1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeGPU.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/BackendUtil.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 #include "llvm/Support/X86TargetParser.h" 67 68 using namespace clang; 69 using namespace CodeGen; 70 71 static llvm::cl::opt<bool> LimitedCoverage( 72 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 73 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 74 llvm::cl::init(false)); 75 76 static const char AnnotationSection[] = "llvm.metadata"; 77 78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 79 switch (CGM.getContext().getCXXABIKind()) { 80 case TargetCXXABI::AppleARM64: 81 case TargetCXXABI::Fuchsia: 82 case TargetCXXABI::GenericAArch64: 83 case TargetCXXABI::GenericARM: 84 case TargetCXXABI::iOS: 85 case TargetCXXABI::WatchOS: 86 case TargetCXXABI::GenericMIPS: 87 case TargetCXXABI::GenericItanium: 88 case TargetCXXABI::WebAssembly: 89 case TargetCXXABI::XL: 90 return CreateItaniumCXXABI(CGM); 91 case TargetCXXABI::Microsoft: 92 return CreateMicrosoftCXXABI(CGM); 93 } 94 95 llvm_unreachable("invalid C++ ABI kind"); 96 } 97 98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 99 const PreprocessorOptions &PPO, 100 const CodeGenOptions &CGO, llvm::Module &M, 101 DiagnosticsEngine &diags, 102 CoverageSourceInfo *CoverageInfo) 103 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 104 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 105 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 106 VMContext(M.getContext()), Types(*this), VTables(*this), 107 SanitizerMD(new SanitizerMetadata(*this)) { 108 109 // Initialize the type cache. 110 llvm::LLVMContext &LLVMContext = M.getContext(); 111 VoidTy = llvm::Type::getVoidTy(LLVMContext); 112 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 113 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 114 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 115 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 116 HalfTy = llvm::Type::getHalfTy(LLVMContext); 117 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 118 FloatTy = llvm::Type::getFloatTy(LLVMContext); 119 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 120 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 121 PointerAlignInBytes = 122 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 123 SizeSizeInBytes = 124 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 125 IntAlignInBytes = 126 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 127 CharTy = 128 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 129 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 130 IntPtrTy = llvm::IntegerType::get(LLVMContext, 131 C.getTargetInfo().getMaxPointerWidth()); 132 Int8PtrTy = Int8Ty->getPointerTo(0); 133 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 134 const llvm::DataLayout &DL = M.getDataLayout(); 135 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 136 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 137 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 138 139 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 140 141 if (LangOpts.ObjC) 142 createObjCRuntime(); 143 if (LangOpts.OpenCL) 144 createOpenCLRuntime(); 145 if (LangOpts.OpenMP) 146 createOpenMPRuntime(); 147 if (LangOpts.CUDA) 148 createCUDARuntime(); 149 150 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 151 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 152 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 153 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 154 getCXXABI().getMangleContext())); 155 156 // If debug info or coverage generation is enabled, create the CGDebugInfo 157 // object. 158 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 159 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 160 DebugInfo.reset(new CGDebugInfo(*this)); 161 162 Block.GlobalUniqueCount = 0; 163 164 if (C.getLangOpts().ObjC) 165 ObjCData.reset(new ObjCEntrypoints()); 166 167 if (CodeGenOpts.hasProfileClangUse()) { 168 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 169 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 170 if (auto E = ReaderOrErr.takeError()) { 171 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 172 "Could not read profile %0: %1"); 173 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 174 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 175 << EI.message(); 176 }); 177 } else 178 PGOReader = std::move(ReaderOrErr.get()); 179 } 180 181 // If coverage mapping generation is enabled, create the 182 // CoverageMappingModuleGen object. 183 if (CodeGenOpts.CoverageMapping) 184 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 185 186 // Generate the module name hash here if needed. 187 if (CodeGenOpts.UniqueInternalLinkageNames && 188 !getModule().getSourceFileName().empty()) { 189 std::string Path = getModule().getSourceFileName(); 190 // Check if a path substitution is needed from the MacroPrefixMap. 191 for (const auto &Entry : LangOpts.MacroPrefixMap) 192 if (Path.rfind(Entry.first, 0) != std::string::npos) { 193 Path = Entry.second + Path.substr(Entry.first.size()); 194 break; 195 } 196 llvm::MD5 Md5; 197 Md5.update(Path); 198 llvm::MD5::MD5Result R; 199 Md5.final(R); 200 SmallString<32> Str; 201 llvm::MD5::stringifyResult(R, Str); 202 // Convert MD5hash to Decimal. Demangler suffixes can either contain 203 // numbers or characters but not both. 204 llvm::APInt IntHash(128, Str.str(), 16); 205 // Prepend "__uniq" before the hash for tools like profilers to understand 206 // that this symbol is of internal linkage type. The "__uniq" is the 207 // pre-determined prefix that is used to tell tools that this symbol was 208 // created with -funique-internal-linakge-symbols and the tools can strip or 209 // keep the prefix as needed. 210 ModuleNameHash = (Twine(".__uniq.") + 211 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 212 } 213 } 214 215 CodeGenModule::~CodeGenModule() {} 216 217 void CodeGenModule::createObjCRuntime() { 218 // This is just isGNUFamily(), but we want to force implementors of 219 // new ABIs to decide how best to do this. 220 switch (LangOpts.ObjCRuntime.getKind()) { 221 case ObjCRuntime::GNUstep: 222 case ObjCRuntime::GCC: 223 case ObjCRuntime::ObjFW: 224 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 225 return; 226 227 case ObjCRuntime::FragileMacOSX: 228 case ObjCRuntime::MacOSX: 229 case ObjCRuntime::iOS: 230 case ObjCRuntime::WatchOS: 231 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 232 return; 233 } 234 llvm_unreachable("bad runtime kind"); 235 } 236 237 void CodeGenModule::createOpenCLRuntime() { 238 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 239 } 240 241 void CodeGenModule::createOpenMPRuntime() { 242 // Select a specialized code generation class based on the target, if any. 243 // If it does not exist use the default implementation. 244 switch (getTriple().getArch()) { 245 case llvm::Triple::nvptx: 246 case llvm::Triple::nvptx64: 247 case llvm::Triple::amdgcn: 248 assert(getLangOpts().OpenMPIsDevice && 249 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 250 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 251 break; 252 default: 253 if (LangOpts.OpenMPSimd) 254 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 255 else 256 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 257 break; 258 } 259 } 260 261 void CodeGenModule::createCUDARuntime() { 262 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 263 } 264 265 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 266 Replacements[Name] = C; 267 } 268 269 void CodeGenModule::applyReplacements() { 270 for (auto &I : Replacements) { 271 StringRef MangledName = I.first(); 272 llvm::Constant *Replacement = I.second; 273 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 274 if (!Entry) 275 continue; 276 auto *OldF = cast<llvm::Function>(Entry); 277 auto *NewF = dyn_cast<llvm::Function>(Replacement); 278 if (!NewF) { 279 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 280 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 281 } else { 282 auto *CE = cast<llvm::ConstantExpr>(Replacement); 283 assert(CE->getOpcode() == llvm::Instruction::BitCast || 284 CE->getOpcode() == llvm::Instruction::GetElementPtr); 285 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 286 } 287 } 288 289 // Replace old with new, but keep the old order. 290 OldF->replaceAllUsesWith(Replacement); 291 if (NewF) { 292 NewF->removeFromParent(); 293 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 294 NewF); 295 } 296 OldF->eraseFromParent(); 297 } 298 } 299 300 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 301 GlobalValReplacements.push_back(std::make_pair(GV, C)); 302 } 303 304 void CodeGenModule::applyGlobalValReplacements() { 305 for (auto &I : GlobalValReplacements) { 306 llvm::GlobalValue *GV = I.first; 307 llvm::Constant *C = I.second; 308 309 GV->replaceAllUsesWith(C); 310 GV->eraseFromParent(); 311 } 312 } 313 314 // This is only used in aliases that we created and we know they have a 315 // linear structure. 316 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 317 const llvm::Constant *C; 318 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 319 C = GA->getAliasee(); 320 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 321 C = GI->getResolver(); 322 else 323 return GV; 324 325 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 326 if (!AliaseeGV) 327 return nullptr; 328 329 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 330 if (FinalGV == GV) 331 return nullptr; 332 333 return FinalGV; 334 } 335 336 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 337 SourceLocation Location, bool IsIFunc, 338 const llvm::GlobalValue *Alias, 339 const llvm::GlobalValue *&GV) { 340 GV = getAliasedGlobal(Alias); 341 if (!GV) { 342 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 343 return false; 344 } 345 346 if (GV->isDeclaration()) { 347 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 348 return false; 349 } 350 351 if (IsIFunc) { 352 // Check resolver function type. 353 const auto *F = dyn_cast<llvm::Function>(GV); 354 if (!F) { 355 Diags.Report(Location, diag::err_alias_to_undefined) 356 << IsIFunc << IsIFunc; 357 return false; 358 } 359 360 llvm::FunctionType *FTy = F->getFunctionType(); 361 if (!FTy->getReturnType()->isPointerTy()) { 362 Diags.Report(Location, diag::err_ifunc_resolver_return); 363 return false; 364 } 365 } 366 367 return true; 368 } 369 370 void CodeGenModule::checkAliases() { 371 // Check if the constructed aliases are well formed. It is really unfortunate 372 // that we have to do this in CodeGen, but we only construct mangled names 373 // and aliases during codegen. 374 bool Error = false; 375 DiagnosticsEngine &Diags = getDiags(); 376 for (const GlobalDecl &GD : Aliases) { 377 const auto *D = cast<ValueDecl>(GD.getDecl()); 378 SourceLocation Location; 379 bool IsIFunc = D->hasAttr<IFuncAttr>(); 380 if (const Attr *A = D->getDefiningAttr()) 381 Location = A->getLocation(); 382 else 383 llvm_unreachable("Not an alias or ifunc?"); 384 385 StringRef MangledName = getMangledName(GD); 386 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 387 const llvm::GlobalValue *GV = nullptr; 388 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 389 Error = true; 390 continue; 391 } 392 393 llvm::Constant *Aliasee = 394 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 395 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 396 397 llvm::GlobalValue *AliaseeGV; 398 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 399 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 400 else 401 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 402 403 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 404 StringRef AliasSection = SA->getName(); 405 if (AliasSection != AliaseeGV->getSection()) 406 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 407 << AliasSection << IsIFunc << IsIFunc; 408 } 409 410 // We have to handle alias to weak aliases in here. LLVM itself disallows 411 // this since the object semantics would not match the IL one. For 412 // compatibility with gcc we implement it by just pointing the alias 413 // to its aliasee's aliasee. We also warn, since the user is probably 414 // expecting the link to be weak. 415 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 416 if (GA->isInterposable()) { 417 Diags.Report(Location, diag::warn_alias_to_weak_alias) 418 << GV->getName() << GA->getName() << IsIFunc; 419 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 420 GA->getAliasee(), Alias->getType()); 421 422 if (IsIFunc) 423 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 424 else 425 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 426 } 427 } 428 } 429 if (!Error) 430 return; 431 432 for (const GlobalDecl &GD : Aliases) { 433 StringRef MangledName = getMangledName(GD); 434 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 435 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 436 Alias->eraseFromParent(); 437 } 438 } 439 440 void CodeGenModule::clear() { 441 DeferredDeclsToEmit.clear(); 442 if (OpenMPRuntime) 443 OpenMPRuntime->clear(); 444 } 445 446 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 447 StringRef MainFile) { 448 if (!hasDiagnostics()) 449 return; 450 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 451 if (MainFile.empty()) 452 MainFile = "<stdin>"; 453 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 454 } else { 455 if (Mismatched > 0) 456 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 457 458 if (Missing > 0) 459 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 460 } 461 } 462 463 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 464 llvm::Module &M) { 465 if (!LO.VisibilityFromDLLStorageClass) 466 return; 467 468 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 469 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 470 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 471 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 472 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 473 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 474 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 475 CodeGenModule::GetLLVMVisibility( 476 LO.getExternDeclNoDLLStorageClassVisibility()); 477 478 for (llvm::GlobalValue &GV : M.global_values()) { 479 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 480 continue; 481 482 // Reset DSO locality before setting the visibility. This removes 483 // any effects that visibility options and annotations may have 484 // had on the DSO locality. Setting the visibility will implicitly set 485 // appropriate globals to DSO Local; however, this will be pessimistic 486 // w.r.t. to the normal compiler IRGen. 487 GV.setDSOLocal(false); 488 489 if (GV.isDeclarationForLinker()) { 490 GV.setVisibility(GV.getDLLStorageClass() == 491 llvm::GlobalValue::DLLImportStorageClass 492 ? ExternDeclDLLImportVisibility 493 : ExternDeclNoDLLStorageClassVisibility); 494 } else { 495 GV.setVisibility(GV.getDLLStorageClass() == 496 llvm::GlobalValue::DLLExportStorageClass 497 ? DLLExportVisibility 498 : NoDLLStorageClassVisibility); 499 } 500 501 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 502 } 503 } 504 505 void CodeGenModule::Release() { 506 EmitDeferred(); 507 EmitVTablesOpportunistically(); 508 applyGlobalValReplacements(); 509 applyReplacements(); 510 emitMultiVersionFunctions(); 511 EmitCXXGlobalInitFunc(); 512 EmitCXXGlobalCleanUpFunc(); 513 registerGlobalDtorsWithAtExit(); 514 EmitCXXThreadLocalInitFunc(); 515 if (ObjCRuntime) 516 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 517 AddGlobalCtor(ObjCInitFunction); 518 if (Context.getLangOpts().CUDA && CUDARuntime) { 519 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 520 AddGlobalCtor(CudaCtorFunction); 521 } 522 if (OpenMPRuntime) { 523 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 524 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 525 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 526 } 527 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 528 OpenMPRuntime->clear(); 529 } 530 if (PGOReader) { 531 getModule().setProfileSummary( 532 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 533 llvm::ProfileSummary::PSK_Instr); 534 if (PGOStats.hasDiagnostics()) 535 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 536 } 537 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 538 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 539 EmitGlobalAnnotations(); 540 EmitStaticExternCAliases(); 541 checkAliases(); 542 EmitDeferredUnusedCoverageMappings(); 543 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 544 if (CoverageMapping) 545 CoverageMapping->emit(); 546 if (CodeGenOpts.SanitizeCfiCrossDso) { 547 CodeGenFunction(*this).EmitCfiCheckFail(); 548 CodeGenFunction(*this).EmitCfiCheckStub(); 549 } 550 emitAtAvailableLinkGuard(); 551 if (Context.getTargetInfo().getTriple().isWasm() && 552 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 553 EmitMainVoidAlias(); 554 } 555 556 if (getTriple().isAMDGPU()) { 557 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 558 // preserve ASAN functions in bitcode libraries. 559 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 560 auto *FT = llvm::FunctionType::get(VoidTy, {}); 561 auto *F = llvm::Function::Create( 562 FT, llvm::GlobalValue::ExternalLinkage, 563 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 564 auto *Var = new llvm::GlobalVariable( 565 getModule(), FT->getPointerTo(), 566 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 567 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 568 llvm::GlobalVariable::NotThreadLocal); 569 addCompilerUsedGlobal(Var); 570 } 571 // Emit amdgpu_code_object_version module flag, which is code object version 572 // times 100. 573 // ToDo: Enable module flag for all code object version when ROCm device 574 // library is ready. 575 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 576 getModule().addModuleFlag(llvm::Module::Error, 577 "amdgpu_code_object_version", 578 getTarget().getTargetOpts().CodeObjectVersion); 579 } 580 } 581 582 emitLLVMUsed(); 583 if (SanStats) 584 SanStats->finish(); 585 586 if (CodeGenOpts.Autolink && 587 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 588 EmitModuleLinkOptions(); 589 } 590 591 // On ELF we pass the dependent library specifiers directly to the linker 592 // without manipulating them. This is in contrast to other platforms where 593 // they are mapped to a specific linker option by the compiler. This 594 // difference is a result of the greater variety of ELF linkers and the fact 595 // that ELF linkers tend to handle libraries in a more complicated fashion 596 // than on other platforms. This forces us to defer handling the dependent 597 // libs to the linker. 598 // 599 // CUDA/HIP device and host libraries are different. Currently there is no 600 // way to differentiate dependent libraries for host or device. Existing 601 // usage of #pragma comment(lib, *) is intended for host libraries on 602 // Windows. Therefore emit llvm.dependent-libraries only for host. 603 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 604 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 605 for (auto *MD : ELFDependentLibraries) 606 NMD->addOperand(MD); 607 } 608 609 // Record mregparm value now so it is visible through rest of codegen. 610 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 611 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 612 CodeGenOpts.NumRegisterParameters); 613 614 if (CodeGenOpts.DwarfVersion) { 615 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 616 CodeGenOpts.DwarfVersion); 617 } 618 619 if (CodeGenOpts.Dwarf64) 620 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 621 622 if (Context.getLangOpts().SemanticInterposition) 623 // Require various optimization to respect semantic interposition. 624 getModule().setSemanticInterposition(true); 625 626 if (CodeGenOpts.EmitCodeView) { 627 // Indicate that we want CodeView in the metadata. 628 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 629 } 630 if (CodeGenOpts.CodeViewGHash) { 631 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 632 } 633 if (CodeGenOpts.ControlFlowGuard) { 634 // Function ID tables and checks for Control Flow Guard (cfguard=2). 635 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 636 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 637 // Function ID tables for Control Flow Guard (cfguard=1). 638 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 639 } 640 if (CodeGenOpts.EHContGuard) { 641 // Function ID tables for EH Continuation Guard. 642 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 643 } 644 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 645 // We don't support LTO with 2 with different StrictVTablePointers 646 // FIXME: we could support it by stripping all the information introduced 647 // by StrictVTablePointers. 648 649 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 650 651 llvm::Metadata *Ops[2] = { 652 llvm::MDString::get(VMContext, "StrictVTablePointers"), 653 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 654 llvm::Type::getInt32Ty(VMContext), 1))}; 655 656 getModule().addModuleFlag(llvm::Module::Require, 657 "StrictVTablePointersRequirement", 658 llvm::MDNode::get(VMContext, Ops)); 659 } 660 if (getModuleDebugInfo()) 661 // We support a single version in the linked module. The LLVM 662 // parser will drop debug info with a different version number 663 // (and warn about it, too). 664 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 665 llvm::DEBUG_METADATA_VERSION); 666 667 // We need to record the widths of enums and wchar_t, so that we can generate 668 // the correct build attributes in the ARM backend. wchar_size is also used by 669 // TargetLibraryInfo. 670 uint64_t WCharWidth = 671 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 672 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 673 674 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 675 if ( Arch == llvm::Triple::arm 676 || Arch == llvm::Triple::armeb 677 || Arch == llvm::Triple::thumb 678 || Arch == llvm::Triple::thumbeb) { 679 // The minimum width of an enum in bytes 680 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 681 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 682 } 683 684 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 685 StringRef ABIStr = Target.getABI(); 686 llvm::LLVMContext &Ctx = TheModule.getContext(); 687 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 688 llvm::MDString::get(Ctx, ABIStr)); 689 } 690 691 if (CodeGenOpts.SanitizeCfiCrossDso) { 692 // Indicate that we want cross-DSO control flow integrity checks. 693 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 694 } 695 696 if (CodeGenOpts.WholeProgramVTables) { 697 // Indicate whether VFE was enabled for this module, so that the 698 // vcall_visibility metadata added under whole program vtables is handled 699 // appropriately in the optimizer. 700 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 701 CodeGenOpts.VirtualFunctionElimination); 702 } 703 704 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 705 getModule().addModuleFlag(llvm::Module::Override, 706 "CFI Canonical Jump Tables", 707 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 708 } 709 710 if (CodeGenOpts.CFProtectionReturn && 711 Target.checkCFProtectionReturnSupported(getDiags())) { 712 // Indicate that we want to instrument return control flow protection. 713 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 714 1); 715 } 716 717 if (CodeGenOpts.CFProtectionBranch && 718 Target.checkCFProtectionBranchSupported(getDiags())) { 719 // Indicate that we want to instrument branch control flow protection. 720 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 721 1); 722 } 723 724 if (CodeGenOpts.IBTSeal) 725 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 726 727 // Add module metadata for return address signing (ignoring 728 // non-leaf/all) and stack tagging. These are actually turned on by function 729 // attributes, but we use module metadata to emit build attributes. This is 730 // needed for LTO, where the function attributes are inside bitcode 731 // serialised into a global variable by the time build attributes are 732 // emitted, so we can't access them. LTO objects could be compiled with 733 // different flags therefore module flags are set to "Min" behavior to achieve 734 // the same end result of the normal build where e.g BTI is off if any object 735 // doesn't support it. 736 if (Context.getTargetInfo().hasFeature("ptrauth") && 737 LangOpts.getSignReturnAddressScope() != 738 LangOptions::SignReturnAddressScopeKind::None) 739 getModule().addModuleFlag(llvm::Module::Override, 740 "sign-return-address-buildattr", 1); 741 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 742 getModule().addModuleFlag(llvm::Module::Override, 743 "tag-stack-memory-buildattr", 1); 744 745 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 746 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 747 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 748 Arch == llvm::Triple::aarch64_be) { 749 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 750 LangOpts.BranchTargetEnforcement); 751 752 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 753 LangOpts.hasSignReturnAddress()); 754 755 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 756 LangOpts.isSignReturnAddressScopeAll()); 757 758 getModule().addModuleFlag(llvm::Module::Min, 759 "sign-return-address-with-bkey", 760 !LangOpts.isSignReturnAddressWithAKey()); 761 } 762 763 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 764 llvm::LLVMContext &Ctx = TheModule.getContext(); 765 getModule().addModuleFlag( 766 llvm::Module::Error, "MemProfProfileFilename", 767 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 768 } 769 770 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 771 // Indicate whether __nvvm_reflect should be configured to flush denormal 772 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 773 // property.) 