1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "Mangle.h" 22 #include "TargetInfo.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) { 168 switch (V) { 169 case DefaultVisibility: return llvm::GlobalValue::DefaultVisibility; 170 case HiddenVisibility: return llvm::GlobalValue::HiddenVisibility; 171 case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility; 172 } 173 llvm_unreachable("unknown visibility!"); 174 return llvm::GlobalValue::DefaultVisibility; 175 } 176 177 178 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 179 const NamedDecl *D, 180 bool IsForDefinition) const { 181 // Internal definitions always have default visibility. 182 if (GV->hasLocalLinkage()) { 183 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 184 return; 185 } 186 187 // Set visibility for definitions. 188 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 189 if (LV.visibilityExplicit() || 190 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 191 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 192 } 193 194 /// Set the symbol visibility of type information (vtable and RTTI) 195 /// associated with the given type. 196 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 197 const CXXRecordDecl *RD, 198 bool IsForRTTI, 199 bool IsForDefinition) const { 200 setGlobalVisibility(GV, RD, IsForDefinition); 201 202 if (!CodeGenOpts.HiddenWeakVTables) 203 return; 204 205 // We want to drop the visibility to hidden for weak type symbols. 206 // This isn't possible if there might be unresolved references 207 // elsewhere that rely on this symbol being visible. 208 209 // This should be kept roughly in sync with setThunkVisibility 210 // in CGVTables.cpp. 211 212 // Preconditions. 213 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 214 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 215 return; 216 217 // Don't override an explicit visibility attribute. 218 if (RD->hasAttr<VisibilityAttr>()) 219 return; 220 221 switch (RD->getTemplateSpecializationKind()) { 222 // We have to disable the optimization if this is an EI definition 223 // because there might be EI declarations in other shared objects. 224 case TSK_ExplicitInstantiationDefinition: 225 case TSK_ExplicitInstantiationDeclaration: 226 return; 227 228 // Every use of a non-template class's type information has to emit it. 229 case TSK_Undeclared: 230 break; 231 232 // In theory, implicit instantiations can ignore the possibility of 233 // an explicit instantiation declaration because there necessarily 234 // must be an EI definition somewhere with default visibility. In 235 // practice, it's possible to have an explicit instantiation for 236 // an arbitrary template class, and linkers aren't necessarily able 237 // to deal with mixed-visibility symbols. 238 case TSK_ExplicitSpecialization: 239 case TSK_ImplicitInstantiation: 240 if (!CodeGenOpts.HiddenWeakTemplateVTables) 241 return; 242 break; 243 } 244 245 // If there's a key function, there may be translation units 246 // that don't have the key function's definition. But ignore 247 // this if we're emitting RTTI under -fno-rtti. 248 if (!IsForRTTI || Features.RTTI) 249 if (Context.getKeyFunction(RD)) 250 return; 251 252 // Otherwise, drop the visibility to hidden. 253 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 254 GV->setUnnamedAddr(true); 255 } 256 257 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 258 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 259 260 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 261 if (!Str.empty()) 262 return Str; 263 264 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 265 IdentifierInfo *II = ND->getIdentifier(); 266 assert(II && "Attempt to mangle unnamed decl."); 267 268 Str = II->getName(); 269 return Str; 270 } 271 272 llvm::SmallString<256> Buffer; 273 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 274 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 275 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 276 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 277 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 278 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer); 279 else 280 getCXXABI().getMangleContext().mangleName(ND, Buffer); 281 282 // Allocate space for the mangled name. 283 size_t Length = Buffer.size(); 284 char *Name = MangledNamesAllocator.Allocate<char>(Length); 285 std::copy(Buffer.begin(), Buffer.end(), Name); 286 287 Str = llvm::StringRef(Name, Length); 288 289 return Str; 290 } 291 292 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 293 const BlockDecl *BD) { 294 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 295 } 296 297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 298 return getModule().getNamedValue(Name); 299 } 300 301 /// AddGlobalCtor - Add a function to the list that will be called before 302 /// main() runs. 303 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 304 // FIXME: Type coercion of void()* types. 305 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 306 } 307 308 /// AddGlobalDtor - Add a function to the list that will be called 309 /// when the module is unloaded. 310 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 311 // FIXME: Type coercion of void()* types. 312 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 313 } 314 315 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 316 // Ctor function type is void()*. 317 llvm::FunctionType* CtorFTy = 318 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 319 std::vector<const llvm::Type*>(), 320 false); 321 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 322 323 // Get the type of a ctor entry, { i32, void ()* }. 324 llvm::StructType* CtorStructTy = 325 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 326 llvm::PointerType::getUnqual(CtorFTy), NULL); 327 328 // Construct the constructor and destructor arrays. 329 std::vector<llvm::Constant*> Ctors; 330 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 331 std::vector<llvm::Constant*> S; 332 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 333 I->second, false)); 334 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 335 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 336 } 337 338 if (!Ctors.empty()) { 339 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 340 new llvm::GlobalVariable(TheModule, AT, false, 341 llvm::GlobalValue::AppendingLinkage, 342 llvm::ConstantArray::get(AT, Ctors), 343 GlobalName); 344 } 345 } 346 347 void CodeGenModule::EmitAnnotations() { 348 if (Annotations.empty()) 349 return; 350 351 // Create a new global variable for the ConstantStruct in the Module. 352 llvm::Constant *Array = 353 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 354 Annotations.size()), 355 Annotations); 356 llvm::GlobalValue *gv = 357 new llvm::GlobalVariable(TheModule, Array->getType(), false, 358 llvm::GlobalValue::AppendingLinkage, Array, 359 "llvm.global.annotations"); 360 gv->setSection("llvm.metadata"); 361 } 362 363 llvm::GlobalValue::LinkageTypes 364 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 365 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 366 367 if (Linkage == GVA_Internal) 368 return llvm::Function::InternalLinkage; 369 370 if (D->hasAttr<DLLExportAttr>()) 371 return llvm::Function::DLLExportLinkage; 372 373 if (D->hasAttr<WeakAttr>()) 374 return llvm::Function::WeakAnyLinkage; 375 376 // In C99 mode, 'inline' functions are guaranteed to have a strong 377 // definition somewhere else, so we can use available_externally linkage. 378 if (Linkage == GVA_C99Inline) 379 return llvm::Function::AvailableExternallyLinkage; 380 381 // In C++, the compiler has to emit a definition in every translation unit 382 // that references the function. We should use linkonce_odr because 383 // a) if all references in this translation unit are optimized away, we 384 // don't need to codegen it. b) if the function persists, it needs to be 385 // merged with other definitions. c) C++ has the ODR, so we know the 386 // definition is dependable. 387 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 388 return llvm::Function::LinkOnceODRLinkage; 389 390 // An explicit instantiation of a template has weak linkage, since 391 // explicit instantiations can occur in multiple translation units 392 // and must all be equivalent. However, we are not allowed to 393 // throw away these explicit instantiations. 394 if (Linkage == GVA_ExplicitTemplateInstantiation) 395 return llvm::Function::WeakODRLinkage; 396 397 // Otherwise, we have strong external linkage. 398 assert(Linkage == GVA_StrongExternal); 399 return llvm::Function::ExternalLinkage; 400 } 401 402 403 /// SetFunctionDefinitionAttributes - Set attributes for a global. 404 /// 405 /// FIXME: This is currently only done for aliases and functions, but not for 406 /// variables (these details are set in EmitGlobalVarDefinition for variables). 