingModule())
2987       continue;
2988     if (Visited.insert(M).second)
2989       Stack.push_back(M);
2990   }
2991 
2992   // Find all of the modules to import, making a little effort to prune
2993   // non-leaf modules.
2994   while (!Stack.empty()) {
2995     clang::Module *Mod = Stack.pop_back_val();
2996 
2997     bool AnyChildren = false;
2998 
2999     // Visit the submodules of this module.
3000     for (const auto &SM : Mod->submodules()) {
3001       // Skip explicit children; they need to be explicitly imported to be
3002       // linked against.
3003       if (SM->IsExplicit)
3004         continue;
3005 
3006       if (Visited.insert(SM).second) {
3007         Stack.push_back(SM);
3008         AnyChildren = true;
3009       }
3010     }
3011 
3012     // We didn't find any children, so add this module to the list of
3013     // modules to link against.
3014     if (!AnyChildren) {
3015       LinkModules.insert(Mod);
3016     }
3017   }
3018 
3019   // Add link options for all of the imported modules in reverse topological
3020   // order.  We don't do anything to try to order import link flags with respect
3021   // to linker options inserted by things like #pragma comment().
3022   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3023   Visited.clear();
3024   for (Module *M : LinkModules)
3025     if (Visited.insert(M).second)
3026       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3027   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3028   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3029 
3030   // Add the linker options metadata flag.
3031   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3032   for (auto *MD : LinkerOptionsMetadata)
3033     NMD->addOperand(MD);
3034 }
3035 
3036 void CodeGenModule::EmitDeferred() {
3037   // Emit deferred declare target declarations.
3038   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3039     getOpenMPRuntime().emitDeferredTargetDecls();
3040 
3041   // Emit code for any potentially referenced deferred decls.  Since a
3042   // previously unused static decl may become used during the generation of code
3043   // for a static function, iterate until no changes are made.
3044 
3045   if (!DeferredVTables.empty()) {
3046     EmitDeferredVTables();
3047 
3048     // Emitting a vtable doesn't directly cause more vtables to
3049     // become deferred, although it can cause functions to be
3050     // emitted that then need those vtables.
3051     assert(DeferredVTables.empty());
3052   }
3053 
3054   // Emit CUDA/HIP static device variables referenced by host code only.
3055   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3056   // needed for further handling.
3057   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3058     llvm::append_range(DeferredDeclsToEmit,
3059                        getContext().CUDADeviceVarODRUsedByHost);
3060 
3061   // Stop if we're out of both deferred vtables and deferred declarations.
3062   if (DeferredDeclsToEmit.empty())
3063     return;
3064 
3065   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3066   // work, it will not interfere with this.
3067   std::vector<GlobalDecl> CurDeclsToEmit;
3068   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3069 
3070   for (GlobalDecl &D : CurDeclsToEmit) {
3071     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3072     // to get GlobalValue with exactly the type we need, not something that
3073     // might had been created for another decl with the same mangled name but
3074     // different type.
3075     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3076         GetAddrOfGlobal(D, ForDefinition));
3077 
3078     // In case of different address spaces, we may still get a cast, even with
3079     // IsForDefinition equal to true. Query mangled names table to get
3080     // GlobalValue.
3081     if (!GV)
3082       GV = GetGlobalValue(getMangledName(D));
3083 
3084     // Make sure GetGlobalValue returned non-null.
3085     assert(GV);
3086 
3087     // Check to see if we've already emitted this.  This is necessary
3088     // for a couple of reasons: first, decls can end up in the
3089     // deferred-decls queue multiple times, and second, decls can end
3090     // up with definitions in unusual ways (e.g. by an extern inline
3091     // function acquiring a strong function redefinition).  Just
3092     // ignore these cases.
3093     if (!GV->isDeclaration())
3094       continue;
3095 
3096     // If this is OpenMP, check if it is legal to emit this global normally.
3097     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3098       continue;
3099 
3100     // Otherwise, emit the definition and move on to the next one.
3101     EmitGlobalDefinition(D, GV);
3102 
3103     // If we found out that we need to emit more decls, do that recursively.
3104     // This has the advantage that the decls are emitted in a DFS and related
3105     // ones are close together, which is convenient for testing.
3106     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3107       EmitDeferred();
3108       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3109     }
3110   }
3111 }
3112 
3113 void CodeGenModule::EmitVTablesOpportunistically() {
3114   // Try to emit external vtables as available_externally if they have emitted
3115   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3116   // is not allowed to create new references to things that need to be emitted
3117   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3118 
3119   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3120          && "Only emit opportunistic vtables with optimizations");
3121 
3122   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3123     assert(getVTables().isVTableExternal(RD) &&
3124            "This queue should only contain external vtables");
3125     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3126       VTables.GenerateClassData(RD);
3127   }
3128   OpportunisticVTables.clear();
3129 }
3130 
3131 void CodeGenModule::EmitGlobalAnnotations() {
3132   if (Annotations.empty())
3133     return;
3134 
3135   // Create a new global variable for the ConstantStruct in the Module.
3136   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3137     Annotations[0]->getType(), Annotations.size()), Annotations);
3138   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3139                                       llvm::GlobalValue::AppendingLinkage,
3140                                       Array, "llvm.global.annotations");
3141   gv->setSection(AnnotationSection);
3142 }
3143 
3144 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3145   llvm::Constant *&AStr = AnnotationStrings[Str];
3146   if (AStr)
3147     return AStr;
3148 
3149   // Not found yet, create a new global.
3150   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3151   auto *gv = new llvm::GlobalVariable(
3152       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3153       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3154       ConstGlobalsPtrTy->getAddressSpace());
3155   gv->setSection(AnnotationSection);
3156   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3157   AStr = gv;
3158   return gv;
3159 }
3160 
3161 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3162   SourceManager &SM = getContext().getSourceManager();
3163   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3164   if (PLoc.isValid())
3165     return EmitAnnotationString(PLoc.getFilename());
3166   return EmitAnnotationString(SM.getBufferName(Loc));
3167 }
3168 
3169 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3170   SourceManager &SM = getContext().getSourceManager();
3171   PresumedLoc PLoc = SM.getPresumedLoc(L);
3172   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3173     SM.getExpansionLineNumber(L);
3174   return llvm::ConstantInt::get(Int32Ty, LineNo);
3175 }
3176 
3177 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3178   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3179   if (Exprs.empty())
3180     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3181 
3182   llvm::FoldingSetNodeID ID;
3183   for (Expr *E : Exprs) {
3184     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3185   }
3186   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3187   if (Lookup)
3188     return Lookup;
3189 
3190   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3191   LLVMArgs.reserve(Exprs.size());
3192   ConstantEmitter ConstEmiter(*this);
3193   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3194     const auto *CE = cast<clang::ConstantExpr>(E);
3195     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3196                                     CE->getType());
3197   });
3198   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3199   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3200                                       llvm::GlobalValue::PrivateLinkage, Struct,
3201                                       ".args");
3202   GV->setSection(AnnotationSection);
3203   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3204 
3205   Lookup = GV;
3206   return GV;
3207 }
3208 
3209 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3210                                                 const AnnotateAttr *AA,
3211                                                 SourceLocation L) {
3212   // Get the globals for file name, annotation, and the line number.
3213   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3214                  *UnitGV = EmitAnnotationUnit(L),
3215                  *LineNoCst = EmitAnnotationLineNo(L),
3216                  *Args = EmitAnnotationArgs(AA);
3217 
3218   llvm::Constant *GVInGlobalsAS = GV;
3219   if (GV->getAddressSpace() !=
3220       getDataLayout().getDefaultGlobalsAddressSpace()) {
3221     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3222         GV,
3223         llvm::PointerType::get(
3224             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3225   }
3226 
3227   // Create the ConstantStruct for the global annotation.
3228   llvm::Constant *Fields[] = {
3229       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3230   };
3231   return llvm::ConstantStruct::getAnon(Fields);
3232 }
3233 
3234 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3235                                          llvm::GlobalValue *GV) {
3236   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3237   // Get the struct elements for these annotations.
3238   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3239     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3240 }
3241 
3242 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3243                                        SourceLocation Loc) const {
3244   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3245   // NoSanitize by function name.
3246   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3247     return true;
3248   // NoSanitize by location. Check "mainfile" prefix.
3249   auto &SM = Context.getSourceManager();
3250   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3251   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3252     return true;
3253 
3254   // Check "src" prefix.
3255   if (Loc.isValid())
3256     return NoSanitizeL.containsLocation(Kind, Loc);
3257   // If location is unknown, this may be a compiler-generated function. Assume
3258   // it's located in the main file.
3259   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3260 }
3261 
3262 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3263                                        llvm::GlobalVariable *GV,
3264                                        SourceLocation Loc, QualType Ty,
3265                                        StringRef Category) const {
3266   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3267   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3268     return true;
3269   auto &SM = Context.getSourceManager();
3270   if (NoSanitizeL.containsMainFile(
3271           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3272           Category))
3273     return true;
3274   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3275     return true;
3276 
3277   // Check global type.
3278   if (!Ty.isNull()) {
3279     // Drill down the array types: if global variable of a fixed type is
3280     // not sanitized, we also don't instrument arrays of them.
3281     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3282       Ty = AT->getElementType();
3283     Ty = Ty.getCanonicalType().getUnqualifiedType();
3284     // Only record types (classes, structs etc.) are ignored.
3285     if (Ty->isRecordType()) {
3286       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3287       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3288         return true;
3289     }
3290   }
3291   return false;
3292 }
3293 
3294 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3295                                    StringRef Category) const {
3296   const auto &XRayFilter = getContext().getXRayFilter();
3297   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3298   auto Attr = ImbueAttr::NONE;
3299   if (Loc.isValid())
3300     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3301   if (Attr == ImbueAttr::NONE)
3302     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3303   switch (Attr) {
3304   case ImbueAttr::NONE:
3305     return false;
3306   case ImbueAttr::ALWAYS:
3307     Fn->addFnAttr("function-instrument", "xray-always");
3308     break;
3309   case ImbueAttr::ALWAYS_ARG1:
3310     Fn->addFnAttr("function-instrument", "xray-always");
3311     Fn->addFnAttr("xray-log-args", "1");
3312     break;
3313   case ImbueAttr::NEVER:
3314     Fn->addFnAttr("function-instrument", "xray-never");
3315     break;
3316   }
3317   return true;
3318 }
3319 
3320 ProfileList::ExclusionType
3321 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3322                                               SourceLocation Loc) const {
3323   const auto &ProfileList = getContext().getProfileList();
3324   // If the profile list is empty, then instrument everything.
3325   if (ProfileList.isEmpty())
3326     return ProfileList::Allow;
3327   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3328   // First, check the function name.
3329   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3330     return *V;
3331   // Next, check the source location.
3332   if (Loc.isValid())
3333     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3334       return *V;
3335   // If location is unknown, this may be a compiler-generated function. Assume
3336   // it's located in the main file.
3337   auto &SM = Context.getSourceManager();
3338   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3339     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3340       return *V;
3341   return ProfileList.getDefault(Kind);
3342 }
3343 
3344 ProfileList::ExclusionType
3345 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3346                                                  SourceLocation Loc) const {
3347   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3348   if (V != ProfileList::Allow)
3349     return V;
3350 
3351   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3352   if (NumGroups > 1) {
3353     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3354     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3355       return ProfileList::Skip;
3356   }
3357   return ProfileList::Allow;
3358 }
3359 
3360 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3361   // Never defer when EmitAllDecls is specified.
3362   if (LangOpts.EmitAllDecls)
3363     return true;
3364 
3365   const auto *VD = dyn_cast<VarDecl>(Global);
3366   if (VD &&
3367       ((CodeGenOpts.KeepPersistentStorageVariables &&
3368         (VD->getStorageDuration() == SD_Static ||
3369          VD->getStorageDuration() == SD_Thread)) ||
3370        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3371         VD->getType().isConstQualified())))
3372     return true;
3373 
3374   return getContext().DeclMustBeEmitted(Global);
3375 }
3376 
3377 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3378   // In OpenMP 5.0 variables and function may be marked as
3379   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3380   // that they must be emitted on the host/device. To be sure we need to have
3381   // seen a declare target with an explicit mentioning of the function, we know
3382   // we have if the level of the declare target attribute is -1. Note that we
3383   // check somewhere else if we should emit this at all.
3384   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3385     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3386         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3387     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3388       return false;
3389   }
3390 
3391   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3392     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3393       // Implicit template instantiations may change linkage if they are later
3394       // explicitly instantiated, so they should not be emitted eagerly.
3395       return false;
3396   }
3397   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3398     if (Context.getInlineVariableDefinitionKind(VD) ==
3399         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3400       // A definition of an inline constexpr static data member may change
3401       // linkage later if it's redeclared outside the class.
3402       return false;
3403     if (CXX20ModuleInits && VD->getOwningModule() &&
3404         !VD->getOwningModule()->isModuleMapModule()) {
3405       // For CXX20, module-owned initializers need to be deferred, since it is
3406       // not known at this point if they will be run for the current module or
3407       // as part of the initializer for an imported one.
3408       return false;
3409     }
3410   }
3411   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3412   // codegen for global variables, because they may be marked as threadprivate.
3413   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3414       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3415       !Global->getType().isConstantStorage(getContext(), false, false) &&
3416       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3417     return false;
3418 
3419   return true;
3420 }
3421 
3422 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3423   StringRef Name = getMangledName(GD);
3424 
3425   // The UUID descriptor should be pointer aligned.
3426   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3427 
3428   // Look for an existing global.
3429   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3430     return ConstantAddress(GV, GV->getValueType(), Alignment);
3431 
3432   ConstantEmitter Emitter(*this);
3433   llvm::Constant *Init;
3434 
3435   APValue &V = GD->getAsAPValue();
3436   if (!V.isAbsent()) {
3437     // If possible, emit the APValue version of the initializer. In particular,
3438     // this gets the type of the constant right.
3439     Init = Emitter.emitForInitializer(
3440         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3441   } else {
3442     // As a fallback, directly construct the constant.
3443     // FIXME: This may get padding wrong under esoteric struct layout rules.
3444     // MSVC appears to create a complete type 'struct __s_GUID' that it
3445     // presumably uses to represent these constants.
3446     MSGuidDecl::Parts Parts = GD->getParts();
3447     llvm::Constant *Fields[4] = {
3448         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3449         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3450         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3451         llvm::ConstantDataArray::getRaw(
3452             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3453             Int8Ty)};
3454     Init = llvm::ConstantStruct::getAnon(Fields);
3455   }
3456 
3457   auto *GV = new llvm::GlobalVariable(
3458       getModule(), Init->getType(),
3459       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3460   if (supportsCOMDAT())
3461     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3462   setDSOLocal(GV);
3463 
3464   if (!V.isAbsent()) {
3465     Emitter.finalize(GV);
3466     return ConstantAddress(GV, GV->getValueType(), Alignment);
3467   }
3468 
3469   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3470   return ConstantAddress(GV, Ty, Alignment);
3471 }
3472 
3473 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3474     const UnnamedGlobalConstantDecl *GCD) {
3475   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3476 
3477   llvm::GlobalVariable **Entry = nullptr;
3478   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3479   if (*Entry)
3480     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3481 
3482   ConstantEmitter Emitter(*this);
3483   llvm::Constant *Init;
3484 
3485   const APValue &V = GCD->getValue();
3486 
3487   assert(!V.isAbsent());
3488   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3489                                     GCD->getType());
3490 
3491   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3492                                       /*isConstant=*/true,
3493                                       llvm::GlobalValue::PrivateLinkage, Init,
3494                                       ".constant");
3495   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3496   GV->setAlignment(Alignment.getAsAlign());
3497 
3498   Emitter.finalize(GV);
3499 
3500   *Entry = GV;
3501   return ConstantAddress(GV, GV->getValueType(), Alignment);
3502 }
3503 
3504 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3505     const TemplateParamObjectDecl *TPO) {
3506   StringRef Name = getMangledName(TPO);
3507   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3508 
3509   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3510     return ConstantAddress(GV, GV->getValueType(), Alignment);
3511 
3512   ConstantEmitter Emitter(*this);
3513   llvm::Constant *Init = Emitter.emitForInitializer(
3514         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3515 
3516   if (!Init) {
3517     ErrorUnsupported(TPO, "template parameter object");
3518     return ConstantAddress::invalid();
3519   }
3520 
3521   llvm::GlobalValue::LinkageTypes Linkage =
3522       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3523           ? llvm::GlobalValue::LinkOnceODRLinkage
3524           : llvm::GlobalValue::InternalLinkage;
3525   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3526                                       /*isConstant=*/true, Linkage, Init, Name);
3527   setGVProperties(GV, TPO);
3528   if (supportsCOMDAT())
3529     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3530   Emitter.finalize(GV);
3531 
3532     return ConstantAddress(GV, GV->getValueType(), Alignment);
3533 }
3534 
3535 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3536   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3537   assert(AA && "No alias?");
3538 
3539   CharUnits Alignment = getContext().getDeclAlign(VD);
3540   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3541 
3542   // See if there is already something with the target's name in the module.
3543   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3544   if (Entry)
3545     return ConstantAddress(Entry, DeclTy, Alignment);
3546 
3547   llvm::Constant *Aliasee;
3548   if (isa<llvm::FunctionType>(DeclTy))
3549     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3550                                       GlobalDecl(cast<FunctionDecl>(VD)),
3551                                       /*ForVTable=*/false);
3552   else
3553     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3554                                     nullptr);
3555 
3556   auto *F = cast<llvm::GlobalValue>(Aliasee);
3557   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3558   WeakRefReferences.insert(F);
3559 
3560   return ConstantAddress(Aliasee, DeclTy, Alignment);
3561 }
3562 
3563 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3564   const auto *Global = cast<ValueDecl>(GD.getDecl());
3565 
3566   // Weak references don't produce any output by themselves.
