xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b098f5c7b834ae663287e466279544158c3f18be)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallingConv.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CallSite.h"
50 #include "llvm/Support/ConvertUTF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0),
81       CFConstantStringClassRef(0),
82       ConstantStringClassRef(0), NSConstantStringType(0),
83       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
84       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
85       LifetimeStartFn(0), LifetimeEndFn(0),
86       SanitizerBlacklist(
87           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
88       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
89                                           : LangOpts.Sanitize) {
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   VoidTy = llvm::Type::getVoidTy(LLVMContext);
94   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
95   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
96   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
97   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
98   FloatTy = llvm::Type::getFloatTy(LLVMContext);
99   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
100   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
101   PointerAlignInBytes =
102   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
103   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
104   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
105   Int8PtrTy = Int8Ty->getPointerTo(0);
106   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
107 
108   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
109 
110   if (LangOpts.ObjC1)
111     createObjCRuntime();
112   if (LangOpts.OpenCL)
113     createOpenCLRuntime();
114   if (LangOpts.CUDA)
115     createCUDARuntime();
116 
117   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
118   if (SanOpts.Thread ||
119       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
120     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
121                            getCXXABI().getMangleContext());
122 
123   // If debug info or coverage generation is enabled, create the CGDebugInfo
124   // object.
125   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
126       CodeGenOpts.EmitGcovArcs ||
127       CodeGenOpts.EmitGcovNotes)
128     DebugInfo = new CGDebugInfo(*this);
129 
130   Block.GlobalUniqueCount = 0;
131 
132   if (C.getLangOpts().ObjCAutoRefCount)
133     ARCData = new ARCEntrypoints();
134   RRData = new RREntrypoints();
135 
136   if (!CodeGenOpts.InstrProfileInput.empty())
137     PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput);
138 }
139 
140 CodeGenModule::~CodeGenModule() {
141   delete ObjCRuntime;
142   delete OpenCLRuntime;
143   delete CUDARuntime;
144   delete TheTargetCodeGenInfo;
145   delete TBAA;
146   delete DebugInfo;
147   delete ARCData;
148   delete RRData;
149 }
150 
151 void CodeGenModule::createObjCRuntime() {
152   // This is just isGNUFamily(), but we want to force implementors of
153   // new ABIs to decide how best to do this.
154   switch (LangOpts.ObjCRuntime.getKind()) {
155   case ObjCRuntime::GNUstep:
156   case ObjCRuntime::GCC:
157   case ObjCRuntime::ObjFW:
158     ObjCRuntime = CreateGNUObjCRuntime(*this);
159     return;
160 
161   case ObjCRuntime::FragileMacOSX:
162   case ObjCRuntime::MacOSX:
163   case ObjCRuntime::iOS:
164     ObjCRuntime = CreateMacObjCRuntime(*this);
165     return;
166   }
167   llvm_unreachable("bad runtime kind");
168 }
169 
170 void CodeGenModule::createOpenCLRuntime() {
171   OpenCLRuntime = new CGOpenCLRuntime(*this);
172 }
173 
174 void CodeGenModule::createCUDARuntime() {
175   CUDARuntime = CreateNVCUDARuntime(*this);
176 }
177 
178 void CodeGenModule::applyReplacements() {
179   for (ReplacementsTy::iterator I = Replacements.begin(),
180                                 E = Replacements.end();
181        I != E; ++I) {
182     StringRef MangledName = I->first();
183     llvm::Constant *Replacement = I->second;
184     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
185     if (!Entry)
186       continue;
187     llvm::Function *OldF = cast<llvm::Function>(Entry);
188     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
189     if (!NewF) {
190       llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
191       assert(CE->getOpcode() == llvm::Instruction::BitCast ||
192              CE->getOpcode() == llvm::Instruction::GetElementPtr);
193       NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
194     }
195 
196     // Replace old with new, but keep the old order.
197     OldF->replaceAllUsesWith(Replacement);
198     if (NewF) {
199       NewF->removeFromParent();
200       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
201     }
202     OldF->eraseFromParent();
203   }
204 }
205 
206 void CodeGenModule::checkAliases() {
207   bool Error = false;
208   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
209          E = Aliases.end(); I != E; ++I) {
210     const GlobalDecl &GD = *I;
211     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
212     const AliasAttr *AA = D->getAttr<AliasAttr>();
213     StringRef MangledName = getMangledName(GD);
214     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
215     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
216     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
217     if (GV->isDeclaration()) {
218       Error = true;
219       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
220     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
221       Error = true;
222       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
223     }
224   }
225   if (!Error)
226     return;
227 
228   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
229          E = Aliases.end(); I != E; ++I) {
230     const GlobalDecl &GD = *I;
231     StringRef MangledName = getMangledName(GD);
232     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
233     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
234     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
235     Alias->eraseFromParent();
236   }
237 }
238 
239 void CodeGenModule::clear() {
240   DeferredDeclsToEmit.clear();
241 }
242 
243 void CodeGenModule::Release() {
244   EmitDeferred();
245   applyReplacements();
246   checkAliases();
247   EmitCXXGlobalInitFunc();
248   EmitCXXGlobalDtorFunc();
249   EmitCXXThreadLocalInitFunc();
250   if (ObjCRuntime)
251     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
252       AddGlobalCtor(ObjCInitFunction);
253   EmitCtorList(GlobalCtors, "llvm.global_ctors");
254   EmitCtorList(GlobalDtors, "llvm.global_dtors");
255   EmitGlobalAnnotations();
256   EmitStaticExternCAliases();
257   EmitLLVMUsed();
258 
259   if (CodeGenOpts.Autolink &&
260       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
261     EmitModuleLinkOptions();
262   }
263   if (CodeGenOpts.DwarfVersion)
264     // We actually want the latest version when there are conflicts.
265     // We can change from Warning to Latest if such mode is supported.
266     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
267                               CodeGenOpts.DwarfVersion);
268   if (DebugInfo)
269     // We support a single version in the linked module: error out when
270     // modules do not have the same version. We are going to implement dropping
271     // debug info when the version number is not up-to-date. Once that is
272     // done, the bitcode linker is not going to see modules with different
273     // version numbers.
274     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
275                               llvm::DEBUG_METADATA_VERSION);
276 
277   SimplifyPersonality();
278 
279   if (getCodeGenOpts().EmitDeclMetadata)
280     EmitDeclMetadata();
281 
282   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
283     EmitCoverageFile();
284 
285   if (DebugInfo)
286     DebugInfo->finalize();
287 
288   EmitVersionIdentMetadata();
289 }
290 
291 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
292   // Make sure that this type is translated.
293   Types.UpdateCompletedType(TD);
294 }
295 
296 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
297   if (!TBAA)
298     return 0;
299   return TBAA->getTBAAInfo(QTy);
300 }
301 
302 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
303   if (!TBAA)
304     return 0;
305   return TBAA->getTBAAInfoForVTablePtr();
306 }
307 
308 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
309   if (!TBAA)
310     return 0;
311   return TBAA->getTBAAStructInfo(QTy);
312 }
313 
314 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
315   if (!TBAA)
316     return 0;
317   return TBAA->getTBAAStructTypeInfo(QTy);
318 }
319 
320 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
321                                                   llvm::MDNode *AccessN,
322                                                   uint64_t O) {
323   if (!TBAA)
324     return 0;
325   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
326 }
327 
328 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
329 /// and struct-path aware TBAA, the tag has the same format:
330 /// base type, access type and offset.
331 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
332 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
333                                         llvm::MDNode *TBAAInfo,
334                                         bool ConvertTypeToTag) {
335   if (ConvertTypeToTag && TBAA)
336     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
337                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
338   else
339     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
340 }
341 
342 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
343   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
344   getDiags().Report(Context.getFullLoc(loc), diagID);
345 }
346 
347 /// ErrorUnsupported - Print out an error that codegen doesn't support the
348 /// specified stmt yet.
349 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
350   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
351                                                "cannot compile this %0 yet");
352   std::string Msg = Type;
353   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
354     << Msg << S->getSourceRange();
355 }
356 
357 /// ErrorUnsupported - Print out an error that codegen doesn't support the
358 /// specified decl yet.
359 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
360   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
361                                                "cannot compile this %0 yet");
362   std::string Msg = Type;
363   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
364 }
365 
366 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
367   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
368 }
369 
370 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
371                                         const NamedDecl *D) const {
372   // Internal definitions always have default visibility.
373   if (GV->hasLocalLinkage()) {
374     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
375     return;
376   }
377 
378   // Set visibility for definitions.
379   LinkageInfo LV = D->getLinkageAndVisibility();
380   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
381     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
382 }
383 
384 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
385   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
386       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
387       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
388       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
389       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
390 }
391 
392 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
393     CodeGenOptions::TLSModel M) {
394   switch (M) {
395   case CodeGenOptions::GeneralDynamicTLSModel:
396     return llvm::GlobalVariable::GeneralDynamicTLSModel;
397   case CodeGenOptions::LocalDynamicTLSModel:
398     return llvm::GlobalVariable::LocalDynamicTLSModel;
399   case CodeGenOptions::InitialExecTLSModel:
400     return llvm::GlobalVariable::InitialExecTLSModel;
401   case CodeGenOptions::LocalExecTLSModel:
402     return llvm::GlobalVariable::LocalExecTLSModel;
403   }
404   llvm_unreachable("Invalid TLS model!");
405 }
406 
407 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
408                                const VarDecl &D) const {
409   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
410 
411   llvm::GlobalVariable::ThreadLocalMode TLM;
412   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
413 
414   // Override the TLS model if it is explicitly specified.
415   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
416     TLM = GetLLVMTLSModel(Attr->getModel());
417   }
418 
419   GV->setThreadLocalMode(TLM);
420 }
421 
422 /// Set the symbol visibility of type information (vtable and RTTI)
423 /// associated with the given type.
424 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
425                                       const CXXRecordDecl *RD,
426                                       TypeVisibilityKind TVK) const {
427   setGlobalVisibility(GV, RD);
428 
429   if (!CodeGenOpts.HiddenWeakVTables)
430     return;
431 
432   // We never want to drop the visibility for RTTI names.
433   if (TVK == TVK_ForRTTIName)
434     return;
435 
436   // We want to drop the visibility to hidden for weak type symbols.
437   // This isn't possible if there might be unresolved references
438   // elsewhere that rely on this symbol being visible.
439 
440   // This should be kept roughly in sync with setThunkVisibility
441   // in CGVTables.cpp.
442 
443   // Preconditions.
444   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
445       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
446     return;
447 
448   // Don't override an explicit visibility attribute.
449   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
450     return;
451 
452   switch (RD->getTemplateSpecializationKind()) {
453   // We have to disable the optimization if this is an EI definition
454   // because there might be EI declarations in other shared objects.
455   case TSK_ExplicitInstantiationDefinition:
456   case TSK_ExplicitInstantiationDeclaration:
457     return;
458 
459   // Every use of a non-template class's type information has to emit it.
460   case TSK_Undeclared:
461     break;
462 
463   // In theory, implicit instantiations can ignore the possibility of
464   // an explicit instantiation declaration because there necessarily
465   // must be an EI definition somewhere with default visibility.  In
466   // practice, it's possible to have an explicit instantiation for
467   // an arbitrary template class, and linkers aren't necessarily able
468   // to deal with mixed-visibility symbols.
469   case TSK_ExplicitSpecialization:
470   case TSK_ImplicitInstantiation:
471     return;
472   }
473 
474   // If there's a key function, there may be translation units
475   // that don't have the key function's definition.  But ignore
476   // this if we're emitting RTTI under -fno-rtti.
477   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
478     // FIXME: what should we do if we "lose" the key function during
479     // the emission of the file?
480     if (Context.getCurrentKeyFunction(RD))
481       return;
482   }
483 
484   // Otherwise, drop the visibility to hidden.
485   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
486   GV->setUnnamedAddr(true);
487 }
488 
489 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
490   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
491 
492   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
493   if (!Str.empty())
494     return Str;
495 
496   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
497     IdentifierInfo *II = ND->getIdentifier();
498     assert(II && "Attempt to mangle unnamed decl.");
499 
500     Str = II->getName();
501     return Str;
502   }
503 
504   SmallString<256> Buffer;
505   llvm::raw_svector_ostream Out(Buffer);
506   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
507     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
508   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
509     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
510   else
511     getCXXABI().getMangleContext().mangleName(ND, Out);
512 
513   // Allocate space for the mangled name.
