xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b1e879c80f02e9c4bbbba124bf2c6379ca9c8246)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "Mangle.h"
22 #include "TargetInfo.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : BlockModule(C, M, TD, Types, *this), Context(C),
62     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0){
74 
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 }
92 
93 CodeGenModule::~CodeGenModule() {
94   delete Runtime;
95   delete &ABI;
96   delete TBAA;
97   delete DebugInfo;
98 }
99 
100 void CodeGenModule::createObjCRuntime() {
101   if (!Features.NeXTRuntime)
102     Runtime = CreateGNUObjCRuntime(*this);
103   else if (Features.ObjCNonFragileABI)
104     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105   else
106     Runtime = CreateMacObjCRuntime(*this);
107 }
108 
109 void CodeGenModule::Release() {
110   EmitDeferred();
111   EmitCXXGlobalInitFunc();
112   EmitCXXGlobalDtorFunc();
113   if (Runtime)
114     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115       AddGlobalCtor(ObjCInitFunction);
116   EmitCtorList(GlobalCtors, "llvm.global_ctors");
117   EmitCtorList(GlobalDtors, "llvm.global_dtors");
118   EmitAnnotations();
119   EmitLLVMUsed();
120 
121   SimplifyPersonality();
122 
123   if (getCodeGenOpts().EmitDeclMetadata)
124     EmitDeclMetadata();
125 }
126 
127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128   if (!TBAA)
129     return 0;
130   return TBAA->getTBAAInfo(QTy);
131 }
132 
133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                         llvm::MDNode *TBAAInfo) {
135   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136 }
137 
138 bool CodeGenModule::isTargetDarwin() const {
139   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140 }
141 
142 /// ErrorUnsupported - Print out an error that codegen doesn't support the
143 /// specified stmt yet.
144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                      bool OmitOnError) {
146   if (OmitOnError && getDiags().hasErrorOccurred())
147     return;
148   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                                "cannot compile this %0 yet");
150   std::string Msg = Type;
151   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152     << Msg << S->getSourceRange();
153 }
154 
155 /// ErrorUnsupported - Print out an error that codegen doesn't support the
156 /// specified decl yet.
157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                      bool OmitOnError) {
159   if (OmitOnError && getDiags().hasErrorOccurred())
160     return;
161   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                                "cannot compile this %0 yet");
163   std::string Msg = Type;
164   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165 }
166 
167 static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) {
168   switch (V) {
169   case DefaultVisibility:   return llvm::GlobalValue::DefaultVisibility;
170   case HiddenVisibility:    return llvm::GlobalValue::HiddenVisibility;
171   case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility;
172   }
173   llvm_unreachable("unknown visibility!");
174   return llvm::GlobalValue::DefaultVisibility;
175 }
176 
177 
178 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
179                                         const NamedDecl *D,
180                                         bool IsForDefinition) const {
181   // Internal definitions always have default visibility.
182   if (GV->hasLocalLinkage()) {
183     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
184     return;
185   }
186 
187   // Set visibility for definitions.
188   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
189   if (LV.visibilityExplicit() ||
190       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
191     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
192 }
193 
194 /// Set the symbol visibility of type information (vtable and RTTI)
195 /// associated with the given type.
196 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
197                                       const CXXRecordDecl *RD,
198                                       bool IsForRTTI,
199                                       bool IsForDefinition) const {
200   setGlobalVisibility(GV, RD, IsForDefinition);
201 
202   if (!CodeGenOpts.HiddenWeakVTables)
203     return;
204 
205   // We want to drop the visibility to hidden for weak type symbols.
206   // This isn't possible if there might be unresolved references
207   // elsewhere that rely on this symbol being visible.
208 
209   // This should be kept roughly in sync with setThunkVisibility
210   // in CGVTables.cpp.
211 
212   // Preconditions.
213   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
214       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
215     return;
216 
217   // Don't override an explicit visibility attribute.
218   if (RD->hasAttr<VisibilityAttr>())
219     return;
220 
221   switch (RD->getTemplateSpecializationKind()) {
222   // We have to disable the optimization if this is an EI definition
223   // because there might be EI declarations in other shared objects.
224   case TSK_ExplicitInstantiationDefinition:
225   case TSK_ExplicitInstantiationDeclaration:
226     return;
227 
228   // Every use of a non-template class's type information has to emit it.
229   case TSK_Undeclared:
230     break;
231 
232   // In theory, implicit instantiations can ignore the possibility of
233   // an explicit instantiation declaration because there necessarily
234   // must be an EI definition somewhere with default visibility.  In
235   // practice, it's possible to have an explicit instantiation for
236   // an arbitrary template class, and linkers aren't necessarily able
237   // to deal with mixed-visibility symbols.
238   case TSK_ExplicitSpecialization:
239   case TSK_ImplicitInstantiation:
240     if (!CodeGenOpts.HiddenWeakTemplateVTables)
241       return;
242     break;
243   }
244 
245   // If there's a key function, there may be translation units
246   // that don't have the key function's definition.  But ignore
247   // this if we're emitting RTTI under -fno-rtti.
248   if (!IsForRTTI || Features.RTTI)
249     if (Context.getKeyFunction(RD))
250       return;
251 
252   // Otherwise, drop the visibility to hidden.
253   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
254   GV->setUnnamedAddr(true);
255 }
256 
257 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
258   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
259 
260   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
261   if (!Str.empty())
262     return Str;
263 
264   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
265     IdentifierInfo *II = ND->getIdentifier();
266     assert(II && "Attempt to mangle unnamed decl.");
267 
268     Str = II->getName();
269     return Str;
270   }
271 
272   llvm::SmallString<256> Buffer;
273   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
274     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
275   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
276     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
277   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
278     getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer);
279   else
280     getCXXABI().getMangleContext().mangleName(ND, Buffer);
281 
282   // Allocate space for the mangled name.
283   size_t Length = Buffer.size();
284   char *Name = MangledNamesAllocator.Allocate<char>(Length);
285   std::copy(Buffer.begin(), Buffer.end(), Name);
286 
287   Str = llvm::StringRef(Name, Length);
288 
289   return Str;
290 }
291 
292 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
293                                    const BlockDecl *BD) {
294   getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
295 }
296 
297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
298   return getModule().getNamedValue(Name);
299 }
300 
301 /// AddGlobalCtor - Add a function to the list that will be called before
302 /// main() runs.
303 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
304   // FIXME: Type coercion of void()* types.
305   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
306 }
307 
308 /// AddGlobalDtor - Add a function to the list that will be called
309 /// when the module is unloaded.
310 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
311   // FIXME: Type coercion of void()* types.
312   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
313 }
314 
315 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
316   // Ctor function type is void()*.
317   llvm::FunctionType* CtorFTy =
318     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
319                             std::vector<const llvm::Type*>(),
320                             false);
321   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
322 
323   // Get the type of a ctor entry, { i32, void ()* }.
324   llvm::StructType* CtorStructTy =
325     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
326                           llvm::PointerType::getUnqual(CtorFTy), NULL);
327 
328   // Construct the constructor and destructor arrays.
329   std::vector<llvm::Constant*> Ctors;
330   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
331     std::vector<llvm::Constant*> S;
332     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
333                 I->second, false));
334     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
335     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
336   }
337 
338   if (!Ctors.empty()) {
339     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
340     new llvm::GlobalVariable(TheModule, AT, false,
341                              llvm::GlobalValue::AppendingLinkage,
342                              llvm::ConstantArray::get(AT, Ctors),
343                              GlobalName);
344   }
345 }
346 
347 void CodeGenModule::EmitAnnotations() {
348   if (Annotations.empty())
349     return;
350 
351   // Create a new global variable for the ConstantStruct in the Module.
352   llvm::Constant *Array =
353   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
354                                                 Annotations.size()),
355                            Annotations);
356   llvm::GlobalValue *gv =
357   new llvm::GlobalVariable(TheModule, Array->getType(), false,
358                            llvm::GlobalValue::AppendingLinkage, Array,
359                            "llvm.global.annotations");
360   gv->setSection("llvm.metadata");
361 }
362 
363 llvm::GlobalValue::LinkageTypes
364 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
365   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
366 
367   if (Linkage == GVA_Internal)
368     return llvm::Function::InternalLinkage;
369 
370   if (D->hasAttr<DLLExportAttr>())
371     return llvm::Function::DLLExportLinkage;
372 
373   if (D->hasAttr<WeakAttr>())
374     return llvm::Function::WeakAnyLinkage;
375 
376   // In C99 mode, 'inline' functions are guaranteed to have a strong
377   // definition somewhere else, so we can use available_externally linkage.