407 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 408 llvm::GlobalValue *GV) { 409 SetCommonAttributes(D, GV); 410 } 411 412 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 413 const CGFunctionInfo &Info, 414 llvm::Function *F) { 415 unsigned CallingConv; 416 AttributeListType AttributeList; 417 ConstructAttributeList(Info, D, AttributeList, CallingConv); 418 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 419 AttributeList.size())); 420 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 421 } 422 423 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 424 llvm::Function *F) { 425 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 426 F->addFnAttr(llvm::Attribute::NoUnwind); 427 428 if (D->hasAttr<AlwaysInlineAttr>()) 429 F->addFnAttr(llvm::Attribute::AlwaysInline); 430 431 if (D->hasAttr<NakedAttr>()) 432 F->addFnAttr(llvm::Attribute::Naked); 433 434 if (D->hasAttr<NoInlineAttr>()) 435 F->addFnAttr(llvm::Attribute::NoInline); 436 437 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 438 F->setUnnamedAddr(true); 439 440 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 441 F->addFnAttr(llvm::Attribute::StackProtect); 442 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 443 F->addFnAttr(llvm::Attribute::StackProtectReq); 444 445 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 446 if (alignment) 447 F->setAlignment(alignment); 448 449 // C++ ABI requires 2-byte alignment for member functions. 450 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 451 F->setAlignment(2); 452 } 453 454 void CodeGenModule::SetCommonAttributes(const Decl *D, 455 llvm::GlobalValue *GV) { 456 if (isa<NamedDecl>(D)) 457 setGlobalVisibility(GV, cast<NamedDecl>(D), /*ForDef*/ true); 458 else 459 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 460 461 if (D->hasAttr<UsedAttr>()) 462 AddUsedGlobal(GV); 463 464 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 465 GV->setSection(SA->getName()); 466 467 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 468 } 469 470 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 471 llvm::Function *F, 472 const CGFunctionInfo &FI) { 473 SetLLVMFunctionAttributes(D, FI, F); 474 SetLLVMFunctionAttributesForDefinition(D, F); 475 476 F->setLinkage(llvm::Function::InternalLinkage); 477 478 SetCommonAttributes(D, F); 479 } 480 481 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 482 llvm::Function *F, 483 bool IsIncompleteFunction) { 484 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 485 486 if (!IsIncompleteFunction) 487 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 488 489 // Only a few attributes are set on declarations; these may later be 490 // overridden by a definition. 491 492 if (FD->hasAttr<DLLImportAttr>()) { 493 F->setLinkage(llvm::Function::DLLImportLinkage); 494 } else if (FD->hasAttr<WeakAttr>() || 495 FD->hasAttr<WeakImportAttr>()) { 496 // "extern_weak" is overloaded in LLVM; we probably should have 497 // separate linkage types for this. 498 F->setLinkage(llvm::Function::ExternalWeakLinkage); 499 } else { 500 F->setLinkage(llvm::Function::ExternalLinkage); 501 502 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 503 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 504 F->setVisibility(GetLLVMVisibility(LV.visibility())); 505 } 506 } 507 508 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 509 F->setSection(SA->getName()); 510 } 511 512 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 513 assert(!GV->isDeclaration() && 514 "Only globals with definition can force usage."); 515 LLVMUsed.push_back(GV); 516 } 517 518 void CodeGenModule::EmitLLVMUsed() { 519 // Don't create llvm.used if there is no need. 520 if (LLVMUsed.empty()) 521 return; 522 523 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 524 525 // Convert LLVMUsed to what ConstantArray needs. 526 std::vector<llvm::Constant*> UsedArray; 527 UsedArray.resize(LLVMUsed.size()); 528 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 529 UsedArray[i] = 530 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 531 i8PTy); 532 } 533 534 if (UsedArray.empty()) 535 return; 536 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 537 538 llvm::GlobalVariable *GV = 539 new llvm::GlobalVariable(getModule(), ATy, false, 540 llvm::GlobalValue::AppendingLinkage, 541 llvm::ConstantArray::get(ATy, UsedArray), 542 "llvm.used"); 543 544 GV->setSection("llvm.metadata"); 545 } 546 547 void CodeGenModule::EmitDeferred() { 548 // Emit code for any potentially referenced deferred decls. Since a 549 // previously unused static decl may become used during the generation of code 550 // for a static function, iterate until no changes are made. 551 552 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 553 if (!DeferredVTables.empty()) { 554 const CXXRecordDecl *RD = DeferredVTables.back(); 555 DeferredVTables.pop_back(); 556 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 557 continue; 558 } 559 560 GlobalDecl D = DeferredDeclsToEmit.back(); 561 DeferredDeclsToEmit.pop_back(); 562 563 // Check to see if we've already emitted this. This is necessary 564 // for a couple of reasons: first, decls can end up in the 565 // deferred-decls queue multiple times, and second, decls can end 566 // up with definitions in unusual ways (e.g. by an extern inline 567 // function acquiring a strong function redefinition). Just 568 // ignore these cases. 569 // 570 // TODO: That said, looking this up multiple times is very wasteful. 571 llvm::StringRef Name = getMangledName(D); 572 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 573 assert(CGRef && "Deferred decl wasn't referenced?"); 574 575 if (!CGRef->isDeclaration()) 576 continue; 577 578 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 579 // purposes an alias counts as a definition. 580 if (isa<llvm::GlobalAlias>(CGRef)) 581 continue; 582 583 // Otherwise, emit the definition and move on to the next one. 584 EmitGlobalDefinition(D); 585 } 586 } 587 588 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 589 /// annotation information for a given GlobalValue. The annotation struct is 590 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 591 /// GlobalValue being annotated. The second field is the constant string 592 /// created from the AnnotateAttr's annotation. The third field is a constant 593 /// string containing the name of the translation unit. The fourth field is 594 /// the line number in the file of the annotated value declaration. 595 /// 596 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 597 /// appears to. 598 /// 599 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 600 const AnnotateAttr *AA, 601 unsigned LineNo) { 602 llvm::Module *M = &getModule(); 603 604 // get [N x i8] constants for the annotation string, and the filename string 605 // which are the 2nd and 3rd elements of the global annotation structure. 606 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 607 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 608 AA->getAnnotation(), true); 609 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 610 M->getModuleIdentifier(), 611 true); 612 613 // Get the two global values corresponding to the ConstantArrays we just 614 // created to hold the bytes of the strings. 615 llvm::GlobalValue *annoGV = 616 new llvm::GlobalVariable(*M, anno->getType(), false, 617 llvm::GlobalValue::PrivateLinkage, anno, 618 GV->getName()); 619 // translation unit name string, emitted into the llvm.metadata section. 620 llvm::GlobalValue *unitGV = 621 new llvm::GlobalVariable(*M, unit->getType(), false, 622 llvm::GlobalValue::PrivateLinkage, unit, 623 ".str"); 624 625 // Create the ConstantStruct for the global annotation. 626 llvm::Constant *Fields[4] = { 627 llvm::ConstantExpr::getBitCast(GV, SBP), 628 llvm::ConstantExpr::getBitCast(annoGV, SBP), 629 llvm::ConstantExpr::getBitCast(unitGV, SBP), 630 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 631 }; 632 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 633 } 634 635 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 636 // Never defer when EmitAllDecls is specified. 637 if (Features.EmitAllDecls) 638 return false; 639 640 return !getContext().DeclMustBeEmitted(Global); 641 } 642 643 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 644 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 645 assert(AA && "No alias?"); 646 647 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 648 649 // See if there is already something with the target's name in the module. 650 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 651 652 llvm::Constant *Aliasee; 653 if (isa<llvm::FunctionType>(DeclTy)) 654 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 655 else 656 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 657 llvm::PointerType::getUnqual(DeclTy), 0); 658 if (!Entry) { 659 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 660 F->setLinkage(llvm::Function::ExternalWeakLinkage); 661 WeakRefReferences.insert(F); 662 } 663 664 return Aliasee; 665 } 666 667 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 668 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 669 670 // Weak references don't produce any output by themselves. 