514   Out.flush();
515   size_t Length = Buffer.size();
516   char *Name = MangledNamesAllocator.Allocate<char>(Length);
517   std::copy(Buffer.begin(), Buffer.end(), Name);
518 
519   Str = StringRef(Name, Length);
520 
521   return Str;
522 }
523 
524 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
525                                         const BlockDecl *BD) {
526   MangleContext &MangleCtx = getCXXABI().getMangleContext();
527   const Decl *D = GD.getDecl();
528   llvm::raw_svector_ostream Out(Buffer.getBuffer());
529   if (D == 0)
530     MangleCtx.mangleGlobalBlock(BD,
531       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
532   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
533     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
534   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
535     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
536   else
537     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
538 }
539 
540 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
541   return getModule().getNamedValue(Name);
542 }
543 
544 /// AddGlobalCtor - Add a function to the list that will be called before
545 /// main() runs.
546 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
547   // FIXME: Type coercion of void()* types.
548   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
549 }
550 
551 /// AddGlobalDtor - Add a function to the list that will be called
552 /// when the module is unloaded.
553 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
554   // FIXME: Type coercion of void()* types.
555   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
556 }
557 
558 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
559   // Ctor function type is void()*.
560   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
561   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
562 
563   // Get the type of a ctor entry, { i32, void ()* }.
564   llvm::StructType *CtorStructTy =
565     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
566 
567   // Construct the constructor and destructor arrays.
568   SmallVector<llvm::Constant*, 8> Ctors;
569   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
570     llvm::Constant *S[] = {
571       llvm::ConstantInt::get(Int32Ty, I->second, false),
572       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
573     };
574     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
575   }
576 
577   if (!Ctors.empty()) {
578     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
579     new llvm::GlobalVariable(TheModule, AT, false,
580                              llvm::GlobalValue::AppendingLinkage,
581                              llvm::ConstantArray::get(AT, Ctors),
582                              GlobalName);
583   }
584 }
585 
586 llvm::GlobalValue::LinkageTypes
587 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
588   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
589 
590   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
591 
592   if (Linkage == GVA_Internal)
593     return llvm::Function::InternalLinkage;
594 
595   if (D->hasAttr<DLLExportAttr>())
596     return llvm::Function::DLLExportLinkage;
597 
598   if (D->hasAttr<WeakAttr>())
599     return llvm::Function::WeakAnyLinkage;
600 
601   // In C99 mode, 'inline' functions are guaranteed to have a strong
602   // definition somewhere else, so we can use available_externally linkage.
603   if (Linkage == GVA_C99Inline)
604     return llvm::Function::AvailableExternallyLinkage;
605 
606   // Note that Apple's kernel linker doesn't support symbol
607   // coalescing, so we need to avoid linkonce and weak linkages there.
608   // Normally, this means we just map to internal, but for explicit
609   // instantiations we'll map to external.
610 
611   // In C++, the compiler has to emit a definition in every translation unit
612   // that references the function.  We should use linkonce_odr because
613   // a) if all references in this translation unit are optimized away, we
614   // don't need to codegen it.  b) if the function persists, it needs to be
615   // merged with other definitions. c) C++ has the ODR, so we know the
616   // definition is dependable.
617   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
618     return !Context.getLangOpts().AppleKext
619              ? llvm::Function::LinkOnceODRLinkage
620              : llvm::Function::InternalLinkage;
621 
622   // An explicit instantiation of a template has weak linkage, since
623   // explicit instantiations can occur in multiple translation units
624   // and must all be equivalent. However, we are not allowed to
625   // throw away these explicit instantiations.
626   if (Linkage == GVA_ExplicitTemplateInstantiation)
627     return !Context.getLangOpts().AppleKext
628              ? llvm::Function::WeakODRLinkage
629              : llvm::Function::ExternalLinkage;
630 
631   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
632   // emitted on an as-needed basis.
633   if (isa<CXXDestructorDecl>(D) &&
634       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
635                                          GD.getDtorType()))
636     return llvm::Function::LinkOnceODRLinkage;
637 
638   // Otherwise, we have strong external linkage.
639   assert(Linkage == GVA_StrongExternal);
640   return llvm::Function::ExternalLinkage;
641 }
642 
643 
644 /// SetFunctionDefinitionAttributes - Set attributes for a global.
645 ///
646 /// FIXME: This is currently only done for aliases and functions, but not for
647 /// variables (these details are set in EmitGlobalVarDefinition for variables).
648 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
649                                                     llvm::GlobalValue *GV) {
650   SetCommonAttributes(D, GV);
651 }
652 
653 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
654                                               const CGFunctionInfo &Info,
655                                               llvm::Function *F) {
656   unsigned CallingConv;
657   AttributeListType AttributeList;
658   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
659   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
660   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
661 }
662 
663 /// Determines whether the language options require us to model
664 /// unwind exceptions.  We treat -fexceptions as mandating this
665 /// except under the fragile ObjC ABI with only ObjC exceptions
666 /// enabled.  This means, for example, that C with -fexceptions
667 /// enables this.
668 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
669   // If exceptions are completely disabled, obviously this is false.
670   if (!LangOpts.Exceptions) return false;
671 
672   // If C++ exceptions are enabled, this is true.
673   if (LangOpts.CXXExceptions) return true;
674 
675   // If ObjC exceptions are enabled, this depends on the ABI.
676   if (LangOpts.ObjCExceptions) {
677     return LangOpts.ObjCRuntime.hasUnwindExceptions();
678   }
679 
680   return true;
681 }
682 
683 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
684                                                            llvm::Function *F) {
685   llvm::AttrBuilder B;
686 
687   if (CodeGenOpts.UnwindTables)
688     B.addAttribute(llvm::Attribute::UWTable);
689 
690   if (!hasUnwindExceptions(LangOpts))
691     B.addAttribute(llvm::Attribute::NoUnwind);
692 
693   if (D->hasAttr<NakedAttr>()) {
694     // Naked implies noinline: we should not be inlining such functions.
695     B.addAttribute(llvm::Attribute::Naked);
696     B.addAttribute(llvm::Attribute::NoInline);
697   } else if (D->hasAttr<NoInlineAttr>()) {
698     B.addAttribute(llvm::Attribute::NoInline);
699   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
700               D->hasAttr<ForceInlineAttr>()) &&
701              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
702                                               llvm::Attribute::NoInline)) {
703     // (noinline wins over always_inline, and we can't specify both in IR)
704     B.addAttribute(llvm::Attribute::AlwaysInline);
705   }
706 
707   if (D->hasAttr<ColdAttr>()) {
708     B.addAttribute(llvm::Attribute::OptimizeForSize);
709     B.addAttribute(llvm::Attribute::Cold);
710   }
711 
712   if (D->hasAttr<MinSizeAttr>())
713     B.addAttribute(llvm::Attribute::MinSize);
714 
715   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
716     B.addAttribute(llvm::Attribute::StackProtect);
717   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
718     B.addAttribute(llvm::Attribute::StackProtectReq);
719 
720   // Add sanitizer attributes if function is not blacklisted.
721   if (!SanitizerBlacklist->isIn(*F)) {
722     // When AddressSanitizer is enabled, set SanitizeAddress attribute
723     // unless __attribute__((no_sanitize_address)) is used.
724     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
725       B.addAttribute(llvm::Attribute::SanitizeAddress);
726     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
727     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
728       B.addAttribute(llvm::Attribute::SanitizeThread);
729     }
730     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
731     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
732       B.addAttribute(llvm::Attribute::SanitizeMemory);
733   }
734 
735   F->addAttributes(llvm::AttributeSet::FunctionIndex,
736                    llvm::AttributeSet::get(
737                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
738 
739   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
740     F->setUnnamedAddr(true);
741   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
742     if (MD->isVirtual())
743       F->setUnnamedAddr(true);
744 
745   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
746   if (alignment)
747     F->setAlignment(alignment);
748 
749   // C++ ABI requires 2-byte alignment for member functions.
750   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
751     F->setAlignment(2);
752 }
753 
754 void CodeGenModule::SetCommonAttributes(const Decl *D,
755                                         llvm::GlobalValue *GV) {
756   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
757     setGlobalVisibility(GV, ND);
758   else
759     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
760 
761   if (D->hasAttr<UsedAttr>())
762     AddUsedGlobal(GV);
763 
764   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
765     GV->setSection(SA->getName());
766 
767   // Alias cannot have attributes. Filter them here.
768   if (!isa<llvm::GlobalAlias>(GV))
769     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
770 }
771 
772 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
773                                                   llvm::Function *F,
774                                                   const CGFunctionInfo &FI) {
775   SetLLVMFunctionAttributes(D, FI, F);
776   SetLLVMFunctionAttributesForDefinition(D, F);
777 
778   F->setLinkage(llvm::Function::InternalLinkage);
779 
780   SetCommonAttributes(D, F);
781 }
782 
783 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
784                                           llvm::Function *F,
785                                           bool IsIncompleteFunction) {
786   if (unsigned IID = F->getIntrinsicID()) {
787     // If this is an intrinsic function, set the function's attributes
788     // to the intrinsic's attributes.
789     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
790                                                     (llvm::Intrinsic::ID)IID));
791     return;
792   }
793 
794   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
795 
796   if (!IsIncompleteFunction)
797     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
798 
799   if (getCXXABI().HasThisReturn(GD)) {
800     assert(!F->arg_empty() &&
801            F->arg_begin()->getType()
802              ->canLosslesslyBitCastTo(F->getReturnType()) &&
803            "unexpected this return");
804     F->addAttribute(1, llvm::Attribute::Returned);
805   }
806 
807   // Only a few attributes are set on declarations; these may later be
808   // overridden by a definition.
809 
810   if (FD->hasAttr<DLLImportAttr>()) {
811     F->setLinkage(llvm::Function::DLLImportLinkage);
812   } else if (FD->hasAttr<WeakAttr>() ||
813              FD->isWeakImported()) {
814     // "extern_weak" is overloaded in LLVM; we probably should have
815     // separate linkage types for this.
816     F->setLinkage(llvm::Function::ExternalWeakLinkage);
817   } else {
818     F->setLinkage(llvm::Function::ExternalLinkage);
819 
820     LinkageInfo LV = FD->getLinkageAndVisibility();
821     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
822       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
823     }
824   }
825 
826   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
827     F->setSection(SA->getName());
828 
829   // A replaceable global allocation function does not act like a builtin by
830   // default, only if it is invoked by a new-expression or delete-expression.
831   if (FD->isReplaceableGlobalAllocationFunction())
832     F->addAttribute(llvm::AttributeSet::FunctionIndex,
833                     llvm::Attribute::NoBuiltin);
834 }
835 
836 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
837   assert(!GV->isDeclaration() &&
838          "Only globals with definition can force usage.");
839   LLVMUsed.push_back(GV);
840 }
841 
842 void CodeGenModule::EmitLLVMUsed() {
843   // Don't create llvm.used if there is no need.
844   if (LLVMUsed.empty())
845     return;
846 
847   // Convert LLVMUsed to what ConstantArray needs.
848   SmallVector<llvm::Constant*, 8> UsedArray;
849   UsedArray.resize(LLVMUsed.size());
850   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
851     UsedArray[i] =
852      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
853                                     Int8PtrTy);
854   }
855 
856   if (UsedArray.empty())
857     return;
858   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
859 
860   llvm::GlobalVariable *GV =
861     new llvm::GlobalVariable(getModule(), ATy, false,
862                              llvm::GlobalValue::AppendingLinkage,
863                              llvm::ConstantArray::get(ATy, UsedArray),
864                              "llvm.used");
865 
866   GV->setSection("llvm.metadata");
867 }
868 
869 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
870   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
871   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
872 }
873 
874 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
875   llvm::SmallString<32> Opt;
876   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
877   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
878   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
879 }
880 
881 void CodeGenModule::AddDependentLib(StringRef Lib) {
882   llvm::SmallString<24> Opt;
883   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
884   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
885   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
886 }
887 
888 /// \brief Add link options implied by the given module, including modules
889 /// it depends on, using a postorder walk.
890 static void addLinkOptionsPostorder(CodeGenModule &CGM,
891                                     Module *Mod,
892                                     SmallVectorImpl<llvm::Value *> &Metadata,
893                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
894   // Import this module's parent.