774 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 775 CodeGenOpts.FP32DenormalMode.Output != 776 llvm::DenormalMode::IEEE); 777 } 778 779 if (LangOpts.EHAsynch) 780 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 781 782 // Indicate whether this Module was compiled with -fopenmp 783 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 784 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 785 if (getLangOpts().OpenMPIsDevice) 786 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 787 LangOpts.OpenMP); 788 789 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 790 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 791 EmitOpenCLMetadata(); 792 // Emit SPIR version. 793 if (getTriple().isSPIR()) { 794 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 795 // opencl.spir.version named metadata. 796 // C++ for OpenCL has a distinct mapping for version compatibility with 797 // OpenCL. 798 auto Version = LangOpts.getOpenCLCompatibleVersion(); 799 llvm::Metadata *SPIRVerElts[] = { 800 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 801 Int32Ty, Version / 100)), 802 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 803 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 804 llvm::NamedMDNode *SPIRVerMD = 805 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 806 llvm::LLVMContext &Ctx = TheModule.getContext(); 807 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 808 } 809 } 810 811 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 812 assert(PLevel < 3 && "Invalid PIC Level"); 813 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 814 if (Context.getLangOpts().PIE) 815 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 816 } 817 818 if (getCodeGenOpts().CodeModel.size() > 0) { 819 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 820 .Case("tiny", llvm::CodeModel::Tiny) 821 .Case("small", llvm::CodeModel::Small) 822 .Case("kernel", llvm::CodeModel::Kernel) 823 .Case("medium", llvm::CodeModel::Medium) 824 .Case("large", llvm::CodeModel::Large) 825 .Default(~0u); 826 if (CM != ~0u) { 827 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 828 getModule().setCodeModel(codeModel); 829 } 830 } 831 832 if (CodeGenOpts.NoPLT) 833 getModule().setRtLibUseGOT(); 834 if (CodeGenOpts.UnwindTables) 835 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 836 837 switch (CodeGenOpts.getFramePointer()) { 838 case CodeGenOptions::FramePointerKind::None: 839 // 0 ("none") is the default. 840 break; 841 case CodeGenOptions::FramePointerKind::NonLeaf: 842 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 843 break; 844 case CodeGenOptions::FramePointerKind::All: 845 getModule().setFramePointer(llvm::FramePointerKind::All); 846 break; 847 } 848 849 SimplifyPersonality(); 850 851 if (getCodeGenOpts().EmitDeclMetadata) 852 EmitDeclMetadata(); 853 854 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 855 EmitCoverageFile(); 856 857 if (CGDebugInfo *DI = getModuleDebugInfo()) 858 DI->finalize(); 859 860 if (getCodeGenOpts().EmitVersionIdentMetadata) 861 EmitVersionIdentMetadata(); 862 863 if (!getCodeGenOpts().RecordCommandLine.empty()) 864 EmitCommandLineMetadata(); 865 866 if (!getCodeGenOpts().StackProtectorGuard.empty()) 867 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 868 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 869 getModule().setStackProtectorGuardReg( 870 getCodeGenOpts().StackProtectorGuardReg); 871 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 872 getModule().setStackProtectorGuardOffset( 873 getCodeGenOpts().StackProtectorGuardOffset); 874 if (getCodeGenOpts().StackAlignment) 875 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 876 if (getCodeGenOpts().SkipRaxSetup) 877 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 878 879 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 880 881 EmitBackendOptionsMetadata(getCodeGenOpts()); 882 883 // If there is device offloading code embed it in the host now. 884 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 885 886 // Set visibility from DLL storage class 887 // We do this at the end of LLVM IR generation; after any operation 888 // that might affect the DLL storage class or the visibility, and 889 // before anything that might act on these. 890 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 891 } 892 893 void CodeGenModule::EmitOpenCLMetadata() { 894 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 895 // opencl.ocl.version named metadata node. 896 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 897 auto Version = LangOpts.getOpenCLCompatibleVersion(); 898 llvm::Metadata *OCLVerElts[] = { 899 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 900 Int32Ty, Version / 100)), 901 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 902 Int32Ty, (Version % 100) / 10))}; 903 llvm::NamedMDNode *OCLVerMD = 904 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 905 llvm::LLVMContext &Ctx = TheModule.getContext(); 906 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 907 } 908 909 void CodeGenModule::EmitBackendOptionsMetadata( 910 const CodeGenOptions CodeGenOpts) { 911 switch (getTriple().getArch()) { 912 default: 913 break; 914 case llvm::Triple::riscv32: 915 case llvm::Triple::riscv64: 916 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 917 CodeGenOpts.SmallDataLimit); 918 break; 919 } 920 } 921 922 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 923 // Make sure that this type is translated. 924 Types.UpdateCompletedType(TD); 925 } 926 927 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 928 // Make sure that this type is translated. 929 Types.RefreshTypeCacheForClass(RD); 930 } 931 932 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 933 if (!TBAA) 934 return nullptr; 935 return TBAA->getTypeInfo(QTy); 936 } 937 938 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 939 if (!TBAA) 940 return TBAAAccessInfo(); 941 if (getLangOpts().CUDAIsDevice) { 942 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 943 // access info. 944 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 945 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 946 nullptr) 947 return TBAAAccessInfo(); 948 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 949 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 950 nullptr) 951 return TBAAAccessInfo(); 952 } 953 } 954 return TBAA->getAccessInfo(AccessType); 955 } 956 957 TBAAAccessInfo 958 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 959 if (!TBAA) 960 return TBAAAccessInfo(); 961 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 962 } 963 964 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 965 if (!TBAA) 966 return nullptr; 967 return TBAA->getTBAAStructInfo(QTy); 968 } 969 970 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 971 if (!TBAA) 972 return nullptr; 973 return TBAA->getBaseTypeInfo(QTy); 974 } 975 976 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 977 if (!TBAA) 978 return nullptr; 979 return TBAA->getAccessTagInfo(Info); 980 } 981 982 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 983 TBAAAccessInfo TargetInfo) { 984 if (!TBAA) 985 return TBAAAccessInfo(); 986 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 987 } 988 989 TBAAAccessInfo 990 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 991 TBAAAccessInfo InfoB) { 992 if (!TBAA) 993 return TBAAAccessInfo(); 994 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 995 } 996 997 TBAAAccessInfo 998 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 999 TBAAAccessInfo SrcInfo) { 1000 if (!TBAA) 1001 return TBAAAccessInfo(); 1002 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1003 } 1004 1005 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1006 TBAAAccessInfo TBAAInfo) { 1007 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1008 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1009 } 1010 1011 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1012 llvm::Instruction *I, const CXXRecordDecl *RD) { 1013 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1014 llvm::MDNode::get(getLLVMContext(), {})); 1015 } 1016 1017 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1018 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1019 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1020 } 1021 1022 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1023 /// specified stmt yet. 1024 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1025 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1026 "cannot compile this %0 yet"); 1027 std::string Msg = Type; 1028 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1029 << Msg << S->getSourceRange(); 1030 } 1031 1032 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1033 /// specified decl yet. 1034 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1035 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1036 "cannot compile this %0 yet"); 1037 std::string Msg = Type; 1038 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1039 } 1040 1041 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1042 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1043 } 1044 1045 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1046 const NamedDecl *D) const { 1047 if (GV->hasDLLImportStorageClass()) 1048 return; 1049 // Internal definitions always have default visibility. 1050 if (GV->hasLocalLinkage()) { 1051 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1052 return; 1053 } 1054 if (!D) 1055 return; 1056 // Set visibility for definitions, and for declarations if requested globally 1057 // or set explicitly. 1058 LinkageInfo LV = D->getLinkageAndVisibility(); 1059 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1060 !GV->isDeclarationForLinker()) 1061 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1062 } 1063 1064 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1065 llvm::GlobalValue *GV) { 1066 if (GV->hasLocalLinkage()) 1067 return true; 1068 1069 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1070 return true; 1071 1072 // DLLImport explicitly marks the GV as external. 1073 if (GV->hasDLLImportStorageClass()) 1074 return false; 1075 1076 const llvm::Triple &TT = CGM.getTriple(); 1077 if (TT.isWindowsGNUEnvironment()) { 1078 // In MinGW, variables without DLLImport can still be automatically 1079 // imported from a DLL by the linker; don't mark variables that 1080 // potentially could come from another DLL as DSO local. 1081 1082 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1083 // (and this actually happens in the public interface of libstdc++), so 1084 // such variables can't be marked as DSO local. (Native TLS variables 1085 // can't be dllimported at all, though.) 1086 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1087 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1088 return false; 1089 } 1090 1091 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1092 // remain unresolved in the link, they can be resolved to zero, which is 1093 // outside the current DSO. 1094 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1095 return false; 1096 1097 // Every other GV is local on COFF. 1098 // Make an exception for windows OS in the triple: Some firmware builds use 1099 // *-win32-macho triples. This (accidentally?) produced windows relocations 1100 // without GOT tables in older clang versions; Keep this behaviour. 1101 // FIXME: even thread local variables? 1102 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1103 return true; 1104 1105 // Only handle COFF and ELF for now. 1106 if (!TT.isOSBinFormatELF()) 1107 return false; 1108 1109 // If this is not an executable, don't assume anything is local. 1110 const auto &CGOpts = CGM.getCodeGenOpts(); 1111 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1112 const auto &LOpts = CGM.getLangOpts(); 1113 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1114 // On ELF, if -fno-semantic-interposition is specified and the target 1115 // supports local aliases, there will be neither CC1 1116 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1117 // dso_local on the function if using a local alias is preferable (can avoid 1118 // PLT indirection). 1119 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1120 return false; 1121 return !(CGM.getLangOpts().SemanticInterposition || 1122 CGM.getLangOpts().HalfNoSemanticInterposition); 1123 } 1124 1125 // A definition cannot be preempted from an executable. 1126 if (!GV->isDeclarationForLinker()) 1127 return true; 1128 1129 // Most PIC code sequences that assume that a symbol is local cannot produce a 1130 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1131 // depended, it seems worth it to handle it here. 1132 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1133 return false; 1134 1135 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1136 if (TT.isPPC64()) 1137 return false; 1138 1139 if (CGOpts.DirectAccessExternalData) { 1140 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1141 // for non-thread-local variables. If the symbol is not defined in the 1142 // executable, a copy relocation will be needed at link time. dso_local is 1143 // excluded for thread-local variables because they generally don't support 1144 // copy relocations. 1145 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1146 if (!Var->isThreadLocal()) 1147 return true; 1148 1149 // -fno-pic sets dso_local on a function declaration to allow direct 1150 // accesses when taking its address (similar to a data symbol). If the 1151 // function is not defined in the executable, a canonical PLT entry will be 1152 // needed at link time. -fno-direct-access-external-data can avoid the 1153 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1154 // it could just cause trouble without providing perceptible benefits. 1155 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1156 return true; 1157 } 1158 1159 // If we can use copy relocations we can assume it is local. 1160 1161 // Otherwise don't assume it is local. 1162 return false; 1163 } 1164 1165 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1166 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1167 } 1168 1169 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1170 GlobalDecl GD) const { 1171 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1172 // C++ destructors have a few C++ ABI specific special cases. 1173 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1174 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1175 return; 1176 } 1177 setDLLImportDLLExport(GV, D); 1178 } 1179 1180 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1181 const NamedDecl *D) const { 1182 if (D && D->isExternallyVisible()) { 1183 if (D->hasAttr<DLLImportAttr>()) 1184 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1185 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1186 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1187 } 1188 } 1189 1190 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1191 GlobalDecl GD) const { 1192 setDLLImportDLLExport(GV, GD); 1193 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1194 } 1195 1196 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1197 const NamedDecl *D) const { 1198 setDLLImportDLLExport(GV, D); 1199 setGVPropertiesAux(GV, D); 1200 } 1201 1202 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1203 const NamedDecl *D) const { 1204 setGlobalVisibility(GV, D); 1205 setDSOLocal(GV); 1206 GV->setPartition(CodeGenOpts.SymbolPartition); 1207 } 1208 1209 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1210 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1211 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1212 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1213 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1214 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1215 } 1216 1217 llvm::GlobalVariable::ThreadLocalMode 1218 CodeGenModule::GetDefaultLLVMTLSModel() const { 1219 switch (CodeGenOpts.getDefaultTLSModel()) { 1220 case CodeGenOptions::GeneralDynamicTLSModel: 1221 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1222 case CodeGenOptions::LocalDynamicTLSModel: 1223 return llvm::GlobalVariable::LocalDynamicTLSModel; 1224 case CodeGenOptions::InitialExecTLSModel: 1225 return llvm::GlobalVariable::InitialExecTLSModel; 1226 case CodeGenOptions::LocalExecTLSModel: 1227 return llvm::GlobalVariable::LocalExecTLSModel; 1228 } 1229 llvm_unreachable("Invalid TLS model!"); 1230 } 1231 1232 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1233 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1234 1235 llvm::GlobalValue::ThreadLocalMode TLM; 1236 TLM = GetDefaultLLVMTLSModel(); 1237 1238 // Override the TLS model if it is explicitly specified. 1239 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1240 TLM = GetLLVMTLSModel(Attr->getModel()); 1241 } 1242 1243 GV->setThreadLocalMode(TLM); 1244 } 1245 1246 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1247 StringRef Name) { 1248 const TargetInfo &Target = CGM.getTarget(); 1249 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1250 } 1251 1252 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1253 const CPUSpecificAttr *Attr, 1254 unsigned CPUIndex, 1255 raw_ostream &Out) { 1256 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1257 // supported. 1258 if (Attr) 1259 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1260 else if (CGM.getTarget().supportsIFunc()) 1261 Out << ".resolver"; 1262 } 1263 1264 static void AppendTargetMangling(const CodeGenModule &CGM, 1265 const TargetAttr *Attr, raw_ostream &Out) { 1266 if (Attr->isDefaultVersion()) 1267 return; 1268 1269 Out << '.'; 1270 const TargetInfo &Target = CGM.getTarget(); 1271 ParsedTargetAttr Info = 1272 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1273 // Multiversioning doesn't allow "no-${feature}", so we can 1274 // only have "+" prefixes here. 1275 assert(LHS.startswith("+") && RHS.startswith("+") && 1276 "Features should always have a prefix."); 1277 return Target.multiVersionSortPriority(LHS.substr(1)) > 1278 Target.multiVersionSortPriority(RHS.substr(1)); 1279 }); 1280 1281 bool IsFirst = true; 1282 1283 if (!Info.Architecture.empty()) { 1284 IsFirst = false; 1285 Out << "arch_" << Info.Architecture; 1286 } 1287 1288 for (StringRef Feat : Info.Features) { 1289 if (!IsFirst) 1290 Out << '_'; 1291 IsFirst = false; 1292 Out << Feat.substr(1); 1293 } 1294 } 1295 1296 // Returns true if GD is a function decl with internal linkage and 1297 // needs a unique suffix after the mangled name. 1298 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1299 CodeGenModule &CGM) { 1300 const Decl *D = GD.getDecl(); 1301 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1302 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1303 } 1304 1305 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1306 const TargetClonesAttr *Attr, 1307 unsigned VersionIndex, 1308 raw_ostream &Out) { 1309 Out << '.'; 1310 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1311 if (FeatureStr.startswith("arch=")) 1312 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1313 else 1314 Out << FeatureStr; 1315 1316 Out << '.' << Attr->getMangledIndex(VersionIndex); 1317 } 1318 1319 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1320 const NamedDecl *ND, 1321 bool OmitMultiVersionMangling = false) { 1322 SmallString<256> Buffer; 1323 llvm::raw_svector_ostream Out(Buffer); 1324 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1325 if (!CGM.getModuleNameHash().empty()) 1326 MC.needsUniqueInternalLinkageNames(); 1327 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1328 if (ShouldMangle) 1329 MC.mangleName(GD.getWithDecl(ND), Out); 1330 else { 1331 IdentifierInfo *II = ND->getIdentifier(); 1332 assert(II && "Attempt to mangle unnamed decl."); 1333 const auto *FD = dyn_cast<FunctionDecl>(ND); 1334 1335 if (FD && 1336 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1337 Out << "__regcall3__" << II->getName(); 1338 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1339 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1340 Out << "__device_stub__" << II->getName(); 1341 } else { 1342 Out << II->getName(); 1343 } 1344 } 1345 1346 // Check if the module name hash should be appended for internal linkage 1347 // symbols. This should come before multi-version target suffixes are 1348 // appended. This is to keep the name and module hash suffix of the 1349 // internal linkage function together. The unique suffix should only be 1350 // added when name mangling is done to make sure that the final name can 1351 // be properly demangled. For example, for C functions without prototypes, 1352 // name mangling is not done and the unique suffix should not be appeneded 1353 // then. 1354 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1355 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1356 "Hash computed when not explicitly requested"); 1357 Out << CGM.getModuleNameHash(); 1358 } 1359 1360 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1361 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1362 switch (FD->getMultiVersionKind()) { 1363 case MultiVersionKind::CPUDispatch: 1364 case MultiVersionKind::CPUSpecific: 1365 AppendCPUSpecificCPUDispatchMangling(CGM, 1366 FD->getAttr<CPUSpecificAttr>(), 1367 GD.getMultiVersionIndex(), Out); 1368 break; 1369 case MultiVersionKind::Target: 1370 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1371 break; 1372 case MultiVersionKind::TargetClones: 1373 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1374 GD.getMultiVersionIndex(), Out); 1375 break; 1376 case MultiVersionKind::None: 1377 llvm_unreachable("None multiversion type isn't valid here"); 1378 } 1379 } 1380 1381 // Make unique name for device side static file-scope variable for HIP. 1382 if (CGM.getContext().shouldExternalize(ND) && 1383 CGM.getLangOpts().GPURelocatableDeviceCode && 1384 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1385 CGM.printPostfixForExternalizedDecl(Out, ND); 1386 return std::string(Out.str()); 1387 } 1388 1389 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1390 const FunctionDecl *FD, 1391 StringRef &CurName) { 1392 if (!FD->isMultiVersion()) 1393 return; 1394 1395 // Get the name of what this would be without the 'target' attribute. This 1396 // allows us to lookup the version that was emitted when this wasn't a 1397 // multiversion function. 1398 std::string NonTargetName = 1399 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1400 GlobalDecl OtherGD; 1401 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1402 assert(OtherGD.getCanonicalDecl() 1403 .getDecl() 1404 ->getAsFunction() 1405 ->isMultiVersion() && 1406 "Other GD should now be a multiversioned function"); 1407 // OtherFD is the version of this function that was mangled BEFORE 1408 // becoming a MultiVersion function. It potentially needs to be updated. 1409 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1410 .getDecl() 1411 ->getAsFunction() 1412 ->getMostRecentDecl(); 1413 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1414 // This is so that if the initial version was already the 'default' 1415 // version, we don't try to update it. 1416 if (OtherName != NonTargetName) { 1417 // Remove instead of erase, since others may have stored the StringRef 1418 // to this. 1419 const auto ExistingRecord = Manglings.find(NonTargetName); 1420 if (ExistingRecord != std::end(Manglings)) 1421 Manglings.remove(&(*ExistingRecord)); 1422 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1423 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1424 Result.first->first(); 1425 // If this is the current decl is being created, make sure we update the name. 1426 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1427 CurName = OtherNameRef; 1428 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1429 Entry->setName(OtherName); 1430 } 1431 } 1432 } 1433 1434 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1435 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1436 1437 // Some ABIs don't have constructor variants. Make sure that base and 1438 // complete constructors get mangled the same. 1439 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1440 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1441 CXXCtorType OrigCtorType = GD.getCtorType(); 1442 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1443 if (OrigCtorType == Ctor_Base) 1444 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1445 } 1446 } 1447 1448 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1449 // static device variable depends on whether the variable is referenced by 1450 // a host or device host function. Therefore the mangled name cannot be 1451 // cached. 1452 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1453 auto FoundName = MangledDeclNames.find(CanonicalGD); 1454 if (FoundName != MangledDeclNames.end()) 1455 return FoundName->second; 1456 } 1457 1458 // Keep the first result in the case of a mangling collision. 