1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 58 #include "llvm/IR/AttributeMask.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/ProfileSummary.h" 65 #include "llvm/ProfileData/InstrProfReader.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/Support/CRC.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ConvertUTF.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/RISCVISAInfo.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include "llvm/TargetParser/X86TargetParser.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include <optional> 79 80 using namespace clang; 81 using namespace CodeGen; 82 83 static llvm::cl::opt<bool> LimitedCoverage( 84 "limited-coverage-experimental", llvm::cl::Hidden, 85 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 86 87 static const char AnnotationSection[] = "llvm.metadata"; 88 89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 90 switch (CGM.getContext().getCXXABIKind()) { 91 case TargetCXXABI::AppleARM64: 92 case TargetCXXABI::Fuchsia: 93 case TargetCXXABI::GenericAArch64: 94 case TargetCXXABI::GenericARM: 95 case TargetCXXABI::iOS: 96 case TargetCXXABI::WatchOS: 97 case TargetCXXABI::GenericMIPS: 98 case TargetCXXABI::GenericItanium: 99 case TargetCXXABI::WebAssembly: 100 case TargetCXXABI::XL: 101 return CreateItaniumCXXABI(CGM); 102 case TargetCXXABI::Microsoft: 103 return CreateMicrosoftCXXABI(CGM); 104 } 105 106 llvm_unreachable("invalid C++ ABI kind"); 107 } 108 109 static std::unique_ptr<TargetCodeGenInfo> 110 createTargetCodeGenInfo(CodeGenModule &CGM) { 111 const TargetInfo &Target = CGM.getTarget(); 112 const llvm::Triple &Triple = Target.getTriple(); 113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 114 115 switch (Triple.getArch()) { 116 default: 117 return createDefaultTargetCodeGenInfo(CGM); 118 119 case llvm::Triple::le32: 120 return createPNaClTargetCodeGenInfo(CGM); 121 case llvm::Triple::m68k: 122 return createM68kTargetCodeGenInfo(CGM); 123 case llvm::Triple::mips: 124 case llvm::Triple::mipsel: 125 if (Triple.getOS() == llvm::Triple::NaCl) 126 return createPNaClTargetCodeGenInfo(CGM); 127 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 128 129 case llvm::Triple::mips64: 130 case llvm::Triple::mips64el: 131 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 132 133 case llvm::Triple::avr: { 134 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 135 // on avrtiny. For passing return value, R18~R25 are used on avr, and 136 // R22~R25 are used on avrtiny. 137 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 138 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 139 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 140 } 141 142 case llvm::Triple::aarch64: 143 case llvm::Triple::aarch64_32: 144 case llvm::Triple::aarch64_be: { 145 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 146 if (Target.getABI() == "darwinpcs") 147 Kind = AArch64ABIKind::DarwinPCS; 148 else if (Triple.isOSWindows()) 149 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 150 else if (Target.getABI() == "aapcs-soft") 151 Kind = AArch64ABIKind::AAPCSSoft; 152 153 return createAArch64TargetCodeGenInfo(CGM, Kind); 154 } 155 156 case llvm::Triple::wasm32: 157 case llvm::Triple::wasm64: { 158 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 159 if (Target.getABI() == "experimental-mv") 160 Kind = WebAssemblyABIKind::ExperimentalMV; 161 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 162 } 163 164 case llvm::Triple::arm: 165 case llvm::Triple::armeb: 166 case llvm::Triple::thumb: 167 case llvm::Triple::thumbeb: { 168 if (Triple.getOS() == llvm::Triple::Win32) 169 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 170 171 ARMABIKind Kind = ARMABIKind::AAPCS; 172 StringRef ABIStr = Target.getABI(); 173 if (ABIStr == "apcs-gnu") 174 Kind = ARMABIKind::APCS; 175 else if (ABIStr == "aapcs16") 176 Kind = ARMABIKind::AAPCS16_VFP; 177 else if (CodeGenOpts.FloatABI == "hard" || 178 (CodeGenOpts.FloatABI != "soft" && 179 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 180 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 181 Triple.getEnvironment() == llvm::Triple::EABIHF))) 182 Kind = ARMABIKind::AAPCS_VFP; 183 184 return createARMTargetCodeGenInfo(CGM, Kind); 185 } 186 187 case llvm::Triple::ppc: { 188 if (Triple.isOSAIX()) 189 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 190 191 bool IsSoftFloat = 192 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 193 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 194 } 195 case llvm::Triple::ppcle: { 196 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 197 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 198 } 199 case llvm::Triple::ppc64: 200 if (Triple.isOSAIX()) 201 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 202 203 if (Triple.isOSBinFormatELF()) { 204 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 205 if (Target.getABI() == "elfv2") 206 Kind = PPC64_SVR4_ABIKind::ELFv2; 207 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 208 209 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 210 } 211 return createPPC64TargetCodeGenInfo(CGM); 212 case llvm::Triple::ppc64le: { 213 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 214 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 215 if (Target.getABI() == "elfv1") 216 Kind = PPC64_SVR4_ABIKind::ELFv1; 217 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 218 219 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 220 } 221 222 case llvm::Triple::nvptx: 223 case llvm::Triple::nvptx64: 224 return createNVPTXTargetCodeGenInfo(CGM); 225 226 case llvm::Triple::msp430: 227 return createMSP430TargetCodeGenInfo(CGM); 228 229 case llvm::Triple::riscv32: 230 case llvm::Triple::riscv64: { 231 StringRef ABIStr = Target.getABI(); 232 unsigned XLen = Target.getPointerWidth(LangAS::Default); 233 unsigned ABIFLen = 0; 234 if (ABIStr.ends_with("f")) 235 ABIFLen = 32; 236 else if (ABIStr.ends_with("d")) 237 ABIFLen = 64; 238 bool EABI = ABIStr.ends_with("e"); 239 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 240 } 241 242 case llvm::Triple::systemz: { 243 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 244 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 245 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 246 } 247 248 case llvm::Triple::tce: 249 case llvm::Triple::tcele: 250 return createTCETargetCodeGenInfo(CGM); 251 252 case llvm::Triple::x86: { 253 bool IsDarwinVectorABI = Triple.isOSDarwin(); 254 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 255 256 if (Triple.getOS() == llvm::Triple::Win32) { 257 return createWinX86_32TargetCodeGenInfo( 258 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 259 CodeGenOpts.NumRegisterParameters); 260 } 261 return createX86_32TargetCodeGenInfo( 262 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 263 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 264 } 265 266 case llvm::Triple::x86_64: { 267 StringRef ABI = Target.getABI(); 268 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 269 : ABI == "avx" ? X86AVXABILevel::AVX 270 : X86AVXABILevel::None); 271 272 switch (Triple.getOS()) { 273 case llvm::Triple::Win32: 274 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 275 default: 276 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 277 } 278 } 279 case llvm::Triple::hexagon: 280 return createHexagonTargetCodeGenInfo(CGM); 281 case llvm::Triple::lanai: 282 return createLanaiTargetCodeGenInfo(CGM); 283 case llvm::Triple::r600: 284 return createAMDGPUTargetCodeGenInfo(CGM); 285 case llvm::Triple::amdgcn: 286 return createAMDGPUTargetCodeGenInfo(CGM); 287 case llvm::Triple::sparc: 288 return createSparcV8TargetCodeGenInfo(CGM); 289 case llvm::Triple::sparcv9: 290 return createSparcV9TargetCodeGenInfo(CGM); 291 case llvm::Triple::xcore: 292 return createXCoreTargetCodeGenInfo(CGM); 293 case llvm::Triple::arc: 294 return createARCTargetCodeGenInfo(CGM); 295 case llvm::Triple::spir: 296 case llvm::Triple::spir64: 297 return createCommonSPIRTargetCodeGenInfo(CGM); 298 case llvm::Triple::spirv32: 299 case llvm::Triple::spirv64: 300 return createSPIRVTargetCodeGenInfo(CGM); 301 case llvm::Triple::ve: 302 return createVETargetCodeGenInfo(CGM); 303 case llvm::Triple::csky: { 304 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 305 bool hasFP64 = 306 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 307 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 308 : hasFP64 ? 64 309 : 32); 310 } 311 case llvm::Triple::bpfeb: 312 case llvm::Triple::bpfel: 313 return createBPFTargetCodeGenInfo(CGM); 314 case llvm::Triple::loongarch32: 315 case llvm::Triple::loongarch64: { 316 StringRef ABIStr = Target.getABI(); 317 unsigned ABIFRLen = 0; 318 if (ABIStr.ends_with("f")) 319 ABIFRLen = 32; 320 else if (ABIStr.ends_with("d")) 321 ABIFRLen = 64; 322 return createLoongArchTargetCodeGenInfo( 323 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 324 } 325 } 326 } 327 328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 329 if (!TheTargetCodeGenInfo) 330 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 331 return *TheTargetCodeGenInfo; 332 } 333 334 CodeGenModule::CodeGenModule(ASTContext &C, 335 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 336 const HeaderSearchOptions &HSO, 337 const PreprocessorOptions &PPO, 338 const CodeGenOptions &CGO, llvm::Module &M, 339 DiagnosticsEngine &diags, 340 CoverageSourceInfo *CoverageInfo) 341 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 342 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 343 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 344 VMContext(M.getContext()), Types(*this), VTables(*this), 345 SanitizerMD(new SanitizerMetadata(*this)) { 346 347 // Initialize the type cache. 348 llvm::LLVMContext &LLVMContext = M.getContext(); 349 VoidTy = llvm::Type::getVoidTy(LLVMContext); 350 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 351 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 352 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 353 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 354 HalfTy = llvm::Type::getHalfTy(LLVMContext); 355 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 356 FloatTy = llvm::Type::getFloatTy(LLVMContext); 357 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 358 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 359 PointerAlignInBytes = 360 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 361 .getQuantity(); 362 SizeSizeInBytes = 363 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 364 IntAlignInBytes = 365 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 366 CharTy = 367 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 368 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 369 IntPtrTy = llvm::IntegerType::get(LLVMContext, 370 C.getTargetInfo().getMaxPointerWidth()); 371 Int8PtrTy = llvm::PointerType::get(LLVMContext, 372 C.getTargetAddressSpace(LangAS::Default)); 373 const llvm::DataLayout &DL = M.getDataLayout(); 374 AllocaInt8PtrTy = 375 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 376 GlobalsInt8PtrTy = 377 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 378 ConstGlobalsPtrTy = llvm::PointerType::get( 379 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 380 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 381 382 // Build C++20 Module initializers. 383 // TODO: Add Microsoft here once we know the mangling required for the 384 // initializers. 385 CXX20ModuleInits = 386 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 387 ItaniumMangleContext::MK_Itanium; 388 389 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 390 391 if (LangOpts.ObjC) 392 createObjCRuntime(); 393 if (LangOpts.OpenCL) 394 createOpenCLRuntime(); 395 if (LangOpts.OpenMP) 396 createOpenMPRuntime(); 397 if (LangOpts.CUDA) 398 createCUDARuntime(); 399 if (LangOpts.HLSL) 400 createHLSLRuntime(); 401 402 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 403 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 404 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 405 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 406 getLangOpts(), getCXXABI().getMangleContext())); 407 408 // If debug info or coverage generation is enabled, create the CGDebugInfo 409 // object. 410 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 411 CodeGenOpts.CoverageNotesFile.size() || 412 CodeGenOpts.CoverageDataFile.size()) 413 DebugInfo.reset(new CGDebugInfo(*this)); 414 415 Block.GlobalUniqueCount = 0; 416 417 if (C.getLangOpts().ObjC) 418 ObjCData.reset(new ObjCEntrypoints()); 419 420 if (CodeGenOpts.hasProfileClangUse()) { 421 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 422 CodeGenOpts.ProfileInstrumentUsePath, *FS, 423 CodeGenOpts.ProfileRemappingFile); 424 // We're checking for profile read errors in CompilerInvocation, so if 425 // there was an error it should've already been caught. If it hasn't been 426 // somehow, trip an assertion. 427 assert(ReaderOrErr); 428 PGOReader = std::move(ReaderOrErr.get()); 429 } 430 431 // If coverage mapping generation is enabled, create the 432 // CoverageMappingModuleGen object. 433 if (CodeGenOpts.CoverageMapping) 434 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 435 436 // Generate the module name hash here if needed. 437 if (CodeGenOpts.UniqueInternalLinkageNames && 438 !getModule().getSourceFileName().empty()) { 439 std::string Path = getModule().getSourceFileName(); 440 // Check if a path substitution is needed from the MacroPrefixMap. 441 for (const auto &Entry : LangOpts.MacroPrefixMap) 442 if (Path.rfind(Entry.first, 0) != std::string::npos) { 443 Path = Entry.second + Path.substr(Entry.first.size()); 444 break; 445 } 446 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 447 } 448 449 // Record mregparm value now so it is visible through all of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 } 454 455 CodeGenModule::~CodeGenModule() {} 456 457 void CodeGenModule::createObjCRuntime() { 458 // This is just isGNUFamily(), but we want to force implementors of 459 // new ABIs to decide how best to do this. 460 switch (LangOpts.ObjCRuntime.getKind()) { 461 case ObjCRuntime::GNUstep: 462 case ObjCRuntime::GCC: 463 case ObjCRuntime::ObjFW: 464 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 465 return; 466 467 case ObjCRuntime::FragileMacOSX: 468 case ObjCRuntime::MacOSX: 469 case ObjCRuntime::iOS: 470 case ObjCRuntime::WatchOS: 471 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 472 return; 473 } 474 llvm_unreachable("bad runtime kind"); 475 } 476 477 void CodeGenModule::createOpenCLRuntime() { 478 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 479 } 480 481 void CodeGenModule::createOpenMPRuntime() { 482 // Select a specialized code generation class based on the target, if any. 483 // If it does not exist use the default implementation. 484 switch (getTriple().getArch()) { 485 case llvm::Triple::nvptx: 486 case llvm::Triple::nvptx64: 487 case llvm::Triple::amdgcn: 488 assert(getLangOpts().OpenMPIsTargetDevice && 489 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 490 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 491 break; 492 default: 493 if (LangOpts.OpenMPSimd) 494 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 495 else 496 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 497 break; 498 } 499 } 500 501 void CodeGenModule::createCUDARuntime() { 502 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 503 } 504 505 void CodeGenModule::createHLSLRuntime() { 506 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 507 } 508 509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 510 Replacements[Name] = C; 511 } 512 513 void CodeGenModule::applyReplacements() { 514 for (auto &I : Replacements) { 515 StringRef MangledName = I.first; 516 llvm::Constant *Replacement = I.second; 517 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 518 if (!Entry) 519 continue; 520 auto *OldF = cast<llvm::Function>(Entry); 521 auto *NewF = dyn_cast<llvm::Function>(Replacement); 522 if (!NewF) { 523 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 524 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 525 } else { 526 auto *CE = cast<llvm::ConstantExpr>(Replacement); 527 assert(CE->getOpcode() == llvm::Instruction::BitCast || 528 CE->getOpcode() == llvm::Instruction::GetElementPtr); 529 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 530 } 531 } 532 533 // Replace old with new, but keep the old order. 534 OldF->replaceAllUsesWith(Replacement); 535 if (NewF) { 536 NewF->removeFromParent(); 537 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 538 NewF); 539 } 540 OldF->eraseFromParent(); 541 } 542 } 543 544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 545 GlobalValReplacements.push_back(std::make_pair(GV, C)); 546 } 547 548 void CodeGenModule::applyGlobalValReplacements() { 549 for (auto &I : GlobalValReplacements) { 550 llvm::GlobalValue *GV = I.first; 551 llvm::Constant *C = I.second; 552 553 GV->replaceAllUsesWith(C); 554 GV->eraseFromParent(); 555 } 556 } 557 558 // This is only used in aliases that we created and we know they have a 559 // linear structure. 560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 561 const llvm::Constant *C; 562 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 563 C = GA->getAliasee(); 564 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 565 C = GI->getResolver(); 566 else 567 return GV; 568 569 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 570 if (!AliaseeGV) 571 return nullptr; 572 573 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 574 if (FinalGV == GV) 575 return nullptr; 576 577 return FinalGV; 578 } 579 580 static bool checkAliasedGlobal( 581 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 582 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 583 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 584 SourceRange AliasRange) { 585 GV = getAliasedGlobal(Alias); 586 if (!GV) { 587 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 588 return false; 589 } 590 591 if (GV->hasCommonLinkage()) { 592 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 593 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 594 Diags.Report(Location, diag::err_alias_to_common); 595 return false; 596 } 597 } 598 599 if (GV->isDeclaration()) { 600 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 601 Diags.Report(Location, diag::note_alias_requires_mangled_name) 602 << IsIFunc << IsIFunc; 603 // Provide a note if the given function is not found and exists as a 604 // mangled name. 605 for (const auto &[Decl, Name] : MangledDeclNames) { 606 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 607 if (ND->getName() == GV->getName()) { 608 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 609 << Name 610 << FixItHint::CreateReplacement( 611 AliasRange, 612 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 613 .str()); 614 } 615 } 616 } 617 return false; 618 } 619 620 if (IsIFunc) { 621 // Check resolver function type. 622 const auto *F = dyn_cast<llvm::Function>(GV); 623 if (!F) { 624 Diags.Report(Location, diag::err_alias_to_undefined) 625 << IsIFunc << IsIFunc; 626 return false; 627 } 628 629 llvm::FunctionType *FTy = F->getFunctionType(); 630 if (!FTy->getReturnType()->isPointerTy()) { 631 Diags.Report(Location, diag::err_ifunc_resolver_return); 632 return false; 633 } 634 } 635 636 return true; 637 } 638 639 // Emit a warning if toc-data attribute is requested for global variables that 640 // have aliases and remove the toc-data attribute. 641 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 642 const CodeGenOptions &CodeGenOpts, 643 DiagnosticsEngine &Diags, 644 SourceLocation Location) { 645 if (GVar->hasAttribute("toc-data")) { 646 auto GVId = GVar->getName(); 647 // Is this a global variable specified by the user as local? 648 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 649 Diags.Report(Location, diag::warn_toc_unsupported_type) 650 << GVId << "the variable has an alias"; 651 } 652 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 653 llvm::AttributeSet NewAttributes = 654 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 655 GVar->setAttributes(NewAttributes); 656 } 657 } 658 659 void CodeGenModule::checkAliases() { 660 // Check if the constructed aliases are well formed. It is really unfortunate 661 // that we have to do this in CodeGen, but we only construct mangled names 662 // and aliases during codegen. 663 bool Error = false; 664 DiagnosticsEngine &Diags = getDiags(); 665 for (const GlobalDecl &GD : Aliases) { 666 const auto *D = cast<ValueDecl>(GD.getDecl()); 667 SourceLocation Location; 668 SourceRange Range; 669 bool IsIFunc = D->hasAttr<IFuncAttr>(); 670 if (const Attr *A = D->getDefiningAttr()) { 671 Location = A->getLocation(); 672 Range = A->getRange(); 673 } else 674 llvm_unreachable("Not an alias or ifunc?"); 675 676 StringRef MangledName = getMangledName(GD); 677 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 678 const llvm::GlobalValue *GV = nullptr; 679 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 680 MangledDeclNames, Range)) { 681 Error = true; 682 continue; 683 } 684 685 if (getContext().getTargetInfo().getTriple().isOSAIX()) 686 if (const llvm::GlobalVariable *GVar = 687 dyn_cast<const llvm::GlobalVariable>(GV)) 688 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 689 getCodeGenOpts(), Diags, Location); 690 691 llvm::Constant *Aliasee = 692 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 693 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 694 695 llvm::GlobalValue *AliaseeGV; 696 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 697 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 698 else 699 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 700 701 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 702 StringRef AliasSection = SA->getName(); 703 if (AliasSection != AliaseeGV->getSection()) 704 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 705 << AliasSection << IsIFunc << IsIFunc; 706 } 707 708 // We have to handle alias to weak aliases in here. LLVM itself disallows 709 // this since the object semantics would not match the IL one. For 710 // compatibility with gcc we implement it by just pointing the alias 711 // to its aliasee's aliasee. We also warn, since the user is probably 712 // expecting the link to be weak. 713 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 714 if (GA->isInterposable()) { 715 Diags.Report(Location, diag::warn_alias_to_weak_alias) 716 << GV->getName() << GA->getName() << IsIFunc; 717 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 718 GA->getAliasee(), Alias->getType()); 719 720 if (IsIFunc) 721 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 722 else 723 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 724 } 725 } 726 } 727 if (!Error) 728 return; 729 730 for (const GlobalDecl &GD : Aliases) { 731 StringRef MangledName = getMangledName(GD); 732 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 733 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 734 Alias->eraseFromParent(); 735 } 736 } 737 738 void CodeGenModule::clear() { 739 DeferredDeclsToEmit.clear(); 740 EmittedDeferredDecls.clear(); 741 DeferredAnnotations.clear(); 742 if (OpenMPRuntime) 743 OpenMPRuntime->clear(); 744 } 745 746 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 747 StringRef MainFile) { 748 if (!hasDiagnostics()) 749 return; 750 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 751 if (MainFile.empty()) 752 MainFile = "<stdin>"; 753 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 754 } else { 755 if (Mismatched > 0) 756 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 757 758 if (Missing > 0) 759 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 760 } 761 } 762 763 static std::optional<llvm::GlobalValue::VisibilityTypes> 764 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 765 // Map to LLVM visibility. 766 switch (K) { 767 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 768 return std::nullopt; 769 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 770 return llvm::GlobalValue::DefaultVisibility; 771 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 772 return llvm::GlobalValue::HiddenVisibility; 773 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 774 return llvm::GlobalValue::ProtectedVisibility; 775 } 776 llvm_unreachable("unknown option value!"); 777 } 778 779 void setLLVMVisibility(llvm::GlobalValue &GV, 780 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 781 if (!V) 782 return; 783 784 // Reset DSO locality before setting the visibility. This removes 785 // any effects that visibility options and annotations may have 786 // had on the DSO locality. Setting the visibility will implicitly set 787 // appropriate globals to DSO Local; however, this will be pessimistic 788 // w.r.t. to the normal compiler IRGen. 789 GV.setDSOLocal(false); 790 GV.setVisibility(*V); 791 } 792 793 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 794 llvm::Module &M) { 795 if (!LO.VisibilityFromDLLStorageClass) 796 return; 797 798 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 799 getLLVMVisibility(LO.getDLLExportVisibility()); 800 801 std::optional<llvm::GlobalValue::VisibilityTypes> 802 NoDLLStorageClassVisibility = 803 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 804 805 std::optional<llvm::GlobalValue::VisibilityTypes> 806 ExternDeclDLLImportVisibility = 807 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 808 809 std::optional<llvm::GlobalValue::VisibilityTypes> 810 ExternDeclNoDLLStorageClassVisibility = 811 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 812 813 for (llvm::GlobalValue &GV : M.global_values()) { 814 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 815 continue; 816 817 if (GV.isDeclarationForLinker()) 818 setLLVMVisibility(GV, GV.getDLLStorageClass() == 819 llvm::GlobalValue::DLLImportStorageClass 820 ? ExternDeclDLLImportVisibility 821 : ExternDeclNoDLLStorageClassVisibility); 822 else 823 setLLVMVisibility(GV, GV.getDLLStorageClass() == 824 llvm::GlobalValue::DLLExportStorageClass 825 ? DLLExportVisibility 826 : NoDLLStorageClassVisibility); 827 828 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 829 } 830 } 831 832 static bool isStackProtectorOn(const LangOptions &LangOpts, 833 const llvm::Triple &Triple, 834 clang::LangOptions::StackProtectorMode Mode) { 835 if (Triple.isAMDGPU() || Triple.isNVPTX()) 836 return false; 837 return LangOpts.getStackProtector() == Mode; 838 } 839 840 void CodeGenModule::Release() { 841 Module *Primary = getContext().getCurrentNamedModule(); 842 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 843 EmitModuleInitializers(Primary); 844 EmitDeferred(); 845 DeferredDecls.insert(EmittedDeferredDecls.begin(), 846 EmittedDeferredDecls.end()); 847 EmittedDeferredDecls.clear(); 848 EmitVTablesOpportunistically(); 849 applyGlobalValReplacements(); 850 applyReplacements(); 851 emitMultiVersionFunctions(); 852 853 if (Context.getLangOpts().IncrementalExtensions && 854 GlobalTopLevelStmtBlockInFlight.first) { 855 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 856 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 857 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 858 } 859 860 // Module implementations are initialized the same way as a regular TU that 861 // imports one or more modules. 862 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 863 EmitCXXModuleInitFunc(Primary); 864 else 865 EmitCXXGlobalInitFunc(); 866 EmitCXXGlobalCleanUpFunc(); 867 registerGlobalDtorsWithAtExit(); 868 EmitCXXThreadLocalInitFunc(); 869 if (ObjCRuntime) 870 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 871 AddGlobalCtor(ObjCInitFunction); 872 if (Context.getLangOpts().CUDA && CUDARuntime) { 873 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 874 AddGlobalCtor(CudaCtorFunction); 875 } 876 if (OpenMPRuntime) { 877 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 878 OpenMPRuntime->clear(); 879 } 880 if (PGOReader) { 881 getModule().setProfileSummary( 882 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 883 llvm::ProfileSummary::PSK_Instr); 884 if (PGOStats.hasDiagnostics()) 885 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 886 } 887 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 888 return L.LexOrder < R.LexOrder; 889 }); 890 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 891 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 892 EmitGlobalAnnotations(); 893 EmitStaticExternCAliases(); 894 checkAliases(); 895 EmitDeferredUnusedCoverageMappings(); 896 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 897 CodeGenPGO(*this).setProfileVersion(getModule()); 898 if (CoverageMapping) 899 CoverageMapping->emit(); 900 if (CodeGenOpts.SanitizeCfiCrossDso) { 901 CodeGenFunction(*this).EmitCfiCheckFail(); 902 CodeGenFunction(*this).EmitCfiCheckStub(); 903 } 904 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 905 finalizeKCFITypes(); 906 emitAtAvailableLinkGuard(); 907 if (Context.getTargetInfo().getTriple().isWasm()) 908 EmitMainVoidAlias(); 909 910 if (getTriple().isAMDGPU()) { 911 // Emit amdhsa_code_object_version module flag, which is code object version 912 // times 100. 913 if (getTarget().getTargetOpts().CodeObjectVersion != 914 llvm::CodeObjectVersionKind::COV_None) { 915 getModule().addModuleFlag(llvm::Module::Error, 916 "amdhsa_code_object_version", 917 getTarget().getTargetOpts().CodeObjectVersion); 918 } 919 920 // Currently, "-mprintf-kind" option is only supported for HIP 921 if (LangOpts.HIP) { 922 auto *MDStr = llvm::MDString::get( 923 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 924 TargetOptions::AMDGPUPrintfKind::Hostcall) 925 ? "hostcall" 926 : "buffered"); 927 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 928 MDStr); 929 } 930 } 931 932 // Emit a global array containing all external kernels or device variables 933 // used by host functions and mark it as used for CUDA/HIP. This is necessary 934 // to get kernels or device variables in archives linked in even if these 935 // kernels or device variables are only used in host functions. 936 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 937 SmallVector<llvm::Constant *, 8> UsedArray; 938 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 939 GlobalDecl GD; 940 if (auto *FD = dyn_cast<FunctionDecl>(D)) 941 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 942 else 943 GD = GlobalDecl(D); 944 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 945 GetAddrOfGlobal(GD), Int8PtrTy)); 946 } 947 948 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 949 950 auto *GV = new llvm::GlobalVariable( 951 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 952 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 953 addCompilerUsedGlobal(GV); 954 } 955 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 956 // Emit a unique ID so that host and device binaries from the same 957 // compilation unit can be associated. 958 auto *GV = new llvm::GlobalVariable( 959 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 960 llvm::Constant::getNullValue(Int8Ty), 961 "__hip_cuid_" + getContext().getCUIDHash()); 962 addCompilerUsedGlobal(GV); 963 } 964 emitLLVMUsed(); 965 if (SanStats) 966 SanStats->finish(); 967 968 if (CodeGenOpts.Autolink && 969 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 970 EmitModuleLinkOptions(); 971 } 972 973 // On ELF we pass the dependent library specifiers directly to the linker 974 // without manipulating them. This is in contrast to other platforms where 975 // they are mapped to a specific linker option by the compiler. This 976 // difference is a result of the greater variety of ELF linkers and the fact 977 // that ELF linkers tend to handle libraries in a more complicated fashion 978 // than on other platforms. This forces us to defer handling the dependent 979 // libs to the linker. 980 // 981 // CUDA/HIP device and host libraries are different. Currently there is no 982 // way to differentiate dependent libraries for host or device. Existing 983 // usage of #pragma comment(lib, *) is intended for host libraries on 984 // Windows. Therefore emit llvm.dependent-libraries only for host. 985 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 986 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 987 for (auto *MD : ELFDependentLibraries) 988 NMD->addOperand(MD); 989 } 990 991 if (CodeGenOpts.DwarfVersion) { 992 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 993 CodeGenOpts.DwarfVersion); 994 } 995 996 if (CodeGenOpts.Dwarf64) 997 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 998 999 if (Context.getLangOpts().SemanticInterposition) 1000 // Require various optimization to respect semantic interposition. 1001 getModule().setSemanticInterposition(true); 1002 1003 if (CodeGenOpts.EmitCodeView) { 1004 // Indicate that we want CodeView in the metadata. 1005 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1006 } 1007 if (CodeGenOpts.CodeViewGHash) { 1008 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1009 } 1010 if (CodeGenOpts.ControlFlowGuard) { 1011 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1012 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1013 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1014 // Function ID tables for Control Flow Guard (cfguard=1). 1015 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1016 } 1017 if (CodeGenOpts.EHContGuard) { 1018 // Function ID tables for EH Continuation Guard. 1019 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1020 } 1021 if (Context.getLangOpts().Kernel) { 1022 // Note if we are compiling with /kernel. 1023 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1024 } 1025 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1026 // We don't support LTO with 2 with different StrictVTablePointers 1027 // FIXME: we could support it by stripping all the information introduced 1028 // by StrictVTablePointers. 1029 1030 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1031 1032 llvm::Metadata *Ops[2] = { 1033 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1034 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1035 llvm::Type::getInt32Ty(VMContext), 1))}; 1036 1037 getModule().addModuleFlag(llvm::Module::Require, 1038 "StrictVTablePointersRequirement", 1039 llvm::MDNode::get(VMContext, Ops)); 1040 } 1041 if (getModuleDebugInfo()) 1042 // We support a single version in the linked module. The LLVM 1043 // parser will drop debug info with a different version number 1044 // (and warn about it, too). 1045 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1046 llvm::DEBUG_METADATA_VERSION); 1047 1048 // We need to record the widths of enums and wchar_t, so that we can generate 1049 // the correct build attributes in the ARM backend. wchar_size is also used by 1050 // TargetLibraryInfo. 1051 uint64_t WCharWidth = 1052 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1053 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1054 1055 if (getTriple().isOSzOS()) { 1056 getModule().addModuleFlag(llvm::Module::Warning, 1057 "zos_product_major_version", 1058 uint32_t(CLANG_VERSION_MAJOR)); 1059 getModule().addModuleFlag(llvm::Module::Warning, 1060 "zos_product_minor_version", 1061 uint32_t(CLANG_VERSION_MINOR)); 1062 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1063 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1064 std::string ProductId = getClangVendor() + "clang"; 1065 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1066 llvm::MDString::get(VMContext, ProductId)); 1067 1068 // Record the language because we need it for the PPA2. 