1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenPGO.h" 23 #include "CodeGenTBAA.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/CharInfo.h" 35 #include "clang/Basic/Diagnostic.h" 36 #include "clang/Basic/Module.h" 37 #include "clang/Basic/SourceManager.h" 38 #include "clang/Basic/TargetInfo.h" 39 #include "clang/Basic/Version.h" 40 #include "clang/Frontend/CodeGenOptions.h" 41 #include "clang/Sema/SemaDiagnostic.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/IR/CallingConv.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CallSite.h" 50 #include "llvm/Support/ConvertUTF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 static const char AnnotationSection[] = "llvm.metadata"; 57 58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 59 switch (CGM.getTarget().getCXXABI().getKind()) { 60 case TargetCXXABI::GenericAArch64: 61 case TargetCXXABI::GenericARM: 62 case TargetCXXABI::iOS: 63 case TargetCXXABI::GenericItanium: 64 return CreateItaniumCXXABI(CGM); 65 case TargetCXXABI::Microsoft: 66 return CreateMicrosoftCXXABI(CGM); 67 } 68 69 llvm_unreachable("invalid C++ ABI kind"); 70 } 71 72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 73 llvm::Module &M, const llvm::DataLayout &TD, 74 DiagnosticsEngine &diags) 75 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 76 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 77 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 78 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 79 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 80 NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0), 81 CFConstantStringClassRef(0), 82 ConstantStringClassRef(0), NSConstantStringType(0), 83 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 84 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 85 LifetimeStartFn(0), LifetimeEndFn(0), 86 SanitizerBlacklist( 87 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 88 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 89 : LangOpts.Sanitize) { 90 91 // Initialize the type cache. 92 llvm::LLVMContext &LLVMContext = M.getContext(); 93 VoidTy = llvm::Type::getVoidTy(LLVMContext); 94 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 95 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 96 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 97 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 98 FloatTy = llvm::Type::getFloatTy(LLVMContext); 99 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 100 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 101 PointerAlignInBytes = 102 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 103 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 104 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 105 Int8PtrTy = Int8Ty->getPointerTo(0); 106 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 107 108 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 109 110 if (LangOpts.ObjC1) 111 createObjCRuntime(); 112 if (LangOpts.OpenCL) 113 createOpenCLRuntime(); 114 if (LangOpts.CUDA) 115 createCUDARuntime(); 116 117 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 118 if (SanOpts.Thread || 119 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 120 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 121 getCXXABI().getMangleContext()); 122 123 // If debug info or coverage generation is enabled, create the CGDebugInfo 124 // object. 125 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 126 CodeGenOpts.EmitGcovArcs || 127 CodeGenOpts.EmitGcovNotes) 128 DebugInfo = new CGDebugInfo(*this); 129 130 Block.GlobalUniqueCount = 0; 131 132 if (C.getLangOpts().ObjCAutoRefCount) 133 ARCData = new ARCEntrypoints(); 134 RRData = new RREntrypoints(); 135 136 if (!CodeGenOpts.InstrProfileInput.empty()) 137 PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput); 138 } 139 140 CodeGenModule::~CodeGenModule() { 141 delete ObjCRuntime; 142 delete OpenCLRuntime; 143 delete CUDARuntime; 144 delete TheTargetCodeGenInfo; 145 delete TBAA; 146 delete DebugInfo; 147 delete ARCData; 148 delete RRData; 149 } 150 151 void CodeGenModule::createObjCRuntime() { 152 // This is just isGNUFamily(), but we want to force implementors of 153 // new ABIs to decide how best to do this. 154 switch (LangOpts.ObjCRuntime.getKind()) { 155 case ObjCRuntime::GNUstep: 156 case ObjCRuntime::GCC: 157 case ObjCRuntime::ObjFW: 158 ObjCRuntime = CreateGNUObjCRuntime(*this); 159 return; 160 161 case ObjCRuntime::FragileMacOSX: 162 case ObjCRuntime::MacOSX: 163 case ObjCRuntime::iOS: 164 ObjCRuntime = CreateMacObjCRuntime(*this); 165 return; 166 } 167 llvm_unreachable("bad runtime kind"); 168 } 169 170 void CodeGenModule::createOpenCLRuntime() { 171 OpenCLRuntime = new CGOpenCLRuntime(*this); 172 } 173 174 void CodeGenModule::createCUDARuntime() { 175 CUDARuntime = CreateNVCUDARuntime(*this); 176 } 177 178 void CodeGenModule::applyReplacements() { 179 for (ReplacementsTy::iterator I = Replacements.begin(), 180 E = Replacements.end(); 181 I != E; ++I) { 182 StringRef MangledName = I->first(); 183 llvm::Constant *Replacement = I->second; 184 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 185 if (!Entry) 186 continue; 187 llvm::Function *OldF = cast<llvm::Function>(Entry); 188 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 189 if (!NewF) { 190 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 191 assert(CE->getOpcode() == llvm::Instruction::BitCast || 192 CE->getOpcode() == llvm::Instruction::GetElementPtr); 193 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 194 } 195 196 // Replace old with new, but keep the old order. 197 OldF->replaceAllUsesWith(Replacement); 198 if (NewF) { 199 NewF->removeFromParent(); 200 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 201 } 202 OldF->eraseFromParent(); 203 } 204 } 205 206 void CodeGenModule::checkAliases() { 207 bool Error = false; 208 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 209 E = Aliases.end(); I != E; ++I) { 210 const GlobalDecl &GD = *I; 211 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 212 const AliasAttr *AA = D->getAttr<AliasAttr>(); 213 StringRef MangledName = getMangledName(GD); 214 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 215 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 216 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 217 if (GV->isDeclaration()) { 218 Error = true; 219 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 220 } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) { 221 Error = true; 222 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 223 } 224 } 225 if (!Error) 226 return; 227 228 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 229 E = Aliases.end(); I != E; ++I) { 230 const GlobalDecl &GD = *I; 231 StringRef MangledName = getMangledName(GD); 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 234 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 235 Alias->eraseFromParent(); 236 } 237 } 238 239 void CodeGenModule::clear() { 240 DeferredDeclsToEmit.clear(); 241 } 242 243 void CodeGenModule::Release() { 244 EmitDeferred(); 245 applyReplacements(); 246 checkAliases(); 247 EmitCXXGlobalInitFunc(); 248 EmitCXXGlobalDtorFunc(); 249 EmitCXXThreadLocalInitFunc(); 250 if (ObjCRuntime) 251 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 252 AddGlobalCtor(ObjCInitFunction); 253 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 254 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 255 EmitGlobalAnnotations(); 256 EmitStaticExternCAliases(); 257 EmitLLVMUsed(); 258 259 if (CodeGenOpts.Autolink && 260 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 261 EmitModuleLinkOptions(); 262 } 263 if (CodeGenOpts.DwarfVersion) 264 // We actually want the latest version when there are conflicts. 265 // We can change from Warning to Latest if such mode is supported. 266 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 267 CodeGenOpts.DwarfVersion); 268 if (DebugInfo) 269 // We support a single version in the linked module: error out when 270 // modules do not have the same version. We are going to implement dropping 271 // debug info when the version number is not up-to-date. Once that is 272 // done, the bitcode linker is not going to see modules with different 273 // version numbers. 274 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 275 llvm::DEBUG_METADATA_VERSION); 276 277 SimplifyPersonality(); 278 279 if (getCodeGenOpts().EmitDeclMetadata) 280 EmitDeclMetadata(); 281 282 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 283 EmitCoverageFile(); 284 285 if (DebugInfo) 286 DebugInfo->finalize(); 287 288 EmitVersionIdentMetadata(); 289 } 290 291 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 292 // Make sure that this type is translated. 293 Types.UpdateCompletedType(TD); 294 } 295 296 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 297 if (!TBAA) 298 return 0; 299 return TBAA->getTBAAInfo(QTy); 300 } 301 302 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 303 if (!TBAA) 304 return 0; 305 return TBAA->getTBAAInfoForVTablePtr(); 306 } 307 308 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 309 if (!TBAA) 310 return 0; 311 return TBAA->getTBAAStructInfo(QTy); 312 } 313 314 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 315 if (!TBAA) 316 return 0; 317 return TBAA->getTBAAStructTypeInfo(QTy); 318 } 319 320 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 321 llvm::MDNode *AccessN, 322 uint64_t O) { 323 if (!TBAA) 324 return 0; 325 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 326 } 327 328 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 329 /// and struct-path aware TBAA, the tag has the same format: 330 /// base type, access type and offset. 331 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 332 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 333 llvm::MDNode *TBAAInfo, 334 bool ConvertTypeToTag) { 335 if (ConvertTypeToTag && TBAA) 336 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 337 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 338 else 339 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 340 } 341 342 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 343 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 344 getDiags().Report(Context.getFullLoc(loc), diagID); 345 } 346 347 /// ErrorUnsupported - Print out an error that codegen doesn't support the 348 /// specified stmt yet. 349 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 350 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 351 "cannot compile this %0 yet"); 352 std::string Msg = Type; 353 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 354 << Msg << S->getSourceRange(); 355 } 356 357 /// ErrorUnsupported - Print out an error that codegen doesn't support the 358 /// specified decl yet. 359 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 360 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 361 "cannot compile this %0 yet"); 362 std::string Msg = Type; 363 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 364 } 365 366 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 367 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 368 } 369 370 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 371 const NamedDecl *D) const { 372 // Internal definitions always have default visibility. 373 if (GV->hasLocalLinkage()) { 374 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 375 return; 376 } 377 378 // Set visibility for definitions. 379 LinkageInfo LV = D->getLinkageAndVisibility(); 380 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 381 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 382 } 383 384 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 385 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 386 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 387 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 388 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 389 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 390 } 391 392 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 393 CodeGenOptions::TLSModel M) { 394 switch (M) { 395 case CodeGenOptions::GeneralDynamicTLSModel: 396 return llvm::GlobalVariable::GeneralDynamicTLSModel; 397 case CodeGenOptions::LocalDynamicTLSModel: 398 return llvm::GlobalVariable::LocalDynamicTLSModel; 399 case CodeGenOptions::InitialExecTLSModel: 400 return llvm::GlobalVariable::InitialExecTLSModel; 401 case CodeGenOptions::LocalExecTLSModel: 402 return llvm::GlobalVariable::LocalExecTLSModel; 403 } 404 llvm_unreachable("Invalid TLS model!"); 405 } 406 407 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 408 const VarDecl &D) const { 409 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 410 411 llvm::GlobalVariable::ThreadLocalMode TLM; 412 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 413 414 // Override the TLS model if it is explicitly specified. 415 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 416 TLM = GetLLVMTLSModel(Attr->getModel()); 417 } 418 419 GV->setThreadLocalMode(TLM); 420 } 421 422 /// Set the symbol visibility of type information (vtable and RTTI) 423 /// associated with the given type. 424 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 425 const CXXRecordDecl *RD, 426 TypeVisibilityKind TVK) const { 427 setGlobalVisibility(GV, RD); 428 429 if (!CodeGenOpts.HiddenWeakVTables) 430 return; 431 432 // We never want to drop the visibility for RTTI names. 433 if (TVK == TVK_ForRTTIName) 434 return; 435 436 // We want to drop the visibility to hidden for weak type symbols. 437 // This isn't possible if there might be unresolved references 438 // elsewhere that rely on this symbol being visible. 439 440 // This should be kept roughly in sync with setThunkVisibility 441 // in CGVTables.cpp. 442 443 // Preconditions. 444 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 445 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 446 return; 447 448 // Don't override an explicit visibility attribute. 449 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType)) 450 return; 451 452 switch (RD->getTemplateSpecializationKind()) { 453 // We have to disable the optimization if this is an EI definition 454 // because there might be EI declarations in other shared objects. 