671 if (Global->hasAttr<WeakRefAttr>()) 672 return; 673 674 // If this is an alias definition (which otherwise looks like a declaration) 675 // emit it now. 676 if (Global->hasAttr<AliasAttr>()) 677 return EmitAliasDefinition(GD); 678 679 // Ignore declarations, they will be emitted on their first use. 680 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 681 if (FD->getIdentifier()) { 682 llvm::StringRef Name = FD->getName(); 683 if (Name == "_Block_object_assign") { 684 BlockObjectAssignDecl = FD; 685 } else if (Name == "_Block_object_dispose") { 686 BlockObjectDisposeDecl = FD; 687 } 688 } 689 690 // Forward declarations are emitted lazily on first use. 691 if (!FD->isThisDeclarationADefinition()) 692 return; 693 } else { 694 const VarDecl *VD = cast<VarDecl>(Global); 695 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 696 697 if (VD->getIdentifier()) { 698 llvm::StringRef Name = VD->getName(); 699 if (Name == "_NSConcreteGlobalBlock") { 700 NSConcreteGlobalBlockDecl = VD; 701 } else if (Name == "_NSConcreteStackBlock") { 702 NSConcreteStackBlockDecl = VD; 703 } 704 } 705 706 707 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 708 return; 709 } 710 711 // Defer code generation when possible if this is a static definition, inline 712 // function etc. These we only want to emit if they are used. 713 if (!MayDeferGeneration(Global)) { 714 // Emit the definition if it can't be deferred. 715 EmitGlobalDefinition(GD); 716 return; 717 } 718 719 // If we're deferring emission of a C++ variable with an 720 // initializer, remember the order in which it appeared in the file. 721 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 722 cast<VarDecl>(Global)->hasInit()) { 723 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 724 CXXGlobalInits.push_back(0); 725 } 726 727 // If the value has already been used, add it directly to the 728 // DeferredDeclsToEmit list. 729 llvm::StringRef MangledName = getMangledName(GD); 730 if (GetGlobalValue(MangledName)) 731 DeferredDeclsToEmit.push_back(GD); 732 else { 733 // Otherwise, remember that we saw a deferred decl with this name. The 734 // first use of the mangled name will cause it to move into 735 // DeferredDeclsToEmit. 736 DeferredDecls[MangledName] = GD; 737 } 738 } 739 740 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 741 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 742 743 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 744 Context.getSourceManager(), 745 "Generating code for declaration"); 746 747 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 748 // At -O0, don't generate IR for functions with available_externally 749 // linkage. 750 if (CodeGenOpts.OptimizationLevel == 0 && 751 !Function->hasAttr<AlwaysInlineAttr>() && 752 getFunctionLinkage(Function) 753 == llvm::Function::AvailableExternallyLinkage) 754 return; 755 756 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 757 if (Method->isVirtual()) 758 getVTables().EmitThunks(GD); 759 760 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 761 return EmitCXXConstructor(CD, GD.getCtorType()); 762 763 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 764 return EmitCXXDestructor(DD, GD.getDtorType()); 765 } 766 767 return EmitGlobalFunctionDefinition(GD); 768 } 769 770 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 771 return EmitGlobalVarDefinition(VD); 772 773 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 774 } 775 776 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 777 /// module, create and return an llvm Function with the specified type. If there 778 /// is something in the module with the specified name, return it potentially 779 /// bitcasted to the right type. 780 /// 781 /// If D is non-null, it specifies a decl that correspond to this. This is used 782 /// to set the attributes on the function when it is first created. 783 llvm::Constant * 784 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 785 const llvm::Type *Ty, 786 GlobalDecl D) { 787 // Lookup the entry, lazily creating it if necessary. 788 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 789 if (Entry) { 790 if (WeakRefReferences.count(Entry)) { 791 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 792 if (FD && !FD->hasAttr<WeakAttr>()) 793 Entry->setLinkage(llvm::Function::ExternalLinkage); 794 795 WeakRefReferences.erase(Entry); 796 } 797 798 if (Entry->getType()->getElementType() == Ty) 799 return Entry; 800 801 // Make sure the result is of the correct type. 802 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 803 return llvm::ConstantExpr::getBitCast(Entry, PTy); 804 } 805 806 // This function doesn't have a complete type (for example, the return 807 // type is an incomplete struct). Use a fake type instead, and make 808 // sure not to try to set attributes. 809 bool IsIncompleteFunction = false; 810 811 const llvm::FunctionType *FTy; 812 if (isa<llvm::FunctionType>(Ty)) { 813 FTy = cast<llvm::FunctionType>(Ty); 814 } else { 815 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 816 std::vector<const llvm::Type*>(), false); 817 IsIncompleteFunction = true; 818 } 819 820 llvm::Function *F = llvm::Function::Create(FTy, 821 llvm::Function::ExternalLinkage, 822 MangledName, &getModule()); 823 assert(F->getName() == MangledName && "name was uniqued!"); 824 if (D.getDecl()) 825 SetFunctionAttributes(D, F, IsIncompleteFunction); 826 827 // This is the first use or definition of a mangled name. If there is a 828 // deferred decl with this name, remember that we need to emit it at the end 829 // of the file. 830 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 831 if (DDI != DeferredDecls.end()) { 832 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 833 // list, and remove it from DeferredDecls (since we don't need it anymore). 834 DeferredDeclsToEmit.push_back(DDI->second); 835 DeferredDecls.erase(DDI); 836 837 // Otherwise, there are cases we have to worry about where we're 838 // using a declaration for which we must emit a definition but where 839 // we might not find a top-level definition: 840 // - member functions defined inline in their classes 841 // - friend functions defined inline in some class 842 // - special member functions with implicit definitions 843 // If we ever change our AST traversal to walk into class methods, 844 // this will be unnecessary. 845 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 846 // Look for a declaration that's lexically in a record. 847 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 848 do { 849 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 850 if (FD->isImplicit()) { 851 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 852 DeferredDeclsToEmit.push_back(D); 853 break; 854 } else if (FD->isThisDeclarationADefinition()) { 855 DeferredDeclsToEmit.push_back(D); 856 break; 857 } 858 } 859 FD = FD->getPreviousDeclaration(); 860 } while (FD); 861 } 862 863 // Make sure the result is of the requested type. 864 if (!IsIncompleteFunction) { 865 assert(F->getType()->getElementType() == Ty); 866 return F; 867 } 868 869 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 870 return llvm::ConstantExpr::getBitCast(F, PTy); 871 } 872 873 /// GetAddrOfFunction - Return the address of the given function. If Ty is 874 /// non-null, then this function will use the specified type if it has to 875 /// create it (this occurs when we see a definition of the function). 876 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 877 const llvm::Type *Ty) { 878 // If there was no specific requested type, just convert it now. 879 if (!Ty) 880 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 881 882 llvm::StringRef MangledName = getMangledName(GD); 883 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 884 } 885 886 /// CreateRuntimeFunction - Create a new runtime function with the specified 887 /// type and name. 888 llvm::Constant * 889 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 890 llvm::StringRef Name) { 891 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 892 } 893 894 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 895 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 896 return false; 897 if (Context.getLangOptions().CPlusPlus && 898 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 899 // FIXME: We should do something fancier here! 900 return false; 901 } 902 return true; 903 } 904 905 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 906 /// create and return an llvm GlobalVariable with the specified type. If there 907 /// is something in the module with the specified name, return it potentially 908 /// bitcasted to the right type. 909 /// 910 /// If D is non-null, it specifies a decl that correspond to this. This is used 911 /// to set the attributes on the global when it is first created. 