1069 StringRef lang_str = languageToString( 1070 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1071 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1072 llvm::MDString::get(VMContext, lang_str)); 1073 1074 time_t TT = PreprocessorOpts.SourceDateEpoch 1075 ? *PreprocessorOpts.SourceDateEpoch 1076 : std::time(nullptr); 1077 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1078 static_cast<uint64_t>(TT)); 1079 1080 // Multiple modes will be supported here. 1081 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1082 llvm::MDString::get(VMContext, "ascii")); 1083 } 1084 1085 llvm::Triple T = Context.getTargetInfo().getTriple(); 1086 if (T.isARM() || T.isThumb()) { 1087 // The minimum width of an enum in bytes 1088 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1089 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1090 } 1091 1092 if (T.isRISCV()) { 1093 StringRef ABIStr = Target.getABI(); 1094 llvm::LLVMContext &Ctx = TheModule.getContext(); 1095 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1096 llvm::MDString::get(Ctx, ABIStr)); 1097 1098 // Add the canonical ISA string as metadata so the backend can set the ELF 1099 // attributes correctly. We use AppendUnique so LTO will keep all of the 1100 // unique ISA strings that were linked together. 1101 const std::vector<std::string> &Features = 1102 getTarget().getTargetOpts().Features; 1103 auto ParseResult = 1104 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1105 if (!errorToBool(ParseResult.takeError())) 1106 getModule().addModuleFlag( 1107 llvm::Module::AppendUnique, "riscv-isa", 1108 llvm::MDNode::get( 1109 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1110 } 1111 1112 if (CodeGenOpts.SanitizeCfiCrossDso) { 1113 // Indicate that we want cross-DSO control flow integrity checks. 1114 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1115 } 1116 1117 if (CodeGenOpts.WholeProgramVTables) { 1118 // Indicate whether VFE was enabled for this module, so that the 1119 // vcall_visibility metadata added under whole program vtables is handled 1120 // appropriately in the optimizer. 1121 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1122 CodeGenOpts.VirtualFunctionElimination); 1123 } 1124 1125 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1126 getModule().addModuleFlag(llvm::Module::Override, 1127 "CFI Canonical Jump Tables", 1128 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1129 } 1130 1131 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1132 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1133 // KCFI assumes patchable-function-prefix is the same for all indirectly 1134 // called functions. Store the expected offset for code generation. 1135 if (CodeGenOpts.PatchableFunctionEntryOffset) 1136 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1137 CodeGenOpts.PatchableFunctionEntryOffset); 1138 } 1139 1140 if (CodeGenOpts.CFProtectionReturn && 1141 Target.checkCFProtectionReturnSupported(getDiags())) { 1142 // Indicate that we want to instrument return control flow protection. 1143 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1144 1); 1145 } 1146 1147 if (CodeGenOpts.CFProtectionBranch && 1148 Target.checkCFProtectionBranchSupported(getDiags())) { 1149 // Indicate that we want to instrument branch control flow protection. 1150 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1151 1); 1152 } 1153 1154 if (CodeGenOpts.FunctionReturnThunks) 1155 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1156 1157 if (CodeGenOpts.IndirectBranchCSPrefix) 1158 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1159 1160 // Add module metadata for return address signing (ignoring 1161 // non-leaf/all) and stack tagging. These are actually turned on by function 1162 // attributes, but we use module metadata to emit build attributes. This is 1163 // needed for LTO, where the function attributes are inside bitcode 1164 // serialised into a global variable by the time build attributes are 1165 // emitted, so we can't access them. LTO objects could be compiled with 1166 // different flags therefore module flags are set to "Min" behavior to achieve 1167 // the same end result of the normal build where e.g BTI is off if any object 1168 // doesn't support it. 1169 if (Context.getTargetInfo().hasFeature("ptrauth") && 1170 LangOpts.getSignReturnAddressScope() != 1171 LangOptions::SignReturnAddressScopeKind::None) 1172 getModule().addModuleFlag(llvm::Module::Override, 1173 "sign-return-address-buildattr", 1); 1174 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1175 getModule().addModuleFlag(llvm::Module::Override, 1176 "tag-stack-memory-buildattr", 1); 1177 1178 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1179 if (LangOpts.BranchTargetEnforcement) 1180 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1181 1); 1182 if (LangOpts.BranchProtectionPAuthLR) 1183 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1184 1); 1185 if (LangOpts.GuardedControlStack) 1186 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1187 if (LangOpts.hasSignReturnAddress()) 1188 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1189 if (LangOpts.isSignReturnAddressScopeAll()) 1190 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1191 1); 1192 if (!LangOpts.isSignReturnAddressWithAKey()) 1193 getModule().addModuleFlag(llvm::Module::Min, 1194 "sign-return-address-with-bkey", 1); 1195 1196 if (getTriple().isOSLinux()) { 1197 assert(getTriple().isOSBinFormatELF()); 1198 using namespace llvm::ELF; 1199 uint64_t PAuthABIVersion = 1200 (LangOpts.PointerAuthIntrinsics 1201 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1202 (LangOpts.PointerAuthCalls 1203 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1204 (LangOpts.PointerAuthReturns 1205 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1206 (LangOpts.PointerAuthAuthTraps 1207 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1208 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1209 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1210 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1211 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1212 (LangOpts.PointerAuthInitFini 1213 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI); 1214 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI == 1215 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1216 "Update when new enum items are defined"); 1217 if (PAuthABIVersion != 0) { 1218 getModule().addModuleFlag(llvm::Module::Error, 1219 "aarch64-elf-pauthabi-platform", 1220 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1221 getModule().addModuleFlag(llvm::Module::Error, 1222 "aarch64-elf-pauthabi-version", 1223 PAuthABIVersion); 1224 } 1225 } 1226 } 1227 1228 if (CodeGenOpts.StackClashProtector) 1229 getModule().addModuleFlag( 1230 llvm::Module::Override, "probe-stack", 1231 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1232 1233 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1234 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1235 CodeGenOpts.StackProbeSize); 1236 1237 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1238 llvm::LLVMContext &Ctx = TheModule.getContext(); 1239 getModule().addModuleFlag( 1240 llvm::Module::Error, "MemProfProfileFilename", 1241 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1242 } 1243 1244 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1245 // Indicate whether __nvvm_reflect should be configured to flush denormal 1246 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1247 // property.) 1248 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1249 CodeGenOpts.FP32DenormalMode.Output != 1250 llvm::DenormalMode::IEEE); 1251 } 1252 1253 if (LangOpts.EHAsynch) 1254 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1255 1256 // Indicate whether this Module was compiled with -fopenmp 1257 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1258 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1259 if (getLangOpts().OpenMPIsTargetDevice) 1260 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1261 LangOpts.OpenMP); 1262 1263 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1264 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1265 EmitOpenCLMetadata(); 1266 // Emit SPIR version. 1267 if (getTriple().isSPIR()) { 1268 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1269 // opencl.spir.version named metadata. 1270 // C++ for OpenCL has a distinct mapping for version compatibility with 1271 // OpenCL. 1272 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1273 llvm::Metadata *SPIRVerElts[] = { 1274 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1275 Int32Ty, Version / 100)), 1276 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1277 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1278 llvm::NamedMDNode *SPIRVerMD = 1279 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1280 llvm::LLVMContext &Ctx = TheModule.getContext(); 1281 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1282 } 1283 } 1284 1285 // HLSL related end of code gen work items. 1286 if (LangOpts.HLSL) 1287 getHLSLRuntime().finishCodeGen(); 1288 1289 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1290 assert(PLevel < 3 && "Invalid PIC Level"); 1291 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1292 if (Context.getLangOpts().PIE) 1293 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1294 } 1295 1296 if (getCodeGenOpts().CodeModel.size() > 0) { 1297 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1298 .Case("tiny", llvm::CodeModel::Tiny) 1299 .Case("small", llvm::CodeModel::Small) 1300 .Case("kernel", llvm::CodeModel::Kernel) 1301 .Case("medium", llvm::CodeModel::Medium) 1302 .Case("large", llvm::CodeModel::Large) 1303 .Default(~0u); 1304 if (CM != ~0u) { 1305 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1306 getModule().setCodeModel(codeModel); 1307 1308 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1309 Context.getTargetInfo().getTriple().getArch() == 1310 llvm::Triple::x86_64) { 1311 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1312 } 1313 } 1314 } 1315 1316 if (CodeGenOpts.NoPLT) 1317 getModule().setRtLibUseGOT(); 1318 if (getTriple().isOSBinFormatELF() && 1319 CodeGenOpts.DirectAccessExternalData != 1320 getModule().getDirectAccessExternalData()) { 1321 getModule().setDirectAccessExternalData( 1322 CodeGenOpts.DirectAccessExternalData); 1323 } 1324 if (CodeGenOpts.UnwindTables) 1325 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1326 1327 switch (CodeGenOpts.getFramePointer()) { 1328 case CodeGenOptions::FramePointerKind::None: 1329 // 0 ("none") is the default. 1330 break; 1331 case CodeGenOptions::FramePointerKind::NonLeaf: 1332 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1333 break; 1334 case CodeGenOptions::FramePointerKind::All: 1335 getModule().setFramePointer(llvm::FramePointerKind::All); 1336 break; 1337 } 1338 1339 SimplifyPersonality(); 1340 1341 if (getCodeGenOpts().EmitDeclMetadata) 1342 EmitDeclMetadata(); 1343 1344 if (getCodeGenOpts().CoverageNotesFile.size() || 1345 getCodeGenOpts().CoverageDataFile.size()) 1346 EmitCoverageFile(); 1347 1348 if (CGDebugInfo *DI = getModuleDebugInfo()) 1349 DI->finalize(); 1350 1351 if (getCodeGenOpts().EmitVersionIdentMetadata) 1352 EmitVersionIdentMetadata(); 1353 1354 if (!getCodeGenOpts().RecordCommandLine.empty()) 1355 EmitCommandLineMetadata(); 1356 1357 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1358 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1359 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1360 getModule().setStackProtectorGuardReg( 1361 getCodeGenOpts().StackProtectorGuardReg); 1362 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1363 getModule().setStackProtectorGuardSymbol( 1364 getCodeGenOpts().StackProtectorGuardSymbol); 1365 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1366 getModule().setStackProtectorGuardOffset( 1367 getCodeGenOpts().StackProtectorGuardOffset); 1368 if (getCodeGenOpts().StackAlignment) 1369 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1370 if (getCodeGenOpts().SkipRaxSetup) 1371 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1372 if (getLangOpts().RegCall4) 1373 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1374 1375 if (getContext().getTargetInfo().getMaxTLSAlign()) 1376 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1377 getContext().getTargetInfo().getMaxTLSAlign()); 1378 1379 getTargetCodeGenInfo().emitTargetGlobals(*this); 1380 1381 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1382 1383 EmitBackendOptionsMetadata(getCodeGenOpts()); 1384 1385 // If there is device offloading code embed it in the host now. 1386 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1387 1388 // Set visibility from DLL storage class 1389 // We do this at the end of LLVM IR generation; after any operation 1390 // that might affect the DLL storage class or the visibility, and 1391 // before anything that might act on these. 1392 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1393 } 1394 1395 void CodeGenModule::EmitOpenCLMetadata() { 1396 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1397 // opencl.ocl.version named metadata node. 1398 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1399 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1400 llvm::Metadata *OCLVerElts[] = { 1401 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1402 Int32Ty, Version / 100)), 1403 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1404 Int32Ty, (Version % 100) / 10))}; 1405 llvm::NamedMDNode *OCLVerMD = 1406 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1407 llvm::LLVMContext &Ctx = TheModule.getContext(); 1408 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1409 } 1410 1411 void CodeGenModule::EmitBackendOptionsMetadata( 1412 const CodeGenOptions &CodeGenOpts) { 1413 if (getTriple().isRISCV()) { 1414 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1415 CodeGenOpts.SmallDataLimit); 1416 } 1417 } 1418 1419 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1420 // Make sure that this type is translated. 1421 Types.UpdateCompletedType(TD); 1422 } 1423 1424 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1425 // Make sure that this type is translated. 1426 Types.RefreshTypeCacheForClass(RD); 1427 } 1428 1429 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1430 if (!TBAA) 1431 return nullptr; 1432 return TBAA->getTypeInfo(QTy); 1433 } 1434 1435 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1436 if (!TBAA) 1437 return TBAAAccessInfo(); 1438 if (getLangOpts().CUDAIsDevice) { 1439 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1440 // access info. 1441 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1442 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1443 nullptr) 1444 return TBAAAccessInfo(); 1445 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1446 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1447 nullptr) 1448 return TBAAAccessInfo(); 1449 } 1450 } 1451 return TBAA->getAccessInfo(AccessType); 1452 } 1453 1454 TBAAAccessInfo 1455 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1456 if (!TBAA) 1457 return TBAAAccessInfo(); 1458 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1459 } 1460 1461 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1462 if (!TBAA) 1463 return nullptr; 1464 return TBAA->getTBAAStructInfo(QTy); 1465 } 1466 1467 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1468 if (!TBAA) 1469 return nullptr; 1470 return TBAA->getBaseTypeInfo(QTy); 1471 } 1472 1473 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1474 if (!TBAA) 1475 return nullptr; 1476 return TBAA->getAccessTagInfo(Info); 1477 } 1478 1479 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1480 TBAAAccessInfo TargetInfo) { 1481 if (!TBAA) 1482 return TBAAAccessInfo(); 1483 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1484 } 1485 1486 TBAAAccessInfo 1487 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1488 TBAAAccessInfo InfoB) { 1489 if (!TBAA) 1490 return TBAAAccessInfo(); 1491 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1492 } 1493 1494 TBAAAccessInfo 1495 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1496 TBAAAccessInfo SrcInfo) { 1497 if (!TBAA) 1498 return TBAAAccessInfo(); 1499 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1500 } 1501 1502 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1503 TBAAAccessInfo TBAAInfo) { 1504 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1505 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1506 } 1507 1508 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1509 llvm::Instruction *I, const CXXRecordDecl *RD) { 1510 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1511 llvm::MDNode::get(getLLVMContext(), {})); 1512 } 1513 1514 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1515 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1516 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1517 } 1518 1519 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1520 /// specified stmt yet. 1521 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1522 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1523 "cannot compile this %0 yet"); 1524 std::string Msg = Type; 1525 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1526 << Msg << S->getSourceRange(); 1527 } 1528 1529 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1530 /// specified decl yet. 1531 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1532 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1533 "cannot compile this %0 yet"); 1534 std::string Msg = Type; 1535 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1536 } 1537 1538 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1539 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1540 } 1541 1542 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1543 const NamedDecl *D) const { 1544 // Internal definitions always have default visibility. 1545 if (GV->hasLocalLinkage()) { 1546 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1547 return; 1548 } 1549 if (!D) 1550 return; 1551 1552 // Set visibility for definitions, and for declarations if requested globally 1553 // or set explicitly. 1554 LinkageInfo LV = D->getLinkageAndVisibility(); 1555 1556 // OpenMP declare target variables must be visible to the host so they can 1557 // be registered. We require protected visibility unless the variable has 1558 // the DT_nohost modifier and does not need to be registered. 1559 if (Context.getLangOpts().OpenMP && 1560 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1561 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1562 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1563 OMPDeclareTargetDeclAttr::DT_NoHost && 1564 LV.getVisibility() == HiddenVisibility) { 1565 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1566 return; 1567 } 1568 1569 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1570 // Reject incompatible dlllstorage and visibility annotations. 1571 if (!LV.isVisibilityExplicit()) 1572 return; 1573 if (GV->hasDLLExportStorageClass()) { 1574 if (LV.getVisibility() == HiddenVisibility) 1575 getDiags().Report(D->getLocation(), 1576 diag::err_hidden_visibility_dllexport); 1577 } else if (LV.getVisibility() != DefaultVisibility) { 1578 getDiags().Report(D->getLocation(), 1579 diag::err_non_default_visibility_dllimport); 1580 } 1581 return; 1582 } 1583 1584 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1585 !GV->isDeclarationForLinker()) 1586 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1587 } 1588 1589 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1590 llvm::GlobalValue *GV) { 1591 if (GV->hasLocalLinkage()) 1592 return true; 1593 1594 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1595 return true; 1596 1597 // DLLImport explicitly marks the GV as external. 1598 if (GV->hasDLLImportStorageClass()) 1599 return false; 1600 1601 const llvm::Triple &TT = CGM.getTriple(); 1602 const auto &CGOpts = CGM.getCodeGenOpts(); 1603 if (TT.isWindowsGNUEnvironment()) { 1604 // In MinGW, variables without DLLImport can still be automatically 1605 // imported from a DLL by the linker; don't mark variables that 1606 // potentially could come from another DLL as DSO local. 1607 1608 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1609 // (and this actually happens in the public interface of libstdc++), so 1610 // such variables can't be marked as DSO local. (Native TLS variables 1611 // can't be dllimported at all, though.) 1612 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1613 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1614 CGOpts.AutoImport) 1615 return false; 1616 } 1617 1618 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1619 // remain unresolved in the link, they can be resolved to zero, which is 1620 // outside the current DSO. 1621 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1622 return false; 1623 1624 // Every other GV is local on COFF. 1625 // Make an exception for windows OS in the triple: Some firmware builds use 1626 // *-win32-macho triples. This (accidentally?) produced windows relocations 1627 // without GOT tables in older clang versions; Keep this behaviour. 1628 // FIXME: even thread local variables? 1629 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1630 return true; 1631 1632 // Only handle COFF and ELF for now. 1633 if (!TT.isOSBinFormatELF()) 1634 return false; 1635 1636 // If this is not an executable, don't assume anything is local. 1637 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1638 const auto &LOpts = CGM.getLangOpts(); 1639 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1640 // On ELF, if -fno-semantic-interposition is specified and the target 1641 // supports local aliases, there will be neither CC1 1642 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1643 // dso_local on the function if using a local alias is preferable (can avoid 1644 // PLT indirection). 1645 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1646 return false; 1647 return !(CGM.getLangOpts().SemanticInterposition || 1648 CGM.getLangOpts().HalfNoSemanticInterposition); 1649 } 1650 1651 // A definition cannot be preempted from an executable. 1652 if (!GV->isDeclarationForLinker()) 1653 return true; 1654 1655 // Most PIC code sequences that assume that a symbol is local cannot produce a 1656 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1657 // depended, it seems worth it to handle it here. 1658 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1659 return false; 1660 1661 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1662 if (TT.isPPC64()) 1663 return false; 1664 1665 if (CGOpts.DirectAccessExternalData) { 1666 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1667 // for non-thread-local variables. If the symbol is not defined in the 1668 // executable, a copy relocation will be needed at link time. dso_local is 1669 // excluded for thread-local variables because they generally don't support 1670 // copy relocations. 1671 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1672 if (!Var->isThreadLocal()) 1673 return true; 1674 1675 // -fno-pic sets dso_local on a function declaration to allow direct 1676 // accesses when taking its address (similar to a data symbol). If the 1677 // function is not defined in the executable, a canonical PLT entry will be 1678 // needed at link time. -fno-direct-access-external-data can avoid the 1679 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1680 // it could just cause trouble without providing perceptible benefits. 1681 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1682 return true; 1683 } 1684 1685 // If we can use copy relocations we can assume it is local. 1686 1687 // Otherwise don't assume it is local. 1688 return false; 1689 } 1690 1691 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1692 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1693 } 1694 1695 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1696 GlobalDecl GD) const { 1697 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1698 // C++ destructors have a few C++ ABI specific special cases. 1699 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1700 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1701 return; 1702 } 1703 setDLLImportDLLExport(GV, D); 1704 } 1705 1706 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1707 const NamedDecl *D) const { 1708 if (D && D->isExternallyVisible()) { 1709 if (D->hasAttr<DLLImportAttr>()) 1710 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1711 else if ((D->hasAttr<DLLExportAttr>() || 1712 shouldMapVisibilityToDLLExport(D)) && 1713 !GV->isDeclarationForLinker()) 1714 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1715 } 1716 } 1717 1718 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1719 GlobalDecl GD) const { 1720 setDLLImportDLLExport(GV, GD); 1721 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1722 } 1723 1724 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1725 const NamedDecl *D) const { 1726 setDLLImportDLLExport(GV, D); 1727 setGVPropertiesAux(GV, D); 1728 } 1729 1730 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1731 const NamedDecl *D) const { 1732 setGlobalVisibility(GV, D); 1733 setDSOLocal(GV); 1734 GV->setPartition(CodeGenOpts.SymbolPartition); 1735 } 1736 1737 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1738 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1739 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1740 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1741 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1742 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1743 } 1744 1745 llvm::GlobalVariable::ThreadLocalMode 1746 CodeGenModule::GetDefaultLLVMTLSModel() const { 1747 switch (CodeGenOpts.getDefaultTLSModel()) { 1748 case CodeGenOptions::GeneralDynamicTLSModel: 1749 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1750 case CodeGenOptions::LocalDynamicTLSModel: 1751 return llvm::GlobalVariable::LocalDynamicTLSModel; 1752 case CodeGenOptions::InitialExecTLSModel: 1753 return llvm::GlobalVariable::InitialExecTLSModel; 1754 case CodeGenOptions::LocalExecTLSModel: 1755 return llvm::GlobalVariable::LocalExecTLSModel; 1756 } 1757 llvm_unreachable("Invalid TLS model!"); 1758 } 1759 1760 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1761 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1762 1763 llvm::GlobalValue::ThreadLocalMode TLM; 1764 TLM = GetDefaultLLVMTLSModel(); 1765 1766 // Override the TLS model if it is explicitly specified. 1767 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1768 TLM = GetLLVMTLSModel(Attr->getModel()); 1769 } 1770 1771 GV->setThreadLocalMode(TLM); 1772 } 1773 1774 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1775 StringRef Name) { 1776 const TargetInfo &Target = CGM.getTarget(); 1777 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1778 } 1779 1780 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1781 const CPUSpecificAttr *Attr, 1782 unsigned CPUIndex, 1783 raw_ostream &Out) { 1784 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1785 // supported. 1786 if (Attr) 1787 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1788 else if (CGM.getTarget().supportsIFunc()) 1789 Out << ".resolver"; 1790 } 1791 1792 // Returns true if GD is a function decl with internal linkage and 1793 // needs a unique suffix after the mangled name. 1794 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1795 CodeGenModule &CGM) { 1796 const Decl *D = GD.getDecl(); 1797 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1798 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1799 } 1800 1801 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1802 const NamedDecl *ND, 1803 bool OmitMultiVersionMangling = false) { 1804 SmallString<256> Buffer; 1805 llvm::raw_svector_ostream Out(Buffer); 1806 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1807 if (!CGM.getModuleNameHash().empty()) 1808 MC.needsUniqueInternalLinkageNames(); 1809 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1810 if (ShouldMangle) 1811 MC.mangleName(GD.getWithDecl(ND), Out); 1812 else { 1813 IdentifierInfo *II = ND->getIdentifier(); 1814 assert(II && "Attempt to mangle unnamed decl."); 1815 const auto *FD = dyn_cast<FunctionDecl>(ND); 1816 1817 if (FD && 1818 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1819 if (CGM.getLangOpts().RegCall4) 1820 Out << "__regcall4__" << II->getName(); 1821 else 1822 Out << "__regcall3__" << II->getName(); 1823 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1824 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1825 Out << "__device_stub__" << II->getName(); 1826 } else { 1827 Out << II->getName(); 1828 } 1829 } 1830 1831 // Check if the module name hash should be appended for internal linkage 1832 // symbols. This should come before multi-version target suffixes are 1833 // appended. This is to keep the name and module hash suffix of the 1834 // internal linkage function together. The unique suffix should only be 1835 // added when name mangling is done to make sure that the final name can 1836 // be properly demangled. For example, for C functions without prototypes, 1837 // name mangling is not done and the unique suffix should not be appeneded 1838 // then. 1839 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1840 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1841 "Hash computed when not explicitly requested"); 1842 Out << CGM.getModuleNameHash(); 1843 } 1844 1845 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1846 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1847 switch (FD->getMultiVersionKind()) { 1848 case MultiVersionKind::CPUDispatch: 1849 case MultiVersionKind::CPUSpecific: 1850 AppendCPUSpecificCPUDispatchMangling(CGM, 1851 FD->getAttr<CPUSpecificAttr>(), 1852 GD.getMultiVersionIndex(), Out); 1853 break; 1854 case MultiVersionKind::Target: { 1855 auto *Attr = FD->getAttr<TargetAttr>(); 1856 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1857 Info.appendAttributeMangling(Attr, Out); 1858 break; 1859 } 1860 case MultiVersionKind::TargetVersion: { 1861 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1862 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1863 Info.appendAttributeMangling(Attr, Out); 1864 break; 1865 } 1866 case MultiVersionKind::TargetClones: { 1867 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1868 unsigned Index = GD.getMultiVersionIndex(); 1869 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1870 Info.appendAttributeMangling(Attr, Index, Out); 1871 break; 1872 } 1873 case MultiVersionKind::None: 1874 llvm_unreachable("None multiversion type isn't valid here"); 1875 } 1876 } 1877 1878 // Make unique name for device side static file-scope variable for HIP. 1879 if (CGM.getContext().shouldExternalize(ND) && 1880 CGM.getLangOpts().GPURelocatableDeviceCode && 1881 CGM.getLangOpts().CUDAIsDevice) 1882 CGM.printPostfixForExternalizedDecl(Out, ND); 1883 1884 return std::string(Out.str()); 1885 } 1886 1887 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1888 const FunctionDecl *FD, 1889 StringRef &CurName) { 1890 if (!FD->isMultiVersion()) 1891 return; 1892 1893 // Get the name of what this would be without the 'target' attribute. This 1894 // allows us to lookup the version that was emitted when this wasn't a 1895 // multiversion function. 1896 std::string NonTargetName = 1897 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1898 GlobalDecl OtherGD; 1899 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1900 assert(OtherGD.getCanonicalDecl() 1901 .getDecl() 1902 ->getAsFunction() 1903 ->isMultiVersion() && 1904 "Other GD should now be a multiversioned function"); 1905 // OtherFD is the version of this function that was mangled BEFORE 1906 // becoming a MultiVersion function. It potentially needs to be updated. 1907 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1908 .getDecl() 1909 ->getAsFunction() 1910 ->getMostRecentDecl(); 1911 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1912 // This is so that if the initial version was already the 'default' 1913 // version, we don't try to update it. 1914 if (OtherName != NonTargetName) { 1915 // Remove instead of erase, since others may have stored the StringRef 1916 // to this. 1917 const auto ExistingRecord = Manglings.find(NonTargetName); 1918 if (ExistingRecord != std::end(Manglings)) 1919 Manglings.remove(&(*ExistingRecord)); 1920 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1921 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1922 Result.first->first(); 1923 // If this is the current decl is being created, make sure we update the name. 1924 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1925 CurName = OtherNameRef; 1926 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1927 Entry->setName(OtherName); 1928 } 1929 } 1930 } 1931 1932 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1933 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1934 1935 // Some ABIs don't have constructor variants. Make sure that base and 1936 // complete constructors get mangled the same. 1937 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1938 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1939 CXXCtorType OrigCtorType = GD.getCtorType(); 1940 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1941 if (OrigCtorType == Ctor_Base) 1942 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1943 } 1944 } 1945 1946 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1947 // static device variable depends on whether the variable is referenced by 1948 // a host or device host function. Therefore the mangled name cannot be 1949 // cached. 1950 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1951 auto FoundName = MangledDeclNames.find(CanonicalGD); 1952 if (FoundName != MangledDeclNames.end()) 1953 return FoundName->second; 1954 } 1955 1956 // Keep the first result in the case of a mangling collision. 