3567   if (Global->hasAttr<WeakRefAttr>())
3568     return;
3569 
3570   // If this is an alias definition (which otherwise looks like a declaration)
3571   // emit it now.
3572   if (Global->hasAttr<AliasAttr>())
3573     return EmitAliasDefinition(GD);
3574 
3575   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3576   if (Global->hasAttr<IFuncAttr>())
3577     return emitIFuncDefinition(GD);
3578 
3579   // If this is a cpu_dispatch multiversion function, emit the resolver.
3580   if (Global->hasAttr<CPUDispatchAttr>())
3581     return emitCPUDispatchDefinition(GD);
3582 
3583   // If this is CUDA, be selective about which declarations we emit.
3584   if (LangOpts.CUDA) {
3585     if (LangOpts.CUDAIsDevice) {
3586       if (!Global->hasAttr<CUDADeviceAttr>() &&
3587           !Global->hasAttr<CUDAGlobalAttr>() &&
3588           !Global->hasAttr<CUDAConstantAttr>() &&
3589           !Global->hasAttr<CUDASharedAttr>() &&
3590           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3591           !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3592           !(LangOpts.HIPStdPar &&
3593             isa<FunctionDecl>(Global) &&
3594             !Global->hasAttr<CUDAHostAttr>()))
3595         return;
3596     } else {
3597       // We need to emit host-side 'shadows' for all global
3598       // device-side variables because the CUDA runtime needs their
3599       // size and host-side address in order to provide access to
3600       // their device-side incarnations.
3601 
3602       // So device-only functions are the only things we skip.
3603       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3604           Global->hasAttr<CUDADeviceAttr>())
3605         return;
3606 
3607       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3608              "Expected Variable or Function");
3609     }
3610   }
3611 
3612   if (LangOpts.OpenMP) {
3613     // If this is OpenMP, check if it is legal to emit this global normally.
3614     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3615       return;
3616     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3617       if (MustBeEmitted(Global))
3618         EmitOMPDeclareReduction(DRD);
3619       return;
3620     }
3621     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3622       if (MustBeEmitted(Global))
3623         EmitOMPDeclareMapper(DMD);
3624       return;
3625     }
3626   }
3627 
3628   // Ignore declarations, they will be emitted on their first use.
3629   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3630     // Forward declarations are emitted lazily on first use.
3631     if (!FD->doesThisDeclarationHaveABody()) {
3632       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3633         return;
3634 
3635       StringRef MangledName = getMangledName(GD);
3636 
3637       // Compute the function info and LLVM type.
3638       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3639       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3640 
3641       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3642                               /*DontDefer=*/false);
3643       return;
3644     }
3645   } else {
3646     const auto *VD = cast<VarDecl>(Global);
3647     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3648     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3649         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3650       if (LangOpts.OpenMP) {
3651         // Emit declaration of the must-be-emitted declare target variable.
3652         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3653                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3654 
3655           // If this variable has external storage and doesn't require special
3656           // link handling we defer to its canonical definition.
3657           if (VD->hasExternalStorage() &&
3658               Res != OMPDeclareTargetDeclAttr::MT_Link)
3659             return;
3660 
3661           bool UnifiedMemoryEnabled =
3662               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3663           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3664                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3665               !UnifiedMemoryEnabled) {
3666             (void)GetAddrOfGlobalVar(VD);
3667           } else {
3668             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3669                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3670                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3671                      UnifiedMemoryEnabled)) &&
3672                    "Link clause or to clause with unified memory expected.");
3673             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3674           }
3675 
3676           return;
3677         }
3678       }
3679       // If this declaration may have caused an inline variable definition to
3680       // change linkage, make sure that it's emitted.
3681       if (Context.getInlineVariableDefinitionKind(VD) ==
3682           ASTContext::InlineVariableDefinitionKind::Strong)
3683         GetAddrOfGlobalVar(VD);
3684       return;
3685     }
3686   }
3687 
3688   // Defer code generation to first use when possible, e.g. if this is an inline
3689   // function. If the global must always be emitted, do it eagerly if possible
3690   // to benefit from cache locality.
3691   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3692     // Emit the definition if it can't be deferred.
3693     EmitGlobalDefinition(GD);
3694     addEmittedDeferredDecl(GD);
3695     return;
3696   }
3697 
3698   // If we're deferring emission of a C++ variable with an
3699   // initializer, remember the order in which it appeared in the file.
3700   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3701       cast<VarDecl>(Global)->hasInit()) {
3702     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3703     CXXGlobalInits.push_back(nullptr);
3704   }
3705 
3706   StringRef MangledName = getMangledName(GD);
3707   if (GetGlobalValue(MangledName) != nullptr) {
3708     // The value has already been used and should therefore be emitted.
3709     addDeferredDeclToEmit(GD);
3710   } else if (MustBeEmitted(Global)) {
3711     // The value must be emitted, but cannot be emitted eagerly.
3712     assert(!MayBeEmittedEagerly(Global));
3713     addDeferredDeclToEmit(GD);
3714   } else {
3715     // Otherwise, remember that we saw a deferred decl with this name.  The
3716     // first use of the mangled name will cause it to move into
3717     // DeferredDeclsToEmit.
3718     DeferredDecls[MangledName] = GD;
3719   }
3720 }
3721 
3722 // Check if T is a class type with a destructor that's not dllimport.
3723 static bool HasNonDllImportDtor(QualType T) {
3724   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3725     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3726       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3727         return true;
3728 
3729   return false;
3730 }
3731 
3732 namespace {
3733   struct FunctionIsDirectlyRecursive
3734       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3735     const StringRef Name;
3736     const Builtin::Context &BI;
3737     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3738         : Name(N), BI(C) {}
3739 
3740     bool VisitCallExpr(const CallExpr *E) {
3741       const FunctionDecl *FD = E->getDirectCallee();
3742       if (!FD)
3743         return false;
3744       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3745       if (Attr && Name == Attr->getLabel())
3746         return true;
3747       unsigned BuiltinID = FD->getBuiltinID();
3748       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3749         return false;
3750       StringRef BuiltinName = BI.getName(BuiltinID);
3751       if (BuiltinName.startswith("__builtin_") &&
3752           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3753         return true;
3754       }
3755       return false;
3756     }
3757 
3758     bool VisitStmt(const Stmt *S) {
3759       for (const Stmt *Child : S->children())
3760         if (Child && this->Visit(Child))
3761           return true;
3762       return false;
3763     }
3764   };
3765 
3766   // Make sure we're not referencing non-imported vars or functions.
3767   struct DLLImportFunctionVisitor
3768       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3769     bool SafeToInline = true;
3770 
3771     bool shouldVisitImplicitCode() const { return true; }
3772 
3773     bool VisitVarDecl(VarDecl *VD) {
3774       if (VD->getTLSKind()) {
3775         // A thread-local variable cannot be imported.
3776         SafeToInline = false;
3777         return SafeToInline;
3778       }
3779 
3780       // A variable definition might imply a destructor call.
3781       if (VD->isThisDeclarationADefinition())
3782         SafeToInline = !HasNonDllImportDtor(VD->getType());
3783 
3784       return SafeToInline;
3785     }
3786 
3787     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3788       if (const auto *D = E->getTemporary()->getDestructor())
3789         SafeToInline = D->hasAttr<DLLImportAttr>();
3790       return SafeToInline;
3791     }
3792 
3793     bool VisitDeclRefExpr(DeclRefExpr *E) {
3794       ValueDecl *VD = E->getDecl();
3795       if (isa<FunctionDecl>(VD))
3796         SafeToInline = VD->hasAttr<DLLImportAttr>();
3797       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3798         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3799       return SafeToInline;
3800     }
3801 
3802     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3803       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3804       return SafeToInline;
3805     }
3806 
3807     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3808       CXXMethodDecl *M = E->getMethodDecl();
3809       if (!M) {
3810         // Call through a pointer to member function. This is safe to inline.
3811         SafeToInline = true;
3812       } else {
3813         SafeToInline = M->hasAttr<DLLImportAttr>();
3814       }
3815       return SafeToInline;
3816     }
3817 
3818     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3819       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3820       return SafeToInline;
3821     }
3822 
3823     bool VisitCXXNewExpr(CXXNewExpr *E) {
3824       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3825       return SafeToInline;
3826     }
3827   };
3828 }
3829 
3830 // isTriviallyRecursive - Check if this function calls another
3831 // decl that, because of the asm attribute or the other decl being a builtin,
3832 // ends up pointing to itself.
3833 bool
3834 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3835   StringRef Name;
3836   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3837     // asm labels are a special kind of mangling we have to support.
3838     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3839     if (!Attr)
3840       return false;
3841     Name = Attr->getLabel();
3842   } else {
3843     Name = FD->getName();
3844   }
3845 
3846   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3847   const Stmt *Body = FD->getBody();
3848   return Body ? Walker.Visit(Body) : false;
3849 }
3850 
3851 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3852   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3853     return true;
3854   const auto *F = cast<FunctionDecl>(GD.getDecl());
3855   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3856     return false;
3857 
3858   if (F->hasAttr<NoInlineAttr>())
3859     return false;
3860 
3861   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3862     // Check whether it would be safe to inline this dllimport function.
3863     DLLImportFunctionVisitor Visitor;
3864     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3865     if (!Visitor.SafeToInline)
3866       return false;
3867 
3868     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3869       // Implicit destructor invocations aren't captured in the AST, so the
3870       // check above can't see them. Check for them manually here.
3871       for (const Decl *Member : Dtor->getParent()->decls())
3872         if (isa<FieldDecl>(Member))
3873           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3874             return false;
3875       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3876         if (HasNonDllImportDtor(B.getType()))
3877           return false;
3878     }
3879   }
3880 
3881   // Inline builtins declaration must be emitted. They often are fortified
3882   // functions.
3883   if (F->isInlineBuiltinDeclaration())
3884     return true;
3885 
3886   // PR9614. Avoid cases where the source code is lying to us. An available
3887   // externally function should have an equivalent function somewhere else,
3888   // but a function that calls itself through asm label/`__builtin_` trickery is
3889   // clearly not equivalent to the real implementation.
3890   // This happens in glibc's btowc and in some configure checks.
3891   return !isTriviallyRecursive(F);
3892 }
3893 
3894 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3895   return CodeGenOpts.OptimizationLevel > 0;
3896 }
3897 
3898 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3899                                                        llvm::GlobalValue *GV) {
3900   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3901 
3902   if (FD->isCPUSpecificMultiVersion()) {
3903     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3904     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3905       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3906   } else if (FD->isTargetClonesMultiVersion()) {
3907     auto *Clone = FD->getAttr<TargetClonesAttr>();
3908     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3909       if (Clone->isFirstOfVersion(I))
3910         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3911     // Ensure that the resolver function is also emitted.
3912     GetOrCreateMultiVersionResolver(GD);
3913   } else
3914     EmitGlobalFunctionDefinition(GD, GV);
3915 }
3916 
3917 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3918   const auto *D = cast<ValueDecl>(GD.getDecl());
3919 
3920   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3921                                  Context.getSourceManager(),
3922                                  "Generating code for declaration");
3923 
3924   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3925     // At -O0, don't generate IR for functions with available_externally
3926     // linkage.
3927     if (!shouldEmitFunction(GD))
3928       return;
3929 
3930     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3931       std::string Name;
3932       llvm::raw_string_ostream OS(Name);
3933       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3934                                /*Qualified=*/true);
3935       return Name;
3936     });
3937 
3938     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3939       // Make sure to emit the definition(s) before we emit the thunks.
3940       // This is necessary for the generation of certain thunks.
3941       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3942         ABI->emitCXXStructor(GD);
3943       else if (FD->isMultiVersion())
3944         EmitMultiVersionFunctionDefinition(GD, GV);
3945       else
3946         EmitGlobalFunctionDefinition(GD, GV);
3947 
3948       if (Method->isVirtual())
3949         getVTables().EmitThunks(GD);
3950 
3951       return;
3952     }
3953 
3954     if (FD->isMultiVersion())
3955       return EmitMultiVersionFunctionDefinition(GD, GV);
3956     return EmitGlobalFunctionDefinition(GD, GV);
3957   }
3958 
3959   if (const auto *VD = dyn_cast<VarDecl>(D))
3960     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3961 
3962   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3963 }
3964 
3965 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3966                                                       llvm::Function *NewFn);
3967 
3968 static unsigned
3969 TargetMVPriority(const TargetInfo &TI,
3970                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3971   unsigned Priority = 0;
3972   unsigned NumFeatures = 0;
3973   for (StringRef Feat : RO.Conditions.Features) {
3974     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3975     NumFeatures++;
3976   }
3977 
3978   if (!RO.Conditions.Architecture.empty())
3979     Priority = std::max(
3980         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3981 
3982   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3983 
3984   return Priority;
3985 }
3986 
3987 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3988 // TU can forward declare the function without causing problems.  Particularly
3989 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3990 // work with internal linkage functions, so that the same function name can be
3991 // used with internal linkage in multiple TUs.
3992 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3993                                                        GlobalDecl GD) {
3994   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3995   if (FD->getFormalLinkage() == Linkage::Internal)
3996     return llvm::GlobalValue::InternalLinkage;
3997   return llvm::GlobalValue::WeakODRLinkage;
3998 }
3999 
4000 void CodeGenModule::emitMultiVersionFunctions() {
4001   std::vector<GlobalDecl> MVFuncsToEmit;
4002   MultiVersionFuncs.swap(MVFuncsToEmit);
4003   for (GlobalDecl GD : MVFuncsToEmit) {
4004     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4005     assert(FD && "Expected a FunctionDecl");
4006 
4007     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4008     if (FD->isTargetMultiVersion()) {
4009       getContext().forEachMultiversionedFunctionVersion(
4010           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
4011             GlobalDecl CurGD{
4012                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
4013             StringRef MangledName = getMangledName(CurGD);
4014             llvm::Constant *Func = GetGlobalValue(MangledName);
4015             if (!Func) {
4016               if (CurFD->isDefined()) {
4017                 EmitGlobalFunctionDefinition(CurGD, nullptr);
4018                 Func = GetGlobalValue(MangledName);
4019               } else {
4020                 const CGFunctionInfo &FI =
4021                     getTypes().arrangeGlobalDeclaration(GD);
4022                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4023                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4024                                          /*DontDefer=*/false, ForDefinition);
4025               }
4026               assert(Func && "This should have just been created");
4027             }
4028             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
4029               const auto *TA = CurFD->getAttr<TargetAttr>();
4030               llvm::SmallVector<StringRef, 8> Feats;
4031               TA->getAddedFeatures(Feats);
4032               Options.emplace_back(cast<llvm::Function>(Func),
4033                                    TA->getArchitecture(), Feats);
4034             } else {
4035               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
4036               llvm::SmallVector<StringRef, 8> Feats;
4037               TVA->getFeatures(Feats);
4038               Options.emplace_back(cast<llvm::Function>(Func),
4039                                    /*Architecture*/ "", Feats);
4040             }
4041           });
4042     } else if (FD->isTargetClonesMultiVersion()) {
4043       const auto *TC = FD->getAttr<TargetClonesAttr>();
4044       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
4045            ++VersionIndex) {
4046         if (!TC->isFirstOfVersion(VersionIndex))
4047           continue;
4048         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4049                          VersionIndex};
4050         StringRef Version = TC->getFeatureStr(VersionIndex);
4051         StringRef MangledName = getMangledName(CurGD);
4052         llvm::Constant *Func = GetGlobalValue(MangledName);
4053         if (!Func) {
4054           if (FD->isDefined()) {
4055             EmitGlobalFunctionDefinition(CurGD, nullptr);
4056             Func = GetGlobalValue(MangledName);
4057           } else {
4058             const CGFunctionInfo &FI =
4059                 getTypes().arrangeGlobalDeclaration(CurGD);
4060             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4061             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4062                                      /*DontDefer=*/false, ForDefinition);
4063           }
4064           assert(Func && "This should have just been created");
4065         }
4066 
4067         StringRef Architecture;
4068         llvm::SmallVector<StringRef, 1> Feature;
4069 
4070         if (getTarget().getTriple().isAArch64()) {
4071           if (Version != "default") {
4072             llvm::SmallVector<StringRef, 8> VerFeats;
4073             Version.split(VerFeats, "+");
4074             for (auto &CurFeat : VerFeats)
4075               Feature.push_back(CurFeat.trim());
4076           }
4077         } else {
4078           if (Version.startswith("arch="))
4079             Architecture = Version.drop_front(sizeof("arch=") - 1);
4080           else if (Version != "default")
4081             Feature.push_back(Version);
4082         }
4083 
4084         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4085       }
4086     } else {
4087       assert(0 && "Expected a target or target_clones multiversion function");
4088       continue;
4089     }
4090 
4091     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4092     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
4093       ResolverConstant = IFunc->getResolver();
4094     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4095 
4096     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4097 
4098     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4099       ResolverFunc->setComdat(
4100           getModule().getOrInsertComdat(ResolverFunc->getName()));
4101 
4102     const TargetInfo &TI = getTarget();
4103     llvm::stable_sort(
4104         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4105                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4106           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4107         });
4108     CodeGenFunction CGF(*this);
4109     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4110   }
4111 
4112   // Ensure that any additions to the deferred decls list caused by emitting a
4113   // variant are emitted.  This can happen when the variant itself is inline and
4114   // calls a function without linkage.
4115   if (!MVFuncsToEmit.empty())
4116     EmitDeferred();
4117 
4118   // Ensure that any additions to the multiversion funcs list from either the
4119   // deferred decls or the multiversion functions themselves are emitted.