378   if (Linkage == GVA_C99Inline)
379     return llvm::Function::AvailableExternallyLinkage;
380 
381   // In C++, the compiler has to emit a definition in every translation unit
382   // that references the function.  We should use linkonce_odr because
383   // a) if all references in this translation unit are optimized away, we
384   // don't need to codegen it.  b) if the function persists, it needs to be
385   // merged with other definitions. c) C++ has the ODR, so we know the
386   // definition is dependable.
387   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
388     return llvm::Function::LinkOnceODRLinkage;
389 
390   // An explicit instantiation of a template has weak linkage, since
391   // explicit instantiations can occur in multiple translation units
392   // and must all be equivalent. However, we are not allowed to
393   // throw away these explicit instantiations.
394   if (Linkage == GVA_ExplicitTemplateInstantiation)
395     return llvm::Function::WeakODRLinkage;
396 
397   // Otherwise, we have strong external linkage.
398   assert(Linkage == GVA_StrongExternal);
399   return llvm::Function::ExternalLinkage;
400 }
401 
402 
403 /// SetFunctionDefinitionAttributes - Set attributes for a global.
404 ///
405 /// FIXME: This is currently only done for aliases and functions, but not for
406 /// variables (these details are set in EmitGlobalVarDefinition for variables).
407 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
408                                                     llvm::GlobalValue *GV) {
409   SetCommonAttributes(D, GV);
410 }
411 
412 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
413                                               const CGFunctionInfo &Info,
414                                               llvm::Function *F) {
415   unsigned CallingConv;
416   AttributeListType AttributeList;
417   ConstructAttributeList(Info, D, AttributeList, CallingConv);
418   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
419                                           AttributeList.size()));
420   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
421 }
422 
423 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
424                                                            llvm::Function *F) {
425   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
426     F->addFnAttr(llvm::Attribute::NoUnwind);
427 
428   if (D->hasAttr<AlwaysInlineAttr>())
429     F->addFnAttr(llvm::Attribute::AlwaysInline);
430 
431   if (D->hasAttr<NakedAttr>())
432     F->addFnAttr(llvm::Attribute::Naked);
433 
434   if (D->hasAttr<NoInlineAttr>())
435     F->addFnAttr(llvm::Attribute::NoInline);
436 
437   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
438     F->setUnnamedAddr(true);
439 
440   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
441     F->addFnAttr(llvm::Attribute::StackProtect);
442   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
443     F->addFnAttr(llvm::Attribute::StackProtectReq);
444 
445   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
446   if (alignment)
447     F->setAlignment(alignment);
448 
449   // C++ ABI requires 2-byte alignment for member functions.
450   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
451     F->setAlignment(2);
452 }
453 
454 void CodeGenModule::SetCommonAttributes(const Decl *D,
455                                         llvm::GlobalValue *GV) {
456   if (isa<NamedDecl>(D))
457     setGlobalVisibility(GV, cast<NamedDecl>(D), /*ForDef*/ true);
458   else
459     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
460 
461   if (D->hasAttr<UsedAttr>())
462     AddUsedGlobal(GV);
463 
464   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
465     GV->setSection(SA->getName());
466 
467   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
468 }
469 
470 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
471                                                   llvm::Function *F,
472                                                   const CGFunctionInfo &FI) {
473   SetLLVMFunctionAttributes(D, FI, F);
474   SetLLVMFunctionAttributesForDefinition(D, F);
475 
476   F->setLinkage(llvm::Function::InternalLinkage);
477 
478   SetCommonAttributes(D, F);
479 }
480 
481 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
482                                           llvm::Function *F,
483                                           bool IsIncompleteFunction) {
484   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
485 
486   if (!IsIncompleteFunction)
487     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
488 
489   // Only a few attributes are set on declarations; these may later be
490   // overridden by a definition.
491 
492   if (FD->hasAttr<DLLImportAttr>()) {
493     F->setLinkage(llvm::Function::DLLImportLinkage);
494   } else if (FD->hasAttr<WeakAttr>() ||
495              FD->hasAttr<WeakImportAttr>()) {
496     // "extern_weak" is overloaded in LLVM; we probably should have
497     // separate linkage types for this.
498     F->setLinkage(llvm::Function::ExternalWeakLinkage);
499   } else {
500     F->setLinkage(llvm::Function::ExternalLinkage);
501 
502     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
503     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
504       F->setVisibility(GetLLVMVisibility(LV.visibility()));
505     }
506   }
507 
508   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
509     F->setSection(SA->getName());
510 }
511 
512 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
513   assert(!GV->isDeclaration() &&
514          "Only globals with definition can force usage.");
515   LLVMUsed.push_back(GV);
516 }
517 
518 void CodeGenModule::EmitLLVMUsed() {
519   // Don't create llvm.used if there is no need.
520   if (LLVMUsed.empty())
521     return;
522 
523   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
524 
525   // Convert LLVMUsed to what ConstantArray needs.
526   std::vector<llvm::Constant*> UsedArray;
527   UsedArray.resize(LLVMUsed.size());
528   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
529     UsedArray[i] =
530      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
531                                       i8PTy);
532   }
533 
534   if (UsedArray.empty())
535     return;
536   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
537 
538   llvm::GlobalVariable *GV =
539     new llvm::GlobalVariable(getModule(), ATy, false,
540                              llvm::GlobalValue::AppendingLinkage,
541                              llvm::ConstantArray::get(ATy, UsedArray),
542                              "llvm.used");
543 
544   GV->setSection("llvm.metadata");
545 }
546 
547 void CodeGenModule::EmitDeferred() {
548   // Emit code for any potentially referenced deferred decls.  Since a
549   // previously unused static decl may become used during the generation of code
550   // for a static function, iterate until no  changes are made.
551 
552   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
553     if (!DeferredVTables.empty()) {
554       const CXXRecordDecl *RD = DeferredVTables.back();
555       DeferredVTables.pop_back();
556       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
557       continue;
558     }
559 
560     GlobalDecl D = DeferredDeclsToEmit.back();
561     DeferredDeclsToEmit.pop_back();
562 
563     // Check to see if we've already emitted this.  This is necessary
564     // for a couple of reasons: first, decls can end up in the
565     // deferred-decls queue multiple times, and second, decls can end
566     // up with definitions in unusual ways (e.g. by an extern inline
567     // function acquiring a strong function redefinition).  Just
568     // ignore these cases.
569     //
570     // TODO: That said, looking this up multiple times is very wasteful.
571     llvm::StringRef Name = getMangledName(D);
572     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
573     assert(CGRef && "Deferred decl wasn't referenced?");
574 
575     if (!CGRef->isDeclaration())
576       continue;
577 
578     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
579     // purposes an alias counts as a definition.
580     if (isa<llvm::GlobalAlias>(CGRef))
581       continue;
582 
583     // Otherwise, emit the definition and move on to the next one.
584     EmitGlobalDefinition(D);
585   }
586 }
587 
588 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
589 /// annotation information for a given GlobalValue.  The annotation struct is
590 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
591 /// GlobalValue being annotated.  The second field is the constant string
592 /// created from the AnnotateAttr's annotation.  The third field is a constant
593 /// string containing the name of the translation unit.  The fourth field is
594 /// the line number in the file of the annotated value declaration.
595 ///
596 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
597 ///        appears to.
598 ///
599 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
600                                                 const AnnotateAttr *AA,
601                                                 unsigned LineNo) {
602   llvm::Module *M = &getModule();
603 
604   // get [N x i8] constants for the annotation string, and the filename string
605   // which are the 2nd and 3rd elements of the global annotation structure.
606   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
607   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
608                                                   AA->getAnnotation(), true);
609   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
610                                                   M->getModuleIdentifier(),
611                                                   true);
612 
613   // Get the two global values corresponding to the ConstantArrays we just
614   // created to hold the bytes of the strings.