1957 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1958 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1959 1960 // Ensure either we have different ABIs between host and device compilations, 1961 // says host compilation following MSVC ABI but device compilation follows 1962 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1963 // mangling should be the same after name stubbing. The later checking is 1964 // very important as the device kernel name being mangled in host-compilation 1965 // is used to resolve the device binaries to be executed. Inconsistent naming 1966 // result in undefined behavior. Even though we cannot check that naming 1967 // directly between host- and device-compilations, the host- and 1968 // device-mangling in host compilation could help catching certain ones. 1969 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1970 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1971 (getContext().getAuxTargetInfo() && 1972 (getContext().getAuxTargetInfo()->getCXXABI() != 1973 getContext().getTargetInfo().getCXXABI())) || 1974 getCUDARuntime().getDeviceSideName(ND) == 1975 getMangledNameImpl( 1976 *this, 1977 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1978 ND)); 1979 1980 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1981 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1982 } 1983 1984 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1985 const BlockDecl *BD) { 1986 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1987 const Decl *D = GD.getDecl(); 1988 1989 SmallString<256> Buffer; 1990 llvm::raw_svector_ostream Out(Buffer); 1991 if (!D) 1992 MangleCtx.mangleGlobalBlock(BD, 1993 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1994 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1995 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1996 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1997 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1998 else 1999 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2000 2001 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2002 return Result.first->first(); 2003 } 2004 2005 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2006 auto it = MangledDeclNames.begin(); 2007 while (it != MangledDeclNames.end()) { 2008 if (it->second == Name) 2009 return it->first; 2010 it++; 2011 } 2012 return GlobalDecl(); 2013 } 2014 2015 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2016 return getModule().getNamedValue(Name); 2017 } 2018 2019 /// AddGlobalCtor - Add a function to the list that will be called before 2020 /// main() runs. 2021 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2022 unsigned LexOrder, 2023 llvm::Constant *AssociatedData) { 2024 // FIXME: Type coercion of void()* types. 2025 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2026 } 2027 2028 /// AddGlobalDtor - Add a function to the list that will be called 2029 /// when the module is unloaded. 2030 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2031 bool IsDtorAttrFunc) { 2032 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2033 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2034 DtorsUsingAtExit[Priority].push_back(Dtor); 2035 return; 2036 } 2037 2038 // FIXME: Type coercion of void()* types. 2039 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2040 } 2041 2042 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2043 if (Fns.empty()) return; 2044 2045 // Ctor function type is void()*. 2046 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2047 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2048 TheModule.getDataLayout().getProgramAddressSpace()); 2049 2050 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2051 llvm::StructType *CtorStructTy = llvm::StructType::get( 2052 Int32Ty, CtorPFTy, VoidPtrTy); 2053 2054 // Construct the constructor and destructor arrays. 2055 ConstantInitBuilder builder(*this); 2056 auto ctors = builder.beginArray(CtorStructTy); 2057 for (const auto &I : Fns) { 2058 auto ctor = ctors.beginStruct(CtorStructTy); 2059 ctor.addInt(Int32Ty, I.Priority); 2060 ctor.add(I.Initializer); 2061 if (I.AssociatedData) 2062 ctor.add(I.AssociatedData); 2063 else 2064 ctor.addNullPointer(VoidPtrTy); 2065 ctor.finishAndAddTo(ctors); 2066 } 2067 2068 auto list = 2069 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2070 /*constant*/ false, 2071 llvm::GlobalValue::AppendingLinkage); 2072 2073 // The LTO linker doesn't seem to like it when we set an alignment 2074 // on appending variables. Take it off as a workaround. 2075 list->setAlignment(std::nullopt); 2076 2077 Fns.clear(); 2078 } 2079 2080 llvm::GlobalValue::LinkageTypes 2081 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2082 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2083 2084 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2085 2086 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2087 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2088 2089 return getLLVMLinkageForDeclarator(D, Linkage); 2090 } 2091 2092 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2093 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2094 if (!MDS) return nullptr; 2095 2096 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2097 } 2098 2099 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2100 if (auto *FnType = T->getAs<FunctionProtoType>()) 2101 T = getContext().getFunctionType( 2102 FnType->getReturnType(), FnType->getParamTypes(), 2103 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2104 2105 std::string OutName; 2106 llvm::raw_string_ostream Out(OutName); 2107 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2108 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2109 2110 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2111 Out << ".normalized"; 2112 2113 return llvm::ConstantInt::get(Int32Ty, 2114 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2115 } 2116 2117 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2118 const CGFunctionInfo &Info, 2119 llvm::Function *F, bool IsThunk) { 2120 unsigned CallingConv; 2121 llvm::AttributeList PAL; 2122 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2123 /*AttrOnCallSite=*/false, IsThunk); 2124 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2125 getTarget().getTriple().isWindowsArm64EC()) { 2126 SourceLocation Loc; 2127 if (const Decl *D = GD.getDecl()) 2128 Loc = D->getLocation(); 2129 2130 Error(Loc, "__vectorcall calling convention is not currently supported"); 2131 } 2132 F->setAttributes(PAL); 2133 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2134 } 2135 2136 static void removeImageAccessQualifier(std::string& TyName) { 2137 std::string ReadOnlyQual("__read_only"); 2138 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2139 if (ReadOnlyPos != std::string::npos) 2140 // "+ 1" for the space after access qualifier. 2141 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2142 else { 2143 std::string WriteOnlyQual("__write_only"); 2144 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2145 if (WriteOnlyPos != std::string::npos) 2146 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2147 else { 2148 std::string ReadWriteQual("__read_write"); 2149 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2150 if (ReadWritePos != std::string::npos) 2151 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2152 } 2153 } 2154 } 2155 2156 // Returns the address space id that should be produced to the 2157 // kernel_arg_addr_space metadata. This is always fixed to the ids 2158 // as specified in the SPIR 2.0 specification in order to differentiate 2159 // for example in clGetKernelArgInfo() implementation between the address 2160 // spaces with targets without unique mapping to the OpenCL address spaces 2161 // (basically all single AS CPUs). 2162 static unsigned ArgInfoAddressSpace(LangAS AS) { 2163 switch (AS) { 2164 case LangAS::opencl_global: 2165 return 1; 2166 case LangAS::opencl_constant: 2167 return 2; 2168 case LangAS::opencl_local: 2169 return 3; 2170 case LangAS::opencl_generic: 2171 return 4; // Not in SPIR 2.0 specs. 2172 case LangAS::opencl_global_device: 2173 return 5; 2174 case LangAS::opencl_global_host: 2175 return 6; 2176 default: 2177 return 0; // Assume private. 2178 } 2179 } 2180 2181 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2182 const FunctionDecl *FD, 2183 CodeGenFunction *CGF) { 2184 assert(((FD && CGF) || (!FD && !CGF)) && 2185 "Incorrect use - FD and CGF should either be both null or not!"); 2186 // Create MDNodes that represent the kernel arg metadata. 2187 // Each MDNode is a list in the form of "key", N number of values which is 2188 // the same number of values as their are kernel arguments. 2189 2190 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2191 2192 // MDNode for the kernel argument address space qualifiers. 2193 SmallVector<llvm::Metadata *, 8> addressQuals; 2194 2195 // MDNode for the kernel argument access qualifiers (images only). 2196 SmallVector<llvm::Metadata *, 8> accessQuals; 2197 2198 // MDNode for the kernel argument type names. 2199 SmallVector<llvm::Metadata *, 8> argTypeNames; 2200 2201 // MDNode for the kernel argument base type names. 2202 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2203 2204 // MDNode for the kernel argument type qualifiers. 2205 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2206 2207 // MDNode for the kernel argument names. 2208 SmallVector<llvm::Metadata *, 8> argNames; 2209 2210 if (FD && CGF) 2211 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2212 const ParmVarDecl *parm = FD->getParamDecl(i); 2213 // Get argument name. 2214 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2215 2216 if (!getLangOpts().OpenCL) 2217 continue; 2218 QualType ty = parm->getType(); 2219 std::string typeQuals; 2220 2221 // Get image and pipe access qualifier: 2222 if (ty->isImageType() || ty->isPipeType()) { 2223 const Decl *PDecl = parm; 2224 if (const auto *TD = ty->getAs<TypedefType>()) 2225 PDecl = TD->getDecl(); 2226 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2227 if (A && A->isWriteOnly()) 2228 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2229 else if (A && A->isReadWrite()) 2230 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2231 else 2232 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2233 } else 2234 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2235 2236 auto getTypeSpelling = [&](QualType Ty) { 2237 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2238 2239 if (Ty.isCanonical()) { 2240 StringRef typeNameRef = typeName; 2241 // Turn "unsigned type" to "utype" 2242 if (typeNameRef.consume_front("unsigned ")) 2243 return std::string("u") + typeNameRef.str(); 2244 if (typeNameRef.consume_front("signed ")) 2245 return typeNameRef.str(); 2246 } 2247 2248 return typeName; 2249 }; 2250 2251 if (ty->isPointerType()) { 2252 QualType pointeeTy = ty->getPointeeType(); 2253 2254 // Get address qualifier. 2255 addressQuals.push_back( 2256 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2257 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2258 2259 // Get argument type name. 2260 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2261 std::string baseTypeName = 2262 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2263 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2264 argBaseTypeNames.push_back( 2265 llvm::MDString::get(VMContext, baseTypeName)); 2266 2267 // Get argument type qualifiers: 2268 if (ty.isRestrictQualified()) 2269 typeQuals = "restrict"; 2270 if (pointeeTy.isConstQualified() || 2271 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2272 typeQuals += typeQuals.empty() ? "const" : " const"; 2273 if (pointeeTy.isVolatileQualified()) 2274 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2275 } else { 2276 uint32_t AddrSpc = 0; 2277 bool isPipe = ty->isPipeType(); 2278 if (ty->isImageType() || isPipe) 2279 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2280 2281 addressQuals.push_back( 2282 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2283 2284 // Get argument type name. 2285 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2286 std::string typeName = getTypeSpelling(ty); 2287 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2288 2289 // Remove access qualifiers on images 2290 // (as they are inseparable from type in clang implementation, 2291 // but OpenCL spec provides a special query to get access qualifier 2292 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2293 if (ty->isImageType()) { 2294 removeImageAccessQualifier(typeName); 2295 removeImageAccessQualifier(baseTypeName); 2296 } 2297 2298 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2299 argBaseTypeNames.push_back( 2300 llvm::MDString::get(VMContext, baseTypeName)); 2301 2302 if (isPipe) 2303 typeQuals = "pipe"; 2304 } 2305 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2306 } 2307 2308 if (getLangOpts().OpenCL) { 2309 Fn->setMetadata("kernel_arg_addr_space", 2310 llvm::MDNode::get(VMContext, addressQuals)); 2311 Fn->setMetadata("kernel_arg_access_qual", 2312 llvm::MDNode::get(VMContext, accessQuals)); 2313 Fn->setMetadata("kernel_arg_type", 2314 llvm::MDNode::get(VMContext, argTypeNames)); 2315 Fn->setMetadata("kernel_arg_base_type", 2316 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2317 Fn->setMetadata("kernel_arg_type_qual", 2318 llvm::MDNode::get(VMContext, argTypeQuals)); 2319 } 2320 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2321 getCodeGenOpts().HIPSaveKernelArgName) 2322 Fn->setMetadata("kernel_arg_name", 2323 llvm::MDNode::get(VMContext, argNames)); 2324 } 2325 2326 /// Determines whether the language options require us to model 2327 /// unwind exceptions. We treat -fexceptions as mandating this 2328 /// except under the fragile ObjC ABI with only ObjC exceptions 2329 /// enabled. This means, for example, that C with -fexceptions 2330 /// enables this. 2331 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2332 // If exceptions are completely disabled, obviously this is false. 2333 if (!LangOpts.Exceptions) return false; 2334 2335 // If C++ exceptions are enabled, this is true. 2336 if (LangOpts.CXXExceptions) return true; 2337 2338 // If ObjC exceptions are enabled, this depends on the ABI. 2339 if (LangOpts.ObjCExceptions) { 2340 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2341 } 2342 2343 return true; 2344 } 2345 2346 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2347 const CXXMethodDecl *MD) { 2348 // Check that the type metadata can ever actually be used by a call. 2349 if (!CGM.getCodeGenOpts().LTOUnit || 2350 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2351 return false; 2352 2353 // Only functions whose address can be taken with a member function pointer 2354 // need this sort of type metadata. 2355 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2356 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2357 } 2358 2359 SmallVector<const CXXRecordDecl *, 0> 2360 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2361 llvm::SetVector<const CXXRecordDecl *> MostBases; 2362 2363 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2364 CollectMostBases = [&](const CXXRecordDecl *RD) { 2365 if (RD->getNumBases() == 0) 2366 MostBases.insert(RD); 2367 for (const CXXBaseSpecifier &B : RD->bases()) 2368 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2369 }; 2370 CollectMostBases(RD); 2371 return MostBases.takeVector(); 2372 } 2373 2374 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2375 llvm::Function *F) { 2376 llvm::AttrBuilder B(F->getContext()); 2377 2378 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2379 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2380 2381 if (CodeGenOpts.StackClashProtector) 2382 B.addAttribute("probe-stack", "inline-asm"); 2383 2384 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2385 B.addAttribute("stack-probe-size", 2386 std::to_string(CodeGenOpts.StackProbeSize)); 2387 2388 if (!hasUnwindExceptions(LangOpts)) 2389 B.addAttribute(llvm::Attribute::NoUnwind); 2390 2391 if (D && D->hasAttr<NoStackProtectorAttr>()) 2392 ; // Do nothing. 2393 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2394 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2395 B.addAttribute(llvm::Attribute::StackProtectStrong); 2396 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2397 B.addAttribute(llvm::Attribute::StackProtect); 2398 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2399 B.addAttribute(llvm::Attribute::StackProtectStrong); 2400 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2401 B.addAttribute(llvm::Attribute::StackProtectReq); 2402 2403 if (!D) { 2404 // If we don't have a declaration to control inlining, the function isn't 2405 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2406 // disabled, mark the function as noinline. 2407 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2408 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2409 B.addAttribute(llvm::Attribute::NoInline); 2410 2411 F->addFnAttrs(B); 2412 return; 2413 } 2414 2415 // Handle SME attributes that apply to function definitions, 2416 // rather than to function prototypes. 2417 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2418 B.addAttribute("aarch64_pstate_sm_body"); 2419 2420 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2421 if (Attr->isNewZA()) 2422 B.addAttribute("aarch64_new_za"); 2423 if (Attr->isNewZT0()) 2424 B.addAttribute("aarch64_new_zt0"); 2425 } 2426 2427 // Track whether we need to add the optnone LLVM attribute, 2428 // starting with the default for this optimization level. 2429 bool ShouldAddOptNone = 2430 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2431 // We can't add optnone in the following cases, it won't pass the verifier. 2432 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2433 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2434 2435 // Add optnone, but do so only if the function isn't always_inline. 2436 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2437 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2438 B.addAttribute(llvm::Attribute::OptimizeNone); 2439 2440 // OptimizeNone implies noinline; we should not be inlining such functions. 2441 B.addAttribute(llvm::Attribute::NoInline); 2442 2443 // We still need to handle naked functions even though optnone subsumes 2444 // much of their semantics. 2445 if (D->hasAttr<NakedAttr>()) 2446 B.addAttribute(llvm::Attribute::Naked); 2447 2448 // OptimizeNone wins over OptimizeForSize and MinSize. 2449 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2450 F->removeFnAttr(llvm::Attribute::MinSize); 2451 } else if (D->hasAttr<NakedAttr>()) { 2452 // Naked implies noinline: we should not be inlining such functions. 2453 B.addAttribute(llvm::Attribute::Naked); 2454 B.addAttribute(llvm::Attribute::NoInline); 2455 } else if (D->hasAttr<NoDuplicateAttr>()) { 2456 B.addAttribute(llvm::Attribute::NoDuplicate); 2457 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2458 // Add noinline if the function isn't always_inline. 2459 B.addAttribute(llvm::Attribute::NoInline); 2460 } else if (D->hasAttr<AlwaysInlineAttr>() && 2461 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2462 // (noinline wins over always_inline, and we can't specify both in IR) 2463 B.addAttribute(llvm::Attribute::AlwaysInline); 2464 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2465 // If we're not inlining, then force everything that isn't always_inline to 2466 // carry an explicit noinline attribute. 2467 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2468 B.addAttribute(llvm::Attribute::NoInline); 2469 } else { 2470 // Otherwise, propagate the inline hint attribute and potentially use its 2471 // absence to mark things as noinline. 2472 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2473 // Search function and template pattern redeclarations for inline. 2474 auto CheckForInline = [](const FunctionDecl *FD) { 2475 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2476 return Redecl->isInlineSpecified(); 2477 }; 2478 if (any_of(FD->redecls(), CheckRedeclForInline)) 2479 return true; 2480 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2481 if (!Pattern) 2482 return false; 2483 return any_of(Pattern->redecls(), CheckRedeclForInline); 2484 }; 2485 if (CheckForInline(FD)) { 2486 B.addAttribute(llvm::Attribute::InlineHint); 2487 } else if (CodeGenOpts.getInlining() == 2488 CodeGenOptions::OnlyHintInlining && 2489 !FD->isInlined() && 2490 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2491 B.addAttribute(llvm::Attribute::NoInline); 2492 } 2493 } 2494 } 2495 2496 // Add other optimization related attributes if we are optimizing this 2497 // function. 2498 if (!D->hasAttr<OptimizeNoneAttr>()) { 2499 if (D->hasAttr<ColdAttr>()) { 2500 if (!ShouldAddOptNone) 2501 B.addAttribute(llvm::Attribute::OptimizeForSize); 2502 B.addAttribute(llvm::Attribute::Cold); 2503 } 2504 if (D->hasAttr<HotAttr>()) 2505 B.addAttribute(llvm::Attribute::Hot); 2506 if (D->hasAttr<MinSizeAttr>()) 2507 B.addAttribute(llvm::Attribute::MinSize); 2508 } 2509 2510 F->addFnAttrs(B); 2511 2512 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2513 if (alignment) 2514 F->setAlignment(llvm::Align(alignment)); 2515 2516 if (!D->hasAttr<AlignedAttr>()) 2517 if (LangOpts.FunctionAlignment) 2518 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2519 2520 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2521 // reserve a bit for differentiating between virtual and non-virtual member 2522 // functions. If the current target's C++ ABI requires this and this is a 2523 // member function, set its alignment accordingly. 2524 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2525 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2526 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2527 } 2528 2529 // In the cross-dso CFI mode with canonical jump tables, we want !type 2530 // attributes on definitions only. 2531 if (CodeGenOpts.SanitizeCfiCrossDso && 2532 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2533 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2534 // Skip available_externally functions. They won't be codegen'ed in the 2535 // current module anyway. 2536 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2537 CreateFunctionTypeMetadataForIcall(FD, F); 2538 } 2539 } 2540 2541 // Emit type metadata on member functions for member function pointer checks. 2542 // These are only ever necessary on definitions; we're guaranteed that the 2543 // definition will be present in the LTO unit as a result of LTO visibility. 2544 auto *MD = dyn_cast<CXXMethodDecl>(D); 2545 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2546 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2547 llvm::Metadata *Id = 2548 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2549 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2550 F->addTypeMetadata(0, Id); 2551 } 2552 } 2553 } 2554 2555 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2556 const Decl *D = GD.getDecl(); 2557 if (isa_and_nonnull<NamedDecl>(D)) 2558 setGVProperties(GV, GD); 2559 else 2560 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2561 2562 if (D && D->hasAttr<UsedAttr>()) 2563 addUsedOrCompilerUsedGlobal(GV); 2564 2565 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2566 VD && 2567 ((CodeGenOpts.KeepPersistentStorageVariables && 2568 (VD->getStorageDuration() == SD_Static || 2569 VD->getStorageDuration() == SD_Thread)) || 2570 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2571 VD->getType().isConstQualified()))) 2572 addUsedOrCompilerUsedGlobal(GV); 2573 } 2574 2575 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2576 llvm::AttrBuilder &Attrs, 2577 bool SetTargetFeatures) { 2578 // Add target-cpu and target-features attributes to functions. If 2579 // we have a decl for the function and it has a target attribute then 2580 // parse that and add it to the feature set. 2581 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2582 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2583 std::vector<std::string> Features; 2584 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2585 FD = FD ? FD->getMostRecentDecl() : FD; 2586 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2587 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2588 assert((!TD || !TV) && "both target_version and target specified"); 2589 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2590 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2591 bool AddedAttr = false; 2592 if (TD || TV || SD || TC) { 2593 llvm::StringMap<bool> FeatureMap; 2594 getContext().getFunctionFeatureMap(FeatureMap, GD); 2595 2596 // Produce the canonical string for this set of features. 2597 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2598 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2599 2600 // Now add the target-cpu and target-features to the function. 2601 // While we populated the feature map above, we still need to 2602 // get and parse the target attribute so we can get the cpu for 2603 // the function. 2604 if (TD) { 2605 ParsedTargetAttr ParsedAttr = 2606 Target.parseTargetAttr(TD->getFeaturesStr()); 2607 if (!ParsedAttr.CPU.empty() && 2608 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2609 TargetCPU = ParsedAttr.CPU; 2610 TuneCPU = ""; // Clear the tune CPU. 2611 } 2612 if (!ParsedAttr.Tune.empty() && 2613 getTarget().isValidCPUName(ParsedAttr.Tune)) 2614 TuneCPU = ParsedAttr.Tune; 2615 } 2616 2617 if (SD) { 2618 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2619 // favor this processor. 2620 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2621 } 2622 } else { 2623 // Otherwise just add the existing target cpu and target features to the 2624 // function. 2625 Features = getTarget().getTargetOpts().Features; 2626 } 2627 2628 if (!TargetCPU.empty()) { 2629 Attrs.addAttribute("target-cpu", TargetCPU); 2630 AddedAttr = true; 2631 } 2632 if (!TuneCPU.empty()) { 2633 Attrs.addAttribute("tune-cpu", TuneCPU); 2634 AddedAttr = true; 2635 } 2636 if (!Features.empty() && SetTargetFeatures) { 2637 llvm::erase_if(Features, [&](const std::string& F) { 2638 return getTarget().isReadOnlyFeature(F.substr(1)); 2639 }); 2640 llvm::sort(Features); 2641 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2642 AddedAttr = true; 2643 } 2644 2645 return AddedAttr; 2646 } 2647 2648 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2649 llvm::GlobalObject *GO) { 2650 const Decl *D = GD.getDecl(); 2651 SetCommonAttributes(GD, GO); 2652 2653 if (D) { 2654 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2655 if (D->hasAttr<RetainAttr>()) 2656 addUsedGlobal(GV); 2657 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2658 GV->addAttribute("bss-section", SA->getName()); 2659 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2660 GV->addAttribute("data-section", SA->getName()); 2661 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2662 GV->addAttribute("rodata-section", SA->getName()); 2663 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2664 GV->addAttribute("relro-section", SA->getName()); 2665 } 2666 2667 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2668 if (D->hasAttr<RetainAttr>()) 2669 addUsedGlobal(F); 2670 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2671 if (!D->getAttr<SectionAttr>()) 2672 F->setSection(SA->getName()); 2673 2674 llvm::AttrBuilder Attrs(F->getContext()); 2675 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2676 // We know that GetCPUAndFeaturesAttributes will always have the 2677 // newest set, since it has the newest possible FunctionDecl, so the 2678 // new ones should replace the old. 2679 llvm::AttributeMask RemoveAttrs; 2680 RemoveAttrs.addAttribute("target-cpu"); 2681 RemoveAttrs.addAttribute("target-features"); 2682 RemoveAttrs.addAttribute("tune-cpu"); 2683 F->removeFnAttrs(RemoveAttrs); 2684 F->addFnAttrs(Attrs); 2685 } 2686 } 2687 2688 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2689 GO->setSection(CSA->getName()); 2690 else if (const auto *SA = D->getAttr<SectionAttr>()) 2691 GO->setSection(SA->getName()); 2692 } 2693 2694 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2695 } 2696 2697 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2698 llvm::Function *F, 2699 const CGFunctionInfo &FI) { 2700 const Decl *D = GD.getDecl(); 2701 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2702 SetLLVMFunctionAttributesForDefinition(D, F); 2703 2704 F->setLinkage(llvm::Function::InternalLinkage); 2705 2706 setNonAliasAttributes(GD, F); 2707 } 2708 2709 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2710 // Set linkage and visibility in case we never see a definition. 2711 LinkageInfo LV = ND->getLinkageAndVisibility(); 2712 // Don't set internal linkage on declarations. 2713 // "extern_weak" is overloaded in LLVM; we probably should have 2714 // separate linkage types for this. 2715 if (isExternallyVisible(LV.getLinkage()) && 2716 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2717 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2718 } 2719 2720 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2721 llvm::Function *F) { 2722 // Only if we are checking indirect calls. 2723 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2724 return; 2725 2726 // Non-static class methods are handled via vtable or member function pointer 2727 // checks elsewhere. 2728 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2729 return; 2730 2731 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2732 F->addTypeMetadata(0, MD); 2733 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2734 2735 // Emit a hash-based bit set entry for cross-DSO calls. 2736 if (CodeGenOpts.SanitizeCfiCrossDso) 2737 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2738 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2739 } 2740 2741 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2742 llvm::LLVMContext &Ctx = F->getContext(); 2743 llvm::MDBuilder MDB(Ctx); 2744 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2745 llvm::MDNode::get( 2746 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2747 } 2748 2749 static bool allowKCFIIdentifier(StringRef Name) { 2750 // KCFI type identifier constants are only necessary for external assembly 2751 // functions, which means it's safe to skip unusual names. Subset of 2752 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2753 return llvm::all_of(Name, [](const char &C) { 2754 return llvm::isAlnum(C) || C == '_' || C == '.'; 2755 }); 2756 } 2757 2758 void CodeGenModule::finalizeKCFITypes() { 2759 llvm::Module &M = getModule(); 2760 for (auto &F : M.functions()) { 2761 // Remove KCFI type metadata from non-address-taken local functions. 2762 bool AddressTaken = F.hasAddressTaken(); 2763 if (!AddressTaken && F.hasLocalLinkage()) 2764 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2765 2766 // Generate a constant with the expected KCFI type identifier for all 2767 // address-taken function declarations to support annotating indirectly 2768 // called assembly functions. 2769 if (!AddressTaken || !F.isDeclaration()) 2770 continue; 2771 2772 const llvm::ConstantInt *Type; 2773 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2774 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2775 else 2776 continue; 2777 2778 StringRef Name = F.getName(); 2779 if (!allowKCFIIdentifier(Name)) 2780 continue; 2781 2782 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2783 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2784 .str(); 2785 M.appendModuleInlineAsm(Asm); 2786 } 2787 } 2788 2789 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2790 bool IsIncompleteFunction, 2791 bool IsThunk) { 2792 2793 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2794 // If this is an intrinsic function, set the function's attributes 2795 // to the intrinsic's attributes. 2796 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2797 return; 2798 } 2799 2800 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2801 2802 if (!IsIncompleteFunction) 2803 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2804 IsThunk); 2805 2806 // Add the Returned attribute for "this", except for iOS 5 and earlier 2807 // where substantial code, including the libstdc++ dylib, was compiled with 2808 // GCC and does not actually return "this". 2809 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2810 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2811 assert(!F->arg_empty() && 2812 F->arg_begin()->getType() 2813 ->canLosslesslyBitCastTo(F->getReturnType()) && 2814 "unexpected this return"); 2815 F->addParamAttr(0, llvm::Attribute::Returned); 2816 } 2817 2818 // Only a few attributes are set on declarations; these may later be 2819 // overridden by a definition. 2820 2821 setLinkageForGV(F, FD); 2822 setGVProperties(F, FD); 2823 2824 // Setup target-specific attributes. 2825 if (!IsIncompleteFunction && F->isDeclaration()) 2826 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2827 2828 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2829 F->setSection(CSA->getName()); 2830 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2831 F->setSection(SA->getName()); 2832 2833 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2834 if (EA->isError()) 2835 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2836 else if (EA->isWarning()) 2837 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2838 } 2839 2840 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2841 if (FD->isInlineBuiltinDeclaration()) { 2842 const FunctionDecl *FDBody; 2843 bool HasBody = FD->hasBody(FDBody); 2844 (void)HasBody; 2845 assert(HasBody && "Inline builtin declarations should always have an " 2846 "available body!"); 2847 if (shouldEmitFunction(FDBody)) 2848 F->addFnAttr(llvm::Attribute::NoBuiltin); 2849 } 2850 2851 if (FD->isReplaceableGlobalAllocationFunction()) { 2852 // A replaceable global allocation function does not act like a builtin by 2853 // default, only if it is invoked by a new-expression or delete-expression. 2854 F->addFnAttr(llvm::Attribute::NoBuiltin); 2855 } 2856 2857 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2858 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2859 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2860 if (MD->isVirtual()) 2861 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2862 2863 // Don't emit entries for function declarations in the cross-DSO mode. This 2864 // is handled with better precision by the receiving DSO. But if jump tables 2865 // are non-canonical then we need type metadata in order to produce the local 2866 // jump table. 2867 if (!CodeGenOpts.SanitizeCfiCrossDso || 2868 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2869 CreateFunctionTypeMetadataForIcall(FD, F); 2870 2871 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2872 setKCFIType(FD, F); 2873 2874 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2875 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2876 2877 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2878 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2879 2880 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2881 // Annotate the callback behavior as metadata: 2882 // - The callback callee (as argument number). 2883 // - The callback payloads (as argument numbers). 2884 llvm::LLVMContext &Ctx = F->getContext(); 2885 llvm::MDBuilder MDB(Ctx); 2886 2887 // The payload indices are all but the first one in the encoding. The first 2888 // identifies the callback callee. 2889 int CalleeIdx = *CB->encoding_begin(); 2890 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2891 F->addMetadata(llvm::LLVMContext::MD_callback, 2892 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2893 CalleeIdx, PayloadIndices, 2894 /* VarArgsArePassed */ false)})); 2895 } 2896 } 2897 2898 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2899 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2900 "Only globals with definition can force usage."); 2901 LLVMUsed.emplace_back(GV); 2902 } 2903 2904 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2905 assert(!GV->isDeclaration() && 2906 "Only globals with definition can force usage."); 2907 LLVMCompilerUsed.emplace_back(GV); 2908 } 2909 2910 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2911 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2912 "Only globals with definition can force usage."); 2913 if (getTriple().isOSBinFormatELF()) 2914 LLVMCompilerUsed.emplace_back(GV); 2915 else 2916 LLVMUsed.emplace_back(GV); 2917 } 2918 2919 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2920 std::vector<llvm::WeakTrackingVH> &List) { 2921 // Don't create llvm.used if there is no need. 2922 if (List.empty()) 2923 return; 2924 2925 // Convert List to what ConstantArray needs. 