895   if (Mod->Parent && Visited.insert(Mod->Parent)) {
896     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
897   }
898 
899   // Import this module's dependencies.
900   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
901     if (Visited.insert(Mod->Imports[I-1]))
902       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
903   }
904 
905   // Add linker options to link against the libraries/frameworks
906   // described by this module.
907   llvm::LLVMContext &Context = CGM.getLLVMContext();
908   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
909     // Link against a framework.  Frameworks are currently Darwin only, so we
910     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
911     if (Mod->LinkLibraries[I-1].IsFramework) {
912       llvm::Value *Args[2] = {
913         llvm::MDString::get(Context, "-framework"),
914         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
915       };
916 
917       Metadata.push_back(llvm::MDNode::get(Context, Args));
918       continue;
919     }
920 
921     // Link against a library.
922     llvm::SmallString<24> Opt;
923     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
924       Mod->LinkLibraries[I-1].Library, Opt);
925     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
926     Metadata.push_back(llvm::MDNode::get(Context, OptString));
927   }
928 }
929 
930 void CodeGenModule::EmitModuleLinkOptions() {
931   // Collect the set of all of the modules we want to visit to emit link
932   // options, which is essentially the imported modules and all of their
933   // non-explicit child modules.
934   llvm::SetVector<clang::Module *> LinkModules;
935   llvm::SmallPtrSet<clang::Module *, 16> Visited;
936   SmallVector<clang::Module *, 16> Stack;
937 
938   // Seed the stack with imported modules.
939   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
940                                                MEnd = ImportedModules.end();
941        M != MEnd; ++M) {
942     if (Visited.insert(*M))
943       Stack.push_back(*M);
944   }
945 
946   // Find all of the modules to import, making a little effort to prune
947   // non-leaf modules.
948   while (!Stack.empty()) {
949     clang::Module *Mod = Stack.pop_back_val();
950 
951     bool AnyChildren = false;
952 
953     // Visit the submodules of this module.
954     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
955                                         SubEnd = Mod->submodule_end();
956          Sub != SubEnd; ++Sub) {
957       // Skip explicit children; they need to be explicitly imported to be
958       // linked against.
959       if ((*Sub)->IsExplicit)
960         continue;
961 
962       if (Visited.insert(*Sub)) {
963         Stack.push_back(*Sub);
964         AnyChildren = true;
965       }
966     }
967 
968     // We didn't find any children, so add this module to the list of
969     // modules to link against.
970     if (!AnyChildren) {
971       LinkModules.insert(Mod);
972     }
973   }
974 
975   // Add link options for all of the imported modules in reverse topological
976   // order.  We don't do anything to try to order import link flags with respect
977   // to linker options inserted by things like #pragma comment().
978   SmallVector<llvm::Value *, 16> MetadataArgs;
979   Visited.clear();
980   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
981                                                MEnd = LinkModules.end();
982        M != MEnd; ++M) {
983     if (Visited.insert(*M))
984       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
985   }
986   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
987   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
988 
989   // Add the linker options metadata flag.
990   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
991                             llvm::MDNode::get(getLLVMContext(),
992                                               LinkerOptionsMetadata));
993 }
994 
995 void CodeGenModule::EmitDeferred() {
996   // Emit code for any potentially referenced deferred decls.  Since a
997   // previously unused static decl may become used during the generation of code
998   // for a static function, iterate until no changes are made.
999 
1000   while (true) {
1001     if (!DeferredVTables.empty()) {
1002       EmitDeferredVTables();
1003 
1004       // Emitting a v-table doesn't directly cause more v-tables to
1005       // become deferred, although it can cause functions to be
1006       // emitted that then need those v-tables.
1007       assert(DeferredVTables.empty());
1008     }
1009 
1010     // Stop if we're out of both deferred v-tables and deferred declarations.
1011     if (DeferredDeclsToEmit.empty()) break;
1012 
1013     DeferredGlobal &G = DeferredDeclsToEmit.back();
1014     GlobalDecl D = G.GD;
1015     llvm::GlobalValue *GV = G.GV;
1016     DeferredDeclsToEmit.pop_back();
1017 
1018     assert(GV == GetGlobalValue(getMangledName(D)));
1019     // Check to see if we've already emitted this.  This is necessary
1020     // for a couple of reasons: first, decls can end up in the
1021     // deferred-decls queue multiple times, and second, decls can end
1022     // up with definitions in unusual ways (e.g. by an extern inline
1023     // function acquiring a strong function redefinition).  Just
1024     // ignore these cases.
1025     if(!GV->isDeclaration())
1026       continue;
1027 
1028     // Otherwise, emit the definition and move on to the next one.
1029     EmitGlobalDefinition(D, GV);
1030   }
1031 }
1032 
1033 void CodeGenModule::EmitGlobalAnnotations() {
1034   if (Annotations.empty())
1035     return;
1036 
1037   // Create a new global variable for the ConstantStruct in the Module.
1038   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1039     Annotations[0]->getType(), Annotations.size()), Annotations);
1040   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1041     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1042     "llvm.global.annotations");
1043   gv->setSection(AnnotationSection);
1044 }
1045 
1046 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1047   llvm::Constant *&AStr = AnnotationStrings[Str];
1048   if (AStr)
1049     return AStr;
1050 
1051   // Not found yet, create a new global.
1052   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1053   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1054     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1055   gv->setSection(AnnotationSection);
1056   gv->setUnnamedAddr(true);
1057   AStr = gv;
1058   return gv;
1059 }
1060 
1061 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1062   SourceManager &SM = getContext().getSourceManager();
1063   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1064   if (PLoc.isValid())
1065     return EmitAnnotationString(PLoc.getFilename());
1066   return EmitAnnotationString(SM.getBufferName(Loc));
1067 }
1068 
1069 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1070   SourceManager &SM = getContext().getSourceManager();
1071   PresumedLoc PLoc = SM.getPresumedLoc(L);
1072   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1073     SM.getExpansionLineNumber(L);
1074   return llvm::ConstantInt::get(Int32Ty, LineNo);
1075 }
1076 
1077 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1078                                                 const AnnotateAttr *AA,
1079                                                 SourceLocation L) {
1080   // Get the globals for file name, annotation, and the line number.
1081   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1082                  *UnitGV = EmitAnnotationUnit(L),
1083                  *LineNoCst = EmitAnnotationLineNo(L);
1084 
1085   // Create the ConstantStruct for the global annotation.
1086   llvm::Constant *Fields[4] = {
1087     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1088     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1089     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1090     LineNoCst
1091   };
1092   return llvm::ConstantStruct::getAnon(Fields);
1093 }
1094 
1095 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1096                                          llvm::GlobalValue *GV) {
1097   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1098   // Get the struct elements for these annotations.
1099   for (specific_attr_iterator<AnnotateAttr>
1100        ai = D->specific_attr_begin<AnnotateAttr>(),
1101        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1102     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1103 }
1104 
1105 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1106   // Never defer when EmitAllDecls is specified.
1107   if (LangOpts.EmitAllDecls)
1108     return false;
1109 
1110   return !getContext().DeclMustBeEmitted(Global);
1111 }
1112 
1113 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1114     const CXXUuidofExpr* E) {
1115   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1116   // well-formed.
1117   StringRef Uuid = E->getUuidAsStringRef(Context);
1118   std::string Name = "_GUID_" + Uuid.lower();
1119   std::replace(Name.begin(), Name.end(), '-', '_');
1120 
1121   // Look for an existing global.
1122   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1123     return GV;
1124 
1125   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1126   assert(Init && "failed to initialize as constant");
1127 
1128   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1129       getModule(), Init->getType(),
1130       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1131   return GV;
1132 }
1133 
1134 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1135   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1136   assert(AA && "No alias?");
1137 
1138   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1139 
1140   // See if there is already something with the target's name in the module.
1141   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1142   if (Entry) {
1143     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1144     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1145   }
1146 
1147   llvm::Constant *Aliasee;
1148   if (isa<llvm::FunctionType>(DeclTy))
1149     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1150                                       GlobalDecl(cast<FunctionDecl>(VD)),
1151                                       /*ForVTable=*/false);
1152   else
1153     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1154                                     llvm::PointerType::getUnqual(DeclTy), 0);
1155 
1156   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1157   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1158   WeakRefReferences.insert(F);
1159 
1160   return Aliasee;
1161 }
1162 
1163 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1164   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1165 
1166   // Weak references don't produce any output by themselves.
1167   if (Global->hasAttr<WeakRefAttr>())
1168     return;
1169 
1170   // If this is an alias definition (which otherwise looks like a declaration)
1171   // emit it now.
1172   if (Global->hasAttr<AliasAttr>())
1173     return EmitAliasDefinition(GD);
1174 
1175   // If this is CUDA, be selective about which declarations we emit.
1176   if (LangOpts.CUDA) {
1177     if (CodeGenOpts.CUDAIsDevice) {
1178       if (!Global->hasAttr<CUDADeviceAttr>() &&
1179           !Global->hasAttr<CUDAGlobalAttr>() &&
1180           !Global->hasAttr<CUDAConstantAttr>() &&
1181           !Global->hasAttr<CUDASharedAttr>())
1182         return;
1183     } else {
1184       if (!Global->hasAttr<CUDAHostAttr>() && (
1185             Global->hasAttr<CUDADeviceAttr>() ||
1186             Global->hasAttr<CUDAConstantAttr>() ||
1187             Global->hasAttr<CUDASharedAttr>()))
1188         return;
1189     }
1190   }
1191 
1192   // Ignore declarations, they will be emitted on their first use.
1193   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1194     // Forward declarations are emitted lazily on first use.
1195     if (!FD->doesThisDeclarationHaveABody()) {
1196       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1197         return;
1198 
1199       const FunctionDecl *InlineDefinition = 0;
1200       FD->getBody(InlineDefinition);
1201 
1202       StringRef MangledName = getMangledName(GD);
1203       DeferredDecls.erase(MangledName);
1204       EmitGlobalDefinition(InlineDefinition);
1205       return;
1206     }
1207   } else {
1208     const VarDecl *VD = cast<VarDecl>(Global);
1209     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1210 
1211     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1212       return;
1213   }
1214 
1215   // Defer code generation when possible if this is a static definition, inline
1216   // function etc.  These we only want to emit if they are used.
1217   if (!MayDeferGeneration(Global)) {
1218     // Emit the definition if it can't be deferred.
1219     EmitGlobalDefinition(GD);
1220     return;
1221   }
1222 
1223   // If we're deferring emission of a C++ variable with an
1224   // initializer, remember the order in which it appeared in the file.
1225   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1226       cast<VarDecl>(Global)->hasInit()) {
1227     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1228     CXXGlobalInits.push_back(0);
1229   }
1230 
1231   // If the value has already been used, add it directly to the
1232   // DeferredDeclsToEmit list.
1233   StringRef MangledName = getMangledName(GD);
1234   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1235     addDeferredDeclToEmit(GV, GD);
1236   else {
1237     // Otherwise, remember that we saw a deferred decl with this name.  The
1238     // first use of the mangled name will cause it to move into
1239     // DeferredDeclsToEmit.
1240     DeferredDecls[MangledName] = GD;
1241   }
1242 }
1243 
1244 namespace {
1245   struct FunctionIsDirectlyRecursive :
1246     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1247     const StringRef Name;
1248     const Builtin::Context &BI;
1249     bool Result;
1250     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1251       Name(N), BI(C), Result(false) {
1252     }
1253     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1254 
1255     bool TraverseCallExpr(CallExpr *E) {
1256       const FunctionDecl *FD = E->getDirectCallee();
1257       if (!FD)
1258         return true;
1259       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1260       if (Attr && Name == Attr->getLabel()) {
1261         Result = true;
1262         return false;
1263       }
1264       unsigned BuiltinID = FD->getBuiltinID();
1265       if (!BuiltinID)
1266         return true;
1267       StringRef BuiltinName = BI.GetName(BuiltinID);
1268       if (BuiltinName.startswith("__builtin_") &&
1269           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1270         Result = true;
1271         return false;
1272       }
1273       return true;
1274     }
1275   };
1276 }
1277 
1278 // isTriviallyRecursive - Check if this function calls another
1279 // decl that, because of the asm attribute or the other decl being a builtin,
1280 // ends up pointing to itself.