4120   if (!MultiVersionFuncs.empty())
4121     emitMultiVersionFunctions();
4122 }
4123 
4124 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4125   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4126   assert(FD && "Not a FunctionDecl?");
4127   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4128   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4129   assert(DD && "Not a cpu_dispatch Function?");
4130 
4131   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4132   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4133 
4134   StringRef ResolverName = getMangledName(GD);
4135   UpdateMultiVersionNames(GD, FD, ResolverName);
4136 
4137   llvm::Type *ResolverType;
4138   GlobalDecl ResolverGD;
4139   if (getTarget().supportsIFunc()) {
4140     ResolverType = llvm::FunctionType::get(
4141         llvm::PointerType::get(DeclTy,
4142                                getTypes().getTargetAddressSpace(FD->getType())),
4143         false);
4144   }
4145   else {
4146     ResolverType = DeclTy;
4147     ResolverGD = GD;
4148   }
4149 
4150   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4151       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4152   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4153   if (supportsCOMDAT())
4154     ResolverFunc->setComdat(
4155         getModule().getOrInsertComdat(ResolverFunc->getName()));
4156 
4157   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4158   const TargetInfo &Target = getTarget();
4159   unsigned Index = 0;
4160   for (const IdentifierInfo *II : DD->cpus()) {
4161     // Get the name of the target function so we can look it up/create it.
4162     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4163                               getCPUSpecificMangling(*this, II->getName());
4164 
4165     llvm::Constant *Func = GetGlobalValue(MangledName);
4166 
4167     if (!Func) {
4168       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4169       if (ExistingDecl.getDecl() &&
4170           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4171         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4172         Func = GetGlobalValue(MangledName);
4173       } else {
4174         if (!ExistingDecl.getDecl())
4175           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4176 
4177       Func = GetOrCreateLLVMFunction(
4178           MangledName, DeclTy, ExistingDecl,
4179           /*ForVTable=*/false, /*DontDefer=*/true,
4180           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4181       }
4182     }
4183 
4184     llvm::SmallVector<StringRef, 32> Features;
4185     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4186     llvm::transform(Features, Features.begin(),
4187                     [](StringRef Str) { return Str.substr(1); });
4188     llvm::erase_if(Features, [&Target](StringRef Feat) {
4189       return !Target.validateCpuSupports(Feat);
4190     });
4191     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4192     ++Index;
4193   }
4194 
4195   llvm::stable_sort(
4196       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4197                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4198         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4199                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4200       });
4201 
4202   // If the list contains multiple 'default' versions, such as when it contains
4203   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4204   // always run on at least a 'pentium'). We do this by deleting the 'least
4205   // advanced' (read, lowest mangling letter).
4206   while (Options.size() > 1 &&
4207          llvm::all_of(llvm::X86::getCpuSupportsMask(
4208                           (Options.end() - 2)->Conditions.Features),
4209                       [](auto X) { return X == 0; })) {
4210     StringRef LHSName = (Options.end() - 2)->Function->getName();
4211     StringRef RHSName = (Options.end() - 1)->Function->getName();
4212     if (LHSName.compare(RHSName) < 0)
4213       Options.erase(Options.end() - 2);
4214     else
4215       Options.erase(Options.end() - 1);
4216   }
4217 
4218   CodeGenFunction CGF(*this);
4219   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4220 
4221   if (getTarget().supportsIFunc()) {
4222     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4223     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4224 
4225     // Fix up function declarations that were created for cpu_specific before
4226     // cpu_dispatch was known
4227     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4228       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4229       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4230                                            &getModule());
4231       GI->takeName(IFunc);
4232       IFunc->replaceAllUsesWith(GI);
4233       IFunc->eraseFromParent();
4234       IFunc = GI;
4235     }
4236 
4237     std::string AliasName = getMangledNameImpl(
4238         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4239     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4240     if (!AliasFunc) {
4241       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4242                                            &getModule());
4243       SetCommonAttributes(GD, GA);
4244     }
4245   }
4246 }
4247 
4248 /// If a dispatcher for the specified mangled name is not in the module, create
4249 /// and return an llvm Function with the specified type.
4250 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4251   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4252   assert(FD && "Not a FunctionDecl?");
4253 
4254   std::string MangledName =
4255       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4256 
4257   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4258   // a separate resolver).
4259   std::string ResolverName = MangledName;
4260   if (getTarget().supportsIFunc())
4261     ResolverName += ".ifunc";
4262   else if (FD->isTargetMultiVersion())
4263     ResolverName += ".resolver";
4264 
4265   // If the resolver has already been created, just return it.
4266   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4267     return ResolverGV;
4268 
4269   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4270   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4271 
4272   // The resolver needs to be created. For target and target_clones, defer
4273   // creation until the end of the TU.
4274   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4275     MultiVersionFuncs.push_back(GD);
4276 
4277   // For cpu_specific, don't create an ifunc yet because we don't know if the
4278   // cpu_dispatch will be emitted in this translation unit.
4279   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4280     llvm::Type *ResolverType = llvm::FunctionType::get(
4281         llvm::PointerType::get(DeclTy,
4282                                getTypes().getTargetAddressSpace(FD->getType())),
4283         false);
4284     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4285         MangledName + ".resolver", ResolverType, GlobalDecl{},
4286         /*ForVTable=*/false);
4287     llvm::GlobalIFunc *GIF =
4288         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4289                                   "", Resolver, &getModule());
4290     GIF->setName(ResolverName);
4291     SetCommonAttributes(FD, GIF);
4292 
4293     return GIF;
4294   }
4295 
4296   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4297       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4298   assert(isa<llvm::GlobalValue>(Resolver) &&
4299          "Resolver should be created for the first time");
4300   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4301   return Resolver;
4302 }
4303 
4304 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4305 /// module, create and return an llvm Function with the specified type. If there
4306 /// is something in the module with the specified name, return it potentially
4307 /// bitcasted to the right type.
4308 ///
4309 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4310 /// to set the attributes on the function when it is first created.
4311 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4312     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4313     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4314     ForDefinition_t IsForDefinition) {
4315   const Decl *D = GD.getDecl();
4316 
4317   // Any attempts to use a MultiVersion function should result in retrieving
4318   // the iFunc instead. Name Mangling will handle the rest of the changes.
4319   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4320     // For the device mark the function as one that should be emitted.
4321     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4322         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4323         !DontDefer && !IsForDefinition) {
4324       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4325         GlobalDecl GDDef;
4326         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4327           GDDef = GlobalDecl(CD, GD.getCtorType());
4328         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4329           GDDef = GlobalDecl(DD, GD.getDtorType());
4330         else
4331           GDDef = GlobalDecl(FDDef);
4332         EmitGlobal(GDDef);
4333       }
4334     }
4335 
4336     if (FD->isMultiVersion()) {
4337       UpdateMultiVersionNames(GD, FD, MangledName);
4338       if (!IsForDefinition)
4339         return GetOrCreateMultiVersionResolver(GD);
4340     }
4341   }
4342 
4343   // Lookup the entry, lazily creating it if necessary.
4344   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4345   if (Entry) {
4346     if (WeakRefReferences.erase(Entry)) {
4347       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4348       if (FD && !FD->hasAttr<WeakAttr>())
4349         Entry->setLinkage(llvm::Function::ExternalLinkage);
4350     }
4351 
4352     // Handle dropped DLL attributes.
4353     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4354         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4355       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4356       setDSOLocal(Entry);
4357     }
4358 
4359     // If there are two attempts to define the same mangled name, issue an
4360     // error.
4361     if (IsForDefinition && !Entry->isDeclaration()) {
4362       GlobalDecl OtherGD;
4363       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4364       // to make sure that we issue an error only once.
4365       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4366           (GD.getCanonicalDecl().getDecl() !=
4367            OtherGD.getCanonicalDecl().getDecl()) &&
4368           DiagnosedConflictingDefinitions.insert(GD).second) {
4369         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4370             << MangledName;
4371         getDiags().Report(OtherGD.getDecl()->getLocation(),
4372                           diag::note_previous_definition);
4373       }
4374     }
4375 
4376     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4377         (Entry->getValueType() == Ty)) {
4378       return Entry;
4379     }
4380 
4381     // Make sure the result is of the correct type.
4382     // (If function is requested for a definition, we always need to create a new
4383     // function, not just return a bitcast.)
4384     if (!IsForDefinition)
4385       return Entry;
4386   }
4387 
4388   // This function doesn't have a complete type (for example, the return
4389   // type is an incomplete struct). Use a fake type instead, and make
4390   // sure not to try to set attributes.
4391   bool IsIncompleteFunction = false;
4392 
4393   llvm::FunctionType *FTy;
4394   if (isa<llvm::FunctionType>(Ty)) {
4395     FTy = cast<llvm::FunctionType>(Ty);
4396   } else {
4397     FTy = llvm::FunctionType::get(VoidTy, false);
4398     IsIncompleteFunction = true;
4399   }
4400 
4401   llvm::Function *F =
4402       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4403                              Entry ? StringRef() : MangledName, &getModule());
4404 
4405   // If we already created a function with the same mangled name (but different
4406   // type) before, take its name and add it to the list of functions to be
4407   // replaced with F at the end of CodeGen.
4408   //
4409   // This happens if there is a prototype for a function (e.g. "int f()") and
4410   // then a definition of a different type (e.g. "int f(int x)").
4411   if (Entry) {
4412     F->takeName(Entry);
4413 
4414     // This might be an implementation of a function without a prototype, in
4415     // which case, try to do special replacement of calls which match the new
4416     // prototype.  The really key thing here is that we also potentially drop
4417     // arguments from the call site so as to make a direct call, which makes the
4418     // inliner happier and suppresses a number of optimizer warnings (!) about
4419     // dropping arguments.
4420     if (!Entry->use_empty()) {
4421       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4422       Entry->removeDeadConstantUsers();
4423     }
4424 
4425     addGlobalValReplacement(Entry, F);
4426   }
4427 
4428   assert(F->getName() == MangledName && "name was uniqued!");
4429   if (D)
4430     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4431   if (ExtraAttrs.hasFnAttrs()) {
4432     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4433     F->addFnAttrs(B);
4434   }
4435 
4436   if (!DontDefer) {
4437     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4438     // each other bottoming out with the base dtor.  Therefore we emit non-base
4439     // dtors on usage, even if there is no dtor definition in the TU.
4440     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4441         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4442                                            GD.getDtorType()))
4443       addDeferredDeclToEmit(GD);
4444 
4445     // This is the first use or definition of a mangled name.  If there is a
4446     // deferred decl with this name, remember that we need to emit it at the end
4447     // of the file.
4448     auto DDI = DeferredDecls.find(MangledName);
4449     if (DDI != DeferredDecls.end()) {
4450       // Move the potentially referenced deferred decl to the
4451       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4452       // don't need it anymore).
4453       addDeferredDeclToEmit(DDI->second);
4454       DeferredDecls.erase(DDI);
4455 
4456       // Otherwise, there are cases we have to worry about where we're
4457       // using a declaration for which we must emit a definition but where
4458       // we might not find a top-level definition:
4459       //   - member functions defined inline in their classes
4460       //   - friend functions defined inline in some class
4461       //   - special member functions with implicit definitions
4462       // If we ever change our AST traversal to walk into class methods,
4463       // this will be unnecessary.
4464       //
4465       // We also don't emit a definition for a function if it's going to be an
4466       // entry in a vtable, unless it's already marked as used.
4467     } else if (getLangOpts().CPlusPlus && D) {
4468       // Look for a declaration that's lexically in a record.
4469       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4470            FD = FD->getPreviousDecl()) {
4471         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4472           if (FD->doesThisDeclarationHaveABody()) {
4473             addDeferredDeclToEmit(GD.getWithDecl(FD));
4474             break;
4475           }
4476         }
4477       }
4478     }
4479   }
4480 
4481   // Make sure the result is of the requested type.
4482   if (!IsIncompleteFunction) {
4483     assert(F->getFunctionType() == Ty);
4484     return F;
4485   }
4486 
4487   return F;
4488 }
4489 
4490 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4491 /// non-null, then this function will use the specified type if it has to
4492 /// create it (this occurs when we see a definition of the function).
4493 llvm::Constant *
4494 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4495                                  bool DontDefer,
4496                                  ForDefinition_t IsForDefinition) {
4497   // If there was no specific requested type, just convert it now.
4498   if (!Ty) {
4499     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4500     Ty = getTypes().ConvertType(FD->getType());
4501   }
4502 
4503   // Devirtualized destructor calls may come through here instead of via
4504   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4505   // of the complete destructor when necessary.
4506   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4507     if (getTarget().getCXXABI().isMicrosoft() &&
4508         GD.getDtorType() == Dtor_Complete &&
4509         DD->getParent()->getNumVBases() == 0)
4510       GD = GlobalDecl(DD, Dtor_Base);
4511   }
4512 
4513   StringRef MangledName = getMangledName(GD);
4514   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4515                                     /*IsThunk=*/false, llvm::AttributeList(),
4516                                     IsForDefinition);
4517   // Returns kernel handle for HIP kernel stub function.
4518   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4519       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4520     auto *Handle = getCUDARuntime().getKernelHandle(
4521         cast<llvm::Function>(F->stripPointerCasts()), GD);
4522     if (IsForDefinition)
4523       return F;
4524     return Handle;
4525   }
4526   return F;
4527 }
4528 
4529 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4530   llvm::GlobalValue *F =
4531       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4532 
4533   return llvm::ConstantExpr::getBitCast(
4534       llvm::NoCFIValue::get(F),
4535       llvm::PointerType::get(VMContext, F->getAddressSpace()));
4536 }
4537 
4538 static const FunctionDecl *
4539 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4540   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4541   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4542 
4543   IdentifierInfo &CII = C.Idents.get(Name);
4544   for (const auto *Result : DC->lookup(&CII))
4545     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4546       return FD;
4547 
4548   if (!C.getLangOpts().CPlusPlus)
4549     return nullptr;
4550 
4551   // Demangle the premangled name from getTerminateFn()
4552   IdentifierInfo &CXXII =
4553       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4554           ? C.Idents.get("terminate")
4555           : C.Idents.get(Name);
4556 
4557   for (const auto &N : {"__cxxabiv1", "std"}) {
4558     IdentifierInfo &NS = C.Idents.get(N);
4559     for (const auto *Result : DC->lookup(&NS)) {
4560       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4561       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4562         for (const auto *Result : LSD->lookup(&NS))
4563           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4564             break;
4565 
4566       if (ND)
4567         for (const auto *Result : ND->lookup(&CXXII))
4568           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4569             return FD;
4570     }
4571   }
4572 
4573   return nullptr;
4574 }
4575 
4576 /// CreateRuntimeFunction - Create a new runtime function with the specified
4577 /// type and name.
4578 llvm::FunctionCallee
4579 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4580                                      llvm::AttributeList ExtraAttrs, bool Local,
4581                                      bool AssumeConvergent) {
4582   if (AssumeConvergent) {
4583     ExtraAttrs =
4584         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4585   }
4586 
4587   llvm::Constant *C =
4588       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4589                               /*DontDefer=*/false, /*IsThunk=*/false,
4590                               ExtraAttrs);
4591 
4592   if (auto *F = dyn_cast<llvm::Function>(C)) {
4593     if (F->empty()) {
4594       F->setCallingConv(getRuntimeCC());
4595 
4596       // In Windows Itanium environments, try to mark runtime functions
4597       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4598       // will link their standard library statically or dynamically. Marking
4599       // functions imported when they are not imported can cause linker errors
4600       // and warnings.
4601       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4602           !getCodeGenOpts().LTOVisibilityPublicStd) {
4603         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4604         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4605           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4606           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4607         }
4608       }
4609       setDSOLocal(F);
4610     }
4611   }
4612 
4613   return {FTy, C};
4614 }
4615 
4616 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4617 /// create and return an llvm GlobalVariable with the specified type and address
4618 /// space. If there is something in the module with the specified name, return
4619 /// it potentially bitcasted to the right type.
4620 ///
4621 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4622 /// to set the attributes on the global when it is first created.
4623 ///
4624 /// If IsForDefinition is true, it is guaranteed that an actual global with
4625 /// type Ty will be returned, not conversion of a variable with the same
4626 /// mangled name but some other type.
4627 llvm::Constant *
4628 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4629                                      LangAS AddrSpace, const VarDecl *D,
4630                                      ForDefinition_t IsForDefinition) {
4631   // Lookup the entry, lazily creating it if necessary.
4632   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4633   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4634   if (Entry) {
4635     if (WeakRefReferences.erase(Entry)) {
4636       if (D && !D->hasAttr<WeakAttr>())
4637         Entry->setLinkage(llvm::Function::ExternalLinkage);
4638     }
4639 
4640     // Handle dropped DLL attributes.
4641     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4642         !shouldMapVisibilityToDLLExport(D))
4643       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4644 
4645     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4646       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4647 
4648     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4649       return Entry;
4650 
4651     // If there are two attempts to define the same mangled name, issue an
4652     // error.
4653     if (IsForDefinition && !Entry->isDeclaration()) {
4654       GlobalDecl OtherGD;
4655       const VarDecl *OtherD;
4656 
4657       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4658       // to make sure that we issue an error only once.
4659       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4660           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4661           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4662           OtherD->hasInit() &&
4663           DiagnosedConflictingDefinitions.insert(D).second) {
4664         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4665             << MangledName;
4666         getDiags().Report(OtherGD.getDecl()->getLocation(),
4667                           diag::note_previous_definition);
4668       }
4669     }
4670 
4671     // Make sure the result is of the correct type.