2926 SmallVector<llvm::Constant*, 8> UsedArray; 2927 UsedArray.resize(List.size()); 2928 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2929 UsedArray[i] = 2930 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2931 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2932 } 2933 2934 if (UsedArray.empty()) 2935 return; 2936 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2937 2938 auto *GV = new llvm::GlobalVariable( 2939 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2940 llvm::ConstantArray::get(ATy, UsedArray), Name); 2941 2942 GV->setSection("llvm.metadata"); 2943 } 2944 2945 void CodeGenModule::emitLLVMUsed() { 2946 emitUsed(*this, "llvm.used", LLVMUsed); 2947 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2948 } 2949 2950 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2951 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2952 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2953 } 2954 2955 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2956 llvm::SmallString<32> Opt; 2957 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2958 if (Opt.empty()) 2959 return; 2960 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2961 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2962 } 2963 2964 void CodeGenModule::AddDependentLib(StringRef Lib) { 2965 auto &C = getLLVMContext(); 2966 if (getTarget().getTriple().isOSBinFormatELF()) { 2967 ELFDependentLibraries.push_back( 2968 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2969 return; 2970 } 2971 2972 llvm::SmallString<24> Opt; 2973 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2974 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2975 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2976 } 2977 2978 /// Add link options implied by the given module, including modules 2979 /// it depends on, using a postorder walk. 2980 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2981 SmallVectorImpl<llvm::MDNode *> &Metadata, 2982 llvm::SmallPtrSet<Module *, 16> &Visited) { 2983 // Import this module's parent. 2984 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2985 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2986 } 2987 2988 // Import this module's dependencies. 2989 for (Module *Import : llvm::reverse(Mod->Imports)) { 2990 if (Visited.insert(Import).second) 2991 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2992 } 2993 2994 // Add linker options to link against the libraries/frameworks 2995 // described by this module. 2996 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2997 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2998 2999 // For modules that use export_as for linking, use that module 3000 // name instead. 3001 if (Mod->UseExportAsModuleLinkName) 3002 return; 3003 3004 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3005 // Link against a framework. Frameworks are currently Darwin only, so we 3006 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3007 if (LL.IsFramework) { 3008 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3009 llvm::MDString::get(Context, LL.Library)}; 3010 3011 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3012 continue; 3013 } 3014 3015 // Link against a library. 3016 if (IsELF) { 3017 llvm::Metadata *Args[2] = { 3018 llvm::MDString::get(Context, "lib"), 3019 llvm::MDString::get(Context, LL.Library), 3020 }; 3021 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3022 } else { 3023 llvm::SmallString<24> Opt; 3024 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3025 auto *OptString = llvm::MDString::get(Context, Opt); 3026 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3027 } 3028 } 3029 } 3030 3031 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3032 assert(Primary->isNamedModuleUnit() && 3033 "We should only emit module initializers for named modules."); 3034 3035 // Emit the initializers in the order that sub-modules appear in the 3036 // source, first Global Module Fragments, if present. 3037 if (auto GMF = Primary->getGlobalModuleFragment()) { 3038 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3039 if (isa<ImportDecl>(D)) 3040 continue; 3041 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3042 EmitTopLevelDecl(D); 3043 } 3044 } 3045 // Second any associated with the module, itself. 3046 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3047 // Skip import decls, the inits for those are called explicitly. 3048 if (isa<ImportDecl>(D)) 3049 continue; 3050 EmitTopLevelDecl(D); 3051 } 3052 // Third any associated with the Privat eMOdule Fragment, if present. 3053 if (auto PMF = Primary->getPrivateModuleFragment()) { 3054 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3055 // Skip import decls, the inits for those are called explicitly. 3056 if (isa<ImportDecl>(D)) 3057 continue; 3058 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3059 EmitTopLevelDecl(D); 3060 } 3061 } 3062 } 3063 3064 void CodeGenModule::EmitModuleLinkOptions() { 3065 // Collect the set of all of the modules we want to visit to emit link 3066 // options, which is essentially the imported modules and all of their 3067 // non-explicit child modules. 3068 llvm::SetVector<clang::Module *> LinkModules; 3069 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3070 SmallVector<clang::Module *, 16> Stack; 3071 3072 // Seed the stack with imported modules. 3073 for (Module *M : ImportedModules) { 3074 // Do not add any link flags when an implementation TU of a module imports 3075 // a header of that same module. 3076 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3077 !getLangOpts().isCompilingModule()) 3078 continue; 3079 if (Visited.insert(M).second) 3080 Stack.push_back(M); 3081 } 3082 3083 // Find all of the modules to import, making a little effort to prune 3084 // non-leaf modules. 3085 while (!Stack.empty()) { 3086 clang::Module *Mod = Stack.pop_back_val(); 3087 3088 bool AnyChildren = false; 3089 3090 // Visit the submodules of this module. 3091 for (const auto &SM : Mod->submodules()) { 3092 // Skip explicit children; they need to be explicitly imported to be 3093 // linked against. 3094 if (SM->IsExplicit) 3095 continue; 3096 3097 if (Visited.insert(SM).second) { 3098 Stack.push_back(SM); 3099 AnyChildren = true; 3100 } 3101 } 3102 3103 // We didn't find any children, so add this module to the list of 3104 // modules to link against. 3105 if (!AnyChildren) { 3106 LinkModules.insert(Mod); 3107 } 3108 } 3109 3110 // Add link options for all of the imported modules in reverse topological 3111 // order. We don't do anything to try to order import link flags with respect 3112 // to linker options inserted by things like #pragma comment(). 3113 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3114 Visited.clear(); 3115 for (Module *M : LinkModules) 3116 if (Visited.insert(M).second) 3117 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3118 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3119 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3120 3121 // Add the linker options metadata flag. 3122 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3123 for (auto *MD : LinkerOptionsMetadata) 3124 NMD->addOperand(MD); 3125 } 3126 3127 void CodeGenModule::EmitDeferred() { 3128 // Emit deferred declare target declarations. 3129 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3130 getOpenMPRuntime().emitDeferredTargetDecls(); 3131 3132 // Emit code for any potentially referenced deferred decls. Since a 3133 // previously unused static decl may become used during the generation of code 3134 // for a static function, iterate until no changes are made. 3135 3136 if (!DeferredVTables.empty()) { 3137 EmitDeferredVTables(); 3138 3139 // Emitting a vtable doesn't directly cause more vtables to 3140 // become deferred, although it can cause functions to be 3141 // emitted that then need those vtables. 3142 assert(DeferredVTables.empty()); 3143 } 3144 3145 // Emit CUDA/HIP static device variables referenced by host code only. 3146 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3147 // needed for further handling. 3148 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3149 llvm::append_range(DeferredDeclsToEmit, 3150 getContext().CUDADeviceVarODRUsedByHost); 3151 3152 // Stop if we're out of both deferred vtables and deferred declarations. 3153 if (DeferredDeclsToEmit.empty()) 3154 return; 3155 3156 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3157 // work, it will not interfere with this. 3158 std::vector<GlobalDecl> CurDeclsToEmit; 3159 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3160 3161 for (GlobalDecl &D : CurDeclsToEmit) { 3162 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3163 // to get GlobalValue with exactly the type we need, not something that 3164 // might had been created for another decl with the same mangled name but 3165 // different type. 3166 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3167 GetAddrOfGlobal(D, ForDefinition)); 3168 3169 // In case of different address spaces, we may still get a cast, even with 3170 // IsForDefinition equal to true. Query mangled names table to get 3171 // GlobalValue. 3172 if (!GV) 3173 GV = GetGlobalValue(getMangledName(D)); 3174 3175 // Make sure GetGlobalValue returned non-null. 3176 assert(GV); 3177 3178 // Check to see if we've already emitted this. This is necessary 3179 // for a couple of reasons: first, decls can end up in the 3180 // deferred-decls queue multiple times, and second, decls can end 3181 // up with definitions in unusual ways (e.g. by an extern inline 3182 // function acquiring a strong function redefinition). Just 3183 // ignore these cases. 3184 if (!GV->isDeclaration()) 3185 continue; 3186 3187 // If this is OpenMP, check if it is legal to emit this global normally. 3188 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3189 continue; 3190 3191 // Otherwise, emit the definition and move on to the next one. 3192 EmitGlobalDefinition(D, GV); 3193 3194 // If we found out that we need to emit more decls, do that recursively. 3195 // This has the advantage that the decls are emitted in a DFS and related 3196 // ones are close together, which is convenient for testing. 3197 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3198 EmitDeferred(); 3199 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3200 } 3201 } 3202 } 3203 3204 void CodeGenModule::EmitVTablesOpportunistically() { 3205 // Try to emit external vtables as available_externally if they have emitted 3206 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3207 // is not allowed to create new references to things that need to be emitted 3208 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3209 3210 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3211 && "Only emit opportunistic vtables with optimizations"); 3212 3213 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3214 assert(getVTables().isVTableExternal(RD) && 3215 "This queue should only contain external vtables"); 3216 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3217 VTables.GenerateClassData(RD); 3218 } 3219 OpportunisticVTables.clear(); 3220 } 3221 3222 void CodeGenModule::EmitGlobalAnnotations() { 3223 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3224 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3225 if (GV) 3226 AddGlobalAnnotations(VD, GV); 3227 } 3228 DeferredAnnotations.clear(); 3229 3230 if (Annotations.empty()) 3231 return; 3232 3233 // Create a new global variable for the ConstantStruct in the Module. 3234 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3235 Annotations[0]->getType(), Annotations.size()), Annotations); 3236 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3237 llvm::GlobalValue::AppendingLinkage, 3238 Array, "llvm.global.annotations"); 3239 gv->setSection(AnnotationSection); 3240 } 3241 3242 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3243 llvm::Constant *&AStr = AnnotationStrings[Str]; 3244 if (AStr) 3245 return AStr; 3246 3247 // Not found yet, create a new global. 3248 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3249 auto *gv = new llvm::GlobalVariable( 3250 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3251 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3252 ConstGlobalsPtrTy->getAddressSpace()); 3253 gv->setSection(AnnotationSection); 3254 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3255 AStr = gv; 3256 return gv; 3257 } 3258 3259 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3260 SourceManager &SM = getContext().getSourceManager(); 3261 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3262 if (PLoc.isValid()) 3263 return EmitAnnotationString(PLoc.getFilename()); 3264 return EmitAnnotationString(SM.getBufferName(Loc)); 3265 } 3266 3267 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3268 SourceManager &SM = getContext().getSourceManager(); 3269 PresumedLoc PLoc = SM.getPresumedLoc(L); 3270 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3271 SM.getExpansionLineNumber(L); 3272 return llvm::ConstantInt::get(Int32Ty, LineNo); 3273 } 3274 3275 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3276 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3277 if (Exprs.empty()) 3278 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3279 3280 llvm::FoldingSetNodeID ID; 3281 for (Expr *E : Exprs) { 3282 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3283 } 3284 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3285 if (Lookup) 3286 return Lookup; 3287 3288 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3289 LLVMArgs.reserve(Exprs.size()); 3290 ConstantEmitter ConstEmiter(*this); 3291 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3292 const auto *CE = cast<clang::ConstantExpr>(E); 3293 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3294 CE->getType()); 3295 }); 3296 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3297 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3298 llvm::GlobalValue::PrivateLinkage, Struct, 3299 ".args"); 3300 GV->setSection(AnnotationSection); 3301 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3302 3303 Lookup = GV; 3304 return GV; 3305 } 3306 3307 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3308 const AnnotateAttr *AA, 3309 SourceLocation L) { 3310 // Get the globals for file name, annotation, and the line number. 3311 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3312 *UnitGV = EmitAnnotationUnit(L), 3313 *LineNoCst = EmitAnnotationLineNo(L), 3314 *Args = EmitAnnotationArgs(AA); 3315 3316 llvm::Constant *GVInGlobalsAS = GV; 3317 if (GV->getAddressSpace() != 3318 getDataLayout().getDefaultGlobalsAddressSpace()) { 3319 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3320 GV, 3321 llvm::PointerType::get( 3322 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3323 } 3324 3325 // Create the ConstantStruct for the global annotation. 3326 llvm::Constant *Fields[] = { 3327 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3328 }; 3329 return llvm::ConstantStruct::getAnon(Fields); 3330 } 3331 3332 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3333 llvm::GlobalValue *GV) { 3334 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3335 // Get the struct elements for these annotations. 3336 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3337 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3338 } 3339 3340 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3341 SourceLocation Loc) const { 3342 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3343 // NoSanitize by function name. 3344 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3345 return true; 3346 // NoSanitize by location. Check "mainfile" prefix. 3347 auto &SM = Context.getSourceManager(); 3348 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3349 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3350 return true; 3351 3352 // Check "src" prefix. 3353 if (Loc.isValid()) 3354 return NoSanitizeL.containsLocation(Kind, Loc); 3355 // If location is unknown, this may be a compiler-generated function. Assume 3356 // it's located in the main file. 3357 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3358 } 3359 3360 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3361 llvm::GlobalVariable *GV, 3362 SourceLocation Loc, QualType Ty, 3363 StringRef Category) const { 3364 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3365 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3366 return true; 3367 auto &SM = Context.getSourceManager(); 3368 if (NoSanitizeL.containsMainFile( 3369 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3370 Category)) 3371 return true; 3372 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3373 return true; 3374 3375 // Check global type. 3376 if (!Ty.isNull()) { 3377 // Drill down the array types: if global variable of a fixed type is 3378 // not sanitized, we also don't instrument arrays of them. 3379 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3380 Ty = AT->getElementType(); 3381 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3382 // Only record types (classes, structs etc.) are ignored. 3383 if (Ty->isRecordType()) { 3384 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3385 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3386 return true; 3387 } 3388 } 3389 return false; 3390 } 3391 3392 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3393 StringRef Category) const { 3394 const auto &XRayFilter = getContext().getXRayFilter(); 3395 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3396 auto Attr = ImbueAttr::NONE; 3397 if (Loc.isValid()) 3398 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3399 if (Attr == ImbueAttr::NONE) 3400 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3401 switch (Attr) { 3402 case ImbueAttr::NONE: 3403 return false; 3404 case ImbueAttr::ALWAYS: 3405 Fn->addFnAttr("function-instrument", "xray-always"); 3406 break; 3407 case ImbueAttr::ALWAYS_ARG1: 3408 Fn->addFnAttr("function-instrument", "xray-always"); 3409 Fn->addFnAttr("xray-log-args", "1"); 3410 break; 3411 case ImbueAttr::NEVER: 3412 Fn->addFnAttr("function-instrument", "xray-never"); 3413 break; 3414 } 3415 return true; 3416 } 3417 3418 ProfileList::ExclusionType 3419 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3420 SourceLocation Loc) const { 3421 const auto &ProfileList = getContext().getProfileList(); 3422 // If the profile list is empty, then instrument everything. 3423 if (ProfileList.isEmpty()) 3424 return ProfileList::Allow; 3425 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3426 // First, check the function name. 3427 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3428 return *V; 3429 // Next, check the source location. 3430 if (Loc.isValid()) 3431 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3432 return *V; 3433 // If location is unknown, this may be a compiler-generated function. Assume 3434 // it's located in the main file. 3435 auto &SM = Context.getSourceManager(); 3436 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3437 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3438 return *V; 3439 return ProfileList.getDefault(Kind); 3440 } 3441 3442 ProfileList::ExclusionType 3443 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3444 SourceLocation Loc) const { 3445 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3446 if (V != ProfileList::Allow) 3447 return V; 3448 3449 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3450 if (NumGroups > 1) { 3451 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3452 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3453 return ProfileList::Skip; 3454 } 3455 return ProfileList::Allow; 3456 } 3457 3458 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3459 // Never defer when EmitAllDecls is specified. 3460 if (LangOpts.EmitAllDecls) 3461 return true; 3462 3463 const auto *VD = dyn_cast<VarDecl>(Global); 3464 if (VD && 3465 ((CodeGenOpts.KeepPersistentStorageVariables && 3466 (VD->getStorageDuration() == SD_Static || 3467 VD->getStorageDuration() == SD_Thread)) || 3468 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3469 VD->getType().isConstQualified()))) 3470 return true; 3471 3472 return getContext().DeclMustBeEmitted(Global); 3473 } 3474 3475 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3476 // In OpenMP 5.0 variables and function may be marked as 3477 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3478 // that they must be emitted on the host/device. To be sure we need to have 3479 // seen a declare target with an explicit mentioning of the function, we know 3480 // we have if the level of the declare target attribute is -1. Note that we 3481 // check somewhere else if we should emit this at all. 3482 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3483 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3484 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3485 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3486 return false; 3487 } 3488 3489 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3490 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3491 // Implicit template instantiations may change linkage if they are later 3492 // explicitly instantiated, so they should not be emitted eagerly. 3493 return false; 3494 // Defer until all versions have been semantically checked. 3495 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3496 return false; 3497 } 3498 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3499 if (Context.getInlineVariableDefinitionKind(VD) == 3500 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3501 // A definition of an inline constexpr static data member may change 3502 // linkage later if it's redeclared outside the class. 3503 return false; 3504 if (CXX20ModuleInits && VD->getOwningModule() && 3505 !VD->getOwningModule()->isModuleMapModule()) { 3506 // For CXX20, module-owned initializers need to be deferred, since it is 3507 // not known at this point if they will be run for the current module or 3508 // as part of the initializer for an imported one. 3509 return false; 3510 } 3511 } 3512 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3513 // codegen for global variables, because they may be marked as threadprivate. 3514 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3515 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3516 !Global->getType().isConstantStorage(getContext(), false, false) && 3517 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3518 return false; 3519 3520 return true; 3521 } 3522 3523 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3524 StringRef Name = getMangledName(GD); 3525 3526 // The UUID descriptor should be pointer aligned. 3527 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3528 3529 // Look for an existing global. 3530 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3531 return ConstantAddress(GV, GV->getValueType(), Alignment); 3532 3533 ConstantEmitter Emitter(*this); 3534 llvm::Constant *Init; 3535 3536 APValue &V = GD->getAsAPValue(); 3537 if (!V.isAbsent()) { 3538 // If possible, emit the APValue version of the initializer. In particular, 3539 // this gets the type of the constant right. 3540 Init = Emitter.emitForInitializer( 3541 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3542 } else { 3543 // As a fallback, directly construct the constant. 3544 // FIXME: This may get padding wrong under esoteric struct layout rules. 3545 // MSVC appears to create a complete type 'struct __s_GUID' that it 3546 // presumably uses to represent these constants. 3547 MSGuidDecl::Parts Parts = GD->getParts(); 3548 llvm::Constant *Fields[4] = { 3549 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3550 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3551 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3552 llvm::ConstantDataArray::getRaw( 3553 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3554 Int8Ty)}; 3555 Init = llvm::ConstantStruct::getAnon(Fields); 3556 } 3557 3558 auto *GV = new llvm::GlobalVariable( 3559 getModule(), Init->getType(), 3560 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3561 if (supportsCOMDAT()) 3562 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3563 setDSOLocal(GV); 3564 3565 if (!V.isAbsent()) { 3566 Emitter.finalize(GV); 3567 return ConstantAddress(GV, GV->getValueType(), Alignment); 3568 } 3569 3570 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3571 return ConstantAddress(GV, Ty, Alignment); 3572 } 3573 3574 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3575 const UnnamedGlobalConstantDecl *GCD) { 3576 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3577 3578 llvm::GlobalVariable **Entry = nullptr; 3579 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3580 if (*Entry) 3581 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3582 3583 ConstantEmitter Emitter(*this); 3584 llvm::Constant *Init; 3585 3586 const APValue &V = GCD->getValue(); 3587 3588 assert(!V.isAbsent()); 3589 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3590 GCD->getType()); 3591 3592 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3593 /*isConstant=*/true, 3594 llvm::GlobalValue::PrivateLinkage, Init, 3595 ".constant"); 3596 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3597 GV->setAlignment(Alignment.getAsAlign()); 3598 3599 Emitter.finalize(GV); 3600 3601 *Entry = GV; 3602 return ConstantAddress(GV, GV->getValueType(), Alignment); 3603 } 3604 3605 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3606 const TemplateParamObjectDecl *TPO) { 3607 StringRef Name = getMangledName(TPO); 3608 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3609 3610 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3611 return ConstantAddress(GV, GV->getValueType(), Alignment); 3612 3613 ConstantEmitter Emitter(*this); 3614 llvm::Constant *Init = Emitter.emitForInitializer( 3615 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3616 3617 if (!Init) { 3618 ErrorUnsupported(TPO, "template parameter object"); 3619 return ConstantAddress::invalid(); 3620 } 3621 3622 llvm::GlobalValue::LinkageTypes Linkage = 3623 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3624 ? llvm::GlobalValue::LinkOnceODRLinkage 3625 : llvm::GlobalValue::InternalLinkage; 3626 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3627 /*isConstant=*/true, Linkage, Init, Name); 3628 setGVProperties(GV, TPO); 3629 if (supportsCOMDAT()) 3630 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3631 Emitter.finalize(GV); 3632 3633 return ConstantAddress(GV, GV->getValueType(), Alignment); 3634 } 3635 3636 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3637 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3638 assert(AA && "No alias?"); 3639 3640 CharUnits Alignment = getContext().getDeclAlign(VD); 3641 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3642 3643 // See if there is already something with the target's name in the module. 3644 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3645 if (Entry) 3646 return ConstantAddress(Entry, DeclTy, Alignment); 3647 3648 llvm::Constant *Aliasee; 3649 if (isa<llvm::FunctionType>(DeclTy)) 3650 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3651 GlobalDecl(cast<FunctionDecl>(VD)), 3652 /*ForVTable=*/false); 3653 else 3654 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3655 nullptr); 3656 3657 auto *F = cast<llvm::GlobalValue>(Aliasee); 3658 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3659 WeakRefReferences.insert(F); 3660 3661 return ConstantAddress(Aliasee, DeclTy, Alignment); 3662 } 3663 3664 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3665 if (!D) 3666 return false; 3667 if (auto *A = D->getAttr<AttrT>()) 3668 return A->isImplicit(); 3669 return D->isImplicit(); 3670 } 3671 3672 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3673 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3674 3675 // Weak references don't produce any output by themselves. 3676 if (Global->hasAttr<WeakRefAttr>()) 3677 return; 3678 3679 // If this is an alias definition (which otherwise looks like a declaration) 3680 // emit it now. 3681 if (Global->hasAttr<AliasAttr>()) 3682 return EmitAliasDefinition(GD); 3683 3684 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3685 if (Global->hasAttr<IFuncAttr>()) 3686 return emitIFuncDefinition(GD); 3687 3688 // If this is a cpu_dispatch multiversion function, emit the resolver. 3689 if (Global->hasAttr<CPUDispatchAttr>()) 3690 return emitCPUDispatchDefinition(GD); 3691 3692 // If this is CUDA, be selective about which declarations we emit. 3693 // Non-constexpr non-lambda implicit host device functions are not emitted 3694 // unless they are used on device side. 3695 if (LangOpts.CUDA) { 3696 if (LangOpts.CUDAIsDevice) { 3697 const auto *FD = dyn_cast<FunctionDecl>(Global); 3698 if ((!Global->hasAttr<CUDADeviceAttr>() || 3699 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3700 hasImplicitAttr<CUDAHostAttr>(FD) && 3701 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3702 !isLambdaCallOperator(FD) && 3703 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3704 !Global->hasAttr<CUDAGlobalAttr>() && 3705 !Global->hasAttr<CUDAConstantAttr>() && 3706 !Global->hasAttr<CUDASharedAttr>() && 3707 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3708 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3709 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3710 !Global->hasAttr<CUDAHostAttr>())) 3711 return; 3712 } else { 3713 // We need to emit host-side 'shadows' for all global 3714 // device-side variables because the CUDA runtime needs their 3715 // size and host-side address in order to provide access to 3716 // their device-side incarnations. 3717 3718 // So device-only functions are the only things we skip. 3719 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3720 Global->hasAttr<CUDADeviceAttr>()) 3721 return; 3722 3723 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3724 "Expected Variable or Function"); 3725 } 3726 } 3727 3728 if (LangOpts.OpenMP) { 3729 // If this is OpenMP, check if it is legal to emit this global normally. 3730 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3731 return; 3732 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3733 if (MustBeEmitted(Global)) 3734 EmitOMPDeclareReduction(DRD); 3735 return; 3736 } 3737 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3738 if (MustBeEmitted(Global)) 3739 EmitOMPDeclareMapper(DMD); 3740 return; 3741 } 3742 } 3743 3744 // Ignore declarations, they will be emitted on their first use. 3745 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3746 // Update deferred annotations with the latest declaration if the function 3747 // function was already used or defined. 3748 if (FD->hasAttr<AnnotateAttr>()) { 3749 StringRef MangledName = getMangledName(GD); 3750 if (GetGlobalValue(MangledName)) 3751 DeferredAnnotations[MangledName] = FD; 3752 } 3753 3754 // Forward declarations are emitted lazily on first use. 3755 if (!FD->doesThisDeclarationHaveABody()) { 3756 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3757 (!FD->isMultiVersion() || 3758 !FD->getASTContext().getTargetInfo().getTriple().isAArch64())) 3759 return; 3760 3761 StringRef MangledName = getMangledName(GD); 3762 3763 // Compute the function info and LLVM type. 3764 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3765 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3766 3767 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3768 /*DontDefer=*/false); 3769 return; 3770 } 3771 } else { 3772 const auto *VD = cast<VarDecl>(Global); 3773 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3774 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3775 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3776 if (LangOpts.OpenMP) { 3777 // Emit declaration of the must-be-emitted declare target variable. 3778 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3779 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3780 3781 // If this variable has external storage and doesn't require special 3782 // link handling we defer to its canonical definition. 3783 if (VD->hasExternalStorage() && 3784 Res != OMPDeclareTargetDeclAttr::MT_Link) 3785 return; 3786 3787 bool UnifiedMemoryEnabled = 3788 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3789 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3790 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3791 !UnifiedMemoryEnabled) { 3792 (void)GetAddrOfGlobalVar(VD); 3793 } else { 3794 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3795 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3796 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3797 UnifiedMemoryEnabled)) && 3798 "Link clause or to clause with unified memory expected."); 3799 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3800 } 3801 3802 return; 3803 } 3804 } 3805 // If this declaration may have caused an inline variable definition to 3806 // change linkage, make sure that it's emitted. 3807 if (Context.getInlineVariableDefinitionKind(VD) == 3808 ASTContext::InlineVariableDefinitionKind::Strong) 3809 GetAddrOfGlobalVar(VD); 3810 return; 3811 } 3812 } 3813 3814 // Defer code generation to first use when possible, e.g. if this is an inline 3815 // function. If the global must always be emitted, do it eagerly if possible 3816 // to benefit from cache locality. 3817 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3818 // Emit the definition if it can't be deferred. 3819 EmitGlobalDefinition(GD); 3820 addEmittedDeferredDecl(GD); 3821 return; 3822 } 3823 3824 // If we're deferring emission of a C++ variable with an 3825 // initializer, remember the order in which it appeared in the file. 3826 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3827 cast<VarDecl>(Global)->hasInit()) { 3828 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3829 CXXGlobalInits.push_back(nullptr); 3830 } 3831 3832 StringRef MangledName = getMangledName(GD); 3833 if (GetGlobalValue(MangledName) != nullptr) { 3834 // The value has already been used and should therefore be emitted. 3835 addDeferredDeclToEmit(GD); 3836 } else if (MustBeEmitted(Global)) { 3837 // The value must be emitted, but cannot be emitted eagerly. 3838 assert(!MayBeEmittedEagerly(Global)); 3839 addDeferredDeclToEmit(GD); 3840 } else { 3841 // Otherwise, remember that we saw a deferred decl with this name. The 3842 // first use of the mangled name will cause it to move into 3843 // DeferredDeclsToEmit. 3844 DeferredDecls[MangledName] = GD; 3845 } 3846 } 3847 3848 // Check if T is a class type with a destructor that's not dllimport. 3849 static bool HasNonDllImportDtor(QualType T) { 3850 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3851 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3852 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3853 return true; 3854 3855 return false; 3856 } 3857 3858 namespace { 3859 struct FunctionIsDirectlyRecursive 3860 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3861 const StringRef Name; 3862 const Builtin::Context &BI; 3863 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3864 : Name(N), BI(C) {} 3865 3866 bool VisitCallExpr(const CallExpr *E) { 3867 const FunctionDecl *FD = E->getDirectCallee(); 3868 if (!FD) 3869 return false; 3870 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3871 if (Attr && Name == Attr->getLabel()) 3872 return true; 3873 unsigned BuiltinID = FD->getBuiltinID(); 3874 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3875 return false; 3876 StringRef BuiltinName = BI.getName(BuiltinID); 3877 if (BuiltinName.starts_with("__builtin_") && 3878 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3879 return true; 3880 } 3881 return false; 3882 } 3883 3884 bool VisitStmt(const Stmt *S) { 3885 for (const Stmt *Child : S->children()) 3886 if (Child && this->Visit(Child)) 3887 return true; 3888 return false; 3889 } 3890 }; 3891 3892 // Make sure we're not referencing non-imported vars or functions. 