615   llvm::GlobalValue *annoGV =
616     new llvm::GlobalVariable(*M, anno->getType(), false,
617                              llvm::GlobalValue::PrivateLinkage, anno,
618                              GV->getName());
619   // translation unit name string, emitted into the llvm.metadata section.
620   llvm::GlobalValue *unitGV =
621     new llvm::GlobalVariable(*M, unit->getType(), false,
622                              llvm::GlobalValue::PrivateLinkage, unit,
623                              ".str");
624 
625   // Create the ConstantStruct for the global annotation.
626   llvm::Constant *Fields[4] = {
627     llvm::ConstantExpr::getBitCast(GV, SBP),
628     llvm::ConstantExpr::getBitCast(annoGV, SBP),
629     llvm::ConstantExpr::getBitCast(unitGV, SBP),
630     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
631   };
632   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
633 }
634 
635 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
636   // Never defer when EmitAllDecls is specified.
637   if (Features.EmitAllDecls)
638     return false;
639 
640   return !getContext().DeclMustBeEmitted(Global);
641 }
642 
643 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
644   const AliasAttr *AA = VD->getAttr<AliasAttr>();
645   assert(AA && "No alias?");
646 
647   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
648 
649   // See if there is already something with the target's name in the module.
650   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
651 
652   llvm::Constant *Aliasee;
653   if (isa<llvm::FunctionType>(DeclTy))
654     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
655   else
656     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
657                                     llvm::PointerType::getUnqual(DeclTy), 0);
658   if (!Entry) {
659     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
660     F->setLinkage(llvm::Function::ExternalWeakLinkage);
661     WeakRefReferences.insert(F);
662   }
663 
664   return Aliasee;
665 }
666 
667 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
668   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
669 
670   // Weak references don't produce any output by themselves.
671   if (Global->hasAttr<WeakRefAttr>())
672     return;
673 
674   // If this is an alias definition (which otherwise looks like a declaration)
675   // emit it now.
676   if (Global->hasAttr<AliasAttr>())
677     return EmitAliasDefinition(GD);
678 
679   // Ignore declarations, they will be emitted on their first use.
680   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
681     if (FD->getIdentifier()) {
682       llvm::StringRef Name = FD->getName();
683       if (Name == "_Block_object_assign") {
684         BlockObjectAssignDecl = FD;
685       } else if (Name == "_Block_object_dispose") {
686         BlockObjectDisposeDecl = FD;
687       }
688     }
689 
690     // Forward declarations are emitted lazily on first use.
691     if (!FD->isThisDeclarationADefinition())
692       return;
693   } else {
694     const VarDecl *VD = cast<VarDecl>(Global);
695     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
696 
697     if (VD->getIdentifier()) {
698       llvm::StringRef Name = VD->getName();
699       if (Name == "_NSConcreteGlobalBlock") {
700         NSConcreteGlobalBlockDecl = VD;
701       } else if (Name == "_NSConcreteStackBlock") {
702         NSConcreteStackBlockDecl = VD;
703       }
704     }
705 
706 
707     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
708       return;
709   }
710 
711   // Defer code generation when possible if this is a static definition, inline
712   // function etc.  These we only want to emit if they are used.
713   if (!MayDeferGeneration(Global)) {
714     // Emit the definition if it can't be deferred.
715     EmitGlobalDefinition(GD);
716     return;
717   }
718 
719   // If we're deferring emission of a C++ variable with an
720   // initializer, remember the order in which it appeared in the file.
721   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
722       cast<VarDecl>(Global)->hasInit()) {
723     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
724     CXXGlobalInits.push_back(0);
725   }
726 
727   // If the value has already been used, add it directly to the
728   // DeferredDeclsToEmit list.
729   llvm::StringRef MangledName = getMangledName(GD);
730   if (GetGlobalValue(MangledName))
731     DeferredDeclsToEmit.push_back(GD);
732   else {
733     // Otherwise, remember that we saw a deferred decl with this name.  The
734     // first use of the mangled name will cause it to move into
735     // DeferredDeclsToEmit.
736     DeferredDecls[MangledName] = GD;
737   }
738 }
739 
740 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
741   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
742 
743   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
744                                  Context.getSourceManager(),
745                                  "Generating code for declaration");
746 
747   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
748     // At -O0, don't generate IR for functions with available_externally
749     // linkage.
750     if (CodeGenOpts.OptimizationLevel == 0 &&
751         !Function->hasAttr<AlwaysInlineAttr>() &&
752         getFunctionLinkage(Function)
753                                   == llvm::Function::AvailableExternallyLinkage)
754       return;
755 
756     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
757       if (Method->isVirtual())
758         getVTables().EmitThunks(GD);
759 
760       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
761         return EmitCXXConstructor(CD, GD.getCtorType());
762 
763       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
764         return EmitCXXDestructor(DD, GD.getDtorType());
765     }
766 
767     return EmitGlobalFunctionDefinition(GD);
768   }
769 
770   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
771     return EmitGlobalVarDefinition(VD);
772 
773   assert(0 && "Invalid argument to EmitGlobalDefinition()");
774 }
775 
776 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
777 /// module, create and return an llvm Function with the specified type. If there
778 /// is something in the module with the specified name, return it potentially
779 /// bitcasted to the right type.
780 ///
781 /// If D is non-null, it specifies a decl that correspond to this.  This is used
782 /// to set the attributes on the function when it is first created.
783 llvm::Constant *
784 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
785                                        const llvm::Type *Ty,
786                                        GlobalDecl D) {
787   // Lookup the entry, lazily creating it if necessary.
788   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
789   if (Entry) {
790     if (WeakRefReferences.count(Entry)) {
791       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
792       if (FD && !FD->hasAttr<WeakAttr>())
793         Entry->setLinkage(llvm::Function::ExternalLinkage);
794 
795       WeakRefReferences.erase(Entry);
796     }
797 
798     if (Entry->getType()->getElementType() == Ty)
799       return Entry;
800 
801     // Make sure the result is of the correct type.
802     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
803     return llvm::ConstantExpr::getBitCast(Entry, PTy);
804   }
805 
806   // This function doesn't have a complete type (for example, the return
807   // type is an incomplete struct). Use a fake type instead, and make
808   // sure not to try to set attributes.
809   bool IsIncompleteFunction = false;
810 
811   const llvm::FunctionType *FTy;
812   if (isa<llvm::FunctionType>(Ty)) {
813     FTy = cast<llvm::FunctionType>(Ty);
814   } else {
815     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
816                                   std::vector<const llvm::Type*>(), false);
817     IsIncompleteFunction = true;
818   }
819 
820   llvm::Function *F = llvm::Function::Create(FTy,
821                                              llvm::Function::ExternalLinkage,
822                                              MangledName, &getModule());
823   assert(F->getName() == MangledName && "name was uniqued!");
824   if (D.getDecl())
825     SetFunctionAttributes(D, F, IsIncompleteFunction);
826 
827   // This is the first use or definition of a mangled name.  If there is a
828   // deferred decl with this name, remember that we need to emit it at the end
829   // of the file.
830   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
831   if (DDI != DeferredDecls.end()) {
832     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
833     // list, and remove it from DeferredDecls (since we don't need it anymore).
834     DeferredDeclsToEmit.push_back(DDI->second);
835     DeferredDecls.erase(DDI);
836 
837   // Otherwise, there are cases we have to worry about where we're
838   // using a declaration for which we must emit a definition but where
839   // we might not find a top-level definition:
840   //   - member functions defined inline in their classes
841   //   - friend functions defined inline in some class
842   //   - special member functions with implicit definitions
843   // If we ever change our AST traversal to walk into class methods,
844   // this will be unnecessary.
845   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
846     // Look for a declaration that's lexically in a record.
847     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
848     do {
849       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
850         if (FD->isImplicit()) {
851           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
852           DeferredDeclsToEmit.push_back(D);
853           break;
854         } else if (FD->isThisDeclarationADefinition()) {
855           DeferredDeclsToEmit.push_back(D);
856           break;
857         }
858       }
859       FD = FD->getPreviousDeclaration();
860     } while (FD);
861   }
862 
863   // Make sure the result is of the requested type.
864   if (!IsIncompleteFunction) {
865     assert(F->getType()->getElementType() == Ty);
866     return F;
867   }
868 
869   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
870   return llvm::ConstantExpr::getBitCast(F, PTy);
871 }
872 
873 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
874 /// non-null, then this function will use the specified type if it has to
875 /// create it (this occurs when we see a definition of the function).