455 case TSK_ExplicitInstantiationDefinition: 456 case TSK_ExplicitInstantiationDeclaration: 457 return; 458 459 // Every use of a non-template class's type information has to emit it. 460 case TSK_Undeclared: 461 break; 462 463 // In theory, implicit instantiations can ignore the possibility of 464 // an explicit instantiation declaration because there necessarily 465 // must be an EI definition somewhere with default visibility. In 466 // practice, it's possible to have an explicit instantiation for 467 // an arbitrary template class, and linkers aren't necessarily able 468 // to deal with mixed-visibility symbols. 469 case TSK_ExplicitSpecialization: 470 case TSK_ImplicitInstantiation: 471 return; 472 } 473 474 // If there's a key function, there may be translation units 475 // that don't have the key function's definition. But ignore 476 // this if we're emitting RTTI under -fno-rtti. 477 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 478 // FIXME: what should we do if we "lose" the key function during 479 // the emission of the file? 480 if (Context.getCurrentKeyFunction(RD)) 481 return; 482 } 483 484 // Otherwise, drop the visibility to hidden. 485 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 486 GV->setUnnamedAddr(true); 487 } 488 489 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 490 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 491 492 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 493 if (!Str.empty()) 494 return Str; 495 496 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 497 IdentifierInfo *II = ND->getIdentifier(); 498 assert(II && "Attempt to mangle unnamed decl."); 499 500 Str = II->getName(); 501 return Str; 502 } 503 504 SmallString<256> Buffer; 505 llvm::raw_svector_ostream Out(Buffer); 506 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 507 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 508 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 509 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 510 else 511 getCXXABI().getMangleContext().mangleName(ND, Out); 512 513 // Allocate space for the mangled name. 514 Out.flush(); 515 size_t Length = Buffer.size(); 516 char *Name = MangledNamesAllocator.Allocate<char>(Length); 517 std::copy(Buffer.begin(), Buffer.end(), Name); 518 519 Str = StringRef(Name, Length); 520 521 return Str; 522 } 523 524 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 525 const BlockDecl *BD) { 526 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 527 const Decl *D = GD.getDecl(); 528 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 529 if (D == 0) 530 MangleCtx.mangleGlobalBlock(BD, 531 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 532 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 533 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 534 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 535 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 536 else 537 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 538 } 539 540 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 541 return getModule().getNamedValue(Name); 542 } 543 544 /// AddGlobalCtor - Add a function to the list that will be called before 545 /// main() runs. 546 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 547 // FIXME: Type coercion of void()* types. 548 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 549 } 550 551 /// AddGlobalDtor - Add a function to the list that will be called 552 /// when the module is unloaded. 553 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 554 // FIXME: Type coercion of void()* types. 555 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 556 } 557 558 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 559 // Ctor function type is void()*. 560 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 561 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 562 563 // Get the type of a ctor entry, { i32, void ()* }. 564 llvm::StructType *CtorStructTy = 565 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 566 567 // Construct the constructor and destructor arrays. 568 SmallVector<llvm::Constant*, 8> Ctors; 569 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 570 llvm::Constant *S[] = { 571 llvm::ConstantInt::get(Int32Ty, I->second, false), 572 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 573 }; 574 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 575 } 576 577 if (!Ctors.empty()) { 578 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 579 new llvm::GlobalVariable(TheModule, AT, false, 580 llvm::GlobalValue::AppendingLinkage, 581 llvm::ConstantArray::get(AT, Ctors), 582 GlobalName); 583 } 584 } 585 586 llvm::GlobalValue::LinkageTypes 587 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 588 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 589 590 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 591 592 if (Linkage == GVA_Internal) 593 return llvm::Function::InternalLinkage; 594 595 if (D->hasAttr<DLLExportAttr>()) 596 return llvm::Function::DLLExportLinkage; 597 598 if (D->hasAttr<WeakAttr>()) 599 return llvm::Function::WeakAnyLinkage; 600 601 // In C99 mode, 'inline' functions are guaranteed to have a strong 602 // definition somewhere else, so we can use available_externally linkage. 603 if (Linkage == GVA_C99Inline) 604 return llvm::Function::AvailableExternallyLinkage; 605 606 // Note that Apple's kernel linker doesn't support symbol 607 // coalescing, so we need to avoid linkonce and weak linkages there. 608 // Normally, this means we just map to internal, but for explicit 609 // instantiations we'll map to external. 610 611 // In C++, the compiler has to emit a definition in every translation unit 612 // that references the function. We should use linkonce_odr because 613 // a) if all references in this translation unit are optimized away, we 614 // don't need to codegen it. b) if the function persists, it needs to be 615 // merged with other definitions. c) C++ has the ODR, so we know the 616 // definition is dependable. 617 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 618 return !Context.getLangOpts().AppleKext 619 ? llvm::Function::LinkOnceODRLinkage 620 : llvm::Function::InternalLinkage; 621 622 // An explicit instantiation of a template has weak linkage, since 623 // explicit instantiations can occur in multiple translation units 624 // and must all be equivalent. However, we are not allowed to 625 // throw away these explicit instantiations. 626 if (Linkage == GVA_ExplicitTemplateInstantiation) 627 return !Context.getLangOpts().AppleKext 628 ? llvm::Function::WeakODRLinkage 629 : llvm::Function::ExternalLinkage; 630 631 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 632 // emitted on an as-needed basis. 633 if (isa<CXXDestructorDecl>(D) && 634 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 635 GD.getDtorType())) 636 return llvm::Function::LinkOnceODRLinkage; 637 638 // Otherwise, we have strong external linkage. 639 assert(Linkage == GVA_StrongExternal); 640 return llvm::Function::ExternalLinkage; 641 } 642 643 644 /// SetFunctionDefinitionAttributes - Set attributes for a global. 645 /// 646 /// FIXME: This is currently only done for aliases and functions, but not for 647 /// variables (these details are set in EmitGlobalVarDefinition for variables). 648 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 649 llvm::GlobalValue *GV) { 650 SetCommonAttributes(D, GV); 651 } 652 653 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 654 const CGFunctionInfo &Info, 655 llvm::Function *F) { 656 unsigned CallingConv; 657 AttributeListType AttributeList; 658 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 659 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 660 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 661 } 662 663 /// Determines whether the language options require us to model 664 /// unwind exceptions. We treat -fexceptions as mandating this 665 /// except under the fragile ObjC ABI with only ObjC exceptions 666 /// enabled. This means, for example, that C with -fexceptions 667 /// enables this. 668 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 669 // If exceptions are completely disabled, obviously this is false. 670 if (!LangOpts.Exceptions) return false; 671 672 // If C++ exceptions are enabled, this is true. 673 if (LangOpts.CXXExceptions) return true; 674 675 // If ObjC exceptions are enabled, this depends on the ABI. 676 if (LangOpts.ObjCExceptions) { 677 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 678 } 679 680 return true; 681 } 682 683 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 684 llvm::Function *F) { 685 llvm::AttrBuilder B; 686 687 if (CodeGenOpts.UnwindTables) 688 B.addAttribute(llvm::Attribute::UWTable); 689 690 if (!hasUnwindExceptions(LangOpts)) 691 B.addAttribute(llvm::Attribute::NoUnwind); 692 693 if (D->hasAttr<NakedAttr>()) { 694 // Naked implies noinline: we should not be inlining such functions. 695 B.addAttribute(llvm::Attribute::Naked); 696 B.addAttribute(llvm::Attribute::NoInline); 697 } else if (D->hasAttr<NoInlineAttr>()) { 698 B.addAttribute(llvm::Attribute::NoInline); 699 } else if ((D->hasAttr<AlwaysInlineAttr>() || 700 D->hasAttr<ForceInlineAttr>()) && 701 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 702 llvm::Attribute::NoInline)) { 703 // (noinline wins over always_inline, and we can't specify both in IR) 704 B.addAttribute(llvm::Attribute::AlwaysInline); 705 } 706 707 if (D->hasAttr<ColdAttr>()) { 708 B.addAttribute(llvm::Attribute::OptimizeForSize); 709 B.addAttribute(llvm::Attribute::Cold); 710 } 711 712 if (D->hasAttr<MinSizeAttr>()) 713 B.addAttribute(llvm::Attribute::MinSize); 714 715 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 716 B.addAttribute(llvm::Attribute::StackProtect); 717 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 718 B.addAttribute(llvm::Attribute::StackProtectReq); 719 720 // Add sanitizer attributes if function is not blacklisted. 721 if (!SanitizerBlacklist->isIn(*F)) { 722 // When AddressSanitizer is enabled, set SanitizeAddress attribute 723 // unless __attribute__((no_sanitize_address)) is used. 724 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 725 B.addAttribute(llvm::Attribute::SanitizeAddress); 726 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 727 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 728 B.addAttribute(llvm::Attribute::SanitizeThread); 729 } 730 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 731 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 732 B.addAttribute(llvm::Attribute::SanitizeMemory); 733 } 734 735 F->addAttributes(llvm::AttributeSet::FunctionIndex, 736 llvm::AttributeSet::get( 737 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 738 739 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 740 F->setUnnamedAddr(true); 741 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 742 if (MD->isVirtual()) 743 F->setUnnamedAddr(true); 744 745 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 746 if (alignment) 747 F->setAlignment(alignment); 748 749 // C++ ABI requires 2-byte alignment for member functions. 750 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 751 F->setAlignment(2); 752 } 753 754 void CodeGenModule::SetCommonAttributes(const Decl *D, 755 llvm::GlobalValue *GV) { 756 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 757 setGlobalVisibility(GV, ND); 758 else 759 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 760 761 if (D->hasAttr<UsedAttr>()) 762 AddUsedGlobal(GV); 763 764 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 765 GV->setSection(SA->getName()); 766 767 // Alias cannot have attributes. Filter them here. 768 if (!isa<llvm::GlobalAlias>(GV)) 769 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 770 } 771 772 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 773 llvm::Function *F, 774 const CGFunctionInfo &FI) { 775 SetLLVMFunctionAttributes(D, FI, F); 776 SetLLVMFunctionAttributesForDefinition(D, F); 777 778 F->setLinkage(llvm::Function::InternalLinkage); 779 780 SetCommonAttributes(D, F); 781 } 782 783 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 784 llvm::Function *F, 785 bool IsIncompleteFunction) { 786 if (unsigned IID = F->getIntrinsicID()) { 787 // If this is an intrinsic function, set the function's attributes 788 // to the intrinsic's attributes. 789 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 790 (llvm::Intrinsic::ID)IID)); 791 return; 792 } 793 794 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 795 796 if (!IsIncompleteFunction) 797 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 798 799 if (getCXXABI().HasThisReturn(GD)) { 800 assert(!F->arg_empty() && 801 F->arg_begin()->getType() 802 ->canLosslesslyBitCastTo(F->getReturnType()) && 803 "unexpected this return"); 804 F->addAttribute(1, llvm::Attribute::Returned); 805 } 806 807 // Only a few attributes are set on declarations; these may later be 808 // overridden by a definition. 809 810 if (FD->hasAttr<DLLImportAttr>()) { 811 F->setLinkage(llvm::Function::DLLImportLinkage); 812 } else if (FD->hasAttr<WeakAttr>() || 813 FD->isWeakImported()) { 814 // "extern_weak" is overloaded in LLVM; we probably should have 815 // separate linkage types for this. 816 F->setLinkage(llvm::Function::ExternalWeakLinkage); 817 } else { 818 F->setLinkage(llvm::Function::ExternalLinkage); 819 820 LinkageInfo LV = FD->getLinkageAndVisibility(); 821 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 822 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 823 } 824 } 825 826 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 827 F->setSection(SA->getName()); 828 829 // A replaceable global allocation function does not act like a builtin by 830 // default, only if it is invoked by a new-expression or delete-expression. 831 if (FD->isReplaceableGlobalAllocationFunction()) 832 F->addAttribute(llvm::AttributeSet::FunctionIndex, 833 llvm::Attribute::NoBuiltin); 834 } 835 836 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 837 assert(!GV->isDeclaration() && 838 "Only globals with definition can force usage."); 839 LLVMUsed.push_back(GV); 840 } 841 842 void CodeGenModule::EmitLLVMUsed() { 843 // Don't create llvm.used if there is no need. 844 if (LLVMUsed.empty()) 845 return; 846 847 // Convert LLVMUsed to what ConstantArray needs. 