3893 struct DLLImportFunctionVisitor 3894 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3895 bool SafeToInline = true; 3896 3897 bool shouldVisitImplicitCode() const { return true; } 3898 3899 bool VisitVarDecl(VarDecl *VD) { 3900 if (VD->getTLSKind()) { 3901 // A thread-local variable cannot be imported. 3902 SafeToInline = false; 3903 return SafeToInline; 3904 } 3905 3906 // A variable definition might imply a destructor call. 3907 if (VD->isThisDeclarationADefinition()) 3908 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3909 3910 return SafeToInline; 3911 } 3912 3913 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3914 if (const auto *D = E->getTemporary()->getDestructor()) 3915 SafeToInline = D->hasAttr<DLLImportAttr>(); 3916 return SafeToInline; 3917 } 3918 3919 bool VisitDeclRefExpr(DeclRefExpr *E) { 3920 ValueDecl *VD = E->getDecl(); 3921 if (isa<FunctionDecl>(VD)) 3922 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3923 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3924 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3925 return SafeToInline; 3926 } 3927 3928 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3929 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3930 return SafeToInline; 3931 } 3932 3933 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3934 CXXMethodDecl *M = E->getMethodDecl(); 3935 if (!M) { 3936 // Call through a pointer to member function. This is safe to inline. 3937 SafeToInline = true; 3938 } else { 3939 SafeToInline = M->hasAttr<DLLImportAttr>(); 3940 } 3941 return SafeToInline; 3942 } 3943 3944 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3945 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3946 return SafeToInline; 3947 } 3948 3949 bool VisitCXXNewExpr(CXXNewExpr *E) { 3950 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3951 return SafeToInline; 3952 } 3953 }; 3954 } 3955 3956 // isTriviallyRecursive - Check if this function calls another 3957 // decl that, because of the asm attribute or the other decl being a builtin, 3958 // ends up pointing to itself. 3959 bool 3960 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3961 StringRef Name; 3962 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3963 // asm labels are a special kind of mangling we have to support. 3964 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3965 if (!Attr) 3966 return false; 3967 Name = Attr->getLabel(); 3968 } else { 3969 Name = FD->getName(); 3970 } 3971 3972 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3973 const Stmt *Body = FD->getBody(); 3974 return Body ? Walker.Visit(Body) : false; 3975 } 3976 3977 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3978 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3979 return true; 3980 3981 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3982 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3983 return false; 3984 3985 // We don't import function bodies from other named module units since that 3986 // behavior may break ABI compatibility of the current unit. 3987 if (const Module *M = F->getOwningModule(); 3988 M && M->getTopLevelModule()->isNamedModule() && 3989 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 3990 // There are practices to mark template member function as always-inline 3991 // and mark the template as extern explicit instantiation but not give 3992 // the definition for member function. So we have to emit the function 3993 // from explicitly instantiation with always-inline. 3994 // 3995 // See https://github.com/llvm/llvm-project/issues/86893 for details. 3996 // 3997 // TODO: Maybe it is better to give it a warning if we call a non-inline 3998 // function from other module units which is marked as always-inline. 3999 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4000 return false; 4001 } 4002 } 4003 4004 if (F->hasAttr<NoInlineAttr>()) 4005 return false; 4006 4007 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4008 // Check whether it would be safe to inline this dllimport function. 4009 DLLImportFunctionVisitor Visitor; 4010 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4011 if (!Visitor.SafeToInline) 4012 return false; 4013 4014 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4015 // Implicit destructor invocations aren't captured in the AST, so the 4016 // check above can't see them. Check for them manually here. 4017 for (const Decl *Member : Dtor->getParent()->decls()) 4018 if (isa<FieldDecl>(Member)) 4019 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4020 return false; 4021 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4022 if (HasNonDllImportDtor(B.getType())) 4023 return false; 4024 } 4025 } 4026 4027 // Inline builtins declaration must be emitted. They often are fortified 4028 // functions. 4029 if (F->isInlineBuiltinDeclaration()) 4030 return true; 4031 4032 // PR9614. Avoid cases where the source code is lying to us. An available 4033 // externally function should have an equivalent function somewhere else, 4034 // but a function that calls itself through asm label/`__builtin_` trickery is 4035 // clearly not equivalent to the real implementation. 4036 // This happens in glibc's btowc and in some configure checks. 4037 return !isTriviallyRecursive(F); 4038 } 4039 4040 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4041 return CodeGenOpts.OptimizationLevel > 0; 4042 } 4043 4044 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4045 llvm::GlobalValue *GV) { 4046 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4047 4048 if (FD->isCPUSpecificMultiVersion()) { 4049 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4050 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4051 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4052 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4053 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4054 // AArch64 favors the default target version over the clone if any. 4055 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4056 TC->isFirstOfVersion(I)) 4057 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4058 // Ensure that the resolver function is also emitted. 4059 GetOrCreateMultiVersionResolver(GD); 4060 } else 4061 EmitGlobalFunctionDefinition(GD, GV); 4062 4063 // Defer the resolver emission until we can reason whether the TU 4064 // contains a default target version implementation. 4065 if (FD->isTargetVersionMultiVersion()) 4066 AddDeferredMultiVersionResolverToEmit(GD); 4067 } 4068 4069 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4070 const auto *D = cast<ValueDecl>(GD.getDecl()); 4071 4072 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4073 Context.getSourceManager(), 4074 "Generating code for declaration"); 4075 4076 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4077 // At -O0, don't generate IR for functions with available_externally 4078 // linkage. 4079 if (!shouldEmitFunction(GD)) 4080 return; 4081 4082 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4083 std::string Name; 4084 llvm::raw_string_ostream OS(Name); 4085 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4086 /*Qualified=*/true); 4087 return Name; 4088 }); 4089 4090 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4091 // Make sure to emit the definition(s) before we emit the thunks. 4092 // This is necessary for the generation of certain thunks. 4093 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4094 ABI->emitCXXStructor(GD); 4095 else if (FD->isMultiVersion()) 4096 EmitMultiVersionFunctionDefinition(GD, GV); 4097 else 4098 EmitGlobalFunctionDefinition(GD, GV); 4099 4100 if (Method->isVirtual()) 4101 getVTables().EmitThunks(GD); 4102 4103 return; 4104 } 4105 4106 if (FD->isMultiVersion()) 4107 return EmitMultiVersionFunctionDefinition(GD, GV); 4108 return EmitGlobalFunctionDefinition(GD, GV); 4109 } 4110 4111 if (const auto *VD = dyn_cast<VarDecl>(D)) 4112 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4113 4114 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4115 } 4116 4117 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4118 llvm::Function *NewFn); 4119 4120 static unsigned 4121 TargetMVPriority(const TargetInfo &TI, 4122 const CodeGenFunction::MultiVersionResolverOption &RO) { 4123 unsigned Priority = 0; 4124 unsigned NumFeatures = 0; 4125 for (StringRef Feat : RO.Conditions.Features) { 4126 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4127 NumFeatures++; 4128 } 4129 4130 if (!RO.Conditions.Architecture.empty()) 4131 Priority = std::max( 4132 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4133 4134 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4135 4136 return Priority; 4137 } 4138 4139 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4140 // TU can forward declare the function without causing problems. Particularly 4141 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4142 // work with internal linkage functions, so that the same function name can be 4143 // used with internal linkage in multiple TUs. 4144 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4145 GlobalDecl GD) { 4146 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4147 if (FD->getFormalLinkage() == Linkage::Internal) 4148 return llvm::GlobalValue::InternalLinkage; 4149 return llvm::GlobalValue::WeakODRLinkage; 4150 } 4151 4152 static FunctionDecl *createDefaultTargetVersionFrom(const FunctionDecl *FD) { 4153 auto *DeclCtx = const_cast<DeclContext *>(FD->getDeclContext()); 4154 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 4155 StorageClass SC = FD->getStorageClass(); 4156 DeclarationName Name = FD->getNameInfo().getName(); 4157 4158 FunctionDecl *NewDecl = 4159 FunctionDecl::Create(FD->getASTContext(), DeclCtx, FD->getBeginLoc(), 4160 FD->getEndLoc(), Name, TInfo->getType(), TInfo, SC); 4161 4162 NewDecl->setIsMultiVersion(); 4163 NewDecl->addAttr(TargetVersionAttr::CreateImplicit( 4164 NewDecl->getASTContext(), "default", NewDecl->getSourceRange())); 4165 4166 return NewDecl; 4167 } 4168 4169 void CodeGenModule::emitMultiVersionFunctions() { 4170 std::vector<GlobalDecl> MVFuncsToEmit; 4171 MultiVersionFuncs.swap(MVFuncsToEmit); 4172 for (GlobalDecl GD : MVFuncsToEmit) { 4173 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4174 assert(FD && "Expected a FunctionDecl"); 4175 4176 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4177 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4178 StringRef MangledName = getMangledName(CurGD); 4179 llvm::Constant *Func = GetGlobalValue(MangledName); 4180 if (!Func) { 4181 if (Decl->isDefined()) { 4182 EmitGlobalFunctionDefinition(CurGD, nullptr); 4183 Func = GetGlobalValue(MangledName); 4184 } else { 4185 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4186 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4187 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4188 /*DontDefer=*/false, ForDefinition); 4189 } 4190 assert(Func && "This should have just been created"); 4191 } 4192 return cast<llvm::Function>(Func); 4193 }; 4194 4195 bool HasDefaultDecl = !FD->isTargetVersionMultiVersion(); 4196 bool ShouldEmitResolver = 4197 !getContext().getTargetInfo().getTriple().isAArch64(); 4198 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4199 4200 getContext().forEachMultiversionedFunctionVersion( 4201 FD, [&](const FunctionDecl *CurFD) { 4202 llvm::SmallVector<StringRef, 8> Feats; 4203 4204 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4205 TA->getAddedFeatures(Feats); 4206 llvm::Function *Func = createFunction(CurFD); 4207 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4208 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4209 bool HasDefaultDef = TVA->isDefaultVersion() && 4210 CurFD->doesThisDeclarationHaveABody(); 4211 HasDefaultDecl |= TVA->isDefaultVersion(); 4212 ShouldEmitResolver |= (CurFD->isUsed() || HasDefaultDef); 4213 TVA->getFeatures(Feats); 4214 llvm::Function *Func = createFunction(CurFD); 4215 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4216 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4217 ShouldEmitResolver |= CurFD->doesThisDeclarationHaveABody(); 4218 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4219 if (!TC->isFirstOfVersion(I)) 4220 continue; 4221 4222 llvm::Function *Func = createFunction(CurFD, I); 4223 StringRef Architecture; 4224 Feats.clear(); 4225 if (getTarget().getTriple().isAArch64()) 4226 TC->getFeatures(Feats, I); 4227 else { 4228 StringRef Version = TC->getFeatureStr(I); 4229 if (Version.starts_with("arch=")) 4230 Architecture = Version.drop_front(sizeof("arch=") - 1); 4231 else if (Version != "default") 4232 Feats.push_back(Version); 4233 } 4234 Options.emplace_back(Func, Architecture, Feats); 4235 } 4236 } else 4237 llvm_unreachable("unexpected MultiVersionKind"); 4238 }); 4239 4240 if (!ShouldEmitResolver) 4241 continue; 4242 4243 if (!HasDefaultDecl) { 4244 FunctionDecl *NewFD = createDefaultTargetVersionFrom(FD); 4245 llvm::Function *Func = createFunction(NewFD); 4246 llvm::SmallVector<StringRef, 1> Feats; 4247 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4248 } 4249 4250 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4251 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4252 ResolverConstant = IFunc->getResolver(); 4253 if (FD->isTargetClonesMultiVersion() || 4254 FD->isTargetVersionMultiVersion()) { 4255 std::string MangledName = getMangledNameImpl( 4256 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4257 if (!GetGlobalValue(MangledName + ".ifunc")) { 4258 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4259 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4260 // In prior versions of Clang, the mangling for ifuncs incorrectly 4261 // included an .ifunc suffix. This alias is generated for backward 4262 // compatibility. It is deprecated, and may be removed in the future. 4263 auto *Alias = llvm::GlobalAlias::create( 4264 DeclTy, 0, getMultiversionLinkage(*this, GD), 4265 MangledName + ".ifunc", IFunc, &getModule()); 4266 SetCommonAttributes(FD, Alias); 4267 } 4268 } 4269 } 4270 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4271 4272 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4273 4274 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4275 ResolverFunc->setComdat( 4276 getModule().getOrInsertComdat(ResolverFunc->getName())); 4277 4278 const TargetInfo &TI = getTarget(); 4279 llvm::stable_sort( 4280 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4281 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4282 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4283 }); 4284 CodeGenFunction CGF(*this); 4285 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4286 } 4287 4288 // Ensure that any additions to the deferred decls list caused by emitting a 4289 // variant are emitted. This can happen when the variant itself is inline and 4290 // calls a function without linkage. 4291 if (!MVFuncsToEmit.empty()) 4292 EmitDeferred(); 4293 4294 // Ensure that any additions to the multiversion funcs list from either the 4295 // deferred decls or the multiversion functions themselves are emitted. 4296 if (!MultiVersionFuncs.empty()) 4297 emitMultiVersionFunctions(); 4298 } 4299 4300 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4301 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4302 assert(FD && "Not a FunctionDecl?"); 4303 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4304 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4305 assert(DD && "Not a cpu_dispatch Function?"); 4306 4307 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4308 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4309 4310 StringRef ResolverName = getMangledName(GD); 4311 UpdateMultiVersionNames(GD, FD, ResolverName); 4312 4313 llvm::Type *ResolverType; 4314 GlobalDecl ResolverGD; 4315 if (getTarget().supportsIFunc()) { 4316 ResolverType = llvm::FunctionType::get( 4317 llvm::PointerType::get(DeclTy, 4318 getTypes().getTargetAddressSpace(FD->getType())), 4319 false); 4320 } 4321 else { 4322 ResolverType = DeclTy; 4323 ResolverGD = GD; 4324 } 4325 4326 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4327 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4328 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4329 if (supportsCOMDAT()) 4330 ResolverFunc->setComdat( 4331 getModule().getOrInsertComdat(ResolverFunc->getName())); 4332 4333 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4334 const TargetInfo &Target = getTarget(); 4335 unsigned Index = 0; 4336 for (const IdentifierInfo *II : DD->cpus()) { 4337 // Get the name of the target function so we can look it up/create it. 4338 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4339 getCPUSpecificMangling(*this, II->getName()); 4340 4341 llvm::Constant *Func = GetGlobalValue(MangledName); 4342 4343 if (!Func) { 4344 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4345 if (ExistingDecl.getDecl() && 4346 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4347 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4348 Func = GetGlobalValue(MangledName); 4349 } else { 4350 if (!ExistingDecl.getDecl()) 4351 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4352 4353 Func = GetOrCreateLLVMFunction( 4354 MangledName, DeclTy, ExistingDecl, 4355 /*ForVTable=*/false, /*DontDefer=*/true, 4356 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4357 } 4358 } 4359 4360 llvm::SmallVector<StringRef, 32> Features; 4361 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4362 llvm::transform(Features, Features.begin(), 4363 [](StringRef Str) { return Str.substr(1); }); 4364 llvm::erase_if(Features, [&Target](StringRef Feat) { 4365 return !Target.validateCpuSupports(Feat); 4366 }); 4367 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4368 ++Index; 4369 } 4370 4371 llvm::stable_sort( 4372 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4373 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4374 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4375 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4376 }); 4377 4378 // If the list contains multiple 'default' versions, such as when it contains 4379 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4380 // always run on at least a 'pentium'). We do this by deleting the 'least 4381 // advanced' (read, lowest mangling letter). 4382 while (Options.size() > 1 && 4383 llvm::all_of(llvm::X86::getCpuSupportsMask( 4384 (Options.end() - 2)->Conditions.Features), 4385 [](auto X) { return X == 0; })) { 4386 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4387 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4388 if (LHSName.compare(RHSName) < 0) 4389 Options.erase(Options.end() - 2); 4390 else 4391 Options.erase(Options.end() - 1); 4392 } 4393 4394 CodeGenFunction CGF(*this); 4395 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4396 4397 if (getTarget().supportsIFunc()) { 4398 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4399 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4400 4401 // Fix up function declarations that were created for cpu_specific before 4402 // cpu_dispatch was known 4403 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4404 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4405 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4406 &getModule()); 4407 GI->takeName(IFunc); 4408 IFunc->replaceAllUsesWith(GI); 4409 IFunc->eraseFromParent(); 4410 IFunc = GI; 4411 } 4412 4413 std::string AliasName = getMangledNameImpl( 4414 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4415 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4416 if (!AliasFunc) { 4417 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4418 &getModule()); 4419 SetCommonAttributes(GD, GA); 4420 } 4421 } 4422 } 4423 4424 /// Adds a declaration to the list of multi version functions if not present. 4425 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4426 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4427 assert(FD && "Not a FunctionDecl?"); 4428 4429 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4430 std::string MangledName = 4431 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4432 if (!DeferredResolversToEmit.insert(MangledName).second) 4433 return; 4434 } 4435 MultiVersionFuncs.push_back(GD); 4436 } 4437 4438 /// If a dispatcher for the specified mangled name is not in the module, create 4439 /// and return an llvm Function with the specified type. 4440 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4441 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4442 assert(FD && "Not a FunctionDecl?"); 4443 4444 std::string MangledName = 4445 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4446 4447 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4448 // a separate resolver). 4449 std::string ResolverName = MangledName; 4450 if (getTarget().supportsIFunc()) { 4451 switch (FD->getMultiVersionKind()) { 4452 case MultiVersionKind::None: 4453 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4454 case MultiVersionKind::Target: 4455 case MultiVersionKind::CPUSpecific: 4456 case MultiVersionKind::CPUDispatch: 4457 ResolverName += ".ifunc"; 4458 break; 4459 case MultiVersionKind::TargetClones: 4460 case MultiVersionKind::TargetVersion: 4461 break; 4462 } 4463 } else if (FD->isTargetMultiVersion()) { 4464 ResolverName += ".resolver"; 4465 } 4466 4467 // If the resolver has already been created, just return it. 4468 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4469 return ResolverGV; 4470 4471 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4472 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4473 4474 // The resolver needs to be created. For target and target_clones, defer 4475 // creation until the end of the TU. 4476 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4477 AddDeferredMultiVersionResolverToEmit(GD); 4478 4479 // For cpu_specific, don't create an ifunc yet because we don't know if the 4480 // cpu_dispatch will be emitted in this translation unit. 4481 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4482 llvm::Type *ResolverType = llvm::FunctionType::get( 4483 llvm::PointerType::get(DeclTy, 4484 getTypes().getTargetAddressSpace(FD->getType())), 4485 false); 4486 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4487 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4488 /*ForVTable=*/false); 4489 llvm::GlobalIFunc *GIF = 4490 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4491 "", Resolver, &getModule()); 4492 GIF->setName(ResolverName); 4493 SetCommonAttributes(FD, GIF); 4494 4495 return GIF; 4496 } 4497 4498 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4499 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4500 assert(isa<llvm::GlobalValue>(Resolver) && 4501 "Resolver should be created for the first time"); 4502 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4503 return Resolver; 4504 } 4505 4506 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4507 /// module, create and return an llvm Function with the specified type. If there 4508 /// is something in the module with the specified name, return it potentially 4509 /// bitcasted to the right type. 4510 /// 4511 /// If D is non-null, it specifies a decl that correspond to this. This is used 4512 /// to set the attributes on the function when it is first created. 4513 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4514 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4515 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4516 ForDefinition_t IsForDefinition) { 4517 const Decl *D = GD.getDecl(); 4518 4519 // Any attempts to use a MultiVersion function should result in retrieving 4520 // the iFunc instead. Name Mangling will handle the rest of the changes. 4521 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4522 // For the device mark the function as one that should be emitted. 4523 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4524 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4525 !DontDefer && !IsForDefinition) { 4526 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4527 GlobalDecl GDDef; 4528 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4529 GDDef = GlobalDecl(CD, GD.getCtorType()); 4530 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4531 GDDef = GlobalDecl(DD, GD.getDtorType()); 4532 else 4533 GDDef = GlobalDecl(FDDef); 4534 EmitGlobal(GDDef); 4535 } 4536 } 4537 4538 if (FD->isMultiVersion()) { 4539 UpdateMultiVersionNames(GD, FD, MangledName); 4540 if (FD->getASTContext().getTargetInfo().getTriple().isAArch64() && 4541 !FD->isUsed()) 4542 AddDeferredMultiVersionResolverToEmit(GD); 4543 else if (!IsForDefinition) 4544 return GetOrCreateMultiVersionResolver(GD); 4545 } 4546 } 4547 4548 // Lookup the entry, lazily creating it if necessary. 4549 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4550 if (Entry) { 4551 if (WeakRefReferences.erase(Entry)) { 4552 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4553 if (FD && !FD->hasAttr<WeakAttr>()) 4554 Entry->setLinkage(llvm::Function::ExternalLinkage); 4555 } 4556 4557 // Handle dropped DLL attributes. 4558 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4559 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4560 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4561 setDSOLocal(Entry); 4562 } 4563 4564 // If there are two attempts to define the same mangled name, issue an 4565 // error. 4566 if (IsForDefinition && !Entry->isDeclaration()) { 4567 GlobalDecl OtherGD; 4568 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4569 // to make sure that we issue an error only once. 4570 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4571 (GD.getCanonicalDecl().getDecl() != 4572 OtherGD.getCanonicalDecl().getDecl()) && 4573 DiagnosedConflictingDefinitions.insert(GD).second) { 4574 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4575 << MangledName; 4576 getDiags().Report(OtherGD.getDecl()->getLocation(), 4577 diag::note_previous_definition); 4578 } 4579 } 4580 4581 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4582 (Entry->getValueType() == Ty)) { 4583 return Entry; 4584 } 4585 4586 // Make sure the result is of the correct type. 4587 // (If function is requested for a definition, we always need to create a new 4588 // function, not just return a bitcast.) 4589 if (!IsForDefinition) 4590 return Entry; 4591 } 4592 4593 // This function doesn't have a complete type (for example, the return 4594 // type is an incomplete struct). Use a fake type instead, and make 4595 // sure not to try to set attributes. 4596 bool IsIncompleteFunction = false; 4597 4598 llvm::FunctionType *FTy; 4599 if (isa<llvm::FunctionType>(Ty)) { 4600 FTy = cast<llvm::FunctionType>(Ty); 4601 } else { 4602 FTy = llvm::FunctionType::get(VoidTy, false); 4603 IsIncompleteFunction = true; 4604 } 4605 4606 llvm::Function *F = 4607 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4608 Entry ? StringRef() : MangledName, &getModule()); 4609 4610 // Store the declaration associated with this function so it is potentially 4611 // updated by further declarations or definitions and emitted at the end. 4612 if (D && D->hasAttr<AnnotateAttr>()) 4613 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4614 4615 // If we already created a function with the same mangled name (but different 4616 // type) before, take its name and add it to the list of functions to be 4617 // replaced with F at the end of CodeGen. 4618 // 4619 // This happens if there is a prototype for a function (e.g. "int f()") and 4620 // then a definition of a different type (e.g. "int f(int x)"). 4621 if (Entry) { 4622 F->takeName(Entry); 4623 4624 // This might be an implementation of a function without a prototype, in 4625 // which case, try to do special replacement of calls which match the new 4626 // prototype. The really key thing here is that we also potentially drop 4627 // arguments from the call site so as to make a direct call, which makes the 4628 // inliner happier and suppresses a number of optimizer warnings (!) about 4629 // dropping arguments. 4630 if (!Entry->use_empty()) { 4631 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4632 Entry->removeDeadConstantUsers(); 4633 } 4634 4635 addGlobalValReplacement(Entry, F); 4636 } 4637 4638 assert(F->getName() == MangledName && "name was uniqued!"); 4639 if (D) 4640 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4641 if (ExtraAttrs.hasFnAttrs()) { 4642 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4643 F->addFnAttrs(B); 4644 } 4645 4646 if (!DontDefer) { 4647 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4648 // each other bottoming out with the base dtor. Therefore we emit non-base 4649 // dtors on usage, even if there is no dtor definition in the TU. 4650 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4651 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4652 GD.getDtorType())) 4653 addDeferredDeclToEmit(GD); 4654 4655 // This is the first use or definition of a mangled name. If there is a 4656 // deferred decl with this name, remember that we need to emit it at the end 4657 // of the file. 4658 auto DDI = DeferredDecls.find(MangledName); 4659 if (DDI != DeferredDecls.end()) { 4660 // Move the potentially referenced deferred decl to the 4661 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4662 // don't need it anymore). 4663 addDeferredDeclToEmit(DDI->second); 4664 DeferredDecls.erase(DDI); 4665 4666 // Otherwise, there are cases we have to worry about where we're 4667 // using a declaration for which we must emit a definition but where 4668 // we might not find a top-level definition: 4669 // - member functions defined inline in their classes 4670 // - friend functions defined inline in some class 4671 // - special member functions with implicit definitions 4672 // If we ever change our AST traversal to walk into class methods, 4673 // this will be unnecessary. 4674 // 4675 // We also don't emit a definition for a function if it's going to be an 4676 // entry in a vtable, unless it's already marked as used. 4677 } else if (getLangOpts().CPlusPlus && D) { 4678 // Look for a declaration that's lexically in a record. 4679 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4680 FD = FD->getPreviousDecl()) { 4681 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4682 if (FD->doesThisDeclarationHaveABody()) { 4683 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4684 break; 4685 } 4686 } 4687 } 4688 } 4689 } 4690 4691 // Make sure the result is of the requested type. 4692 if (!IsIncompleteFunction) { 4693 assert(F->getFunctionType() == Ty); 4694 return F; 4695 } 4696 4697 return F; 4698 } 4699 4700 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4701 /// non-null, then this function will use the specified type if it has to 4702 /// create it (this occurs when we see a definition of the function). 4703 llvm::Constant * 4704 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4705 bool DontDefer, 4706 ForDefinition_t IsForDefinition) { 4707 // If there was no specific requested type, just convert it now. 4708 if (!Ty) { 4709 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4710 Ty = getTypes().ConvertType(FD->getType()); 4711 } 4712 4713 // Devirtualized destructor calls may come through here instead of via 4714 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4715 // of the complete destructor when necessary. 4716 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4717 if (getTarget().getCXXABI().isMicrosoft() && 4718 GD.getDtorType() == Dtor_Complete && 4719 DD->getParent()->getNumVBases() == 0) 4720 GD = GlobalDecl(DD, Dtor_Base); 4721 } 4722 4723 StringRef MangledName = getMangledName(GD); 4724 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4725 /*IsThunk=*/false, llvm::AttributeList(), 4726 IsForDefinition); 4727 // Returns kernel handle for HIP kernel stub function. 4728 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4729 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4730 auto *Handle = getCUDARuntime().getKernelHandle( 4731 cast<llvm::Function>(F->stripPointerCasts()), GD); 4732 if (IsForDefinition) 4733 return F; 4734 return Handle; 4735 } 4736 return F; 4737 } 4738 4739 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4740 llvm::GlobalValue *F = 4741 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4742 4743 return llvm::NoCFIValue::get(F); 4744 } 4745 4746 static const FunctionDecl * 4747 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4748 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4749 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4750 4751 IdentifierInfo &CII = C.Idents.get(Name); 4752 for (const auto *Result : DC->lookup(&CII)) 4753 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4754 return FD; 4755 4756 if (!C.getLangOpts().CPlusPlus) 4757 return nullptr; 4758 4759 // Demangle the premangled name from getTerminateFn() 4760 IdentifierInfo &CXXII = 4761 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4762 ? C.Idents.get("terminate") 4763 : C.Idents.get(Name); 4764 4765 for (const auto &N : {"__cxxabiv1", "std"}) { 4766 IdentifierInfo &NS = C.Idents.get(N); 4767 for (const auto *Result : DC->lookup(&NS)) { 4768 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4769 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4770 for (const auto *Result : LSD->lookup(&NS)) 4771 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4772 break; 4773 4774 if (ND) 4775 for (const auto *Result : ND->lookup(&CXXII)) 4776 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4777 return FD; 4778 } 4779 } 4780 4781 return nullptr; 4782 } 4783 4784 /// CreateRuntimeFunction - Create a new runtime function with the specified 4785 /// type and name. 4786 llvm::FunctionCallee 4787 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4788 llvm::AttributeList ExtraAttrs, bool Local, 4789 bool AssumeConvergent) { 4790 if (AssumeConvergent) { 4791 ExtraAttrs = 4792 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4793 } 4794 4795 llvm::Constant *C = 4796 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4797 /*DontDefer=*/false, /*IsThunk=*/false, 4798 ExtraAttrs); 4799 4800 if (auto *F = dyn_cast<llvm::Function>(C)) { 4801 if (F->empty()) { 4802 F->setCallingConv(getRuntimeCC()); 4803 4804 // In Windows Itanium environments, try to mark runtime functions 4805 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4806 // will link their standard library statically or dynamically. Marking 4807 // functions imported when they are not imported can cause linker errors 4808 // and warnings. 