876 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
877                                                  const llvm::Type *Ty) {
878   // If there was no specific requested type, just convert it now.
879   if (!Ty)
880     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
881 
882   llvm::StringRef MangledName = getMangledName(GD);
883   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
884 }
885 
886 /// CreateRuntimeFunction - Create a new runtime function with the specified
887 /// type and name.
888 llvm::Constant *
889 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
890                                      llvm::StringRef Name) {
891   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
892 }
893 
894 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
895   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
896     return false;
897   if (Context.getLangOptions().CPlusPlus &&
898       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
899     // FIXME: We should do something fancier here!
900     return false;
901   }
902   return true;
903 }
904 
905 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
906 /// create and return an llvm GlobalVariable with the specified type.  If there
907 /// is something in the module with the specified name, return it potentially
908 /// bitcasted to the right type.
909 ///
910 /// If D is non-null, it specifies a decl that correspond to this.  This is used
911 /// to set the attributes on the global when it is first created.
912 llvm::Constant *
913 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
914                                      const llvm::PointerType *Ty,
915                                      const VarDecl *D) {
916   // Lookup the entry, lazily creating it if necessary.
917   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
918   if (Entry) {
919     if (WeakRefReferences.count(Entry)) {
920       if (D && !D->hasAttr<WeakAttr>())
921         Entry->setLinkage(llvm::Function::ExternalLinkage);
922 
923       WeakRefReferences.erase(Entry);
924     }
925 
926     if (Entry->getType() == Ty)
927       return Entry;
928 
929     // Make sure the result is of the correct type.
930     return llvm::ConstantExpr::getBitCast(Entry, Ty);
931   }
932 
933   // This is the first use or definition of a mangled name.  If there is a
934   // deferred decl with this name, remember that we need to emit it at the end
935   // of the file.
936   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
937   if (DDI != DeferredDecls.end()) {
938     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
939     // list, and remove it from DeferredDecls (since we don't need it anymore).
940     DeferredDeclsToEmit.push_back(DDI->second);
941     DeferredDecls.erase(DDI);
942   }
943 
944   llvm::GlobalVariable *GV =
945     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
946                              llvm::GlobalValue::ExternalLinkage,
947                              0, MangledName, 0,
948                              false, Ty->getAddressSpace());
949 
950   // Handle things which are present even on external declarations.
951   if (D) {
952     // FIXME: This code is overly simple and should be merged with other global
953     // handling.
954     GV->setConstant(DeclIsConstantGlobal(Context, D));
955 
956     // Set linkage and visibility in case we never see a definition.
957     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
958     if (LV.linkage() != ExternalLinkage) {
959       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
960     } else {
961       if (D->hasAttr<DLLImportAttr>())
962         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
963       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
964         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
965 
966       // Set visibility on a declaration only if it's explicit.
967       if (LV.visibilityExplicit())
968         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
969     }
970 
971     GV->setThreadLocal(D->isThreadSpecified());
972   }
973 
974   return GV;
975 }
976 
977 
978 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
979 /// given global variable.  If Ty is non-null and if the global doesn't exist,
980 /// then it will be greated with the specified type instead of whatever the
981 /// normal requested type would be.
982 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
983                                                   const llvm::Type *Ty) {
984   assert(D->hasGlobalStorage() && "Not a global variable");
985   QualType ASTTy = D->getType();
986   if (Ty == 0)
987     Ty = getTypes().ConvertTypeForMem(ASTTy);
988 
989   const llvm::PointerType *PTy =
990     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
991 
992   llvm::StringRef MangledName = getMangledName(D);
993   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
994 }
995 
996 /// CreateRuntimeVariable - Create a new runtime global variable with the
997 /// specified type and name.
998 llvm::Constant *
999 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1000                                      llvm::StringRef Name) {
1001   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1002 }
1003 
1004 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1005   assert(!D->getInit() && "Cannot emit definite definitions here!");
1006 
1007   if (MayDeferGeneration(D)) {
1008     // If we have not seen a reference to this variable yet, place it
1009     // into the deferred declarations table to be emitted if needed
1010     // later.
1011     llvm::StringRef MangledName = getMangledName(D);
1012     if (!GetGlobalValue(MangledName)) {
1013       DeferredDecls[MangledName] = D;
1014       return;
1015     }
1016   }
1017 
1018   // The tentative definition is the only definition.
1019   EmitGlobalVarDefinition(D);
1020 }
1021 
1022 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1023   if (DefinitionRequired)
1024     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1025 }
1026 
1027 llvm::GlobalVariable::LinkageTypes
1028 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1029   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1030     return llvm::GlobalVariable::InternalLinkage;
1031 
1032   if (const CXXMethodDecl *KeyFunction
1033                                     = RD->getASTContext().getKeyFunction(RD)) {
1034     // If this class has a key function, use that to determine the linkage of
1035     // the vtable.
1036     const FunctionDecl *Def = 0;
1037     if (KeyFunction->hasBody(Def))
1038       KeyFunction = cast<CXXMethodDecl>(Def);
1039 
1040     switch (KeyFunction->getTemplateSpecializationKind()) {
1041       case TSK_Undeclared:
1042       case TSK_ExplicitSpecialization:
1043         if (KeyFunction->isInlined())
1044           return llvm::GlobalVariable::WeakODRLinkage;
1045 
1046         return llvm::GlobalVariable::ExternalLinkage;
1047 
1048       case TSK_ImplicitInstantiation:
1049       case TSK_ExplicitInstantiationDefinition:
1050         return llvm::GlobalVariable::WeakODRLinkage;
1051 
1052       case TSK_ExplicitInstantiationDeclaration:
1053         // FIXME: Use available_externally linkage. However, this currently
1054         // breaks LLVM's build due to undefined symbols.
1055         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1056         return llvm::GlobalVariable::WeakODRLinkage;
1057     }
1058   }
1059 
1060   switch (RD->getTemplateSpecializationKind()) {
1061   case TSK_Undeclared:
1062   case TSK_ExplicitSpecialization:
1063   case TSK_ImplicitInstantiation:
1064   case TSK_ExplicitInstantiationDefinition:
1065     return llvm::GlobalVariable::WeakODRLinkage;
1066 
1067   case TSK_ExplicitInstantiationDeclaration:
1068     // FIXME: Use available_externally linkage. However, this currently
1069     // breaks LLVM's build due to undefined symbols.
1070     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1071     return llvm::GlobalVariable::WeakODRLinkage;
1072   }
1073 
1074   // Silence GCC warning.
1075   return llvm::GlobalVariable::WeakODRLinkage;
1076 }
1077 
1078 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1079     return CharUnits::fromQuantity(
1080       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1081 }
1082 
1083 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1084   llvm::Constant *Init = 0;
1085   QualType ASTTy = D->getType();
1086   bool NonConstInit = false;
1087 
1088   const Expr *InitExpr = D->getAnyInitializer();
1089 
1090   if (!InitExpr) {
1091     // This is a tentative definition; tentative definitions are
1092     // implicitly initialized with { 0 }.
1093     //
1094     // Note that tentative definitions are only emitted at the end of
1095     // a translation unit, so they should never have incomplete
1096     // type. In addition, EmitTentativeDefinition makes sure that we
1097     // never attempt to emit a tentative definition if a real one
1098     // exists. A use may still exists, however, so we still may need
1099     // to do a RAUW.
1100     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1101     Init = EmitNullConstant(D->getType());
1102   } else {
1103     Init = EmitConstantExpr(InitExpr, D->getType());
1104     if (!Init) {
1105       QualType T = InitExpr->getType();
1106       if (D->getType()->isReferenceType())
1107         T = D->getType();
1108 
1109       if (getLangOptions().CPlusPlus) {
1110         Init = EmitNullConstant(T);
1111         NonConstInit = true;
1112       } else {
1113         ErrorUnsupported(D, "static initializer");
1114         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1115       }
1116     } else {
1117       // We don't need an initializer, so remove the entry for the delayed
1118       // initializer position (just in case this entry was delayed).
1119       if (getLangOptions().CPlusPlus)
1120         DelayedCXXInitPosition.erase(D);
1121     }
1122   }
1123 
1124   const llvm::Type* InitType = Init->getType();
1125   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1126 
1127   // Strip off a bitcast if we got one back.