1281 bool
1282 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1283   StringRef Name;
1284   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1285     // asm labels are a special kind of mangling we have to support.
1286     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1287     if (!Attr)
1288       return false;
1289     Name = Attr->getLabel();
1290   } else {
1291     Name = FD->getName();
1292   }
1293 
1294   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1295   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1296   return Walker.Result;
1297 }
1298 
1299 bool
1300 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1301   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1302     return true;
1303   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1304   if (CodeGenOpts.OptimizationLevel == 0 &&
1305       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1306     return false;
1307   // PR9614. Avoid cases where the source code is lying to us. An available
1308   // externally function should have an equivalent function somewhere else,
1309   // but a function that calls itself is clearly not equivalent to the real
1310   // implementation.
1311   // This happens in glibc's btowc and in some configure checks.
1312   return !isTriviallyRecursive(F);
1313 }
1314 
1315 /// If the type for the method's class was generated by
1316 /// CGDebugInfo::createContextChain(), the cache contains only a
1317 /// limited DIType without any declarations. Since EmitFunctionStart()
1318 /// needs to find the canonical declaration for each method, we need
1319 /// to construct the complete type prior to emitting the method.
1320 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1321   if (!D->isInstance())
1322     return;
1323 
1324   if (CGDebugInfo *DI = getModuleDebugInfo())
1325     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1326       const PointerType *ThisPtr =
1327         cast<PointerType>(D->getThisType(getContext()));
1328       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1329     }
1330 }
1331 
1332 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1333   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1334 
1335   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1336                                  Context.getSourceManager(),
1337                                  "Generating code for declaration");
1338 
1339   if (isa<FunctionDecl>(D)) {
1340     // At -O0, don't generate IR for functions with available_externally
1341     // linkage.
1342     if (!shouldEmitFunction(GD))
1343       return;
1344 
1345     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1346       CompleteDIClassType(Method);
1347       // Make sure to emit the definition(s) before we emit the thunks.
1348       // This is necessary for the generation of certain thunks.
1349       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1350         EmitCXXConstructor(CD, GD.getCtorType());
1351       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1352         EmitCXXDestructor(DD, GD.getDtorType());
1353       else
1354         EmitGlobalFunctionDefinition(GD, GV);
1355 
1356       if (Method->isVirtual())
1357         getVTables().EmitThunks(GD);
1358 
1359       return;
1360     }
1361 
1362     return EmitGlobalFunctionDefinition(GD, GV);
1363   }
1364 
1365   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1366     return EmitGlobalVarDefinition(VD);
1367 
1368   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1369 }
1370 
1371 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1372 /// module, create and return an llvm Function with the specified type. If there
1373 /// is something in the module with the specified name, return it potentially
1374 /// bitcasted to the right type.
1375 ///
1376 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1377 /// to set the attributes on the function when it is first created.
1378 llvm::Constant *
1379 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1380                                        llvm::Type *Ty,
1381                                        GlobalDecl GD, bool ForVTable,
1382                                        bool DontDefer,
1383                                        llvm::AttributeSet ExtraAttrs) {
1384   const Decl *D = GD.getDecl();
1385 
1386   // Lookup the entry, lazily creating it if necessary.
1387   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1388   if (Entry) {
1389     if (WeakRefReferences.erase(Entry)) {
1390       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1391       if (FD && !FD->hasAttr<WeakAttr>())
1392         Entry->setLinkage(llvm::Function::ExternalLinkage);
1393     }
1394 
1395     if (Entry->getType()->getElementType() == Ty)
1396       return Entry;
1397 
1398     // Make sure the result is of the correct type.
1399     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1400   }
1401 
1402   // This function doesn't have a complete type (for example, the return
1403   // type is an incomplete struct). Use a fake type instead, and make
1404   // sure not to try to set attributes.
1405   bool IsIncompleteFunction = false;
1406 
1407   llvm::FunctionType *FTy;
1408   if (isa<llvm::FunctionType>(Ty)) {
1409     FTy = cast<llvm::FunctionType>(Ty);
1410   } else {
1411     FTy = llvm::FunctionType::get(VoidTy, false);
1412     IsIncompleteFunction = true;
1413   }
1414 
1415   llvm::Function *F = llvm::Function::Create(FTy,
1416                                              llvm::Function::ExternalLinkage,
1417                                              MangledName, &getModule());
1418   assert(F->getName() == MangledName && "name was uniqued!");
1419   if (D)
1420     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1421   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1422     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1423     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1424                      llvm::AttributeSet::get(VMContext,
1425                                              llvm::AttributeSet::FunctionIndex,
1426                                              B));
1427   }
1428 
1429   if (!DontDefer) {
1430     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1431     // each other bottoming out with the base dtor.  Therefore we emit non-base
1432     // dtors on usage, even if there is no dtor definition in the TU.
1433     if (D && isa<CXXDestructorDecl>(D) &&
1434         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1435                                            GD.getDtorType()))
1436       addDeferredDeclToEmit(F, GD);
1437 
1438     // This is the first use or definition of a mangled name.  If there is a
1439     // deferred decl with this name, remember that we need to emit it at the end
1440     // of the file.
1441     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1442     if (DDI != DeferredDecls.end()) {
1443       // Move the potentially referenced deferred decl to the
1444       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1445       // don't need it anymore).
1446       addDeferredDeclToEmit(F, DDI->second);
1447       DeferredDecls.erase(DDI);
1448 
1449       // Otherwise, if this is a sized deallocation function, emit a weak
1450       // definition
1451       // for it at the end of the translation unit.
1452     } else if (D && cast<FunctionDecl>(D)
1453                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1454       addDeferredDeclToEmit(F, GD);
1455 
1456       // Otherwise, there are cases we have to worry about where we're
1457       // using a declaration for which we must emit a definition but where
1458       // we might not find a top-level definition:
1459       //   - member functions defined inline in their classes
1460       //   - friend functions defined inline in some class
1461       //   - special member functions with implicit definitions
1462       // If we ever change our AST traversal to walk into class methods,
1463       // this will be unnecessary.
1464       //
1465       // We also don't emit a definition for a function if it's going to be an
1466       // entry
1467       // in a vtable, unless it's already marked as used.
1468     } else if (getLangOpts().CPlusPlus && D) {
1469       // Look for a declaration that's lexically in a record.
1470       const FunctionDecl *FD = cast<FunctionDecl>(D);
1471       FD = FD->getMostRecentDecl();
1472       do {
1473         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1474           if (FD->isImplicit() && !ForVTable) {
1475             assert(FD->isUsed() &&
1476                    "Sema didn't mark implicit function as used!");
1477             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1478             break;
1479           } else if (FD->doesThisDeclarationHaveABody()) {
1480             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1481             break;
1482           }
1483         }
1484         FD = FD->getPreviousDecl();
1485       } while (FD);
1486     }
1487   }
1488 
1489   // Make sure the result is of the requested type.
1490   if (!IsIncompleteFunction) {
1491     assert(F->getType()->getElementType() == Ty);
1492     return F;
1493   }
1494 
1495   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1496   return llvm::ConstantExpr::getBitCast(F, PTy);
1497 }
1498 
1499 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1500 /// non-null, then this function will use the specified type if it has to
1501 /// create it (this occurs when we see a definition of the function).
1502 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1503                                                  llvm::Type *Ty,
1504                                                  bool ForVTable,
1505                                                  bool DontDefer) {
1506   // If there was no specific requested type, just convert it now.
1507   if (!Ty)
1508     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1509 
1510   StringRef MangledName = getMangledName(GD);
1511   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1512 }
1513 
1514 /// CreateRuntimeFunction - Create a new runtime function with the specified
1515 /// type and name.
1516 llvm::Constant *
1517 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1518                                      StringRef Name,
1519                                      llvm::AttributeSet ExtraAttrs) {
1520   llvm::Constant *C =
1521       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1522                               /*DontDefer=*/false, ExtraAttrs);
1523   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1524     if (F->empty())
1525       F->setCallingConv(getRuntimeCC());
1526   return C;
1527 }
1528 
1529 /// isTypeConstant - Determine whether an object of this type can be emitted
1530 /// as a constant.
1531 ///
1532 /// If ExcludeCtor is true, the duration when the object's constructor runs
1533 /// will not be considered. The caller will need to verify that the object is
1534 /// not written to during its construction.
1535 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1536   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1537     return false;
1538 
1539   if (Context.getLangOpts().CPlusPlus) {
1540     if (const CXXRecordDecl *Record
1541           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1542       return ExcludeCtor && !Record->hasMutableFields() &&
1543              Record->hasTrivialDestructor();
1544   }
1545 
1546   return true;
1547 }
1548 
1549 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1550 /// create and return an llvm GlobalVariable with the specified type.  If there
1551 /// is something in the module with the specified name, return it potentially
1552 /// bitcasted to the right type.
1553 ///
1554 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1555 /// to set the attributes on the global when it is first created.
1556 llvm::Constant *
1557 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1558                                      llvm::PointerType *Ty,
1559                                      const VarDecl *D,
1560                                      bool UnnamedAddr) {
1561   // Lookup the entry, lazily creating it if necessary.
1562   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1563   if (Entry) {
1564     if (WeakRefReferences.erase(Entry)) {
1565       if (D && !D->hasAttr<WeakAttr>())
1566         Entry->setLinkage(llvm::Function::ExternalLinkage);
1567     }
1568 
1569     if (UnnamedAddr)
1570       Entry->setUnnamedAddr(true);
1571 
1572     if (Entry->getType() == Ty)
1573       return Entry;
1574 
1575     // Make sure the result is of the correct type.
1576     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1577       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1578 
1579     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1580   }
1581 
1582   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1583   llvm::GlobalVariable *GV =
1584     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1585                              llvm::GlobalValue::ExternalLinkage,
1586                              0, MangledName, 0,
1587                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1588 
1589   // This is the first use or definition of a mangled name.  If there is a
1590   // deferred decl with this name, remember that we need to emit it at the end
1591   // of the file.
1592   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1593   if (DDI != DeferredDecls.end()) {
1594     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1595     // list, and remove it from DeferredDecls (since we don't need it anymore).
1596     addDeferredDeclToEmit(GV, DDI->second);
1597     DeferredDecls.erase(DDI);
1598   }
1599 
1600   // Handle things which are present even on external declarations.
1601   if (D) {
1602     // FIXME: This code is overly simple and should be merged with other global
1603     // handling.
1604     GV->setConstant(isTypeConstant(D->getType(), false));
1605 
1606     // Set linkage and visibility in case we never see a definition.
1607     LinkageInfo LV = D->getLinkageAndVisibility();
1608     if (LV.getLinkage() != ExternalLinkage) {
1609       // Don't set internal linkage on declarations.
1610     } else {
1611       if (D->hasAttr<DLLImportAttr>())
1612         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1613       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1614         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1615 
1616       // Set visibility on a declaration only if it's explicit.
1617       if (LV.isVisibilityExplicit())
1618         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1619     }
1620 
1621     if (D->getTLSKind()) {
1622       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1623         CXXThreadLocals.push_back(std::make_pair(D, GV));
1624       setTLSMode(GV, *D);
1625     }
1626 
1627     // If required by the ABI, treat declarations of static data members with
1628     // inline initializers as definitions.
1629     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1630         D->isStaticDataMember() && D->hasInit() &&
1631         !D->isThisDeclarationADefinition())
1632       EmitGlobalVarDefinition(D);
1633   }
1634 
1635   if (AddrSpace != Ty->getAddressSpace())
1636     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1637 
1638   return GV;
1639 }
1640 
1641 
1642 llvm::GlobalVariable *
1643 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1644                                       llvm::Type *Ty,
1645                                       llvm::GlobalValue::LinkageTypes Linkage) {
1646   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1647   llvm::GlobalVariable *OldGV = 0;
1648 
1649 
1650   if (GV) {
1651     // Check if the variable has the right type.
1652     if (GV->getType()->getElementType() == Ty)
1653       return GV;
1654 
1655     // Because C++ name mangling, the only way we can end up with an already
1656     // existing global with the same name is if it has been declared extern "C".
1657     assert(GV->isDeclaration() && "Declaration has wrong type!");
1658     OldGV = GV;
1659   }
1660 
1661   // Create a new variable.
1662   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1663                                 Linkage, 0, Name);
1664 
1665   if (OldGV) {
1666     // Replace occurrences of the old variable if needed.