1459 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1460 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1461 1462 // Ensure either we have different ABIs between host and device compilations, 1463 // says host compilation following MSVC ABI but device compilation follows 1464 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1465 // mangling should be the same after name stubbing. The later checking is 1466 // very important as the device kernel name being mangled in host-compilation 1467 // is used to resolve the device binaries to be executed. Inconsistent naming 1468 // result in undefined behavior. Even though we cannot check that naming 1469 // directly between host- and device-compilations, the host- and 1470 // device-mangling in host compilation could help catching certain ones. 1471 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1472 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1473 (getContext().getAuxTargetInfo() && 1474 (getContext().getAuxTargetInfo()->getCXXABI() != 1475 getContext().getTargetInfo().getCXXABI())) || 1476 getCUDARuntime().getDeviceSideName(ND) == 1477 getMangledNameImpl( 1478 *this, 1479 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1480 ND)); 1481 1482 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1483 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1484 } 1485 1486 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1487 const BlockDecl *BD) { 1488 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1489 const Decl *D = GD.getDecl(); 1490 1491 SmallString<256> Buffer; 1492 llvm::raw_svector_ostream Out(Buffer); 1493 if (!D) 1494 MangleCtx.mangleGlobalBlock(BD, 1495 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1496 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1497 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1498 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1499 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1500 else 1501 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1502 1503 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1504 return Result.first->first(); 1505 } 1506 1507 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1508 auto it = MangledDeclNames.begin(); 1509 while (it != MangledDeclNames.end()) { 1510 if (it->second == Name) 1511 return it->first; 1512 it++; 1513 } 1514 return GlobalDecl(); 1515 } 1516 1517 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1518 return getModule().getNamedValue(Name); 1519 } 1520 1521 /// AddGlobalCtor - Add a function to the list that will be called before 1522 /// main() runs. 1523 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1524 llvm::Constant *AssociatedData) { 1525 // FIXME: Type coercion of void()* types. 1526 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1527 } 1528 1529 /// AddGlobalDtor - Add a function to the list that will be called 1530 /// when the module is unloaded. 1531 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1532 bool IsDtorAttrFunc) { 1533 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1534 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1535 DtorsUsingAtExit[Priority].push_back(Dtor); 1536 return; 1537 } 1538 1539 // FIXME: Type coercion of void()* types. 1540 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1541 } 1542 1543 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1544 if (Fns.empty()) return; 1545 1546 // Ctor function type is void()*. 1547 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1548 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1549 TheModule.getDataLayout().getProgramAddressSpace()); 1550 1551 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1552 llvm::StructType *CtorStructTy = llvm::StructType::get( 1553 Int32Ty, CtorPFTy, VoidPtrTy); 1554 1555 // Construct the constructor and destructor arrays. 1556 ConstantInitBuilder builder(*this); 1557 auto ctors = builder.beginArray(CtorStructTy); 1558 for (const auto &I : Fns) { 1559 auto ctor = ctors.beginStruct(CtorStructTy); 1560 ctor.addInt(Int32Ty, I.Priority); 1561 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1562 if (I.AssociatedData) 1563 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1564 else 1565 ctor.addNullPointer(VoidPtrTy); 1566 ctor.finishAndAddTo(ctors); 1567 } 1568 1569 auto list = 1570 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1571 /*constant*/ false, 1572 llvm::GlobalValue::AppendingLinkage); 1573 1574 // The LTO linker doesn't seem to like it when we set an alignment 1575 // on appending variables. Take it off as a workaround. 1576 list->setAlignment(llvm::None); 1577 1578 Fns.clear(); 1579 } 1580 1581 llvm::GlobalValue::LinkageTypes 1582 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1583 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1584 1585 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1586 1587 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1588 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1589 1590 if (isa<CXXConstructorDecl>(D) && 1591 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1592 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1593 // Our approach to inheriting constructors is fundamentally different from 1594 // that used by the MS ABI, so keep our inheriting constructor thunks 1595 // internal rather than trying to pick an unambiguous mangling for them. 1596 return llvm::GlobalValue::InternalLinkage; 1597 } 1598 1599 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1600 } 1601 1602 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1603 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1604 if (!MDS) return nullptr; 1605 1606 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1607 } 1608 1609 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1610 const CGFunctionInfo &Info, 1611 llvm::Function *F, bool IsThunk) { 1612 unsigned CallingConv; 1613 llvm::AttributeList PAL; 1614 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1615 /*AttrOnCallSite=*/false, IsThunk); 1616 F->setAttributes(PAL); 1617 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1618 } 1619 1620 static void removeImageAccessQualifier(std::string& TyName) { 1621 std::string ReadOnlyQual("__read_only"); 1622 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1623 if (ReadOnlyPos != std::string::npos) 1624 // "+ 1" for the space after access qualifier. 1625 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1626 else { 1627 std::string WriteOnlyQual("__write_only"); 1628 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1629 if (WriteOnlyPos != std::string::npos) 1630 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1631 else { 1632 std::string ReadWriteQual("__read_write"); 1633 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1634 if (ReadWritePos != std::string::npos) 1635 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1636 } 1637 } 1638 } 1639 1640 // Returns the address space id that should be produced to the 1641 // kernel_arg_addr_space metadata. This is always fixed to the ids 1642 // as specified in the SPIR 2.0 specification in order to differentiate 1643 // for example in clGetKernelArgInfo() implementation between the address 1644 // spaces with targets without unique mapping to the OpenCL address spaces 1645 // (basically all single AS CPUs). 1646 static unsigned ArgInfoAddressSpace(LangAS AS) { 1647 switch (AS) { 1648 case LangAS::opencl_global: 1649 return 1; 1650 case LangAS::opencl_constant: 1651 return 2; 1652 case LangAS::opencl_local: 1653 return 3; 1654 case LangAS::opencl_generic: 1655 return 4; // Not in SPIR 2.0 specs. 1656 case LangAS::opencl_global_device: 1657 return 5; 1658 case LangAS::opencl_global_host: 1659 return 6; 1660 default: 1661 return 0; // Assume private. 1662 } 1663 } 1664 1665 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1666 const FunctionDecl *FD, 1667 CodeGenFunction *CGF) { 1668 assert(((FD && CGF) || (!FD && !CGF)) && 1669 "Incorrect use - FD and CGF should either be both null or not!"); 1670 // Create MDNodes that represent the kernel arg metadata. 1671 // Each MDNode is a list in the form of "key", N number of values which is 1672 // the same number of values as their are kernel arguments. 1673 1674 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1675 1676 // MDNode for the kernel argument address space qualifiers. 1677 SmallVector<llvm::Metadata *, 8> addressQuals; 1678 1679 // MDNode for the kernel argument access qualifiers (images only). 1680 SmallVector<llvm::Metadata *, 8> accessQuals; 1681 1682 // MDNode for the kernel argument type names. 1683 SmallVector<llvm::Metadata *, 8> argTypeNames; 1684 1685 // MDNode for the kernel argument base type names. 1686 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1687 1688 // MDNode for the kernel argument type qualifiers. 1689 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1690 1691 // MDNode for the kernel argument names. 1692 SmallVector<llvm::Metadata *, 8> argNames; 1693 1694 if (FD && CGF) 1695 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1696 const ParmVarDecl *parm = FD->getParamDecl(i); 1697 QualType ty = parm->getType(); 1698 std::string typeQuals; 1699 1700 // Get image and pipe access qualifier: 1701 if (ty->isImageType() || ty->isPipeType()) { 1702 const Decl *PDecl = parm; 1703 if (auto *TD = dyn_cast<TypedefType>(ty)) 1704 PDecl = TD->getDecl(); 1705 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1706 if (A && A->isWriteOnly()) 1707 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1708 else if (A && A->isReadWrite()) 1709 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1710 else 1711 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1712 } else 1713 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1714 1715 // Get argument name. 1716 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1717 1718 auto getTypeSpelling = [&](QualType Ty) { 1719 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1720 1721 if (Ty.isCanonical()) { 1722 StringRef typeNameRef = typeName; 1723 // Turn "unsigned type" to "utype" 1724 if (typeNameRef.consume_front("unsigned ")) 1725 return std::string("u") + typeNameRef.str(); 1726 if (typeNameRef.consume_front("signed ")) 1727 return typeNameRef.str(); 1728 } 1729 1730 return typeName; 1731 }; 1732 1733 if (ty->isPointerType()) { 1734 QualType pointeeTy = ty->getPointeeType(); 1735 1736 // Get address qualifier. 1737 addressQuals.push_back( 1738 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1739 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1740 1741 // Get argument type name. 1742 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1743 std::string baseTypeName = 1744 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1745 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1746 argBaseTypeNames.push_back( 1747 llvm::MDString::get(VMContext, baseTypeName)); 1748 1749 // Get argument type qualifiers: 1750 if (ty.isRestrictQualified()) 1751 typeQuals = "restrict"; 1752 if (pointeeTy.isConstQualified() || 1753 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1754 typeQuals += typeQuals.empty() ? "const" : " const"; 1755 if (pointeeTy.isVolatileQualified()) 1756 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1757 } else { 1758 uint32_t AddrSpc = 0; 1759 bool isPipe = ty->isPipeType(); 1760 if (ty->isImageType() || isPipe) 1761 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1762 1763 addressQuals.push_back( 1764 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1765 1766 // Get argument type name. 1767 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1768 std::string typeName = getTypeSpelling(ty); 1769 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1770 1771 // Remove access qualifiers on images 1772 // (as they are inseparable from type in clang implementation, 1773 // but OpenCL spec provides a special query to get access qualifier 1774 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1775 if (ty->isImageType()) { 1776 removeImageAccessQualifier(typeName); 1777 removeImageAccessQualifier(baseTypeName); 1778 } 1779 1780 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1781 argBaseTypeNames.push_back( 1782 llvm::MDString::get(VMContext, baseTypeName)); 1783 1784 if (isPipe) 1785 typeQuals = "pipe"; 1786 } 1787 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1788 } 1789 1790 Fn->setMetadata("kernel_arg_addr_space", 1791 llvm::MDNode::get(VMContext, addressQuals)); 1792 Fn->setMetadata("kernel_arg_access_qual", 1793 llvm::MDNode::get(VMContext, accessQuals)); 1794 Fn->setMetadata("kernel_arg_type", 1795 llvm::MDNode::get(VMContext, argTypeNames)); 1796 Fn->setMetadata("kernel_arg_base_type", 1797 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1798 Fn->setMetadata("kernel_arg_type_qual", 1799 llvm::MDNode::get(VMContext, argTypeQuals)); 1800 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1801 Fn->setMetadata("kernel_arg_name", 1802 llvm::MDNode::get(VMContext, argNames)); 1803 } 1804 1805 /// Determines whether the language options require us to model 1806 /// unwind exceptions. We treat -fexceptions as mandating this 1807 /// except under the fragile ObjC ABI with only ObjC exceptions 1808 /// enabled. This means, for example, that C with -fexceptions 1809 /// enables this. 1810 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1811 // If exceptions are completely disabled, obviously this is false. 1812 if (!LangOpts.Exceptions) return false; 1813 1814 // If C++ exceptions are enabled, this is true. 1815 if (LangOpts.CXXExceptions) return true; 1816 1817 // If ObjC exceptions are enabled, this depends on the ABI. 1818 if (LangOpts.ObjCExceptions) { 1819 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1820 } 1821 1822 return true; 1823 } 1824 1825 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1826 const CXXMethodDecl *MD) { 1827 // Check that the type metadata can ever actually be used by a call. 1828 if (!CGM.getCodeGenOpts().LTOUnit || 1829 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1830 return false; 1831 1832 // Only functions whose address can be taken with a member function pointer 1833 // need this sort of type metadata. 1834 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1835 !isa<CXXDestructorDecl>(MD); 1836 } 1837 1838 std::vector<const CXXRecordDecl *> 1839 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1840 llvm::SetVector<const CXXRecordDecl *> MostBases; 1841 1842 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1843 CollectMostBases = [&](const CXXRecordDecl *RD) { 1844 if (RD->getNumBases() == 0) 1845 MostBases.insert(RD); 1846 for (const CXXBaseSpecifier &B : RD->bases()) 1847 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1848 }; 1849 CollectMostBases(RD); 1850 return MostBases.takeVector(); 1851 } 1852 1853 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1854 llvm::Function *F) { 1855 llvm::AttrBuilder B(F->getContext()); 1856 1857 if (CodeGenOpts.UnwindTables) 1858 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1859 1860 if (CodeGenOpts.StackClashProtector) 1861 B.addAttribute("probe-stack", "inline-asm"); 1862 1863 if (!hasUnwindExceptions(LangOpts)) 1864 B.addAttribute(llvm::Attribute::NoUnwind); 1865 1866 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1867 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1868 B.addAttribute(llvm::Attribute::StackProtect); 1869 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1870 B.addAttribute(llvm::Attribute::StackProtectStrong); 1871 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1872 B.addAttribute(llvm::Attribute::StackProtectReq); 1873 } 1874 1875 if (!D) { 1876 // If we don't have a declaration to control inlining, the function isn't 1877 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1878 // disabled, mark the function as noinline. 1879 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1880 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1881 B.addAttribute(llvm::Attribute::NoInline); 1882 1883 F->addFnAttrs(B); 1884 return; 1885 } 1886 1887 // Track whether we need to add the optnone LLVM attribute, 1888 // starting with the default for this optimization level. 1889 bool ShouldAddOptNone = 1890 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1891 // We can't add optnone in the following cases, it won't pass the verifier. 1892 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1893 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1894 1895 // Add optnone, but do so only if the function isn't always_inline. 1896 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1897 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1898 B.addAttribute(llvm::Attribute::OptimizeNone); 1899 1900 // OptimizeNone implies noinline; we should not be inlining such functions. 1901 B.addAttribute(llvm::Attribute::NoInline); 1902 1903 // We still need to handle naked functions even though optnone subsumes 1904 // much of their semantics. 1905 if (D->hasAttr<NakedAttr>()) 1906 B.addAttribute(llvm::Attribute::Naked); 1907 1908 // OptimizeNone wins over OptimizeForSize and MinSize. 1909 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1910 F->removeFnAttr(llvm::Attribute::MinSize); 1911 } else if (D->hasAttr<NakedAttr>()) { 1912 // Naked implies noinline: we should not be inlining such functions. 1913 B.addAttribute(llvm::Attribute::Naked); 1914 B.addAttribute(llvm::Attribute::NoInline); 1915 } else if (D->hasAttr<NoDuplicateAttr>()) { 1916 B.addAttribute(llvm::Attribute::NoDuplicate); 1917 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1918 // Add noinline if the function isn't always_inline. 1919 B.addAttribute(llvm::Attribute::NoInline); 1920 } else if (D->hasAttr<AlwaysInlineAttr>() && 1921 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1922 // (noinline wins over always_inline, and we can't specify both in IR) 1923 B.addAttribute(llvm::Attribute::AlwaysInline); 1924 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1925 // If we're not inlining, then force everything that isn't always_inline to 1926 // carry an explicit noinline attribute. 1927 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1928 B.addAttribute(llvm::Attribute::NoInline); 1929 } else { 1930 // Otherwise, propagate the inline hint attribute and potentially use its 1931 // absence to mark things as noinline. 1932 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1933 // Search function and template pattern redeclarations for inline. 1934 auto CheckForInline = [](const FunctionDecl *FD) { 1935 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1936 return Redecl->isInlineSpecified(); 1937 }; 1938 if (any_of(FD->redecls(), CheckRedeclForInline)) 1939 return true; 1940 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1941 if (!Pattern) 1942 return false; 1943 return any_of(Pattern->redecls(), CheckRedeclForInline); 1944 }; 1945 if (CheckForInline(FD)) { 1946 B.addAttribute(llvm::Attribute::InlineHint); 1947 } else if (CodeGenOpts.getInlining() == 1948 CodeGenOptions::OnlyHintInlining && 1949 !FD->isInlined() && 1950 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1951 B.addAttribute(llvm::Attribute::NoInline); 1952 } 1953 } 1954 } 1955 1956 // Add other optimization related attributes if we are optimizing this 1957 // function. 1958 if (!D->hasAttr<OptimizeNoneAttr>()) { 1959 if (D->hasAttr<ColdAttr>()) { 1960 if (!ShouldAddOptNone) 1961 B.addAttribute(llvm::Attribute::OptimizeForSize); 1962 B.addAttribute(llvm::Attribute::Cold); 1963 } 1964 if (D->hasAttr<HotAttr>()) 1965 B.addAttribute(llvm::Attribute::Hot); 1966 if (D->hasAttr<MinSizeAttr>()) 1967 B.addAttribute(llvm::Attribute::MinSize); 1968 } 1969 1970 F->addFnAttrs(B); 1971 1972 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1973 if (alignment) 1974 F->setAlignment(llvm::Align(alignment)); 1975 1976 if (!D->hasAttr<AlignedAttr>()) 1977 if (LangOpts.FunctionAlignment) 1978 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1979 1980 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1981 // reserve a bit for differentiating between virtual and non-virtual member 1982 // functions. If the current target's C++ ABI requires this and this is a 1983 // member function, set its alignment accordingly. 1984 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1985 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1986 F->setAlignment(llvm::Align(2)); 1987 } 1988 1989 // In the cross-dso CFI mode with canonical jump tables, we want !type 1990 // attributes on definitions only. 1991 if (CodeGenOpts.SanitizeCfiCrossDso && 1992 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1993 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1994 // Skip available_externally functions. They won't be codegen'ed in the 1995 // current module anyway. 1996 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1997 CreateFunctionTypeMetadataForIcall(FD, F); 1998 } 1999 } 2000 2001 // Emit type metadata on member functions for member function pointer checks. 2002 // These are only ever necessary on definitions; we're guaranteed that the 2003 // definition will be present in the LTO unit as a result of LTO visibility. 2004 auto *MD = dyn_cast<CXXMethodDecl>(D); 2005 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2006 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2007 llvm::Metadata *Id = 2008 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2009 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2010 F->addTypeMetadata(0, Id); 2011 } 2012 } 2013 } 2014 2015 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2016 llvm::Function *F) { 2017 if (D->hasAttr<StrictFPAttr>()) { 2018 llvm::AttrBuilder FuncAttrs(F->getContext()); 2019 FuncAttrs.addAttribute("strictfp"); 2020 F->addFnAttrs(FuncAttrs); 2021 } 2022 } 2023 2024 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2025 const Decl *D = GD.getDecl(); 2026 if (isa_and_nonnull<NamedDecl>(D)) 2027 setGVProperties(GV, GD); 2028 else 2029 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2030 2031 if (D && D->hasAttr<UsedAttr>()) 2032 addUsedOrCompilerUsedGlobal(GV); 2033 2034 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2035 const auto *VD = cast<VarDecl>(D); 2036 if (VD->getType().isConstQualified() && 2037 VD->getStorageDuration() == SD_Static) 2038 addUsedOrCompilerUsedGlobal(GV); 2039 } 2040 } 2041 2042 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2043 llvm::AttrBuilder &Attrs) { 2044 // Add target-cpu and target-features attributes to functions. If 2045 // we have a decl for the function and it has a target attribute then 2046 // parse that and add it to the feature set. 2047 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2048 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2049 std::vector<std::string> Features; 2050 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2051 FD = FD ? FD->getMostRecentDecl() : FD; 2052 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2053 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2054 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2055 bool AddedAttr = false; 2056 if (TD || SD || TC) { 2057 llvm::StringMap<bool> FeatureMap; 2058 getContext().getFunctionFeatureMap(FeatureMap, GD); 2059 2060 // Produce the canonical string for this set of features. 2061 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2062 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2063 2064 // Now add the target-cpu and target-features to the function. 2065 // While we populated the feature map above, we still need to 2066 // get and parse the target attribute so we can get the cpu for 2067 // the function. 2068 if (TD) { 2069 ParsedTargetAttr ParsedAttr = TD->parse(); 2070 if (!ParsedAttr.Architecture.empty() && 2071 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2072 TargetCPU = ParsedAttr.Architecture; 2073 TuneCPU = ""; // Clear the tune CPU. 2074 } 2075 if (!ParsedAttr.Tune.empty() && 2076 getTarget().isValidCPUName(ParsedAttr.Tune)) 2077 TuneCPU = ParsedAttr.Tune; 2078 } 2079 2080 if (SD) { 2081 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2082 // favor this processor. 2083 TuneCPU = getTarget().getCPUSpecificTuneName( 2084 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2085 } 2086 } else { 2087 // Otherwise just add the existing target cpu and target features to the 2088 // function. 2089 Features = getTarget().getTargetOpts().Features; 2090 } 2091 2092 if (!TargetCPU.empty()) { 2093 Attrs.addAttribute("target-cpu", TargetCPU); 2094 AddedAttr = true; 2095 } 2096 if (!TuneCPU.empty()) { 2097 Attrs.addAttribute("tune-cpu", TuneCPU); 2098 AddedAttr = true; 2099 } 2100 if (!Features.empty()) { 2101 llvm::sort(Features); 2102 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2103 AddedAttr = true; 2104 } 2105 2106 return AddedAttr; 2107 } 2108 2109 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2110 llvm::GlobalObject *GO) { 2111 const Decl *D = GD.getDecl(); 2112 SetCommonAttributes(GD, GO); 2113 2114 if (D) { 2115 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2116 if (D->hasAttr<RetainAttr>()) 2117 addUsedGlobal(GV); 2118 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2119 GV->addAttribute("bss-section", SA->getName()); 2120 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2121 GV->addAttribute("data-section", SA->getName()); 2122 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2123 GV->addAttribute("rodata-section", SA->getName()); 2124 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2125 GV->addAttribute("relro-section", SA->getName()); 2126 } 2127 2128 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2129 if (D->hasAttr<RetainAttr>()) 2130 addUsedGlobal(F); 2131 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2132 if (!D->getAttr<SectionAttr>()) 2133 F->addFnAttr("implicit-section-name", SA->getName()); 2134 2135 llvm::AttrBuilder Attrs(F->getContext()); 2136 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2137 // We know that GetCPUAndFeaturesAttributes will always have the 2138 // newest set, since it has the newest possible FunctionDecl, so the 2139 // new ones should replace the old. 2140 llvm::AttributeMask RemoveAttrs; 2141 RemoveAttrs.addAttribute("target-cpu"); 2142 RemoveAttrs.addAttribute("target-features"); 2143 RemoveAttrs.addAttribute("tune-cpu"); 2144 F->removeFnAttrs(RemoveAttrs); 2145 F->addFnAttrs(Attrs); 2146 } 2147 } 2148 2149 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2150 GO->setSection(CSA->getName()); 2151 else if (const auto *SA = D->getAttr<SectionAttr>()) 2152 GO->setSection(SA->getName()); 2153 } 2154 2155 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2156 } 2157 2158 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2159 llvm::Function *F, 2160 const CGFunctionInfo &FI) { 2161 const Decl *D = GD.getDecl(); 2162 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2163 SetLLVMFunctionAttributesForDefinition(D, F); 2164 2165 F->setLinkage(llvm::Function::InternalLinkage); 2166 2167 setNonAliasAttributes(GD, F); 2168 } 2169 2170 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2171 // Set linkage and visibility in case we never see a definition. 