1128   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1129     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1130            // all zero index gep.
1131            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1132     Entry = CE->getOperand(0);
1133   }
1134 
1135   // Entry is now either a Function or GlobalVariable.
1136   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1137 
1138   // We have a definition after a declaration with the wrong type.
1139   // We must make a new GlobalVariable* and update everything that used OldGV
1140   // (a declaration or tentative definition) with the new GlobalVariable*
1141   // (which will be a definition).
1142   //
1143   // This happens if there is a prototype for a global (e.g.
1144   // "extern int x[];") and then a definition of a different type (e.g.
1145   // "int x[10];"). This also happens when an initializer has a different type
1146   // from the type of the global (this happens with unions).
1147   if (GV == 0 ||
1148       GV->getType()->getElementType() != InitType ||
1149       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1150 
1151     // Move the old entry aside so that we'll create a new one.
1152     Entry->setName(llvm::StringRef());
1153 
1154     // Make a new global with the correct type, this is now guaranteed to work.
1155     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1156 
1157     // Replace all uses of the old global with the new global
1158     llvm::Constant *NewPtrForOldDecl =
1159         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1160     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1161 
1162     // Erase the old global, since it is no longer used.
1163     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1164   }
1165 
1166   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1167     SourceManager &SM = Context.getSourceManager();
1168     AddAnnotation(EmitAnnotateAttr(GV, AA,
1169                               SM.getInstantiationLineNumber(D->getLocation())));
1170   }
1171 
1172   GV->setInitializer(Init);
1173 
1174   // If it is safe to mark the global 'constant', do so now.
1175   GV->setConstant(false);
1176   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1177     GV->setConstant(true);
1178 
1179   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1180 
1181   // Set the llvm linkage type as appropriate.
1182   llvm::GlobalValue::LinkageTypes Linkage =
1183     GetLLVMLinkageVarDefinition(D, GV);
1184   GV->setLinkage(Linkage);
1185   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1186     // common vars aren't constant even if declared const.
1187     GV->setConstant(false);
1188 
1189   SetCommonAttributes(D, GV);
1190 
1191   // Emit the initializer function if necessary.
1192   if (NonConstInit)
1193     EmitCXXGlobalVarDeclInitFunc(D, GV);
1194 
1195   // Emit global variable debug information.
1196   if (CGDebugInfo *DI = getDebugInfo()) {
1197     DI->setLocation(D->getLocation());
1198     DI->EmitGlobalVariable(GV, D);
1199   }
1200 }
1201 
1202 llvm::GlobalValue::LinkageTypes
1203 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1204                                            llvm::GlobalVariable *GV) {
1205   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1206   if (Linkage == GVA_Internal)
1207     return llvm::Function::InternalLinkage;
1208   else if (D->hasAttr<DLLImportAttr>())
1209     return llvm::Function::DLLImportLinkage;
1210   else if (D->hasAttr<DLLExportAttr>())
1211     return llvm::Function::DLLExportLinkage;
1212   else if (D->hasAttr<WeakAttr>()) {
1213     if (GV->isConstant())
1214       return llvm::GlobalVariable::WeakODRLinkage;
1215     else
1216       return llvm::GlobalVariable::WeakAnyLinkage;
1217   } else if (Linkage == GVA_TemplateInstantiation ||
1218              Linkage == GVA_ExplicitTemplateInstantiation)
1219     // FIXME: It seems like we can provide more specific linkage here
1220     // (LinkOnceODR, WeakODR).
1221     return llvm::GlobalVariable::WeakAnyLinkage;
1222   else if (!getLangOptions().CPlusPlus &&
1223            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1224              D->getAttr<CommonAttr>()) &&
1225            !D->hasExternalStorage() && !D->getInit() &&
1226            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1227     // Thread local vars aren't considered common linkage.
1228     return llvm::GlobalVariable::CommonLinkage;
1229   }
1230   return llvm::GlobalVariable::ExternalLinkage;
1231 }
1232 
1233 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1234 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1235 /// existing call uses of the old function in the module, this adjusts them to
1236 /// call the new function directly.
1237 ///
1238 /// This is not just a cleanup: the always_inline pass requires direct calls to
1239 /// functions to be able to inline them.  If there is a bitcast in the way, it
1240 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1241 /// run at -O0.
1242 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1243                                                       llvm::Function *NewFn) {
1244   // If we're redefining a global as a function, don't transform it.
1245   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1246   if (OldFn == 0) return;
1247 
1248   const llvm::Type *NewRetTy = NewFn->getReturnType();
1249   llvm::SmallVector<llvm::Value*, 4> ArgList;
1250 
1251   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1252        UI != E; ) {
1253     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1254     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1255     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1256     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1257     llvm::CallSite CS(CI);
1258     if (!CI || !CS.isCallee(I)) continue;
1259 
1260     // If the return types don't match exactly, and if the call isn't dead, then
1261     // we can't transform this call.
1262     if (CI->getType() != NewRetTy && !CI->use_empty())
1263       continue;
1264 
1265     // If the function was passed too few arguments, don't transform.  If extra
1266     // arguments were passed, we silently drop them.  If any of the types
1267     // mismatch, we don't transform.
1268     unsigned ArgNo = 0;
1269     bool DontTransform = false;
1270     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1271          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1272       if (CS.arg_size() == ArgNo ||
1273           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1274         DontTransform = true;
1275         break;
1276       }
1277     }
1278     if (DontTransform)
1279       continue;
1280 
1281     // Okay, we can transform this.  Create the new call instruction and copy
1282     // over the required information.
1283     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1284     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1285                                                      ArgList.end(), "", CI);
1286     ArgList.clear();
1287     if (!NewCall->getType()->isVoidTy())
1288       NewCall->takeName(CI);
1289     NewCall->setAttributes(CI->getAttributes());
1290     NewCall->setCallingConv(CI->getCallingConv());
1291 
1292     // Finally, remove the old call, replacing any uses with the new one.
1293     if (!CI->use_empty())
1294       CI->replaceAllUsesWith(NewCall);
1295 
1296     // Copy debug location attached to CI.
1297     if (!CI->getDebugLoc().isUnknown())
1298       NewCall->setDebugLoc(CI->getDebugLoc());
1299     CI->eraseFromParent();
1300   }
1301 }
1302 
1303 
1304 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1305   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1306   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1307   getCXXABI().getMangleContext().mangleInitDiscriminator();
1308   // Get or create the prototype for the function.
1309   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1310 
1311   // Strip off a bitcast if we got one back.
1312   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1313     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1314     Entry = CE->getOperand(0);
1315   }
1316 
1317 
1318   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1319     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1320 
1321     // If the types mismatch then we have to rewrite the definition.
1322     assert(OldFn->isDeclaration() &&
1323            "Shouldn't replace non-declaration");
1324 
1325     // F is the Function* for the one with the wrong type, we must make a new
1326     // Function* and update everything that used F (a declaration) with the new
1327     // Function* (which will be a definition).
1328     //
1329     // This happens if there is a prototype for a function
1330     // (e.g. "int f()") and then a definition of a different type
1331     // (e.g. "int f(int x)").  Move the old function aside so that it
1332     // doesn't interfere with GetAddrOfFunction.
1333     OldFn->setName(llvm::StringRef());
1334     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1335 
1336     // If this is an implementation of a function without a prototype, try to
1337     // replace any existing uses of the function (which may be calls) with uses
1338     // of the new function
1339     if (D->getType()->isFunctionNoProtoType()) {
1340       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1341       OldFn->removeDeadConstantUsers();
1342     }
1343 
1344     // Replace uses of F with the Function we will endow with a body.
1345     if (!Entry->use_empty()) {
1346       llvm::Constant *NewPtrForOldDecl =
1347         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1348       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1349     }
1350 
1351     // Ok, delete the old function now, which is dead.
1352     OldFn->eraseFromParent();
1353 
1354     Entry = NewFn;
1355   }
1356 
1357   // We need to set linkage and visibility on the function before
1358   // generating code for it because various parts of IR generation
1359   // want to propagate this information down (e.g. to local static
1360   // declarations).