912 llvm::Constant * 913 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 914 const llvm::PointerType *Ty, 915 const VarDecl *D) { 916 // Lookup the entry, lazily creating it if necessary. 917 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 918 if (Entry) { 919 if (WeakRefReferences.count(Entry)) { 920 if (D && !D->hasAttr<WeakAttr>()) 921 Entry->setLinkage(llvm::Function::ExternalLinkage); 922 923 WeakRefReferences.erase(Entry); 924 } 925 926 if (Entry->getType() == Ty) 927 return Entry; 928 929 // Make sure the result is of the correct type. 930 return llvm::ConstantExpr::getBitCast(Entry, Ty); 931 } 932 933 // This is the first use or definition of a mangled name. If there is a 934 // deferred decl with this name, remember that we need to emit it at the end 935 // of the file. 936 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 937 if (DDI != DeferredDecls.end()) { 938 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 939 // list, and remove it from DeferredDecls (since we don't need it anymore). 940 DeferredDeclsToEmit.push_back(DDI->second); 941 DeferredDecls.erase(DDI); 942 } 943 944 llvm::GlobalVariable *GV = 945 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 946 llvm::GlobalValue::ExternalLinkage, 947 0, MangledName, 0, 948 false, Ty->getAddressSpace()); 949 950 // Handle things which are present even on external declarations. 951 if (D) { 952 // FIXME: This code is overly simple and should be merged with other global 953 // handling. 954 GV->setConstant(DeclIsConstantGlobal(Context, D)); 955 956 // Set linkage and visibility in case we never see a definition. 957 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 958 if (LV.linkage() != ExternalLinkage) { 959 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 960 } else { 961 if (D->hasAttr<DLLImportAttr>()) 962 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 963 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 964 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 965 966 // Set visibility on a declaration only if it's explicit. 967 if (LV.visibilityExplicit()) 968 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 969 } 970 971 GV->setThreadLocal(D->isThreadSpecified()); 972 } 973 974 return GV; 975 } 976 977 978 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 979 /// given global variable. If Ty is non-null and if the global doesn't exist, 980 /// then it will be greated with the specified type instead of whatever the 981 /// normal requested type would be. 982 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 983 const llvm::Type *Ty) { 984 assert(D->hasGlobalStorage() && "Not a global variable"); 985 QualType ASTTy = D->getType(); 986 if (Ty == 0) 987 Ty = getTypes().ConvertTypeForMem(ASTTy); 988 989 const llvm::PointerType *PTy = 990 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 991 992 llvm::StringRef MangledName = getMangledName(D); 993 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 994 } 995 996 /// CreateRuntimeVariable - Create a new runtime global variable with the 997 /// specified type and name. 998 llvm::Constant * 999 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1000 llvm::StringRef Name) { 1001 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1002 } 1003 1004 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1005 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1006 1007 if (MayDeferGeneration(D)) { 1008 // If we have not seen a reference to this variable yet, place it 1009 // into the deferred declarations table to be emitted if needed 1010 // later. 1011 llvm::StringRef MangledName = getMangledName(D); 1012 if (!GetGlobalValue(MangledName)) { 1013 DeferredDecls[MangledName] = D; 1014 return; 1015 } 1016 } 1017 1018 // The tentative definition is the only definition. 1019 EmitGlobalVarDefinition(D); 1020 } 1021 1022 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1023 if (DefinitionRequired) 1024 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1025 } 1026 1027 llvm::GlobalVariable::LinkageTypes 1028 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1029 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1030 return llvm::GlobalVariable::InternalLinkage; 1031 1032 if (const CXXMethodDecl *KeyFunction 1033 = RD->getASTContext().getKeyFunction(RD)) { 1034 // If this class has a key function, use that to determine the linkage of 1035 // the vtable. 1036 const FunctionDecl *Def = 0; 1037 if (KeyFunction->hasBody(Def)) 1038 KeyFunction = cast<CXXMethodDecl>(Def); 1039 1040 switch (KeyFunction->getTemplateSpecializationKind()) { 1041 case TSK_Undeclared: 1042 case TSK_ExplicitSpecialization: 1043 if (KeyFunction->isInlined()) 1044 return llvm::GlobalVariable::WeakODRLinkage; 1045 1046 return llvm::GlobalVariable::ExternalLinkage; 1047 1048 case TSK_ImplicitInstantiation: 1049 case TSK_ExplicitInstantiationDefinition: 1050 return llvm::GlobalVariable::WeakODRLinkage; 1051 1052 case TSK_ExplicitInstantiationDeclaration: 1053 // FIXME: Use available_externally linkage. However, this currently 1054 // breaks LLVM's build due to undefined symbols. 1055 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1056 return llvm::GlobalVariable::WeakODRLinkage; 1057 } 1058 } 1059 1060 switch (RD->getTemplateSpecializationKind()) { 1061 case TSK_Undeclared: 1062 case TSK_ExplicitSpecialization: 1063 case TSK_ImplicitInstantiation: 1064 case TSK_ExplicitInstantiationDefinition: 1065 return llvm::GlobalVariable::WeakODRLinkage; 1066 1067 case TSK_ExplicitInstantiationDeclaration: 1068 // FIXME: Use available_externally linkage. However, this currently 1069 // breaks LLVM's build due to undefined symbols. 1070 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1071 return llvm::GlobalVariable::WeakODRLinkage; 1072 } 1073 1074 // Silence GCC warning. 1075 return llvm::GlobalVariable::WeakODRLinkage; 1076 } 1077 1078 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1079 return CharUnits::fromQuantity( 1080 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1081 } 1082 1083 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1084 llvm::Constant *Init = 0; 1085 QualType ASTTy = D->getType(); 1086 bool NonConstInit = false; 1087 1088 const Expr *InitExpr = D->getAnyInitializer(); 1089 1090 if (!InitExpr) { 1091 // This is a tentative definition; tentative definitions are 1092 // implicitly initialized with { 0 }. 1093 // 1094 // Note that tentative definitions are only emitted at the end of 1095 // a translation unit, so they should never have incomplete 1096 // type. In addition, EmitTentativeDefinition makes sure that we 1097 // never attempt to emit a tentative definition if a real one 1098 // exists. A use may still exists, however, so we still may need 1099 // to do a RAUW. 1100 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1101 Init = EmitNullConstant(D->getType()); 1102 } else { 1103 Init = EmitConstantExpr(InitExpr, D->getType()); 1104 if (!Init) { 1105 QualType T = InitExpr->getType(); 1106 if (D->getType()->isReferenceType()) 1107 T = D->getType(); 1108 1109 if (getLangOptions().CPlusPlus) { 1110 Init = EmitNullConstant(T); 1111 NonConstInit = true; 1112 } else { 1113 ErrorUnsupported(D, "static initializer"); 1114 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1115 } 1116 } else { 1117 // We don't need an initializer, so remove the entry for the delayed 1118 // initializer position (just in case this entry was delayed). 1119 if (getLangOptions().CPlusPlus) 1120 DelayedCXXInitPosition.erase(D); 1121 } 1122 } 1123 1124 const llvm::Type* InitType = Init->getType(); 1125 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1126 1127 // Strip off a bitcast if we got one back. 1128 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1129 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1130 // all zero index gep. 1131 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1132 Entry = CE->getOperand(0); 1133 } 1134 1135 // Entry is now either a Function or GlobalVariable. 1136 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1137 1138 // We have a definition after a declaration with the wrong type. 1139 // We must make a new GlobalVariable* and update everything that used OldGV 1140 // (a declaration or tentative definition) with the new GlobalVariable* 1141 // (which will be a definition). 1142 // 1143 // This happens if there is a prototype for a global (e.g. 1144 // "extern int x[];") and then a definition of a different type (e.g. 1145 // "int x[10];"). This also happens when an initializer has a different type 1146 // from the type of the global (this happens with unions). 