4672     if (Entry->getType()->getAddressSpace() != TargetAS)
4673       return llvm::ConstantExpr::getAddrSpaceCast(
4674           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4675 
4676     // (If global is requested for a definition, we always need to create a new
4677     // global, not just return a bitcast.)
4678     if (!IsForDefinition)
4679       return Entry;
4680   }
4681 
4682   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4683 
4684   auto *GV = new llvm::GlobalVariable(
4685       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4686       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4687       getContext().getTargetAddressSpace(DAddrSpace));
4688 
4689   // If we already created a global with the same mangled name (but different
4690   // type) before, take its name and remove it from its parent.
4691   if (Entry) {
4692     GV->takeName(Entry);
4693 
4694     if (!Entry->use_empty()) {
4695       Entry->replaceAllUsesWith(GV);
4696     }
4697 
4698     Entry->eraseFromParent();
4699   }
4700 
4701   // This is the first use or definition of a mangled name.  If there is a
4702   // deferred decl with this name, remember that we need to emit it at the end
4703   // of the file.
4704   auto DDI = DeferredDecls.find(MangledName);
4705   if (DDI != DeferredDecls.end()) {
4706     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4707     // list, and remove it from DeferredDecls (since we don't need it anymore).
4708     addDeferredDeclToEmit(DDI->second);
4709     DeferredDecls.erase(DDI);
4710   }
4711 
4712   // Handle things which are present even on external declarations.
4713   if (D) {
4714     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4715       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4716 
4717     // FIXME: This code is overly simple and should be merged with other global
4718     // handling.
4719     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4720 
4721     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4722 
4723     setLinkageForGV(GV, D);
4724 
4725     if (D->getTLSKind()) {
4726       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4727         CXXThreadLocals.push_back(D);
4728       setTLSMode(GV, *D);
4729     }
4730 
4731     setGVProperties(GV, D);
4732 
4733     // If required by the ABI, treat declarations of static data members with
4734     // inline initializers as definitions.
4735     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4736       EmitGlobalVarDefinition(D);
4737     }
4738 
4739     // Emit section information for extern variables.
4740     if (D->hasExternalStorage()) {
4741       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4742         GV->setSection(SA->getName());
4743     }
4744 
4745     // Handle XCore specific ABI requirements.
4746     if (getTriple().getArch() == llvm::Triple::xcore &&
4747         D->getLanguageLinkage() == CLanguageLinkage &&
4748         D->getType().isConstant(Context) &&
4749         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4750       GV->setSection(".cp.rodata");
4751 
4752     // Check if we a have a const declaration with an initializer, we may be
4753     // able to emit it as available_externally to expose it's value to the
4754     // optimizer.
4755     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4756         D->getType().isConstQualified() && !GV->hasInitializer() &&
4757         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4758       const auto *Record =
4759           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4760       bool HasMutableFields = Record && Record->hasMutableFields();
4761       if (!HasMutableFields) {
4762         const VarDecl *InitDecl;
4763         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4764         if (InitExpr) {
4765           ConstantEmitter emitter(*this);
4766           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4767           if (Init) {
4768             auto *InitType = Init->getType();
4769             if (GV->getValueType() != InitType) {
4770               // The type of the initializer does not match the definition.
4771               // This happens when an initializer has a different type from
4772               // the type of the global (because of padding at the end of a
4773               // structure for instance).
4774               GV->setName(StringRef());
4775               // Make a new global with the correct type, this is now guaranteed
4776               // to work.
4777               auto *NewGV = cast<llvm::GlobalVariable>(
4778                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4779                       ->stripPointerCasts());
4780 
4781               // Erase the old global, since it is no longer used.
4782               GV->eraseFromParent();
4783               GV = NewGV;
4784             } else {
4785               GV->setInitializer(Init);
4786               GV->setConstant(true);
4787               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4788             }
4789             emitter.finalize(GV);
4790           }
4791         }
4792       }
4793     }
4794   }
4795 
4796   if (D &&
4797       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4798     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4799     // External HIP managed variables needed to be recorded for transformation
4800     // in both device and host compilations.
4801     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4802         D->hasExternalStorage())
4803       getCUDARuntime().handleVarRegistration(D, *GV);
4804   }
4805 
4806   if (D)
4807     SanitizerMD->reportGlobal(GV, *D);
4808 
4809   LangAS ExpectedAS =
4810       D ? D->getType().getAddressSpace()
4811         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4812   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4813   if (DAddrSpace != ExpectedAS) {
4814     return getTargetCodeGenInfo().performAddrSpaceCast(
4815         *this, GV, DAddrSpace, ExpectedAS,
4816         llvm::PointerType::get(getLLVMContext(), TargetAS));
4817   }
4818 
4819   return GV;
4820 }
4821 
4822 llvm::Constant *
4823 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4824   const Decl *D = GD.getDecl();
4825 
4826   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4827     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4828                                 /*DontDefer=*/false, IsForDefinition);
4829 
4830   if (isa<CXXMethodDecl>(D)) {
4831     auto FInfo =
4832         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4833     auto Ty = getTypes().GetFunctionType(*FInfo);
4834     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4835                              IsForDefinition);
4836   }
4837 
4838   if (isa<FunctionDecl>(D)) {
4839     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4840     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4841     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4842                              IsForDefinition);
4843   }
4844 
4845   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4846 }
4847 
4848 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4849     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4850     llvm::Align Alignment) {
4851   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4852   llvm::GlobalVariable *OldGV = nullptr;
4853 
4854   if (GV) {
4855     // Check if the variable has the right type.
4856     if (GV->getValueType() == Ty)
4857       return GV;
4858 
4859     // Because C++ name mangling, the only way we can end up with an already
4860     // existing global with the same name is if it has been declared extern "C".
4861     assert(GV->isDeclaration() && "Declaration has wrong type!");
4862     OldGV = GV;
4863   }
4864 
4865   // Create a new variable.
4866   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4867                                 Linkage, nullptr, Name);
4868 
4869   if (OldGV) {
4870     // Replace occurrences of the old variable if needed.
4871     GV->takeName(OldGV);
4872 
4873     if (!OldGV->use_empty()) {
4874       OldGV->replaceAllUsesWith(GV);
4875     }
4876 
4877     OldGV->eraseFromParent();
4878   }
4879 
4880   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4881       !GV->hasAvailableExternallyLinkage())
4882     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4883 
4884   GV->setAlignment(Alignment);
4885 
4886   return GV;
4887 }
4888 
4889 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4890 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4891 /// then it will be created with the specified type instead of whatever the
4892 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4893 /// that an actual global with type Ty will be returned, not conversion of a
4894 /// variable with the same mangled name but some other type.
4895 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4896                                                   llvm::Type *Ty,
4897                                            ForDefinition_t IsForDefinition) {
4898   assert(D->hasGlobalStorage() && "Not a global variable");
4899   QualType ASTTy = D->getType();
4900   if (!Ty)
4901     Ty = getTypes().ConvertTypeForMem(ASTTy);
4902 
4903   StringRef MangledName = getMangledName(D);
4904   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4905                                IsForDefinition);
4906 }
4907 
4908 /// CreateRuntimeVariable - Create a new runtime global variable with the
4909 /// specified type and name.
4910 llvm::Constant *
4911 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4912                                      StringRef Name) {
4913   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4914                                                        : LangAS::Default;
4915   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4916   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4917   return Ret;
4918 }
4919 
4920 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4921   assert(!D->getInit() && "Cannot emit definite definitions here!");
4922 
4923   StringRef MangledName = getMangledName(D);
4924   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4925 
4926   // We already have a definition, not declaration, with the same mangled name.
4927   // Emitting of declaration is not required (and actually overwrites emitted
4928   // definition).
4929   if (GV && !GV->isDeclaration())
4930     return;
4931 
4932   // If we have not seen a reference to this variable yet, place it into the
4933   // deferred declarations table to be emitted if needed later.
4934   if (!MustBeEmitted(D) && !GV) {
4935       DeferredDecls[MangledName] = D;
4936       return;
4937   }
4938 
4939   // The tentative definition is the only definition.
4940   EmitGlobalVarDefinition(D);
4941 }
4942 
4943 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4944   EmitExternalVarDeclaration(D);
4945 }
4946 
4947 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4948   return Context.toCharUnitsFromBits(
4949       getDataLayout().getTypeStoreSizeInBits(Ty));
4950 }
4951 
4952 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4953   if (LangOpts.OpenCL) {
4954     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4955     assert(AS == LangAS::opencl_global ||
4956            AS == LangAS::opencl_global_device ||
4957            AS == LangAS::opencl_global_host ||
4958            AS == LangAS::opencl_constant ||
4959            AS == LangAS::opencl_local ||
4960            AS >= LangAS::FirstTargetAddressSpace);
4961     return AS;
4962   }
4963 
4964   if (LangOpts.SYCLIsDevice &&
4965       (!D || D->getType().getAddressSpace() == LangAS::Default))
4966     return LangAS::sycl_global;
4967 
4968   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4969     if (D) {
4970       if (D->hasAttr<CUDAConstantAttr>())
4971         return LangAS::cuda_constant;
4972       if (D->hasAttr<CUDASharedAttr>())
4973         return LangAS::cuda_shared;
4974       if (D->hasAttr<CUDADeviceAttr>())
4975         return LangAS::cuda_device;
4976       if (D->getType().isConstQualified())
4977         return LangAS::cuda_constant;
4978     }
4979     return LangAS::cuda_device;
4980   }
4981 
4982   if (LangOpts.OpenMP) {
4983     LangAS AS;
4984     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4985       return AS;
4986   }
4987   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4988 }
4989 
4990 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4991   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4992   if (LangOpts.OpenCL)
4993     return LangAS::opencl_constant;
4994   if (LangOpts.SYCLIsDevice)
4995     return LangAS::sycl_global;
4996   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4997     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4998     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4999     // with OpVariable instructions with Generic storage class which is not
5000     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5001     // UniformConstant storage class is not viable as pointers to it may not be
5002     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5003     return LangAS::cuda_device;
5004   if (auto AS = getTarget().getConstantAddressSpace())
5005     return *AS;
5006   return LangAS::Default;
5007 }
5008 
5009 // In address space agnostic languages, string literals are in default address
5010 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5011 // emitted in constant address space in LLVM IR. To be consistent with other
5012 // parts of AST, string literal global variables in constant address space
5013 // need to be casted to default address space before being put into address
5014 // map and referenced by other part of CodeGen.
5015 // In OpenCL, string literals are in constant address space in AST, therefore
5016 // they should not be casted to default address space.
5017 static llvm::Constant *
5018 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5019                                        llvm::GlobalVariable *GV) {
5020   llvm::Constant *Cast = GV;
5021   if (!CGM.getLangOpts().OpenCL) {
5022     auto AS = CGM.GetGlobalConstantAddressSpace();
5023     if (AS != LangAS::Default)
5024       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5025           CGM, GV, AS, LangAS::Default,
5026           llvm::PointerType::get(
5027               CGM.getLLVMContext(),
5028               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5029   }
5030   return Cast;
5031 }
5032 
5033 template<typename SomeDecl>
5034 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5035                                                llvm::GlobalValue *GV) {
5036   if (!getLangOpts().CPlusPlus)
5037     return;
5038 
5039   // Must have 'used' attribute, or else inline assembly can't rely on
5040   // the name existing.
5041   if (!D->template hasAttr<UsedAttr>())
5042     return;
5043 
5044   // Must have internal linkage and an ordinary name.
5045   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5046     return;
5047 
5048   // Must be in an extern "C" context. Entities declared directly within
5049   // a record are not extern "C" even if the record is in such a context.
5050   const SomeDecl *First = D->getFirstDecl();
5051   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5052     return;
5053 
5054   // OK, this is an internal linkage entity inside an extern "C" linkage
5055   // specification. Make a note of that so we can give it the "expected"
5056   // mangled name if nothing else is using that name.
5057   std::pair<StaticExternCMap::iterator, bool> R =
5058       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5059 
5060   // If we have multiple internal linkage entities with the same name
5061   // in extern "C" regions, none of them gets that name.
5062   if (!R.second)
5063     R.first->second = nullptr;
5064 }
5065 
5066 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5067   if (!CGM.supportsCOMDAT())
5068     return false;
5069 
5070   if (D.hasAttr<SelectAnyAttr>())
5071     return true;
5072 
5073   GVALinkage Linkage;
5074   if (auto *VD = dyn_cast<VarDecl>(&D))
5075     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5076   else
5077     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5078 
5079   switch (Linkage) {
5080   case GVA_Internal:
5081   case GVA_AvailableExternally:
5082   case GVA_StrongExternal:
5083     return false;
5084   case GVA_DiscardableODR:
5085   case GVA_StrongODR:
5086     return true;
5087   }
5088   llvm_unreachable("No such linkage");
5089 }
5090 
5091 bool CodeGenModule::supportsCOMDAT() const {
5092   return getTriple().supportsCOMDAT();
5093 }
5094 
5095 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5096                                           llvm::GlobalObject &GO) {
5097   if (!shouldBeInCOMDAT(*this, D))
5098     return;
5099   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5100 }
5101 
5102 /// Pass IsTentative as true if you want to create a tentative definition.
5103 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5104                                             bool IsTentative) {
5105   // OpenCL global variables of sampler type are translated to function calls,
5106   // therefore no need to be translated.
5107   QualType ASTTy = D->getType();
5108   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5109     return;
5110 
5111   // If this is OpenMP device, check if it is legal to emit this global
5112   // normally.
5113   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5114       OpenMPRuntime->emitTargetGlobalVariable(D))
5115     return;
5116 
5117   llvm::TrackingVH<llvm::Constant> Init;
5118   bool NeedsGlobalCtor = false;
5119   // Whether the definition of the variable is available externally.
5120   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5121   // since this is the job for its original source.
5122   bool IsDefinitionAvailableExternally =
5123       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5124   bool NeedsGlobalDtor =
5125       !IsDefinitionAvailableExternally &&
5126       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5127 
5128   const VarDecl *InitDecl;
5129   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5130 
5131   std::optional<ConstantEmitter> emitter;
5132 
5133   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5134   // as part of their declaration."  Sema has already checked for
5135   // error cases, so we just need to set Init to UndefValue.
5136   bool IsCUDASharedVar =
5137       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5138   // Shadows of initialized device-side global variables are also left
5139   // undefined.
5140   // Managed Variables should be initialized on both host side and device side.
5141   bool IsCUDAShadowVar =
5142       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5143       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5144        D->hasAttr<CUDASharedAttr>());
5145   bool IsCUDADeviceShadowVar =
5146       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5147       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5148        D->getType()->isCUDADeviceBuiltinTextureType());
5149   if (getLangOpts().CUDA &&
5150       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5151     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5152   else if (D->hasAttr<LoaderUninitializedAttr>())
5153     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5154   else if (!InitExpr) {
5155     // This is a tentative definition; tentative definitions are
5156     // implicitly initialized with { 0 }.
5157     //
5158     // Note that tentative definitions are only emitted at the end of
5159     // a translation unit, so they should never have incomplete
5160     // type. In addition, EmitTentativeDefinition makes sure that we
5161     // never attempt to emit a tentative definition if a real one
5162     // exists. A use may still exists, however, so we still may need
5163     // to do a RAUW.
5164     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5165     Init = EmitNullConstant(D->getType());
5166   } else {
5167     initializedGlobalDecl = GlobalDecl(D);
5168     emitter.emplace(*this);
5169     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5170     if (!Initializer) {
5171       QualType T = InitExpr->getType();
5172       if (D->getType()->isReferenceType())
5173         T = D->getType();
5174 
5175       if (getLangOpts().CPlusPlus) {
5176         if (InitDecl->hasFlexibleArrayInit(getContext()))
5177           ErrorUnsupported(D, "flexible array initializer");
5178         Init = EmitNullConstant(T);
5179 
5180         if (!IsDefinitionAvailableExternally)
5181           NeedsGlobalCtor = true;
5182       } else {
5183         ErrorUnsupported(D, "static initializer");
5184         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5185       }
5186     } else {
5187       Init = Initializer;
5188       // We don't need an initializer, so remove the entry for the delayed
5189       // initializer position (just in case this entry was delayed) if we
5190       // also don't need to register a destructor.
5191       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5192         DelayedCXXInitPosition.erase(D);
5193 
5194 #ifndef NDEBUG
5195       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5196                           InitDecl->getFlexibleArrayInitChars(getContext());
5197       CharUnits CstSize = CharUnits::fromQuantity(
5198           getDataLayout().getTypeAllocSize(Init->getType()));
5199       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5200 #endif
5201     }
5202   }
5203 
5204   llvm::Type* InitType = Init->getType();
5205   llvm::Constant *Entry =
5206       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5207 
5208   // Strip off pointer casts if we got them.
5209   Entry = Entry->stripPointerCasts();
5210 
5211   // Entry is now either a Function or GlobalVariable.
5212   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5213 
5214   // We have a definition after a declaration with the wrong type.
5215   // We must make a new GlobalVariable* and update everything that used OldGV
5216   // (a declaration or tentative definition) with the new GlobalVariable*
5217   // (which will be a definition).
5218   //
5219   // This happens if there is a prototype for a global (e.g.
5220   // "extern int x[];") and then a definition of a different type (e.g.
5221   // "int x[10];"). This also happens when an initializer has a different type
5222   // from the type of the global (this happens with unions).
5223   if (!GV || GV->getValueType() != InitType ||
5224       GV->getType()->getAddressSpace() !=
5225           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5226 
5227     // Move the old entry aside so that we'll create a new one.
5228     Entry->setName(StringRef());
5229 
5230     // Make a new global with the correct type, this is now guaranteed to work.