1361   llvm::Function *Fn = cast<llvm::Function>(Entry);
1362   setFunctionLinkage(D, Fn);
1363 
1364   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1365   setGlobalVisibility(Fn, D, /*ForDef*/ true);
1366 
1367   CodeGenFunction(*this).GenerateCode(D, Fn);
1368 
1369   SetFunctionDefinitionAttributes(D, Fn);
1370   SetLLVMFunctionAttributesForDefinition(D, Fn);
1371 
1372   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1373     AddGlobalCtor(Fn, CA->getPriority());
1374   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1375     AddGlobalDtor(Fn, DA->getPriority());
1376 }
1377 
1378 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1379   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1380   const AliasAttr *AA = D->getAttr<AliasAttr>();
1381   assert(AA && "Not an alias?");
1382 
1383   llvm::StringRef MangledName = getMangledName(GD);
1384 
1385   // If there is a definition in the module, then it wins over the alias.
1386   // This is dubious, but allow it to be safe.  Just ignore the alias.
1387   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1388   if (Entry && !Entry->isDeclaration())
1389     return;
1390 
1391   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1392 
1393   // Create a reference to the named value.  This ensures that it is emitted
1394   // if a deferred decl.
1395   llvm::Constant *Aliasee;
1396   if (isa<llvm::FunctionType>(DeclTy))
1397     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1398   else
1399     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1400                                     llvm::PointerType::getUnqual(DeclTy), 0);
1401 
1402   // Create the new alias itself, but don't set a name yet.
1403   llvm::GlobalValue *GA =
1404     new llvm::GlobalAlias(Aliasee->getType(),
1405                           llvm::Function::ExternalLinkage,
1406                           "", Aliasee, &getModule());
1407 
1408   if (Entry) {
1409     assert(Entry->isDeclaration());
1410 
1411     // If there is a declaration in the module, then we had an extern followed
1412     // by the alias, as in:
1413     //   extern int test6();
1414     //   ...
1415     //   int test6() __attribute__((alias("test7")));
1416     //
1417     // Remove it and replace uses of it with the alias.
1418     GA->takeName(Entry);
1419 
1420     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1421                                                           Entry->getType()));
1422     Entry->eraseFromParent();
1423   } else {
1424     GA->setName(MangledName);
1425   }
1426 
1427   // Set attributes which are particular to an alias; this is a
1428   // specialization of the attributes which may be set on a global
1429   // variable/function.
1430   if (D->hasAttr<DLLExportAttr>()) {
1431     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1432       // The dllexport attribute is ignored for undefined symbols.
1433       if (FD->hasBody())
1434         GA->setLinkage(llvm::Function::DLLExportLinkage);
1435     } else {
1436       GA->setLinkage(llvm::Function::DLLExportLinkage);
1437     }
1438   } else if (D->hasAttr<WeakAttr>() ||
1439              D->hasAttr<WeakRefAttr>() ||
1440              D->hasAttr<WeakImportAttr>()) {
1441     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1442   }
1443 
1444   SetCommonAttributes(D, GA);
1445 }
1446 
1447 /// getBuiltinLibFunction - Given a builtin id for a function like
1448 /// "__builtin_fabsf", return a Function* for "fabsf".
1449 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1450                                                   unsigned BuiltinID) {
1451   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1452           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1453          "isn't a lib fn");
1454 
1455   // Get the name, skip over the __builtin_ prefix (if necessary).
1456   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1457   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1458     Name += 10;
1459 
1460   const llvm::FunctionType *Ty =
1461     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1462 
1463   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1464 }
1465 
1466 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1467                                             unsigned NumTys) {
1468   return llvm::Intrinsic::getDeclaration(&getModule(),
1469                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1470 }
1471 
1472 static llvm::StringMapEntry<llvm::Constant*> &
1473 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1474                          const StringLiteral *Literal,
1475                          bool TargetIsLSB,
1476                          bool &IsUTF16,
1477                          unsigned &StringLength) {
1478   llvm::StringRef String = Literal->getString();
1479   unsigned NumBytes = String.size();
1480 
1481   // Check for simple case.
1482   if (!Literal->containsNonAsciiOrNull()) {
1483     StringLength = NumBytes;
1484     return Map.GetOrCreateValue(String);
1485   }
1486 
1487   // Otherwise, convert the UTF8 literals into a byte string.
1488   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1489   const UTF8 *FromPtr = (UTF8 *)String.data();
1490   UTF16 *ToPtr = &ToBuf[0];
1491 
1492   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1493                            &ToPtr, ToPtr + NumBytes,
1494                            strictConversion);
1495 
1496   // ConvertUTF8toUTF16 returns the length in ToPtr.
1497   StringLength = ToPtr - &ToBuf[0];
1498 
1499   // Render the UTF-16 string into a byte array and convert to the target byte
1500   // order.
1501   //
1502   // FIXME: This isn't something we should need to do here.
1503   llvm::SmallString<128> AsBytes;
1504   AsBytes.reserve(StringLength * 2);
1505   for (unsigned i = 0; i != StringLength; ++i) {
1506     unsigned short Val = ToBuf[i];
1507     if (TargetIsLSB) {
1508       AsBytes.push_back(Val & 0xFF);
1509       AsBytes.push_back(Val >> 8);
1510     } else {
1511       AsBytes.push_back(Val >> 8);
1512       AsBytes.push_back(Val & 0xFF);
1513     }
1514   }
1515   // Append one extra null character, the second is automatically added by our
1516   // caller.
1517   AsBytes.push_back(0);
1518 
1519   IsUTF16 = true;
1520   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1521 }
1522 
1523 llvm::Constant *
1524 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1525   unsigned StringLength = 0;
1526   bool isUTF16 = false;
1527   llvm::StringMapEntry<llvm::Constant*> &Entry =
1528     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1529                              getTargetData().isLittleEndian(),
1530                              isUTF16, StringLength);
1531 
1532   if (llvm::Constant *C = Entry.getValue())
1533     return C;
1534 
1535   llvm::Constant *Zero =
1536       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1537   llvm::Constant *Zeros[] = { Zero, Zero };
1538 
1539   // If we don't already have it, get __CFConstantStringClassReference.
1540   if (!CFConstantStringClassRef) {
1541     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1542     Ty = llvm::ArrayType::get(Ty, 0);
1543     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1544                                            "__CFConstantStringClassReference");
1545     // Decay array -> ptr
1546     CFConstantStringClassRef =
1547       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1548   }
1549 
1550   QualType CFTy = getContext().getCFConstantStringType();
1551 
1552   const llvm::StructType *STy =
1553     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1554 
1555   std::vector<llvm::Constant*> Fields(4);
1556 
1557   // Class pointer.
1558   Fields[0] = CFConstantStringClassRef;
1559 
1560   // Flags.
1561   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1562   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1563     llvm::ConstantInt::get(Ty, 0x07C8);
1564 
1565   // String pointer.
1566   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1567 
1568   llvm::GlobalValue::LinkageTypes Linkage;
1569   bool isConstant;
1570   if (isUTF16) {
1571     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1572     Linkage = llvm::GlobalValue::InternalLinkage;
1573     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1574     // does make plain ascii ones writable.
1575     isConstant = true;
1576   } else {
1577     Linkage = llvm::GlobalValue::PrivateLinkage;
1578     isConstant = !Features.WritableStrings;
1579   }
1580 
1581   llvm::GlobalVariable *GV =
1582     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1583                              ".str");
1584   if (isUTF16) {
1585     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1586     GV->setAlignment(Align.getQuantity());
1587   }
1588   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1589 
1590   // String length.
1591   Ty = getTypes().ConvertType(getContext().LongTy);
1592   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1593 
1594   // The struct.
1595   C = llvm::ConstantStruct::get(STy, Fields);
1596   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1597                                 llvm::GlobalVariable::PrivateLinkage, C,
1598                                 "_unnamed_cfstring_");
1599   if (const char *Sect = getContext().Target.getCFStringSection())
1600     GV->setSection(Sect);
1601   Entry.setValue(GV);
1602 
1603   return GV;
1604 }
1605 
1606 llvm::Constant *
1607 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1608   unsigned StringLength = 0;
1609   bool isUTF16 = false;
1610   llvm::StringMapEntry<llvm::Constant*> &Entry =
1611     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1612                              getTargetData().isLittleEndian(),
1613                              isUTF16, StringLength);
1614 
1615   if (llvm::Constant *C = Entry.getValue())
1616     return C;
1617 
1618   llvm::Constant *Zero =
1619   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1620   llvm::Constant *Zeros[] = { Zero, Zero };
1621 
1622   // If we don't already have it, get _NSConstantStringClassReference.