1147 if (GV == 0 || 1148 GV->getType()->getElementType() != InitType || 1149 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1150 1151 // Move the old entry aside so that we'll create a new one. 1152 Entry->setName(llvm::StringRef()); 1153 1154 // Make a new global with the correct type, this is now guaranteed to work. 1155 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1156 1157 // Replace all uses of the old global with the new global 1158 llvm::Constant *NewPtrForOldDecl = 1159 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1160 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1161 1162 // Erase the old global, since it is no longer used. 1163 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1164 } 1165 1166 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1167 SourceManager &SM = Context.getSourceManager(); 1168 AddAnnotation(EmitAnnotateAttr(GV, AA, 1169 SM.getInstantiationLineNumber(D->getLocation()))); 1170 } 1171 1172 GV->setInitializer(Init); 1173 1174 // If it is safe to mark the global 'constant', do so now. 1175 GV->setConstant(false); 1176 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1177 GV->setConstant(true); 1178 1179 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1180 1181 // Set the llvm linkage type as appropriate. 1182 llvm::GlobalValue::LinkageTypes Linkage = 1183 GetLLVMLinkageVarDefinition(D, GV); 1184 GV->setLinkage(Linkage); 1185 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1186 // common vars aren't constant even if declared const. 1187 GV->setConstant(false); 1188 1189 SetCommonAttributes(D, GV); 1190 1191 // Emit the initializer function if necessary. 1192 if (NonConstInit) 1193 EmitCXXGlobalVarDeclInitFunc(D, GV); 1194 1195 // Emit global variable debug information. 1196 if (CGDebugInfo *DI = getDebugInfo()) { 1197 DI->setLocation(D->getLocation()); 1198 DI->EmitGlobalVariable(GV, D); 1199 } 1200 } 1201 1202 llvm::GlobalValue::LinkageTypes 1203 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1204 llvm::GlobalVariable *GV) { 1205 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1206 if (Linkage == GVA_Internal) 1207 return llvm::Function::InternalLinkage; 1208 else if (D->hasAttr<DLLImportAttr>()) 1209 return llvm::Function::DLLImportLinkage; 1210 else if (D->hasAttr<DLLExportAttr>()) 1211 return llvm::Function::DLLExportLinkage; 1212 else if (D->hasAttr<WeakAttr>()) { 1213 if (GV->isConstant()) 1214 return llvm::GlobalVariable::WeakODRLinkage; 1215 else 1216 return llvm::GlobalVariable::WeakAnyLinkage; 1217 } else if (Linkage == GVA_TemplateInstantiation || 1218 Linkage == GVA_ExplicitTemplateInstantiation) 1219 // FIXME: It seems like we can provide more specific linkage here 1220 // (LinkOnceODR, WeakODR). 1221 return llvm::GlobalVariable::WeakAnyLinkage; 1222 else if (!getLangOptions().CPlusPlus && 1223 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1224 D->getAttr<CommonAttr>()) && 1225 !D->hasExternalStorage() && !D->getInit() && 1226 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1227 // Thread local vars aren't considered common linkage. 1228 return llvm::GlobalVariable::CommonLinkage; 1229 } 1230 return llvm::GlobalVariable::ExternalLinkage; 1231 } 1232 1233 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1234 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1235 /// existing call uses of the old function in the module, this adjusts them to 1236 /// call the new function directly. 1237 /// 1238 /// This is not just a cleanup: the always_inline pass requires direct calls to 1239 /// functions to be able to inline them. If there is a bitcast in the way, it 1240 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1241 /// run at -O0. 1242 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1243 llvm::Function *NewFn) { 1244 // If we're redefining a global as a function, don't transform it. 1245 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1246 if (OldFn == 0) return; 1247 1248 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1249 llvm::SmallVector<llvm::Value*, 4> ArgList; 1250 1251 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1252 UI != E; ) { 1253 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1254 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1255 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1256 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1257 llvm::CallSite CS(CI); 1258 if (!CI || !CS.isCallee(I)) continue; 1259 1260 // If the return types don't match exactly, and if the call isn't dead, then 1261 // we can't transform this call. 1262 if (CI->getType() != NewRetTy && !CI->use_empty()) 1263 continue; 1264 1265 // If the function was passed too few arguments, don't transform. If extra 1266 // arguments were passed, we silently drop them. If any of the types 1267 // mismatch, we don't transform. 1268 unsigned ArgNo = 0; 1269 bool DontTransform = false; 1270 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1271 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1272 if (CS.arg_size() == ArgNo || 1273 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1274 DontTransform = true; 1275 break; 1276 } 1277 } 1278 if (DontTransform) 1279 continue; 1280 1281 // Okay, we can transform this. Create the new call instruction and copy 1282 // over the required information. 1283 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1284 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1285 ArgList.end(), "", CI); 1286 ArgList.clear(); 1287 if (!NewCall->getType()->isVoidTy()) 1288 NewCall->takeName(CI); 1289 NewCall->setAttributes(CI->getAttributes()); 1290 NewCall->setCallingConv(CI->getCallingConv()); 1291 1292 // Finally, remove the old call, replacing any uses with the new one. 1293 if (!CI->use_empty()) 1294 CI->replaceAllUsesWith(NewCall); 1295 1296 // Copy debug location attached to CI. 1297 if (!CI->getDebugLoc().isUnknown()) 1298 NewCall->setDebugLoc(CI->getDebugLoc()); 1299 CI->eraseFromParent(); 1300 } 1301 } 1302 1303 1304 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1305 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1306 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1307 getCXXABI().getMangleContext().mangleInitDiscriminator(); 1308 // Get or create the prototype for the function. 1309 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1310 1311 // Strip off a bitcast if we got one back. 1312 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1313 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1314 Entry = CE->getOperand(0); 1315 } 1316 1317 1318 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1319 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1320 1321 // If the types mismatch then we have to rewrite the definition. 1322 assert(OldFn->isDeclaration() && 1323 "Shouldn't replace non-declaration"); 1324 1325 // F is the Function* for the one with the wrong type, we must make a new 1326 // Function* and update everything that used F (a declaration) with the new 1327 // Function* (which will be a definition). 1328 // 1329 // This happens if there is a prototype for a function 1330 // (e.g. "int f()") and then a definition of a different type 1331 // (e.g. "int f(int x)"). Move the old function aside so that it 1332 // doesn't interfere with GetAddrOfFunction. 1333 OldFn->setName(llvm::StringRef()); 1334 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1335 1336 // If this is an implementation of a function without a prototype, try to 1337 // replace any existing uses of the function (which may be calls) with uses 1338 // of the new function 1339 if (D->getType()->isFunctionNoProtoType()) { 1340 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1341 OldFn->removeDeadConstantUsers(); 1342 } 1343 1344 // Replace uses of F with the Function we will endow with a body. 1345 if (!Entry->use_empty()) { 1346 llvm::Constant *NewPtrForOldDecl = 1347 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1348 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1349 } 1350 1351 // Ok, delete the old function now, which is dead. 1352 OldFn->eraseFromParent(); 1353 1354 Entry = NewFn; 1355 } 1356 1357 // We need to set linkage and visibility on the function before 1358 // generating code for it because various parts of IR generation 1359 // want to propagate this information down (e.g. to local static 1360 // declarations). 1361 llvm::Function *Fn = cast<llvm::Function>(Entry); 1362 setFunctionLinkage(D, Fn); 1363 1364 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1365 setGlobalVisibility(Fn, D, /*ForDef*/ true); 1366 1367 CodeGenFunction(*this).GenerateCode(D, Fn); 1368 1369 SetFunctionDefinitionAttributes(D, Fn); 1370 SetLLVMFunctionAttributesForDefinition(D, Fn); 1371 1372 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1373 AddGlobalCtor(Fn, CA->getPriority()); 1374 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1375 AddGlobalDtor(Fn, DA->getPriority()); 1376 } 1377 1378 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1379 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1380 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1381 assert(AA && "Not an alias?"); 1382 1383 llvm::StringRef MangledName = getMangledName(GD); 1384 1385 // If there is a definition in the module, then it wins over the alias. 