848 SmallVector<llvm::Constant*, 8> UsedArray; 849 UsedArray.resize(LLVMUsed.size()); 850 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 851 UsedArray[i] = 852 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 853 Int8PtrTy); 854 } 855 856 if (UsedArray.empty()) 857 return; 858 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 859 860 llvm::GlobalVariable *GV = 861 new llvm::GlobalVariable(getModule(), ATy, false, 862 llvm::GlobalValue::AppendingLinkage, 863 llvm::ConstantArray::get(ATy, UsedArray), 864 "llvm.used"); 865 866 GV->setSection("llvm.metadata"); 867 } 868 869 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 870 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 871 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 872 } 873 874 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 875 llvm::SmallString<32> Opt; 876 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 877 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 878 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 879 } 880 881 void CodeGenModule::AddDependentLib(StringRef Lib) { 882 llvm::SmallString<24> Opt; 883 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 884 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 885 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 886 } 887 888 /// \brief Add link options implied by the given module, including modules 889 /// it depends on, using a postorder walk. 890 static void addLinkOptionsPostorder(CodeGenModule &CGM, 891 Module *Mod, 892 SmallVectorImpl<llvm::Value *> &Metadata, 893 llvm::SmallPtrSet<Module *, 16> &Visited) { 894 // Import this module's parent. 895 if (Mod->Parent && Visited.insert(Mod->Parent)) { 896 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 897 } 898 899 // Import this module's dependencies. 900 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 901 if (Visited.insert(Mod->Imports[I-1])) 902 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 903 } 904 905 // Add linker options to link against the libraries/frameworks 906 // described by this module. 907 llvm::LLVMContext &Context = CGM.getLLVMContext(); 908 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 909 // Link against a framework. Frameworks are currently Darwin only, so we 910 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 911 if (Mod->LinkLibraries[I-1].IsFramework) { 912 llvm::Value *Args[2] = { 913 llvm::MDString::get(Context, "-framework"), 914 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 915 }; 916 917 Metadata.push_back(llvm::MDNode::get(Context, Args)); 918 continue; 919 } 920 921 // Link against a library. 922 llvm::SmallString<24> Opt; 923 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 924 Mod->LinkLibraries[I-1].Library, Opt); 925 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 926 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 927 } 928 } 929 930 void CodeGenModule::EmitModuleLinkOptions() { 931 // Collect the set of all of the modules we want to visit to emit link 932 // options, which is essentially the imported modules and all of their 933 // non-explicit child modules. 934 llvm::SetVector<clang::Module *> LinkModules; 935 llvm::SmallPtrSet<clang::Module *, 16> Visited; 936 SmallVector<clang::Module *, 16> Stack; 937 938 // Seed the stack with imported modules. 939 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 940 MEnd = ImportedModules.end(); 941 M != MEnd; ++M) { 942 if (Visited.insert(*M)) 943 Stack.push_back(*M); 944 } 945 946 // Find all of the modules to import, making a little effort to prune 947 // non-leaf modules. 948 while (!Stack.empty()) { 949 clang::Module *Mod = Stack.pop_back_val(); 950 951 bool AnyChildren = false; 952 953 // Visit the submodules of this module. 954 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 955 SubEnd = Mod->submodule_end(); 956 Sub != SubEnd; ++Sub) { 957 // Skip explicit children; they need to be explicitly imported to be 958 // linked against. 959 if ((*Sub)->IsExplicit) 960 continue; 961 962 if (Visited.insert(*Sub)) { 963 Stack.push_back(*Sub); 964 AnyChildren = true; 965 } 966 } 967 968 // We didn't find any children, so add this module to the list of 969 // modules to link against. 970 if (!AnyChildren) { 971 LinkModules.insert(Mod); 972 } 973 } 974 975 // Add link options for all of the imported modules in reverse topological 976 // order. We don't do anything to try to order import link flags with respect 977 // to linker options inserted by things like #pragma comment(). 978 SmallVector<llvm::Value *, 16> MetadataArgs; 979 Visited.clear(); 980 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 981 MEnd = LinkModules.end(); 982 M != MEnd; ++M) { 983 if (Visited.insert(*M)) 984 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 985 } 986 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 987 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 988 989 // Add the linker options metadata flag. 990 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 991 llvm::MDNode::get(getLLVMContext(), 992 LinkerOptionsMetadata)); 993 } 994 995 void CodeGenModule::EmitDeferred() { 996 // Emit code for any potentially referenced deferred decls. Since a 997 // previously unused static decl may become used during the generation of code 998 // for a static function, iterate until no changes are made. 999 1000 while (true) { 1001 if (!DeferredVTables.empty()) { 1002 EmitDeferredVTables(); 1003 1004 // Emitting a v-table doesn't directly cause more v-tables to 1005 // become deferred, although it can cause functions to be 1006 // emitted that then need those v-tables. 1007 assert(DeferredVTables.empty()); 1008 } 1009 1010 // Stop if we're out of both deferred v-tables and deferred declarations. 1011 if (DeferredDeclsToEmit.empty()) break; 1012 1013 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1014 GlobalDecl D = G.GD; 1015 llvm::GlobalValue *GV = G.GV; 1016 DeferredDeclsToEmit.pop_back(); 1017 1018 assert(GV == GetGlobalValue(getMangledName(D))); 1019 // Check to see if we've already emitted this. This is necessary 1020 // for a couple of reasons: first, decls can end up in the 1021 // deferred-decls queue multiple times, and second, decls can end 1022 // up with definitions in unusual ways (e.g. by an extern inline 1023 // function acquiring a strong function redefinition). Just 1024 // ignore these cases. 1025 if(!GV->isDeclaration()) 1026 continue; 1027 1028 // Otherwise, emit the definition and move on to the next one. 1029 EmitGlobalDefinition(D, GV); 1030 } 1031 } 1032 1033 void CodeGenModule::EmitGlobalAnnotations() { 1034 if (Annotations.empty()) 1035 return; 1036 1037 // Create a new global variable for the ConstantStruct in the Module. 1038 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1039 Annotations[0]->getType(), Annotations.size()), Annotations); 1040 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 1041 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 1042 "llvm.global.annotations"); 1043 gv->setSection(AnnotationSection); 1044 } 1045 1046 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1047 llvm::Constant *&AStr = AnnotationStrings[Str]; 1048 if (AStr) 1049 return AStr; 1050 1051 // Not found yet, create a new global. 1052 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1053 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1054 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1055 gv->setSection(AnnotationSection); 1056 gv->setUnnamedAddr(true); 1057 AStr = gv; 1058 return gv; 1059 } 1060 1061 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1062 SourceManager &SM = getContext().getSourceManager(); 1063 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1064 if (PLoc.isValid()) 1065 return EmitAnnotationString(PLoc.getFilename()); 1066 return EmitAnnotationString(SM.getBufferName(Loc)); 1067 } 1068 1069 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1070 SourceManager &SM = getContext().getSourceManager(); 1071 PresumedLoc PLoc = SM.getPresumedLoc(L); 1072 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1073 SM.getExpansionLineNumber(L); 1074 return llvm::ConstantInt::get(Int32Ty, LineNo); 1075 } 1076 1077 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1078 const AnnotateAttr *AA, 1079 SourceLocation L) { 1080 // Get the globals for file name, annotation, and the line number. 1081 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1082 *UnitGV = EmitAnnotationUnit(L), 1083 *LineNoCst = EmitAnnotationLineNo(L); 1084 1085 // Create the ConstantStruct for the global annotation. 1086 llvm::Constant *Fields[4] = { 1087 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1088 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1089 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1090 LineNoCst 1091 }; 1092 return llvm::ConstantStruct::getAnon(Fields); 1093 } 1094 1095 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1096 llvm::GlobalValue *GV) { 1097 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1098 // Get the struct elements for these annotations. 1099 for (specific_attr_iterator<AnnotateAttr> 1100 ai = D->specific_attr_begin<AnnotateAttr>(), 1101 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1102 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1103 } 1104 1105 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1106 // Never defer when EmitAllDecls is specified. 1107 if (LangOpts.EmitAllDecls) 1108 return false; 1109 1110 return !getContext().DeclMustBeEmitted(Global); 1111 } 1112 1113 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1114 const CXXUuidofExpr* E) { 1115 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1116 // well-formed. 1117 StringRef Uuid = E->getUuidAsStringRef(Context); 1118 std::string Name = "_GUID_" + Uuid.lower(); 1119 std::replace(Name.begin(), Name.end(), '-', '_'); 1120 1121 // Look for an existing global. 1122 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1123 return GV; 1124 1125 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1126 assert(Init && "failed to initialize as constant"); 1127 1128 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1129 getModule(), Init->getType(), 1130 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1131 return GV; 1132 } 1133 1134 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1135 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1136 assert(AA && "No alias?"); 1137 1138 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1139 1140 // See if there is already something with the target's name in the module. 1141 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1142 if (Entry) { 1143 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1144 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1145 } 1146 1147 llvm::Constant *Aliasee; 1148 if (isa<llvm::FunctionType>(DeclTy)) 1149 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1150 GlobalDecl(cast<FunctionDecl>(VD)), 1151 /*ForVTable=*/false); 1152 else 1153 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1154 llvm::PointerType::getUnqual(DeclTy), 0); 1155 1156 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1157 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1158 WeakRefReferences.insert(F); 1159 1160 return Aliasee; 1161 } 1162 1163 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1164 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1165 1166 // Weak references don't produce any output by themselves. 1167 if (Global->hasAttr<WeakRefAttr>()) 1168 return; 1169 1170 // If this is an alias definition (which otherwise looks like a declaration) 1171 // emit it now. 1172 if (Global->hasAttr<AliasAttr>()) 1173 return EmitAliasDefinition(GD); 1174 1175 // If this is CUDA, be selective about which declarations we emit. 1176 if (LangOpts.CUDA) { 1177 if (CodeGenOpts.CUDAIsDevice) { 1178 if (!Global->hasAttr<CUDADeviceAttr>() && 1179 !Global->hasAttr<CUDAGlobalAttr>() && 1180 !Global->hasAttr<CUDAConstantAttr>() && 1181 !Global->hasAttr<CUDASharedAttr>()) 1182 return; 1183 } else { 1184 if (!Global->hasAttr<CUDAHostAttr>() && ( 1185 Global->hasAttr<CUDADeviceAttr>() || 1186 Global->hasAttr<CUDAConstantAttr>() || 1187 Global->hasAttr<CUDASharedAttr>())) 1188 return; 1189 } 1190 } 1191 1192 // Ignore declarations, they will be emitted on their first use. 1193 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1194 // Forward declarations are emitted lazily on first use. 1195 if (!FD->doesThisDeclarationHaveABody()) { 1196 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1197 return; 1198 1199 const FunctionDecl *InlineDefinition = 0; 1200 FD->getBody(InlineDefinition); 1201 1202 StringRef MangledName = getMangledName(GD); 1203 DeferredDecls.erase(MangledName); 1204 EmitGlobalDefinition(InlineDefinition); 1205 return; 1206 } 1207 } else { 1208 const VarDecl *VD = cast<VarDecl>(Global); 1209 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1210 1211 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1212 return; 1213 } 1214 1215 // Defer code generation when possible if this is a static definition, inline 1216 // function etc. These we only want to emit if they are used. 1217 if (!MayDeferGeneration(Global)) { 1218 // Emit the definition if it can't be deferred. 1219 EmitGlobalDefinition(GD); 1220 return; 1221 } 1222 1223 // If we're deferring emission of a C++ variable with an 1224 // initializer, remember the order in which it appeared in the file. 1225 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1226 cast<VarDecl>(Global)->hasInit()) { 1227 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1228 CXXGlobalInits.push_back(0); 1229 } 1230 1231 // If the value has already been used, add it directly to the 1232 // DeferredDeclsToEmit list. 1233 StringRef MangledName = getMangledName(GD); 1234 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1235 addDeferredDeclToEmit(GV, GD); 1236 else { 1237 // Otherwise, remember that we saw a deferred decl with this name. The 1238 // first use of the mangled name will cause it to move into 1239 // DeferredDeclsToEmit. 