4809 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4810 !getCodeGenOpts().LTOVisibilityPublicStd) { 4811 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4812 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4813 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4814 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4815 } 4816 } 4817 setDSOLocal(F); 4818 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4819 // of trying to approximate the attributes using the LLVM function 4820 // signature. This requires revising the API of CreateRuntimeFunction(). 4821 markRegisterParameterAttributes(F); 4822 } 4823 } 4824 4825 return {FTy, C}; 4826 } 4827 4828 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4829 /// create and return an llvm GlobalVariable with the specified type and address 4830 /// space. If there is something in the module with the specified name, return 4831 /// it potentially bitcasted to the right type. 4832 /// 4833 /// If D is non-null, it specifies a decl that correspond to this. This is used 4834 /// to set the attributes on the global when it is first created. 4835 /// 4836 /// If IsForDefinition is true, it is guaranteed that an actual global with 4837 /// type Ty will be returned, not conversion of a variable with the same 4838 /// mangled name but some other type. 4839 llvm::Constant * 4840 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4841 LangAS AddrSpace, const VarDecl *D, 4842 ForDefinition_t IsForDefinition) { 4843 // Lookup the entry, lazily creating it if necessary. 4844 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4845 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4846 if (Entry) { 4847 if (WeakRefReferences.erase(Entry)) { 4848 if (D && !D->hasAttr<WeakAttr>()) 4849 Entry->setLinkage(llvm::Function::ExternalLinkage); 4850 } 4851 4852 // Handle dropped DLL attributes. 4853 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4854 !shouldMapVisibilityToDLLExport(D)) 4855 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4856 4857 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4858 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4859 4860 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4861 return Entry; 4862 4863 // If there are two attempts to define the same mangled name, issue an 4864 // error. 4865 if (IsForDefinition && !Entry->isDeclaration()) { 4866 GlobalDecl OtherGD; 4867 const VarDecl *OtherD; 4868 4869 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4870 // to make sure that we issue an error only once. 4871 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4872 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4873 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4874 OtherD->hasInit() && 4875 DiagnosedConflictingDefinitions.insert(D).second) { 4876 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4877 << MangledName; 4878 getDiags().Report(OtherGD.getDecl()->getLocation(), 4879 diag::note_previous_definition); 4880 } 4881 } 4882 4883 // Make sure the result is of the correct type. 4884 if (Entry->getType()->getAddressSpace() != TargetAS) 4885 return llvm::ConstantExpr::getAddrSpaceCast( 4886 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4887 4888 // (If global is requested for a definition, we always need to create a new 4889 // global, not just return a bitcast.) 4890 if (!IsForDefinition) 4891 return Entry; 4892 } 4893 4894 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4895 4896 auto *GV = new llvm::GlobalVariable( 4897 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4898 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4899 getContext().getTargetAddressSpace(DAddrSpace)); 4900 4901 // If we already created a global with the same mangled name (but different 4902 // type) before, take its name and remove it from its parent. 4903 if (Entry) { 4904 GV->takeName(Entry); 4905 4906 if (!Entry->use_empty()) { 4907 Entry->replaceAllUsesWith(GV); 4908 } 4909 4910 Entry->eraseFromParent(); 4911 } 4912 4913 // This is the first use or definition of a mangled name. If there is a 4914 // deferred decl with this name, remember that we need to emit it at the end 4915 // of the file. 4916 auto DDI = DeferredDecls.find(MangledName); 4917 if (DDI != DeferredDecls.end()) { 4918 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4919 // list, and remove it from DeferredDecls (since we don't need it anymore). 4920 addDeferredDeclToEmit(DDI->second); 4921 DeferredDecls.erase(DDI); 4922 } 4923 4924 // Handle things which are present even on external declarations. 4925 if (D) { 4926 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4927 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4928 4929 // FIXME: This code is overly simple and should be merged with other global 4930 // handling. 4931 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4932 4933 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4934 4935 setLinkageForGV(GV, D); 4936 4937 if (D->getTLSKind()) { 4938 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4939 CXXThreadLocals.push_back(D); 4940 setTLSMode(GV, *D); 4941 } 4942 4943 setGVProperties(GV, D); 4944 4945 // If required by the ABI, treat declarations of static data members with 4946 // inline initializers as definitions. 4947 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4948 EmitGlobalVarDefinition(D); 4949 } 4950 4951 // Emit section information for extern variables. 4952 if (D->hasExternalStorage()) { 4953 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4954 GV->setSection(SA->getName()); 4955 } 4956 4957 // Handle XCore specific ABI requirements. 4958 if (getTriple().getArch() == llvm::Triple::xcore && 4959 D->getLanguageLinkage() == CLanguageLinkage && 4960 D->getType().isConstant(Context) && 4961 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4962 GV->setSection(".cp.rodata"); 4963 4964 // Handle code model attribute 4965 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 4966 GV->setCodeModel(CMA->getModel()); 4967 4968 // Check if we a have a const declaration with an initializer, we may be 4969 // able to emit it as available_externally to expose it's value to the 4970 // optimizer. 4971 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4972 D->getType().isConstQualified() && !GV->hasInitializer() && 4973 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4974 const auto *Record = 4975 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4976 bool HasMutableFields = Record && Record->hasMutableFields(); 4977 if (!HasMutableFields) { 4978 const VarDecl *InitDecl; 4979 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4980 if (InitExpr) { 4981 ConstantEmitter emitter(*this); 4982 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4983 if (Init) { 4984 auto *InitType = Init->getType(); 4985 if (GV->getValueType() != InitType) { 4986 // The type of the initializer does not match the definition. 4987 // This happens when an initializer has a different type from 4988 // the type of the global (because of padding at the end of a 4989 // structure for instance). 4990 GV->setName(StringRef()); 4991 // Make a new global with the correct type, this is now guaranteed 4992 // to work. 4993 auto *NewGV = cast<llvm::GlobalVariable>( 4994 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4995 ->stripPointerCasts()); 4996 4997 // Erase the old global, since it is no longer used. 4998 GV->eraseFromParent(); 4999 GV = NewGV; 5000 } else { 5001 GV->setInitializer(Init); 5002 GV->setConstant(true); 5003 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5004 } 5005 emitter.finalize(GV); 5006 } 5007 } 5008 } 5009 } 5010 } 5011 5012 if (D && 5013 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5014 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5015 // External HIP managed variables needed to be recorded for transformation 5016 // in both device and host compilations. 5017 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5018 D->hasExternalStorage()) 5019 getCUDARuntime().handleVarRegistration(D, *GV); 5020 } 5021 5022 if (D) 5023 SanitizerMD->reportGlobal(GV, *D); 5024 5025 LangAS ExpectedAS = 5026 D ? D->getType().getAddressSpace() 5027 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5028 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5029 if (DAddrSpace != ExpectedAS) { 5030 return getTargetCodeGenInfo().performAddrSpaceCast( 5031 *this, GV, DAddrSpace, ExpectedAS, 5032 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5033 } 5034 5035 return GV; 5036 } 5037 5038 llvm::Constant * 5039 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5040 const Decl *D = GD.getDecl(); 5041 5042 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5043 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5044 /*DontDefer=*/false, IsForDefinition); 5045 5046 if (isa<CXXMethodDecl>(D)) { 5047 auto FInfo = 5048 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5049 auto Ty = getTypes().GetFunctionType(*FInfo); 5050 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5051 IsForDefinition); 5052 } 5053 5054 if (isa<FunctionDecl>(D)) { 5055 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5056 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5057 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5058 IsForDefinition); 5059 } 5060 5061 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5062 } 5063 5064 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5065 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5066 llvm::Align Alignment) { 5067 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5068 llvm::GlobalVariable *OldGV = nullptr; 5069 5070 if (GV) { 5071 // Check if the variable has the right type. 5072 if (GV->getValueType() == Ty) 5073 return GV; 5074 5075 // Because C++ name mangling, the only way we can end up with an already 5076 // existing global with the same name is if it has been declared extern "C". 5077 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5078 OldGV = GV; 5079 } 5080 5081 // Create a new variable. 5082 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5083 Linkage, nullptr, Name); 5084 5085 if (OldGV) { 5086 // Replace occurrences of the old variable if needed. 5087 GV->takeName(OldGV); 5088 5089 if (!OldGV->use_empty()) { 5090 OldGV->replaceAllUsesWith(GV); 5091 } 5092 5093 OldGV->eraseFromParent(); 5094 } 5095 5096 if (supportsCOMDAT() && GV->isWeakForLinker() && 5097 !GV->hasAvailableExternallyLinkage()) 5098 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5099 5100 GV->setAlignment(Alignment); 5101 5102 return GV; 5103 } 5104 5105 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5106 /// given global variable. If Ty is non-null and if the global doesn't exist, 5107 /// then it will be created with the specified type instead of whatever the 5108 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5109 /// that an actual global with type Ty will be returned, not conversion of a 5110 /// variable with the same mangled name but some other type. 5111 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5112 llvm::Type *Ty, 5113 ForDefinition_t IsForDefinition) { 5114 assert(D->hasGlobalStorage() && "Not a global variable"); 5115 QualType ASTTy = D->getType(); 5116 if (!Ty) 5117 Ty = getTypes().ConvertTypeForMem(ASTTy); 5118 5119 StringRef MangledName = getMangledName(D); 5120 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5121 IsForDefinition); 5122 } 5123 5124 /// CreateRuntimeVariable - Create a new runtime global variable with the 5125 /// specified type and name. 5126 llvm::Constant * 5127 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5128 StringRef Name) { 5129 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5130 : LangAS::Default; 5131 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5132 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5133 return Ret; 5134 } 5135 5136 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5137 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5138 5139 StringRef MangledName = getMangledName(D); 5140 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5141 5142 // We already have a definition, not declaration, with the same mangled name. 5143 // Emitting of declaration is not required (and actually overwrites emitted 5144 // definition). 5145 if (GV && !GV->isDeclaration()) 5146 return; 5147 5148 // If we have not seen a reference to this variable yet, place it into the 5149 // deferred declarations table to be emitted if needed later. 5150 if (!MustBeEmitted(D) && !GV) { 5151 DeferredDecls[MangledName] = D; 5152 return; 5153 } 5154 5155 // The tentative definition is the only definition. 5156 EmitGlobalVarDefinition(D); 5157 } 5158 5159 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5160 EmitExternalVarDeclaration(D); 5161 } 5162 5163 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5164 return Context.toCharUnitsFromBits( 5165 getDataLayout().getTypeStoreSizeInBits(Ty)); 5166 } 5167 5168 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5169 if (LangOpts.OpenCL) { 5170 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5171 assert(AS == LangAS::opencl_global || 5172 AS == LangAS::opencl_global_device || 5173 AS == LangAS::opencl_global_host || 5174 AS == LangAS::opencl_constant || 5175 AS == LangAS::opencl_local || 5176 AS >= LangAS::FirstTargetAddressSpace); 5177 return AS; 5178 } 5179 5180 if (LangOpts.SYCLIsDevice && 5181 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5182 return LangAS::sycl_global; 5183 5184 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5185 if (D) { 5186 if (D->hasAttr<CUDAConstantAttr>()) 5187 return LangAS::cuda_constant; 5188 if (D->hasAttr<CUDASharedAttr>()) 5189 return LangAS::cuda_shared; 5190 if (D->hasAttr<CUDADeviceAttr>()) 5191 return LangAS::cuda_device; 5192 if (D->getType().isConstQualified()) 5193 return LangAS::cuda_constant; 5194 } 5195 return LangAS::cuda_device; 5196 } 5197 5198 if (LangOpts.OpenMP) { 5199 LangAS AS; 5200 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5201 return AS; 5202 } 5203 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5204 } 5205 5206 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5207 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5208 if (LangOpts.OpenCL) 5209 return LangAS::opencl_constant; 5210 if (LangOpts.SYCLIsDevice) 5211 return LangAS::sycl_global; 5212 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5213 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5214 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5215 // with OpVariable instructions with Generic storage class which is not 5216 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5217 // UniformConstant storage class is not viable as pointers to it may not be 5218 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5219 return LangAS::cuda_device; 5220 if (auto AS = getTarget().getConstantAddressSpace()) 5221 return *AS; 5222 return LangAS::Default; 5223 } 5224 5225 // In address space agnostic languages, string literals are in default address 5226 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5227 // emitted in constant address space in LLVM IR. To be consistent with other 5228 // parts of AST, string literal global variables in constant address space 5229 // need to be casted to default address space before being put into address 5230 // map and referenced by other part of CodeGen. 5231 // In OpenCL, string literals are in constant address space in AST, therefore 5232 // they should not be casted to default address space. 5233 static llvm::Constant * 5234 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5235 llvm::GlobalVariable *GV) { 5236 llvm::Constant *Cast = GV; 5237 if (!CGM.getLangOpts().OpenCL) { 5238 auto AS = CGM.GetGlobalConstantAddressSpace(); 5239 if (AS != LangAS::Default) 5240 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5241 CGM, GV, AS, LangAS::Default, 5242 llvm::PointerType::get( 5243 CGM.getLLVMContext(), 5244 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5245 } 5246 return Cast; 5247 } 5248 5249 template<typename SomeDecl> 5250 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5251 llvm::GlobalValue *GV) { 5252 if (!getLangOpts().CPlusPlus) 5253 return; 5254 5255 // Must have 'used' attribute, or else inline assembly can't rely on 5256 // the name existing. 5257 if (!D->template hasAttr<UsedAttr>()) 5258 return; 5259 5260 // Must have internal linkage and an ordinary name. 5261 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5262 return; 5263 5264 // Must be in an extern "C" context. Entities declared directly within 5265 // a record are not extern "C" even if the record is in such a context. 5266 const SomeDecl *First = D->getFirstDecl(); 5267 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5268 return; 5269 5270 // OK, this is an internal linkage entity inside an extern "C" linkage 5271 // specification. Make a note of that so we can give it the "expected" 5272 // mangled name if nothing else is using that name. 5273 std::pair<StaticExternCMap::iterator, bool> R = 5274 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5275 5276 // If we have multiple internal linkage entities with the same name 5277 // in extern "C" regions, none of them gets that name. 5278 if (!R.second) 5279 R.first->second = nullptr; 5280 } 5281 5282 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5283 if (!CGM.supportsCOMDAT()) 5284 return false; 5285 5286 if (D.hasAttr<SelectAnyAttr>()) 5287 return true; 5288 5289 GVALinkage Linkage; 5290 if (auto *VD = dyn_cast<VarDecl>(&D)) 5291 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5292 else 5293 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5294 5295 switch (Linkage) { 5296 case GVA_Internal: 5297 case GVA_AvailableExternally: 5298 case GVA_StrongExternal: 5299 return false; 5300 case GVA_DiscardableODR: 5301 case GVA_StrongODR: 5302 return true; 5303 } 5304 llvm_unreachable("No such linkage"); 5305 } 5306 5307 bool CodeGenModule::supportsCOMDAT() const { 5308 return getTriple().supportsCOMDAT(); 5309 } 5310 5311 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5312 llvm::GlobalObject &GO) { 5313 if (!shouldBeInCOMDAT(*this, D)) 5314 return; 5315 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5316 } 5317 5318 /// Pass IsTentative as true if you want to create a tentative definition. 5319 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5320 bool IsTentative) { 5321 // OpenCL global variables of sampler type are translated to function calls, 5322 // therefore no need to be translated. 5323 QualType ASTTy = D->getType(); 5324 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5325 return; 5326 5327 // If this is OpenMP device, check if it is legal to emit this global 5328 // normally. 5329 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5330 OpenMPRuntime->emitTargetGlobalVariable(D)) 5331 return; 5332 5333 llvm::TrackingVH<llvm::Constant> Init; 5334 bool NeedsGlobalCtor = false; 5335 // Whether the definition of the variable is available externally. 5336 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5337 // since this is the job for its original source. 5338 bool IsDefinitionAvailableExternally = 5339 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5340 bool NeedsGlobalDtor = 5341 !IsDefinitionAvailableExternally && 5342 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5343 5344 // It is helpless to emit the definition for an available_externally variable 5345 // which can't be marked as const. 5346 // We don't need to check if it needs global ctor or dtor. See the above 5347 // comment for ideas. 5348 if (IsDefinitionAvailableExternally && 5349 (!D->hasConstantInitialization() || 5350 // TODO: Update this when we have interface to check constexpr 5351 // destructor. 5352 D->needsDestruction(getContext()) || 5353 !D->getType().isConstantStorage(getContext(), true, true))) 5354 return; 5355 5356 const VarDecl *InitDecl; 5357 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5358 5359 std::optional<ConstantEmitter> emitter; 5360 5361 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5362 // as part of their declaration." Sema has already checked for 5363 // error cases, so we just need to set Init to UndefValue. 5364 bool IsCUDASharedVar = 5365 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5366 // Shadows of initialized device-side global variables are also left 5367 // undefined. 5368 // Managed Variables should be initialized on both host side and device side. 5369 bool IsCUDAShadowVar = 5370 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5371 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5372 D->hasAttr<CUDASharedAttr>()); 5373 bool IsCUDADeviceShadowVar = 5374 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5375 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5376 D->getType()->isCUDADeviceBuiltinTextureType()); 5377 if (getLangOpts().CUDA && 5378 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5379 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5380 else if (D->hasAttr<LoaderUninitializedAttr>()) 5381 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5382 else if (!InitExpr) { 5383 // This is a tentative definition; tentative definitions are 5384 // implicitly initialized with { 0 }. 5385 // 5386 // Note that tentative definitions are only emitted at the end of 5387 // a translation unit, so they should never have incomplete 5388 // type. In addition, EmitTentativeDefinition makes sure that we 5389 // never attempt to emit a tentative definition if a real one 5390 // exists. A use may still exists, however, so we still may need 5391 // to do a RAUW. 5392 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5393 Init = EmitNullConstant(D->getType()); 5394 } else { 5395 initializedGlobalDecl = GlobalDecl(D); 5396 emitter.emplace(*this); 5397 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5398 if (!Initializer) { 5399 QualType T = InitExpr->getType(); 5400 if (D->getType()->isReferenceType()) 5401 T = D->getType(); 5402 5403 if (getLangOpts().CPlusPlus) { 5404 if (InitDecl->hasFlexibleArrayInit(getContext())) 5405 ErrorUnsupported(D, "flexible array initializer"); 5406 Init = EmitNullConstant(T); 5407 5408 if (!IsDefinitionAvailableExternally) 5409 NeedsGlobalCtor = true; 5410 } else { 5411 ErrorUnsupported(D, "static initializer"); 5412 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5413 } 5414 } else { 5415 Init = Initializer; 5416 // We don't need an initializer, so remove the entry for the delayed 5417 // initializer position (just in case this entry was delayed) if we 5418 // also don't need to register a destructor. 5419 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5420 DelayedCXXInitPosition.erase(D); 5421 5422 #ifndef NDEBUG 5423 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5424 InitDecl->getFlexibleArrayInitChars(getContext()); 5425 CharUnits CstSize = CharUnits::fromQuantity( 5426 getDataLayout().getTypeAllocSize(Init->getType())); 5427 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5428 #endif 5429 } 5430 } 5431 5432 llvm::Type* InitType = Init->getType(); 5433 llvm::Constant *Entry = 5434 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5435 5436 // Strip off pointer casts if we got them. 5437 Entry = Entry->stripPointerCasts(); 5438 5439 // Entry is now either a Function or GlobalVariable. 5440 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5441 5442 // We have a definition after a declaration with the wrong type. 5443 // We must make a new GlobalVariable* and update everything that used OldGV 5444 // (a declaration or tentative definition) with the new GlobalVariable* 5445 // (which will be a definition). 5446 // 5447 // This happens if there is a prototype for a global (e.g. 5448 // "extern int x[];") and then a definition of a different type (e.g. 5449 // "int x[10];"). This also happens when an initializer has a different type 5450 // from the type of the global (this happens with unions). 5451 if (!GV || GV->getValueType() != InitType || 5452 GV->getType()->getAddressSpace() != 5453 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5454 5455 // Move the old entry aside so that we'll create a new one. 5456 Entry->setName(StringRef()); 5457 5458 // Make a new global with the correct type, this is now guaranteed to work. 5459 GV = cast<llvm::GlobalVariable>( 5460 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5461 ->stripPointerCasts()); 5462 5463 // Replace all uses of the old global with the new global 5464 llvm::Constant *NewPtrForOldDecl = 5465 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5466 Entry->getType()); 5467 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5468 5469 // Erase the old global, since it is no longer used. 5470 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5471 } 5472 5473 MaybeHandleStaticInExternC(D, GV); 5474 5475 if (D->hasAttr<AnnotateAttr>()) 5476 AddGlobalAnnotations(D, GV); 5477 5478 // Set the llvm linkage type as appropriate. 5479 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5480 5481 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5482 // the device. [...]" 5483 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5484 // __device__, declares a variable that: [...] 5485 // Is accessible from all the threads within the grid and from the host 5486 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5487 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5488 if (LangOpts.CUDA) { 5489 if (LangOpts.CUDAIsDevice) { 5490 if (Linkage != llvm::GlobalValue::InternalLinkage && 5491 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5492 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5493 D->getType()->isCUDADeviceBuiltinTextureType())) 5494 GV->setExternallyInitialized(true); 5495 } else { 5496 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5497 } 5498 getCUDARuntime().handleVarRegistration(D, *GV); 5499 } 5500 5501 GV->setInitializer(Init); 5502 if (emitter) 5503 emitter->finalize(GV); 5504 5505 // If it is safe to mark the global 'constant', do so now. 5506 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5507 D->getType().isConstantStorage(getContext(), true, true)); 5508 5509 // If it is in a read-only section, mark it 'constant'. 5510 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5511 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5512 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5513 GV->setConstant(true); 5514 } 5515 5516 CharUnits AlignVal = getContext().getDeclAlign(D); 5517 // Check for alignment specifed in an 'omp allocate' directive. 5518 if (std::optional<CharUnits> AlignValFromAllocate = 5519 getOMPAllocateAlignment(D)) 5520 AlignVal = *AlignValFromAllocate; 5521 GV->setAlignment(AlignVal.getAsAlign()); 5522 5523 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5524 // function is only defined alongside the variable, not also alongside 5525 // callers. Normally, all accesses to a thread_local go through the 5526 // thread-wrapper in order to ensure initialization has occurred, underlying 5527 // variable will never be used other than the thread-wrapper, so it can be 5528 // converted to internal linkage. 5529 // 5530 // However, if the variable has the 'constinit' attribute, it _can_ be 5531 // referenced directly, without calling the thread-wrapper, so the linkage 5532 // must not be changed. 5533 // 5534 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5535 // weak or linkonce, the de-duplication semantics are important to preserve, 5536 // so we don't change the linkage. 5537 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5538 Linkage == llvm::GlobalValue::ExternalLinkage && 5539 Context.getTargetInfo().getTriple().isOSDarwin() && 5540 !D->hasAttr<ConstInitAttr>()) 5541 Linkage = llvm::GlobalValue::InternalLinkage; 5542 5543 GV->setLinkage(Linkage); 5544 if (D->hasAttr<DLLImportAttr>()) 5545 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5546 else if (D->hasAttr<DLLExportAttr>()) 5547 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5548 else 5549 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5550 5551 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5552 // common vars aren't constant even if declared const. 5553 GV->setConstant(false); 5554 // Tentative definition of global variables may be initialized with 5555 // non-zero null pointers. In this case they should have weak linkage 5556 // since common linkage must have zero initializer and must not have 5557 // explicit section therefore cannot have non-zero initial value. 5558 if (!GV->getInitializer()->isNullValue()) 5559 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5560 } 5561 5562 setNonAliasAttributes(D, GV); 5563 5564 if (D->getTLSKind() && !GV->isThreadLocal()) { 5565 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5566 CXXThreadLocals.push_back(D); 5567 setTLSMode(GV, *D); 5568 } 5569 5570 maybeSetTrivialComdat(*D, *GV); 5571 5572 // Emit the initializer function if necessary. 5573 if (NeedsGlobalCtor || NeedsGlobalDtor) 5574 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5575 5576 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5577 5578 // Emit global variable debug information. 5579 if (CGDebugInfo *DI = getModuleDebugInfo()) 5580 if (getCodeGenOpts().hasReducedDebugInfo()) 5581 DI->EmitGlobalVariable(GV, D); 5582 } 5583 5584 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5585 if (CGDebugInfo *DI = getModuleDebugInfo()) 5586 if (getCodeGenOpts().hasReducedDebugInfo()) { 5587 QualType ASTTy = D->getType(); 5588 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5589 llvm::Constant *GV = 5590 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5591 DI->EmitExternalVariable( 5592 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5593 } 5594 } 5595 5596 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5597 CodeGenModule &CGM, const VarDecl *D, 5598 bool NoCommon) { 5599 // Don't give variables common linkage if -fno-common was specified unless it 5600 // was overridden by a NoCommon attribute. 5601 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5602 return true; 5603 5604 // C11 6.9.2/2: 5605 // A declaration of an identifier for an object that has file scope without 5606 // an initializer, and without a storage-class specifier or with the 5607 // storage-class specifier static, constitutes a tentative definition. 5608 if (D->getInit() || D->hasExternalStorage()) 5609 return true; 5610 5611 // A variable cannot be both common and exist in a section. 5612 if (D->hasAttr<SectionAttr>()) 5613 return true; 5614 5615 // A variable cannot be both common and exist in a section. 5616 // We don't try to determine which is the right section in the front-end. 5617 // If no specialized section name is applicable, it will resort to default. 5618 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5619 D->hasAttr<PragmaClangDataSectionAttr>() || 5620 D->hasAttr<PragmaClangRelroSectionAttr>() || 5621 D->hasAttr<PragmaClangRodataSectionAttr>()) 5622 return true; 5623 5624 // Thread local vars aren't considered common linkage. 5625 if (D->getTLSKind()) 5626 return true; 5627 5628 // Tentative definitions marked with WeakImportAttr are true definitions. 5629 if (D->hasAttr<WeakImportAttr>()) 5630 return true; 5631 5632 // A variable cannot be both common and exist in a comdat. 5633 if (shouldBeInCOMDAT(CGM, *D)) 5634 return true; 5635 5636 // Declarations with a required alignment do not have common linkage in MSVC 5637 // mode. 5638 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5639 if (D->hasAttr<AlignedAttr>()) 5640 return true; 5641 QualType VarType = D->getType(); 5642 if (Context.isAlignmentRequired(VarType)) 5643 return true; 5644 5645 if (const auto *RT = VarType->getAs<RecordType>()) { 5646 const RecordDecl *RD = RT->getDecl(); 5647 for (const FieldDecl *FD : RD->fields()) { 5648 if (FD->isBitField()) 5649 continue; 5650 if (FD->hasAttr<AlignedAttr>()) 5651 return true; 5652 if (Context.isAlignmentRequired(FD->getType())) 5653 return true; 5654 } 5655 } 5656 } 5657 5658 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5659 // common symbols, so symbols with greater alignment requirements cannot be 5660 // common. 5661 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5662 // alignments for common symbols via the aligncomm directive, so this 5663 // restriction only applies to MSVC environments. 5664 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5665 Context.getTypeAlignIfKnown(D->getType()) > 5666 Context.toBits(CharUnits::fromQuantity(32))) 5667 return true; 5668 5669 return false; 5670 } 5671 5672 llvm::GlobalValue::LinkageTypes 5673 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5674 GVALinkage Linkage) { 5675 if (Linkage == GVA_Internal) 5676 return llvm::Function::InternalLinkage; 5677 5678 if (D->hasAttr<WeakAttr>()) 5679 return llvm::GlobalVariable::WeakAnyLinkage; 5680 5681 if (const auto *FD = D->getAsFunction()) 5682 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5683 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5684 5685 // We are guaranteed to have a strong definition somewhere else, 5686 // so we can use available_externally linkage. 5687 if (Linkage == GVA_AvailableExternally) 5688 return llvm::GlobalValue::AvailableExternallyLinkage; 5689 5690 // Note that Apple's kernel linker doesn't support symbol 5691 // coalescing, so we need to avoid linkonce and weak linkages there. 5692 // Normally, this means we just map to internal, but for explicit 5693 // instantiations we'll map to external. 5694 5695 // In C++, the compiler has to emit a definition in every translation unit 5696 // that references the function. We should use linkonce_odr because 5697 // a) if all references in this translation unit are optimized away, we 5698 // don't need to codegen it. b) if the function persists, it needs to be 5699 // merged with other definitions. c) C++ has the ODR, so we know the 5700 // definition is dependable. 5701 if (Linkage == GVA_DiscardableODR) 5702 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5703 : llvm::Function::InternalLinkage; 5704 5705 // An explicit instantiation of a template has weak linkage, since 5706 // explicit instantiations can occur in multiple translation units 5707 // and must all be equivalent. However, we are not allowed to 5708 // throw away these explicit instantiations. 5709 // 5710 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5711 // so say that CUDA templates are either external (for kernels) or internal. 5712 // This lets llvm perform aggressive inter-procedural optimizations. For 5713 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5714 // therefore we need to follow the normal linkage paradigm. 5715 if (Linkage == GVA_StrongODR) { 5716 if (getLangOpts().AppleKext) 5717 return llvm::Function::ExternalLinkage; 5718 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5719 !getLangOpts().GPURelocatableDeviceCode) 5720 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5721 : llvm::Function::InternalLinkage; 5722 return llvm::Function::WeakODRLinkage; 5723 } 5724 5725 // C++ doesn't have tentative definitions and thus cannot have common 5726 // linkage. 5727 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5728 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5729 CodeGenOpts.NoCommon)) 5730 return llvm::GlobalVariable::CommonLinkage; 5731 5732 // selectany symbols are externally visible, so use weak instead of 5733 // linkonce. MSVC optimizes away references to const selectany globals, so 5734 // all definitions should be the same and ODR linkage should be used. 5735 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5736 if (D->hasAttr<SelectAnyAttr>()) 5737 return llvm::GlobalVariable::WeakODRLinkage; 5738 5739 // Otherwise, we have strong external linkage. 