1386 // This is dubious, but allow it to be safe. Just ignore the alias. 1387 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1388 if (Entry && !Entry->isDeclaration()) 1389 return; 1390 1391 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1392 1393 // Create a reference to the named value. This ensures that it is emitted 1394 // if a deferred decl. 1395 llvm::Constant *Aliasee; 1396 if (isa<llvm::FunctionType>(DeclTy)) 1397 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1398 else 1399 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1400 llvm::PointerType::getUnqual(DeclTy), 0); 1401 1402 // Create the new alias itself, but don't set a name yet. 1403 llvm::GlobalValue *GA = 1404 new llvm::GlobalAlias(Aliasee->getType(), 1405 llvm::Function::ExternalLinkage, 1406 "", Aliasee, &getModule()); 1407 1408 if (Entry) { 1409 assert(Entry->isDeclaration()); 1410 1411 // If there is a declaration in the module, then we had an extern followed 1412 // by the alias, as in: 1413 // extern int test6(); 1414 // ... 1415 // int test6() __attribute__((alias("test7"))); 1416 // 1417 // Remove it and replace uses of it with the alias. 1418 GA->takeName(Entry); 1419 1420 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1421 Entry->getType())); 1422 Entry->eraseFromParent(); 1423 } else { 1424 GA->setName(MangledName); 1425 } 1426 1427 // Set attributes which are particular to an alias; this is a 1428 // specialization of the attributes which may be set on a global 1429 // variable/function. 1430 if (D->hasAttr<DLLExportAttr>()) { 1431 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1432 // The dllexport attribute is ignored for undefined symbols. 1433 if (FD->hasBody()) 1434 GA->setLinkage(llvm::Function::DLLExportLinkage); 1435 } else { 1436 GA->setLinkage(llvm::Function::DLLExportLinkage); 1437 } 1438 } else if (D->hasAttr<WeakAttr>() || 1439 D->hasAttr<WeakRefAttr>() || 1440 D->hasAttr<WeakImportAttr>()) { 1441 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1442 } 1443 1444 SetCommonAttributes(D, GA); 1445 } 1446 1447 /// getBuiltinLibFunction - Given a builtin id for a function like 1448 /// "__builtin_fabsf", return a Function* for "fabsf". 1449 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1450 unsigned BuiltinID) { 1451 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1452 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1453 "isn't a lib fn"); 1454 1455 // Get the name, skip over the __builtin_ prefix (if necessary). 1456 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1457 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1458 Name += 10; 1459 1460 const llvm::FunctionType *Ty = 1461 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1462 1463 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1464 } 1465 1466 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1467 unsigned NumTys) { 1468 return llvm::Intrinsic::getDeclaration(&getModule(), 1469 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1470 } 1471 1472 static llvm::StringMapEntry<llvm::Constant*> & 1473 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1474 const StringLiteral *Literal, 1475 bool TargetIsLSB, 1476 bool &IsUTF16, 1477 unsigned &StringLength) { 1478 llvm::StringRef String = Literal->getString(); 1479 unsigned NumBytes = String.size(); 1480 1481 // Check for simple case. 1482 if (!Literal->containsNonAsciiOrNull()) { 1483 StringLength = NumBytes; 1484 return Map.GetOrCreateValue(String); 1485 } 1486 1487 // Otherwise, convert the UTF8 literals into a byte string. 1488 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1489 const UTF8 *FromPtr = (UTF8 *)String.data(); 1490 UTF16 *ToPtr = &ToBuf[0]; 1491 1492 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1493 &ToPtr, ToPtr + NumBytes, 1494 strictConversion); 1495 1496 // ConvertUTF8toUTF16 returns the length in ToPtr. 1497 StringLength = ToPtr - &ToBuf[0]; 1498 1499 // Render the UTF-16 string into a byte array and convert to the target byte 1500 // order. 1501 // 1502 // FIXME: This isn't something we should need to do here. 1503 llvm::SmallString<128> AsBytes; 1504 AsBytes.reserve(StringLength * 2); 1505 for (unsigned i = 0; i != StringLength; ++i) { 1506 unsigned short Val = ToBuf[i]; 1507 if (TargetIsLSB) { 1508 AsBytes.push_back(Val & 0xFF); 1509 AsBytes.push_back(Val >> 8); 1510 } else { 1511 AsBytes.push_back(Val >> 8); 1512 AsBytes.push_back(Val & 0xFF); 1513 } 1514 } 1515 // Append one extra null character, the second is automatically added by our 1516 // caller. 1517 AsBytes.push_back(0); 1518 1519 IsUTF16 = true; 1520 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1521 } 1522 1523 llvm::Constant * 1524 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1525 unsigned StringLength = 0; 1526 bool isUTF16 = false; 1527 llvm::StringMapEntry<llvm::Constant*> &Entry = 1528 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1529 getTargetData().isLittleEndian(), 1530 isUTF16, StringLength); 1531 1532 if (llvm::Constant *C = Entry.getValue()) 1533 return C; 1534 1535 llvm::Constant *Zero = 1536 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1537 llvm::Constant *Zeros[] = { Zero, Zero }; 1538 1539 // If we don't already have it, get __CFConstantStringClassReference. 1540 if (!CFConstantStringClassRef) { 1541 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1542 Ty = llvm::ArrayType::get(Ty, 0); 1543 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1544 "__CFConstantStringClassReference"); 1545 // Decay array -> ptr 1546 CFConstantStringClassRef = 1547 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1548 } 1549 1550 QualType CFTy = getContext().getCFConstantStringType(); 1551 1552 const llvm::StructType *STy = 1553 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1554 1555 std::vector<llvm::Constant*> Fields(4); 1556 1557 // Class pointer. 1558 Fields[0] = CFConstantStringClassRef; 1559 1560 // Flags. 1561 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1562 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1563 llvm::ConstantInt::get(Ty, 0x07C8); 1564 1565 // String pointer. 1566 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1567 1568 llvm::GlobalValue::LinkageTypes Linkage; 1569 bool isConstant; 1570 if (isUTF16) { 1571 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1572 Linkage = llvm::GlobalValue::InternalLinkage; 1573 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1574 // does make plain ascii ones writable. 1575 isConstant = true; 1576 } else { 1577 Linkage = llvm::GlobalValue::PrivateLinkage; 1578 isConstant = !Features.WritableStrings; 1579 } 1580 1581 llvm::GlobalVariable *GV = 1582 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1583 ".str"); 1584 if (isUTF16) { 1585 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1586 GV->setAlignment(Align.getQuantity()); 1587 } 1588 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1589 1590 // String length. 1591 Ty = getTypes().ConvertType(getContext().LongTy); 1592 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1593 1594 // The struct. 1595 C = llvm::ConstantStruct::get(STy, Fields); 1596 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1597 llvm::GlobalVariable::PrivateLinkage, C, 1598 "_unnamed_cfstring_"); 1599 if (const char *Sect = getContext().Target.getCFStringSection()) 1600 GV->setSection(Sect); 1601 Entry.setValue(GV); 1602 1603 return GV; 1604 } 1605 1606 llvm::Constant * 1607 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1608 unsigned StringLength = 0; 1609 bool isUTF16 = false; 1610 llvm::StringMapEntry<llvm::Constant*> &Entry = 1611 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1612 getTargetData().isLittleEndian(), 1613 isUTF16, StringLength); 1614 1615 if (llvm::Constant *C = Entry.getValue()) 1616 return C; 1617 1618 llvm::Constant *Zero = 1619 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1620 llvm::Constant *Zeros[] = { Zero, Zero }; 1621 1622 // If we don't already have it, get _NSConstantStringClassReference. 1623 if (!ConstantStringClassRef) { 1624 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1625 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1626 Ty = llvm::ArrayType::get(Ty, 0); 1627 llvm::Constant *GV; 1628 if (StringClass.empty()) 1629 GV = CreateRuntimeVariable(Ty, 1630 Features.ObjCNonFragileABI ? 1631 "OBJC_CLASS_$_NSConstantString" : 1632 "_NSConstantStringClassReference"); 1633 else { 1634 std::string str; 1635 if (Features.ObjCNonFragileABI) 1636 str = "OBJC_CLASS_$_" + StringClass; 1637 else 1638 str = "_" + StringClass + "ClassReference"; 1639 GV = CreateRuntimeVariable(Ty, str); 1640 } 1641 // Decay array -> ptr 1642 ConstantStringClassRef = 1643 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1644 } 1645 1646 QualType NSTy = getContext().getNSConstantStringType(); 1647 1648 const llvm::StructType *STy = 1649 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1650 1651 std::vector<llvm::Constant*> Fields(3); 1652 1653 // Class pointer. 