1240 DeferredDecls[MangledName] = GD; 1241 } 1242 } 1243 1244 namespace { 1245 struct FunctionIsDirectlyRecursive : 1246 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1247 const StringRef Name; 1248 const Builtin::Context &BI; 1249 bool Result; 1250 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1251 Name(N), BI(C), Result(false) { 1252 } 1253 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1254 1255 bool TraverseCallExpr(CallExpr *E) { 1256 const FunctionDecl *FD = E->getDirectCallee(); 1257 if (!FD) 1258 return true; 1259 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1260 if (Attr && Name == Attr->getLabel()) { 1261 Result = true; 1262 return false; 1263 } 1264 unsigned BuiltinID = FD->getBuiltinID(); 1265 if (!BuiltinID) 1266 return true; 1267 StringRef BuiltinName = BI.GetName(BuiltinID); 1268 if (BuiltinName.startswith("__builtin_") && 1269 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1270 Result = true; 1271 return false; 1272 } 1273 return true; 1274 } 1275 }; 1276 } 1277 1278 // isTriviallyRecursive - Check if this function calls another 1279 // decl that, because of the asm attribute or the other decl being a builtin, 1280 // ends up pointing to itself. 1281 bool 1282 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1283 StringRef Name; 1284 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1285 // asm labels are a special kind of mangling we have to support. 1286 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1287 if (!Attr) 1288 return false; 1289 Name = Attr->getLabel(); 1290 } else { 1291 Name = FD->getName(); 1292 } 1293 1294 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1295 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1296 return Walker.Result; 1297 } 1298 1299 bool 1300 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1301 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1302 return true; 1303 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1304 if (CodeGenOpts.OptimizationLevel == 0 && 1305 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1306 return false; 1307 // PR9614. Avoid cases where the source code is lying to us. An available 1308 // externally function should have an equivalent function somewhere else, 1309 // but a function that calls itself is clearly not equivalent to the real 1310 // implementation. 1311 // This happens in glibc's btowc and in some configure checks. 1312 return !isTriviallyRecursive(F); 1313 } 1314 1315 /// If the type for the method's class was generated by 1316 /// CGDebugInfo::createContextChain(), the cache contains only a 1317 /// limited DIType without any declarations. Since EmitFunctionStart() 1318 /// needs to find the canonical declaration for each method, we need 1319 /// to construct the complete type prior to emitting the method. 1320 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1321 if (!D->isInstance()) 1322 return; 1323 1324 if (CGDebugInfo *DI = getModuleDebugInfo()) 1325 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1326 const PointerType *ThisPtr = 1327 cast<PointerType>(D->getThisType(getContext())); 1328 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1329 } 1330 } 1331 1332 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1333 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1334 1335 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1336 Context.getSourceManager(), 1337 "Generating code for declaration"); 1338 1339 if (isa<FunctionDecl>(D)) { 1340 // At -O0, don't generate IR for functions with available_externally 1341 // linkage. 1342 if (!shouldEmitFunction(GD)) 1343 return; 1344 1345 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1346 CompleteDIClassType(Method); 1347 // Make sure to emit the definition(s) before we emit the thunks. 1348 // This is necessary for the generation of certain thunks. 1349 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1350 EmitCXXConstructor(CD, GD.getCtorType()); 1351 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1352 EmitCXXDestructor(DD, GD.getDtorType()); 1353 else 1354 EmitGlobalFunctionDefinition(GD, GV); 1355 1356 if (Method->isVirtual()) 1357 getVTables().EmitThunks(GD); 1358 1359 return; 1360 } 1361 1362 return EmitGlobalFunctionDefinition(GD, GV); 1363 } 1364 1365 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1366 return EmitGlobalVarDefinition(VD); 1367 1368 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1369 } 1370 1371 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1372 /// module, create and return an llvm Function with the specified type. If there 1373 /// is something in the module with the specified name, return it potentially 1374 /// bitcasted to the right type. 1375 /// 1376 /// If D is non-null, it specifies a decl that correspond to this. This is used 1377 /// to set the attributes on the function when it is first created. 1378 llvm::Constant * 1379 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1380 llvm::Type *Ty, 1381 GlobalDecl GD, bool ForVTable, 1382 bool DontDefer, 1383 llvm::AttributeSet ExtraAttrs) { 1384 const Decl *D = GD.getDecl(); 1385 1386 // Lookup the entry, lazily creating it if necessary. 1387 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1388 if (Entry) { 1389 if (WeakRefReferences.erase(Entry)) { 1390 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1391 if (FD && !FD->hasAttr<WeakAttr>()) 1392 Entry->setLinkage(llvm::Function::ExternalLinkage); 1393 } 1394 1395 if (Entry->getType()->getElementType() == Ty) 1396 return Entry; 1397 1398 // Make sure the result is of the correct type. 1399 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1400 } 1401 1402 // This function doesn't have a complete type (for example, the return 1403 // type is an incomplete struct). Use a fake type instead, and make 1404 // sure not to try to set attributes. 1405 bool IsIncompleteFunction = false; 1406 1407 llvm::FunctionType *FTy; 1408 if (isa<llvm::FunctionType>(Ty)) { 1409 FTy = cast<llvm::FunctionType>(Ty); 1410 } else { 1411 FTy = llvm::FunctionType::get(VoidTy, false); 1412 IsIncompleteFunction = true; 1413 } 1414 1415 llvm::Function *F = llvm::Function::Create(FTy, 1416 llvm::Function::ExternalLinkage, 1417 MangledName, &getModule()); 1418 assert(F->getName() == MangledName && "name was uniqued!"); 1419 if (D) 1420 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1421 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1422 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1423 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1424 llvm::AttributeSet::get(VMContext, 1425 llvm::AttributeSet::FunctionIndex, 1426 B)); 1427 } 1428 1429 if (!DontDefer) { 1430 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1431 // each other bottoming out with the base dtor. Therefore we emit non-base 1432 // dtors on usage, even if there is no dtor definition in the TU. 1433 if (D && isa<CXXDestructorDecl>(D) && 1434 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1435 GD.getDtorType())) 1436 addDeferredDeclToEmit(F, GD); 1437 1438 // This is the first use or definition of a mangled name. If there is a 1439 // deferred decl with this name, remember that we need to emit it at the end 1440 // of the file. 1441 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1442 if (DDI != DeferredDecls.end()) { 1443 // Move the potentially referenced deferred decl to the 1444 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1445 // don't need it anymore). 1446 addDeferredDeclToEmit(F, DDI->second); 1447 DeferredDecls.erase(DDI); 1448 1449 // Otherwise, if this is a sized deallocation function, emit a weak 1450 // definition 1451 // for it at the end of the translation unit. 1452 } else if (D && cast<FunctionDecl>(D) 1453 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1454 addDeferredDeclToEmit(F, GD); 1455 1456 // Otherwise, there are cases we have to worry about where we're 1457 // using a declaration for which we must emit a definition but where 1458 // we might not find a top-level definition: 1459 // - member functions defined inline in their classes 1460 // - friend functions defined inline in some class 1461 // - special member functions with implicit definitions 1462 // If we ever change our AST traversal to walk into class methods, 1463 // this will be unnecessary. 1464 // 1465 // We also don't emit a definition for a function if it's going to be an 1466 // entry 1467 // in a vtable, unless it's already marked as used. 1468 } else if (getLangOpts().CPlusPlus && D) { 1469 // Look for a declaration that's lexically in a record. 1470 const FunctionDecl *FD = cast<FunctionDecl>(D); 1471 FD = FD->getMostRecentDecl(); 1472 do { 1473 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1474 if (FD->isImplicit() && !ForVTable) { 1475 assert(FD->isUsed() && 1476 "Sema didn't mark implicit function as used!"); 1477 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1478 break; 1479 } else if (FD->doesThisDeclarationHaveABody()) { 1480 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1481 break; 1482 } 1483 } 1484 FD = FD->getPreviousDecl(); 1485 } while (FD); 1486 } 1487 } 1488 1489 // Make sure the result is of the requested type. 1490 if (!IsIncompleteFunction) { 1491 assert(F->getType()->getElementType() == Ty); 1492 return F; 1493 } 1494 1495 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1496 return llvm::ConstantExpr::getBitCast(F, PTy); 1497 } 1498 1499 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1500 /// non-null, then this function will use the specified type if it has to 1501 /// create it (this occurs when we see a definition of the function). 1502 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1503 llvm::Type *Ty, 1504 bool ForVTable, 1505 bool DontDefer) { 1506 // If there was no specific requested type, just convert it now. 1507 if (!Ty) 1508 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1509 1510 StringRef MangledName = getMangledName(GD); 1511 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1512 } 1513 1514 /// CreateRuntimeFunction - Create a new runtime function with the specified 1515 /// type and name. 1516 llvm::Constant * 1517 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1518 StringRef Name, 1519 llvm::AttributeSet ExtraAttrs) { 1520 llvm::Constant *C = 1521 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1522 /*DontDefer=*/false, ExtraAttrs); 1523 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1524 if (F->empty()) 1525 F->setCallingConv(getRuntimeCC()); 1526 return C; 1527 } 1528 1529 /// isTypeConstant - Determine whether an object of this type can be emitted 1530 /// as a constant. 1531 /// 1532 /// If ExcludeCtor is true, the duration when the object's constructor runs 1533 /// will not be considered. The caller will need to verify that the object is 1534 /// not written to during its construction. 1535 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1536 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1537 return false; 1538 1539 if (Context.getLangOpts().CPlusPlus) { 1540 if (const CXXRecordDecl *Record 1541 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1542 return ExcludeCtor && !Record->hasMutableFields() && 1543 Record->hasTrivialDestructor(); 1544 } 1545 1546 return true; 1547 } 1548 1549 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1550 /// create and return an llvm GlobalVariable with the specified type. If there 1551 /// is something in the module with the specified name, return it potentially 1552 /// bitcasted to the right type. 1553 /// 1554 /// If D is non-null, it specifies a decl that correspond to this. This is used 1555 /// to set the attributes on the global when it is first created. 1556 llvm::Constant * 1557 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1558 llvm::PointerType *Ty, 1559 const VarDecl *D, 1560 bool UnnamedAddr) { 1561 // Lookup the entry, lazily creating it if necessary. 1562 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1563 if (Entry) { 1564 if (WeakRefReferences.erase(Entry)) { 1565 if (D && !D->hasAttr<WeakAttr>()) 1566 Entry->setLinkage(llvm::Function::ExternalLinkage); 1567 } 1568 1569 if (UnnamedAddr) 1570 Entry->setUnnamedAddr(true); 1571 1572 if (Entry->getType() == Ty) 1573 return Entry; 1574 1575 // Make sure the result is of the correct type. 1576 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1577 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1578 1579 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1580 } 1581 1582 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1583 llvm::GlobalVariable *GV = 1584 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1585 llvm::GlobalValue::ExternalLinkage, 1586 0, MangledName, 0, 1587 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1588 1589 // This is the first use or definition of a mangled name. If there is a 1590 // deferred decl with this name, remember that we need to emit it at the end 1591 // of the file. 1592 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1593 if (DDI != DeferredDecls.end()) { 1594 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1595 // list, and remove it from DeferredDecls (since we don't need it anymore). 1596 addDeferredDeclToEmit(GV, DDI->second); 1597 DeferredDecls.erase(DDI); 1598 } 1599 1600 // Handle things which are present even on external declarations. 1601 if (D) { 1602 // FIXME: This code is overly simple and should be merged with other global 1603 // handling. 1604 GV->setConstant(isTypeConstant(D->getType(), false)); 1605 1606 // Set linkage and visibility in case we never see a definition. 1607 LinkageInfo LV = D->getLinkageAndVisibility(); 1608 if (LV.getLinkage() != ExternalLinkage) { 1609 // Don't set internal linkage on declarations. 1610 } else { 1611 if (D->hasAttr<DLLImportAttr>()) 1612 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1613 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1614 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1615 1616 // Set visibility on a declaration only if it's explicit. 