5231     GV = cast<llvm::GlobalVariable>(
5232         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5233             ->stripPointerCasts());
5234 
5235     // Replace all uses of the old global with the new global
5236     llvm::Constant *NewPtrForOldDecl =
5237         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5238                                                              Entry->getType());
5239     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5240 
5241     // Erase the old global, since it is no longer used.
5242     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5243   }
5244 
5245   MaybeHandleStaticInExternC(D, GV);
5246 
5247   if (D->hasAttr<AnnotateAttr>())
5248     AddGlobalAnnotations(D, GV);
5249 
5250   // Set the llvm linkage type as appropriate.
5251   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5252 
5253   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5254   // the device. [...]"
5255   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5256   // __device__, declares a variable that: [...]
5257   // Is accessible from all the threads within the grid and from the host
5258   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5259   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5260   if (LangOpts.CUDA) {
5261     if (LangOpts.CUDAIsDevice) {
5262       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5263           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5264            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5265            D->getType()->isCUDADeviceBuiltinTextureType()))
5266         GV->setExternallyInitialized(true);
5267     } else {
5268       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5269     }
5270     getCUDARuntime().handleVarRegistration(D, *GV);
5271   }
5272 
5273   GV->setInitializer(Init);
5274   if (emitter)
5275     emitter->finalize(GV);
5276 
5277   // If it is safe to mark the global 'constant', do so now.
5278   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5279                   D->getType().isConstantStorage(getContext(), true, true));
5280 
5281   // If it is in a read-only section, mark it 'constant'.
5282   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5283     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5284     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5285       GV->setConstant(true);
5286   }
5287 
5288   CharUnits AlignVal = getContext().getDeclAlign(D);
5289   // Check for alignment specifed in an 'omp allocate' directive.
5290   if (std::optional<CharUnits> AlignValFromAllocate =
5291           getOMPAllocateAlignment(D))
5292     AlignVal = *AlignValFromAllocate;
5293   GV->setAlignment(AlignVal.getAsAlign());
5294 
5295   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5296   // function is only defined alongside the variable, not also alongside
5297   // callers. Normally, all accesses to a thread_local go through the
5298   // thread-wrapper in order to ensure initialization has occurred, underlying
5299   // variable will never be used other than the thread-wrapper, so it can be
5300   // converted to internal linkage.
5301   //
5302   // However, if the variable has the 'constinit' attribute, it _can_ be
5303   // referenced directly, without calling the thread-wrapper, so the linkage
5304   // must not be changed.
5305   //
5306   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5307   // weak or linkonce, the de-duplication semantics are important to preserve,
5308   // so we don't change the linkage.
5309   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5310       Linkage == llvm::GlobalValue::ExternalLinkage &&
5311       Context.getTargetInfo().getTriple().isOSDarwin() &&
5312       !D->hasAttr<ConstInitAttr>())
5313     Linkage = llvm::GlobalValue::InternalLinkage;
5314 
5315   GV->setLinkage(Linkage);
5316   if (D->hasAttr<DLLImportAttr>())
5317     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5318   else if (D->hasAttr<DLLExportAttr>())
5319     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5320   else
5321     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5322 
5323   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5324     // common vars aren't constant even if declared const.
5325     GV->setConstant(false);
5326     // Tentative definition of global variables may be initialized with
5327     // non-zero null pointers. In this case they should have weak linkage
5328     // since common linkage must have zero initializer and must not have
5329     // explicit section therefore cannot have non-zero initial value.
5330     if (!GV->getInitializer()->isNullValue())
5331       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5332   }
5333 
5334   setNonAliasAttributes(D, GV);
5335 
5336   if (D->getTLSKind() && !GV->isThreadLocal()) {
5337     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5338       CXXThreadLocals.push_back(D);
5339     setTLSMode(GV, *D);
5340   }
5341 
5342   maybeSetTrivialComdat(*D, *GV);
5343 
5344   // Emit the initializer function if necessary.
5345   if (NeedsGlobalCtor || NeedsGlobalDtor)
5346     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5347 
5348   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5349 
5350   // Emit global variable debug information.
5351   if (CGDebugInfo *DI = getModuleDebugInfo())
5352     if (getCodeGenOpts().hasReducedDebugInfo())
5353       DI->EmitGlobalVariable(GV, D);
5354 }
5355 
5356 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5357   if (CGDebugInfo *DI = getModuleDebugInfo())
5358     if (getCodeGenOpts().hasReducedDebugInfo()) {
5359       QualType ASTTy = D->getType();
5360       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5361       llvm::Constant *GV =
5362           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5363       DI->EmitExternalVariable(
5364           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5365     }
5366 }
5367 
5368 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5369                                       CodeGenModule &CGM, const VarDecl *D,
5370                                       bool NoCommon) {
5371   // Don't give variables common linkage if -fno-common was specified unless it
5372   // was overridden by a NoCommon attribute.
5373   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5374     return true;
5375 
5376   // C11 6.9.2/2:
5377   //   A declaration of an identifier for an object that has file scope without
5378   //   an initializer, and without a storage-class specifier or with the
5379   //   storage-class specifier static, constitutes a tentative definition.
5380   if (D->getInit() || D->hasExternalStorage())
5381     return true;
5382 
5383   // A variable cannot be both common and exist in a section.
5384   if (D->hasAttr<SectionAttr>())
5385     return true;
5386 
5387   // A variable cannot be both common and exist in a section.
5388   // We don't try to determine which is the right section in the front-end.
5389   // If no specialized section name is applicable, it will resort to default.
5390   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5391       D->hasAttr<PragmaClangDataSectionAttr>() ||
5392       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5393       D->hasAttr<PragmaClangRodataSectionAttr>())
5394     return true;
5395 
5396   // Thread local vars aren't considered common linkage.
5397   if (D->getTLSKind())
5398     return true;
5399 
5400   // Tentative definitions marked with WeakImportAttr are true definitions.
5401   if (D->hasAttr<WeakImportAttr>())
5402     return true;
5403 
5404   // A variable cannot be both common and exist in a comdat.
5405   if (shouldBeInCOMDAT(CGM, *D))
5406     return true;
5407 
5408   // Declarations with a required alignment do not have common linkage in MSVC
5409   // mode.
5410   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5411     if (D->hasAttr<AlignedAttr>())
5412       return true;
5413     QualType VarType = D->getType();
5414     if (Context.isAlignmentRequired(VarType))
5415       return true;
5416 
5417     if (const auto *RT = VarType->getAs<RecordType>()) {
5418       const RecordDecl *RD = RT->getDecl();
5419       for (const FieldDecl *FD : RD->fields()) {
5420         if (FD->isBitField())
5421           continue;
5422         if (FD->hasAttr<AlignedAttr>())
5423           return true;
5424         if (Context.isAlignmentRequired(FD->getType()))
5425           return true;
5426       }
5427     }
5428   }
5429 
5430   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5431   // common symbols, so symbols with greater alignment requirements cannot be
5432   // common.
5433   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5434   // alignments for common symbols via the aligncomm directive, so this
5435   // restriction only applies to MSVC environments.
5436   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5437       Context.getTypeAlignIfKnown(D->getType()) >
5438           Context.toBits(CharUnits::fromQuantity(32)))
5439     return true;
5440 
5441   return false;
5442 }
5443 
5444 llvm::GlobalValue::LinkageTypes
5445 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5446                                            GVALinkage Linkage) {
5447   if (Linkage == GVA_Internal)
5448     return llvm::Function::InternalLinkage;
5449 
5450   if (D->hasAttr<WeakAttr>())
5451     return llvm::GlobalVariable::WeakAnyLinkage;
5452 
5453   if (const auto *FD = D->getAsFunction())
5454     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5455       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5456 
5457   // We are guaranteed to have a strong definition somewhere else,
5458   // so we can use available_externally linkage.
5459   if (Linkage == GVA_AvailableExternally)
5460     return llvm::GlobalValue::AvailableExternallyLinkage;
5461 
5462   // Note that Apple's kernel linker doesn't support symbol
5463   // coalescing, so we need to avoid linkonce and weak linkages there.
5464   // Normally, this means we just map to internal, but for explicit
5465   // instantiations we'll map to external.
5466 
5467   // In C++, the compiler has to emit a definition in every translation unit
5468   // that references the function.  We should use linkonce_odr because
5469   // a) if all references in this translation unit are optimized away, we
5470   // don't need to codegen it.  b) if the function persists, it needs to be
5471   // merged with other definitions. c) C++ has the ODR, so we know the
5472   // definition is dependable.
5473   if (Linkage == GVA_DiscardableODR)
5474     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5475                                             : llvm::Function::InternalLinkage;
5476 
5477   // An explicit instantiation of a template has weak linkage, since
5478   // explicit instantiations can occur in multiple translation units
5479   // and must all be equivalent. However, we are not allowed to
5480   // throw away these explicit instantiations.
5481   //
5482   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5483   // so say that CUDA templates are either external (for kernels) or internal.
5484   // This lets llvm perform aggressive inter-procedural optimizations. For
5485   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5486   // therefore we need to follow the normal linkage paradigm.
5487   if (Linkage == GVA_StrongODR) {
5488     if (getLangOpts().AppleKext)
5489       return llvm::Function::ExternalLinkage;
5490     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5491         !getLangOpts().GPURelocatableDeviceCode)
5492       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5493                                           : llvm::Function::InternalLinkage;
5494     return llvm::Function::WeakODRLinkage;
5495   }
5496 
5497   // C++ doesn't have tentative definitions and thus cannot have common
5498   // linkage.
5499   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5500       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5501                                  CodeGenOpts.NoCommon))
5502     return llvm::GlobalVariable::CommonLinkage;
5503 
5504   // selectany symbols are externally visible, so use weak instead of
5505   // linkonce.  MSVC optimizes away references to const selectany globals, so
5506   // all definitions should be the same and ODR linkage should be used.
5507   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5508   if (D->hasAttr<SelectAnyAttr>())
5509     return llvm::GlobalVariable::WeakODRLinkage;
5510 
5511   // Otherwise, we have strong external linkage.
5512   assert(Linkage == GVA_StrongExternal);
5513   return llvm::GlobalVariable::ExternalLinkage;
5514 }
5515 
5516 llvm::GlobalValue::LinkageTypes
5517 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5518   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5519   return getLLVMLinkageForDeclarator(VD, Linkage);
5520 }
5521 
5522 /// Replace the uses of a function that was declared with a non-proto type.
5523 /// We want to silently drop extra arguments from call sites
5524 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5525                                           llvm::Function *newFn) {
5526   // Fast path.
5527   if (old->use_empty()) return;
5528 
5529   llvm::Type *newRetTy = newFn->getReturnType();
5530   SmallVector<llvm::Value*, 4> newArgs;
5531 
5532   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5533          ui != ue; ) {
5534     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5535     llvm::User *user = use->getUser();
5536 
5537     // Recognize and replace uses of bitcasts.  Most calls to
5538     // unprototyped functions will use bitcasts.
5539     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5540       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5541         replaceUsesOfNonProtoConstant(bitcast, newFn);
5542       continue;
5543     }
5544 
5545     // Recognize calls to the function.
5546     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5547     if (!callSite) continue;
5548     if (!callSite->isCallee(&*use))
5549       continue;
5550 
5551     // If the return types don't match exactly, then we can't
5552     // transform this call unless it's dead.
5553     if (callSite->getType() != newRetTy && !callSite->use_empty())
5554       continue;
5555 
5556     // Get the call site's attribute list.
5557     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5558     llvm::AttributeList oldAttrs = callSite->getAttributes();
5559 
5560     // If the function was passed too few arguments, don't transform.
5561     unsigned newNumArgs = newFn->arg_size();
5562     if (callSite->arg_size() < newNumArgs)
5563       continue;
5564 
5565     // If extra arguments were passed, we silently drop them.
5566     // If any of the types mismatch, we don't transform.
5567     unsigned argNo = 0;
5568     bool dontTransform = false;
5569     for (llvm::Argument &A : newFn->args()) {
5570       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5571         dontTransform = true;
5572         break;
5573       }
5574 
5575       // Add any parameter attributes.
5576       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5577       argNo++;
5578     }
5579     if (dontTransform)
5580       continue;
5581 
5582     // Okay, we can transform this.  Create the new call instruction and copy
5583     // over the required information.
5584     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5585 
5586     // Copy over any operand bundles.
5587     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5588     callSite->getOperandBundlesAsDefs(newBundles);
5589 
5590     llvm::CallBase *newCall;
5591     if (isa<llvm::CallInst>(callSite)) {
5592       newCall =
5593           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5594     } else {
5595       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5596       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5597                                          oldInvoke->getUnwindDest(), newArgs,
5598                                          newBundles, "", callSite);
5599     }
5600     newArgs.clear(); // for the next iteration
5601 
5602     if (!newCall->getType()->isVoidTy())
5603       newCall->takeName(callSite);
5604     newCall->setAttributes(
5605         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5606                                  oldAttrs.getRetAttrs(), newArgAttrs));
5607     newCall->setCallingConv(callSite->getCallingConv());
5608 
5609     // Finally, remove the old call, replacing any uses with the new one.
5610     if (!callSite->use_empty())
5611       callSite->replaceAllUsesWith(newCall);
5612 
5613     // Copy debug location attached to CI.
5614     if (callSite->getDebugLoc())
5615       newCall->setDebugLoc(callSite->getDebugLoc());
5616 
5617     callSite->eraseFromParent();
5618   }
5619 }
5620 
5621 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5622 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5623 /// existing call uses of the old function in the module, this adjusts them to
5624 /// call the new function directly.
5625 ///
5626 /// This is not just a cleanup: the always_inline pass requires direct calls to
5627 /// functions to be able to inline them.  If there is a bitcast in the way, it
5628 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5629 /// run at -O0.
5630 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5631                                                       llvm::Function *NewFn) {
5632   // If we're redefining a global as a function, don't transform it.
5633   if (!isa<llvm::Function>(Old)) return;
5634 
5635   replaceUsesOfNonProtoConstant(Old, NewFn);
5636 }
5637 
5638 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5639   auto DK = VD->isThisDeclarationADefinition();
5640   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5641     return;
5642 
5643   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5644   // If we have a definition, this might be a deferred decl. If the
5645   // instantiation is explicit, make sure we emit it at the end.
5646   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5647     GetAddrOfGlobalVar(VD);
5648 
5649   EmitTopLevelDecl(VD);
5650 }
5651 
5652 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5653                                                  llvm::GlobalValue *GV) {
5654   const auto *D = cast<FunctionDecl>(GD.getDecl());
5655 
5656   // Compute the function info and LLVM type.
5657   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5658   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5659 
5660   // Get or create the prototype for the function.
5661   if (!GV || (GV->getValueType() != Ty))
5662     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5663                                                    /*DontDefer=*/true,
5664                                                    ForDefinition));
5665 
5666   // Already emitted.
5667   if (!GV->isDeclaration())
5668     return;
5669 
5670   // We need to set linkage and visibility on the function before
5671   // generating code for it because various parts of IR generation
5672   // want to propagate this information down (e.g. to local static
5673   // declarations).
5674   auto *Fn = cast<llvm::Function>(GV);
5675   setFunctionLinkage(GD, Fn);
5676 
5677   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5678   setGVProperties(Fn, GD);
5679 
5680   MaybeHandleStaticInExternC(D, Fn);
5681 
5682   maybeSetTrivialComdat(*D, *Fn);
5683 
5684   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5685 
5686   setNonAliasAttributes(GD, Fn);
5687   SetLLVMFunctionAttributesForDefinition(D, Fn);
5688 
5689   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5690     AddGlobalCtor(Fn, CA->getPriority());
5691   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5692     AddGlobalDtor(Fn, DA->getPriority(), true);
5693   if (D->hasAttr<AnnotateAttr>())
5694     AddGlobalAnnotations(D, Fn);
5695   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5696     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5697 }
5698 
5699 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5700   const auto *D = cast<ValueDecl>(GD.getDecl());
5701   const AliasAttr *AA = D->getAttr<AliasAttr>();
5702   assert(AA && "Not an alias?");
5703 
5704   StringRef MangledName = getMangledName(GD);
5705 
5706   if (AA->getAliasee() == MangledName) {
5707     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5708     return;
5709   }
5710 
5711   // If there is a definition in the module, then it wins over the alias.
5712   // This is dubious, but allow it to be safe.  Just ignore the alias.
5713   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5714   if (Entry && !Entry->isDeclaration())
5715     return;
5716 
5717   Aliases.push_back(GD);
5718 
5719   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5720 
5721   // Create a reference to the named value.  This ensures that it is emitted
5722   // if a deferred decl.
5723   llvm::Constant *Aliasee;
5724   llvm::GlobalValue::LinkageTypes LT;
5725   if (isa<llvm::FunctionType>(DeclTy)) {
5726     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5727                                       /*ForVTable=*/false);
5728     LT = getFunctionLinkage(GD);
5729   } else {
5730     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5731                                     /*D=*/nullptr);
5732     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5733       LT = getLLVMLinkageVarDefinition(VD);
5734     else
5735       LT = getFunctionLinkage(GD);
5736   }
5737 
5738   // Create the new alias itself, but don't set a name yet.
5739   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5740   auto *GA =
5741       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5742 
5743   if (Entry) {
5744     if (GA->getAliasee() == Entry) {
5745       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5746       return;
5747     }
5748 
5749     assert(Entry->isDeclaration());
5750 
5751     // If there is a declaration in the module, then we had an extern followed
5752     // by the alias, as in:
5753     //   extern int test6();
5754     //   ...
5755     //   int test6() __attribute__((alias("test7")));
5756     //
5757     // Remove it and replace uses of it with the alias.