5740 assert(Linkage == GVA_StrongExternal); 5741 return llvm::GlobalVariable::ExternalLinkage; 5742 } 5743 5744 llvm::GlobalValue::LinkageTypes 5745 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5746 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5747 return getLLVMLinkageForDeclarator(VD, Linkage); 5748 } 5749 5750 /// Replace the uses of a function that was declared with a non-proto type. 5751 /// We want to silently drop extra arguments from call sites 5752 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5753 llvm::Function *newFn) { 5754 // Fast path. 5755 if (old->use_empty()) 5756 return; 5757 5758 llvm::Type *newRetTy = newFn->getReturnType(); 5759 SmallVector<llvm::Value *, 4> newArgs; 5760 5761 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5762 5763 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5764 ui != ue; ui++) { 5765 llvm::User *user = ui->getUser(); 5766 5767 // Recognize and replace uses of bitcasts. Most calls to 5768 // unprototyped functions will use bitcasts. 5769 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5770 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5771 replaceUsesOfNonProtoConstant(bitcast, newFn); 5772 continue; 5773 } 5774 5775 // Recognize calls to the function. 5776 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5777 if (!callSite) 5778 continue; 5779 if (!callSite->isCallee(&*ui)) 5780 continue; 5781 5782 // If the return types don't match exactly, then we can't 5783 // transform this call unless it's dead. 5784 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5785 continue; 5786 5787 // Get the call site's attribute list. 5788 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5789 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5790 5791 // If the function was passed too few arguments, don't transform. 5792 unsigned newNumArgs = newFn->arg_size(); 5793 if (callSite->arg_size() < newNumArgs) 5794 continue; 5795 5796 // If extra arguments were passed, we silently drop them. 5797 // If any of the types mismatch, we don't transform. 5798 unsigned argNo = 0; 5799 bool dontTransform = false; 5800 for (llvm::Argument &A : newFn->args()) { 5801 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5802 dontTransform = true; 5803 break; 5804 } 5805 5806 // Add any parameter attributes. 5807 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5808 argNo++; 5809 } 5810 if (dontTransform) 5811 continue; 5812 5813 // Okay, we can transform this. Create the new call instruction and copy 5814 // over the required information. 5815 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5816 5817 // Copy over any operand bundles. 5818 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5819 callSite->getOperandBundlesAsDefs(newBundles); 5820 5821 llvm::CallBase *newCall; 5822 if (isa<llvm::CallInst>(callSite)) { 5823 newCall = 5824 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5825 } else { 5826 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5827 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5828 oldInvoke->getUnwindDest(), newArgs, 5829 newBundles, "", callSite); 5830 } 5831 newArgs.clear(); // for the next iteration 5832 5833 if (!newCall->getType()->isVoidTy()) 5834 newCall->takeName(callSite); 5835 newCall->setAttributes( 5836 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5837 oldAttrs.getRetAttrs(), newArgAttrs)); 5838 newCall->setCallingConv(callSite->getCallingConv()); 5839 5840 // Finally, remove the old call, replacing any uses with the new one. 5841 if (!callSite->use_empty()) 5842 callSite->replaceAllUsesWith(newCall); 5843 5844 // Copy debug location attached to CI. 5845 if (callSite->getDebugLoc()) 5846 newCall->setDebugLoc(callSite->getDebugLoc()); 5847 5848 callSitesToBeRemovedFromParent.push_back(callSite); 5849 } 5850 5851 for (auto *callSite : callSitesToBeRemovedFromParent) { 5852 callSite->eraseFromParent(); 5853 } 5854 } 5855 5856 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5857 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5858 /// existing call uses of the old function in the module, this adjusts them to 5859 /// call the new function directly. 5860 /// 5861 /// This is not just a cleanup: the always_inline pass requires direct calls to 5862 /// functions to be able to inline them. If there is a bitcast in the way, it 5863 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5864 /// run at -O0. 5865 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5866 llvm::Function *NewFn) { 5867 // If we're redefining a global as a function, don't transform it. 5868 if (!isa<llvm::Function>(Old)) return; 5869 5870 replaceUsesOfNonProtoConstant(Old, NewFn); 5871 } 5872 5873 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5874 auto DK = VD->isThisDeclarationADefinition(); 5875 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5876 return; 5877 5878 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5879 // If we have a definition, this might be a deferred decl. If the 5880 // instantiation is explicit, make sure we emit it at the end. 5881 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5882 GetAddrOfGlobalVar(VD); 5883 5884 EmitTopLevelDecl(VD); 5885 } 5886 5887 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5888 llvm::GlobalValue *GV) { 5889 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5890 5891 // Compute the function info and LLVM type. 5892 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5893 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5894 5895 // Get or create the prototype for the function. 5896 if (!GV || (GV->getValueType() != Ty)) 5897 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5898 /*DontDefer=*/true, 5899 ForDefinition)); 5900 5901 // Already emitted. 5902 if (!GV->isDeclaration()) 5903 return; 5904 5905 // We need to set linkage and visibility on the function before 5906 // generating code for it because various parts of IR generation 5907 // want to propagate this information down (e.g. to local static 5908 // declarations). 5909 auto *Fn = cast<llvm::Function>(GV); 5910 setFunctionLinkage(GD, Fn); 5911 5912 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5913 setGVProperties(Fn, GD); 5914 5915 MaybeHandleStaticInExternC(D, Fn); 5916 5917 maybeSetTrivialComdat(*D, *Fn); 5918 5919 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5920 5921 setNonAliasAttributes(GD, Fn); 5922 SetLLVMFunctionAttributesForDefinition(D, Fn); 5923 5924 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5925 AddGlobalCtor(Fn, CA->getPriority()); 5926 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5927 AddGlobalDtor(Fn, DA->getPriority(), true); 5928 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5929 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5930 } 5931 5932 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5933 const auto *D = cast<ValueDecl>(GD.getDecl()); 5934 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5935 assert(AA && "Not an alias?"); 5936 5937 StringRef MangledName = getMangledName(GD); 5938 5939 if (AA->getAliasee() == MangledName) { 5940 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5941 return; 5942 } 5943 5944 // If there is a definition in the module, then it wins over the alias. 5945 // This is dubious, but allow it to be safe. Just ignore the alias. 5946 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5947 if (Entry && !Entry->isDeclaration()) 5948 return; 5949 5950 Aliases.push_back(GD); 5951 5952 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5953 5954 // Create a reference to the named value. This ensures that it is emitted 5955 // if a deferred decl. 5956 llvm::Constant *Aliasee; 5957 llvm::GlobalValue::LinkageTypes LT; 5958 if (isa<llvm::FunctionType>(DeclTy)) { 5959 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5960 /*ForVTable=*/false); 5961 LT = getFunctionLinkage(GD); 5962 } else { 5963 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5964 /*D=*/nullptr); 5965 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5966 LT = getLLVMLinkageVarDefinition(VD); 5967 else 5968 LT = getFunctionLinkage(GD); 5969 } 5970 5971 // Create the new alias itself, but don't set a name yet. 5972 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5973 auto *GA = 5974 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5975 5976 if (Entry) { 5977 if (GA->getAliasee() == Entry) { 5978 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5979 return; 5980 } 5981 5982 assert(Entry->isDeclaration()); 5983 5984 // If there is a declaration in the module, then we had an extern followed 5985 // by the alias, as in: 5986 // extern int test6(); 5987 // ... 5988 // int test6() __attribute__((alias("test7"))); 5989 // 5990 // Remove it and replace uses of it with the alias. 5991 GA->takeName(Entry); 5992 5993 Entry->replaceAllUsesWith(GA); 5994 Entry->eraseFromParent(); 5995 } else { 5996 GA->setName(MangledName); 5997 } 5998 5999 // Set attributes which are particular to an alias; this is a 6000 // specialization of the attributes which may be set on a global 6001 // variable/function. 6002 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6003 D->isWeakImported()) { 6004 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6005 } 6006 6007 if (const auto *VD = dyn_cast<VarDecl>(D)) 6008 if (VD->getTLSKind()) 6009 setTLSMode(GA, *VD); 6010 6011 SetCommonAttributes(GD, GA); 6012 6013 // Emit global alias debug information. 6014 if (isa<VarDecl>(D)) 6015 if (CGDebugInfo *DI = getModuleDebugInfo()) 6016 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6017 } 6018 6019 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6020 const auto *D = cast<ValueDecl>(GD.getDecl()); 6021 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6022 assert(IFA && "Not an ifunc?"); 6023 6024 StringRef MangledName = getMangledName(GD); 6025 6026 if (IFA->getResolver() == MangledName) { 6027 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6028 return; 6029 } 6030 6031 // Report an error if some definition overrides ifunc. 6032 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6033 if (Entry && !Entry->isDeclaration()) { 6034 GlobalDecl OtherGD; 6035 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6036 DiagnosedConflictingDefinitions.insert(GD).second) { 6037 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6038 << MangledName; 6039 Diags.Report(OtherGD.getDecl()->getLocation(), 6040 diag::note_previous_definition); 6041 } 6042 return; 6043 } 6044 6045 Aliases.push_back(GD); 6046 6047 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6048 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 6049 llvm::Constant *Resolver = 6050 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 6051 /*ForVTable=*/false); 6052 llvm::GlobalIFunc *GIF = 6053 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 6054 "", Resolver, &getModule()); 6055 if (Entry) { 6056 if (GIF->getResolver() == Entry) { 6057 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6058 return; 6059 } 6060 assert(Entry->isDeclaration()); 6061 6062 // If there is a declaration in the module, then we had an extern followed 6063 // by the ifunc, as in: 6064 // extern int test(); 6065 // ... 6066 // int test() __attribute__((ifunc("resolver"))); 6067 // 6068 // Remove it and replace uses of it with the ifunc. 6069 GIF->takeName(Entry); 6070 6071 Entry->replaceAllUsesWith(GIF); 6072 Entry->eraseFromParent(); 6073 } else 6074 GIF->setName(MangledName); 6075 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 6076 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 6077 } 6078 SetCommonAttributes(GD, GIF); 6079 } 6080 6081 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6082 ArrayRef<llvm::Type*> Tys) { 6083 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6084 Tys); 6085 } 6086 6087 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6088 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6089 const StringLiteral *Literal, bool TargetIsLSB, 6090 bool &IsUTF16, unsigned &StringLength) { 6091 StringRef String = Literal->getString(); 6092 unsigned NumBytes = String.size(); 6093 6094 // Check for simple case. 6095 if (!Literal->containsNonAsciiOrNull()) { 6096 StringLength = NumBytes; 6097 return *Map.insert(std::make_pair(String, nullptr)).first; 6098 } 6099 6100 // Otherwise, convert the UTF8 literals into a string of shorts. 6101 IsUTF16 = true; 6102 6103 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6104 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6105 llvm::UTF16 *ToPtr = &ToBuf[0]; 6106 6107 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6108 ToPtr + NumBytes, llvm::strictConversion); 6109 6110 // ConvertUTF8toUTF16 returns the length in ToPtr. 6111 StringLength = ToPtr - &ToBuf[0]; 6112 6113 // Add an explicit null. 6114 *ToPtr = 0; 6115 return *Map.insert(std::make_pair( 6116 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6117 (StringLength + 1) * 2), 6118 nullptr)).first; 6119 } 6120 6121 ConstantAddress 6122 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6123 unsigned StringLength = 0; 6124 bool isUTF16 = false; 6125 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6126 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6127 getDataLayout().isLittleEndian(), isUTF16, 6128 StringLength); 6129 6130 if (auto *C = Entry.second) 6131 return ConstantAddress( 6132 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6133 6134 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 6135 llvm::Constant *Zeros[] = { Zero, Zero }; 6136 6137 const ASTContext &Context = getContext(); 6138 const llvm::Triple &Triple = getTriple(); 6139 6140 const auto CFRuntime = getLangOpts().CFRuntime; 6141 const bool IsSwiftABI = 6142 static_cast<unsigned>(CFRuntime) >= 6143 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6144 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6145 6146 // If we don't already have it, get __CFConstantStringClassReference. 6147 if (!CFConstantStringClassRef) { 6148 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6149 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6150 Ty = llvm::ArrayType::get(Ty, 0); 6151 6152 switch (CFRuntime) { 6153 default: break; 6154 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6155 case LangOptions::CoreFoundationABI::Swift5_0: 6156 CFConstantStringClassName = 6157 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6158 : "$s10Foundation19_NSCFConstantStringCN"; 6159 Ty = IntPtrTy; 6160 break; 6161 case LangOptions::CoreFoundationABI::Swift4_2: 6162 CFConstantStringClassName = 6163 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6164 : "$S10Foundation19_NSCFConstantStringCN"; 6165 Ty = IntPtrTy; 6166 break; 6167 case LangOptions::CoreFoundationABI::Swift4_1: 6168 CFConstantStringClassName = 6169 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6170 : "__T010Foundation19_NSCFConstantStringCN"; 6171 Ty = IntPtrTy; 6172 break; 6173 } 6174 6175 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6176 6177 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6178 llvm::GlobalValue *GV = nullptr; 6179 6180 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6181 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6182 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6183 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6184 6185 const VarDecl *VD = nullptr; 6186 for (const auto *Result : DC->lookup(&II)) 6187 if ((VD = dyn_cast<VarDecl>(Result))) 6188 break; 6189 6190 if (Triple.isOSBinFormatELF()) { 6191 if (!VD) 6192 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6193 } else { 6194 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6195 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6196 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6197 else 6198 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6199 } 6200 6201 setDSOLocal(GV); 6202 } 6203 } 6204 6205 // Decay array -> ptr 6206 CFConstantStringClassRef = 6207 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 6208 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 6209 } 6210 6211 QualType CFTy = Context.getCFConstantStringType(); 6212 6213 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6214 6215 ConstantInitBuilder Builder(*this); 6216 auto Fields = Builder.beginStruct(STy); 6217 6218 // Class pointer. 6219 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6220 6221 // Flags. 6222 if (IsSwiftABI) { 6223 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6224 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6225 } else { 6226 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6227 } 6228 6229 // String pointer. 6230 llvm::Constant *C = nullptr; 6231 if (isUTF16) { 6232 auto Arr = llvm::ArrayRef( 6233 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6234 Entry.first().size() / 2); 6235 C = llvm::ConstantDataArray::get(VMContext, Arr); 6236 } else { 6237 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6238 } 6239 6240 // Note: -fwritable-strings doesn't make the backing store strings of 6241 // CFStrings writable. 6242 auto *GV = 6243 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6244 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6245 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6246 // Don't enforce the target's minimum global alignment, since the only use 6247 // of the string is via this class initializer. 6248 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6249 : Context.getTypeAlignInChars(Context.CharTy); 6250 GV->setAlignment(Align.getAsAlign()); 6251 6252 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6253 // Without it LLVM can merge the string with a non unnamed_addr one during 6254 // LTO. Doing that changes the section it ends in, which surprises ld64. 6255 if (Triple.isOSBinFormatMachO()) 6256 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6257 : "__TEXT,__cstring,cstring_literals"); 6258 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6259 // the static linker to adjust permissions to read-only later on. 6260 else if (Triple.isOSBinFormatELF()) 6261 GV->setSection(".rodata"); 6262 6263 // String. 6264 llvm::Constant *Str = 6265 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6266 6267 Fields.add(Str); 6268 6269 // String length. 6270 llvm::IntegerType *LengthTy = 6271 llvm::IntegerType::get(getModule().getContext(), 6272 Context.getTargetInfo().getLongWidth()); 6273 if (IsSwiftABI) { 6274 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6275 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6276 LengthTy = Int32Ty; 6277 else 6278 LengthTy = IntPtrTy; 6279 } 6280 Fields.addInt(LengthTy, StringLength); 6281 6282 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6283 // properly aligned on 32-bit platforms. 6284 CharUnits Alignment = 6285 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6286 6287 // The struct. 6288 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6289 /*isConstant=*/false, 6290 llvm::GlobalVariable::PrivateLinkage); 6291 GV->addAttribute("objc_arc_inert"); 6292 switch (Triple.getObjectFormat()) { 6293 case llvm::Triple::UnknownObjectFormat: 6294 llvm_unreachable("unknown file format"); 6295 case llvm::Triple::DXContainer: 6296 case llvm::Triple::GOFF: 6297 case llvm::Triple::SPIRV: 6298 case llvm::Triple::XCOFF: 6299 llvm_unreachable("unimplemented"); 6300 case llvm::Triple::COFF: 6301 case llvm::Triple::ELF: 6302 case llvm::Triple::Wasm: 6303 GV->setSection("cfstring"); 6304 break; 6305 case llvm::Triple::MachO: 6306 GV->setSection("__DATA,__cfstring"); 6307 break; 6308 } 6309 Entry.second = GV; 6310 6311 return ConstantAddress(GV, GV->getValueType(), Alignment); 6312 } 6313 6314 bool CodeGenModule::getExpressionLocationsEnabled() const { 6315 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6316 } 6317 6318 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6319 if (ObjCFastEnumerationStateType.isNull()) { 6320 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6321 D->startDefinition(); 6322 6323 QualType FieldTypes[] = { 6324 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6325 Context.getPointerType(Context.UnsignedLongTy), 6326 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6327 nullptr, ArraySizeModifier::Normal, 0)}; 6328 6329 for (size_t i = 0; i < 4; ++i) { 6330 FieldDecl *Field = FieldDecl::Create(Context, 6331 D, 6332 SourceLocation(), 6333 SourceLocation(), nullptr, 6334 FieldTypes[i], /*TInfo=*/nullptr, 6335 /*BitWidth=*/nullptr, 6336 /*Mutable=*/false, 6337 ICIS_NoInit); 6338 Field->setAccess(AS_public); 6339 D->addDecl(Field); 6340 } 6341 6342 D->completeDefinition(); 6343 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6344 } 6345 6346 return ObjCFastEnumerationStateType; 6347 } 6348 6349 llvm::Constant * 6350 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6351 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6352 6353 // Don't emit it as the address of the string, emit the string data itself 6354 // as an inline array. 6355 if (E->getCharByteWidth() == 1) { 6356 SmallString<64> Str(E->getString()); 6357 6358 // Resize the string to the right size, which is indicated by its type. 6359 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6360 assert(CAT && "String literal not of constant array type!"); 6361 Str.resize(CAT->getZExtSize()); 6362 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6363 } 6364 6365 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6366 llvm::Type *ElemTy = AType->getElementType(); 6367 unsigned NumElements = AType->getNumElements(); 6368 6369 // Wide strings have either 2-byte or 4-byte elements. 6370 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6371 SmallVector<uint16_t, 32> Elements; 6372 Elements.reserve(NumElements); 6373 6374 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6375 Elements.push_back(E->getCodeUnit(i)); 6376 Elements.resize(NumElements); 6377 return llvm::ConstantDataArray::get(VMContext, Elements); 6378 } 6379 6380 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6381 SmallVector<uint32_t, 32> Elements; 6382 Elements.reserve(NumElements); 6383 6384 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6385 Elements.push_back(E->getCodeUnit(i)); 6386 Elements.resize(NumElements); 6387 return llvm::ConstantDataArray::get(VMContext, Elements); 6388 } 6389 6390 static llvm::GlobalVariable * 6391 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6392 CodeGenModule &CGM, StringRef GlobalName, 6393 CharUnits Alignment) { 6394 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6395 CGM.GetGlobalConstantAddressSpace()); 6396 6397 llvm::Module &M = CGM.getModule(); 6398 // Create a global variable for this string 6399 auto *GV = new llvm::GlobalVariable( 6400 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6401 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6402 GV->setAlignment(Alignment.getAsAlign()); 6403 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6404 if (GV->isWeakForLinker()) { 6405 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6406 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6407 } 6408 CGM.setDSOLocal(GV); 6409 6410 return GV; 6411 } 6412 6413 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6414 /// constant array for the given string literal. 6415 ConstantAddress 6416 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6417 StringRef Name) { 6418 CharUnits Alignment = 6419 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6420 6421 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6422 llvm::GlobalVariable **Entry = nullptr; 6423 if (!LangOpts.WritableStrings) { 6424 Entry = &ConstantStringMap[C]; 6425 if (auto GV = *Entry) { 6426 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6427 GV->setAlignment(Alignment.getAsAlign()); 6428 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6429 GV->getValueType(), Alignment); 6430 } 6431 } 6432 6433 SmallString<256> MangledNameBuffer; 6434 StringRef GlobalVariableName; 6435 llvm::GlobalValue::LinkageTypes LT; 6436 6437 // Mangle the string literal if that's how the ABI merges duplicate strings. 6438 // Don't do it if they are writable, since we don't want writes in one TU to 6439 // affect strings in another. 6440 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6441 !LangOpts.WritableStrings) { 6442 llvm::raw_svector_ostream Out(MangledNameBuffer); 6443 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6444 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6445 GlobalVariableName = MangledNameBuffer; 6446 } else { 6447 LT = llvm::GlobalValue::PrivateLinkage; 6448 GlobalVariableName = Name; 6449 } 6450 6451 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6452 6453 CGDebugInfo *DI = getModuleDebugInfo(); 6454 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6455 DI->AddStringLiteralDebugInfo(GV, S); 6456 6457 if (Entry) 6458 *Entry = GV; 6459 6460 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6461 6462 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6463 GV->getValueType(), Alignment); 6464 } 6465 6466 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6467 /// array for the given ObjCEncodeExpr node. 6468 ConstantAddress 6469 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6470 std::string Str; 6471 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6472 6473 return GetAddrOfConstantCString(Str); 6474 } 6475 6476 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6477 /// the literal and a terminating '\0' character. 6478 /// The result has pointer to array type. 6479 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6480 const std::string &Str, const char *GlobalName) { 6481 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6482 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6483 getContext().CharTy, /*VD=*/nullptr); 6484 6485 llvm::Constant *C = 6486 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6487 6488 // Don't share any string literals if strings aren't constant. 6489 llvm::GlobalVariable **Entry = nullptr; 6490 if (!LangOpts.WritableStrings) { 6491 Entry = &ConstantStringMap[C]; 6492 if (auto GV = *Entry) { 6493 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6494 GV->setAlignment(Alignment.getAsAlign()); 6495 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6496 GV->getValueType(), Alignment); 6497 } 6498 } 6499 6500 // Get the default prefix if a name wasn't specified. 6501 if (!GlobalName) 6502 GlobalName = ".str"; 6503 // Create a global variable for this. 6504 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6505 GlobalName, Alignment); 6506 if (Entry) 6507 *Entry = GV; 6508 6509 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6510 GV->getValueType(), Alignment); 6511 } 6512 6513 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6514 const MaterializeTemporaryExpr *E, const Expr *Init) { 6515 assert((E->getStorageDuration() == SD_Static || 6516 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6517 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6518 6519 // If we're not materializing a subobject of the temporary, keep the 6520 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6521 QualType MaterializedType = Init->getType(); 6522 if (Init == E->getSubExpr()) 6523 MaterializedType = E->getType(); 6524 6525 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6526 6527 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6528 if (!InsertResult.second) { 6529 // We've seen this before: either we already created it or we're in the 6530 // process of doing so. 6531 if (!InsertResult.first->second) { 6532 // We recursively re-entered this function, probably during emission of 6533 // the initializer. Create a placeholder. We'll clean this up in the 6534 // outer call, at the end of this function. 6535 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6536 InsertResult.first->second = new llvm::GlobalVariable( 6537 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6538 nullptr); 6539 } 6540 return ConstantAddress(InsertResult.first->second, 6541 llvm::cast<llvm::GlobalVariable>( 6542 InsertResult.first->second->stripPointerCasts()) 6543 ->getValueType(), 6544 Align); 6545 } 6546 6547 // FIXME: If an externally-visible declaration extends multiple temporaries, 6548 // we need to give each temporary the same name in every translation unit (and 6549 // we also need to make the temporaries externally-visible). 6550 SmallString<256> Name; 6551 llvm::raw_svector_ostream Out(Name); 6552 getCXXABI().getMangleContext().mangleReferenceTemporary( 6553 VD, E->getManglingNumber(), Out); 6554 6555 APValue *Value = nullptr; 6556 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6557 // If the initializer of the extending declaration is a constant 6558 // initializer, we should have a cached constant initializer for this 6559 // temporary. Note that this might have a different value from the value 6560 // computed by evaluating the initializer if the surrounding constant 6561 // expression modifies the temporary. 6562 Value = E->getOrCreateValue(false); 6563 } 6564 6565 // Try evaluating it now, it might have a constant initializer. 6566 Expr::EvalResult EvalResult; 6567 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6568 !EvalResult.hasSideEffects()) 6569 Value = &EvalResult.Val; 6570 6571 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6572 6573 std::optional<ConstantEmitter> emitter; 6574 llvm::Constant *InitialValue = nullptr; 6575 bool Constant = false; 6576 llvm::Type *Type; 6577 if (Value) { 6578 // The temporary has a constant initializer, use it. 6579 emitter.emplace(*this); 6580 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6581 MaterializedType); 6582 Constant = 6583 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6584 /*ExcludeDtor*/ false); 6585 Type = InitialValue->getType(); 6586 } else { 6587 // No initializer, the initialization will be provided when we 6588 // initialize the declaration which performed lifetime extension. 6589 Type = getTypes().ConvertTypeForMem(MaterializedType); 6590 } 6591 6592 // Create a global variable for this lifetime-extended temporary. 6593 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6594 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6595 const VarDecl *InitVD; 6596 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6597 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6598 // Temporaries defined inside a class get linkonce_odr linkage because the 6599 // class can be defined in multiple translation units. 6600 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6601 } else { 6602 // There is no need for this temporary to have external linkage if the 6603 // VarDecl has external linkage. 6604 Linkage = llvm::GlobalVariable::InternalLinkage; 6605 } 6606 } 6607 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6608 auto *GV = new llvm::GlobalVariable( 6609 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6610 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6611 if (emitter) emitter->finalize(GV); 6612 // Don't assign dllimport or dllexport to local linkage globals. 6613 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6614 setGVProperties(GV, VD); 6615 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6616 // The reference temporary should never be dllexport. 6617 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6618 } 6619 GV->setAlignment(Align.getAsAlign()); 6620 if (supportsCOMDAT() && GV->isWeakForLinker()) 6621 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6622 if (VD->getTLSKind()) 6623 setTLSMode(GV, *VD); 6624 llvm::Constant *CV = GV; 6625 if (AddrSpace != LangAS::Default) 6626 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6627 *this, GV, AddrSpace, LangAS::Default, 6628 llvm::PointerType::get( 6629 getLLVMContext(), 6630 getContext().getTargetAddressSpace(LangAS::Default))); 6631 6632 // Update the map with the new temporary. If we created a placeholder above, 6633 // replace it with the new global now. 6634 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6635 if (Entry) { 6636 Entry->replaceAllUsesWith(CV); 6637 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6638 } 6639 Entry = CV; 6640 6641 return ConstantAddress(CV, Type, Align); 6642 } 6643 6644 /// EmitObjCPropertyImplementations - Emit information for synthesized 6645 /// properties for an implementation. 6646 void CodeGenModule::EmitObjCPropertyImplementations(const 6647 ObjCImplementationDecl *D) { 6648 for (const auto *PID : D->property_impls()) { 6649 // Dynamic is just for type-checking. 6650 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6651 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6652 6653 // Determine which methods need to be implemented, some may have 6654 // been overridden. Note that ::isPropertyAccessor is not the method 6655 // we want, that just indicates if the decl came from a 6656 // property. What we want to know is if the method is defined in 6657 // this implementation. 6658 auto *Getter = PID->getGetterMethodDecl(); 6659 if (!Getter || Getter->isSynthesizedAccessorStub()) 6660 CodeGenFunction(*this).GenerateObjCGetter( 6661 const_cast<ObjCImplementationDecl *>(D), PID); 6662 auto *Setter = PID->getSetterMethodDecl(); 6663 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6664 CodeGenFunction(*this).GenerateObjCSetter( 6665 const_cast<ObjCImplementationDecl *>(D), PID); 6666 } 6667 } 6668 } 6669 6670 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6671 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6672 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6673 ivar; ivar = ivar->getNextIvar()) 6674 if (ivar->getType().isDestructedType()) 6675 return true; 6676 6677 return false; 6678 } 6679 6680 static bool AllTrivialInitializers(CodeGenModule &CGM, 6681 ObjCImplementationDecl *D) { 6682 CodeGenFunction CGF(CGM); 6683 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6684 E = D->init_end(); B != E; ++B) { 6685 CXXCtorInitializer *CtorInitExp = *B; 6686 Expr *Init = CtorInitExp->getInit(); 6687 if (!CGF.isTrivialInitializer(Init)) 6688 return false; 6689 } 6690 return true; 6691 } 6692 6693 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6694 /// for an implementation. 6695 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6696 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6697 if (needsDestructMethod(D)) { 6698 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6699 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6700 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6701 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6702 getContext().VoidTy, nullptr, D, 6703 /*isInstance=*/true, /*isVariadic=*/false, 6704 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6705 /*isImplicitlyDeclared=*/true, 6706 /*isDefined=*/false, ObjCImplementationControl::Required); 6707 D->addInstanceMethod(DTORMethod); 6708 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6709 D->setHasDestructors(true); 6710 } 6711 6712 // If the implementation doesn't have any ivar initializers, we don't need 6713 // a .cxx_construct. 6714 if (D->getNumIvarInitializers() == 0 || 6715 AllTrivialInitializers(*this, D)) 6716 return; 6717 6718 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6719 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6720 // The constructor returns 'self'. 