1617 if (LV.isVisibilityExplicit()) 1618 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1619 } 1620 1621 if (D->getTLSKind()) { 1622 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1623 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1624 setTLSMode(GV, *D); 1625 } 1626 1627 // If required by the ABI, treat declarations of static data members with 1628 // inline initializers as definitions. 1629 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1630 D->isStaticDataMember() && D->hasInit() && 1631 !D->isThisDeclarationADefinition()) 1632 EmitGlobalVarDefinition(D); 1633 } 1634 1635 if (AddrSpace != Ty->getAddressSpace()) 1636 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1637 1638 return GV; 1639 } 1640 1641 1642 llvm::GlobalVariable * 1643 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1644 llvm::Type *Ty, 1645 llvm::GlobalValue::LinkageTypes Linkage) { 1646 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1647 llvm::GlobalVariable *OldGV = 0; 1648 1649 1650 if (GV) { 1651 // Check if the variable has the right type. 1652 if (GV->getType()->getElementType() == Ty) 1653 return GV; 1654 1655 // Because C++ name mangling, the only way we can end up with an already 1656 // existing global with the same name is if it has been declared extern "C". 1657 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1658 OldGV = GV; 1659 } 1660 1661 // Create a new variable. 1662 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1663 Linkage, 0, Name); 1664 1665 if (OldGV) { 1666 // Replace occurrences of the old variable if needed. 1667 GV->takeName(OldGV); 1668 1669 if (!OldGV->use_empty()) { 1670 llvm::Constant *NewPtrForOldDecl = 1671 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1672 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1673 } 1674 1675 OldGV->eraseFromParent(); 1676 } 1677 1678 return GV; 1679 } 1680 1681 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1682 /// given global variable. If Ty is non-null and if the global doesn't exist, 1683 /// then it will be created with the specified type instead of whatever the 1684 /// normal requested type would be. 1685 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1686 llvm::Type *Ty) { 1687 assert(D->hasGlobalStorage() && "Not a global variable"); 1688 QualType ASTTy = D->getType(); 1689 if (Ty == 0) 1690 Ty = getTypes().ConvertTypeForMem(ASTTy); 1691 1692 llvm::PointerType *PTy = 1693 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1694 1695 StringRef MangledName = getMangledName(D); 1696 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1697 } 1698 1699 /// CreateRuntimeVariable - Create a new runtime global variable with the 1700 /// specified type and name. 1701 llvm::Constant * 1702 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1703 StringRef Name) { 1704 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1705 true); 1706 } 1707 1708 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1709 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1710 1711 if (MayDeferGeneration(D)) { 1712 // If we have not seen a reference to this variable yet, place it 1713 // into the deferred declarations table to be emitted if needed 1714 // later. 1715 StringRef MangledName = getMangledName(D); 1716 if (!GetGlobalValue(MangledName)) { 1717 DeferredDecls[MangledName] = D; 1718 return; 1719 } 1720 } 1721 1722 // The tentative definition is the only definition. 1723 EmitGlobalVarDefinition(D); 1724 } 1725 1726 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1727 return Context.toCharUnitsFromBits( 1728 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1729 } 1730 1731 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1732 unsigned AddrSpace) { 1733 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1734 if (D->hasAttr<CUDAConstantAttr>()) 1735 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1736 else if (D->hasAttr<CUDASharedAttr>()) 1737 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1738 else 1739 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1740 } 1741 1742 return AddrSpace; 1743 } 1744 1745 template<typename SomeDecl> 1746 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1747 llvm::GlobalValue *GV) { 1748 if (!getLangOpts().CPlusPlus) 1749 return; 1750 1751 // Must have 'used' attribute, or else inline assembly can't rely on 1752 // the name existing. 1753 if (!D->template hasAttr<UsedAttr>()) 1754 return; 1755 1756 // Must have internal linkage and an ordinary name. 1757 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1758 return; 1759 1760 // Must be in an extern "C" context. Entities declared directly within 1761 // a record are not extern "C" even if the record is in such a context. 1762 const SomeDecl *First = D->getFirstDecl(); 1763 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1764 return; 1765 1766 // OK, this is an internal linkage entity inside an extern "C" linkage 1767 // specification. Make a note of that so we can give it the "expected" 1768 // mangled name if nothing else is using that name. 1769 std::pair<StaticExternCMap::iterator, bool> R = 1770 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1771 1772 // If we have multiple internal linkage entities with the same name 1773 // in extern "C" regions, none of them gets that name. 1774 if (!R.second) 1775 R.first->second = 0; 1776 } 1777 1778 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1779 llvm::Constant *Init = 0; 1780 QualType ASTTy = D->getType(); 1781 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1782 bool NeedsGlobalCtor = false; 1783 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1784 1785 const VarDecl *InitDecl; 1786 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1787 1788 if (!InitExpr) { 1789 // This is a tentative definition; tentative definitions are 1790 // implicitly initialized with { 0 }. 1791 // 1792 // Note that tentative definitions are only emitted at the end of 1793 // a translation unit, so they should never have incomplete 1794 // type. In addition, EmitTentativeDefinition makes sure that we 1795 // never attempt to emit a tentative definition if a real one 1796 // exists. A use may still exists, however, so we still may need 1797 // to do a RAUW. 1798 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1799 Init = EmitNullConstant(D->getType()); 1800 } else { 1801 initializedGlobalDecl = GlobalDecl(D); 1802 Init = EmitConstantInit(*InitDecl); 1803 1804 if (!Init) { 1805 QualType T = InitExpr->getType(); 1806 if (D->getType()->isReferenceType()) 1807 T = D->getType(); 1808 1809 if (getLangOpts().CPlusPlus) { 1810 Init = EmitNullConstant(T); 1811 NeedsGlobalCtor = true; 1812 } else { 1813 ErrorUnsupported(D, "static initializer"); 1814 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1815 } 1816 } else { 1817 // We don't need an initializer, so remove the entry for the delayed 1818 // initializer position (just in case this entry was delayed) if we 1819 // also don't need to register a destructor. 1820 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1821 DelayedCXXInitPosition.erase(D); 1822 } 1823 } 1824 1825 llvm::Type* InitType = Init->getType(); 1826 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1827 1828 // Strip off a bitcast if we got one back. 1829 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1830 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1831 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1832 // All zero index gep. 1833 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1834 Entry = CE->getOperand(0); 1835 } 1836 1837 // Entry is now either a Function or GlobalVariable. 1838 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1839 1840 // We have a definition after a declaration with the wrong type. 1841 // We must make a new GlobalVariable* and update everything that used OldGV 1842 // (a declaration or tentative definition) with the new GlobalVariable* 1843 // (which will be a definition). 1844 // 1845 // This happens if there is a prototype for a global (e.g. 1846 // "extern int x[];") and then a definition of a different type (e.g. 1847 // "int x[10];"). This also happens when an initializer has a different type 1848 // from the type of the global (this happens with unions). 1849 if (GV == 0 || 1850 GV->getType()->getElementType() != InitType || 1851 GV->getType()->getAddressSpace() != 1852 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1853 1854 // Move the old entry aside so that we'll create a new one. 1855 Entry->setName(StringRef()); 1856 1857 // Make a new global with the correct type, this is now guaranteed to work. 1858 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1859 1860 // Replace all uses of the old global with the new global 1861 llvm::Constant *NewPtrForOldDecl = 1862 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1863 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1864 1865 // Erase the old global, since it is no longer used. 1866 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1867 } 1868 1869 MaybeHandleStaticInExternC(D, GV); 1870 1871 if (D->hasAttr<AnnotateAttr>()) 1872 AddGlobalAnnotations(D, GV); 1873 1874 GV->setInitializer(Init); 1875 1876 // If it is safe to mark the global 'constant', do so now. 1877 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1878 isTypeConstant(D->getType(), true)); 1879 1880 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1881 1882 // Set the llvm linkage type as appropriate. 1883 llvm::GlobalValue::LinkageTypes Linkage = 1884 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1885 GV->setLinkage(Linkage); 1886 1887 // If required by the ABI, give definitions of static data members with inline 1888 // initializers linkonce_odr linkage. 1889 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1890 D->isStaticDataMember() && InitExpr && 1891 !InitDecl->isThisDeclarationADefinition()) 1892 GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage); 1893 1894 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1895 // common vars aren't constant even if declared const. 1896 GV->setConstant(false); 1897 1898 SetCommonAttributes(D, GV); 1899 1900 // Emit the initializer function if necessary. 1901 if (NeedsGlobalCtor || NeedsGlobalDtor) 1902 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1903 1904 // If we are compiling with ASan, add metadata indicating dynamically 1905 // initialized globals. 1906 if (SanOpts.Address && NeedsGlobalCtor) { 1907 llvm::Module &M = getModule(); 1908 1909 llvm::NamedMDNode *DynamicInitializers = 1910 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1911 llvm::Value *GlobalToAdd[] = { GV }; 1912 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1913 DynamicInitializers->addOperand(ThisGlobal); 1914 } 1915 1916 // Emit global variable debug information. 1917 if (CGDebugInfo *DI = getModuleDebugInfo()) 1918 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1919 DI->EmitGlobalVariable(GV, D); 1920 } 1921 1922 llvm::GlobalValue::LinkageTypes 1923 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1924 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1925 if (Linkage == GVA_Internal) 1926 return llvm::Function::InternalLinkage; 1927 else if (D->hasAttr<DLLImportAttr>()) 1928 return llvm::Function::DLLImportLinkage; 1929 else if (D->hasAttr<DLLExportAttr>()) 1930 return llvm::Function::DLLExportLinkage; 1931 else if (D->hasAttr<SelectAnyAttr>()) { 1932 // selectany symbols are externally visible, so use weak instead of 1933 // linkonce. MSVC optimizes away references to const selectany globals, so 1934 // all definitions should be the same and ODR linkage should be used. 1935 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1936 return llvm::GlobalVariable::WeakODRLinkage; 1937 } else if (D->hasAttr<WeakAttr>()) { 1938 if (isConstant) 1939 return llvm::GlobalVariable::WeakODRLinkage; 1940 else 1941 return llvm::GlobalVariable::WeakAnyLinkage; 1942 } else if (Linkage == GVA_TemplateInstantiation || 1943 Linkage == GVA_ExplicitTemplateInstantiation) 1944 return llvm::GlobalVariable::WeakODRLinkage; 1945 else if (!getLangOpts().CPlusPlus && 1946 ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) || 1947 D->hasAttr<CommonAttr>()) && 1948 !D->hasExternalStorage() && !D->getInit() && 1949 !D->hasAttr<SectionAttr>() && !D->getTLSKind() && 1950 !D->hasAttr<WeakImportAttr>()) { 1951 // Thread local vars aren't considered common linkage. 1952 return llvm::GlobalVariable::CommonLinkage; 1953 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1954 getTarget().getTriple().isMacOSX()) 1955 // On Darwin, the backing variable for a C++11 thread_local variable always 1956 // has internal linkage; all accesses should just be calls to the 1957 // Itanium-specified entry point, which has the normal linkage of the 1958 // variable. 1959 return llvm::GlobalValue::InternalLinkage; 1960 return llvm::GlobalVariable::ExternalLinkage; 1961 } 1962 1963 /// Replace the uses of a function that was declared with a non-proto type. 1964 /// We want to silently drop extra arguments from call sites 1965 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1966 llvm::Function *newFn) { 1967 // Fast path. 1968 if (old->use_empty()) return; 1969 1970 llvm::Type *newRetTy = newFn->getReturnType(); 1971 SmallVector<llvm::Value*, 4> newArgs; 1972 1973 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1974 ui != ue; ) { 1975 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1976 llvm::User *user = *use; 1977 1978 // Recognize and replace uses of bitcasts. Most calls to 1979 // unprototyped functions will use bitcasts. 1980 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1981 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1982 replaceUsesOfNonProtoConstant(bitcast, newFn); 1983 continue; 1984 } 1985 1986 // Recognize calls to the function. 1987 llvm::CallSite callSite(user); 1988 if (!callSite) continue; 1989 if (!callSite.isCallee(use)) continue; 1990 1991 // If the return types don't match exactly, then we can't 1992 // transform this call unless it's dead. 1993 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1994 continue; 1995 1996 // Get the call site's attribute list. 1997 SmallVector<llvm::AttributeSet, 8> newAttrs; 1998 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1999 2000 // Collect any return attributes from the call. 2001 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2002 newAttrs.push_back( 2003 llvm::AttributeSet::get(newFn->getContext(), 2004 oldAttrs.getRetAttributes())); 2005 2006 // If the function was passed too few arguments, don't transform. 