1667     GV->takeName(OldGV);
1668 
1669     if (!OldGV->use_empty()) {
1670       llvm::Constant *NewPtrForOldDecl =
1671       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1672       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1673     }
1674 
1675     OldGV->eraseFromParent();
1676   }
1677 
1678   return GV;
1679 }
1680 
1681 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1682 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1683 /// then it will be created with the specified type instead of whatever the
1684 /// normal requested type would be.
1685 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1686                                                   llvm::Type *Ty) {
1687   assert(D->hasGlobalStorage() && "Not a global variable");
1688   QualType ASTTy = D->getType();
1689   if (Ty == 0)
1690     Ty = getTypes().ConvertTypeForMem(ASTTy);
1691 
1692   llvm::PointerType *PTy =
1693     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1694 
1695   StringRef MangledName = getMangledName(D);
1696   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1697 }
1698 
1699 /// CreateRuntimeVariable - Create a new runtime global variable with the
1700 /// specified type and name.
1701 llvm::Constant *
1702 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1703                                      StringRef Name) {
1704   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1705                                true);
1706 }
1707 
1708 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1709   assert(!D->getInit() && "Cannot emit definite definitions here!");
1710 
1711   if (MayDeferGeneration(D)) {
1712     // If we have not seen a reference to this variable yet, place it
1713     // into the deferred declarations table to be emitted if needed
1714     // later.
1715     StringRef MangledName = getMangledName(D);
1716     if (!GetGlobalValue(MangledName)) {
1717       DeferredDecls[MangledName] = D;
1718       return;
1719     }
1720   }
1721 
1722   // The tentative definition is the only definition.
1723   EmitGlobalVarDefinition(D);
1724 }
1725 
1726 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1727     return Context.toCharUnitsFromBits(
1728       TheDataLayout.getTypeStoreSizeInBits(Ty));
1729 }
1730 
1731 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1732                                                  unsigned AddrSpace) {
1733   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1734     if (D->hasAttr<CUDAConstantAttr>())
1735       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1736     else if (D->hasAttr<CUDASharedAttr>())
1737       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1738     else
1739       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1740   }
1741 
1742   return AddrSpace;
1743 }
1744 
1745 template<typename SomeDecl>
1746 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1747                                                llvm::GlobalValue *GV) {
1748   if (!getLangOpts().CPlusPlus)
1749     return;
1750 
1751   // Must have 'used' attribute, or else inline assembly can't rely on
1752   // the name existing.
1753   if (!D->template hasAttr<UsedAttr>())
1754     return;
1755 
1756   // Must have internal linkage and an ordinary name.
1757   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1758     return;
1759 
1760   // Must be in an extern "C" context. Entities declared directly within
1761   // a record are not extern "C" even if the record is in such a context.
1762   const SomeDecl *First = D->getFirstDecl();
1763   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1764     return;
1765 
1766   // OK, this is an internal linkage entity inside an extern "C" linkage
1767   // specification. Make a note of that so we can give it the "expected"
1768   // mangled name if nothing else is using that name.
1769   std::pair<StaticExternCMap::iterator, bool> R =
1770       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1771 
1772   // If we have multiple internal linkage entities with the same name
1773   // in extern "C" regions, none of them gets that name.
1774   if (!R.second)
1775     R.first->second = 0;
1776 }
1777 
1778 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1779   llvm::Constant *Init = 0;
1780   QualType ASTTy = D->getType();
1781   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1782   bool NeedsGlobalCtor = false;
1783   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1784 
1785   const VarDecl *InitDecl;
1786   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1787 
1788   if (!InitExpr) {
1789     // This is a tentative definition; tentative definitions are
1790     // implicitly initialized with { 0 }.
1791     //
1792     // Note that tentative definitions are only emitted at the end of
1793     // a translation unit, so they should never have incomplete
1794     // type. In addition, EmitTentativeDefinition makes sure that we
1795     // never attempt to emit a tentative definition if a real one
1796     // exists. A use may still exists, however, so we still may need
1797     // to do a RAUW.
1798     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1799     Init = EmitNullConstant(D->getType());
1800   } else {
1801     initializedGlobalDecl = GlobalDecl(D);
1802     Init = EmitConstantInit(*InitDecl);
1803 
1804     if (!Init) {
1805       QualType T = InitExpr->getType();
1806       if (D->getType()->isReferenceType())
1807         T = D->getType();
1808 
1809       if (getLangOpts().CPlusPlus) {
1810         Init = EmitNullConstant(T);
1811         NeedsGlobalCtor = true;
1812       } else {
1813         ErrorUnsupported(D, "static initializer");
1814         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1815       }
1816     } else {
1817       // We don't need an initializer, so remove the entry for the delayed
1818       // initializer position (just in case this entry was delayed) if we
1819       // also don't need to register a destructor.
1820       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1821         DelayedCXXInitPosition.erase(D);
1822     }
1823   }
1824 
1825   llvm::Type* InitType = Init->getType();
1826   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1827 
1828   // Strip off a bitcast if we got one back.
1829   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1830     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1831            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1832            // All zero index gep.
1833            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1834     Entry = CE->getOperand(0);
1835   }
1836 
1837   // Entry is now either a Function or GlobalVariable.
1838   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1839 
1840   // We have a definition after a declaration with the wrong type.
1841   // We must make a new GlobalVariable* and update everything that used OldGV
1842   // (a declaration or tentative definition) with the new GlobalVariable*
1843   // (which will be a definition).
1844   //
1845   // This happens if there is a prototype for a global (e.g.
1846   // "extern int x[];") and then a definition of a different type (e.g.
1847   // "int x[10];"). This also happens when an initializer has a different type
1848   // from the type of the global (this happens with unions).
1849   if (GV == 0 ||
1850       GV->getType()->getElementType() != InitType ||
1851       GV->getType()->getAddressSpace() !=
1852        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1853 
1854     // Move the old entry aside so that we'll create a new one.
1855     Entry->setName(StringRef());
1856 
1857     // Make a new global with the correct type, this is now guaranteed to work.
1858     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1859 
1860     // Replace all uses of the old global with the new global
1861     llvm::Constant *NewPtrForOldDecl =
1862         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1863     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1864 
1865     // Erase the old global, since it is no longer used.
1866     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1867   }
1868 
1869   MaybeHandleStaticInExternC(D, GV);
1870 
1871   if (D->hasAttr<AnnotateAttr>())
1872     AddGlobalAnnotations(D, GV);
1873 
1874   GV->setInitializer(Init);
1875 
1876   // If it is safe to mark the global 'constant', do so now.
1877   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1878                   isTypeConstant(D->getType(), true));
1879 
1880   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1881 
1882   // Set the llvm linkage type as appropriate.
1883   llvm::GlobalValue::LinkageTypes Linkage =
1884     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1885   GV->setLinkage(Linkage);
1886 
1887   // If required by the ABI, give definitions of static data members with inline
1888   // initializers linkonce_odr linkage.
1889   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1890       D->isStaticDataMember() && InitExpr &&
1891       !InitDecl->isThisDeclarationADefinition())
1892     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1893 
1894   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1895     // common vars aren't constant even if declared const.
1896     GV->setConstant(false);
1897 
1898   SetCommonAttributes(D, GV);
1899 
1900   // Emit the initializer function if necessary.
1901   if (NeedsGlobalCtor || NeedsGlobalDtor)
1902     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1903 
1904   // If we are compiling with ASan, add metadata indicating dynamically
1905   // initialized globals.
1906   if (SanOpts.Address && NeedsGlobalCtor) {
1907     llvm::Module &M = getModule();
1908 
1909     llvm::NamedMDNode *DynamicInitializers =
1910         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1911     llvm::Value *GlobalToAdd[] = { GV };
1912     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1913     DynamicInitializers->addOperand(ThisGlobal);
1914   }
1915 
1916   // Emit global variable debug information.
1917   if (CGDebugInfo *DI = getModuleDebugInfo())
1918     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1919       DI->EmitGlobalVariable(GV, D);
1920 }
1921 
1922 llvm::GlobalValue::LinkageTypes
1923 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1924   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1925   if (Linkage == GVA_Internal)
1926     return llvm::Function::InternalLinkage;
1927   else if (D->hasAttr<DLLImportAttr>())
1928     return llvm::Function::DLLImportLinkage;
1929   else if (D->hasAttr<DLLExportAttr>())
1930     return llvm::Function::DLLExportLinkage;
1931   else if (D->hasAttr<SelectAnyAttr>()) {
1932     // selectany symbols are externally visible, so use weak instead of
1933     // linkonce.  MSVC optimizes away references to const selectany globals, so
1934     // all definitions should be the same and ODR linkage should be used.
1935     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1936     return llvm::GlobalVariable::WeakODRLinkage;
1937   } else if (D->hasAttr<WeakAttr>()) {
1938     if (isConstant)
1939       return llvm::GlobalVariable::WeakODRLinkage;
1940     else
1941       return llvm::GlobalVariable::WeakAnyLinkage;
1942   } else if (Linkage == GVA_TemplateInstantiation ||
1943              Linkage == GVA_ExplicitTemplateInstantiation)
1944     return llvm::GlobalVariable::WeakODRLinkage;
1945   else if (!getLangOpts().CPlusPlus &&
1946            ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) ||
1947              D->hasAttr<CommonAttr>()) &&
1948            !D->hasExternalStorage() && !D->getInit() &&
1949            !D->hasAttr<SectionAttr>() && !D->getTLSKind() &&
1950            !D->hasAttr<WeakImportAttr>()) {
1951     // Thread local vars aren't considered common linkage.
1952     return llvm::GlobalVariable::CommonLinkage;
1953   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1954              getTarget().getTriple().isMacOSX())
1955     // On Darwin, the backing variable for a C++11 thread_local variable always
1956     // has internal linkage; all accesses should just be calls to the
1957     // Itanium-specified entry point, which has the normal linkage of the
1958     // variable.
1959     return llvm::GlobalValue::InternalLinkage;
1960   return llvm::GlobalVariable::ExternalLinkage;
1961 }
1962 
1963 /// Replace the uses of a function that was declared with a non-proto type.
1964 /// We want to silently drop extra arguments from call sites
1965 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1966                                           llvm::Function *newFn) {
1967   // Fast path.
1968   if (old->use_empty()) return;
1969 
1970   llvm::Type *newRetTy = newFn->getReturnType();
1971   SmallVector<llvm::Value*, 4> newArgs;
1972 
1973   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1974          ui != ue; ) {
1975     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1976     llvm::User *user = *use;
1977 
1978     // Recognize and replace uses of bitcasts.  Most calls to
1979     // unprototyped functions will use bitcasts.
1980     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1981       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1982         replaceUsesOfNonProtoConstant(bitcast, newFn);
1983       continue;
1984     }
1985 
1986     // Recognize calls to the function.
1987     llvm::CallSite callSite(user);
1988     if (!callSite) continue;
1989     if (!callSite.isCallee(use)) continue;
1990 
1991     // If the return types don't match exactly, then we can't
1992     // transform this call unless it's dead.
1993     if (callSite->getType() != newRetTy && !callSite->use_empty())
1994       continue;
1995 
1996     // Get the call site's attribute list.
1997     SmallVector<llvm::AttributeSet, 8> newAttrs;
1998     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1999 
2000     // Collect any return attributes from the call.
2001     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2002       newAttrs.push_back(
2003         llvm::AttributeSet::get(newFn->getContext(),
2004                                 oldAttrs.getRetAttributes()));
2005 
2006     // If the function was passed too few arguments, don't transform.
2007     unsigned newNumArgs = newFn->arg_size();
2008     if (callSite.arg_size() < newNumArgs) continue;
2009 
2010     // If extra arguments were passed, we silently drop them.
2011     // If any of the types mismatch, we don't transform.
2012     unsigned argNo = 0;
2013     bool dontTransform = false;
2014     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2015            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2016       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2017         dontTransform = true;
2018         break;
2019       }
2020 
2021       // Add any parameter attributes.
2022       if (oldAttrs.hasAttributes(argNo + 1))
2023         newAttrs.
2024           push_back(llvm::
2025                     AttributeSet::get(newFn->getContext(),
2026                                       oldAttrs.getParamAttributes(argNo + 1)));
2027     }
2028     if (dontTransform)
2029       continue;
2030 
2031     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2032       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2033                                                  oldAttrs.getFnAttributes()));
2034 
2035     // Okay, we can transform this.  Create the new call instruction and copy
2036     // over the required information.