1654 Fields[0] = ConstantStringClassRef; 1655 1656 // String pointer. 1657 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1658 1659 llvm::GlobalValue::LinkageTypes Linkage; 1660 bool isConstant; 1661 if (isUTF16) { 1662 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1663 Linkage = llvm::GlobalValue::InternalLinkage; 1664 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1665 // does make plain ascii ones writable. 1666 isConstant = true; 1667 } else { 1668 Linkage = llvm::GlobalValue::PrivateLinkage; 1669 isConstant = !Features.WritableStrings; 1670 } 1671 1672 llvm::GlobalVariable *GV = 1673 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1674 ".str"); 1675 if (isUTF16) { 1676 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1677 GV->setAlignment(Align.getQuantity()); 1678 } 1679 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1680 1681 // String length. 1682 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1683 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1684 1685 // The struct. 1686 C = llvm::ConstantStruct::get(STy, Fields); 1687 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1688 llvm::GlobalVariable::PrivateLinkage, C, 1689 "_unnamed_nsstring_"); 1690 // FIXME. Fix section. 1691 if (const char *Sect = 1692 Features.ObjCNonFragileABI 1693 ? getContext().Target.getNSStringNonFragileABISection() 1694 : getContext().Target.getNSStringSection()) 1695 GV->setSection(Sect); 1696 Entry.setValue(GV); 1697 1698 return GV; 1699 } 1700 1701 /// GetStringForStringLiteral - Return the appropriate bytes for a 1702 /// string literal, properly padded to match the literal type. 1703 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1704 const ConstantArrayType *CAT = 1705 getContext().getAsConstantArrayType(E->getType()); 1706 assert(CAT && "String isn't pointer or array!"); 1707 1708 // Resize the string to the right size. 1709 uint64_t RealLen = CAT->getSize().getZExtValue(); 1710 1711 if (E->isWide()) 1712 RealLen *= getContext().Target.getWCharWidth()/8; 1713 1714 std::string Str = E->getString().str(); 1715 Str.resize(RealLen, '\0'); 1716 1717 return Str; 1718 } 1719 1720 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1721 /// constant array for the given string literal. 1722 llvm::Constant * 1723 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1724 // FIXME: This can be more efficient. 1725 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1726 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1727 if (S->isWide()) { 1728 llvm::Type *DestTy = 1729 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1730 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1731 } 1732 return C; 1733 } 1734 1735 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1736 /// array for the given ObjCEncodeExpr node. 1737 llvm::Constant * 1738 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1739 std::string Str; 1740 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1741 1742 return GetAddrOfConstantCString(Str); 1743 } 1744 1745 1746 /// GenerateWritableString -- Creates storage for a string literal. 1747 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1748 bool constant, 1749 CodeGenModule &CGM, 1750 const char *GlobalName) { 1751 // Create Constant for this string literal. Don't add a '\0'. 1752 llvm::Constant *C = 1753 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1754 1755 // Create a global variable for this string 1756 llvm::GlobalVariable *GV = 1757 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1758 llvm::GlobalValue::PrivateLinkage, 1759 C, GlobalName); 1760 GV->setUnnamedAddr(true); 1761 return GV; 1762 } 1763 1764 /// GetAddrOfConstantString - Returns a pointer to a character array 1765 /// containing the literal. This contents are exactly that of the 1766 /// given string, i.e. it will not be null terminated automatically; 1767 /// see GetAddrOfConstantCString. Note that whether the result is 1768 /// actually a pointer to an LLVM constant depends on 1769 /// Feature.WriteableStrings. 1770 /// 1771 /// The result has pointer to array type. 1772 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1773 const char *GlobalName) { 1774 bool IsConstant = !Features.WritableStrings; 1775 1776 // Get the default prefix if a name wasn't specified. 1777 if (!GlobalName) 1778 GlobalName = ".str"; 1779 1780 // Don't share any string literals if strings aren't constant. 1781 if (!IsConstant) 1782 return GenerateStringLiteral(str, false, *this, GlobalName); 1783 1784 llvm::StringMapEntry<llvm::Constant *> &Entry = 1785 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1786 1787 if (Entry.getValue()) 1788 return Entry.getValue(); 1789 1790 // Create a global variable for this. 1791 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1792 Entry.setValue(C); 1793 return C; 1794 } 1795 1796 /// GetAddrOfConstantCString - Returns a pointer to a character 1797 /// array containing the literal and a terminating '\-' 1798 /// character. The result has pointer to array type. 1799 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1800 const char *GlobalName){ 1801 return GetAddrOfConstantString(str + '\0', GlobalName); 1802 } 1803 1804 /// EmitObjCPropertyImplementations - Emit information for synthesized 1805 /// properties for an implementation. 1806 void CodeGenModule::EmitObjCPropertyImplementations(const 1807 ObjCImplementationDecl *D) { 1808 for (ObjCImplementationDecl::propimpl_iterator 1809 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1810 ObjCPropertyImplDecl *PID = *i; 1811 1812 // Dynamic is just for type-checking. 1813 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1814 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1815 1816 // Determine which methods need to be implemented, some may have 1817 // been overridden. Note that ::isSynthesized is not the method 1818 // we want, that just indicates if the decl came from a 1819 // property. What we want to know is if the method is defined in 1820 // this implementation. 1821 if (!D->getInstanceMethod(PD->getGetterName())) 1822 CodeGenFunction(*this).GenerateObjCGetter( 1823 const_cast<ObjCImplementationDecl *>(D), PID); 1824 if (!PD->isReadOnly() && 1825 !D->getInstanceMethod(PD->getSetterName())) 1826 CodeGenFunction(*this).GenerateObjCSetter( 1827 const_cast<ObjCImplementationDecl *>(D), PID); 1828 } 1829 } 1830 } 1831 1832 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1833 /// for an implementation. 1834 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1835 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1836 return; 1837 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1838 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1839 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1840 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1841 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1842 D->getLocation(), 1843 D->getLocation(), cxxSelector, 1844 getContext().VoidTy, 0, 1845 DC, true, false, true, false, 1846 ObjCMethodDecl::Required); 1847 D->addInstanceMethod(DTORMethod); 1848 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1849 1850 II = &getContext().Idents.get(".cxx_construct"); 1851 cxxSelector = getContext().Selectors.getSelector(0, &II); 1852 // The constructor returns 'self'. 1853 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1854 D->getLocation(), 1855 D->getLocation(), cxxSelector, 1856 getContext().getObjCIdType(), 0, 1857 DC, true, false, true, false, 1858 ObjCMethodDecl::Required); 1859 D->addInstanceMethod(CTORMethod); 1860 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1861 1862 1863 } 1864 1865 /// EmitNamespace - Emit all declarations in a namespace. 1866 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1867 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1868 I != E; ++I) 1869 EmitTopLevelDecl(*I); 1870 } 1871 1872 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1873 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1874 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1875 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1876 ErrorUnsupported(LSD, "linkage spec"); 1877 return; 1878 } 1879 1880 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1881 I != E; ++I) 1882 EmitTopLevelDecl(*I); 1883 } 1884 1885 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1886 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1887 // If an error has occurred, stop code generation, but continue 1888 // parsing and semantic analysis (to ensure all warnings and errors 1889 // are emitted). 