2172 LinkageInfo LV = ND->getLinkageAndVisibility(); 2173 // Don't set internal linkage on declarations. 2174 // "extern_weak" is overloaded in LLVM; we probably should have 2175 // separate linkage types for this. 2176 if (isExternallyVisible(LV.getLinkage()) && 2177 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2178 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2179 } 2180 2181 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2182 llvm::Function *F) { 2183 // Only if we are checking indirect calls. 2184 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2185 return; 2186 2187 // Non-static class methods are handled via vtable or member function pointer 2188 // checks elsewhere. 2189 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2190 return; 2191 2192 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2193 F->addTypeMetadata(0, MD); 2194 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2195 2196 // Emit a hash-based bit set entry for cross-DSO calls. 2197 if (CodeGenOpts.SanitizeCfiCrossDso) 2198 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2199 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2200 } 2201 2202 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2203 bool IsIncompleteFunction, 2204 bool IsThunk) { 2205 2206 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2207 // If this is an intrinsic function, set the function's attributes 2208 // to the intrinsic's attributes. 2209 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2210 return; 2211 } 2212 2213 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2214 2215 if (!IsIncompleteFunction) 2216 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2217 IsThunk); 2218 2219 // Add the Returned attribute for "this", except for iOS 5 and earlier 2220 // where substantial code, including the libstdc++ dylib, was compiled with 2221 // GCC and does not actually return "this". 2222 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2223 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2224 assert(!F->arg_empty() && 2225 F->arg_begin()->getType() 2226 ->canLosslesslyBitCastTo(F->getReturnType()) && 2227 "unexpected this return"); 2228 F->addParamAttr(0, llvm::Attribute::Returned); 2229 } 2230 2231 // Only a few attributes are set on declarations; these may later be 2232 // overridden by a definition. 2233 2234 setLinkageForGV(F, FD); 2235 setGVProperties(F, FD); 2236 2237 // Setup target-specific attributes. 2238 if (!IsIncompleteFunction && F->isDeclaration()) 2239 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2240 2241 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2242 F->setSection(CSA->getName()); 2243 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2244 F->setSection(SA->getName()); 2245 2246 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2247 if (EA->isError()) 2248 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2249 else if (EA->isWarning()) 2250 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2251 } 2252 2253 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2254 if (FD->isInlineBuiltinDeclaration()) { 2255 const FunctionDecl *FDBody; 2256 bool HasBody = FD->hasBody(FDBody); 2257 (void)HasBody; 2258 assert(HasBody && "Inline builtin declarations should always have an " 2259 "available body!"); 2260 if (shouldEmitFunction(FDBody)) 2261 F->addFnAttr(llvm::Attribute::NoBuiltin); 2262 } 2263 2264 if (FD->isReplaceableGlobalAllocationFunction()) { 2265 // A replaceable global allocation function does not act like a builtin by 2266 // default, only if it is invoked by a new-expression or delete-expression. 2267 F->addFnAttr(llvm::Attribute::NoBuiltin); 2268 } 2269 2270 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2271 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2272 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2273 if (MD->isVirtual()) 2274 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2275 2276 // Don't emit entries for function declarations in the cross-DSO mode. This 2277 // is handled with better precision by the receiving DSO. But if jump tables 2278 // are non-canonical then we need type metadata in order to produce the local 2279 // jump table. 2280 if (!CodeGenOpts.SanitizeCfiCrossDso || 2281 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2282 CreateFunctionTypeMetadataForIcall(FD, F); 2283 2284 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2285 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2286 2287 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2288 // Annotate the callback behavior as metadata: 2289 // - The callback callee (as argument number). 2290 // - The callback payloads (as argument numbers). 2291 llvm::LLVMContext &Ctx = F->getContext(); 2292 llvm::MDBuilder MDB(Ctx); 2293 2294 // The payload indices are all but the first one in the encoding. The first 2295 // identifies the callback callee. 2296 int CalleeIdx = *CB->encoding_begin(); 2297 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2298 F->addMetadata(llvm::LLVMContext::MD_callback, 2299 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2300 CalleeIdx, PayloadIndices, 2301 /* VarArgsArePassed */ false)})); 2302 } 2303 } 2304 2305 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2306 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2307 "Only globals with definition can force usage."); 2308 LLVMUsed.emplace_back(GV); 2309 } 2310 2311 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2312 assert(!GV->isDeclaration() && 2313 "Only globals with definition can force usage."); 2314 LLVMCompilerUsed.emplace_back(GV); 2315 } 2316 2317 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2318 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2319 "Only globals with definition can force usage."); 2320 if (getTriple().isOSBinFormatELF()) 2321 LLVMCompilerUsed.emplace_back(GV); 2322 else 2323 LLVMUsed.emplace_back(GV); 2324 } 2325 2326 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2327 std::vector<llvm::WeakTrackingVH> &List) { 2328 // Don't create llvm.used if there is no need. 2329 if (List.empty()) 2330 return; 2331 2332 // Convert List to what ConstantArray needs. 2333 SmallVector<llvm::Constant*, 8> UsedArray; 2334 UsedArray.resize(List.size()); 2335 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2336 UsedArray[i] = 2337 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2338 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2339 } 2340 2341 if (UsedArray.empty()) 2342 return; 2343 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2344 2345 auto *GV = new llvm::GlobalVariable( 2346 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2347 llvm::ConstantArray::get(ATy, UsedArray), Name); 2348 2349 GV->setSection("llvm.metadata"); 2350 } 2351 2352 void CodeGenModule::emitLLVMUsed() { 2353 emitUsed(*this, "llvm.used", LLVMUsed); 2354 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2355 } 2356 2357 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2358 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2359 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2360 } 2361 2362 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2363 llvm::SmallString<32> Opt; 2364 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2365 if (Opt.empty()) 2366 return; 2367 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2368 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2369 } 2370 2371 void CodeGenModule::AddDependentLib(StringRef Lib) { 2372 auto &C = getLLVMContext(); 2373 if (getTarget().getTriple().isOSBinFormatELF()) { 2374 ELFDependentLibraries.push_back( 2375 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2376 return; 2377 } 2378 2379 llvm::SmallString<24> Opt; 2380 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2381 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2382 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2383 } 2384 2385 /// Add link options implied by the given module, including modules 2386 /// it depends on, using a postorder walk. 2387 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2388 SmallVectorImpl<llvm::MDNode *> &Metadata, 2389 llvm::SmallPtrSet<Module *, 16> &Visited) { 2390 // Import this module's parent. 2391 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2392 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2393 } 2394 2395 // Import this module's dependencies. 2396 for (Module *Import : llvm::reverse(Mod->Imports)) { 2397 if (Visited.insert(Import).second) 2398 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2399 } 2400 2401 // Add linker options to link against the libraries/frameworks 2402 // described by this module. 2403 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2404 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2405 2406 // For modules that use export_as for linking, use that module 2407 // name instead. 2408 if (Mod->UseExportAsModuleLinkName) 2409 return; 2410 2411 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2412 // Link against a framework. Frameworks are currently Darwin only, so we 2413 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2414 if (LL.IsFramework) { 2415 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2416 llvm::MDString::get(Context, LL.Library)}; 2417 2418 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2419 continue; 2420 } 2421 2422 // Link against a library. 2423 if (IsELF) { 2424 llvm::Metadata *Args[2] = { 2425 llvm::MDString::get(Context, "lib"), 2426 llvm::MDString::get(Context, LL.Library), 2427 }; 2428 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2429 } else { 2430 llvm::SmallString<24> Opt; 2431 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2432 auto *OptString = llvm::MDString::get(Context, Opt); 2433 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2434 } 2435 } 2436 } 2437 2438 void CodeGenModule::EmitModuleLinkOptions() { 2439 // Collect the set of all of the modules we want to visit to emit link 2440 // options, which is essentially the imported modules and all of their 2441 // non-explicit child modules. 2442 llvm::SetVector<clang::Module *> LinkModules; 2443 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2444 SmallVector<clang::Module *, 16> Stack; 2445 2446 // Seed the stack with imported modules. 2447 for (Module *M : ImportedModules) { 2448 // Do not add any link flags when an implementation TU of a module imports 2449 // a header of that same module. 2450 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2451 !getLangOpts().isCompilingModule()) 2452 continue; 2453 if (Visited.insert(M).second) 2454 Stack.push_back(M); 2455 } 2456 2457 // Find all of the modules to import, making a little effort to prune 2458 // non-leaf modules. 2459 while (!Stack.empty()) { 2460 clang::Module *Mod = Stack.pop_back_val(); 2461 2462 bool AnyChildren = false; 2463 2464 // Visit the submodules of this module. 2465 for (const auto &SM : Mod->submodules()) { 2466 // Skip explicit children; they need to be explicitly imported to be 2467 // linked against. 2468 if (SM->IsExplicit) 2469 continue; 2470 2471 if (Visited.insert(SM).second) { 2472 Stack.push_back(SM); 2473 AnyChildren = true; 2474 } 2475 } 2476 2477 // We didn't find any children, so add this module to the list of 2478 // modules to link against. 2479 if (!AnyChildren) { 2480 LinkModules.insert(Mod); 2481 } 2482 } 2483 2484 // Add link options for all of the imported modules in reverse topological 2485 // order. We don't do anything to try to order import link flags with respect 2486 // to linker options inserted by things like #pragma comment(). 2487 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2488 Visited.clear(); 2489 for (Module *M : LinkModules) 2490 if (Visited.insert(M).second) 2491 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2492 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2493 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2494 2495 // Add the linker options metadata flag. 2496 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2497 for (auto *MD : LinkerOptionsMetadata) 2498 NMD->addOperand(MD); 2499 } 2500 2501 void CodeGenModule::EmitDeferred() { 2502 // Emit deferred declare target declarations. 2503 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2504 getOpenMPRuntime().emitDeferredTargetDecls(); 2505 2506 // Emit code for any potentially referenced deferred decls. Since a 2507 // previously unused static decl may become used during the generation of code 2508 // for a static function, iterate until no changes are made. 2509 2510 if (!DeferredVTables.empty()) { 2511 EmitDeferredVTables(); 2512 2513 // Emitting a vtable doesn't directly cause more vtables to 2514 // become deferred, although it can cause functions to be 2515 // emitted that then need those vtables. 2516 assert(DeferredVTables.empty()); 2517 } 2518 2519 // Emit CUDA/HIP static device variables referenced by host code only. 2520 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2521 // needed for further handling. 2522 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2523 llvm::append_range(DeferredDeclsToEmit, 2524 getContext().CUDADeviceVarODRUsedByHost); 2525 2526 // Stop if we're out of both deferred vtables and deferred declarations. 2527 if (DeferredDeclsToEmit.empty()) 2528 return; 2529 2530 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2531 // work, it will not interfere with this. 2532 std::vector<GlobalDecl> CurDeclsToEmit; 2533 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2534 2535 for (GlobalDecl &D : CurDeclsToEmit) { 2536 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2537 // to get GlobalValue with exactly the type we need, not something that 2538 // might had been created for another decl with the same mangled name but 2539 // different type. 2540 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2541 GetAddrOfGlobal(D, ForDefinition)); 2542 2543 // In case of different address spaces, we may still get a cast, even with 2544 // IsForDefinition equal to true. Query mangled names table to get 2545 // GlobalValue. 2546 if (!GV) 2547 GV = GetGlobalValue(getMangledName(D)); 2548 2549 // Make sure GetGlobalValue returned non-null. 2550 assert(GV); 2551 2552 // Check to see if we've already emitted this. This is necessary 2553 // for a couple of reasons: first, decls can end up in the 2554 // deferred-decls queue multiple times, and second, decls can end 2555 // up with definitions in unusual ways (e.g. by an extern inline 2556 // function acquiring a strong function redefinition). Just 2557 // ignore these cases. 2558 if (!GV->isDeclaration()) 2559 continue; 2560 2561 // If this is OpenMP, check if it is legal to emit this global normally. 2562 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2563 continue; 2564 2565 // Otherwise, emit the definition and move on to the next one. 2566 EmitGlobalDefinition(D, GV); 2567 2568 // If we found out that we need to emit more decls, do that recursively. 2569 // This has the advantage that the decls are emitted in a DFS and related 2570 // ones are close together, which is convenient for testing. 2571 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2572 EmitDeferred(); 2573 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2574 } 2575 } 2576 } 2577 2578 void CodeGenModule::EmitVTablesOpportunistically() { 2579 // Try to emit external vtables as available_externally if they have emitted 2580 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2581 // is not allowed to create new references to things that need to be emitted 2582 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2583 2584 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2585 && "Only emit opportunistic vtables with optimizations"); 2586 2587 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2588 assert(getVTables().isVTableExternal(RD) && 2589 "This queue should only contain external vtables"); 2590 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2591 VTables.GenerateClassData(RD); 2592 } 2593 OpportunisticVTables.clear(); 2594 } 2595 2596 void CodeGenModule::EmitGlobalAnnotations() { 2597 if (Annotations.empty()) 2598 return; 2599 2600 // Create a new global variable for the ConstantStruct in the Module. 2601 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2602 Annotations[0]->getType(), Annotations.size()), Annotations); 2603 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2604 llvm::GlobalValue::AppendingLinkage, 2605 Array, "llvm.global.annotations"); 2606 gv->setSection(AnnotationSection); 2607 } 2608 2609 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2610 llvm::Constant *&AStr = AnnotationStrings[Str]; 2611 if (AStr) 2612 return AStr; 2613 2614 // Not found yet, create a new global. 2615 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2616 auto *gv = 2617 new llvm::GlobalVariable(getModule(), s->getType(), true, 2618 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2619 gv->setSection(AnnotationSection); 2620 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2621 AStr = gv; 2622 return gv; 2623 } 2624 2625 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2626 SourceManager &SM = getContext().getSourceManager(); 2627 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2628 if (PLoc.isValid()) 2629 return EmitAnnotationString(PLoc.getFilename()); 2630 return EmitAnnotationString(SM.getBufferName(Loc)); 2631 } 2632 2633 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2634 SourceManager &SM = getContext().getSourceManager(); 2635 PresumedLoc PLoc = SM.getPresumedLoc(L); 2636 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2637 SM.getExpansionLineNumber(L); 2638 return llvm::ConstantInt::get(Int32Ty, LineNo); 2639 } 2640 2641 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2642 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2643 if (Exprs.empty()) 2644 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2645 2646 llvm::FoldingSetNodeID ID; 2647 for (Expr *E : Exprs) { 2648 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2649 } 2650 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2651 if (Lookup) 2652 return Lookup; 2653 2654 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2655 LLVMArgs.reserve(Exprs.size()); 2656 ConstantEmitter ConstEmiter(*this); 2657 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2658 const auto *CE = cast<clang::ConstantExpr>(E); 2659 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2660 CE->getType()); 2661 }); 2662 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2663 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2664 llvm::GlobalValue::PrivateLinkage, Struct, 2665 ".args"); 2666 GV->setSection(AnnotationSection); 2667 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2668 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2669 2670 Lookup = Bitcasted; 2671 return Bitcasted; 2672 } 2673 2674 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2675 const AnnotateAttr *AA, 2676 SourceLocation L) { 2677 // Get the globals for file name, annotation, and the line number. 2678 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2679 *UnitGV = EmitAnnotationUnit(L), 2680 *LineNoCst = EmitAnnotationLineNo(L), 2681 *Args = EmitAnnotationArgs(AA); 2682 2683 llvm::Constant *GVInGlobalsAS = GV; 2684 if (GV->getAddressSpace() != 2685 getDataLayout().getDefaultGlobalsAddressSpace()) { 2686 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2687 GV, GV->getValueType()->getPointerTo( 2688 getDataLayout().getDefaultGlobalsAddressSpace())); 2689 } 2690 2691 // Create the ConstantStruct for the global annotation. 2692 llvm::Constant *Fields[] = { 2693 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2694 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2695 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2696 LineNoCst, 2697 Args, 2698 }; 2699 return llvm::ConstantStruct::getAnon(Fields); 2700 } 2701 2702 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2703 llvm::GlobalValue *GV) { 2704 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2705 // Get the struct elements for these annotations. 2706 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2707 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2708 } 2709 2710 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2711 SourceLocation Loc) const { 2712 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2713 // NoSanitize by function name. 2714 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2715 return true; 2716 // NoSanitize by location. 2717 if (Loc.isValid()) 2718 return NoSanitizeL.containsLocation(Kind, Loc); 2719 // If location is unknown, this may be a compiler-generated function. Assume 2720 // it's located in the main file. 2721 auto &SM = Context.getSourceManager(); 2722 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2723 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2724 } 2725 return false; 2726 } 2727 2728 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2729 SourceLocation Loc, QualType Ty, 2730 StringRef Category) const { 2731 // For now globals can be ignored only in ASan and KASan. 2732 const SanitizerMask EnabledAsanMask = 2733 LangOpts.Sanitize.Mask & 2734 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2735 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2736 SanitizerKind::MemTag); 2737 if (!EnabledAsanMask) 2738 return false; 2739 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2740 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2741 return true; 2742 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2743 return true; 2744 // Check global type. 2745 if (!Ty.isNull()) { 2746 // Drill down the array types: if global variable of a fixed type is 2747 // not sanitized, we also don't instrument arrays of them. 2748 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2749 Ty = AT->getElementType(); 2750 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2751 // Only record types (classes, structs etc.) are ignored. 2752 if (Ty->isRecordType()) { 2753 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2754 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2755 return true; 2756 } 2757 } 2758 return false; 2759 } 2760 2761 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2762 StringRef Category) const { 2763 const auto &XRayFilter = getContext().getXRayFilter(); 2764 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2765 auto Attr = ImbueAttr::NONE; 2766 if (Loc.isValid()) 2767 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2768 if (Attr == ImbueAttr::NONE) 2769 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2770 switch (Attr) { 2771 case ImbueAttr::NONE: 2772 return false; 2773 case ImbueAttr::ALWAYS: 2774 Fn->addFnAttr("function-instrument", "xray-always"); 2775 break; 2776 case ImbueAttr::ALWAYS_ARG1: 2777 Fn->addFnAttr("function-instrument", "xray-always"); 2778 Fn->addFnAttr("xray-log-args", "1"); 2779 break; 2780 case ImbueAttr::NEVER: 2781 Fn->addFnAttr("function-instrument", "xray-never"); 2782 break; 2783 } 2784 return true; 2785 } 2786 2787 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2788 SourceLocation Loc) const { 2789 const auto &ProfileList = getContext().getProfileList(); 2790 // If the profile list is empty, then instrument everything. 2791 if (ProfileList.isEmpty()) 2792 return false; 2793 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2794 // First, check the function name. 2795 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2796 if (V.hasValue()) 2797 return *V; 2798 // Next, check the source location. 2799 if (Loc.isValid()) { 2800 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2801 if (V.hasValue()) 2802 return *V; 2803 } 2804 // If location is unknown, this may be a compiler-generated function. Assume 2805 // it's located in the main file. 2806 auto &SM = Context.getSourceManager(); 2807 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2808 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2809 if (V.hasValue()) 2810 return *V; 2811 } 2812 return ProfileList.getDefault(); 2813 } 2814 2815 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2816 // Never defer when EmitAllDecls is specified. 2817 if (LangOpts.EmitAllDecls) 2818 return true; 2819 2820 if (CodeGenOpts.KeepStaticConsts) { 2821 const auto *VD = dyn_cast<VarDecl>(Global); 2822 if (VD && VD->getType().isConstQualified() && 2823 VD->getStorageDuration() == SD_Static) 2824 return true; 2825 } 2826 2827 return getContext().DeclMustBeEmitted(Global); 2828 } 2829 2830 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2831 // In OpenMP 5.0 variables and function may be marked as 2832 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2833 // that they must be emitted on the host/device. To be sure we need to have 2834 // seen a declare target with an explicit mentioning of the function, we know 2835 // we have if the level of the declare target attribute is -1. Note that we 2836 // check somewhere else if we should emit this at all. 2837 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2838 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2839 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2840 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2841 return false; 2842 } 2843 2844 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2845 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2846 // Implicit template instantiations may change linkage if they are later 2847 // explicitly instantiated, so they should not be emitted eagerly. 