2037     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2038 
2039     llvm::CallSite newCall;
2040     if (callSite.isCall()) {
2041       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2042                                        callSite.getInstruction());
2043     } else {
2044       llvm::InvokeInst *oldInvoke =
2045         cast<llvm::InvokeInst>(callSite.getInstruction());
2046       newCall = llvm::InvokeInst::Create(newFn,
2047                                          oldInvoke->getNormalDest(),
2048                                          oldInvoke->getUnwindDest(),
2049                                          newArgs, "",
2050                                          callSite.getInstruction());
2051     }
2052     newArgs.clear(); // for the next iteration
2053 
2054     if (!newCall->getType()->isVoidTy())
2055       newCall->takeName(callSite.getInstruction());
2056     newCall.setAttributes(
2057                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2058     newCall.setCallingConv(callSite.getCallingConv());
2059 
2060     // Finally, remove the old call, replacing any uses with the new one.
2061     if (!callSite->use_empty())
2062       callSite->replaceAllUsesWith(newCall.getInstruction());
2063 
2064     // Copy debug location attached to CI.
2065     if (!callSite->getDebugLoc().isUnknown())
2066       newCall->setDebugLoc(callSite->getDebugLoc());
2067     callSite->eraseFromParent();
2068   }
2069 }
2070 
2071 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2072 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2073 /// existing call uses of the old function in the module, this adjusts them to
2074 /// call the new function directly.
2075 ///
2076 /// This is not just a cleanup: the always_inline pass requires direct calls to
2077 /// functions to be able to inline them.  If there is a bitcast in the way, it
2078 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2079 /// run at -O0.
2080 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2081                                                       llvm::Function *NewFn) {
2082   // If we're redefining a global as a function, don't transform it.
2083   if (!isa<llvm::Function>(Old)) return;
2084 
2085   replaceUsesOfNonProtoConstant(Old, NewFn);
2086 }
2087 
2088 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2089   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2090   // If we have a definition, this might be a deferred decl. If the
2091   // instantiation is explicit, make sure we emit it at the end.
2092   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2093     GetAddrOfGlobalVar(VD);
2094 
2095   EmitTopLevelDecl(VD);
2096 }
2097 
2098 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2099                                                  llvm::GlobalValue *GV) {
2100   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2101 
2102   // Compute the function info and LLVM type.
2103   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2104   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2105 
2106   // Get or create the prototype for the function.
2107   llvm::Constant *Entry =
2108       GV ? GV
2109          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2110 
2111   // Strip off a bitcast if we got one back.
2112   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2113     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2114     Entry = CE->getOperand(0);
2115   }
2116 
2117   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2118     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2119     return;
2120   }
2121 
2122   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2123     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2124 
2125     // If the types mismatch then we have to rewrite the definition.
2126     assert(OldFn->isDeclaration() &&
2127            "Shouldn't replace non-declaration");
2128 
2129     // F is the Function* for the one with the wrong type, we must make a new
2130     // Function* and update everything that used F (a declaration) with the new
2131     // Function* (which will be a definition).
2132     //
2133     // This happens if there is a prototype for a function
2134     // (e.g. "int f()") and then a definition of a different type
2135     // (e.g. "int f(int x)").  Move the old function aside so that it
2136     // doesn't interfere with GetAddrOfFunction.
2137     OldFn->setName(StringRef());
2138     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2139 
2140     // This might be an implementation of a function without a
2141     // prototype, in which case, try to do special replacement of
2142     // calls which match the new prototype.  The really key thing here
2143     // is that we also potentially drop arguments from the call site
2144     // so as to make a direct call, which makes the inliner happier
2145     // and suppresses a number of optimizer warnings (!) about
2146     // dropping arguments.
2147     if (!OldFn->use_empty()) {
2148       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2149       OldFn->removeDeadConstantUsers();
2150     }
2151 
2152     // Replace uses of F with the Function we will endow with a body.
2153     if (!Entry->use_empty()) {
2154       llvm::Constant *NewPtrForOldDecl =
2155         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2156       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2157     }
2158 
2159     // Ok, delete the old function now, which is dead.
2160     OldFn->eraseFromParent();
2161 
2162     Entry = NewFn;
2163   }
2164 
2165   // We need to set linkage and visibility on the function before
2166   // generating code for it because various parts of IR generation
2167   // want to propagate this information down (e.g. to local static
2168   // declarations).
2169   llvm::Function *Fn = cast<llvm::Function>(Entry);
2170   setFunctionLinkage(GD, Fn);
2171 
2172   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2173   setGlobalVisibility(Fn, D);
2174 
2175   MaybeHandleStaticInExternC(D, Fn);
2176 
2177   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2178 
2179   SetFunctionDefinitionAttributes(D, Fn);
2180   SetLLVMFunctionAttributesForDefinition(D, Fn);
2181 
2182   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2183     AddGlobalCtor(Fn, CA->getPriority());
2184   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2185     AddGlobalDtor(Fn, DA->getPriority());
2186   if (D->hasAttr<AnnotateAttr>())
2187     AddGlobalAnnotations(D, Fn);
2188 
2189   llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this);
2190   if (PGOInit)
2191     AddGlobalCtor(PGOInit, 0);
2192 }
2193 
2194 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2195   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2196   const AliasAttr *AA = D->getAttr<AliasAttr>();
2197   assert(AA && "Not an alias?");
2198 
2199   StringRef MangledName = getMangledName(GD);
2200 
2201   // If there is a definition in the module, then it wins over the alias.
2202   // This is dubious, but allow it to be safe.  Just ignore the alias.
2203   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2204   if (Entry && !Entry->isDeclaration())
2205     return;
2206 
2207   Aliases.push_back(GD);
2208 
2209   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2210 
2211   // Create a reference to the named value.  This ensures that it is emitted
2212   // if a deferred decl.
2213   llvm::Constant *Aliasee;
2214   if (isa<llvm::FunctionType>(DeclTy))
2215     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2216                                       /*ForVTable=*/false);
2217   else
2218     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2219                                     llvm::PointerType::getUnqual(DeclTy), 0);
2220 
2221   // Create the new alias itself, but don't set a name yet.
2222   llvm::GlobalValue *GA =
2223     new llvm::GlobalAlias(Aliasee->getType(),
2224                           llvm::Function::ExternalLinkage,
2225                           "", Aliasee, &getModule());
2226 
2227   if (Entry) {
2228     assert(Entry->isDeclaration());
2229 
2230     // If there is a declaration in the module, then we had an extern followed
2231     // by the alias, as in:
2232     //   extern int test6();
2233     //   ...
2234     //   int test6() __attribute__((alias("test7")));
2235     //
2236     // Remove it and replace uses of it with the alias.
2237     GA->takeName(Entry);
2238 
2239     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2240                                                           Entry->getType()));
2241     Entry->eraseFromParent();
2242   } else {
2243     GA->setName(MangledName);
2244   }
2245 
2246   // Set attributes which are particular to an alias; this is a
2247   // specialization of the attributes which may be set on a global
2248   // variable/function.
2249   if (D->hasAttr<DLLExportAttr>()) {
2250     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2251       // The dllexport attribute is ignored for undefined symbols.
2252       if (FD->hasBody())
2253         GA->setLinkage(llvm::Function::DLLExportLinkage);
2254     } else {
2255       GA->setLinkage(llvm::Function::DLLExportLinkage);
2256     }
2257   } else if (D->hasAttr<WeakAttr>() ||
2258              D->hasAttr<WeakRefAttr>() ||
2259              D->isWeakImported()) {
2260     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2261   }
2262 
2263   SetCommonAttributes(D, GA);
2264 }
2265 
2266 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2267                                             ArrayRef<llvm::Type*> Tys) {
2268   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2269                                          Tys);
2270 }
2271 
2272 static llvm::StringMapEntry<llvm::Constant*> &
2273 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2274                          const StringLiteral *Literal,
2275                          bool TargetIsLSB,
2276                          bool &IsUTF16,
2277                          unsigned &StringLength) {
2278   StringRef String = Literal->getString();
2279   unsigned NumBytes = String.size();
2280 
2281   // Check for simple case.
2282   if (!Literal->containsNonAsciiOrNull()) {
2283     StringLength = NumBytes;
2284     return Map.GetOrCreateValue(String);
2285   }
2286 
2287   // Otherwise, convert the UTF8 literals into a string of shorts.
2288   IsUTF16 = true;
2289 
2290   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2291   const UTF8 *FromPtr = (const UTF8 *)String.data();
2292   UTF16 *ToPtr = &ToBuf[0];
2293 
2294   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2295                            &ToPtr, ToPtr + NumBytes,
2296                            strictConversion);
2297 
2298   // ConvertUTF8toUTF16 returns the length in ToPtr.
2299   StringLength = ToPtr - &ToBuf[0];
2300 
2301   // Add an explicit null.
2302   *ToPtr = 0;
2303   return Map.
2304     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2305                                (StringLength + 1) * 2));
2306 }
2307 
2308 static llvm::StringMapEntry<llvm::Constant*> &
2309 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2310                        const StringLiteral *Literal,
2311                        unsigned &StringLength) {
2312   StringRef String = Literal->getString();
2313   StringLength = String.size();
2314   return Map.GetOrCreateValue(String);
2315 }
2316 
2317 llvm::Constant *
2318 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2319   unsigned StringLength = 0;
2320   bool isUTF16 = false;
2321   llvm::StringMapEntry<llvm::Constant*> &Entry =
2322     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2323                              getDataLayout().isLittleEndian(),
2324                              isUTF16, StringLength);
2325 
2326   if (llvm::Constant *C = Entry.getValue())
2327     return C;
2328 
2329   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2330   llvm::Constant *Zeros[] = { Zero, Zero };
2331   llvm::Value *V;
2332 
2333   // If we don't already have it, get __CFConstantStringClassReference.
2334   if (!CFConstantStringClassRef) {
2335     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2336     Ty = llvm::ArrayType::get(Ty, 0);
2337     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2338                                            "__CFConstantStringClassReference");
2339     // Decay array -> ptr
2340     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2341     CFConstantStringClassRef = V;
2342   }
2343   else
2344     V = CFConstantStringClassRef;
2345 
2346   QualType CFTy = getContext().getCFConstantStringType();
2347 
2348   llvm::StructType *STy =
2349     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2350 
2351   llvm::Constant *Fields[4];
2352 
2353   // Class pointer.
2354   Fields[0] = cast<llvm::ConstantExpr>(V);
2355 
2356   // Flags.
2357   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2358   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2359     llvm::ConstantInt::get(Ty, 0x07C8);
2360 
2361   // String pointer.
2362   llvm::Constant *C = 0;
2363   if (isUTF16) {
2364     ArrayRef<uint16_t> Arr =
2365       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2366                                      const_cast<char *>(Entry.getKey().data())),
2367                                    Entry.getKey().size() / 2);
2368     C = llvm::ConstantDataArray::get(VMContext, Arr);
2369   } else {
2370     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2371   }
2372 
2373   llvm::GlobalValue::LinkageTypes Linkage;
2374   if (isUTF16)
2375     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2376     Linkage = llvm::GlobalValue::InternalLinkage;
2377   else
2378     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2379     // when using private linkage. It is not clear if this is a bug in ld
2380     // or a reasonable new restriction.
2381     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2382 
2383   // Note: -fwritable-strings doesn't make the backing store strings of
2384   // CFStrings writable. (See <rdar://problem/10657500>)
2385   llvm::GlobalVariable *GV =
2386     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2387                              Linkage, C, ".str");
2388   GV->setUnnamedAddr(true);
2389   // Don't enforce the target's minimum global alignment, since the only use
2390   // of the string is via this class initializer.
2391   if (isUTF16) {
2392     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2393     GV->setAlignment(Align.getQuantity());
2394   } else {
2395     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2396     GV->setAlignment(Align.getQuantity());
2397   }
2398 
2399   // String.
2400   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2401 
2402   if (isUTF16)
2403     // Cast the UTF16 string to the correct type.
2404     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2405 
2406   // String length.
2407   Ty = getTypes().ConvertType(getContext().LongTy);
2408   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2409 
2410   // The struct.