1623   if (!ConstantStringClassRef) {
1624     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1625     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1626     Ty = llvm::ArrayType::get(Ty, 0);
1627     llvm::Constant *GV;
1628     if (StringClass.empty())
1629       GV = CreateRuntimeVariable(Ty,
1630                                  Features.ObjCNonFragileABI ?
1631                                  "OBJC_CLASS_$_NSConstantString" :
1632                                  "_NSConstantStringClassReference");
1633     else {
1634       std::string str;
1635       if (Features.ObjCNonFragileABI)
1636         str = "OBJC_CLASS_$_" + StringClass;
1637       else
1638         str = "_" + StringClass + "ClassReference";
1639       GV = CreateRuntimeVariable(Ty, str);
1640     }
1641     // Decay array -> ptr
1642     ConstantStringClassRef =
1643     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1644   }
1645 
1646   QualType NSTy = getContext().getNSConstantStringType();
1647 
1648   const llvm::StructType *STy =
1649   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1650 
1651   std::vector<llvm::Constant*> Fields(3);
1652 
1653   // Class pointer.
1654   Fields[0] = ConstantStringClassRef;
1655 
1656   // String pointer.
1657   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1658 
1659   llvm::GlobalValue::LinkageTypes Linkage;
1660   bool isConstant;
1661   if (isUTF16) {
1662     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1663     Linkage = llvm::GlobalValue::InternalLinkage;
1664     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1665     // does make plain ascii ones writable.
1666     isConstant = true;
1667   } else {
1668     Linkage = llvm::GlobalValue::PrivateLinkage;
1669     isConstant = !Features.WritableStrings;
1670   }
1671 
1672   llvm::GlobalVariable *GV =
1673   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1674                            ".str");
1675   if (isUTF16) {
1676     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1677     GV->setAlignment(Align.getQuantity());
1678   }
1679   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1680 
1681   // String length.
1682   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1683   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1684 
1685   // The struct.
1686   C = llvm::ConstantStruct::get(STy, Fields);
1687   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1688                                 llvm::GlobalVariable::PrivateLinkage, C,
1689                                 "_unnamed_nsstring_");
1690   // FIXME. Fix section.
1691   if (const char *Sect =
1692         Features.ObjCNonFragileABI
1693           ? getContext().Target.getNSStringNonFragileABISection()
1694           : getContext().Target.getNSStringSection())
1695     GV->setSection(Sect);
1696   Entry.setValue(GV);
1697 
1698   return GV;
1699 }
1700 
1701 /// GetStringForStringLiteral - Return the appropriate bytes for a
1702 /// string literal, properly padded to match the literal type.
1703 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1704   const ConstantArrayType *CAT =
1705     getContext().getAsConstantArrayType(E->getType());
1706   assert(CAT && "String isn't pointer or array!");
1707 
1708   // Resize the string to the right size.
1709   uint64_t RealLen = CAT->getSize().getZExtValue();
1710 
1711   if (E->isWide())
1712     RealLen *= getContext().Target.getWCharWidth()/8;
1713 
1714   std::string Str = E->getString().str();
1715   Str.resize(RealLen, '\0');
1716 
1717   return Str;
1718 }
1719 
1720 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1721 /// constant array for the given string literal.
1722 llvm::Constant *
1723 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1724   // FIXME: This can be more efficient.
1725   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1726   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1727   if (S->isWide()) {
1728     llvm::Type *DestTy =
1729         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1730     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1731   }
1732   return C;
1733 }
1734 
1735 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1736 /// array for the given ObjCEncodeExpr node.
1737 llvm::Constant *
1738 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1739   std::string Str;
1740   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1741 
1742   return GetAddrOfConstantCString(Str);
1743 }
1744 
1745 
1746 /// GenerateWritableString -- Creates storage for a string literal.
1747 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1748                                              bool constant,
1749                                              CodeGenModule &CGM,
1750                                              const char *GlobalName) {
1751   // Create Constant for this string literal. Don't add a '\0'.
1752   llvm::Constant *C =
1753       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1754 
1755   // Create a global variable for this string
1756   llvm::GlobalVariable *GV =
1757     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1758                              llvm::GlobalValue::PrivateLinkage,
1759                              C, GlobalName);
1760   GV->setUnnamedAddr(true);
1761   return GV;
1762 }
1763 
1764 /// GetAddrOfConstantString - Returns a pointer to a character array
1765 /// containing the literal. This contents are exactly that of the
1766 /// given string, i.e. it will not be null terminated automatically;
1767 /// see GetAddrOfConstantCString. Note that whether the result is
1768 /// actually a pointer to an LLVM constant depends on
1769 /// Feature.WriteableStrings.
1770 ///
1771 /// The result has pointer to array type.
1772 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1773                                                        const char *GlobalName) {
1774   bool IsConstant = !Features.WritableStrings;
1775 
1776   // Get the default prefix if a name wasn't specified.
1777   if (!GlobalName)
1778     GlobalName = ".str";
1779 
1780   // Don't share any string literals if strings aren't constant.
1781   if (!IsConstant)
1782     return GenerateStringLiteral(str, false, *this, GlobalName);
1783 
1784   llvm::StringMapEntry<llvm::Constant *> &Entry =
1785     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1786 
1787   if (Entry.getValue())
1788     return Entry.getValue();
1789 
1790   // Create a global variable for this.
1791   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1792   Entry.setValue(C);
1793   return C;
1794 }
1795 
1796 /// GetAddrOfConstantCString - Returns a pointer to a character
1797 /// array containing the literal and a terminating '\-'
1798 /// character. The result has pointer to array type.
1799 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1800                                                         const char *GlobalName){
1801   return GetAddrOfConstantString(str + '\0', GlobalName);
1802 }
1803 
1804 /// EmitObjCPropertyImplementations - Emit information for synthesized
1805 /// properties for an implementation.
1806 void CodeGenModule::EmitObjCPropertyImplementations(const
1807                                                     ObjCImplementationDecl *D) {
1808   for (ObjCImplementationDecl::propimpl_iterator
1809          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1810     ObjCPropertyImplDecl *PID = *i;
1811 
1812     // Dynamic is just for type-checking.
1813     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1814       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1815 
1816       // Determine which methods need to be implemented, some may have
1817       // been overridden. Note that ::isSynthesized is not the method
1818       // we want, that just indicates if the decl came from a
1819       // property. What we want to know is if the method is defined in
1820       // this implementation.
1821       if (!D->getInstanceMethod(PD->getGetterName()))
1822         CodeGenFunction(*this).GenerateObjCGetter(
1823                                  const_cast<ObjCImplementationDecl *>(D), PID);
1824       if (!PD->isReadOnly() &&
1825           !D->getInstanceMethod(PD->getSetterName()))
1826         CodeGenFunction(*this).GenerateObjCSetter(
1827                                  const_cast<ObjCImplementationDecl *>(D), PID);
1828     }
1829   }
1830 }
1831 
1832 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1833 /// for an implementation.
1834 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1835   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1836     return;
1837   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1838   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1839   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1840   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1841   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1842                                                   D->getLocation(),
1843                                                   D->getLocation(), cxxSelector,
1844                                                   getContext().VoidTy, 0,
1845                                                   DC, true, false, true, false,
1846                                                   ObjCMethodDecl::Required);
1847   D->addInstanceMethod(DTORMethod);
1848   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1849 
1850   II = &getContext().Idents.get(".cxx_construct");
1851   cxxSelector = getContext().Selectors.getSelector(0, &II);
1852   // The constructor returns 'self'.
1853   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1854                                                 D->getLocation(),
1855                                                 D->getLocation(), cxxSelector,
1856                                                 getContext().getObjCIdType(), 0,
1857                                                 DC, true, false, true, false,
1858                                                 ObjCMethodDecl::Required);
1859   D->addInstanceMethod(CTORMethod);
1860   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1861 
1862 
1863 }
1864 
1865 /// EmitNamespace - Emit all declarations in a namespace.