2848 return false; 2849 } 2850 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2851 if (Context.getInlineVariableDefinitionKind(VD) == 2852 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2853 // A definition of an inline constexpr static data member may change 2854 // linkage later if it's redeclared outside the class. 2855 return false; 2856 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2857 // codegen for global variables, because they may be marked as threadprivate. 2858 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2859 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2860 !isTypeConstant(Global->getType(), false) && 2861 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2862 return false; 2863 2864 return true; 2865 } 2866 2867 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2868 StringRef Name = getMangledName(GD); 2869 2870 // The UUID descriptor should be pointer aligned. 2871 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2872 2873 // Look for an existing global. 2874 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2875 return ConstantAddress(GV, GV->getValueType(), Alignment); 2876 2877 ConstantEmitter Emitter(*this); 2878 llvm::Constant *Init; 2879 2880 APValue &V = GD->getAsAPValue(); 2881 if (!V.isAbsent()) { 2882 // If possible, emit the APValue version of the initializer. In particular, 2883 // this gets the type of the constant right. 2884 Init = Emitter.emitForInitializer( 2885 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2886 } else { 2887 // As a fallback, directly construct the constant. 2888 // FIXME: This may get padding wrong under esoteric struct layout rules. 2889 // MSVC appears to create a complete type 'struct __s_GUID' that it 2890 // presumably uses to represent these constants. 2891 MSGuidDecl::Parts Parts = GD->getParts(); 2892 llvm::Constant *Fields[4] = { 2893 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2894 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2895 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2896 llvm::ConstantDataArray::getRaw( 2897 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2898 Int8Ty)}; 2899 Init = llvm::ConstantStruct::getAnon(Fields); 2900 } 2901 2902 auto *GV = new llvm::GlobalVariable( 2903 getModule(), Init->getType(), 2904 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2905 if (supportsCOMDAT()) 2906 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2907 setDSOLocal(GV); 2908 2909 if (!V.isAbsent()) { 2910 Emitter.finalize(GV); 2911 return ConstantAddress(GV, GV->getValueType(), Alignment); 2912 } 2913 2914 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2915 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2916 GV, Ty->getPointerTo(GV->getAddressSpace())); 2917 return ConstantAddress(Addr, Ty, Alignment); 2918 } 2919 2920 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 2921 const UnnamedGlobalConstantDecl *GCD) { 2922 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 2923 2924 llvm::GlobalVariable **Entry = nullptr; 2925 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 2926 if (*Entry) 2927 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 2928 2929 ConstantEmitter Emitter(*this); 2930 llvm::Constant *Init; 2931 2932 const APValue &V = GCD->getValue(); 2933 2934 assert(!V.isAbsent()); 2935 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 2936 GCD->getType()); 2937 2938 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 2939 /*isConstant=*/true, 2940 llvm::GlobalValue::PrivateLinkage, Init, 2941 ".constant"); 2942 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2943 GV->setAlignment(Alignment.getAsAlign()); 2944 2945 Emitter.finalize(GV); 2946 2947 *Entry = GV; 2948 return ConstantAddress(GV, GV->getValueType(), Alignment); 2949 } 2950 2951 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2952 const TemplateParamObjectDecl *TPO) { 2953 StringRef Name = getMangledName(TPO); 2954 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2955 2956 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2957 return ConstantAddress(GV, GV->getValueType(), Alignment); 2958 2959 ConstantEmitter Emitter(*this); 2960 llvm::Constant *Init = Emitter.emitForInitializer( 2961 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2962 2963 if (!Init) { 2964 ErrorUnsupported(TPO, "template parameter object"); 2965 return ConstantAddress::invalid(); 2966 } 2967 2968 auto *GV = new llvm::GlobalVariable( 2969 getModule(), Init->getType(), 2970 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2971 if (supportsCOMDAT()) 2972 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2973 Emitter.finalize(GV); 2974 2975 return ConstantAddress(GV, GV->getValueType(), Alignment); 2976 } 2977 2978 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2979 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2980 assert(AA && "No alias?"); 2981 2982 CharUnits Alignment = getContext().getDeclAlign(VD); 2983 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2984 2985 // See if there is already something with the target's name in the module. 2986 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2987 if (Entry) { 2988 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2989 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2990 return ConstantAddress(Ptr, DeclTy, Alignment); 2991 } 2992 2993 llvm::Constant *Aliasee; 2994 if (isa<llvm::FunctionType>(DeclTy)) 2995 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2996 GlobalDecl(cast<FunctionDecl>(VD)), 2997 /*ForVTable=*/false); 2998 else 2999 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3000 nullptr); 3001 3002 auto *F = cast<llvm::GlobalValue>(Aliasee); 3003 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3004 WeakRefReferences.insert(F); 3005 3006 return ConstantAddress(Aliasee, DeclTy, Alignment); 3007 } 3008 3009 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3010 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3011 3012 // Weak references don't produce any output by themselves. 3013 if (Global->hasAttr<WeakRefAttr>()) 3014 return; 3015 3016 // If this is an alias definition (which otherwise looks like a declaration) 3017 // emit it now. 3018 if (Global->hasAttr<AliasAttr>()) 3019 return EmitAliasDefinition(GD); 3020 3021 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3022 if (Global->hasAttr<IFuncAttr>()) 3023 return emitIFuncDefinition(GD); 3024 3025 // If this is a cpu_dispatch multiversion function, emit the resolver. 3026 if (Global->hasAttr<CPUDispatchAttr>()) 3027 return emitCPUDispatchDefinition(GD); 3028 3029 // If this is CUDA, be selective about which declarations we emit. 3030 if (LangOpts.CUDA) { 3031 if (LangOpts.CUDAIsDevice) { 3032 if (!Global->hasAttr<CUDADeviceAttr>() && 3033 !Global->hasAttr<CUDAGlobalAttr>() && 3034 !Global->hasAttr<CUDAConstantAttr>() && 3035 !Global->hasAttr<CUDASharedAttr>() && 3036 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3037 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3038 return; 3039 } else { 3040 // We need to emit host-side 'shadows' for all global 3041 // device-side variables because the CUDA runtime needs their 3042 // size and host-side address in order to provide access to 3043 // their device-side incarnations. 3044 3045 // So device-only functions are the only things we skip. 3046 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3047 Global->hasAttr<CUDADeviceAttr>()) 3048 return; 3049 3050 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3051 "Expected Variable or Function"); 3052 } 3053 } 3054 3055 if (LangOpts.OpenMP) { 3056 // If this is OpenMP, check if it is legal to emit this global normally. 3057 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3058 return; 3059 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3060 if (MustBeEmitted(Global)) 3061 EmitOMPDeclareReduction(DRD); 3062 return; 3063 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3064 if (MustBeEmitted(Global)) 3065 EmitOMPDeclareMapper(DMD); 3066 return; 3067 } 3068 } 3069 3070 // Ignore declarations, they will be emitted on their first use. 3071 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3072 // Forward declarations are emitted lazily on first use. 3073 if (!FD->doesThisDeclarationHaveABody()) { 3074 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3075 return; 3076 3077 StringRef MangledName = getMangledName(GD); 3078 3079 // Compute the function info and LLVM type. 3080 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3081 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3082 3083 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3084 /*DontDefer=*/false); 3085 return; 3086 } 3087 } else { 3088 const auto *VD = cast<VarDecl>(Global); 3089 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3090 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3091 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3092 if (LangOpts.OpenMP) { 3093 // Emit declaration of the must-be-emitted declare target variable. 3094 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3095 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3096 bool UnifiedMemoryEnabled = 3097 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3098 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3099 !UnifiedMemoryEnabled) { 3100 (void)GetAddrOfGlobalVar(VD); 3101 } else { 3102 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3103 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3104 UnifiedMemoryEnabled)) && 3105 "Link clause or to clause with unified memory expected."); 3106 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3107 } 3108 3109 return; 3110 } 3111 } 3112 // If this declaration may have caused an inline variable definition to 3113 // change linkage, make sure that it's emitted. 3114 if (Context.getInlineVariableDefinitionKind(VD) == 3115 ASTContext::InlineVariableDefinitionKind::Strong) 3116 GetAddrOfGlobalVar(VD); 3117 return; 3118 } 3119 } 3120 3121 // Defer code generation to first use when possible, e.g. if this is an inline 3122 // function. If the global must always be emitted, do it eagerly if possible 3123 // to benefit from cache locality. 3124 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3125 // Emit the definition if it can't be deferred. 3126 EmitGlobalDefinition(GD); 3127 return; 3128 } 3129 3130 // If we're deferring emission of a C++ variable with an 3131 // initializer, remember the order in which it appeared in the file. 3132 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3133 cast<VarDecl>(Global)->hasInit()) { 3134 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3135 CXXGlobalInits.push_back(nullptr); 3136 } 3137 3138 StringRef MangledName = getMangledName(GD); 3139 if (GetGlobalValue(MangledName) != nullptr) { 3140 // The value has already been used and should therefore be emitted. 3141 addDeferredDeclToEmit(GD); 3142 } else if (MustBeEmitted(Global)) { 3143 // The value must be emitted, but cannot be emitted eagerly. 3144 assert(!MayBeEmittedEagerly(Global)); 3145 addDeferredDeclToEmit(GD); 3146 } else { 3147 // Otherwise, remember that we saw a deferred decl with this name. The 3148 // first use of the mangled name will cause it to move into 3149 // DeferredDeclsToEmit. 3150 DeferredDecls[MangledName] = GD; 3151 } 3152 } 3153 3154 // Check if T is a class type with a destructor that's not dllimport. 3155 static bool HasNonDllImportDtor(QualType T) { 3156 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3157 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3158 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3159 return true; 3160 3161 return false; 3162 } 3163 3164 namespace { 3165 struct FunctionIsDirectlyRecursive 3166 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3167 const StringRef Name; 3168 const Builtin::Context &BI; 3169 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3170 : Name(N), BI(C) {} 3171 3172 bool VisitCallExpr(const CallExpr *E) { 3173 const FunctionDecl *FD = E->getDirectCallee(); 3174 if (!FD) 3175 return false; 3176 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3177 if (Attr && Name == Attr->getLabel()) 3178 return true; 3179 unsigned BuiltinID = FD->getBuiltinID(); 3180 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3181 return false; 3182 StringRef BuiltinName = BI.getName(BuiltinID); 3183 if (BuiltinName.startswith("__builtin_") && 3184 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3185 return true; 3186 } 3187 return false; 3188 } 3189 3190 bool VisitStmt(const Stmt *S) { 3191 for (const Stmt *Child : S->children()) 3192 if (Child && this->Visit(Child)) 3193 return true; 3194 return false; 3195 } 3196 }; 3197 3198 // Make sure we're not referencing non-imported vars or functions. 3199 struct DLLImportFunctionVisitor 3200 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3201 bool SafeToInline = true; 3202 3203 bool shouldVisitImplicitCode() const { return true; } 3204 3205 bool VisitVarDecl(VarDecl *VD) { 3206 if (VD->getTLSKind()) { 3207 // A thread-local variable cannot be imported. 3208 SafeToInline = false; 3209 return SafeToInline; 3210 } 3211 3212 // A variable definition might imply a destructor call. 3213 if (VD->isThisDeclarationADefinition()) 3214 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3215 3216 return SafeToInline; 3217 } 3218 3219 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3220 if (const auto *D = E->getTemporary()->getDestructor()) 3221 SafeToInline = D->hasAttr<DLLImportAttr>(); 3222 return SafeToInline; 3223 } 3224 3225 bool VisitDeclRefExpr(DeclRefExpr *E) { 3226 ValueDecl *VD = E->getDecl(); 3227 if (isa<FunctionDecl>(VD)) 3228 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3229 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3230 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3231 return SafeToInline; 3232 } 3233 3234 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3235 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3236 return SafeToInline; 3237 } 3238 3239 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3240 CXXMethodDecl *M = E->getMethodDecl(); 3241 if (!M) { 3242 // Call through a pointer to member function. This is safe to inline. 3243 SafeToInline = true; 3244 } else { 3245 SafeToInline = M->hasAttr<DLLImportAttr>(); 3246 } 3247 return SafeToInline; 3248 } 3249 3250 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3251 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3252 return SafeToInline; 3253 } 3254 3255 bool VisitCXXNewExpr(CXXNewExpr *E) { 3256 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3257 return SafeToInline; 3258 } 3259 }; 3260 } 3261 3262 // isTriviallyRecursive - Check if this function calls another 3263 // decl that, because of the asm attribute or the other decl being a builtin, 3264 // ends up pointing to itself. 3265 bool 3266 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3267 StringRef Name; 3268 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3269 // asm labels are a special kind of mangling we have to support. 3270 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3271 if (!Attr) 3272 return false; 3273 Name = Attr->getLabel(); 3274 } else { 3275 Name = FD->getName(); 3276 } 3277 3278 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3279 const Stmt *Body = FD->getBody(); 3280 return Body ? Walker.Visit(Body) : false; 3281 } 3282 3283 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3284 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3285 return true; 3286 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3287 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3288 return false; 3289 3290 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3291 // Check whether it would be safe to inline this dllimport function. 3292 DLLImportFunctionVisitor Visitor; 3293 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3294 if (!Visitor.SafeToInline) 3295 return false; 3296 3297 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3298 // Implicit destructor invocations aren't captured in the AST, so the 3299 // check above can't see them. Check for them manually here. 3300 for (const Decl *Member : Dtor->getParent()->decls()) 3301 if (isa<FieldDecl>(Member)) 3302 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3303 return false; 3304 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3305 if (HasNonDllImportDtor(B.getType())) 3306 return false; 3307 } 3308 } 3309 3310 // Inline builtins declaration must be emitted. They often are fortified 3311 // functions. 3312 if (F->isInlineBuiltinDeclaration()) 3313 return true; 3314 3315 // PR9614. Avoid cases where the source code is lying to us. An available 3316 // externally function should have an equivalent function somewhere else, 3317 // but a function that calls itself through asm label/`__builtin_` trickery is 3318 // clearly not equivalent to the real implementation. 3319 // This happens in glibc's btowc and in some configure checks. 3320 return !isTriviallyRecursive(F); 3321 } 3322 3323 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3324 return CodeGenOpts.OptimizationLevel > 0; 3325 } 3326 3327 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3328 llvm::GlobalValue *GV) { 3329 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3330 3331 if (FD->isCPUSpecificMultiVersion()) { 3332 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3333 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3334 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3335 } else if (FD->isTargetClonesMultiVersion()) { 3336 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3337 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3338 if (Clone->isFirstOfVersion(I)) 3339 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3340 // Ensure that the resolver function is also emitted. 3341 GetOrCreateMultiVersionResolver(GD); 3342 } else 3343 EmitGlobalFunctionDefinition(GD, GV); 3344 } 3345 3346 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3347 const auto *D = cast<ValueDecl>(GD.getDecl()); 3348 3349 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3350 Context.getSourceManager(), 3351 "Generating code for declaration"); 3352 3353 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3354 // At -O0, don't generate IR for functions with available_externally 3355 // linkage. 3356 if (!shouldEmitFunction(GD)) 3357 return; 3358 3359 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3360 std::string Name; 3361 llvm::raw_string_ostream OS(Name); 3362 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3363 /*Qualified=*/true); 3364 return Name; 3365 }); 3366 3367 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3368 // Make sure to emit the definition(s) before we emit the thunks. 3369 // This is necessary for the generation of certain thunks. 3370 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3371 ABI->emitCXXStructor(GD); 3372 else if (FD->isMultiVersion()) 3373 EmitMultiVersionFunctionDefinition(GD, GV); 3374 else 3375 EmitGlobalFunctionDefinition(GD, GV); 3376 3377 if (Method->isVirtual()) 3378 getVTables().EmitThunks(GD); 3379 3380 return; 3381 } 3382 3383 if (FD->isMultiVersion()) 3384 return EmitMultiVersionFunctionDefinition(GD, GV); 3385 return EmitGlobalFunctionDefinition(GD, GV); 3386 } 3387 3388 if (const auto *VD = dyn_cast<VarDecl>(D)) 3389 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3390 3391 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3392 } 3393 3394 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3395 llvm::Function *NewFn); 3396 3397 static unsigned 3398 TargetMVPriority(const TargetInfo &TI, 3399 const CodeGenFunction::MultiVersionResolverOption &RO) { 3400 unsigned Priority = 0; 3401 for (StringRef Feat : RO.Conditions.Features) 3402 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3403 3404 if (!RO.Conditions.Architecture.empty()) 3405 Priority = std::max( 3406 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3407 return Priority; 3408 } 3409 3410 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3411 // TU can forward declare the function without causing problems. Particularly 3412 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3413 // work with internal linkage functions, so that the same function name can be 3414 // used with internal linkage in multiple TUs. 3415 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3416 GlobalDecl GD) { 3417 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3418 if (FD->getFormalLinkage() == InternalLinkage) 3419 return llvm::GlobalValue::InternalLinkage; 3420 return llvm::GlobalValue::WeakODRLinkage; 3421 } 3422 3423 void CodeGenModule::emitMultiVersionFunctions() { 3424 std::vector<GlobalDecl> MVFuncsToEmit; 3425 MultiVersionFuncs.swap(MVFuncsToEmit); 3426 for (GlobalDecl GD : MVFuncsToEmit) { 3427 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3428 assert(FD && "Expected a FunctionDecl"); 3429 3430 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3431 if (FD->isTargetMultiVersion()) { 3432 getContext().forEachMultiversionedFunctionVersion( 3433 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3434 GlobalDecl CurGD{ 3435 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3436 StringRef MangledName = getMangledName(CurGD); 3437 llvm::Constant *Func = GetGlobalValue(MangledName); 3438 if (!Func) { 3439 if (CurFD->isDefined()) { 3440 EmitGlobalFunctionDefinition(CurGD, nullptr); 3441 Func = GetGlobalValue(MangledName); 3442 } else { 3443 const CGFunctionInfo &FI = 3444 getTypes().arrangeGlobalDeclaration(GD); 3445 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3446 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3447 /*DontDefer=*/false, ForDefinition); 3448 } 3449 assert(Func && "This should have just been created"); 3450 } 3451 3452 const auto *TA = CurFD->getAttr<TargetAttr>(); 3453 llvm::SmallVector<StringRef, 8> Feats; 3454 TA->getAddedFeatures(Feats); 3455 3456 Options.emplace_back(cast<llvm::Function>(Func), 3457 TA->getArchitecture(), Feats); 3458 }); 3459 } else if (FD->isTargetClonesMultiVersion()) { 3460 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3461 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3462 ++VersionIndex) { 3463 if (!TC->isFirstOfVersion(VersionIndex)) 3464 continue; 3465 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3466 VersionIndex}; 3467 StringRef Version = TC->getFeatureStr(VersionIndex); 3468 StringRef MangledName = getMangledName(CurGD); 3469 llvm::Constant *Func = GetGlobalValue(MangledName); 3470 if (!Func) { 3471 if (FD->isDefined()) { 3472 EmitGlobalFunctionDefinition(CurGD, nullptr); 3473 Func = GetGlobalValue(MangledName); 3474 } else { 3475 const CGFunctionInfo &FI = 3476 getTypes().arrangeGlobalDeclaration(CurGD); 3477 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3478 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3479 /*DontDefer=*/false, ForDefinition); 3480 } 3481 assert(Func && "This should have just been created"); 3482 } 3483 3484 StringRef Architecture; 3485 llvm::SmallVector<StringRef, 1> Feature; 3486 3487 if (Version.startswith("arch=")) 3488 Architecture = Version.drop_front(sizeof("arch=") - 1); 3489 else if (Version != "default") 3490 Feature.push_back(Version); 3491 3492 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3493 } 3494 } else { 3495 assert(0 && "Expected a target or target_clones multiversion function"); 3496 continue; 3497 } 3498 3499 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3500 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3501 ResolverConstant = IFunc->getResolver(); 3502 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3503 3504 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3505 3506 if (supportsCOMDAT()) 3507 ResolverFunc->setComdat( 3508 getModule().getOrInsertComdat(ResolverFunc->getName())); 3509 3510 const TargetInfo &TI = getTarget(); 3511 llvm::stable_sort( 3512 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3513 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3514 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3515 }); 3516 CodeGenFunction CGF(*this); 3517 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3518 } 3519 3520 // Ensure that any additions to the deferred decls list caused by emitting a 3521 // variant are emitted. This can happen when the variant itself is inline and 3522 // calls a function without linkage. 3523 if (!MVFuncsToEmit.empty()) 3524 EmitDeferred(); 3525 3526 // Ensure that any additions to the multiversion funcs list from either the 3527 // deferred decls or the multiversion functions themselves are emitted. 