2007 unsigned newNumArgs = newFn->arg_size(); 2008 if (callSite.arg_size() < newNumArgs) continue; 2009 2010 // If extra arguments were passed, we silently drop them. 2011 // If any of the types mismatch, we don't transform. 2012 unsigned argNo = 0; 2013 bool dontTransform = false; 2014 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2015 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2016 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2017 dontTransform = true; 2018 break; 2019 } 2020 2021 // Add any parameter attributes. 2022 if (oldAttrs.hasAttributes(argNo + 1)) 2023 newAttrs. 2024 push_back(llvm:: 2025 AttributeSet::get(newFn->getContext(), 2026 oldAttrs.getParamAttributes(argNo + 1))); 2027 } 2028 if (dontTransform) 2029 continue; 2030 2031 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2032 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2033 oldAttrs.getFnAttributes())); 2034 2035 // Okay, we can transform this. Create the new call instruction and copy 2036 // over the required information. 2037 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2038 2039 llvm::CallSite newCall; 2040 if (callSite.isCall()) { 2041 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2042 callSite.getInstruction()); 2043 } else { 2044 llvm::InvokeInst *oldInvoke = 2045 cast<llvm::InvokeInst>(callSite.getInstruction()); 2046 newCall = llvm::InvokeInst::Create(newFn, 2047 oldInvoke->getNormalDest(), 2048 oldInvoke->getUnwindDest(), 2049 newArgs, "", 2050 callSite.getInstruction()); 2051 } 2052 newArgs.clear(); // for the next iteration 2053 2054 if (!newCall->getType()->isVoidTy()) 2055 newCall->takeName(callSite.getInstruction()); 2056 newCall.setAttributes( 2057 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2058 newCall.setCallingConv(callSite.getCallingConv()); 2059 2060 // Finally, remove the old call, replacing any uses with the new one. 2061 if (!callSite->use_empty()) 2062 callSite->replaceAllUsesWith(newCall.getInstruction()); 2063 2064 // Copy debug location attached to CI. 2065 if (!callSite->getDebugLoc().isUnknown()) 2066 newCall->setDebugLoc(callSite->getDebugLoc()); 2067 callSite->eraseFromParent(); 2068 } 2069 } 2070 2071 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2072 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2073 /// existing call uses of the old function in the module, this adjusts them to 2074 /// call the new function directly. 2075 /// 2076 /// This is not just a cleanup: the always_inline pass requires direct calls to 2077 /// functions to be able to inline them. If there is a bitcast in the way, it 2078 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2079 /// run at -O0. 2080 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2081 llvm::Function *NewFn) { 2082 // If we're redefining a global as a function, don't transform it. 2083 if (!isa<llvm::Function>(Old)) return; 2084 2085 replaceUsesOfNonProtoConstant(Old, NewFn); 2086 } 2087 2088 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2089 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2090 // If we have a definition, this might be a deferred decl. If the 2091 // instantiation is explicit, make sure we emit it at the end. 2092 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2093 GetAddrOfGlobalVar(VD); 2094 2095 EmitTopLevelDecl(VD); 2096 } 2097 2098 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2099 llvm::GlobalValue *GV) { 2100 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2101 2102 // Compute the function info and LLVM type. 2103 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2104 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2105 2106 // Get or create the prototype for the function. 2107 llvm::Constant *Entry = 2108 GV ? GV 2109 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2110 2111 // Strip off a bitcast if we got one back. 2112 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2113 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2114 Entry = CE->getOperand(0); 2115 } 2116 2117 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2118 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2119 return; 2120 } 2121 2122 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2123 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2124 2125 // If the types mismatch then we have to rewrite the definition. 2126 assert(OldFn->isDeclaration() && 2127 "Shouldn't replace non-declaration"); 2128 2129 // F is the Function* for the one with the wrong type, we must make a new 2130 // Function* and update everything that used F (a declaration) with the new 2131 // Function* (which will be a definition). 2132 // 2133 // This happens if there is a prototype for a function 2134 // (e.g. "int f()") and then a definition of a different type 2135 // (e.g. "int f(int x)"). Move the old function aside so that it 2136 // doesn't interfere with GetAddrOfFunction. 2137 OldFn->setName(StringRef()); 2138 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2139 2140 // This might be an implementation of a function without a 2141 // prototype, in which case, try to do special replacement of 2142 // calls which match the new prototype. The really key thing here 2143 // is that we also potentially drop arguments from the call site 2144 // so as to make a direct call, which makes the inliner happier 2145 // and suppresses a number of optimizer warnings (!) about 2146 // dropping arguments. 2147 if (!OldFn->use_empty()) { 2148 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2149 OldFn->removeDeadConstantUsers(); 2150 } 2151 2152 // Replace uses of F with the Function we will endow with a body. 2153 if (!Entry->use_empty()) { 2154 llvm::Constant *NewPtrForOldDecl = 2155 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2156 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2157 } 2158 2159 // Ok, delete the old function now, which is dead. 2160 OldFn->eraseFromParent(); 2161 2162 Entry = NewFn; 2163 } 2164 2165 // We need to set linkage and visibility on the function before 2166 // generating code for it because various parts of IR generation 2167 // want to propagate this information down (e.g. to local static 2168 // declarations). 2169 llvm::Function *Fn = cast<llvm::Function>(Entry); 2170 setFunctionLinkage(GD, Fn); 2171 2172 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2173 setGlobalVisibility(Fn, D); 2174 2175 MaybeHandleStaticInExternC(D, Fn); 2176 2177 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2178 2179 SetFunctionDefinitionAttributes(D, Fn); 2180 SetLLVMFunctionAttributesForDefinition(D, Fn); 2181 2182 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2183 AddGlobalCtor(Fn, CA->getPriority()); 2184 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2185 AddGlobalDtor(Fn, DA->getPriority()); 2186 if (D->hasAttr<AnnotateAttr>()) 2187 AddGlobalAnnotations(D, Fn); 2188 2189 llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this); 2190 if (PGOInit) 2191 AddGlobalCtor(PGOInit, 0); 2192 } 2193 2194 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2195 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2196 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2197 assert(AA && "Not an alias?"); 2198 2199 StringRef MangledName = getMangledName(GD); 2200 2201 // If there is a definition in the module, then it wins over the alias. 2202 // This is dubious, but allow it to be safe. Just ignore the alias. 2203 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2204 if (Entry && !Entry->isDeclaration()) 2205 return; 2206 2207 Aliases.push_back(GD); 2208 2209 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2210 2211 // Create a reference to the named value. This ensures that it is emitted 2212 // if a deferred decl. 2213 llvm::Constant *Aliasee; 2214 if (isa<llvm::FunctionType>(DeclTy)) 2215 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2216 /*ForVTable=*/false); 2217 else 2218 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2219 llvm::PointerType::getUnqual(DeclTy), 0); 2220 2221 // Create the new alias itself, but don't set a name yet. 2222 llvm::GlobalValue *GA = 2223 new llvm::GlobalAlias(Aliasee->getType(), 2224 llvm::Function::ExternalLinkage, 2225 "", Aliasee, &getModule()); 2226 2227 if (Entry) { 2228 assert(Entry->isDeclaration()); 2229 2230 // If there is a declaration in the module, then we had an extern followed 2231 // by the alias, as in: 2232 // extern int test6(); 2233 // ... 2234 // int test6() __attribute__((alias("test7"))); 2235 // 2236 // Remove it and replace uses of it with the alias. 2237 GA->takeName(Entry); 2238 2239 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2240 Entry->getType())); 2241 Entry->eraseFromParent(); 2242 } else { 2243 GA->setName(MangledName); 2244 } 2245 2246 // Set attributes which are particular to an alias; this is a 2247 // specialization of the attributes which may be set on a global 2248 // variable/function. 2249 if (D->hasAttr<DLLExportAttr>()) { 2250 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2251 // The dllexport attribute is ignored for undefined symbols. 2252 if (FD->hasBody()) 2253 GA->setLinkage(llvm::Function::DLLExportLinkage); 2254 } else { 2255 GA->setLinkage(llvm::Function::DLLExportLinkage); 2256 } 2257 } else if (D->hasAttr<WeakAttr>() || 2258 D->hasAttr<WeakRefAttr>() || 2259 D->isWeakImported()) { 2260 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2261 } 2262 2263 SetCommonAttributes(D, GA); 2264 } 2265 2266 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2267 ArrayRef<llvm::Type*> Tys) { 2268 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2269 Tys); 2270 } 2271 2272 static llvm::StringMapEntry<llvm::Constant*> & 2273 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2274 const StringLiteral *Literal, 2275 bool TargetIsLSB, 2276 bool &IsUTF16, 2277 unsigned &StringLength) { 2278 StringRef String = Literal->getString(); 2279 unsigned NumBytes = String.size(); 2280 2281 // Check for simple case. 2282 if (!Literal->containsNonAsciiOrNull()) { 2283 StringLength = NumBytes; 2284 return Map.GetOrCreateValue(String); 2285 } 2286 2287 // Otherwise, convert the UTF8 literals into a string of shorts. 2288 IsUTF16 = true; 2289 2290 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2291 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2292 UTF16 *ToPtr = &ToBuf[0]; 2293 2294 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2295 &ToPtr, ToPtr + NumBytes, 2296 strictConversion); 2297 2298 // ConvertUTF8toUTF16 returns the length in ToPtr. 2299 StringLength = ToPtr - &ToBuf[0]; 2300 2301 // Add an explicit null. 2302 *ToPtr = 0; 2303 return Map. 2304 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2305 (StringLength + 1) * 2)); 2306 } 2307 2308 static llvm::StringMapEntry<llvm::Constant*> & 2309 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2310 const StringLiteral *Literal, 2311 unsigned &StringLength) { 2312 StringRef String = Literal->getString(); 2313 StringLength = String.size(); 2314 return Map.GetOrCreateValue(String); 2315 } 2316 2317 llvm::Constant * 2318 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2319 unsigned StringLength = 0; 2320 bool isUTF16 = false; 2321 llvm::StringMapEntry<llvm::Constant*> &Entry = 2322 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2323 getDataLayout().isLittleEndian(), 2324 isUTF16, StringLength); 2325 2326 if (llvm::Constant *C = Entry.getValue()) 2327 return C; 2328 2329 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2330 llvm::Constant *Zeros[] = { Zero, Zero }; 2331 llvm::Value *V; 2332 2333 // If we don't already have it, get __CFConstantStringClassReference. 2334 if (!CFConstantStringClassRef) { 2335 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2336 Ty = llvm::ArrayType::get(Ty, 0); 2337 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2338 "__CFConstantStringClassReference"); 2339 // Decay array -> ptr 2340 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2341 CFConstantStringClassRef = V; 2342 } 2343 else 2344 V = CFConstantStringClassRef; 2345 2346 QualType CFTy = getContext().getCFConstantStringType(); 2347 2348 llvm::StructType *STy = 2349 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2350 2351 llvm::Constant *Fields[4]; 2352 2353 // Class pointer. 2354 Fields[0] = cast<llvm::ConstantExpr>(V); 2355 2356 // Flags. 2357 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2358 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2359 llvm::ConstantInt::get(Ty, 0x07C8); 2360 2361 // String pointer. 2362 llvm::Constant *C = 0; 2363 if (isUTF16) { 2364 ArrayRef<uint16_t> Arr = 2365 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2366 const_cast<char *>(Entry.getKey().data())), 2367 Entry.getKey().size() / 2); 2368 C = llvm::ConstantDataArray::get(VMContext, Arr); 2369 } else { 2370 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2371 } 2372 2373 llvm::GlobalValue::LinkageTypes Linkage; 2374 if (isUTF16) 2375 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2376 Linkage = llvm::GlobalValue::InternalLinkage; 2377 else 2378 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2379 // when using private linkage. It is not clear if this is a bug in ld 2380 // or a reasonable new restriction. 2381 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2382 2383 // Note: -fwritable-strings doesn't make the backing store strings of 2384 // CFStrings writable. (See <rdar://problem/10657500>) 2385 llvm::GlobalVariable *GV = 2386 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2387 Linkage, C, ".str"); 2388 GV->setUnnamedAddr(true); 2389 // Don't enforce the target's minimum global alignment, since the only use 2390 // of the string is via this class initializer. 2391 if (isUTF16) { 2392 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2393 GV->setAlignment(Align.getQuantity()); 2394 } else { 2395 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2396 GV->setAlignment(Align.getQuantity()); 2397 } 2398 2399 // String. 