5758     GA->takeName(Entry);
5759 
5760     Entry->replaceAllUsesWith(GA);
5761     Entry->eraseFromParent();
5762   } else {
5763     GA->setName(MangledName);
5764   }
5765 
5766   // Set attributes which are particular to an alias; this is a
5767   // specialization of the attributes which may be set on a global
5768   // variable/function.
5769   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5770       D->isWeakImported()) {
5771     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5772   }
5773 
5774   if (const auto *VD = dyn_cast<VarDecl>(D))
5775     if (VD->getTLSKind())
5776       setTLSMode(GA, *VD);
5777 
5778   SetCommonAttributes(GD, GA);
5779 
5780   // Emit global alias debug information.
5781   if (isa<VarDecl>(D))
5782     if (CGDebugInfo *DI = getModuleDebugInfo())
5783       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5784 }
5785 
5786 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5787   const auto *D = cast<ValueDecl>(GD.getDecl());
5788   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5789   assert(IFA && "Not an ifunc?");
5790 
5791   StringRef MangledName = getMangledName(GD);
5792 
5793   if (IFA->getResolver() == MangledName) {
5794     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5795     return;
5796   }
5797 
5798   // Report an error if some definition overrides ifunc.
5799   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5800   if (Entry && !Entry->isDeclaration()) {
5801     GlobalDecl OtherGD;
5802     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5803         DiagnosedConflictingDefinitions.insert(GD).second) {
5804       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5805           << MangledName;
5806       Diags.Report(OtherGD.getDecl()->getLocation(),
5807                    diag::note_previous_definition);
5808     }
5809     return;
5810   }
5811 
5812   Aliases.push_back(GD);
5813 
5814   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5815   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5816   llvm::Constant *Resolver =
5817       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5818                               /*ForVTable=*/false);
5819   llvm::GlobalIFunc *GIF =
5820       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5821                                 "", Resolver, &getModule());
5822   if (Entry) {
5823     if (GIF->getResolver() == Entry) {
5824       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5825       return;
5826     }
5827     assert(Entry->isDeclaration());
5828 
5829     // If there is a declaration in the module, then we had an extern followed
5830     // by the ifunc, as in:
5831     //   extern int test();
5832     //   ...
5833     //   int test() __attribute__((ifunc("resolver")));
5834     //
5835     // Remove it and replace uses of it with the ifunc.
5836     GIF->takeName(Entry);
5837 
5838     Entry->replaceAllUsesWith(GIF);
5839     Entry->eraseFromParent();
5840   } else
5841     GIF->setName(MangledName);
5842   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
5843     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
5844   }
5845   SetCommonAttributes(GD, GIF);
5846 }
5847 
5848 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5849                                             ArrayRef<llvm::Type*> Tys) {
5850   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5851                                          Tys);
5852 }
5853 
5854 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5855 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5856                          const StringLiteral *Literal, bool TargetIsLSB,
5857                          bool &IsUTF16, unsigned &StringLength) {
5858   StringRef String = Literal->getString();
5859   unsigned NumBytes = String.size();
5860 
5861   // Check for simple case.
5862   if (!Literal->containsNonAsciiOrNull()) {
5863     StringLength = NumBytes;
5864     return *Map.insert(std::make_pair(String, nullptr)).first;
5865   }
5866 
5867   // Otherwise, convert the UTF8 literals into a string of shorts.
5868   IsUTF16 = true;
5869 
5870   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5871   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5872   llvm::UTF16 *ToPtr = &ToBuf[0];
5873 
5874   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5875                                  ToPtr + NumBytes, llvm::strictConversion);
5876 
5877   // ConvertUTF8toUTF16 returns the length in ToPtr.
5878   StringLength = ToPtr - &ToBuf[0];
5879 
5880   // Add an explicit null.
5881   *ToPtr = 0;
5882   return *Map.insert(std::make_pair(
5883                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5884                                    (StringLength + 1) * 2),
5885                          nullptr)).first;
5886 }
5887 
5888 ConstantAddress
5889 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5890   unsigned StringLength = 0;
5891   bool isUTF16 = false;
5892   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5893       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5894                                getDataLayout().isLittleEndian(), isUTF16,
5895                                StringLength);
5896 
5897   if (auto *C = Entry.second)
5898     return ConstantAddress(
5899         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5900 
5901   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5902   llvm::Constant *Zeros[] = { Zero, Zero };
5903 
5904   const ASTContext &Context = getContext();
5905   const llvm::Triple &Triple = getTriple();
5906 
5907   const auto CFRuntime = getLangOpts().CFRuntime;
5908   const bool IsSwiftABI =
5909       static_cast<unsigned>(CFRuntime) >=
5910       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5911   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5912 
5913   // If we don't already have it, get __CFConstantStringClassReference.
5914   if (!CFConstantStringClassRef) {
5915     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5916     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5917     Ty = llvm::ArrayType::get(Ty, 0);
5918 
5919     switch (CFRuntime) {
5920     default: break;
5921     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5922     case LangOptions::CoreFoundationABI::Swift5_0:
5923       CFConstantStringClassName =
5924           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5925                               : "$s10Foundation19_NSCFConstantStringCN";
5926       Ty = IntPtrTy;
5927       break;
5928     case LangOptions::CoreFoundationABI::Swift4_2:
5929       CFConstantStringClassName =
5930           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5931                               : "$S10Foundation19_NSCFConstantStringCN";
5932       Ty = IntPtrTy;
5933       break;
5934     case LangOptions::CoreFoundationABI::Swift4_1:
5935       CFConstantStringClassName =
5936           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5937                               : "__T010Foundation19_NSCFConstantStringCN";
5938       Ty = IntPtrTy;
5939       break;
5940     }
5941 
5942     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5943 
5944     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5945       llvm::GlobalValue *GV = nullptr;
5946 
5947       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5948         IdentifierInfo &II = Context.Idents.get(GV->getName());
5949         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5950         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5951 
5952         const VarDecl *VD = nullptr;
5953         for (const auto *Result : DC->lookup(&II))
5954           if ((VD = dyn_cast<VarDecl>(Result)))
5955             break;
5956 
5957         if (Triple.isOSBinFormatELF()) {
5958           if (!VD)
5959             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5960         } else {
5961           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5962           if (!VD || !VD->hasAttr<DLLExportAttr>())
5963             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5964           else
5965             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5966         }
5967 
5968         setDSOLocal(GV);
5969       }
5970     }
5971 
5972     // Decay array -> ptr
5973     CFConstantStringClassRef =
5974         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5975                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5976   }
5977 
5978   QualType CFTy = Context.getCFConstantStringType();
5979 
5980   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5981 
5982   ConstantInitBuilder Builder(*this);
5983   auto Fields = Builder.beginStruct(STy);
5984 
5985   // Class pointer.
5986   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5987 
5988   // Flags.
5989   if (IsSwiftABI) {
5990     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5991     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5992   } else {
5993     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5994   }
5995 
5996   // String pointer.
5997   llvm::Constant *C = nullptr;
5998   if (isUTF16) {
5999     auto Arr = llvm::ArrayRef(
6000         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6001         Entry.first().size() / 2);
6002     C = llvm::ConstantDataArray::get(VMContext, Arr);
6003   } else {
6004     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6005   }
6006 
6007   // Note: -fwritable-strings doesn't make the backing store strings of
6008   // CFStrings writable.
6009   auto *GV =
6010       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6011                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6012   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6013   // Don't enforce the target's minimum global alignment, since the only use
6014   // of the string is via this class initializer.
6015   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6016                             : Context.getTypeAlignInChars(Context.CharTy);
6017   GV->setAlignment(Align.getAsAlign());
6018 
6019   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6020   // Without it LLVM can merge the string with a non unnamed_addr one during
6021   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6022   if (Triple.isOSBinFormatMachO())
6023     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6024                            : "__TEXT,__cstring,cstring_literals");
6025   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6026   // the static linker to adjust permissions to read-only later on.
6027   else if (Triple.isOSBinFormatELF())
6028     GV->setSection(".rodata");
6029 
6030   // String.
6031   llvm::Constant *Str =
6032       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6033 
6034   Fields.add(Str);
6035 
6036   // String length.
6037   llvm::IntegerType *LengthTy =
6038       llvm::IntegerType::get(getModule().getContext(),
6039                              Context.getTargetInfo().getLongWidth());
6040   if (IsSwiftABI) {
6041     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6042         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6043       LengthTy = Int32Ty;
6044     else
6045       LengthTy = IntPtrTy;
6046   }
6047   Fields.addInt(LengthTy, StringLength);
6048 
6049   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6050   // properly aligned on 32-bit platforms.
6051   CharUnits Alignment =
6052       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6053 
6054   // The struct.
6055   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6056                                     /*isConstant=*/false,
6057                                     llvm::GlobalVariable::PrivateLinkage);
6058   GV->addAttribute("objc_arc_inert");
6059   switch (Triple.getObjectFormat()) {
6060   case llvm::Triple::UnknownObjectFormat:
6061     llvm_unreachable("unknown file format");
6062   case llvm::Triple::DXContainer:
6063   case llvm::Triple::GOFF:
6064   case llvm::Triple::SPIRV:
6065   case llvm::Triple::XCOFF:
6066     llvm_unreachable("unimplemented");
6067   case llvm::Triple::COFF:
6068   case llvm::Triple::ELF:
6069   case llvm::Triple::Wasm:
6070     GV->setSection("cfstring");
6071     break;
6072   case llvm::Triple::MachO:
6073     GV->setSection("__DATA,__cfstring");
6074     break;
6075   }
6076   Entry.second = GV;
6077 
6078   return ConstantAddress(GV, GV->getValueType(), Alignment);
6079 }
6080 
6081 bool CodeGenModule::getExpressionLocationsEnabled() const {
6082   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6083 }
6084 
6085 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6086   if (ObjCFastEnumerationStateType.isNull()) {
6087     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6088     D->startDefinition();
6089 
6090     QualType FieldTypes[] = {
6091         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6092         Context.getPointerType(Context.UnsignedLongTy),
6093         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6094                                      nullptr, ArraySizeModifier::Normal, 0)};
6095 
6096     for (size_t i = 0; i < 4; ++i) {
6097       FieldDecl *Field = FieldDecl::Create(Context,
6098                                            D,
6099                                            SourceLocation(),
6100                                            SourceLocation(), nullptr,
6101                                            FieldTypes[i], /*TInfo=*/nullptr,
6102                                            /*BitWidth=*/nullptr,
6103                                            /*Mutable=*/false,
6104                                            ICIS_NoInit);
6105       Field->setAccess(AS_public);
6106       D->addDecl(Field);
6107     }
6108 
6109     D->completeDefinition();
6110     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6111   }
6112 
6113   return ObjCFastEnumerationStateType;
6114 }
6115 
6116 llvm::Constant *
6117 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6118   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6119 
6120   // Don't emit it as the address of the string, emit the string data itself
6121   // as an inline array.
6122   if (E->getCharByteWidth() == 1) {
6123     SmallString<64> Str(E->getString());
6124 
6125     // Resize the string to the right size, which is indicated by its type.
6126     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6127     assert(CAT && "String literal not of constant array type!");
6128     Str.resize(CAT->getSize().getZExtValue());
6129     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6130   }
6131 
6132   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6133   llvm::Type *ElemTy = AType->getElementType();
6134   unsigned NumElements = AType->getNumElements();
6135 
6136   // Wide strings have either 2-byte or 4-byte elements.
6137   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6138     SmallVector<uint16_t, 32> Elements;
6139     Elements.reserve(NumElements);
6140 
6141     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6142       Elements.push_back(E->getCodeUnit(i));
6143     Elements.resize(NumElements);
6144     return llvm::ConstantDataArray::get(VMContext, Elements);
6145   }
6146 
6147   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6148   SmallVector<uint32_t, 32> Elements;
6149   Elements.reserve(NumElements);
6150 
6151   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6152     Elements.push_back(E->getCodeUnit(i));
6153   Elements.resize(NumElements);
6154   return llvm::ConstantDataArray::get(VMContext, Elements);
6155 }
6156 
6157 static llvm::GlobalVariable *
6158 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6159                       CodeGenModule &CGM, StringRef GlobalName,
6160                       CharUnits Alignment) {
6161   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6162       CGM.GetGlobalConstantAddressSpace());
6163 
6164   llvm::Module &M = CGM.getModule();
6165   // Create a global variable for this string
6166   auto *GV = new llvm::GlobalVariable(
6167       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6168       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6169   GV->setAlignment(Alignment.getAsAlign());
6170   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6171   if (GV->isWeakForLinker()) {
6172     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6173     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6174   }
6175   CGM.setDSOLocal(GV);
6176 
6177   return GV;
6178 }
6179 
6180 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6181 /// constant array for the given string literal.
6182 ConstantAddress
6183 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6184                                                   StringRef Name) {
6185   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
6186 
6187   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6188   llvm::GlobalVariable **Entry = nullptr;
6189   if (!LangOpts.WritableStrings) {
6190     Entry = &ConstantStringMap[C];
6191     if (auto GV = *Entry) {
6192       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6193         GV->setAlignment(Alignment.getAsAlign());
6194       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6195                              GV->getValueType(), Alignment);
6196     }
6197   }
6198 
6199   SmallString<256> MangledNameBuffer;
6200   StringRef GlobalVariableName;
6201   llvm::GlobalValue::LinkageTypes LT;
6202 
6203   // Mangle the string literal if that's how the ABI merges duplicate strings.
6204   // Don't do it if they are writable, since we don't want writes in one TU to
6205   // affect strings in another.
6206   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6207       !LangOpts.WritableStrings) {
6208     llvm::raw_svector_ostream Out(MangledNameBuffer);
6209     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6210     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6211     GlobalVariableName = MangledNameBuffer;
6212   } else {
6213     LT = llvm::GlobalValue::PrivateLinkage;
6214     GlobalVariableName = Name;
6215   }
6216 
6217   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6218 
6219   CGDebugInfo *DI = getModuleDebugInfo();
6220   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6221     DI->AddStringLiteralDebugInfo(GV, S);
6222 
6223   if (Entry)
6224     *Entry = GV;
6225 
6226   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6227 
6228   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6229                          GV->getValueType(), Alignment);
6230 }
6231 
6232 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6233 /// array for the given ObjCEncodeExpr node.
6234 ConstantAddress
6235 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6236   std::string Str;
6237   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6238 
6239   return GetAddrOfConstantCString(Str);
6240 }
6241 
6242 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6243 /// the literal and a terminating '\0' character.
6244 /// The result has pointer to array type.
6245 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6246     const std::string &Str, const char *GlobalName) {
6247   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6248   CharUnits Alignment =
6249     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
6250 
6251   llvm::Constant *C =
6252       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6253 
6254   // Don't share any string literals if strings aren't constant.
6255   llvm::GlobalVariable **Entry = nullptr;
6256   if (!LangOpts.WritableStrings) {
6257     Entry = &ConstantStringMap[C];
6258     if (auto GV = *Entry) {
6259       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6260         GV->setAlignment(Alignment.getAsAlign());
6261       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6262                              GV->getValueType(), Alignment);
6263     }
6264   }
6265 
6266   // Get the default prefix if a name wasn't specified.
6267   if (!GlobalName)
6268     GlobalName = ".str";
6269   // Create a global variable for this.
6270   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6271                                   GlobalName, Alignment);
6272   if (Entry)
6273     *Entry = GV;
6274 
6275   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6276                          GV->getValueType(), Alignment);
6277 }
6278 
6279 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6280     const MaterializeTemporaryExpr *E, const Expr *Init) {
6281   assert((E->getStorageDuration() == SD_Static ||
6282           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6283   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6284 
6285   // If we're not materializing a subobject of the temporary, keep the
6286   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6287   QualType MaterializedType = Init->getType();
6288   if (Init == E->getSubExpr())
6289     MaterializedType = E->getType();
6290 
6291   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6292 
6293   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6294   if (!InsertResult.second) {
6295     // We've seen this before: either we already created it or we're in the
6296     // process of doing so.
6297     if (!InsertResult.first->second) {
6298       // We recursively re-entered this function, probably during emission of
6299       // the initializer. Create a placeholder. We'll clean this up in the
6300       // outer call, at the end of this function.
6301       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6302       InsertResult.first->second = new llvm::GlobalVariable(
6303           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6304           nullptr);
6305     }
6306     return ConstantAddress(InsertResult.first->second,
6307                            llvm::cast<llvm::GlobalVariable>(
6308                                InsertResult.first->second->stripPointerCasts())
6309                                ->getValueType(),
6310                            Align);
6311   }
6312 
6313   // FIXME: If an externally-visible declaration extends multiple temporaries,
6314   // we need to give each temporary the same name in every translation unit (and
6315   // we also need to make the temporaries externally-visible).
6316   SmallString<256> Name;
6317   llvm::raw_svector_ostream Out(Name);
6318   getCXXABI().getMangleContext().mangleReferenceTemporary(
6319       VD, E->getManglingNumber(), Out);
6320 
6321   APValue *Value = nullptr;
6322   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6323     // If the initializer of the extending declaration is a constant
6324     // initializer, we should have a cached constant initializer for this
6325     // temporary. Note that this might have a different value from the value
6326     // computed by evaluating the initializer if the surrounding constant
6327     // expression modifies the temporary.
6328     Value = E->getOrCreateValue(false);
6329   }
6330 
6331   // Try evaluating it now, it might have a constant initializer.
6332   Expr::EvalResult EvalResult;
6333   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6334       !EvalResult.hasSideEffects())
6335     Value = &EvalResult.Val;
6336 
6337   LangAS AddrSpace =
6338       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6339 
6340   std::optional<ConstantEmitter> emitter;
6341   llvm::Constant *InitialValue = nullptr;
6342   bool Constant = false;
6343   llvm::Type *Type;
6344   if (Value) {
6345     // The temporary has a constant initializer, use it.