2411   C = llvm::ConstantStruct::get(STy, Fields);
2412   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2413                                 llvm::GlobalVariable::PrivateLinkage, C,
2414                                 "_unnamed_cfstring_");
2415   if (const char *Sect = getTarget().getCFStringSection())
2416     GV->setSection(Sect);
2417   Entry.setValue(GV);
2418 
2419   return GV;
2420 }
2421 
2422 llvm::Constant *
2423 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2424   unsigned StringLength = 0;
2425   llvm::StringMapEntry<llvm::Constant*> &Entry =
2426     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2427 
2428   if (llvm::Constant *C = Entry.getValue())
2429     return C;
2430 
2431   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2432   llvm::Constant *Zeros[] = { Zero, Zero };
2433   llvm::Value *V;
2434   // If we don't already have it, get _NSConstantStringClassReference.
2435   if (!ConstantStringClassRef) {
2436     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2437     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2438     llvm::Constant *GV;
2439     if (LangOpts.ObjCRuntime.isNonFragile()) {
2440       std::string str =
2441         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2442                             : "OBJC_CLASS_$_" + StringClass;
2443       GV = getObjCRuntime().GetClassGlobal(str);
2444       // Make sure the result is of the correct type.
2445       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2446       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2447       ConstantStringClassRef = V;
2448     } else {
2449       std::string str =
2450         StringClass.empty() ? "_NSConstantStringClassReference"
2451                             : "_" + StringClass + "ClassReference";
2452       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2453       GV = CreateRuntimeVariable(PTy, str);
2454       // Decay array -> ptr
2455       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2456       ConstantStringClassRef = V;
2457     }
2458   }
2459   else
2460     V = ConstantStringClassRef;
2461 
2462   if (!NSConstantStringType) {
2463     // Construct the type for a constant NSString.
2464     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2465     D->startDefinition();
2466 
2467     QualType FieldTypes[3];
2468 
2469     // const int *isa;
2470     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2471     // const char *str;
2472     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2473     // unsigned int length;
2474     FieldTypes[2] = Context.UnsignedIntTy;
2475 
2476     // Create fields
2477     for (unsigned i = 0; i < 3; ++i) {
2478       FieldDecl *Field = FieldDecl::Create(Context, D,
2479                                            SourceLocation(),
2480                                            SourceLocation(), 0,
2481                                            FieldTypes[i], /*TInfo=*/0,
2482                                            /*BitWidth=*/0,
2483                                            /*Mutable=*/false,
2484                                            ICIS_NoInit);
2485       Field->setAccess(AS_public);
2486       D->addDecl(Field);
2487     }
2488 
2489     D->completeDefinition();
2490     QualType NSTy = Context.getTagDeclType(D);
2491     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2492   }
2493 
2494   llvm::Constant *Fields[3];
2495 
2496   // Class pointer.
2497   Fields[0] = cast<llvm::ConstantExpr>(V);
2498 
2499   // String pointer.
2500   llvm::Constant *C =
2501     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2502 
2503   llvm::GlobalValue::LinkageTypes Linkage;
2504   bool isConstant;
2505   Linkage = llvm::GlobalValue::PrivateLinkage;
2506   isConstant = !LangOpts.WritableStrings;
2507 
2508   llvm::GlobalVariable *GV =
2509   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2510                            ".str");
2511   GV->setUnnamedAddr(true);
2512   // Don't enforce the target's minimum global alignment, since the only use
2513   // of the string is via this class initializer.
2514   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2515   GV->setAlignment(Align.getQuantity());
2516   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2517 
2518   // String length.
2519   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2520   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2521 
2522   // The struct.
2523   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2524   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2525                                 llvm::GlobalVariable::PrivateLinkage, C,
2526                                 "_unnamed_nsstring_");
2527   // FIXME. Fix section.
2528   if (const char *Sect =
2529         LangOpts.ObjCRuntime.isNonFragile()
2530           ? getTarget().getNSStringNonFragileABISection()
2531           : getTarget().getNSStringSection())
2532     GV->setSection(Sect);
2533   Entry.setValue(GV);
2534 
2535   return GV;
2536 }
2537 
2538 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2539   if (ObjCFastEnumerationStateType.isNull()) {
2540     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2541     D->startDefinition();
2542 
2543     QualType FieldTypes[] = {
2544       Context.UnsignedLongTy,
2545       Context.getPointerType(Context.getObjCIdType()),
2546       Context.getPointerType(Context.UnsignedLongTy),
2547       Context.getConstantArrayType(Context.UnsignedLongTy,
2548                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2549     };
2550 
2551     for (size_t i = 0; i < 4; ++i) {
2552       FieldDecl *Field = FieldDecl::Create(Context,
2553                                            D,
2554                                            SourceLocation(),
2555                                            SourceLocation(), 0,
2556                                            FieldTypes[i], /*TInfo=*/0,
2557                                            /*BitWidth=*/0,
2558                                            /*Mutable=*/false,
2559                                            ICIS_NoInit);
2560       Field->setAccess(AS_public);
2561       D->addDecl(Field);
2562     }
2563 
2564     D->completeDefinition();
2565     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2566   }
2567 
2568   return ObjCFastEnumerationStateType;
2569 }
2570 
2571 llvm::Constant *
2572 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2573   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2574 
2575   // Don't emit it as the address of the string, emit the string data itself
2576   // as an inline array.
2577   if (E->getCharByteWidth() == 1) {
2578     SmallString<64> Str(E->getString());
2579 
2580     // Resize the string to the right size, which is indicated by its type.
2581     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2582     Str.resize(CAT->getSize().getZExtValue());
2583     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2584   }
2585 
2586   llvm::ArrayType *AType =
2587     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2588   llvm::Type *ElemTy = AType->getElementType();
2589   unsigned NumElements = AType->getNumElements();
2590 
2591   // Wide strings have either 2-byte or 4-byte elements.
2592   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2593     SmallVector<uint16_t, 32> Elements;
2594     Elements.reserve(NumElements);
2595 
2596     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2597       Elements.push_back(E->getCodeUnit(i));
2598     Elements.resize(NumElements);
2599     return llvm::ConstantDataArray::get(VMContext, Elements);
2600   }
2601 
2602   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2603   SmallVector<uint32_t, 32> Elements;
2604   Elements.reserve(NumElements);
2605 
2606   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2607     Elements.push_back(E->getCodeUnit(i));
2608   Elements.resize(NumElements);
2609   return llvm::ConstantDataArray::get(VMContext, Elements);
2610 }
2611 
2612 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2613 /// constant array for the given string literal.
2614 llvm::Constant *
2615 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2616   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2617   if (S->isAscii() || S->isUTF8()) {
2618     SmallString<64> Str(S->getString());
2619 
2620     // Resize the string to the right size, which is indicated by its type.
2621     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2622     Str.resize(CAT->getSize().getZExtValue());
2623     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2624   }
2625 
2626   // FIXME: the following does not memoize wide strings.
2627   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2628   llvm::GlobalVariable *GV =
2629     new llvm::GlobalVariable(getModule(),C->getType(),
2630                              !LangOpts.WritableStrings,
2631                              llvm::GlobalValue::PrivateLinkage,
2632                              C,".str");
2633 
2634   GV->setAlignment(Align.getQuantity());
2635   GV->setUnnamedAddr(true);
2636   return GV;
2637 }
2638 
2639 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2640 /// array for the given ObjCEncodeExpr node.
2641 llvm::Constant *
2642 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2643   std::string Str;
2644   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2645 
2646   return GetAddrOfConstantCString(Str);
2647 }
2648 
2649 
2650 /// GenerateWritableString -- Creates storage for a string literal.
2651 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2652                                              bool constant,
2653                                              CodeGenModule &CGM,
2654                                              const char *GlobalName,
2655                                              unsigned Alignment) {
2656   // Create Constant for this string literal. Don't add a '\0'.
2657   llvm::Constant *C =
2658       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2659 
2660   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
2661   unsigned AddrSpace = 0;
2662   if (CGM.getLangOpts().OpenCL)
2663     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2664 
2665   // Create a global variable for this string
2666   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2667       CGM.getModule(), C->getType(), constant,
2668       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2669       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2670   GV->setAlignment(Alignment);
2671   GV->setUnnamedAddr(true);
2672   return GV;
2673 }
2674 
2675 /// GetAddrOfConstantString - Returns a pointer to a character array
2676 /// containing the literal. This contents are exactly that of the
2677 /// given string, i.e. it will not be null terminated automatically;
2678 /// see GetAddrOfConstantCString. Note that whether the result is
2679 /// actually a pointer to an LLVM constant depends on
2680 /// Feature.WriteableStrings.
2681 ///
2682 /// The result has pointer to array type.
2683 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2684                                                        const char *GlobalName,
2685                                                        unsigned Alignment) {
2686   // Get the default prefix if a name wasn't specified.
2687   if (!GlobalName)
2688     GlobalName = ".str";
2689 
2690   if (Alignment == 0)
2691     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2692       .getQuantity();
2693 
2694   // Don't share any string literals if strings aren't constant.
2695   if (LangOpts.WritableStrings)
2696     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2697 
2698   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2699     ConstantStringMap.GetOrCreateValue(Str);
2700 
2701   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2702     if (Alignment > GV->getAlignment()) {
2703       GV->setAlignment(Alignment);
2704     }
2705     return GV;
2706   }
2707 
2708   // Create a global variable for this.
2709   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2710                                                    Alignment);
2711   Entry.setValue(GV);
2712   return GV;
2713 }
2714 
2715 /// GetAddrOfConstantCString - Returns a pointer to a character
2716 /// array containing the literal and a terminating '\0'
2717 /// character. The result has pointer to array type.
2718 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2719                                                         const char *GlobalName,
2720                                                         unsigned Alignment) {
2721   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2722   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2723 }
2724 
2725 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2726     const MaterializeTemporaryExpr *E, const Expr *Init) {
2727   assert((E->getStorageDuration() == SD_Static ||
2728           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2729   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2730 
2731   // If we're not materializing a subobject of the temporary, keep the
2732   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2733   QualType MaterializedType = Init->getType();
2734   if (Init == E->GetTemporaryExpr())
2735     MaterializedType = E->getType();
2736 
2737   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2738   if (Slot)
2739     return Slot;
2740 
2741   // FIXME: If an externally-visible declaration extends multiple temporaries,
2742   // we need to give each temporary the same name in every translation unit (and
2743   // we also need to make the temporaries externally-visible).
2744   SmallString<256> Name;
2745   llvm::raw_svector_ostream Out(Name);
2746   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2747   Out.flush();
2748 
2749   APValue *Value = 0;
2750   if (E->getStorageDuration() == SD_Static) {
2751     // We might have a cached constant initializer for this temporary. Note
2752     // that this might have a different value from the value computed by
2753     // evaluating the initializer if the surrounding constant expression
2754     // modifies the temporary.
2755     Value = getContext().getMaterializedTemporaryValue(E, false);
2756     if (Value && Value->isUninit())
2757       Value = 0;
2758   }
2759 
2760   // Try evaluating it now, it might have a constant initializer.
2761   Expr::EvalResult EvalResult;
2762   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2763       !EvalResult.hasSideEffects())
2764     Value = &EvalResult.Val;
2765 
2766   llvm::Constant *InitialValue = 0;
2767   bool Constant = false;
2768   llvm::Type *Type;
2769   if (Value) {
2770     // The temporary has a constant initializer, use it.
2771     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2772     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2773     Type = InitialValue->getType();
2774   } else {
2775     // No initializer, the initialization will be provided when we
2776     // initialize the declaration which performed lifetime extension.
2777     Type = getTypes().ConvertTypeForMem(MaterializedType);
2778   }
2779 
2780   // Create a global variable for this lifetime-extended temporary.
2781   llvm::GlobalVariable *GV =
2782     new llvm::GlobalVariable(getModule(), Type, Constant,
2783                              llvm::GlobalValue::PrivateLinkage,
2784                              InitialValue, Name.c_str());
2785   GV->setAlignment(
2786       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2787   if (VD->getTLSKind())
2788     setTLSMode(GV, *VD);
2789   Slot = GV;
2790   return GV;
2791 }
2792 
2793 /// EmitObjCPropertyImplementations - Emit information for synthesized
2794 /// properties for an implementation.