6721 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6722 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6723 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6724 /*isVariadic=*/false, 6725 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6726 /*isImplicitlyDeclared=*/true, 6727 /*isDefined=*/false, ObjCImplementationControl::Required); 6728 D->addInstanceMethod(CTORMethod); 6729 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6730 D->setHasNonZeroConstructors(true); 6731 } 6732 6733 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6734 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6735 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6736 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6737 ErrorUnsupported(LSD, "linkage spec"); 6738 return; 6739 } 6740 6741 EmitDeclContext(LSD); 6742 } 6743 6744 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6745 // Device code should not be at top level. 6746 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6747 return; 6748 6749 std::unique_ptr<CodeGenFunction> &CurCGF = 6750 GlobalTopLevelStmtBlockInFlight.first; 6751 6752 // We emitted a top-level stmt but after it there is initialization. 6753 // Stop squashing the top-level stmts into a single function. 6754 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6755 CurCGF->FinishFunction(D->getEndLoc()); 6756 CurCGF = nullptr; 6757 } 6758 6759 if (!CurCGF) { 6760 // void __stmts__N(void) 6761 // FIXME: Ask the ABI name mangler to pick a name. 6762 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6763 FunctionArgList Args; 6764 QualType RetTy = getContext().VoidTy; 6765 const CGFunctionInfo &FnInfo = 6766 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6767 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6768 llvm::Function *Fn = llvm::Function::Create( 6769 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6770 6771 CurCGF.reset(new CodeGenFunction(*this)); 6772 GlobalTopLevelStmtBlockInFlight.second = D; 6773 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6774 D->getBeginLoc(), D->getBeginLoc()); 6775 CXXGlobalInits.push_back(Fn); 6776 } 6777 6778 CurCGF->EmitStmt(D->getStmt()); 6779 } 6780 6781 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6782 for (auto *I : DC->decls()) { 6783 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6784 // are themselves considered "top-level", so EmitTopLevelDecl on an 6785 // ObjCImplDecl does not recursively visit them. We need to do that in 6786 // case they're nested inside another construct (LinkageSpecDecl / 6787 // ExportDecl) that does stop them from being considered "top-level". 6788 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6789 for (auto *M : OID->methods()) 6790 EmitTopLevelDecl(M); 6791 } 6792 6793 EmitTopLevelDecl(I); 6794 } 6795 } 6796 6797 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6798 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6799 // Ignore dependent declarations. 6800 if (D->isTemplated()) 6801 return; 6802 6803 // Consteval function shouldn't be emitted. 6804 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6805 return; 6806 6807 switch (D->getKind()) { 6808 case Decl::CXXConversion: 6809 case Decl::CXXMethod: 6810 case Decl::Function: 6811 EmitGlobal(cast<FunctionDecl>(D)); 6812 // Always provide some coverage mapping 6813 // even for the functions that aren't emitted. 6814 AddDeferredUnusedCoverageMapping(D); 6815 break; 6816 6817 case Decl::CXXDeductionGuide: 6818 // Function-like, but does not result in code emission. 6819 break; 6820 6821 case Decl::Var: 6822 case Decl::Decomposition: 6823 case Decl::VarTemplateSpecialization: 6824 EmitGlobal(cast<VarDecl>(D)); 6825 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6826 for (auto *B : DD->bindings()) 6827 if (auto *HD = B->getHoldingVar()) 6828 EmitGlobal(HD); 6829 break; 6830 6831 // Indirect fields from global anonymous structs and unions can be 6832 // ignored; only the actual variable requires IR gen support. 6833 case Decl::IndirectField: 6834 break; 6835 6836 // C++ Decls 6837 case Decl::Namespace: 6838 EmitDeclContext(cast<NamespaceDecl>(D)); 6839 break; 6840 case Decl::ClassTemplateSpecialization: { 6841 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6842 if (CGDebugInfo *DI = getModuleDebugInfo()) 6843 if (Spec->getSpecializationKind() == 6844 TSK_ExplicitInstantiationDefinition && 6845 Spec->hasDefinition()) 6846 DI->completeTemplateDefinition(*Spec); 6847 } [[fallthrough]]; 6848 case Decl::CXXRecord: { 6849 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6850 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6851 if (CRD->hasDefinition()) 6852 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6853 if (auto *ES = D->getASTContext().getExternalSource()) 6854 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6855 DI->completeUnusedClass(*CRD); 6856 } 6857 // Emit any static data members, they may be definitions. 6858 for (auto *I : CRD->decls()) 6859 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6860 EmitTopLevelDecl(I); 6861 break; 6862 } 6863 // No code generation needed. 6864 case Decl::UsingShadow: 6865 case Decl::ClassTemplate: 6866 case Decl::VarTemplate: 6867 case Decl::Concept: 6868 case Decl::VarTemplatePartialSpecialization: 6869 case Decl::FunctionTemplate: 6870 case Decl::TypeAliasTemplate: 6871 case Decl::Block: 6872 case Decl::Empty: 6873 case Decl::Binding: 6874 break; 6875 case Decl::Using: // using X; [C++] 6876 if (CGDebugInfo *DI = getModuleDebugInfo()) 6877 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6878 break; 6879 case Decl::UsingEnum: // using enum X; [C++] 6880 if (CGDebugInfo *DI = getModuleDebugInfo()) 6881 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6882 break; 6883 case Decl::NamespaceAlias: 6884 if (CGDebugInfo *DI = getModuleDebugInfo()) 6885 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6886 break; 6887 case Decl::UsingDirective: // using namespace X; [C++] 6888 if (CGDebugInfo *DI = getModuleDebugInfo()) 6889 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6890 break; 6891 case Decl::CXXConstructor: 6892 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6893 break; 6894 case Decl::CXXDestructor: 6895 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6896 break; 6897 6898 case Decl::StaticAssert: 6899 // Nothing to do. 6900 break; 6901 6902 // Objective-C Decls 6903 6904 // Forward declarations, no (immediate) code generation. 6905 case Decl::ObjCInterface: 6906 case Decl::ObjCCategory: 6907 break; 6908 6909 case Decl::ObjCProtocol: { 6910 auto *Proto = cast<ObjCProtocolDecl>(D); 6911 if (Proto->isThisDeclarationADefinition()) 6912 ObjCRuntime->GenerateProtocol(Proto); 6913 break; 6914 } 6915 6916 case Decl::ObjCCategoryImpl: 6917 // Categories have properties but don't support synthesize so we 6918 // can ignore them here. 6919 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6920 break; 6921 6922 case Decl::ObjCImplementation: { 6923 auto *OMD = cast<ObjCImplementationDecl>(D); 6924 EmitObjCPropertyImplementations(OMD); 6925 EmitObjCIvarInitializations(OMD); 6926 ObjCRuntime->GenerateClass(OMD); 6927 // Emit global variable debug information. 6928 if (CGDebugInfo *DI = getModuleDebugInfo()) 6929 if (getCodeGenOpts().hasReducedDebugInfo()) 6930 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6931 OMD->getClassInterface()), OMD->getLocation()); 6932 break; 6933 } 6934 case Decl::ObjCMethod: { 6935 auto *OMD = cast<ObjCMethodDecl>(D); 6936 // If this is not a prototype, emit the body. 6937 if (OMD->getBody()) 6938 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6939 break; 6940 } 6941 case Decl::ObjCCompatibleAlias: 6942 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6943 break; 6944 6945 case Decl::PragmaComment: { 6946 const auto *PCD = cast<PragmaCommentDecl>(D); 6947 switch (PCD->getCommentKind()) { 6948 case PCK_Unknown: 6949 llvm_unreachable("unexpected pragma comment kind"); 6950 case PCK_Linker: 6951 AppendLinkerOptions(PCD->getArg()); 6952 break; 6953 case PCK_Lib: 6954 AddDependentLib(PCD->getArg()); 6955 break; 6956 case PCK_Compiler: 6957 case PCK_ExeStr: 6958 case PCK_User: 6959 break; // We ignore all of these. 6960 } 6961 break; 6962 } 6963 6964 case Decl::PragmaDetectMismatch: { 6965 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6966 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6967 break; 6968 } 6969 6970 case Decl::LinkageSpec: 6971 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6972 break; 6973 6974 case Decl::FileScopeAsm: { 6975 // File-scope asm is ignored during device-side CUDA compilation. 6976 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6977 break; 6978 // File-scope asm is ignored during device-side OpenMP compilation. 6979 if (LangOpts.OpenMPIsTargetDevice) 6980 break; 6981 // File-scope asm is ignored during device-side SYCL compilation. 6982 if (LangOpts.SYCLIsDevice) 6983 break; 6984 auto *AD = cast<FileScopeAsmDecl>(D); 6985 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6986 break; 6987 } 6988 6989 case Decl::TopLevelStmt: 6990 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6991 break; 6992 6993 case Decl::Import: { 6994 auto *Import = cast<ImportDecl>(D); 6995 6996 // If we've already imported this module, we're done. 6997 if (!ImportedModules.insert(Import->getImportedModule())) 6998 break; 6999 7000 // Emit debug information for direct imports. 7001 if (!Import->getImportedOwningModule()) { 7002 if (CGDebugInfo *DI = getModuleDebugInfo()) 7003 DI->EmitImportDecl(*Import); 7004 } 7005 7006 // For C++ standard modules we are done - we will call the module 7007 // initializer for imported modules, and that will likewise call those for 7008 // any imports it has. 7009 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7010 !Import->getImportedOwningModule()->isModuleMapModule()) 7011 break; 7012 7013 // For clang C++ module map modules the initializers for sub-modules are 7014 // emitted here. 7015 7016 // Find all of the submodules and emit the module initializers. 7017 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7018 SmallVector<clang::Module *, 16> Stack; 7019 Visited.insert(Import->getImportedModule()); 7020 Stack.push_back(Import->getImportedModule()); 7021 7022 while (!Stack.empty()) { 7023 clang::Module *Mod = Stack.pop_back_val(); 7024 if (!EmittedModuleInitializers.insert(Mod).second) 7025 continue; 7026 7027 for (auto *D : Context.getModuleInitializers(Mod)) 7028 EmitTopLevelDecl(D); 7029 7030 // Visit the submodules of this module. 7031 for (auto *Submodule : Mod->submodules()) { 7032 // Skip explicit children; they need to be explicitly imported to emit 7033 // the initializers. 7034 if (Submodule->IsExplicit) 7035 continue; 7036 7037 if (Visited.insert(Submodule).second) 7038 Stack.push_back(Submodule); 7039 } 7040 } 7041 break; 7042 } 7043 7044 case Decl::Export: 7045 EmitDeclContext(cast<ExportDecl>(D)); 7046 break; 7047 7048 case Decl::OMPThreadPrivate: 7049 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7050 break; 7051 7052 case Decl::OMPAllocate: 7053 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7054 break; 7055 7056 case Decl::OMPDeclareReduction: 7057 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7058 break; 7059 7060 case Decl::OMPDeclareMapper: 7061 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7062 break; 7063 7064 case Decl::OMPRequires: 7065 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7066 break; 7067 7068 case Decl::Typedef: 7069 case Decl::TypeAlias: // using foo = bar; [C++11] 7070 if (CGDebugInfo *DI = getModuleDebugInfo()) 7071 DI->EmitAndRetainType( 7072 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7073 break; 7074 7075 case Decl::Record: 7076 if (CGDebugInfo *DI = getModuleDebugInfo()) 7077 if (cast<RecordDecl>(D)->getDefinition()) 7078 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7079 break; 7080 7081 case Decl::Enum: 7082 if (CGDebugInfo *DI = getModuleDebugInfo()) 7083 if (cast<EnumDecl>(D)->getDefinition()) 7084 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7085 break; 7086 7087 case Decl::HLSLBuffer: 7088 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7089 break; 7090 7091 default: 7092 // Make sure we handled everything we should, every other kind is a 7093 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7094 // function. Need to recode Decl::Kind to do that easily. 7095 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7096 break; 7097 } 7098 } 7099 7100 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7101 // Do we need to generate coverage mapping? 7102 if (!CodeGenOpts.CoverageMapping) 7103 return; 7104 switch (D->getKind()) { 7105 case Decl::CXXConversion: 7106 case Decl::CXXMethod: 7107 case Decl::Function: 7108 case Decl::ObjCMethod: 7109 case Decl::CXXConstructor: 7110 case Decl::CXXDestructor: { 7111 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7112 break; 7113 SourceManager &SM = getContext().getSourceManager(); 7114 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7115 break; 7116 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7117 break; 7118 } 7119 default: 7120 break; 7121 }; 7122 } 7123 7124 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7125 // Do we need to generate coverage mapping? 7126 if (!CodeGenOpts.CoverageMapping) 7127 return; 7128 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7129 if (Fn->isTemplateInstantiation()) 7130 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7131 } 7132 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7133 } 7134 7135 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7136 // We call takeVector() here to avoid use-after-free. 7137 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7138 // we deserialize function bodies to emit coverage info for them, and that 7139 // deserializes more declarations. How should we handle that case? 7140 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7141 if (!Entry.second) 7142 continue; 7143 const Decl *D = Entry.first; 7144 switch (D->getKind()) { 7145 case Decl::CXXConversion: 7146 case Decl::CXXMethod: 7147 case Decl::Function: 7148 case Decl::ObjCMethod: { 7149 CodeGenPGO PGO(*this); 7150 GlobalDecl GD(cast<FunctionDecl>(D)); 7151 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7152 getFunctionLinkage(GD)); 7153 break; 7154 } 7155 case Decl::CXXConstructor: { 7156 CodeGenPGO PGO(*this); 7157 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7158 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7159 getFunctionLinkage(GD)); 7160 break; 7161 } 7162 case Decl::CXXDestructor: { 7163 CodeGenPGO PGO(*this); 7164 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7165 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7166 getFunctionLinkage(GD)); 7167 break; 7168 } 7169 default: 7170 break; 7171 }; 7172 } 7173 } 7174 7175 void CodeGenModule::EmitMainVoidAlias() { 7176 // In order to transition away from "__original_main" gracefully, emit an 7177 // alias for "main" in the no-argument case so that libc can detect when 7178 // new-style no-argument main is in used. 7179 if (llvm::Function *F = getModule().getFunction("main")) { 7180 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7181 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7182 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7183 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7184 } 7185 } 7186 } 7187 7188 /// Turns the given pointer into a constant. 7189 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7190 const void *Ptr) { 7191 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7192 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7193 return llvm::ConstantInt::get(i64, PtrInt); 7194 } 7195 7196 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7197 llvm::NamedMDNode *&GlobalMetadata, 7198 GlobalDecl D, 7199 llvm::GlobalValue *Addr) { 7200 if (!GlobalMetadata) 7201 GlobalMetadata = 7202 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7203 7204 // TODO: should we report variant information for ctors/dtors? 7205 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7206 llvm::ConstantAsMetadata::get(GetPointerConstant( 7207 CGM.getLLVMContext(), D.getDecl()))}; 7208 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7209 } 7210 7211 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7212 llvm::GlobalValue *CppFunc) { 7213 // Store the list of ifuncs we need to replace uses in. 7214 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7215 // List of ConstantExprs that we should be able to delete when we're done 7216 // here. 7217 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7218 7219 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7220 if (Elem == CppFunc) 7221 return false; 7222 7223 // First make sure that all users of this are ifuncs (or ifuncs via a 7224 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7225 // later. 7226 for (llvm::User *User : Elem->users()) { 7227 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7228 // ifunc directly. In any other case, just give up, as we don't know what we 7229 // could break by changing those. 7230 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7231 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7232 return false; 7233 7234 for (llvm::User *CEUser : ConstExpr->users()) { 7235 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7236 IFuncs.push_back(IFunc); 7237 } else { 7238 return false; 7239 } 7240 } 7241 CEs.push_back(ConstExpr); 7242 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7243 IFuncs.push_back(IFunc); 7244 } else { 7245 // This user is one we don't know how to handle, so fail redirection. This 7246 // will result in an ifunc retaining a resolver name that will ultimately 7247 // fail to be resolved to a defined function. 7248 return false; 7249 } 7250 } 7251 7252 // Now we know this is a valid case where we can do this alias replacement, we 7253 // need to remove all of the references to Elem (and the bitcasts!) so we can 7254 // delete it. 7255 for (llvm::GlobalIFunc *IFunc : IFuncs) 7256 IFunc->setResolver(nullptr); 7257 for (llvm::ConstantExpr *ConstExpr : CEs) 7258 ConstExpr->destroyConstant(); 7259 7260 // We should now be out of uses for the 'old' version of this function, so we 7261 // can erase it as well. 7262 Elem->eraseFromParent(); 7263 7264 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7265 // The type of the resolver is always just a function-type that returns the 7266 // type of the IFunc, so create that here. If the type of the actual 7267 // resolver doesn't match, it just gets bitcast to the right thing. 7268 auto *ResolverTy = 7269 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7270 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7271 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7272 IFunc->setResolver(Resolver); 7273 } 7274 return true; 7275 } 7276 7277 /// For each function which is declared within an extern "C" region and marked 7278 /// as 'used', but has internal linkage, create an alias from the unmangled 7279 /// name to the mangled name if possible. People expect to be able to refer 7280 /// to such functions with an unmangled name from inline assembly within the 7281 /// same translation unit. 7282 void CodeGenModule::EmitStaticExternCAliases() { 7283 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7284 return; 7285 for (auto &I : StaticExternCValues) { 7286 const IdentifierInfo *Name = I.first; 7287 llvm::GlobalValue *Val = I.second; 7288 7289 // If Val is null, that implies there were multiple declarations that each 7290 // had a claim to the unmangled name. In this case, generation of the alias 7291 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7292 if (!Val) 7293 break; 7294 7295 llvm::GlobalValue *ExistingElem = 7296 getModule().getNamedValue(Name->getName()); 7297 7298 // If there is either not something already by this name, or we were able to 7299 // replace all uses from IFuncs, create the alias. 7300 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7301 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7302 } 7303 } 7304 7305 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7306 GlobalDecl &Result) const { 7307 auto Res = Manglings.find(MangledName); 7308 if (Res == Manglings.end()) 7309 return false; 7310 Result = Res->getValue(); 7311 return true; 7312 } 7313 7314 /// Emits metadata nodes associating all the global values in the 7315 /// current module with the Decls they came from. This is useful for 7316 /// projects using IR gen as a subroutine. 7317 /// 7318 /// Since there's currently no way to associate an MDNode directly 7319 /// with an llvm::GlobalValue, we create a global named metadata 7320 /// with the name 'clang.global.decl.ptrs'. 7321 void CodeGenModule::EmitDeclMetadata() { 7322 llvm::NamedMDNode *GlobalMetadata = nullptr; 7323 7324 for (auto &I : MangledDeclNames) { 7325 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7326 // Some mangled names don't necessarily have an associated GlobalValue 7327 // in this module, e.g. if we mangled it for DebugInfo. 7328 if (Addr) 7329 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7330 } 7331 } 7332 7333 /// Emits metadata nodes for all the local variables in the current 7334 /// function. 7335 void CodeGenFunction::EmitDeclMetadata() { 7336 if (LocalDeclMap.empty()) return; 7337 7338 llvm::LLVMContext &Context = getLLVMContext(); 7339 7340 // Find the unique metadata ID for this name. 7341 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7342 7343 llvm::NamedMDNode *GlobalMetadata = nullptr; 7344 7345 for (auto &I : LocalDeclMap) { 7346 const Decl *D = I.first; 7347 llvm::Value *Addr = I.second.emitRawPointer(*this); 7348 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7349 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7350 Alloca->setMetadata( 7351 DeclPtrKind, llvm::MDNode::get( 7352 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7353 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7354 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7355 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7356 } 7357 } 7358 } 7359 7360 void CodeGenModule::EmitVersionIdentMetadata() { 7361 llvm::NamedMDNode *IdentMetadata = 7362 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7363 std::string Version = getClangFullVersion(); 7364 llvm::LLVMContext &Ctx = TheModule.getContext(); 7365 7366 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7367 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7368 } 7369 7370 void CodeGenModule::EmitCommandLineMetadata() { 7371 llvm::NamedMDNode *CommandLineMetadata = 7372 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7373 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7374 llvm::LLVMContext &Ctx = TheModule.getContext(); 7375 7376 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7377 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7378 } 7379 7380 void CodeGenModule::EmitCoverageFile() { 7381 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7382 if (!CUNode) 7383 return; 7384 7385 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7386 llvm::LLVMContext &Ctx = TheModule.getContext(); 7387 auto *CoverageDataFile = 7388 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7389 auto *CoverageNotesFile = 7390 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7391 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7392 llvm::MDNode *CU = CUNode->getOperand(i); 7393 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7394 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7395 } 7396 } 7397 7398 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7399 bool ForEH) { 7400 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7401 // FIXME: should we even be calling this method if RTTI is disabled 7402 // and it's not for EH? 7403 if (!shouldEmitRTTI(ForEH)) 7404 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7405 7406 if (ForEH && Ty->isObjCObjectPointerType() && 7407 LangOpts.ObjCRuntime.isGNUFamily()) 7408 return ObjCRuntime->GetEHType(Ty); 7409 7410 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7411 } 7412 7413 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7414 // Do not emit threadprivates in simd-only mode. 7415 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7416 return; 7417 for (auto RefExpr : D->varlists()) { 7418 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7419 bool PerformInit = 7420 VD->getAnyInitializer() && 7421 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7422 /*ForRef=*/false); 7423 7424 Address Addr(GetAddrOfGlobalVar(VD), 7425 getTypes().ConvertTypeForMem(VD->getType()), 7426 getContext().getDeclAlign(VD)); 7427 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7428 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7429 CXXGlobalInits.push_back(InitFunction); 7430 } 7431 } 7432 7433 llvm::Metadata * 7434 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7435 StringRef Suffix) { 7436 if (auto *FnType = T->getAs<FunctionProtoType>()) 7437 T = getContext().getFunctionType( 7438 FnType->getReturnType(), FnType->getParamTypes(), 7439 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7440 7441 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7442 if (InternalId) 7443 return InternalId; 7444 7445 if (isExternallyVisible(T->getLinkage())) { 7446 std::string OutName; 7447 llvm::raw_string_ostream Out(OutName); 7448 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7449 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7450 7451 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7452 Out << ".normalized"; 7453 7454 Out << Suffix; 7455 7456 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7457 } else { 7458 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7459 llvm::ArrayRef<llvm::Metadata *>()); 7460 } 7461 7462 return InternalId; 7463 } 7464 7465 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7466 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7467 } 7468 7469 llvm::Metadata * 7470 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7471 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7472 } 7473 7474 // Generalize pointer types to a void pointer with the qualifiers of the 7475 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7476 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7477 // 'void *'. 7478 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7479 if (!Ty->isPointerType()) 7480 return Ty; 7481 7482 return Ctx.getPointerType( 7483 QualType(Ctx.VoidTy).withCVRQualifiers( 7484 Ty->getPointeeType().getCVRQualifiers())); 7485 } 7486 7487 // Apply type generalization to a FunctionType's return and argument types 7488 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7489 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7490 SmallVector<QualType, 8> GeneralizedParams; 7491 for (auto &Param : FnType->param_types()) 7492 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7493 7494 return Ctx.getFunctionType( 7495 GeneralizeType(Ctx, FnType->getReturnType()), 7496 GeneralizedParams, FnType->getExtProtoInfo()); 7497 } 7498 7499 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7500 return Ctx.getFunctionNoProtoType( 7501 GeneralizeType(Ctx, FnType->getReturnType())); 7502 7503 llvm_unreachable("Encountered unknown FunctionType"); 7504 } 7505 7506 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7507 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7508 GeneralizedMetadataIdMap, ".generalized"); 7509 } 7510 7511 /// Returns whether this module needs the "all-vtables" type identifier. 7512 bool CodeGenModule::NeedAllVtablesTypeId() const { 7513 // Returns true if at least one of vtable-based CFI checkers is enabled and 7514 // is not in the trapping mode. 7515 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7516 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7517 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7518 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7519 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7520 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7521 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7522 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7523 } 7524 7525 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7526 CharUnits Offset, 7527 const CXXRecordDecl *RD) { 7528 llvm::Metadata *MD = 7529 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7530 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7531 7532 if (CodeGenOpts.SanitizeCfiCrossDso) 7533 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7534 VTable->addTypeMetadata(Offset.getQuantity(), 7535 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7536 7537 if (NeedAllVtablesTypeId()) { 7538 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7539 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7540 } 7541 } 7542 7543 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7544 if (!SanStats) 7545 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7546 7547 return *SanStats; 7548 } 7549 7550 llvm::Value * 7551 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7552 CodeGenFunction &CGF) { 7553 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7554 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7555 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7556 auto *Call = CGF.EmitRuntimeCall( 7557 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7558 return Call; 7559 } 7560 7561 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7562 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7563 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7564 /* forPointeeType= */ true); 7565 } 7566 7567 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7568 LValueBaseInfo *BaseInfo, 7569 TBAAAccessInfo *TBAAInfo, 7570 bool forPointeeType) { 7571 if (TBAAInfo) 7572 *TBAAInfo = getTBAAAccessInfo(T); 7573 7574 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7575 // that doesn't return the information we need to compute BaseInfo. 7576 7577 // Honor alignment typedef attributes even on incomplete types. 7578 // We also honor them straight for C++ class types, even as pointees; 7579 // there's an expressivity gap here. 7580 if (auto TT = T->getAs<TypedefType>()) { 7581 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7582 if (BaseInfo) 7583 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7584 return getContext().toCharUnitsFromBits(Align); 7585 } 7586 } 7587 7588 bool AlignForArray = T->isArrayType(); 7589 7590 // Analyze the base element type, so we don't get confused by incomplete 7591 // array types. 7592 T = getContext().getBaseElementType(T); 7593 7594 if (T->isIncompleteType()) { 7595 // We could try to replicate the logic from 7596 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7597 // type is incomplete, so it's impossible to test. We could try to reuse 7598 // getTypeAlignIfKnown, but that doesn't return the information we need 7599 // to set BaseInfo. So just ignore the possibility that the alignment is 7600 // greater than one. 7601 if (BaseInfo) 7602 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7603 return CharUnits::One(); 7604 } 7605 7606 if (BaseInfo) 7607 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7608 7609 CharUnits Alignment; 7610 const CXXRecordDecl *RD; 7611 if (T.getQualifiers().hasUnaligned()) { 7612 Alignment = CharUnits::One(); 7613 } else if (forPointeeType && !AlignForArray && 7614 (RD = T->getAsCXXRecordDecl())) { 7615 // For C++ class pointees, we don't know whether we're pointing at a 7616 // base or a complete object, so we generally need to use the 7617 // non-virtual alignment. 7618 Alignment = getClassPointerAlignment(RD); 7619 } else { 7620 Alignment = getContext().getTypeAlignInChars(T); 7621 } 7622 7623 // Cap to the global maximum type alignment unless the alignment 7624 // was somehow explicit on the type. 7625 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7626 if (Alignment.getQuantity() > MaxAlign && 7627 !getContext().isAlignmentRequired(T)) 7628 Alignment = CharUnits::fromQuantity(MaxAlign); 7629 } 7630 return Alignment; 7631 } 7632 7633 bool CodeGenModule::stopAutoInit() { 7634 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7635 if (StopAfter) { 7636 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7637 // used 7638 if (NumAutoVarInit >= StopAfter) { 7639 return true; 7640 } 7641 if (!NumAutoVarInit) { 7642 unsigned DiagID = getDiags().getCustomDiagID( 7643 DiagnosticsEngine::Warning, 7644 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7645 "number of times ftrivial-auto-var-init=%1 gets applied."); 7646 getDiags().Report(DiagID) 7647 << StopAfter 7648 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7649 LangOptions::TrivialAutoVarInitKind::Zero 7650 ? "zero" 7651 : "pattern"); 7652 } 7653 ++NumAutoVarInit; 7654 } 7655 return false; 7656 } 7657 7658 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7659 const Decl *D) const { 7660 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7661 // postfix beginning with '.' since the symbol name can be demangled. 7662 if (LangOpts.HIP) 7663 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7664 else 7665 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7666 7667 // If the CUID is not specified we try to generate a unique postfix. 7668 if (getLangOpts().CUID.empty()) { 7669 SourceManager &SM = getContext().getSourceManager(); 7670 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7671 assert(PLoc.isValid() && "Source location is expected to be valid."); 7672 7673 // Get the hash of the user defined macros. 7674 llvm::MD5 Hash; 7675 llvm::MD5::MD5Result Result; 7676 for (const auto &Arg : PreprocessorOpts.Macros) 7677 Hash.update(Arg.first); 7678 Hash.final(Result); 7679 7680 // Get the UniqueID for the file containing the decl. 7681 llvm::sys::fs::UniqueID ID; 7682 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7683 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7684 assert(PLoc.isValid() && "Source location is expected to be valid."); 7685 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7686 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7687 << PLoc.getFilename() << EC.message(); 7688 } 7689 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7690 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7691 } else { 7692 OS << getContext().getCUIDHash(); 7693 } 7694 } 7695 7696 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7697 assert(DeferredDeclsToEmit.empty() && 7698 "Should have emitted all decls deferred to emit."); 7699 assert(NewBuilder->DeferredDecls.empty() && 7700 "Newly created module should not have deferred decls"); 7701 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7702 assert(EmittedDeferredDecls.empty() && 7703 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7704 7705 assert(NewBuilder->DeferredVTables.empty() && 7706 "Newly created module should not have deferred vtables"); 7707 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7708 7709 assert(NewBuilder->MangledDeclNames.empty() && 7710 "Newly created module should not have mangled decl names"); 7711 assert(NewBuilder->Manglings.empty() && 7712 "Newly created module should not have manglings"); 7713 NewBuilder->Manglings = std::move(Manglings); 7714 7715 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7716 7717 NewBuilder->TBAA = std::move(TBAA); 7718 7719 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7720 } 7721