3528 if (!MultiVersionFuncs.empty()) 3529 emitMultiVersionFunctions(); 3530 } 3531 3532 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3533 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3534 assert(FD && "Not a FunctionDecl?"); 3535 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3536 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3537 assert(DD && "Not a cpu_dispatch Function?"); 3538 3539 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3540 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3541 3542 StringRef ResolverName = getMangledName(GD); 3543 UpdateMultiVersionNames(GD, FD, ResolverName); 3544 3545 llvm::Type *ResolverType; 3546 GlobalDecl ResolverGD; 3547 if (getTarget().supportsIFunc()) { 3548 ResolverType = llvm::FunctionType::get( 3549 llvm::PointerType::get(DeclTy, 3550 Context.getTargetAddressSpace(FD->getType())), 3551 false); 3552 } 3553 else { 3554 ResolverType = DeclTy; 3555 ResolverGD = GD; 3556 } 3557 3558 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3559 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3560 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3561 if (supportsCOMDAT()) 3562 ResolverFunc->setComdat( 3563 getModule().getOrInsertComdat(ResolverFunc->getName())); 3564 3565 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3566 const TargetInfo &Target = getTarget(); 3567 unsigned Index = 0; 3568 for (const IdentifierInfo *II : DD->cpus()) { 3569 // Get the name of the target function so we can look it up/create it. 3570 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3571 getCPUSpecificMangling(*this, II->getName()); 3572 3573 llvm::Constant *Func = GetGlobalValue(MangledName); 3574 3575 if (!Func) { 3576 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3577 if (ExistingDecl.getDecl() && 3578 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3579 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3580 Func = GetGlobalValue(MangledName); 3581 } else { 3582 if (!ExistingDecl.getDecl()) 3583 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3584 3585 Func = GetOrCreateLLVMFunction( 3586 MangledName, DeclTy, ExistingDecl, 3587 /*ForVTable=*/false, /*DontDefer=*/true, 3588 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3589 } 3590 } 3591 3592 llvm::SmallVector<StringRef, 32> Features; 3593 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3594 llvm::transform(Features, Features.begin(), 3595 [](StringRef Str) { return Str.substr(1); }); 3596 llvm::erase_if(Features, [&Target](StringRef Feat) { 3597 return !Target.validateCpuSupports(Feat); 3598 }); 3599 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3600 ++Index; 3601 } 3602 3603 llvm::stable_sort( 3604 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3605 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3606 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3607 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3608 }); 3609 3610 // If the list contains multiple 'default' versions, such as when it contains 3611 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3612 // always run on at least a 'pentium'). We do this by deleting the 'least 3613 // advanced' (read, lowest mangling letter). 3614 while (Options.size() > 1 && 3615 llvm::X86::getCpuSupportsMask( 3616 (Options.end() - 2)->Conditions.Features) == 0) { 3617 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3618 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3619 if (LHSName.compare(RHSName) < 0) 3620 Options.erase(Options.end() - 2); 3621 else 3622 Options.erase(Options.end() - 1); 3623 } 3624 3625 CodeGenFunction CGF(*this); 3626 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3627 3628 if (getTarget().supportsIFunc()) { 3629 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3630 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3631 3632 // Fix up function declarations that were created for cpu_specific before 3633 // cpu_dispatch was known 3634 if (!dyn_cast<llvm::GlobalIFunc>(IFunc)) { 3635 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3636 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3637 &getModule()); 3638 GI->takeName(IFunc); 3639 IFunc->replaceAllUsesWith(GI); 3640 IFunc->eraseFromParent(); 3641 IFunc = GI; 3642 } 3643 3644 std::string AliasName = getMangledNameImpl( 3645 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3646 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3647 if (!AliasFunc) { 3648 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3649 &getModule()); 3650 SetCommonAttributes(GD, GA); 3651 } 3652 } 3653 } 3654 3655 /// If a dispatcher for the specified mangled name is not in the module, create 3656 /// and return an llvm Function with the specified type. 3657 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3658 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3659 assert(FD && "Not a FunctionDecl?"); 3660 3661 std::string MangledName = 3662 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3663 3664 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3665 // a separate resolver). 3666 std::string ResolverName = MangledName; 3667 if (getTarget().supportsIFunc()) 3668 ResolverName += ".ifunc"; 3669 else if (FD->isTargetMultiVersion()) 3670 ResolverName += ".resolver"; 3671 3672 // If the resolver has already been created, just return it. 3673 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3674 return ResolverGV; 3675 3676 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3677 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3678 3679 // The resolver needs to be created. For target and target_clones, defer 3680 // creation until the end of the TU. 3681 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3682 MultiVersionFuncs.push_back(GD); 3683 3684 // For cpu_specific, don't create an ifunc yet because we don't know if the 3685 // cpu_dispatch will be emitted in this translation unit. 3686 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3687 llvm::Type *ResolverType = llvm::FunctionType::get( 3688 llvm::PointerType::get( 3689 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3690 false); 3691 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3692 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3693 /*ForVTable=*/false); 3694 llvm::GlobalIFunc *GIF = 3695 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3696 "", Resolver, &getModule()); 3697 GIF->setName(ResolverName); 3698 SetCommonAttributes(FD, GIF); 3699 3700 return GIF; 3701 } 3702 3703 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3704 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3705 assert(isa<llvm::GlobalValue>(Resolver) && 3706 "Resolver should be created for the first time"); 3707 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3708 return Resolver; 3709 } 3710 3711 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3712 /// module, create and return an llvm Function with the specified type. If there 3713 /// is something in the module with the specified name, return it potentially 3714 /// bitcasted to the right type. 3715 /// 3716 /// If D is non-null, it specifies a decl that correspond to this. This is used 3717 /// to set the attributes on the function when it is first created. 3718 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3719 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3720 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3721 ForDefinition_t IsForDefinition) { 3722 const Decl *D = GD.getDecl(); 3723 3724 // Any attempts to use a MultiVersion function should result in retrieving 3725 // the iFunc instead. Name Mangling will handle the rest of the changes. 3726 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3727 // For the device mark the function as one that should be emitted. 3728 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3729 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3730 !DontDefer && !IsForDefinition) { 3731 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3732 GlobalDecl GDDef; 3733 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3734 GDDef = GlobalDecl(CD, GD.getCtorType()); 3735 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3736 GDDef = GlobalDecl(DD, GD.getDtorType()); 3737 else 3738 GDDef = GlobalDecl(FDDef); 3739 EmitGlobal(GDDef); 3740 } 3741 } 3742 3743 if (FD->isMultiVersion()) { 3744 UpdateMultiVersionNames(GD, FD, MangledName); 3745 if (!IsForDefinition) 3746 return GetOrCreateMultiVersionResolver(GD); 3747 } 3748 } 3749 3750 // Lookup the entry, lazily creating it if necessary. 3751 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3752 if (Entry) { 3753 if (WeakRefReferences.erase(Entry)) { 3754 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3755 if (FD && !FD->hasAttr<WeakAttr>()) 3756 Entry->setLinkage(llvm::Function::ExternalLinkage); 3757 } 3758 3759 // Handle dropped DLL attributes. 3760 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3761 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3762 setDSOLocal(Entry); 3763 } 3764 3765 // If there are two attempts to define the same mangled name, issue an 3766 // error. 3767 if (IsForDefinition && !Entry->isDeclaration()) { 3768 GlobalDecl OtherGD; 3769 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3770 // to make sure that we issue an error only once. 3771 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3772 (GD.getCanonicalDecl().getDecl() != 3773 OtherGD.getCanonicalDecl().getDecl()) && 3774 DiagnosedConflictingDefinitions.insert(GD).second) { 3775 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3776 << MangledName; 3777 getDiags().Report(OtherGD.getDecl()->getLocation(), 3778 diag::note_previous_definition); 3779 } 3780 } 3781 3782 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3783 (Entry->getValueType() == Ty)) { 3784 return Entry; 3785 } 3786 3787 // Make sure the result is of the correct type. 3788 // (If function is requested for a definition, we always need to create a new 3789 // function, not just return a bitcast.) 3790 if (!IsForDefinition) 3791 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3792 } 3793 3794 // This function doesn't have a complete type (for example, the return 3795 // type is an incomplete struct). Use a fake type instead, and make 3796 // sure not to try to set attributes. 3797 bool IsIncompleteFunction = false; 3798 3799 llvm::FunctionType *FTy; 3800 if (isa<llvm::FunctionType>(Ty)) { 3801 FTy = cast<llvm::FunctionType>(Ty); 3802 } else { 3803 FTy = llvm::FunctionType::get(VoidTy, false); 3804 IsIncompleteFunction = true; 3805 } 3806 3807 llvm::Function *F = 3808 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3809 Entry ? StringRef() : MangledName, &getModule()); 3810 3811 // If we already created a function with the same mangled name (but different 3812 // type) before, take its name and add it to the list of functions to be 3813 // replaced with F at the end of CodeGen. 3814 // 3815 // This happens if there is a prototype for a function (e.g. "int f()") and 3816 // then a definition of a different type (e.g. "int f(int x)"). 3817 if (Entry) { 3818 F->takeName(Entry); 3819 3820 // This might be an implementation of a function without a prototype, in 3821 // which case, try to do special replacement of calls which match the new 3822 // prototype. The really key thing here is that we also potentially drop 3823 // arguments from the call site so as to make a direct call, which makes the 3824 // inliner happier and suppresses a number of optimizer warnings (!) about 3825 // dropping arguments. 3826 if (!Entry->use_empty()) { 3827 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3828 Entry->removeDeadConstantUsers(); 3829 } 3830 3831 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3832 F, Entry->getValueType()->getPointerTo()); 3833 addGlobalValReplacement(Entry, BC); 3834 } 3835 3836 assert(F->getName() == MangledName && "name was uniqued!"); 3837 if (D) 3838 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3839 if (ExtraAttrs.hasFnAttrs()) { 3840 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3841 F->addFnAttrs(B); 3842 } 3843 3844 if (!DontDefer) { 3845 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3846 // each other bottoming out with the base dtor. Therefore we emit non-base 3847 // dtors on usage, even if there is no dtor definition in the TU. 3848 if (D && isa<CXXDestructorDecl>(D) && 3849 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3850 GD.getDtorType())) 3851 addDeferredDeclToEmit(GD); 3852 3853 // This is the first use or definition of a mangled name. If there is a 3854 // deferred decl with this name, remember that we need to emit it at the end 3855 // of the file. 3856 auto DDI = DeferredDecls.find(MangledName); 3857 if (DDI != DeferredDecls.end()) { 3858 // Move the potentially referenced deferred decl to the 3859 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3860 // don't need it anymore). 3861 addDeferredDeclToEmit(DDI->second); 3862 DeferredDecls.erase(DDI); 3863 3864 // Otherwise, there are cases we have to worry about where we're 3865 // using a declaration for which we must emit a definition but where 3866 // we might not find a top-level definition: 3867 // - member functions defined inline in their classes 3868 // - friend functions defined inline in some class 3869 // - special member functions with implicit definitions 3870 // If we ever change our AST traversal to walk into class methods, 3871 // this will be unnecessary. 3872 // 3873 // We also don't emit a definition for a function if it's going to be an 3874 // entry in a vtable, unless it's already marked as used. 3875 } else if (getLangOpts().CPlusPlus && D) { 3876 // Look for a declaration that's lexically in a record. 3877 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3878 FD = FD->getPreviousDecl()) { 3879 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3880 if (FD->doesThisDeclarationHaveABody()) { 3881 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3882 break; 3883 } 3884 } 3885 } 3886 } 3887 } 3888 3889 // Make sure the result is of the requested type. 3890 if (!IsIncompleteFunction) { 3891 assert(F->getFunctionType() == Ty); 3892 return F; 3893 } 3894 3895 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3896 return llvm::ConstantExpr::getBitCast(F, PTy); 3897 } 3898 3899 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3900 /// non-null, then this function will use the specified type if it has to 3901 /// create it (this occurs when we see a definition of the function). 3902 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3903 llvm::Type *Ty, 3904 bool ForVTable, 3905 bool DontDefer, 3906 ForDefinition_t IsForDefinition) { 3907 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3908 "consteval function should never be emitted"); 3909 // If there was no specific requested type, just convert it now. 3910 if (!Ty) { 3911 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3912 Ty = getTypes().ConvertType(FD->getType()); 3913 } 3914 3915 // Devirtualized destructor calls may come through here instead of via 3916 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3917 // of the complete destructor when necessary. 3918 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3919 if (getTarget().getCXXABI().isMicrosoft() && 3920 GD.getDtorType() == Dtor_Complete && 3921 DD->getParent()->getNumVBases() == 0) 3922 GD = GlobalDecl(DD, Dtor_Base); 3923 } 3924 3925 StringRef MangledName = getMangledName(GD); 3926 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3927 /*IsThunk=*/false, llvm::AttributeList(), 3928 IsForDefinition); 3929 // Returns kernel handle for HIP kernel stub function. 3930 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3931 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3932 auto *Handle = getCUDARuntime().getKernelHandle( 3933 cast<llvm::Function>(F->stripPointerCasts()), GD); 3934 if (IsForDefinition) 3935 return F; 3936 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3937 } 3938 return F; 3939 } 3940 3941 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 3942 llvm::GlobalValue *F = 3943 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 3944 3945 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 3946 llvm::Type::getInt8PtrTy(VMContext)); 3947 } 3948 3949 static const FunctionDecl * 3950 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3951 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3952 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3953 3954 IdentifierInfo &CII = C.Idents.get(Name); 3955 for (const auto *Result : DC->lookup(&CII)) 3956 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3957 return FD; 3958 3959 if (!C.getLangOpts().CPlusPlus) 3960 return nullptr; 3961 3962 // Demangle the premangled name from getTerminateFn() 3963 IdentifierInfo &CXXII = 3964 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3965 ? C.Idents.get("terminate") 3966 : C.Idents.get(Name); 3967 3968 for (const auto &N : {"__cxxabiv1", "std"}) { 3969 IdentifierInfo &NS = C.Idents.get(N); 3970 for (const auto *Result : DC->lookup(&NS)) { 3971 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3972 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3973 for (const auto *Result : LSD->lookup(&NS)) 3974 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3975 break; 3976 3977 if (ND) 3978 for (const auto *Result : ND->lookup(&CXXII)) 3979 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3980 return FD; 3981 } 3982 } 3983 3984 return nullptr; 3985 } 3986 3987 /// CreateRuntimeFunction - Create a new runtime function with the specified 3988 /// type and name. 3989 llvm::FunctionCallee 3990 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3991 llvm::AttributeList ExtraAttrs, bool Local, 3992 bool AssumeConvergent) { 3993 if (AssumeConvergent) { 3994 ExtraAttrs = 3995 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 3996 } 3997 3998 llvm::Constant *C = 3999 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4000 /*DontDefer=*/false, /*IsThunk=*/false, 4001 ExtraAttrs); 4002 4003 if (auto *F = dyn_cast<llvm::Function>(C)) { 4004 if (F->empty()) { 4005 F->setCallingConv(getRuntimeCC()); 4006 4007 // In Windows Itanium environments, try to mark runtime functions 4008 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4009 // will link their standard library statically or dynamically. Marking 4010 // functions imported when they are not imported can cause linker errors 4011 // and warnings. 4012 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4013 !getCodeGenOpts().LTOVisibilityPublicStd) { 4014 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4015 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4016 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4017 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4018 } 4019 } 4020 setDSOLocal(F); 4021 } 4022 } 4023 4024 return {FTy, C}; 4025 } 4026 4027 /// isTypeConstant - Determine whether an object of this type can be emitted 4028 /// as a constant. 4029 /// 4030 /// If ExcludeCtor is true, the duration when the object's constructor runs 4031 /// will not be considered. The caller will need to verify that the object is 4032 /// not written to during its construction. 4033 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4034 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4035 return false; 4036 4037 if (Context.getLangOpts().CPlusPlus) { 4038 if (const CXXRecordDecl *Record 4039 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4040 return ExcludeCtor && !Record->hasMutableFields() && 4041 Record->hasTrivialDestructor(); 4042 } 4043 4044 return true; 4045 } 4046 4047 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4048 /// create and return an llvm GlobalVariable with the specified type and address 4049 /// space. If there is something in the module with the specified name, return 4050 /// it potentially bitcasted to the right type. 4051 /// 4052 /// If D is non-null, it specifies a decl that correspond to this. This is used 4053 /// to set the attributes on the global when it is first created. 4054 /// 4055 /// If IsForDefinition is true, it is guaranteed that an actual global with 4056 /// type Ty will be returned, not conversion of a variable with the same 4057 /// mangled name but some other type. 4058 llvm::Constant * 4059 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4060 LangAS AddrSpace, const VarDecl *D, 4061 ForDefinition_t IsForDefinition) { 4062 // Lookup the entry, lazily creating it if necessary. 4063 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4064 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4065 if (Entry) { 4066 if (WeakRefReferences.erase(Entry)) { 4067 if (D && !D->hasAttr<WeakAttr>()) 4068 Entry->setLinkage(llvm::Function::ExternalLinkage); 4069 } 4070 4071 // Handle dropped DLL attributes. 4072 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 4073 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4074 4075 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4076 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4077 4078 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4079 return Entry; 4080 4081 // If there are two attempts to define the same mangled name, issue an 4082 // error. 4083 if (IsForDefinition && !Entry->isDeclaration()) { 4084 GlobalDecl OtherGD; 4085 const VarDecl *OtherD; 4086 4087 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4088 // to make sure that we issue an error only once. 4089 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4090 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4091 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4092 OtherD->hasInit() && 4093 DiagnosedConflictingDefinitions.insert(D).second) { 4094 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4095 << MangledName; 4096 getDiags().Report(OtherGD.getDecl()->getLocation(), 4097 diag::note_previous_definition); 4098 } 4099 } 4100 4101 // Make sure the result is of the correct type. 4102 if (Entry->getType()->getAddressSpace() != TargetAS) { 4103 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4104 Ty->getPointerTo(TargetAS)); 4105 } 4106 4107 // (If global is requested for a definition, we always need to create a new 4108 // global, not just return a bitcast.) 4109 if (!IsForDefinition) 4110 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4111 } 4112 4113 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4114 4115 auto *GV = new llvm::GlobalVariable( 4116 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4117 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4118 getContext().getTargetAddressSpace(DAddrSpace)); 4119 4120 // If we already created a global with the same mangled name (but different 4121 // type) before, take its name and remove it from its parent. 4122 if (Entry) { 4123 GV->takeName(Entry); 4124 4125 if (!Entry->use_empty()) { 4126 llvm::Constant *NewPtrForOldDecl = 4127 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4128 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4129 } 4130 4131 Entry->eraseFromParent(); 4132 } 4133 4134 // This is the first use or definition of a mangled name. If there is a 4135 // deferred decl with this name, remember that we need to emit it at the end 4136 // of the file. 4137 auto DDI = DeferredDecls.find(MangledName); 4138 if (DDI != DeferredDecls.end()) { 4139 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4140 // list, and remove it from DeferredDecls (since we don't need it anymore). 4141 addDeferredDeclToEmit(DDI->second); 4142 DeferredDecls.erase(DDI); 4143 } 4144 4145 // Handle things which are present even on external declarations. 4146 if (D) { 4147 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4148 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4149 4150 // FIXME: This code is overly simple and should be merged with other global 4151 // handling. 4152 GV->setConstant(isTypeConstant(D->getType(), false)); 4153 4154 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4155 4156 setLinkageForGV(GV, D); 4157 4158 if (D->getTLSKind()) { 4159 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4160 CXXThreadLocals.push_back(D); 4161 setTLSMode(GV, *D); 4162 } 4163 4164 setGVProperties(GV, D); 4165 4166 // If required by the ABI, treat declarations of static data members with 4167 // inline initializers as definitions. 4168 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4169 EmitGlobalVarDefinition(D); 4170 } 4171 4172 // Emit section information for extern variables. 4173 if (D->hasExternalStorage()) { 4174 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4175 GV->setSection(SA->getName()); 4176 } 4177 4178 // Handle XCore specific ABI requirements. 4179 if (getTriple().getArch() == llvm::Triple::xcore && 4180 D->getLanguageLinkage() == CLanguageLinkage && 4181 D->getType().isConstant(Context) && 4182 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4183 GV->setSection(".cp.rodata"); 4184 4185 // Check if we a have a const declaration with an initializer, we may be 4186 // able to emit it as available_externally to expose it's value to the 4187 // optimizer. 4188 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4189 D->getType().isConstQualified() && !GV->hasInitializer() && 4190 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4191 const auto *Record = 4192 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4193 bool HasMutableFields = Record && Record->hasMutableFields(); 4194 if (!HasMutableFields) { 4195 const VarDecl *InitDecl; 4196 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4197 if (InitExpr) { 4198 ConstantEmitter emitter(*this); 4199 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4200 if (Init) { 4201 auto *InitType = Init->getType(); 4202 if (GV->getValueType() != InitType) { 4203 // The type of the initializer does not match the definition. 4204 // This happens when an initializer has a different type from 4205 // the type of the global (because of padding at the end of a 4206 // structure for instance). 4207 GV->setName(StringRef()); 4208 // Make a new global with the correct type, this is now guaranteed 4209 // to work. 4210 auto *NewGV = cast<llvm::GlobalVariable>( 4211 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4212 ->stripPointerCasts()); 4213 4214 // Erase the old global, since it is no longer used. 4215 GV->eraseFromParent(); 4216 GV = NewGV; 4217 } else { 4218 GV->setInitializer(Init); 4219 GV->setConstant(true); 4220 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4221 } 4222 emitter.finalize(GV); 4223 } 4224 } 4225 } 4226 } 4227 } 4228 4229 if (GV->isDeclaration()) { 4230 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4231 // External HIP managed variables needed to be recorded for transformation 4232 // in both device and host compilations. 