2795 void CodeGenModule::EmitObjCPropertyImplementations(const
2796                                                     ObjCImplementationDecl *D) {
2797   for (ObjCImplementationDecl::propimpl_iterator
2798          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2799     ObjCPropertyImplDecl *PID = *i;
2800 
2801     // Dynamic is just for type-checking.
2802     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2803       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2804 
2805       // Determine which methods need to be implemented, some may have
2806       // been overridden. Note that ::isPropertyAccessor is not the method
2807       // we want, that just indicates if the decl came from a
2808       // property. What we want to know is if the method is defined in
2809       // this implementation.
2810       if (!D->getInstanceMethod(PD->getGetterName()))
2811         CodeGenFunction(*this).GenerateObjCGetter(
2812                                  const_cast<ObjCImplementationDecl *>(D), PID);
2813       if (!PD->isReadOnly() &&
2814           !D->getInstanceMethod(PD->getSetterName()))
2815         CodeGenFunction(*this).GenerateObjCSetter(
2816                                  const_cast<ObjCImplementationDecl *>(D), PID);
2817     }
2818   }
2819 }
2820 
2821 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2822   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2823   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2824        ivar; ivar = ivar->getNextIvar())
2825     if (ivar->getType().isDestructedType())
2826       return true;
2827 
2828   return false;
2829 }
2830 
2831 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2832 /// for an implementation.
2833 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2834   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2835   if (needsDestructMethod(D)) {
2836     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2837     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2838     ObjCMethodDecl *DTORMethod =
2839       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2840                              cxxSelector, getContext().VoidTy, 0, D,
2841                              /*isInstance=*/true, /*isVariadic=*/false,
2842                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2843                              /*isDefined=*/false, ObjCMethodDecl::Required);
2844     D->addInstanceMethod(DTORMethod);
2845     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2846     D->setHasDestructors(true);
2847   }
2848 
2849   // If the implementation doesn't have any ivar initializers, we don't need
2850   // a .cxx_construct.
2851   if (D->getNumIvarInitializers() == 0)
2852     return;
2853 
2854   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2855   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2856   // The constructor returns 'self'.
2857   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2858                                                 D->getLocation(),
2859                                                 D->getLocation(),
2860                                                 cxxSelector,
2861                                                 getContext().getObjCIdType(), 0,
2862                                                 D, /*isInstance=*/true,
2863                                                 /*isVariadic=*/false,
2864                                                 /*isPropertyAccessor=*/true,
2865                                                 /*isImplicitlyDeclared=*/true,
2866                                                 /*isDefined=*/false,
2867                                                 ObjCMethodDecl::Required);
2868   D->addInstanceMethod(CTORMethod);
2869   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2870   D->setHasNonZeroConstructors(true);
2871 }
2872 
2873 /// EmitNamespace - Emit all declarations in a namespace.
2874 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2875   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2876        I != E; ++I) {
2877     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2878       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2879           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2880         continue;
2881     EmitTopLevelDecl(*I);
2882   }
2883 }
2884 
2885 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2886 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2887   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2888       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2889     ErrorUnsupported(LSD, "linkage spec");
2890     return;
2891   }
2892 
2893   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2894        I != E; ++I) {
2895     // Meta-data for ObjC class includes references to implemented methods.
2896     // Generate class's method definitions first.
2897     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2898       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2899            MEnd = OID->meth_end();
2900            M != MEnd; ++M)
2901         EmitTopLevelDecl(*M);
2902     }
2903     EmitTopLevelDecl(*I);
2904   }
2905 }
2906 
2907 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2908 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2909   // Ignore dependent declarations.
2910   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2911     return;
2912 
2913   switch (D->getKind()) {
2914   case Decl::CXXConversion:
2915   case Decl::CXXMethod:
2916   case Decl::Function:
2917     // Skip function templates
2918     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2919         cast<FunctionDecl>(D)->isLateTemplateParsed())
2920       return;
2921 
2922     EmitGlobal(cast<FunctionDecl>(D));
2923     break;
2924 
2925   case Decl::Var:
2926     // Skip variable templates
2927     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2928       return;
2929   case Decl::VarTemplateSpecialization:
2930     EmitGlobal(cast<VarDecl>(D));
2931     break;
2932 
2933   // Indirect fields from global anonymous structs and unions can be
2934   // ignored; only the actual variable requires IR gen support.
2935   case Decl::IndirectField:
2936     break;
2937 
2938   // C++ Decls
2939   case Decl::Namespace:
2940     EmitNamespace(cast<NamespaceDecl>(D));
2941     break;
2942     // No code generation needed.
2943   case Decl::UsingShadow:
2944   case Decl::Using:
2945   case Decl::ClassTemplate:
2946   case Decl::VarTemplate:
2947   case Decl::VarTemplatePartialSpecialization:
2948   case Decl::FunctionTemplate:
2949   case Decl::TypeAliasTemplate:
2950   case Decl::Block:
2951   case Decl::Empty:
2952     break;
2953   case Decl::NamespaceAlias:
2954     if (CGDebugInfo *DI = getModuleDebugInfo())
2955         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2956     return;
2957   case Decl::UsingDirective: // using namespace X; [C++]
2958     if (CGDebugInfo *DI = getModuleDebugInfo())
2959       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2960     return;
2961   case Decl::CXXConstructor:
2962     // Skip function templates
2963     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2964         cast<FunctionDecl>(D)->isLateTemplateParsed())
2965       return;
2966 
2967     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2968     break;
2969   case Decl::CXXDestructor:
2970     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2971       return;
2972     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2973     break;
2974 
2975   case Decl::StaticAssert:
2976     // Nothing to do.
2977     break;
2978 
2979   // Objective-C Decls
2980 
2981   // Forward declarations, no (immediate) code generation.
2982   case Decl::ObjCInterface:
2983   case Decl::ObjCCategory:
2984     break;
2985 
2986   case Decl::ObjCProtocol: {
2987     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2988     if (Proto->isThisDeclarationADefinition())
2989       ObjCRuntime->GenerateProtocol(Proto);
2990     break;
2991   }
2992 
2993   case Decl::ObjCCategoryImpl:
2994     // Categories have properties but don't support synthesize so we
2995     // can ignore them here.
2996     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2997     break;
2998 
2999   case Decl::ObjCImplementation: {
3000     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
3001     EmitObjCPropertyImplementations(OMD);
3002     EmitObjCIvarInitializations(OMD);
3003     ObjCRuntime->GenerateClass(OMD);
3004     // Emit global variable debug information.
3005     if (CGDebugInfo *DI = getModuleDebugInfo())
3006       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3007         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3008             OMD->getClassInterface()), OMD->getLocation());
3009     break;
3010   }
3011   case Decl::ObjCMethod: {
3012     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3013     // If this is not a prototype, emit the body.
3014     if (OMD->getBody())
3015       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3016     break;
3017   }
3018   case Decl::ObjCCompatibleAlias:
3019     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3020     break;
3021 
3022   case Decl::LinkageSpec:
3023     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3024     break;
3025 
3026   case Decl::FileScopeAsm: {
3027     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3028     StringRef AsmString = AD->getAsmString()->getString();
3029 
3030     const std::string &S = getModule().getModuleInlineAsm();
3031     if (S.empty())
3032       getModule().setModuleInlineAsm(AsmString);
3033     else if (S.end()[-1] == '\n')
3034       getModule().setModuleInlineAsm(S + AsmString.str());
3035     else
3036       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3037     break;
3038   }
3039 
3040   case Decl::Import: {
3041     ImportDecl *Import = cast<ImportDecl>(D);
3042 
3043     // Ignore import declarations that come from imported modules.
3044     if (clang::Module *Owner = Import->getOwningModule()) {
3045       if (getLangOpts().CurrentModule.empty() ||
3046           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3047         break;
3048     }
3049 
3050     ImportedModules.insert(Import->getImportedModule());
3051     break;
3052  }
3053 
3054   default:
3055     // Make sure we handled everything we should, every other kind is a
3056     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3057     // function. Need to recode Decl::Kind to do that easily.
3058     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3059   }
3060 }
3061 
3062 /// Turns the given pointer into a constant.
3063 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3064                                           const void *Ptr) {
3065   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3066   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3067   return llvm::ConstantInt::get(i64, PtrInt);
3068 }
3069 
3070 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3071                                    llvm::NamedMDNode *&GlobalMetadata,
3072                                    GlobalDecl D,
3073                                    llvm::GlobalValue *Addr) {
3074   if (!GlobalMetadata)
3075     GlobalMetadata =
3076       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3077 
3078   // TODO: should we report variant information for ctors/dtors?
3079   llvm::Value *Ops[] = {
3080     Addr,
3081     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3082   };
3083   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3084 }
3085 
3086 /// For each function which is declared within an extern "C" region and marked
3087 /// as 'used', but has internal linkage, create an alias from the unmangled
3088 /// name to the mangled name if possible. People expect to be able to refer
3089 /// to such functions with an unmangled name from inline assembly within the
3090 /// same translation unit.
3091 void CodeGenModule::EmitStaticExternCAliases() {
3092   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3093                                   E = StaticExternCValues.end();
3094        I != E; ++I) {
3095     IdentifierInfo *Name = I->first;
3096     llvm::GlobalValue *Val = I->second;
3097     if (Val && !getModule().getNamedValue(Name->getName()))
3098       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3099                                           Name->getName(), Val, &getModule()));
3100   }
3101 }
3102 
3103 /// Emits metadata nodes associating all the global values in the
3104 /// current module with the Decls they came from.  This is useful for
3105 /// projects using IR gen as a subroutine.
3106 ///
3107 /// Since there's currently no way to associate an MDNode directly
3108 /// with an llvm::GlobalValue, we create a global named metadata
3109 /// with the name 'clang.global.decl.ptrs'.
3110 void CodeGenModule::EmitDeclMetadata() {
3111   llvm::NamedMDNode *GlobalMetadata = 0;
3112 
3113   // StaticLocalDeclMap
3114   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3115          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3116        I != E; ++I) {
3117     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3118     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3119   }
3120 }
3121 
3122 /// Emits metadata nodes for all the local variables in the current
3123 /// function.
3124 void CodeGenFunction::EmitDeclMetadata() {
3125   if (LocalDeclMap.empty()) return;
3126 
3127   llvm::LLVMContext &Context = getLLVMContext();
3128 
3129   // Find the unique metadata ID for this name.
3130   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3131 
3132   llvm::NamedMDNode *GlobalMetadata = 0;
3133 
3134   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3135          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3136     const Decl *D = I->first;
3137     llvm::Value *Addr = I->second;
3138 
3139     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3140       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3141       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3142     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3143       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3144       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3145     }
3146   }
3147 }
3148 
3149 void CodeGenModule::EmitVersionIdentMetadata() {
3150   llvm::NamedMDNode *IdentMetadata =
3151     TheModule.getOrInsertNamedMetadata("llvm.ident");
3152   std::string Version = getClangFullVersion();
3153   llvm::LLVMContext &Ctx = TheModule.getContext();
3154 
3155   llvm::Value *IdentNode[] = {
3156     llvm::MDString::get(Ctx, Version)
3157   };
3158   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3159 }
3160 
3161 void CodeGenModule::EmitCoverageFile() {
3162   if (!getCodeGenOpts().CoverageFile.empty()) {
3163     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3164       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3165       llvm::LLVMContext &Ctx = TheModule.getContext();
3166       llvm::MDString *CoverageFile =
3167           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3168       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3169         llvm::MDNode *CU = CUNode->getOperand(i);
3170         llvm::Value *node[] = { CoverageFile, CU };
3171         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3172         GCov->addOperand(N);
3173       }
3174     }
3175   }
3176 }
3177 
3178 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3179                                                      QualType GuidType) {
3180   // Sema has checked that all uuid strings are of the form
3181   // "12345678-1234-1234-1234-1234567890ab".
3182   assert(Uuid.size() == 36);
3183   for (unsigned i = 0; i < 36; ++i) {
3184     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3185     else                                         assert(isHexDigit(Uuid[i]));
3186   }
3187 
3188   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3189 
3190   llvm::Constant *Field3[8];
3191   for (unsigned Idx = 0; Idx < 8; ++Idx)
3192     Field3[Idx] = llvm::ConstantInt::get(
3193         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3194 
3195   llvm::Constant *Fields[4] = {
3196     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3197     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3198     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3199     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3200   };
3201 
3202   return llvm::ConstantStruct::getAnon(Fields);
3203 }
3204