2400 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2401 2402 if (isUTF16) 2403 // Cast the UTF16 string to the correct type. 2404 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2405 2406 // String length. 2407 Ty = getTypes().ConvertType(getContext().LongTy); 2408 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2409 2410 // The struct. 2411 C = llvm::ConstantStruct::get(STy, Fields); 2412 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2413 llvm::GlobalVariable::PrivateLinkage, C, 2414 "_unnamed_cfstring_"); 2415 if (const char *Sect = getTarget().getCFStringSection()) 2416 GV->setSection(Sect); 2417 Entry.setValue(GV); 2418 2419 return GV; 2420 } 2421 2422 llvm::Constant * 2423 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2424 unsigned StringLength = 0; 2425 llvm::StringMapEntry<llvm::Constant*> &Entry = 2426 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2427 2428 if (llvm::Constant *C = Entry.getValue()) 2429 return C; 2430 2431 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2432 llvm::Constant *Zeros[] = { Zero, Zero }; 2433 llvm::Value *V; 2434 // If we don't already have it, get _NSConstantStringClassReference. 2435 if (!ConstantStringClassRef) { 2436 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2437 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2438 llvm::Constant *GV; 2439 if (LangOpts.ObjCRuntime.isNonFragile()) { 2440 std::string str = 2441 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2442 : "OBJC_CLASS_$_" + StringClass; 2443 GV = getObjCRuntime().GetClassGlobal(str); 2444 // Make sure the result is of the correct type. 2445 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2446 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2447 ConstantStringClassRef = V; 2448 } else { 2449 std::string str = 2450 StringClass.empty() ? "_NSConstantStringClassReference" 2451 : "_" + StringClass + "ClassReference"; 2452 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2453 GV = CreateRuntimeVariable(PTy, str); 2454 // Decay array -> ptr 2455 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2456 ConstantStringClassRef = V; 2457 } 2458 } 2459 else 2460 V = ConstantStringClassRef; 2461 2462 if (!NSConstantStringType) { 2463 // Construct the type for a constant NSString. 2464 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2465 D->startDefinition(); 2466 2467 QualType FieldTypes[3]; 2468 2469 // const int *isa; 2470 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2471 // const char *str; 2472 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2473 // unsigned int length; 2474 FieldTypes[2] = Context.UnsignedIntTy; 2475 2476 // Create fields 2477 for (unsigned i = 0; i < 3; ++i) { 2478 FieldDecl *Field = FieldDecl::Create(Context, D, 2479 SourceLocation(), 2480 SourceLocation(), 0, 2481 FieldTypes[i], /*TInfo=*/0, 2482 /*BitWidth=*/0, 2483 /*Mutable=*/false, 2484 ICIS_NoInit); 2485 Field->setAccess(AS_public); 2486 D->addDecl(Field); 2487 } 2488 2489 D->completeDefinition(); 2490 QualType NSTy = Context.getTagDeclType(D); 2491 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2492 } 2493 2494 llvm::Constant *Fields[3]; 2495 2496 // Class pointer. 2497 Fields[0] = cast<llvm::ConstantExpr>(V); 2498 2499 // String pointer. 2500 llvm::Constant *C = 2501 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2502 2503 llvm::GlobalValue::LinkageTypes Linkage; 2504 bool isConstant; 2505 Linkage = llvm::GlobalValue::PrivateLinkage; 2506 isConstant = !LangOpts.WritableStrings; 2507 2508 llvm::GlobalVariable *GV = 2509 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2510 ".str"); 2511 GV->setUnnamedAddr(true); 2512 // Don't enforce the target's minimum global alignment, since the only use 2513 // of the string is via this class initializer. 2514 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2515 GV->setAlignment(Align.getQuantity()); 2516 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2517 2518 // String length. 2519 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2520 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2521 2522 // The struct. 2523 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2524 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2525 llvm::GlobalVariable::PrivateLinkage, C, 2526 "_unnamed_nsstring_"); 2527 // FIXME. Fix section. 2528 if (const char *Sect = 2529 LangOpts.ObjCRuntime.isNonFragile() 2530 ? getTarget().getNSStringNonFragileABISection() 2531 : getTarget().getNSStringSection()) 2532 GV->setSection(Sect); 2533 Entry.setValue(GV); 2534 2535 return GV; 2536 } 2537 2538 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2539 if (ObjCFastEnumerationStateType.isNull()) { 2540 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2541 D->startDefinition(); 2542 2543 QualType FieldTypes[] = { 2544 Context.UnsignedLongTy, 2545 Context.getPointerType(Context.getObjCIdType()), 2546 Context.getPointerType(Context.UnsignedLongTy), 2547 Context.getConstantArrayType(Context.UnsignedLongTy, 2548 llvm::APInt(32, 5), ArrayType::Normal, 0) 2549 }; 2550 2551 for (size_t i = 0; i < 4; ++i) { 2552 FieldDecl *Field = FieldDecl::Create(Context, 2553 D, 2554 SourceLocation(), 2555 SourceLocation(), 0, 2556 FieldTypes[i], /*TInfo=*/0, 2557 /*BitWidth=*/0, 2558 /*Mutable=*/false, 2559 ICIS_NoInit); 2560 Field->setAccess(AS_public); 2561 D->addDecl(Field); 2562 } 2563 2564 D->completeDefinition(); 2565 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2566 } 2567 2568 return ObjCFastEnumerationStateType; 2569 } 2570 2571 llvm::Constant * 2572 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2573 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2574 2575 // Don't emit it as the address of the string, emit the string data itself 2576 // as an inline array. 2577 if (E->getCharByteWidth() == 1) { 2578 SmallString<64> Str(E->getString()); 2579 2580 // Resize the string to the right size, which is indicated by its type. 2581 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2582 Str.resize(CAT->getSize().getZExtValue()); 2583 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2584 } 2585 2586 llvm::ArrayType *AType = 2587 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2588 llvm::Type *ElemTy = AType->getElementType(); 2589 unsigned NumElements = AType->getNumElements(); 2590 2591 // Wide strings have either 2-byte or 4-byte elements. 2592 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2593 SmallVector<uint16_t, 32> Elements; 2594 Elements.reserve(NumElements); 2595 2596 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2597 Elements.push_back(E->getCodeUnit(i)); 2598 Elements.resize(NumElements); 2599 return llvm::ConstantDataArray::get(VMContext, Elements); 2600 } 2601 2602 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2603 SmallVector<uint32_t, 32> Elements; 2604 Elements.reserve(NumElements); 2605 2606 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2607 Elements.push_back(E->getCodeUnit(i)); 2608 Elements.resize(NumElements); 2609 return llvm::ConstantDataArray::get(VMContext, Elements); 2610 } 2611 2612 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2613 /// constant array for the given string literal. 2614 llvm::Constant * 2615 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2616 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2617 if (S->isAscii() || S->isUTF8()) { 2618 SmallString<64> Str(S->getString()); 2619 2620 // Resize the string to the right size, which is indicated by its type. 2621 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2622 Str.resize(CAT->getSize().getZExtValue()); 2623 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2624 } 2625 2626 // FIXME: the following does not memoize wide strings. 2627 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2628 llvm::GlobalVariable *GV = 2629 new llvm::GlobalVariable(getModule(),C->getType(), 2630 !LangOpts.WritableStrings, 2631 llvm::GlobalValue::PrivateLinkage, 2632 C,".str"); 2633 2634 GV->setAlignment(Align.getQuantity()); 2635 GV->setUnnamedAddr(true); 2636 return GV; 2637 } 2638 2639 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2640 /// array for the given ObjCEncodeExpr node. 2641 llvm::Constant * 2642 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2643 std::string Str; 2644 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2645 2646 return GetAddrOfConstantCString(Str); 2647 } 2648 2649 2650 /// GenerateWritableString -- Creates storage for a string literal. 2651 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2652 bool constant, 2653 CodeGenModule &CGM, 2654 const char *GlobalName, 2655 unsigned Alignment) { 2656 // Create Constant for this string literal. Don't add a '\0'. 2657 llvm::Constant *C = 2658 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2659 2660 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. 2661 unsigned AddrSpace = 0; 2662 if (CGM.getLangOpts().OpenCL) 2663 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2664 2665 // Create a global variable for this string 2666 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2667 CGM.getModule(), C->getType(), constant, 2668 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2669 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2670 GV->setAlignment(Alignment); 2671 GV->setUnnamedAddr(true); 2672 return GV; 2673 } 2674 2675 /// GetAddrOfConstantString - Returns a pointer to a character array 2676 /// containing the literal. This contents are exactly that of the 2677 /// given string, i.e. it will not be null terminated automatically; 2678 /// see GetAddrOfConstantCString. Note that whether the result is 2679 /// actually a pointer to an LLVM constant depends on 2680 /// Feature.WriteableStrings. 2681 /// 2682 /// The result has pointer to array type. 2683 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2684 const char *GlobalName, 2685 unsigned Alignment) { 2686 // Get the default prefix if a name wasn't specified. 2687 if (!GlobalName) 2688 GlobalName = ".str"; 2689 2690 if (Alignment == 0) 2691 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2692 .getQuantity(); 2693 2694 // Don't share any string literals if strings aren't constant. 2695 if (LangOpts.WritableStrings) 2696 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2697 2698 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2699 ConstantStringMap.GetOrCreateValue(Str); 2700 2701 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2702 if (Alignment > GV->getAlignment()) { 2703 GV->setAlignment(Alignment); 2704 } 2705 return GV; 2706 } 2707 2708 // Create a global variable for this. 2709 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2710 Alignment); 2711 Entry.setValue(GV); 2712 return GV; 2713 } 2714 2715 /// GetAddrOfConstantCString - Returns a pointer to a character 2716 /// array containing the literal and a terminating '\0' 2717 /// character. The result has pointer to array type. 2718 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2719 const char *GlobalName, 2720 unsigned Alignment) { 2721 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2722 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2723 } 2724 2725 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2726 const MaterializeTemporaryExpr *E, const Expr *Init) { 2727 assert((E->getStorageDuration() == SD_Static || 2728 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2729 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2730 2731 // If we're not materializing a subobject of the temporary, keep the 2732 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2733 QualType MaterializedType = Init->getType(); 2734 if (Init == E->GetTemporaryExpr()) 2735 MaterializedType = E->getType(); 2736 2737 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2738 if (Slot) 2739 return Slot; 2740 2741 // FIXME: If an externally-visible declaration extends multiple temporaries, 2742 // we need to give each temporary the same name in every translation unit (and 2743 // we also need to make the temporaries externally-visible). 2744 SmallString<256> Name; 2745 llvm::raw_svector_ostream Out(Name); 2746 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2747 Out.flush(); 2748 2749 APValue *Value = 0; 2750 if (E->getStorageDuration() == SD_Static) { 2751 // We might have a cached constant initializer for this temporary. Note 2752 // that this might have a different value from the value computed by 2753 // evaluating the initializer if the surrounding constant expression 2754 // modifies the temporary. 2755 Value = getContext().getMaterializedTemporaryValue(E, false); 2756 if (Value && Value->isUninit()) 2757 Value = 0; 2758 } 2759 2760 // Try evaluating it now, it might have a constant initializer. 2761 Expr::EvalResult EvalResult; 2762 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2763 !EvalResult.hasSideEffects()) 2764 Value = &EvalResult.Val; 2765 2766 llvm::Constant *InitialValue = 0; 2767 bool Constant = false; 2768 llvm::Type *Type; 2769 if (Value) { 2770 // The temporary has a constant initializer, use it. 2771 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2772 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2773 Type = InitialValue->getType(); 2774 } else { 2775 // No initializer, the initialization will be provided when we 2776 // initialize the declaration which performed lifetime extension. 2777 Type = getTypes().ConvertTypeForMem(MaterializedType); 2778 } 2779 2780 // Create a global variable for this lifetime-extended temporary. 2781 llvm::GlobalVariable *GV = 2782 new llvm::GlobalVariable(getModule(), Type, Constant, 2783 llvm::GlobalValue::PrivateLinkage, 2784 InitialValue, Name.c_str()); 2785 GV->setAlignment( 2786 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2787 if (VD->getTLSKind()) 2788 setTLSMode(GV, *VD); 2789 Slot = GV; 2790 return GV; 2791 } 2792 2793 /// EmitObjCPropertyImplementations - Emit information for synthesized 2794 /// properties for an implementation. 2795 void CodeGenModule::EmitObjCPropertyImplementations(const 2796 ObjCImplementationDecl *D) { 2797 for (ObjCImplementationDecl::propimpl_iterator 2798 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2799 ObjCPropertyImplDecl *PID = *i; 2800 2801 // Dynamic is just for type-checking. 