6346     emitter.emplace(*this);
6347     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6348                                                MaterializedType);
6349     Constant =
6350         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6351                                            /*ExcludeDtor*/ false);
6352     Type = InitialValue->getType();
6353   } else {
6354     // No initializer, the initialization will be provided when we
6355     // initialize the declaration which performed lifetime extension.
6356     Type = getTypes().ConvertTypeForMem(MaterializedType);
6357   }
6358 
6359   // Create a global variable for this lifetime-extended temporary.
6360   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6361   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6362     const VarDecl *InitVD;
6363     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6364         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6365       // Temporaries defined inside a class get linkonce_odr linkage because the
6366       // class can be defined in multiple translation units.
6367       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6368     } else {
6369       // There is no need for this temporary to have external linkage if the
6370       // VarDecl has external linkage.
6371       Linkage = llvm::GlobalVariable::InternalLinkage;
6372     }
6373   }
6374   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6375   auto *GV = new llvm::GlobalVariable(
6376       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6377       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6378   if (emitter) emitter->finalize(GV);
6379   // Don't assign dllimport or dllexport to local linkage globals.
6380   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6381     setGVProperties(GV, VD);
6382     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6383       // The reference temporary should never be dllexport.
6384       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6385   }
6386   GV->setAlignment(Align.getAsAlign());
6387   if (supportsCOMDAT() && GV->isWeakForLinker())
6388     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6389   if (VD->getTLSKind())
6390     setTLSMode(GV, *VD);
6391   llvm::Constant *CV = GV;
6392   if (AddrSpace != LangAS::Default)
6393     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6394         *this, GV, AddrSpace, LangAS::Default,
6395         llvm::PointerType::get(
6396             getLLVMContext(),
6397             getContext().getTargetAddressSpace(LangAS::Default)));
6398 
6399   // Update the map with the new temporary. If we created a placeholder above,
6400   // replace it with the new global now.
6401   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6402   if (Entry) {
6403     Entry->replaceAllUsesWith(CV);
6404     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6405   }
6406   Entry = CV;
6407 
6408   return ConstantAddress(CV, Type, Align);
6409 }
6410 
6411 /// EmitObjCPropertyImplementations - Emit information for synthesized
6412 /// properties for an implementation.
6413 void CodeGenModule::EmitObjCPropertyImplementations(const
6414                                                     ObjCImplementationDecl *D) {
6415   for (const auto *PID : D->property_impls()) {
6416     // Dynamic is just for type-checking.
6417     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6418       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6419 
6420       // Determine which methods need to be implemented, some may have
6421       // been overridden. Note that ::isPropertyAccessor is not the method
6422       // we want, that just indicates if the decl came from a
6423       // property. What we want to know is if the method is defined in
6424       // this implementation.
6425       auto *Getter = PID->getGetterMethodDecl();
6426       if (!Getter || Getter->isSynthesizedAccessorStub())
6427         CodeGenFunction(*this).GenerateObjCGetter(
6428             const_cast<ObjCImplementationDecl *>(D), PID);
6429       auto *Setter = PID->getSetterMethodDecl();
6430       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6431         CodeGenFunction(*this).GenerateObjCSetter(
6432                                  const_cast<ObjCImplementationDecl *>(D), PID);
6433     }
6434   }
6435 }
6436 
6437 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6438   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6439   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6440        ivar; ivar = ivar->getNextIvar())
6441     if (ivar->getType().isDestructedType())
6442       return true;
6443 
6444   return false;
6445 }
6446 
6447 static bool AllTrivialInitializers(CodeGenModule &CGM,
6448                                    ObjCImplementationDecl *D) {
6449   CodeGenFunction CGF(CGM);
6450   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6451        E = D->init_end(); B != E; ++B) {
6452     CXXCtorInitializer *CtorInitExp = *B;
6453     Expr *Init = CtorInitExp->getInit();
6454     if (!CGF.isTrivialInitializer(Init))
6455       return false;
6456   }
6457   return true;
6458 }
6459 
6460 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6461 /// for an implementation.
6462 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6463   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6464   if (needsDestructMethod(D)) {
6465     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6466     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6467     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6468         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6469         getContext().VoidTy, nullptr, D,
6470         /*isInstance=*/true, /*isVariadic=*/false,
6471         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6472         /*isImplicitlyDeclared=*/true,
6473         /*isDefined=*/false, ObjCImplementationControl::Required);
6474     D->addInstanceMethod(DTORMethod);
6475     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6476     D->setHasDestructors(true);
6477   }
6478 
6479   // If the implementation doesn't have any ivar initializers, we don't need
6480   // a .cxx_construct.
6481   if (D->getNumIvarInitializers() == 0 ||
6482       AllTrivialInitializers(*this, D))
6483     return;
6484 
6485   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6486   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6487   // The constructor returns 'self'.
6488   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6489       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6490       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6491       /*isVariadic=*/false,
6492       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6493       /*isImplicitlyDeclared=*/true,
6494       /*isDefined=*/false, ObjCImplementationControl::Required);
6495   D->addInstanceMethod(CTORMethod);
6496   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6497   D->setHasNonZeroConstructors(true);
6498 }
6499 
6500 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6501 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6502   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6503       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6504     ErrorUnsupported(LSD, "linkage spec");
6505     return;
6506   }
6507 
6508   EmitDeclContext(LSD);
6509 }
6510 
6511 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6512   // Device code should not be at top level.
6513   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6514     return;
6515 
6516   std::unique_ptr<CodeGenFunction> &CurCGF =
6517       GlobalTopLevelStmtBlockInFlight.first;
6518 
6519   // We emitted a top-level stmt but after it there is initialization.
6520   // Stop squashing the top-level stmts into a single function.
6521   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6522     CurCGF->FinishFunction(D->getEndLoc());
6523     CurCGF = nullptr;
6524   }
6525 
6526   if (!CurCGF) {
6527     // void __stmts__N(void)
6528     // FIXME: Ask the ABI name mangler to pick a name.
6529     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6530     FunctionArgList Args;
6531     QualType RetTy = getContext().VoidTy;
6532     const CGFunctionInfo &FnInfo =
6533         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6534     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6535     llvm::Function *Fn = llvm::Function::Create(
6536         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6537 
6538     CurCGF.reset(new CodeGenFunction(*this));
6539     GlobalTopLevelStmtBlockInFlight.second = D;
6540     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6541                           D->getBeginLoc(), D->getBeginLoc());
6542     CXXGlobalInits.push_back(Fn);
6543   }
6544 
6545   CurCGF->EmitStmt(D->getStmt());
6546 }
6547 
6548 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6549   for (auto *I : DC->decls()) {
6550     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6551     // are themselves considered "top-level", so EmitTopLevelDecl on an
6552     // ObjCImplDecl does not recursively visit them. We need to do that in
6553     // case they're nested inside another construct (LinkageSpecDecl /
6554     // ExportDecl) that does stop them from being considered "top-level".
6555     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6556       for (auto *M : OID->methods())
6557         EmitTopLevelDecl(M);
6558     }
6559 
6560     EmitTopLevelDecl(I);
6561   }
6562 }
6563 
6564 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6565 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6566   // Ignore dependent declarations.
6567   if (D->isTemplated())
6568     return;
6569 
6570   // Consteval function shouldn't be emitted.
6571   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6572     return;
6573 
6574   switch (D->getKind()) {
6575   case Decl::CXXConversion:
6576   case Decl::CXXMethod:
6577   case Decl::Function:
6578     EmitGlobal(cast<FunctionDecl>(D));
6579     // Always provide some coverage mapping
6580     // even for the functions that aren't emitted.
6581     AddDeferredUnusedCoverageMapping(D);
6582     break;
6583 
6584   case Decl::CXXDeductionGuide:
6585     // Function-like, but does not result in code emission.
6586     break;
6587 
6588   case Decl::Var:
6589   case Decl::Decomposition:
6590   case Decl::VarTemplateSpecialization:
6591     EmitGlobal(cast<VarDecl>(D));
6592     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6593       for (auto *B : DD->bindings())
6594         if (auto *HD = B->getHoldingVar())
6595           EmitGlobal(HD);
6596     break;
6597 
6598   // Indirect fields from global anonymous structs and unions can be
6599   // ignored; only the actual variable requires IR gen support.
6600   case Decl::IndirectField:
6601     break;
6602 
6603   // C++ Decls
6604   case Decl::Namespace:
6605     EmitDeclContext(cast<NamespaceDecl>(D));
6606     break;
6607   case Decl::ClassTemplateSpecialization: {
6608     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6609     if (CGDebugInfo *DI = getModuleDebugInfo())
6610       if (Spec->getSpecializationKind() ==
6611               TSK_ExplicitInstantiationDefinition &&
6612           Spec->hasDefinition())
6613         DI->completeTemplateDefinition(*Spec);
6614   } [[fallthrough]];
6615   case Decl::CXXRecord: {
6616     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6617     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6618       if (CRD->hasDefinition())
6619         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6620       if (auto *ES = D->getASTContext().getExternalSource())
6621         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6622           DI->completeUnusedClass(*CRD);
6623     }
6624     // Emit any static data members, they may be definitions.
6625     for (auto *I : CRD->decls())
6626       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6627         EmitTopLevelDecl(I);
6628     break;
6629   }
6630     // No code generation needed.
6631   case Decl::UsingShadow:
6632   case Decl::ClassTemplate:
6633   case Decl::VarTemplate:
6634   case Decl::Concept:
6635   case Decl::VarTemplatePartialSpecialization:
6636   case Decl::FunctionTemplate:
6637   case Decl::TypeAliasTemplate:
6638   case Decl::Block:
6639   case Decl::Empty:
6640   case Decl::Binding:
6641     break;
6642   case Decl::Using:          // using X; [C++]
6643     if (CGDebugInfo *DI = getModuleDebugInfo())
6644         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6645     break;
6646   case Decl::UsingEnum: // using enum X; [C++]
6647     if (CGDebugInfo *DI = getModuleDebugInfo())
6648       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6649     break;
6650   case Decl::NamespaceAlias:
6651     if (CGDebugInfo *DI = getModuleDebugInfo())
6652         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6653     break;
6654   case Decl::UsingDirective: // using namespace X; [C++]
6655     if (CGDebugInfo *DI = getModuleDebugInfo())
6656       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6657     break;
6658   case Decl::CXXConstructor:
6659     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6660     break;
6661   case Decl::CXXDestructor:
6662     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6663     break;
6664 
6665   case Decl::StaticAssert:
6666     // Nothing to do.
6667     break;
6668 
6669   // Objective-C Decls
6670 
6671   // Forward declarations, no (immediate) code generation.
6672   case Decl::ObjCInterface:
6673   case Decl::ObjCCategory:
6674     break;
6675 
6676   case Decl::ObjCProtocol: {
6677     auto *Proto = cast<ObjCProtocolDecl>(D);
6678     if (Proto->isThisDeclarationADefinition())
6679       ObjCRuntime->GenerateProtocol(Proto);
6680     break;
6681   }
6682 
6683   case Decl::ObjCCategoryImpl:
6684     // Categories have properties but don't support synthesize so we
6685     // can ignore them here.
6686     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6687     break;
6688 
6689   case Decl::ObjCImplementation: {
6690     auto *OMD = cast<ObjCImplementationDecl>(D);
6691     EmitObjCPropertyImplementations(OMD);
6692     EmitObjCIvarInitializations(OMD);
6693     ObjCRuntime->GenerateClass(OMD);
6694     // Emit global variable debug information.
6695     if (CGDebugInfo *DI = getModuleDebugInfo())
6696       if (getCodeGenOpts().hasReducedDebugInfo())
6697         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6698             OMD->getClassInterface()), OMD->getLocation());
6699     break;
6700   }
6701   case Decl::ObjCMethod: {
6702     auto *OMD = cast<ObjCMethodDecl>(D);
6703     // If this is not a prototype, emit the body.
6704     if (OMD->getBody())
6705       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6706     break;
6707   }
6708   case Decl::ObjCCompatibleAlias:
6709     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6710     break;
6711 
6712   case Decl::PragmaComment: {
6713     const auto *PCD = cast<PragmaCommentDecl>(D);
6714     switch (PCD->getCommentKind()) {
6715     case PCK_Unknown:
6716       llvm_unreachable("unexpected pragma comment kind");
6717     case PCK_Linker:
6718       AppendLinkerOptions(PCD->getArg());
6719       break;
6720     case PCK_Lib:
6721         AddDependentLib(PCD->getArg());
6722       break;
6723     case PCK_Compiler:
6724     case PCK_ExeStr:
6725     case PCK_User:
6726       break; // We ignore all of these.
6727     }
6728     break;
6729   }
6730 
6731   case Decl::PragmaDetectMismatch: {
6732     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6733     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6734     break;
6735   }
6736 
6737   case Decl::LinkageSpec:
6738     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6739     break;
6740 
6741   case Decl::FileScopeAsm: {
6742     // File-scope asm is ignored during device-side CUDA compilation.
6743     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6744       break;
6745     // File-scope asm is ignored during device-side OpenMP compilation.
6746     if (LangOpts.OpenMPIsTargetDevice)
6747       break;
6748     // File-scope asm is ignored during device-side SYCL compilation.
6749     if (LangOpts.SYCLIsDevice)
6750       break;
6751     auto *AD = cast<FileScopeAsmDecl>(D);
6752     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6753     break;
6754   }
6755 
6756   case Decl::TopLevelStmt:
6757     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6758     break;
6759 
6760   case Decl::Import: {
6761     auto *Import = cast<ImportDecl>(D);
6762 
6763     // If we've already imported this module, we're done.
6764     if (!ImportedModules.insert(Import->getImportedModule()))
6765       break;
6766 
6767     // Emit debug information for direct imports.
6768     if (!Import->getImportedOwningModule()) {
6769       if (CGDebugInfo *DI = getModuleDebugInfo())
6770         DI->EmitImportDecl(*Import);
6771     }
6772 
6773     // For C++ standard modules we are done - we will call the module
6774     // initializer for imported modules, and that will likewise call those for
6775     // any imports it has.
6776     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6777         !Import->getImportedOwningModule()->isModuleMapModule())
6778       break;
6779 
6780     // For clang C++ module map modules the initializers for sub-modules are
6781     // emitted here.
6782 
6783     // Find all of the submodules and emit the module initializers.
6784     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6785     SmallVector<clang::Module *, 16> Stack;
6786     Visited.insert(Import->getImportedModule());
6787     Stack.push_back(Import->getImportedModule());
6788 
6789     while (!Stack.empty()) {
6790       clang::Module *Mod = Stack.pop_back_val();
6791       if (!EmittedModuleInitializers.insert(Mod).second)
6792         continue;
6793 
6794       for (auto *D : Context.getModuleInitializers(Mod))
6795         EmitTopLevelDecl(D);
6796 
6797       // Visit the submodules of this module.
6798       for (auto *Submodule : Mod->submodules()) {
6799         // Skip explicit children; they need to be explicitly imported to emit
6800         // the initializers.
6801         if (Submodule->IsExplicit)
6802           continue;
6803 
6804         if (Visited.insert(Submodule).second)
6805           Stack.push_back(Submodule);
6806       }
6807     }
6808     break;
6809   }
6810 
6811   case Decl::Export:
6812     EmitDeclContext(cast<ExportDecl>(D));
6813     break;
6814 
6815   case Decl::OMPThreadPrivate:
6816     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6817     break;
6818 
6819   case Decl::OMPAllocate:
6820     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6821     break;
6822 
6823   case Decl::OMPDeclareReduction:
6824     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6825     break;
6826 
6827   case Decl::OMPDeclareMapper:
6828     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6829     break;
6830 
6831   case Decl::OMPRequires:
6832     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6833     break;
6834 
6835   case Decl::Typedef:
6836   case Decl::TypeAlias: // using foo = bar; [C++11]
6837     if (CGDebugInfo *DI = getModuleDebugInfo())
6838       DI->EmitAndRetainType(
6839           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6840     break;
6841 
6842   case Decl::Record:
6843     if (CGDebugInfo *DI = getModuleDebugInfo())
6844       if (cast<RecordDecl>(D)->getDefinition())
6845         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6846     break;
6847 
6848   case Decl::Enum:
6849     if (CGDebugInfo *DI = getModuleDebugInfo())
6850       if (cast<EnumDecl>(D)->getDefinition())
6851         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6852     break;
6853 
6854   case Decl::HLSLBuffer:
6855     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6856     break;
6857 
6858   default:
6859     // Make sure we handled everything we should, every other kind is a
6860     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6861     // function. Need to recode Decl::Kind to do that easily.
6862     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6863     break;
6864   }
6865 }
6866 
6867 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6868   // Do we need to generate coverage mapping?
6869   if (!CodeGenOpts.CoverageMapping)
6870     return;
6871   switch (D->getKind()) {
6872   case Decl::CXXConversion:
6873   case Decl::CXXMethod:
6874   case Decl::Function:
6875   case Decl::ObjCMethod:
6876   case Decl::CXXConstructor:
6877   case Decl::CXXDestructor: {
6878     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6879       break;
6880     SourceManager &SM = getContext().getSourceManager();
6881     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6882       break;
6883     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6884     if (I == DeferredEmptyCoverageMappingDecls.end())
6885       DeferredEmptyCoverageMappingDecls[D] = true;
6886     break;
6887   }
6888   default:
6889     break;
6890   };
6891 }
6892 
6893 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6894   // Do we need to generate coverage mapping?
6895   if (!CodeGenOpts.CoverageMapping)
6896     return;
6897   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6898     if (Fn->isTemplateInstantiation())
6899       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6900   }
6901   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6902   if (I == DeferredEmptyCoverageMappingDecls.end())
6903     DeferredEmptyCoverageMappingDecls[D] = false;
6904   else
6905     I->second = false;
6906 }
6907 
6908 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6909   // We call takeVector() here to avoid use-after-free.