1866 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1867   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1868        I != E; ++I)
1869     EmitTopLevelDecl(*I);
1870 }
1871 
1872 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1873 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1874   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1875       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1876     ErrorUnsupported(LSD, "linkage spec");
1877     return;
1878   }
1879 
1880   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1881        I != E; ++I)
1882     EmitTopLevelDecl(*I);
1883 }
1884 
1885 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1886 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1887   // If an error has occurred, stop code generation, but continue
1888   // parsing and semantic analysis (to ensure all warnings and errors
1889   // are emitted).
1890   if (Diags.hasErrorOccurred())
1891     return;
1892 
1893   // Ignore dependent declarations.
1894   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1895     return;
1896 
1897   switch (D->getKind()) {
1898   case Decl::CXXConversion:
1899   case Decl::CXXMethod:
1900   case Decl::Function:
1901     // Skip function templates
1902     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1903       return;
1904 
1905     EmitGlobal(cast<FunctionDecl>(D));
1906     break;
1907 
1908   case Decl::Var:
1909     EmitGlobal(cast<VarDecl>(D));
1910     break;
1911 
1912   // C++ Decls
1913   case Decl::Namespace:
1914     EmitNamespace(cast<NamespaceDecl>(D));
1915     break;
1916     // No code generation needed.
1917   case Decl::UsingShadow:
1918   case Decl::Using:
1919   case Decl::UsingDirective:
1920   case Decl::ClassTemplate:
1921   case Decl::FunctionTemplate:
1922   case Decl::NamespaceAlias:
1923     break;
1924   case Decl::CXXConstructor:
1925     // Skip function templates
1926     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1927       return;
1928 
1929     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1930     break;
1931   case Decl::CXXDestructor:
1932     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1933     break;
1934 
1935   case Decl::StaticAssert:
1936     // Nothing to do.
1937     break;
1938 
1939   // Objective-C Decls
1940 
1941   // Forward declarations, no (immediate) code generation.
1942   case Decl::ObjCClass:
1943   case Decl::ObjCForwardProtocol:
1944   case Decl::ObjCInterface:
1945     break;
1946 
1947     case Decl::ObjCCategory: {
1948       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1949       if (CD->IsClassExtension() && CD->hasSynthBitfield())
1950         Context.ResetObjCLayout(CD->getClassInterface());
1951       break;
1952     }
1953 
1954 
1955   case Decl::ObjCProtocol:
1956     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1957     break;
1958 
1959   case Decl::ObjCCategoryImpl:
1960     // Categories have properties but don't support synthesize so we
1961     // can ignore them here.
1962     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1963     break;
1964 
1965   case Decl::ObjCImplementation: {
1966     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1967     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1968       Context.ResetObjCLayout(OMD->getClassInterface());
1969     EmitObjCPropertyImplementations(OMD);
1970     EmitObjCIvarInitializations(OMD);
1971     Runtime->GenerateClass(OMD);
1972     break;
1973   }
1974   case Decl::ObjCMethod: {
1975     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1976     // If this is not a prototype, emit the body.
1977     if (OMD->getBody())
1978       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1979     break;
1980   }
1981   case Decl::ObjCCompatibleAlias:
1982     // compatibility-alias is a directive and has no code gen.
1983     break;
1984 
1985   case Decl::LinkageSpec:
1986     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1987     break;
1988 
1989   case Decl::FileScopeAsm: {
1990     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1991     llvm::StringRef AsmString = AD->getAsmString()->getString();
1992 
1993     const std::string &S = getModule().getModuleInlineAsm();
1994     if (S.empty())
1995       getModule().setModuleInlineAsm(AsmString);
1996     else
1997       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1998     break;
1999   }
2000 
2001   default:
2002     // Make sure we handled everything we should, every other kind is a
2003     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2004     // function. Need to recode Decl::Kind to do that easily.
2005     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2006   }
2007 }
2008 
2009 /// Turns the given pointer into a constant.
2010 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2011                                           const void *Ptr) {
2012   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2013   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2014   return llvm::ConstantInt::get(i64, PtrInt);
2015 }
2016 
2017 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2018                                    llvm::NamedMDNode *&GlobalMetadata,
2019                                    GlobalDecl D,
2020                                    llvm::GlobalValue *Addr) {
2021   if (!GlobalMetadata)
2022     GlobalMetadata =
2023       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2024 
2025   // TODO: should we report variant information for ctors/dtors?
2026   llvm::Value *Ops[] = {
2027     Addr,
2028     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2029   };
2030   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2031 }
2032 
2033 /// Emits metadata nodes associating all the global values in the
2034 /// current module with the Decls they came from.  This is useful for
2035 /// projects using IR gen as a subroutine.
2036 ///
2037 /// Since there's currently no way to associate an MDNode directly
2038 /// with an llvm::GlobalValue, we create a global named metadata
2039 /// with the name 'clang.global.decl.ptrs'.
2040 void CodeGenModule::EmitDeclMetadata() {
2041   llvm::NamedMDNode *GlobalMetadata = 0;
2042 
2043   // StaticLocalDeclMap
2044   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2045          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2046        I != E; ++I) {
2047     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2048     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2049   }
2050 }
2051 
2052 /// Emits metadata nodes for all the local variables in the current
2053 /// function.
2054 void CodeGenFunction::EmitDeclMetadata() {
2055   if (LocalDeclMap.empty()) return;
2056 
2057   llvm::LLVMContext &Context = getLLVMContext();
2058 
2059   // Find the unique metadata ID for this name.
2060   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2061 
2062   llvm::NamedMDNode *GlobalMetadata = 0;
2063 
2064   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2065          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2066     const Decl *D = I->first;
2067     llvm::Value *Addr = I->second;
2068 
2069     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2070       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2071       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2072     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2073       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2074       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2075     }
2076   }
2077 }
2078 
2079 ///@name Custom Runtime Function Interfaces
2080 ///@{
2081 //
2082 // FIXME: These can be eliminated once we can have clients just get the required
2083 // AST nodes from the builtin tables.
2084 
2085 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2086   if (BlockObjectDispose)
2087     return BlockObjectDispose;
2088 
2089   // If we saw an explicit decl, use that.
2090   if (BlockObjectDisposeDecl) {
2091     return BlockObjectDispose = GetAddrOfFunction(
2092       BlockObjectDisposeDecl,
2093       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2094   }
2095 
2096   // Otherwise construct the function by hand.
2097   const llvm::FunctionType *FTy;
2098   std::vector<const llvm::Type*> ArgTys;
2099   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2100   ArgTys.push_back(PtrToInt8Ty);
2101   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2102   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2103   return BlockObjectDispose =
2104     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2105 }
2106 
2107 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2108   if (BlockObjectAssign)
2109     return BlockObjectAssign;
2110 
2111   // If we saw an explicit decl, use that.
2112   if (BlockObjectAssignDecl) {
2113     return BlockObjectAssign = GetAddrOfFunction(
2114       BlockObjectAssignDecl,
2115       getTypes().GetFunctionType(BlockObjectAssignDecl));
2116   }
2117 
2118   // Otherwise construct the function by hand.
2119   const llvm::FunctionType *FTy;
2120   std::vector<const llvm::Type*> ArgTys;
2121   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2122   ArgTys.push_back(PtrToInt8Ty);
2123   ArgTys.push_back(PtrToInt8Ty);
2124   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2125   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2126   return BlockObjectAssign =
2127     CreateRuntimeFunction(FTy, "_Block_object_assign");
2128 }
2129 
2130 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2131   if (NSConcreteGlobalBlock)
2132     return NSConcreteGlobalBlock;
2133 
2134   // If we saw an explicit decl, use that.
2135   if (NSConcreteGlobalBlockDecl) {
2136     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2137       NSConcreteGlobalBlockDecl,
2138       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2139   }
2140 
2141   // Otherwise construct the variable by hand.
2142   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2143     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2144 }
2145 
2146 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2147   if (NSConcreteStackBlock)
2148     return NSConcreteStackBlock;
2149 
2150   // If we saw an explicit decl, use that.
2151   if (NSConcreteStackBlockDecl) {
2152     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2153       NSConcreteStackBlockDecl,
2154       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2155   }
2156 
2157   // Otherwise construct the variable by hand.
2158   return NSConcreteStackBlock = CreateRuntimeVariable(
2159     PtrToInt8Ty, "_NSConcreteStackBlock");
2160 }
2161 
2162 ///@}
2163