2802 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2803 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2804 2805 // Determine which methods need to be implemented, some may have 2806 // been overridden. Note that ::isPropertyAccessor is not the method 2807 // we want, that just indicates if the decl came from a 2808 // property. What we want to know is if the method is defined in 2809 // this implementation. 2810 if (!D->getInstanceMethod(PD->getGetterName())) 2811 CodeGenFunction(*this).GenerateObjCGetter( 2812 const_cast<ObjCImplementationDecl *>(D), PID); 2813 if (!PD->isReadOnly() && 2814 !D->getInstanceMethod(PD->getSetterName())) 2815 CodeGenFunction(*this).GenerateObjCSetter( 2816 const_cast<ObjCImplementationDecl *>(D), PID); 2817 } 2818 } 2819 } 2820 2821 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2822 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2823 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2824 ivar; ivar = ivar->getNextIvar()) 2825 if (ivar->getType().isDestructedType()) 2826 return true; 2827 2828 return false; 2829 } 2830 2831 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2832 /// for an implementation. 2833 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2834 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2835 if (needsDestructMethod(D)) { 2836 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2837 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2838 ObjCMethodDecl *DTORMethod = 2839 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2840 cxxSelector, getContext().VoidTy, 0, D, 2841 /*isInstance=*/true, /*isVariadic=*/false, 2842 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2843 /*isDefined=*/false, ObjCMethodDecl::Required); 2844 D->addInstanceMethod(DTORMethod); 2845 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2846 D->setHasDestructors(true); 2847 } 2848 2849 // If the implementation doesn't have any ivar initializers, we don't need 2850 // a .cxx_construct. 2851 if (D->getNumIvarInitializers() == 0) 2852 return; 2853 2854 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2855 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2856 // The constructor returns 'self'. 2857 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2858 D->getLocation(), 2859 D->getLocation(), 2860 cxxSelector, 2861 getContext().getObjCIdType(), 0, 2862 D, /*isInstance=*/true, 2863 /*isVariadic=*/false, 2864 /*isPropertyAccessor=*/true, 2865 /*isImplicitlyDeclared=*/true, 2866 /*isDefined=*/false, 2867 ObjCMethodDecl::Required); 2868 D->addInstanceMethod(CTORMethod); 2869 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2870 D->setHasNonZeroConstructors(true); 2871 } 2872 2873 /// EmitNamespace - Emit all declarations in a namespace. 2874 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2875 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2876 I != E; ++I) { 2877 if (const VarDecl *VD = dyn_cast<VarDecl>(*I)) 2878 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2879 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2880 continue; 2881 EmitTopLevelDecl(*I); 2882 } 2883 } 2884 2885 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2886 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2887 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2888 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2889 ErrorUnsupported(LSD, "linkage spec"); 2890 return; 2891 } 2892 2893 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2894 I != E; ++I) { 2895 // Meta-data for ObjC class includes references to implemented methods. 2896 // Generate class's method definitions first. 2897 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2898 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2899 MEnd = OID->meth_end(); 2900 M != MEnd; ++M) 2901 EmitTopLevelDecl(*M); 2902 } 2903 EmitTopLevelDecl(*I); 2904 } 2905 } 2906 2907 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2908 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2909 // Ignore dependent declarations. 2910 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2911 return; 2912 2913 switch (D->getKind()) { 2914 case Decl::CXXConversion: 2915 case Decl::CXXMethod: 2916 case Decl::Function: 2917 // Skip function templates 2918 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2919 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2920 return; 2921 2922 EmitGlobal(cast<FunctionDecl>(D)); 2923 break; 2924 2925 case Decl::Var: 2926 // Skip variable templates 2927 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2928 return; 2929 case Decl::VarTemplateSpecialization: 2930 EmitGlobal(cast<VarDecl>(D)); 2931 break; 2932 2933 // Indirect fields from global anonymous structs and unions can be 2934 // ignored; only the actual variable requires IR gen support. 2935 case Decl::IndirectField: 2936 break; 2937 2938 // C++ Decls 2939 case Decl::Namespace: 2940 EmitNamespace(cast<NamespaceDecl>(D)); 2941 break; 2942 // No code generation needed. 2943 case Decl::UsingShadow: 2944 case Decl::Using: 2945 case Decl::ClassTemplate: 2946 case Decl::VarTemplate: 2947 case Decl::VarTemplatePartialSpecialization: 2948 case Decl::FunctionTemplate: 2949 case Decl::TypeAliasTemplate: 2950 case Decl::Block: 2951 case Decl::Empty: 2952 break; 2953 case Decl::NamespaceAlias: 2954 if (CGDebugInfo *DI = getModuleDebugInfo()) 2955 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2956 return; 2957 case Decl::UsingDirective: // using namespace X; [C++] 2958 if (CGDebugInfo *DI = getModuleDebugInfo()) 2959 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2960 return; 2961 case Decl::CXXConstructor: 2962 // Skip function templates 2963 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2964 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2965 return; 2966 2967 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2968 break; 2969 case Decl::CXXDestructor: 2970 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2971 return; 2972 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2973 break; 2974 2975 case Decl::StaticAssert: 2976 // Nothing to do. 2977 break; 2978 2979 // Objective-C Decls 2980 2981 // Forward declarations, no (immediate) code generation. 2982 case Decl::ObjCInterface: 2983 case Decl::ObjCCategory: 2984 break; 2985 2986 case Decl::ObjCProtocol: { 2987 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2988 if (Proto->isThisDeclarationADefinition()) 2989 ObjCRuntime->GenerateProtocol(Proto); 2990 break; 2991 } 2992 2993 case Decl::ObjCCategoryImpl: 2994 // Categories have properties but don't support synthesize so we 2995 // can ignore them here. 2996 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2997 break; 2998 2999 case Decl::ObjCImplementation: { 3000 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 3001 EmitObjCPropertyImplementations(OMD); 3002 EmitObjCIvarInitializations(OMD); 3003 ObjCRuntime->GenerateClass(OMD); 3004 // Emit global variable debug information. 3005 if (CGDebugInfo *DI = getModuleDebugInfo()) 3006 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3007 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3008 OMD->getClassInterface()), OMD->getLocation()); 3009 break; 3010 } 3011 case Decl::ObjCMethod: { 3012 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 3013 // If this is not a prototype, emit the body. 3014 if (OMD->getBody()) 3015 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3016 break; 3017 } 3018 case Decl::ObjCCompatibleAlias: 3019 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3020 break; 3021 3022 case Decl::LinkageSpec: 3023 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3024 break; 3025 3026 case Decl::FileScopeAsm: { 3027 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 3028 StringRef AsmString = AD->getAsmString()->getString(); 3029 3030 const std::string &S = getModule().getModuleInlineAsm(); 3031 if (S.empty()) 3032 getModule().setModuleInlineAsm(AsmString); 3033 else if (S.end()[-1] == '\n') 3034 getModule().setModuleInlineAsm(S + AsmString.str()); 3035 else 3036 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3037 break; 3038 } 3039 3040 case Decl::Import: { 3041 ImportDecl *Import = cast<ImportDecl>(D); 3042 3043 // Ignore import declarations that come from imported modules. 3044 if (clang::Module *Owner = Import->getOwningModule()) { 3045 if (getLangOpts().CurrentModule.empty() || 3046 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3047 break; 3048 } 3049 3050 ImportedModules.insert(Import->getImportedModule()); 3051 break; 3052 } 3053 3054 default: 3055 // Make sure we handled everything we should, every other kind is a 3056 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3057 // function. Need to recode Decl::Kind to do that easily. 3058 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3059 } 3060 } 3061 3062 /// Turns the given pointer into a constant. 3063 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3064 const void *Ptr) { 3065 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3066 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3067 return llvm::ConstantInt::get(i64, PtrInt); 3068 } 3069 3070 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3071 llvm::NamedMDNode *&GlobalMetadata, 3072 GlobalDecl D, 3073 llvm::GlobalValue *Addr) { 3074 if (!GlobalMetadata) 3075 GlobalMetadata = 3076 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3077 3078 // TODO: should we report variant information for ctors/dtors? 3079 llvm::Value *Ops[] = { 3080 Addr, 3081 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3082 }; 3083 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3084 } 3085 3086 /// For each function which is declared within an extern "C" region and marked 3087 /// as 'used', but has internal linkage, create an alias from the unmangled 3088 /// name to the mangled name if possible. People expect to be able to refer 3089 /// to such functions with an unmangled name from inline assembly within the 3090 /// same translation unit. 3091 void CodeGenModule::EmitStaticExternCAliases() { 3092 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3093 E = StaticExternCValues.end(); 3094 I != E; ++I) { 3095 IdentifierInfo *Name = I->first; 3096 llvm::GlobalValue *Val = I->second; 3097 if (Val && !getModule().getNamedValue(Name->getName())) 3098 AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3099 Name->getName(), Val, &getModule())); 3100 } 3101 } 3102 3103 /// Emits metadata nodes associating all the global values in the 3104 /// current module with the Decls they came from. This is useful for 3105 /// projects using IR gen as a subroutine. 3106 /// 3107 /// Since there's currently no way to associate an MDNode directly 3108 /// with an llvm::GlobalValue, we create a global named metadata 3109 /// with the name 'clang.global.decl.ptrs'. 3110 void CodeGenModule::EmitDeclMetadata() { 3111 llvm::NamedMDNode *GlobalMetadata = 0; 3112 3113 // StaticLocalDeclMap 3114 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3115 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3116 I != E; ++I) { 3117 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3118 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3119 } 3120 } 3121 3122 /// Emits metadata nodes for all the local variables in the current 3123 /// function. 3124 void CodeGenFunction::EmitDeclMetadata() { 3125 if (LocalDeclMap.empty()) return; 3126 3127 llvm::LLVMContext &Context = getLLVMContext(); 3128 3129 // Find the unique metadata ID for this name. 3130 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3131 3132 llvm::NamedMDNode *GlobalMetadata = 0; 3133 3134 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3135 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3136 const Decl *D = I->first; 3137 llvm::Value *Addr = I->second; 3138 3139 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3140 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3141 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3142 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3143 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3144 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3145 } 3146 } 3147 } 3148 3149 void CodeGenModule::EmitVersionIdentMetadata() { 3150 llvm::NamedMDNode *IdentMetadata = 3151 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3152 std::string Version = getClangFullVersion(); 3153 llvm::LLVMContext &Ctx = TheModule.getContext(); 3154 3155 llvm::Value *IdentNode[] = { 3156 llvm::MDString::get(Ctx, Version) 3157 }; 3158 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3159 } 3160 3161 void CodeGenModule::EmitCoverageFile() { 3162 if (!getCodeGenOpts().CoverageFile.empty()) { 3163 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3164 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3165 llvm::LLVMContext &Ctx = TheModule.getContext(); 3166 llvm::MDString *CoverageFile = 3167 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3168 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3169 llvm::MDNode *CU = CUNode->getOperand(i); 3170 llvm::Value *node[] = { CoverageFile, CU }; 3171 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3172 GCov->addOperand(N); 3173 } 3174 } 3175 } 3176 } 3177 3178 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3179 QualType GuidType) { 3180 // Sema has checked that all uuid strings are of the form 3181 // "12345678-1234-1234-1234-1234567890ab". 3182 assert(Uuid.size() == 36); 3183 for (unsigned i = 0; i < 36; ++i) { 3184 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3185 else assert(isHexDigit(Uuid[i])); 3186 } 3187 3188 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3189 3190 llvm::Constant *Field3[8]; 3191 for (unsigned Idx = 0; Idx < 8; ++Idx) 3192 Field3[Idx] = llvm::ConstantInt::get( 3193 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3194 3195 llvm::Constant *Fields[4] = { 3196 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3197 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3198 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3199 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3200 }; 3201 3202 return llvm::ConstantStruct::getAnon(Fields); 3203 } 3204