1890 if (Diags.hasErrorOccurred()) 1891 return; 1892 1893 // Ignore dependent declarations. 1894 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1895 return; 1896 1897 switch (D->getKind()) { 1898 case Decl::CXXConversion: 1899 case Decl::CXXMethod: 1900 case Decl::Function: 1901 // Skip function templates 1902 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1903 return; 1904 1905 EmitGlobal(cast<FunctionDecl>(D)); 1906 break; 1907 1908 case Decl::Var: 1909 EmitGlobal(cast<VarDecl>(D)); 1910 break; 1911 1912 // C++ Decls 1913 case Decl::Namespace: 1914 EmitNamespace(cast<NamespaceDecl>(D)); 1915 break; 1916 // No code generation needed. 1917 case Decl::UsingShadow: 1918 case Decl::Using: 1919 case Decl::UsingDirective: 1920 case Decl::ClassTemplate: 1921 case Decl::FunctionTemplate: 1922 case Decl::NamespaceAlias: 1923 break; 1924 case Decl::CXXConstructor: 1925 // Skip function templates 1926 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1927 return; 1928 1929 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1930 break; 1931 case Decl::CXXDestructor: 1932 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1933 break; 1934 1935 case Decl::StaticAssert: 1936 // Nothing to do. 1937 break; 1938 1939 // Objective-C Decls 1940 1941 // Forward declarations, no (immediate) code generation. 1942 case Decl::ObjCClass: 1943 case Decl::ObjCForwardProtocol: 1944 case Decl::ObjCInterface: 1945 break; 1946 1947 case Decl::ObjCCategory: { 1948 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 1949 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 1950 Context.ResetObjCLayout(CD->getClassInterface()); 1951 break; 1952 } 1953 1954 1955 case Decl::ObjCProtocol: 1956 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1957 break; 1958 1959 case Decl::ObjCCategoryImpl: 1960 // Categories have properties but don't support synthesize so we 1961 // can ignore them here. 1962 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1963 break; 1964 1965 case Decl::ObjCImplementation: { 1966 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1967 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 1968 Context.ResetObjCLayout(OMD->getClassInterface()); 1969 EmitObjCPropertyImplementations(OMD); 1970 EmitObjCIvarInitializations(OMD); 1971 Runtime->GenerateClass(OMD); 1972 break; 1973 } 1974 case Decl::ObjCMethod: { 1975 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1976 // If this is not a prototype, emit the body. 1977 if (OMD->getBody()) 1978 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1979 break; 1980 } 1981 case Decl::ObjCCompatibleAlias: 1982 // compatibility-alias is a directive and has no code gen. 1983 break; 1984 1985 case Decl::LinkageSpec: 1986 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1987 break; 1988 1989 case Decl::FileScopeAsm: { 1990 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1991 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1992 1993 const std::string &S = getModule().getModuleInlineAsm(); 1994 if (S.empty()) 1995 getModule().setModuleInlineAsm(AsmString); 1996 else 1997 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1998 break; 1999 } 2000 2001 default: 2002 // Make sure we handled everything we should, every other kind is a 2003 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2004 // function. Need to recode Decl::Kind to do that easily. 2005 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2006 } 2007 } 2008 2009 /// Turns the given pointer into a constant. 2010 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2011 const void *Ptr) { 2012 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2013 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2014 return llvm::ConstantInt::get(i64, PtrInt); 2015 } 2016 2017 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2018 llvm::NamedMDNode *&GlobalMetadata, 2019 GlobalDecl D, 2020 llvm::GlobalValue *Addr) { 2021 if (!GlobalMetadata) 2022 GlobalMetadata = 2023 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2024 2025 // TODO: should we report variant information for ctors/dtors? 2026 llvm::Value *Ops[] = { 2027 Addr, 2028 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2029 }; 2030 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2031 } 2032 2033 /// Emits metadata nodes associating all the global values in the 2034 /// current module with the Decls they came from. This is useful for 2035 /// projects using IR gen as a subroutine. 2036 /// 2037 /// Since there's currently no way to associate an MDNode directly 2038 /// with an llvm::GlobalValue, we create a global named metadata 2039 /// with the name 'clang.global.decl.ptrs'. 2040 void CodeGenModule::EmitDeclMetadata() { 2041 llvm::NamedMDNode *GlobalMetadata = 0; 2042 2043 // StaticLocalDeclMap 2044 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2045 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2046 I != E; ++I) { 2047 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2048 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2049 } 2050 } 2051 2052 /// Emits metadata nodes for all the local variables in the current 2053 /// function. 2054 void CodeGenFunction::EmitDeclMetadata() { 2055 if (LocalDeclMap.empty()) return; 2056 2057 llvm::LLVMContext &Context = getLLVMContext(); 2058 2059 // Find the unique metadata ID for this name. 2060 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2061 2062 llvm::NamedMDNode *GlobalMetadata = 0; 2063 2064 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2065 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2066 const Decl *D = I->first; 2067 llvm::Value *Addr = I->second; 2068 2069 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2070 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2071 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2072 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2073 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2074 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2075 } 2076 } 2077 } 2078 2079 ///@name Custom Runtime Function Interfaces 2080 ///@{ 2081 // 2082 // FIXME: These can be eliminated once we can have clients just get the required 2083 // AST nodes from the builtin tables. 2084 2085 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2086 if (BlockObjectDispose) 2087 return BlockObjectDispose; 2088 2089 // If we saw an explicit decl, use that. 2090 if (BlockObjectDisposeDecl) { 2091 return BlockObjectDispose = GetAddrOfFunction( 2092 BlockObjectDisposeDecl, 2093 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2094 } 2095 2096 // Otherwise construct the function by hand. 2097 const llvm::FunctionType *FTy; 2098 std::vector<const llvm::Type*> ArgTys; 2099 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2100 ArgTys.push_back(PtrToInt8Ty); 2101 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2102 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2103 return BlockObjectDispose = 2104 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2105 } 2106 2107 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2108 if (BlockObjectAssign) 2109 return BlockObjectAssign; 2110 2111 // If we saw an explicit decl, use that. 2112 if (BlockObjectAssignDecl) { 2113 return BlockObjectAssign = GetAddrOfFunction( 2114 BlockObjectAssignDecl, 2115 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2116 } 2117 2118 // Otherwise construct the function by hand. 2119 const llvm::FunctionType *FTy; 2120 std::vector<const llvm::Type*> ArgTys; 2121 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2122 ArgTys.push_back(PtrToInt8Ty); 2123 ArgTys.push_back(PtrToInt8Ty); 2124 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2125 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2126 return BlockObjectAssign = 2127 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2128 } 2129 2130 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2131 if (NSConcreteGlobalBlock) 2132 return NSConcreteGlobalBlock; 2133 2134 // If we saw an explicit decl, use that. 2135 if (NSConcreteGlobalBlockDecl) { 2136 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2137 NSConcreteGlobalBlockDecl, 2138 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2139 } 2140 2141 // Otherwise construct the variable by hand. 2142 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2143 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2144 } 2145 2146 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2147 if (NSConcreteStackBlock) 2148 return NSConcreteStackBlock; 2149 2150 // If we saw an explicit decl, use that. 2151 if (NSConcreteStackBlockDecl) { 2152 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2153 NSConcreteStackBlockDecl, 2154 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2155 } 2156 2157 // Otherwise construct the variable by hand. 2158 return NSConcreteStackBlock = CreateRuntimeVariable( 2159 PtrToInt8Ty, "_NSConcreteStackBlock"); 2160 } 2161 2162 ///@} 2163