6910   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6911   // we deserialize function bodies to emit coverage info for them, and that
6912   // deserializes more declarations. How should we handle that case?
6913   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6914     if (!Entry.second)
6915       continue;
6916     const Decl *D = Entry.first;
6917     switch (D->getKind()) {
6918     case Decl::CXXConversion:
6919     case Decl::CXXMethod:
6920     case Decl::Function:
6921     case Decl::ObjCMethod: {
6922       CodeGenPGO PGO(*this);
6923       GlobalDecl GD(cast<FunctionDecl>(D));
6924       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6925                                   getFunctionLinkage(GD));
6926       break;
6927     }
6928     case Decl::CXXConstructor: {
6929       CodeGenPGO PGO(*this);
6930       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6931       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6932                                   getFunctionLinkage(GD));
6933       break;
6934     }
6935     case Decl::CXXDestructor: {
6936       CodeGenPGO PGO(*this);
6937       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6938       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6939                                   getFunctionLinkage(GD));
6940       break;
6941     }
6942     default:
6943       break;
6944     };
6945   }
6946 }
6947 
6948 void CodeGenModule::EmitMainVoidAlias() {
6949   // In order to transition away from "__original_main" gracefully, emit an
6950   // alias for "main" in the no-argument case so that libc can detect when
6951   // new-style no-argument main is in used.
6952   if (llvm::Function *F = getModule().getFunction("main")) {
6953     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6954         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6955       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6956       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6957     }
6958   }
6959 }
6960 
6961 /// Turns the given pointer into a constant.
6962 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6963                                           const void *Ptr) {
6964   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6965   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6966   return llvm::ConstantInt::get(i64, PtrInt);
6967 }
6968 
6969 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6970                                    llvm::NamedMDNode *&GlobalMetadata,
6971                                    GlobalDecl D,
6972                                    llvm::GlobalValue *Addr) {
6973   if (!GlobalMetadata)
6974     GlobalMetadata =
6975       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6976 
6977   // TODO: should we report variant information for ctors/dtors?
6978   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6979                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6980                                CGM.getLLVMContext(), D.getDecl()))};
6981   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6982 }
6983 
6984 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6985                                                  llvm::GlobalValue *CppFunc) {
6986   // Store the list of ifuncs we need to replace uses in.
6987   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6988   // List of ConstantExprs that we should be able to delete when we're done
6989   // here.
6990   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6991 
6992   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6993   if (Elem == CppFunc)
6994     return false;
6995 
6996   // First make sure that all users of this are ifuncs (or ifuncs via a
6997   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6998   // later.
6999   for (llvm::User *User : Elem->users()) {
7000     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7001     // ifunc directly. In any other case, just give up, as we don't know what we
7002     // could break by changing those.
7003     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7004       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7005         return false;
7006 
7007       for (llvm::User *CEUser : ConstExpr->users()) {
7008         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7009           IFuncs.push_back(IFunc);
7010         } else {
7011           return false;
7012         }
7013       }
7014       CEs.push_back(ConstExpr);
7015     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7016       IFuncs.push_back(IFunc);
7017     } else {
7018       // This user is one we don't know how to handle, so fail redirection. This
7019       // will result in an ifunc retaining a resolver name that will ultimately
7020       // fail to be resolved to a defined function.
7021       return false;
7022     }
7023   }
7024 
7025   // Now we know this is a valid case where we can do this alias replacement, we
7026   // need to remove all of the references to Elem (and the bitcasts!) so we can
7027   // delete it.
7028   for (llvm::GlobalIFunc *IFunc : IFuncs)
7029     IFunc->setResolver(nullptr);
7030   for (llvm::ConstantExpr *ConstExpr : CEs)
7031     ConstExpr->destroyConstant();
7032 
7033   // We should now be out of uses for the 'old' version of this function, so we
7034   // can erase it as well.
7035   Elem->eraseFromParent();
7036 
7037   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7038     // The type of the resolver is always just a function-type that returns the
7039     // type of the IFunc, so create that here. If the type of the actual
7040     // resolver doesn't match, it just gets bitcast to the right thing.
7041     auto *ResolverTy =
7042         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7043     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7044         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7045     IFunc->setResolver(Resolver);
7046   }
7047   return true;
7048 }
7049 
7050 /// For each function which is declared within an extern "C" region and marked
7051 /// as 'used', but has internal linkage, create an alias from the unmangled
7052 /// name to the mangled name if possible. People expect to be able to refer
7053 /// to such functions with an unmangled name from inline assembly within the
7054 /// same translation unit.
7055 void CodeGenModule::EmitStaticExternCAliases() {
7056   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7057     return;
7058   for (auto &I : StaticExternCValues) {
7059     IdentifierInfo *Name = I.first;
7060     llvm::GlobalValue *Val = I.second;
7061 
7062     // If Val is null, that implies there were multiple declarations that each
7063     // had a claim to the unmangled name. In this case, generation of the alias
7064     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7065     if (!Val)
7066       break;
7067 
7068     llvm::GlobalValue *ExistingElem =
7069         getModule().getNamedValue(Name->getName());
7070 
7071     // If there is either not something already by this name, or we were able to
7072     // replace all uses from IFuncs, create the alias.
7073     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7074       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7075   }
7076 }
7077 
7078 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7079                                              GlobalDecl &Result) const {
7080   auto Res = Manglings.find(MangledName);
7081   if (Res == Manglings.end())
7082     return false;
7083   Result = Res->getValue();
7084   return true;
7085 }
7086 
7087 /// Emits metadata nodes associating all the global values in the
7088 /// current module with the Decls they came from.  This is useful for
7089 /// projects using IR gen as a subroutine.
7090 ///
7091 /// Since there's currently no way to associate an MDNode directly
7092 /// with an llvm::GlobalValue, we create a global named metadata
7093 /// with the name 'clang.global.decl.ptrs'.
7094 void CodeGenModule::EmitDeclMetadata() {
7095   llvm::NamedMDNode *GlobalMetadata = nullptr;
7096 
7097   for (auto &I : MangledDeclNames) {
7098     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7099     // Some mangled names don't necessarily have an associated GlobalValue
7100     // in this module, e.g. if we mangled it for DebugInfo.
7101     if (Addr)
7102       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7103   }
7104 }
7105 
7106 /// Emits metadata nodes for all the local variables in the current
7107 /// function.
7108 void CodeGenFunction::EmitDeclMetadata() {
7109   if (LocalDeclMap.empty()) return;
7110 
7111   llvm::LLVMContext &Context = getLLVMContext();
7112 
7113   // Find the unique metadata ID for this name.
7114   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7115 
7116   llvm::NamedMDNode *GlobalMetadata = nullptr;
7117 
7118   for (auto &I : LocalDeclMap) {
7119     const Decl *D = I.first;
7120     llvm::Value *Addr = I.second.getPointer();
7121     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7122       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7123       Alloca->setMetadata(
7124           DeclPtrKind, llvm::MDNode::get(
7125                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7126     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7127       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7128       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7129     }
7130   }
7131 }
7132 
7133 void CodeGenModule::EmitVersionIdentMetadata() {
7134   llvm::NamedMDNode *IdentMetadata =
7135     TheModule.getOrInsertNamedMetadata("llvm.ident");
7136   std::string Version = getClangFullVersion();
7137   llvm::LLVMContext &Ctx = TheModule.getContext();
7138 
7139   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7140   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7141 }
7142 
7143 void CodeGenModule::EmitCommandLineMetadata() {
7144   llvm::NamedMDNode *CommandLineMetadata =
7145     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7146   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7147   llvm::LLVMContext &Ctx = TheModule.getContext();
7148 
7149   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7150   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7151 }
7152 
7153 void CodeGenModule::EmitCoverageFile() {
7154   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7155   if (!CUNode)
7156     return;
7157 
7158   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7159   llvm::LLVMContext &Ctx = TheModule.getContext();
7160   auto *CoverageDataFile =
7161       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7162   auto *CoverageNotesFile =
7163       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7164   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7165     llvm::MDNode *CU = CUNode->getOperand(i);
7166     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7167     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7168   }
7169 }
7170 
7171 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7172                                                        bool ForEH) {
7173   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7174   // FIXME: should we even be calling this method if RTTI is disabled
7175   // and it's not for EH?
7176   if (!shouldEmitRTTI(ForEH))
7177     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7178 
7179   if (ForEH && Ty->isObjCObjectPointerType() &&
7180       LangOpts.ObjCRuntime.isGNUFamily())
7181     return ObjCRuntime->GetEHType(Ty);
7182 
7183   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7184 }
7185 
7186 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7187   // Do not emit threadprivates in simd-only mode.
7188   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7189     return;
7190   for (auto RefExpr : D->varlists()) {
7191     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7192     bool PerformInit =
7193         VD->getAnyInitializer() &&
7194         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7195                                                         /*ForRef=*/false);
7196 
7197     Address Addr(GetAddrOfGlobalVar(VD),
7198                  getTypes().ConvertTypeForMem(VD->getType()),
7199                  getContext().getDeclAlign(VD));
7200     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7201             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7202       CXXGlobalInits.push_back(InitFunction);
7203   }
7204 }
7205 
7206 llvm::Metadata *
7207 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7208                                             StringRef Suffix) {
7209   if (auto *FnType = T->getAs<FunctionProtoType>())
7210     T = getContext().getFunctionType(
7211         FnType->getReturnType(), FnType->getParamTypes(),
7212         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7213 
7214   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7215   if (InternalId)
7216     return InternalId;
7217 
7218   if (isExternallyVisible(T->getLinkage())) {
7219     std::string OutName;
7220     llvm::raw_string_ostream Out(OutName);
7221     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7222         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7223 
7224     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7225       Out << ".normalized";
7226 
7227     Out << Suffix;
7228 
7229     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7230   } else {
7231     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7232                                            llvm::ArrayRef<llvm::Metadata *>());
7233   }
7234 
7235   return InternalId;
7236 }
7237 
7238 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7239   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7240 }
7241 
7242 llvm::Metadata *
7243 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7244   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7245 }
7246 
7247 // Generalize pointer types to a void pointer with the qualifiers of the
7248 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7249 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7250 // 'void *'.
7251 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7252   if (!Ty->isPointerType())
7253     return Ty;
7254 
7255   return Ctx.getPointerType(
7256       QualType(Ctx.VoidTy).withCVRQualifiers(
7257           Ty->getPointeeType().getCVRQualifiers()));
7258 }
7259 
7260 // Apply type generalization to a FunctionType's return and argument types
7261 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7262   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7263     SmallVector<QualType, 8> GeneralizedParams;
7264     for (auto &Param : FnType->param_types())
7265       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7266 
7267     return Ctx.getFunctionType(
7268         GeneralizeType(Ctx, FnType->getReturnType()),
7269         GeneralizedParams, FnType->getExtProtoInfo());
7270   }
7271 
7272   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7273     return Ctx.getFunctionNoProtoType(
7274         GeneralizeType(Ctx, FnType->getReturnType()));
7275 
7276   llvm_unreachable("Encountered unknown FunctionType");
7277 }
7278 
7279 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7280   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7281                                       GeneralizedMetadataIdMap, ".generalized");
7282 }
7283 
7284 /// Returns whether this module needs the "all-vtables" type identifier.
7285 bool CodeGenModule::NeedAllVtablesTypeId() const {
7286   // Returns true if at least one of vtable-based CFI checkers is enabled and
7287   // is not in the trapping mode.
7288   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7289            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7290           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7291            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7292           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7293            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7294           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7295            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7296 }
7297 
7298 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7299                                           CharUnits Offset,
7300                                           const CXXRecordDecl *RD) {
7301   llvm::Metadata *MD =
7302       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7303   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7304 
7305   if (CodeGenOpts.SanitizeCfiCrossDso)
7306     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7307       VTable->addTypeMetadata(Offset.getQuantity(),
7308                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7309 
7310   if (NeedAllVtablesTypeId()) {
7311     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7312     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7313   }
7314 }
7315 
7316 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7317   if (!SanStats)
7318     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7319 
7320   return *SanStats;
7321 }
7322 
7323 llvm::Value *
7324 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7325                                                   CodeGenFunction &CGF) {
7326   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7327   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7328   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7329   auto *Call = CGF.EmitRuntimeCall(
7330       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7331   return Call;
7332 }
7333 
7334 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7335     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7336   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7337                                  /* forPointeeType= */ true);
7338 }
7339 
7340 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7341                                                  LValueBaseInfo *BaseInfo,
7342                                                  TBAAAccessInfo *TBAAInfo,
7343                                                  bool forPointeeType) {
7344   if (TBAAInfo)
7345     *TBAAInfo = getTBAAAccessInfo(T);
7346 
7347   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7348   // that doesn't return the information we need to compute BaseInfo.
7349 
7350   // Honor alignment typedef attributes even on incomplete types.
7351   // We also honor them straight for C++ class types, even as pointees;
7352   // there's an expressivity gap here.
7353   if (auto TT = T->getAs<TypedefType>()) {
7354     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7355       if (BaseInfo)
7356         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7357       return getContext().toCharUnitsFromBits(Align);
7358     }
7359   }
7360 
7361   bool AlignForArray = T->isArrayType();
7362 
7363   // Analyze the base element type, so we don't get confused by incomplete
7364   // array types.
7365   T = getContext().getBaseElementType(T);
7366 
7367   if (T->isIncompleteType()) {
7368     // We could try to replicate the logic from
7369     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7370     // type is incomplete, so it's impossible to test. We could try to reuse
7371     // getTypeAlignIfKnown, but that doesn't return the information we need
7372     // to set BaseInfo.  So just ignore the possibility that the alignment is
7373     // greater than one.
7374     if (BaseInfo)
7375       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7376     return CharUnits::One();
7377   }
7378 
7379   if (BaseInfo)
7380     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7381 
7382   CharUnits Alignment;
7383   const CXXRecordDecl *RD;
7384   if (T.getQualifiers().hasUnaligned()) {
7385     Alignment = CharUnits::One();
7386   } else if (forPointeeType && !AlignForArray &&
7387              (RD = T->getAsCXXRecordDecl())) {
7388     // For C++ class pointees, we don't know whether we're pointing at a
7389     // base or a complete object, so we generally need to use the
7390     // non-virtual alignment.
7391     Alignment = getClassPointerAlignment(RD);
7392   } else {
7393     Alignment = getContext().getTypeAlignInChars(T);
7394   }
7395 
7396   // Cap to the global maximum type alignment unless the alignment
7397   // was somehow explicit on the type.
7398   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7399     if (Alignment.getQuantity() > MaxAlign &&
7400         !getContext().isAlignmentRequired(T))
7401       Alignment = CharUnits::fromQuantity(MaxAlign);
7402   }
7403   return Alignment;
7404 }
7405 
7406 bool CodeGenModule::stopAutoInit() {
7407   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7408   if (StopAfter) {
7409     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7410     // used
7411     if (NumAutoVarInit >= StopAfter) {
7412       return true;
7413     }
7414     if (!NumAutoVarInit) {
7415       unsigned DiagID = getDiags().getCustomDiagID(
7416           DiagnosticsEngine::Warning,
7417           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7418           "number of times ftrivial-auto-var-init=%1 gets applied.");
7419       getDiags().Report(DiagID)
7420           << StopAfter
7421           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7422                       LangOptions::TrivialAutoVarInitKind::Zero
7423                   ? "zero"
7424                   : "pattern");
7425     }
7426     ++NumAutoVarInit;
7427   }
7428   return false;
7429 }
7430 
7431 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7432                                                     const Decl *D) const {
7433   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7434   // postfix beginning with '.' since the symbol name can be demangled.
7435   if (LangOpts.HIP)
7436     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7437   else
7438     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7439 
7440   // If the CUID is not specified we try to generate a unique postfix.
7441   if (getLangOpts().CUID.empty()) {
7442     SourceManager &SM = getContext().getSourceManager();
7443     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7444     assert(PLoc.isValid() && "Source location is expected to be valid.");
7445 
7446     // Get the hash of the user defined macros.
7447     llvm::MD5 Hash;
7448     llvm::MD5::MD5Result Result;
7449     for (const auto &Arg : PreprocessorOpts.Macros)
7450       Hash.update(Arg.first);
7451     Hash.final(Result);
7452 
7453     // Get the UniqueID for the file containing the decl.
7454     llvm::sys::fs::UniqueID ID;
7455     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7456       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7457       assert(PLoc.isValid() && "Source location is expected to be valid.");
7458       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7459         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7460             << PLoc.getFilename() << EC.message();
7461     }
7462     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7463        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7464   } else {
7465     OS << getContext().getCUIDHash();
7466   }
7467 }
7468 
7469 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7470   assert(DeferredDeclsToEmit.empty() &&
7471          "Should have emitted all decls deferred to emit.");
7472   assert(NewBuilder->DeferredDecls.empty() &&
7473          "Newly created module should not have deferred decls");
7474   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7475   assert(EmittedDeferredDecls.empty() &&
7476          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7477 
7478   assert(NewBuilder->DeferredVTables.empty() &&
7479          "Newly created module should not have deferred vtables");
7480   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7481 
7482   assert(NewBuilder->MangledDeclNames.empty() &&
7483          "Newly created module should not have mangled decl names");
7484   assert(NewBuilder->Manglings.empty() &&
7485          "Newly created module should not have manglings");
7486   NewBuilder->Manglings = std::move(Manglings);
7487 
7488   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7489 
7490   NewBuilder->TBAA = std::move(TBAA);
7491 
7492   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7493 }
7494