4233 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4234 D->hasExternalStorage()) 4235 getCUDARuntime().handleVarRegistration(D, *GV); 4236 } 4237 4238 LangAS ExpectedAS = 4239 D ? D->getType().getAddressSpace() 4240 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4241 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4242 if (DAddrSpace != ExpectedAS) { 4243 return getTargetCodeGenInfo().performAddrSpaceCast( 4244 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4245 } 4246 4247 return GV; 4248 } 4249 4250 llvm::Constant * 4251 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4252 const Decl *D = GD.getDecl(); 4253 4254 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4255 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4256 /*DontDefer=*/false, IsForDefinition); 4257 4258 if (isa<CXXMethodDecl>(D)) { 4259 auto FInfo = 4260 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4261 auto Ty = getTypes().GetFunctionType(*FInfo); 4262 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4263 IsForDefinition); 4264 } 4265 4266 if (isa<FunctionDecl>(D)) { 4267 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4268 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4269 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4270 IsForDefinition); 4271 } 4272 4273 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4274 } 4275 4276 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4277 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4278 unsigned Alignment) { 4279 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4280 llvm::GlobalVariable *OldGV = nullptr; 4281 4282 if (GV) { 4283 // Check if the variable has the right type. 4284 if (GV->getValueType() == Ty) 4285 return GV; 4286 4287 // Because C++ name mangling, the only way we can end up with an already 4288 // existing global with the same name is if it has been declared extern "C". 4289 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4290 OldGV = GV; 4291 } 4292 4293 // Create a new variable. 4294 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4295 Linkage, nullptr, Name); 4296 4297 if (OldGV) { 4298 // Replace occurrences of the old variable if needed. 4299 GV->takeName(OldGV); 4300 4301 if (!OldGV->use_empty()) { 4302 llvm::Constant *NewPtrForOldDecl = 4303 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4304 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4305 } 4306 4307 OldGV->eraseFromParent(); 4308 } 4309 4310 if (supportsCOMDAT() && GV->isWeakForLinker() && 4311 !GV->hasAvailableExternallyLinkage()) 4312 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4313 4314 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4315 4316 return GV; 4317 } 4318 4319 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4320 /// given global variable. If Ty is non-null and if the global doesn't exist, 4321 /// then it will be created with the specified type instead of whatever the 4322 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4323 /// that an actual global with type Ty will be returned, not conversion of a 4324 /// variable with the same mangled name but some other type. 4325 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4326 llvm::Type *Ty, 4327 ForDefinition_t IsForDefinition) { 4328 assert(D->hasGlobalStorage() && "Not a global variable"); 4329 QualType ASTTy = D->getType(); 4330 if (!Ty) 4331 Ty = getTypes().ConvertTypeForMem(ASTTy); 4332 4333 StringRef MangledName = getMangledName(D); 4334 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4335 IsForDefinition); 4336 } 4337 4338 /// CreateRuntimeVariable - Create a new runtime global variable with the 4339 /// specified type and name. 4340 llvm::Constant * 4341 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4342 StringRef Name) { 4343 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4344 : LangAS::Default; 4345 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4346 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4347 return Ret; 4348 } 4349 4350 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4351 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4352 4353 StringRef MangledName = getMangledName(D); 4354 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4355 4356 // We already have a definition, not declaration, with the same mangled name. 4357 // Emitting of declaration is not required (and actually overwrites emitted 4358 // definition). 4359 if (GV && !GV->isDeclaration()) 4360 return; 4361 4362 // If we have not seen a reference to this variable yet, place it into the 4363 // deferred declarations table to be emitted if needed later. 4364 if (!MustBeEmitted(D) && !GV) { 4365 DeferredDecls[MangledName] = D; 4366 return; 4367 } 4368 4369 // The tentative definition is the only definition. 4370 EmitGlobalVarDefinition(D); 4371 } 4372 4373 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4374 EmitExternalVarDeclaration(D); 4375 } 4376 4377 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4378 return Context.toCharUnitsFromBits( 4379 getDataLayout().getTypeStoreSizeInBits(Ty)); 4380 } 4381 4382 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4383 if (LangOpts.OpenCL) { 4384 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4385 assert(AS == LangAS::opencl_global || 4386 AS == LangAS::opencl_global_device || 4387 AS == LangAS::opencl_global_host || 4388 AS == LangAS::opencl_constant || 4389 AS == LangAS::opencl_local || 4390 AS >= LangAS::FirstTargetAddressSpace); 4391 return AS; 4392 } 4393 4394 if (LangOpts.SYCLIsDevice && 4395 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4396 return LangAS::sycl_global; 4397 4398 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4399 if (D && D->hasAttr<CUDAConstantAttr>()) 4400 return LangAS::cuda_constant; 4401 else if (D && D->hasAttr<CUDASharedAttr>()) 4402 return LangAS::cuda_shared; 4403 else if (D && D->hasAttr<CUDADeviceAttr>()) 4404 return LangAS::cuda_device; 4405 else if (D && D->getType().isConstQualified()) 4406 return LangAS::cuda_constant; 4407 else 4408 return LangAS::cuda_device; 4409 } 4410 4411 if (LangOpts.OpenMP) { 4412 LangAS AS; 4413 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4414 return AS; 4415 } 4416 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4417 } 4418 4419 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4420 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4421 if (LangOpts.OpenCL) 4422 return LangAS::opencl_constant; 4423 if (LangOpts.SYCLIsDevice) 4424 return LangAS::sycl_global; 4425 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4426 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4427 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4428 // with OpVariable instructions with Generic storage class which is not 4429 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4430 // UniformConstant storage class is not viable as pointers to it may not be 4431 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4432 return LangAS::cuda_device; 4433 if (auto AS = getTarget().getConstantAddressSpace()) 4434 return AS.getValue(); 4435 return LangAS::Default; 4436 } 4437 4438 // In address space agnostic languages, string literals are in default address 4439 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4440 // emitted in constant address space in LLVM IR. To be consistent with other 4441 // parts of AST, string literal global variables in constant address space 4442 // need to be casted to default address space before being put into address 4443 // map and referenced by other part of CodeGen. 4444 // In OpenCL, string literals are in constant address space in AST, therefore 4445 // they should not be casted to default address space. 4446 static llvm::Constant * 4447 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4448 llvm::GlobalVariable *GV) { 4449 llvm::Constant *Cast = GV; 4450 if (!CGM.getLangOpts().OpenCL) { 4451 auto AS = CGM.GetGlobalConstantAddressSpace(); 4452 if (AS != LangAS::Default) 4453 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4454 CGM, GV, AS, LangAS::Default, 4455 GV->getValueType()->getPointerTo( 4456 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4457 } 4458 return Cast; 4459 } 4460 4461 template<typename SomeDecl> 4462 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4463 llvm::GlobalValue *GV) { 4464 if (!getLangOpts().CPlusPlus) 4465 return; 4466 4467 // Must have 'used' attribute, or else inline assembly can't rely on 4468 // the name existing. 4469 if (!D->template hasAttr<UsedAttr>()) 4470 return; 4471 4472 // Must have internal linkage and an ordinary name. 4473 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4474 return; 4475 4476 // Must be in an extern "C" context. Entities declared directly within 4477 // a record are not extern "C" even if the record is in such a context. 4478 const SomeDecl *First = D->getFirstDecl(); 4479 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4480 return; 4481 4482 // OK, this is an internal linkage entity inside an extern "C" linkage 4483 // specification. Make a note of that so we can give it the "expected" 4484 // mangled name if nothing else is using that name. 4485 std::pair<StaticExternCMap::iterator, bool> R = 4486 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4487 4488 // If we have multiple internal linkage entities with the same name 4489 // in extern "C" regions, none of them gets that name. 4490 if (!R.second) 4491 R.first->second = nullptr; 4492 } 4493 4494 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4495 if (!CGM.supportsCOMDAT()) 4496 return false; 4497 4498 if (D.hasAttr<SelectAnyAttr>()) 4499 return true; 4500 4501 GVALinkage Linkage; 4502 if (auto *VD = dyn_cast<VarDecl>(&D)) 4503 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4504 else 4505 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4506 4507 switch (Linkage) { 4508 case GVA_Internal: 4509 case GVA_AvailableExternally: 4510 case GVA_StrongExternal: 4511 return false; 4512 case GVA_DiscardableODR: 4513 case GVA_StrongODR: 4514 return true; 4515 } 4516 llvm_unreachable("No such linkage"); 4517 } 4518 4519 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4520 llvm::GlobalObject &GO) { 4521 if (!shouldBeInCOMDAT(*this, D)) 4522 return; 4523 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4524 } 4525 4526 /// Pass IsTentative as true if you want to create a tentative definition. 4527 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4528 bool IsTentative) { 4529 // OpenCL global variables of sampler type are translated to function calls, 4530 // therefore no need to be translated. 4531 QualType ASTTy = D->getType(); 4532 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4533 return; 4534 4535 // If this is OpenMP device, check if it is legal to emit this global 4536 // normally. 4537 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4538 OpenMPRuntime->emitTargetGlobalVariable(D)) 4539 return; 4540 4541 llvm::TrackingVH<llvm::Constant> Init; 4542 bool NeedsGlobalCtor = false; 4543 bool NeedsGlobalDtor = 4544 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4545 4546 const VarDecl *InitDecl; 4547 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4548 4549 Optional<ConstantEmitter> emitter; 4550 4551 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4552 // as part of their declaration." Sema has already checked for 4553 // error cases, so we just need to set Init to UndefValue. 4554 bool IsCUDASharedVar = 4555 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4556 // Shadows of initialized device-side global variables are also left 4557 // undefined. 4558 // Managed Variables should be initialized on both host side and device side. 4559 bool IsCUDAShadowVar = 4560 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4561 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4562 D->hasAttr<CUDASharedAttr>()); 4563 bool IsCUDADeviceShadowVar = 4564 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4565 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4566 D->getType()->isCUDADeviceBuiltinTextureType()); 4567 if (getLangOpts().CUDA && 4568 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4569 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4570 else if (D->hasAttr<LoaderUninitializedAttr>()) 4571 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4572 else if (!InitExpr) { 4573 // This is a tentative definition; tentative definitions are 4574 // implicitly initialized with { 0 }. 4575 // 4576 // Note that tentative definitions are only emitted at the end of 4577 // a translation unit, so they should never have incomplete 4578 // type. In addition, EmitTentativeDefinition makes sure that we 4579 // never attempt to emit a tentative definition if a real one 4580 // exists. A use may still exists, however, so we still may need 4581 // to do a RAUW. 4582 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4583 Init = EmitNullConstant(D->getType()); 4584 } else { 4585 initializedGlobalDecl = GlobalDecl(D); 4586 emitter.emplace(*this); 4587 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4588 if (!Initializer) { 4589 QualType T = InitExpr->getType(); 4590 if (D->getType()->isReferenceType()) 4591 T = D->getType(); 4592 4593 if (getLangOpts().CPlusPlus) { 4594 Init = EmitNullConstant(T); 4595 NeedsGlobalCtor = true; 4596 } else { 4597 ErrorUnsupported(D, "static initializer"); 4598 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4599 } 4600 } else { 4601 Init = Initializer; 4602 // We don't need an initializer, so remove the entry for the delayed 4603 // initializer position (just in case this entry was delayed) if we 4604 // also don't need to register a destructor. 4605 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4606 DelayedCXXInitPosition.erase(D); 4607 } 4608 } 4609 4610 llvm::Type* InitType = Init->getType(); 4611 llvm::Constant *Entry = 4612 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4613 4614 // Strip off pointer casts if we got them. 4615 Entry = Entry->stripPointerCasts(); 4616 4617 // Entry is now either a Function or GlobalVariable. 4618 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4619 4620 // We have a definition after a declaration with the wrong type. 4621 // We must make a new GlobalVariable* and update everything that used OldGV 4622 // (a declaration or tentative definition) with the new GlobalVariable* 4623 // (which will be a definition). 4624 // 4625 // This happens if there is a prototype for a global (e.g. 4626 // "extern int x[];") and then a definition of a different type (e.g. 4627 // "int x[10];"). This also happens when an initializer has a different type 4628 // from the type of the global (this happens with unions). 4629 if (!GV || GV->getValueType() != InitType || 4630 GV->getType()->getAddressSpace() != 4631 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4632 4633 // Move the old entry aside so that we'll create a new one. 4634 Entry->setName(StringRef()); 4635 4636 // Make a new global with the correct type, this is now guaranteed to work. 4637 GV = cast<llvm::GlobalVariable>( 4638 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4639 ->stripPointerCasts()); 4640 4641 // Replace all uses of the old global with the new global 4642 llvm::Constant *NewPtrForOldDecl = 4643 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4644 Entry->getType()); 4645 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4646 4647 // Erase the old global, since it is no longer used. 4648 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4649 } 4650 4651 MaybeHandleStaticInExternC(D, GV); 4652 4653 if (D->hasAttr<AnnotateAttr>()) 4654 AddGlobalAnnotations(D, GV); 4655 4656 // Set the llvm linkage type as appropriate. 4657 llvm::GlobalValue::LinkageTypes Linkage = 4658 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4659 4660 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4661 // the device. [...]" 4662 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4663 // __device__, declares a variable that: [...] 4664 // Is accessible from all the threads within the grid and from the host 4665 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4666 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4667 if (GV && LangOpts.CUDA) { 4668 if (LangOpts.CUDAIsDevice) { 4669 if (Linkage != llvm::GlobalValue::InternalLinkage && 4670 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4671 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4672 D->getType()->isCUDADeviceBuiltinTextureType())) 4673 GV->setExternallyInitialized(true); 4674 } else { 4675 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4676 } 4677 getCUDARuntime().handleVarRegistration(D, *GV); 4678 } 4679 4680 GV->setInitializer(Init); 4681 if (emitter) 4682 emitter->finalize(GV); 4683 4684 // If it is safe to mark the global 'constant', do so now. 4685 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4686 isTypeConstant(D->getType(), true)); 4687 4688 // If it is in a read-only section, mark it 'constant'. 4689 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4690 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4691 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4692 GV->setConstant(true); 4693 } 4694 4695 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4696 4697 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4698 // function is only defined alongside the variable, not also alongside 4699 // callers. Normally, all accesses to a thread_local go through the 4700 // thread-wrapper in order to ensure initialization has occurred, underlying 4701 // variable will never be used other than the thread-wrapper, so it can be 4702 // converted to internal linkage. 4703 // 4704 // However, if the variable has the 'constinit' attribute, it _can_ be 4705 // referenced directly, without calling the thread-wrapper, so the linkage 4706 // must not be changed. 4707 // 4708 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4709 // weak or linkonce, the de-duplication semantics are important to preserve, 4710 // so we don't change the linkage. 4711 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4712 Linkage == llvm::GlobalValue::ExternalLinkage && 4713 Context.getTargetInfo().getTriple().isOSDarwin() && 4714 !D->hasAttr<ConstInitAttr>()) 4715 Linkage = llvm::GlobalValue::InternalLinkage; 4716 4717 GV->setLinkage(Linkage); 4718 if (D->hasAttr<DLLImportAttr>()) 4719 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4720 else if (D->hasAttr<DLLExportAttr>()) 4721 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4722 else 4723 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4724 4725 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4726 // common vars aren't constant even if declared const. 4727 GV->setConstant(false); 4728 // Tentative definition of global variables may be initialized with 4729 // non-zero null pointers. In this case they should have weak linkage 4730 // since common linkage must have zero initializer and must not have 4731 // explicit section therefore cannot have non-zero initial value. 4732 if (!GV->getInitializer()->isNullValue()) 4733 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4734 } 4735 4736 setNonAliasAttributes(D, GV); 4737 4738 if (D->getTLSKind() && !GV->isThreadLocal()) { 4739 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4740 CXXThreadLocals.push_back(D); 4741 setTLSMode(GV, *D); 4742 } 4743 4744 maybeSetTrivialComdat(*D, *GV); 4745 4746 // Emit the initializer function if necessary. 4747 if (NeedsGlobalCtor || NeedsGlobalDtor) 4748 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4749 4750 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4751 4752 // Emit global variable debug information. 4753 if (CGDebugInfo *DI = getModuleDebugInfo()) 4754 if (getCodeGenOpts().hasReducedDebugInfo()) 4755 DI->EmitGlobalVariable(GV, D); 4756 } 4757 4758 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4759 if (CGDebugInfo *DI = getModuleDebugInfo()) 4760 if (getCodeGenOpts().hasReducedDebugInfo()) { 4761 QualType ASTTy = D->getType(); 4762 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4763 llvm::Constant *GV = 4764 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4765 DI->EmitExternalVariable( 4766 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4767 } 4768 } 4769 4770 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4771 CodeGenModule &CGM, const VarDecl *D, 4772 bool NoCommon) { 4773 // Don't give variables common linkage if -fno-common was specified unless it 4774 // was overridden by a NoCommon attribute. 4775 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4776 return true; 4777 4778 // C11 6.9.2/2: 4779 // A declaration of an identifier for an object that has file scope without 4780 // an initializer, and without a storage-class specifier or with the 4781 // storage-class specifier static, constitutes a tentative definition. 4782 if (D->getInit() || D->hasExternalStorage()) 4783 return true; 4784 4785 // A variable cannot be both common and exist in a section. 4786 if (D->hasAttr<SectionAttr>()) 4787 return true; 4788 4789 // A variable cannot be both common and exist in a section. 4790 // We don't try to determine which is the right section in the front-end. 4791 // If no specialized section name is applicable, it will resort to default. 4792 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4793 D->hasAttr<PragmaClangDataSectionAttr>() || 4794 D->hasAttr<PragmaClangRelroSectionAttr>() || 4795 D->hasAttr<PragmaClangRodataSectionAttr>()) 4796 return true; 4797 4798 // Thread local vars aren't considered common linkage. 4799 if (D->getTLSKind()) 4800 return true; 4801 4802 // Tentative definitions marked with WeakImportAttr are true definitions. 4803 if (D->hasAttr<WeakImportAttr>()) 4804 return true; 4805 4806 // A variable cannot be both common and exist in a comdat. 4807 if (shouldBeInCOMDAT(CGM, *D)) 4808 return true; 4809 4810 // Declarations with a required alignment do not have common linkage in MSVC 4811 // mode. 4812 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4813 if (D->hasAttr<AlignedAttr>()) 4814 return true; 4815 QualType VarType = D->getType(); 4816 if (Context.isAlignmentRequired(VarType)) 4817 return true; 4818 4819 if (const auto *RT = VarType->getAs<RecordType>()) { 4820 const RecordDecl *RD = RT->getDecl(); 4821 for (const FieldDecl *FD : RD->fields()) { 4822 if (FD->isBitField()) 4823 continue; 4824 if (FD->hasAttr<AlignedAttr>()) 4825 return true; 4826 if (Context.isAlignmentRequired(FD->getType())) 4827 return true; 4828 } 4829 } 4830 } 4831 4832 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4833 // common symbols, so symbols with greater alignment requirements cannot be 4834 // common. 4835 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4836 // alignments for common symbols via the aligncomm directive, so this 4837 // restriction only applies to MSVC environments. 4838 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4839 Context.getTypeAlignIfKnown(D->getType()) > 4840 Context.toBits(CharUnits::fromQuantity(32))) 4841 return true; 4842 4843 return false; 4844 } 4845 4846 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4847 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4848 if (Linkage == GVA_Internal) 4849 return llvm::Function::InternalLinkage; 4850 4851 if (D->hasAttr<WeakAttr>()) { 4852 if (IsConstantVariable) 4853 return llvm::GlobalVariable::WeakODRLinkage; 4854 else 4855 return llvm::GlobalVariable::WeakAnyLinkage; 4856 } 4857 4858 if (const auto *FD = D->getAsFunction()) 4859 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4860 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4861 4862 // We are guaranteed to have a strong definition somewhere else, 4863 // so we can use available_externally linkage. 4864 if (Linkage == GVA_AvailableExternally) 4865 return llvm::GlobalValue::AvailableExternallyLinkage; 4866 4867 // Note that Apple's kernel linker doesn't support symbol 4868 // coalescing, so we need to avoid linkonce and weak linkages there. 4869 // Normally, this means we just map to internal, but for explicit 4870 // instantiations we'll map to external. 4871 4872 // In C++, the compiler has to emit a definition in every translation unit 4873 // that references the function. We should use linkonce_odr because 4874 // a) if all references in this translation unit are optimized away, we 4875 // don't need to codegen it. b) if the function persists, it needs to be 4876 // merged with other definitions. c) C++ has the ODR, so we know the 4877 // definition is dependable. 4878 if (Linkage == GVA_DiscardableODR) 4879 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4880 : llvm::Function::InternalLinkage; 4881 4882 // An explicit instantiation of a template has weak linkage, since 4883 // explicit instantiations can occur in multiple translation units 4884 // and must all be equivalent. However, we are not allowed to 4885 // throw away these explicit instantiations. 4886 // 4887 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4888 // so say that CUDA templates are either external (for kernels) or internal. 4889 // This lets llvm perform aggressive inter-procedural optimizations. For 4890 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4891 // therefore we need to follow the normal linkage paradigm. 4892 if (Linkage == GVA_StrongODR) { 4893 if (getLangOpts().AppleKext) 4894 return llvm::Function::ExternalLinkage; 4895 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4896 !getLangOpts().GPURelocatableDeviceCode) 4897 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4898 : llvm::Function::InternalLinkage; 4899 return llvm::Function::WeakODRLinkage; 4900 } 4901 4902 // C++ doesn't have tentative definitions and thus cannot have common 4903 // linkage. 4904 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4905 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4906 CodeGenOpts.NoCommon)) 4907 return llvm::GlobalVariable::CommonLinkage; 4908 4909 // selectany symbols are externally visible, so use weak instead of 4910 // linkonce. MSVC optimizes away references to const selectany globals, so 4911 // all definitions should be the same and ODR linkage should be used. 4912 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4913 if (D->hasAttr<SelectAnyAttr>()) 4914 return llvm::GlobalVariable::WeakODRLinkage; 4915 4916 // Otherwise, we have strong external linkage. 4917 assert(Linkage == GVA_StrongExternal); 4918 return llvm::GlobalVariable::ExternalLinkage; 4919 } 4920 4921 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4922 const VarDecl *VD, bool IsConstant) { 4923 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4924 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4925 } 4926 4927 /// Replace the uses of a function that was declared with a non-proto type. 4928 /// We want to silently drop extra arguments from call sites 4929 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4930 llvm::Function *newFn) { 4931 // Fast path. 4932 if (old->use_empty()) return; 4933 4934 llvm::Type *newRetTy = newFn->getReturnType(); 4935 SmallVector<llvm::Value*, 4> newArgs; 4936 4937 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4938 ui != ue; ) { 4939 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4940 llvm::User *user = use->getUser(); 4941 4942 // Recognize and replace uses of bitcasts. Most calls to 4943 // unprototyped functions will use bitcasts. 4944 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4945 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4946 replaceUsesOfNonProtoConstant(bitcast, newFn); 4947 continue; 4948 } 4949 4950 // Recognize calls to the function. 4951 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4952 if (!callSite) continue; 4953 if (!callSite->isCallee(&*use)) 4954 continue; 4955 4956 // If the return types don't match exactly, then we can't 4957 // transform this call unless it's dead. 4958 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4959 continue; 4960 4961 // Get the call site's attribute list. 4962 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4963 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4964 4965 // If the function was passed too few arguments, don't transform. 4966 unsigned newNumArgs = newFn->arg_size(); 4967 if (callSite->arg_size() < newNumArgs) 4968 continue; 4969 4970 // If extra arguments were passed, we silently drop them. 4971 // If any of the types mismatch, we don't transform. 4972 unsigned argNo = 0; 4973 bool dontTransform = false; 4974 for (llvm::Argument &A : newFn->args()) { 4975 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4976 dontTransform = true; 4977 break; 4978 } 4979 4980 // Add any parameter attributes. 4981 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 4982 argNo++; 4983 } 4984 if (dontTransform) 4985 continue; 4986 4987 // Okay, we can transform this. Create the new call instruction and copy 4988 // over the required information. 4989 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4990 4991 // Copy over any operand bundles. 4992 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4993 callSite->getOperandBundlesAsDefs(newBundles); 4994 4995 llvm::CallBase *newCall; 4996 if (isa<llvm::CallInst>(callSite)) { 4997 newCall = 4998 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4999 } else { 5000 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5001 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5002 oldInvoke->getUnwindDest(), newArgs, 5003 newBundles, "", callSite); 5004 } 5005 newArgs.clear(); // for the next iteration 5006 5007 if (!newCall->getType()->isVoidTy()) 5008 newCall->takeName(callSite); 5009 newCall->setAttributes( 5010 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5011 oldAttrs.getRetAttrs(), newArgAttrs)); 5012 newCall->setCallingConv(callSite->getCallingConv()); 5013 5014 // Finally, remove the old call, replacing any uses with the new one. 5015 if (!callSite->use_empty()) 5016 callSite->replaceAllUsesWith(newCall); 5017 5018 // Copy debug location attached to CI. 5019 if (callSite->getDebugLoc()) 5020 newCall->setDebugLoc(callSite->getDebugLoc()); 5021 5022 callSite->eraseFromParent(); 5023 } 5024 } 5025 5026 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5027 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5028 /// existing call uses of the old function in the module, this adjusts them to 5029 /// call the new function directly. 5030 /// 5031 /// This is not just a cleanup: the always_inline pass requires direct calls to 5032 /// functions to be able to inline them. If there is a bitcast in the way, it 5033 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5034 /// run at -O0. 5035 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5036 llvm::Function *NewFn) { 5037 // If we're redefining a global as a function, don't transform it. 5038 if (!isa<llvm::Function>(Old)) return; 5039 5040 replaceUsesOfNonProtoConstant(Old, NewFn); 5041 } 5042 5043 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5044 auto DK = VD->isThisDeclarationADefinition(); 5045 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5046 return; 5047 5048 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5049 // If we have a definition, this might be a deferred decl. If the 5050 // instantiation is explicit, make sure we emit it at the end. 5051 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5052 GetAddrOfGlobalVar(VD); 5053 5054 EmitTopLevelDecl(VD); 5055 } 5056 5057 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5058 llvm::GlobalValue *GV) { 5059 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5060 5061 // Compute the function info and LLVM type. 5062 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5063 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5064 5065 // Get or create the prototype for the function. 5066 if (!GV || (GV->getValueType() != Ty)) 5067 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5068 /*DontDefer=*/true, 5069 ForDefinition)); 5070 5071 // Already emitted. 5072 if (!GV->isDeclaration()) 5073 return; 5074 5075 // We need to set linkage and visibility on the function before 5076 // generating code for it because various parts of IR generation 5077 // want to propagate this information down (e.g. to local static 5078 // declarations). 5079 auto *Fn = cast<llvm::Function>(GV); 5080 setFunctionLinkage(GD, Fn); 5081 5082 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5083 setGVProperties(Fn, GD); 5084 5085 MaybeHandleStaticInExternC(D, Fn); 5086 5087 maybeSetTrivialComdat(*D, *Fn); 5088 5089 // Set CodeGen attributes that represent floating point environment. 5090 setLLVMFunctionFEnvAttributes(D, Fn); 5091 5092 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5093 5094 setNonAliasAttributes(GD, Fn); 5095 SetLLVMFunctionAttributesForDefinition(D, Fn); 5096 5097 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5098 AddGlobalCtor(Fn, CA->getPriority()); 5099 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5100 AddGlobalDtor(Fn, DA->getPriority(), true); 5101 if (D->hasAttr<AnnotateAttr>()) 5102 AddGlobalAnnotations(D, Fn); 5103 } 5104 5105 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5106 const auto *D = cast<ValueDecl>(GD.getDecl()); 5107 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5108 assert(AA && "Not an alias?"); 5109 5110 StringRef MangledName = getMangledName(GD); 5111 5112 if (AA->getAliasee() == MangledName) { 5113 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5114 return; 5115 } 5116 5117 // If there is a definition in the module, then it wins over the alias. 5118 // This is dubious, but allow it to be safe. Just ignore the alias. 5119 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5120 if (Entry && !Entry->isDeclaration()) 5121 return; 5122 5123 Aliases.push_back(GD); 5124 5125 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5126 5127 // Create a reference to the named value. This ensures that it is emitted 5128 // if a deferred decl. 5129 llvm::Constant *Aliasee; 5130 llvm::GlobalValue::LinkageTypes LT; 5131 if (isa<llvm::FunctionType>(DeclTy)) { 5132 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5133 /*ForVTable=*/false); 5134 LT = getFunctionLinkage(GD); 5135 } else { 5136 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5137 /*D=*/nullptr); 5138 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5139 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5140 else 5141 LT = getFunctionLinkage(GD); 5142 } 5143 5144 // Create the new alias itself, but don't set a name yet. 5145 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5146 auto *GA = 5147 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5148 5149 if (Entry) { 5150 if (GA->getAliasee() == Entry) { 5151 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5152 return; 5153 } 5154 5155 assert(Entry->isDeclaration()); 5156 5157 // If there is a declaration in the module, then we had an extern followed 5158 // by the alias, as in: 5159 // extern int test6(); 5160 // ... 5161 // int test6() __attribute__((alias("test7"))); 5162 // 5163 // Remove it and replace uses of it with the alias. 5164 GA->takeName(Entry); 5165 5166 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5167 Entry->getType())); 5168 Entry->eraseFromParent(); 5169 } else { 5170 GA->setName(MangledName); 5171 } 5172 5173 // Set attributes which are particular to an alias; this is a 5174 // specialization of the attributes which may be set on a global 5175 // variable/function. 5176 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5177 D->isWeakImported()) { 5178 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5179 } 5180 5181 if (const auto *VD = dyn_cast<VarDecl>(D)) 5182 if (VD->getTLSKind()) 5183 setTLSMode(GA, *VD); 5184 5185 SetCommonAttributes(GD, GA); 5186 5187 // Emit global alias debug information. 5188 if (isa<VarDecl>(D)) 5189 if (CGDebugInfo *DI = getModuleDebugInfo()) 5190 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD); 5191 } 5192 5193 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5194 const auto *D = cast<ValueDecl>(GD.getDecl()); 5195 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5196 assert(IFA && "Not an ifunc?"); 5197 5198 StringRef MangledName = getMangledName(GD); 5199 5200 if (IFA->getResolver() == MangledName) { 5201 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5202 return; 5203 } 5204 5205 // Report an error if some definition overrides ifunc. 5206 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5207 if (Entry && !Entry->isDeclaration()) { 5208 GlobalDecl OtherGD; 5209 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5210 DiagnosedConflictingDefinitions.insert(GD).second) { 5211 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5212 << MangledName; 5213 Diags.Report(OtherGD.getDecl()->getLocation(), 5214 diag::note_previous_definition); 5215 } 5216 return; 5217 } 5218 5219 Aliases.push_back(GD); 5220 5221 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5222 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5223 llvm::Constant *Resolver = 5224 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5225 /*ForVTable=*/false); 5226 llvm::GlobalIFunc *GIF = 5227 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5228 "", Resolver, &getModule()); 5229 if (Entry) { 5230 if (GIF->getResolver() == Entry) { 5231 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5232 return; 5233 } 5234 assert(Entry->isDeclaration()); 5235 5236 // If there is a declaration in the module, then we had an extern followed 5237 // by the ifunc, as in: 5238 // extern int test(); 5239 // ... 5240 // int test() __attribute__((ifunc("resolver"))); 5241 // 5242 // Remove it and replace uses of it with the ifunc. 5243 GIF->takeName(Entry); 5244 5245 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5246 Entry->getType())); 5247 Entry->eraseFromParent(); 5248 } else 5249 GIF->setName(MangledName); 5250 5251 SetCommonAttributes(GD, GIF); 5252 } 5253 5254 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5255 ArrayRef<llvm::Type*> Tys) { 5256 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5257 Tys); 5258 } 5259 5260 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5261 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5262 const StringLiteral *Literal, bool TargetIsLSB, 5263 bool &IsUTF16, unsigned &StringLength) { 5264 StringRef String = Literal->getString(); 5265 unsigned NumBytes = String.size(); 5266 5267 // Check for simple case. 5268 if (!Literal->containsNonAsciiOrNull()) { 5269 StringLength = NumBytes; 5270 return *Map.insert(std::make_pair(String, nullptr)).first; 5271 } 5272 5273 // Otherwise, convert the UTF8 literals into a string of shorts. 5274 IsUTF16 = true; 5275 5276 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5277 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5278 llvm::UTF16 *ToPtr = &ToBuf[0]; 5279 5280 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5281 ToPtr + NumBytes, llvm::strictConversion); 5282 5283 // ConvertUTF8toUTF16 returns the length in ToPtr. 5284 StringLength = ToPtr - &ToBuf[0]; 5285 5286 // Add an explicit null. 5287 *ToPtr = 0; 5288 return *Map.insert(std::make_pair( 5289 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5290 (StringLength + 1) * 2), 5291 nullptr)).first; 5292 } 5293 5294 ConstantAddress 5295 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5296 unsigned StringLength = 0; 5297 bool isUTF16 = false; 5298 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5299 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5300 getDataLayout().isLittleEndian(), isUTF16, 5301 StringLength); 5302 5303 if (auto *C = Entry.second) 5304 return ConstantAddress( 5305 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5306 5307 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5308 llvm::Constant *Zeros[] = { Zero, Zero }; 5309 5310 const ASTContext &Context = getContext(); 5311 const llvm::Triple &Triple = getTriple(); 5312 5313 const auto CFRuntime = getLangOpts().CFRuntime; 5314 const bool IsSwiftABI = 5315 static_cast<unsigned>(CFRuntime) >= 5316 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5317 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5318 5319 // If we don't already have it, get __CFConstantStringClassReference. 5320 if (!CFConstantStringClassRef) { 5321 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5322 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5323 Ty = llvm::ArrayType::get(Ty, 0); 5324 5325 switch (CFRuntime) { 5326 default: break; 5327 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5328 case LangOptions::CoreFoundationABI::Swift5_0: 5329 CFConstantStringClassName = 5330 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5331 : "$s10Foundation19_NSCFConstantStringCN"; 5332 Ty = IntPtrTy; 5333 break; 5334 case LangOptions::CoreFoundationABI::Swift4_2: 5335 CFConstantStringClassName = 5336 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5337 : "$S10Foundation19_NSCFConstantStringCN"; 5338 Ty = IntPtrTy; 5339 break; 5340 case LangOptions::CoreFoundationABI::Swift4_1: 5341 CFConstantStringClassName = 5342 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5343 : "__T010Foundation19_NSCFConstantStringCN"; 5344 Ty = IntPtrTy; 5345 break; 5346 } 5347 5348 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5349 5350 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5351 llvm::GlobalValue *GV = nullptr; 5352 5353 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5354 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5355 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5356 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5357 5358 const VarDecl *VD = nullptr; 5359 for (const auto *Result : DC->lookup(&II)) 5360 if ((VD = dyn_cast<VarDecl>(Result))) 5361 break; 5362 5363 if (Triple.isOSBinFormatELF()) { 5364 if (!VD) 5365 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5366 } else { 5367 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5368 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5369 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5370 else 5371 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5372 } 5373 5374 setDSOLocal(GV); 5375 } 5376 } 5377 5378 // Decay array -> ptr 5379 CFConstantStringClassRef = 5380 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5381 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5382 } 5383 5384 QualType CFTy = Context.getCFConstantStringType(); 5385 5386 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5387 5388 ConstantInitBuilder Builder(*this); 5389 auto Fields = Builder.beginStruct(STy); 5390 5391 // Class pointer. 5392 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5393 5394 // Flags. 5395 if (IsSwiftABI) { 5396 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5397 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5398 } else { 5399 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5400 } 5401 5402 // String pointer. 5403 llvm::Constant *C = nullptr; 5404 if (isUTF16) { 5405 auto Arr = llvm::makeArrayRef( 5406 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5407 Entry.first().size() / 2); 5408 C = llvm::ConstantDataArray::get(VMContext, Arr); 5409 } else { 5410 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5411 } 5412 5413 // Note: -fwritable-strings doesn't make the backing store strings of 5414 // CFStrings writable. (See <rdar://problem/10657500>) 5415 auto *GV = 5416 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5417 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5418 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5419 // Don't enforce the target's minimum global alignment, since the only use 5420 // of the string is via this class initializer. 5421 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5422 : Context.getTypeAlignInChars(Context.CharTy); 5423 GV->setAlignment(Align.getAsAlign()); 5424 5425 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5426 // Without it LLVM can merge the string with a non unnamed_addr one during 5427 // LTO. Doing that changes the section it ends in, which surprises ld64. 5428 if (Triple.isOSBinFormatMachO()) 5429 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5430 : "__TEXT,__cstring,cstring_literals"); 5431 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5432 // the static linker to adjust permissions to read-only later on. 5433 else if (Triple.isOSBinFormatELF()) 5434 GV->setSection(".rodata"); 5435 5436 // String. 5437 llvm::Constant *Str = 5438 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5439 5440 if (isUTF16) 5441 // Cast the UTF16 string to the correct type. 5442 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5443 Fields.add(Str); 5444 5445 // String length. 5446 llvm::IntegerType *LengthTy = 5447 llvm::IntegerType::get(getModule().getContext(), 5448 Context.getTargetInfo().getLongWidth()); 5449 if (IsSwiftABI) { 5450 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5451 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5452 LengthTy = Int32Ty; 5453 else 5454 LengthTy = IntPtrTy; 5455 } 5456 Fields.addInt(LengthTy, StringLength); 5457 5458 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5459 // properly aligned on 32-bit platforms. 5460 CharUnits Alignment = 5461 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5462 5463 // The struct. 5464 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5465 /*isConstant=*/false, 5466 llvm::GlobalVariable::PrivateLinkage); 5467 GV->addAttribute("objc_arc_inert"); 5468 switch (Triple.getObjectFormat()) { 5469 case llvm::Triple::UnknownObjectFormat: 5470 llvm_unreachable("unknown file format"); 5471 case llvm::Triple::GOFF: 5472 llvm_unreachable("GOFF is not yet implemented"); 5473 case llvm::Triple::XCOFF: 5474 llvm_unreachable("XCOFF is not yet implemented"); 5475 case llvm::Triple::DXContainer: 5476 llvm_unreachable("DXContainer is not yet implemented"); 5477 case llvm::Triple::COFF: 5478 case llvm::Triple::ELF: 5479 case llvm::Triple::Wasm: 5480 GV->setSection("cfstring"); 5481 break; 5482 case llvm::Triple::MachO: 5483 GV->setSection("__DATA,__cfstring"); 5484 break; 5485 } 5486 Entry.second = GV; 5487 5488 return ConstantAddress(GV, GV->getValueType(), Alignment); 5489 } 5490 5491 bool CodeGenModule::getExpressionLocationsEnabled() const { 5492 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5493 } 5494 5495 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5496 if (ObjCFastEnumerationStateType.isNull()) { 5497 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5498 D->startDefinition(); 5499 5500 QualType FieldTypes[] = { 5501 Context.UnsignedLongTy, 5502 Context.getPointerType(Context.getObjCIdType()), 5503 Context.getPointerType(Context.UnsignedLongTy), 5504 Context.getConstantArrayType(Context.UnsignedLongTy, 5505 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5506 }; 5507 5508 for (size_t i = 0; i < 4; ++i) { 5509 FieldDecl *Field = FieldDecl::Create(Context, 5510 D, 5511 SourceLocation(), 5512 SourceLocation(), nullptr, 5513 FieldTypes[i], /*TInfo=*/nullptr, 5514 /*BitWidth=*/nullptr, 5515 /*Mutable=*/false, 5516 ICIS_NoInit); 5517 Field->setAccess(AS_public); 5518 D->addDecl(Field); 5519 } 5520 5521 D->completeDefinition(); 5522 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5523 } 5524 5525 return ObjCFastEnumerationStateType; 5526 } 5527 5528 llvm::Constant * 5529 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5530 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5531 5532 // Don't emit it as the address of the string, emit the string data itself 5533 // as an inline array. 5534 if (E->getCharByteWidth() == 1) { 5535 SmallString<64> Str(E->getString()); 5536 5537 // Resize the string to the right size, which is indicated by its type. 5538 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5539 Str.resize(CAT->getSize().getZExtValue()); 5540 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5541 } 5542 5543 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5544 llvm::Type *ElemTy = AType->getElementType(); 5545 unsigned NumElements = AType->getNumElements(); 5546 5547 // Wide strings have either 2-byte or 4-byte elements. 5548 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5549 SmallVector<uint16_t, 32> Elements; 5550 Elements.reserve(NumElements); 5551 5552 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5553 Elements.push_back(E->getCodeUnit(i)); 5554 Elements.resize(NumElements); 5555 return llvm::ConstantDataArray::get(VMContext, Elements); 5556 } 5557 5558 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5559 SmallVector<uint32_t, 32> Elements; 5560 Elements.reserve(NumElements); 5561 5562 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5563 Elements.push_back(E->getCodeUnit(i)); 5564 Elements.resize(NumElements); 5565 return llvm::ConstantDataArray::get(VMContext, Elements); 5566 } 5567 5568 static llvm::GlobalVariable * 5569 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5570 CodeGenModule &CGM, StringRef GlobalName, 5571 CharUnits Alignment) { 5572 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5573 CGM.GetGlobalConstantAddressSpace()); 5574 5575 llvm::Module &M = CGM.getModule(); 5576 // Create a global variable for this string 5577 auto *GV = new llvm::GlobalVariable( 5578 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5579 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5580 GV->setAlignment(Alignment.getAsAlign()); 5581 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5582 if (GV->isWeakForLinker()) { 5583 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5584 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5585 } 5586 CGM.setDSOLocal(GV); 5587 5588 return GV; 5589 } 5590 5591 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5592 /// constant array for the given string literal. 5593 ConstantAddress 5594 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5595 StringRef Name) { 5596 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5597 5598 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5599 llvm::GlobalVariable **Entry = nullptr; 5600 if (!LangOpts.WritableStrings) { 5601 Entry = &ConstantStringMap[C]; 5602 if (auto GV = *Entry) { 5603 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5604 GV->setAlignment(Alignment.getAsAlign()); 5605 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5606 GV->getValueType(), Alignment); 5607 } 5608 } 5609 5610 SmallString<256> MangledNameBuffer; 5611 StringRef GlobalVariableName; 5612 llvm::GlobalValue::LinkageTypes LT; 5613 5614 // Mangle the string literal if that's how the ABI merges duplicate strings. 5615 // Don't do it if they are writable, since we don't want writes in one TU to 5616 // affect strings in another. 5617 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5618 !LangOpts.WritableStrings) { 5619 llvm::raw_svector_ostream Out(MangledNameBuffer); 5620 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5621 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5622 GlobalVariableName = MangledNameBuffer; 5623 } else { 5624 LT = llvm::GlobalValue::PrivateLinkage; 5625 GlobalVariableName = Name; 5626 } 5627 5628 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5629 if (Entry) 5630 *Entry = GV; 5631 5632 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5633 QualType()); 5634 5635 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5636 GV->getValueType(), Alignment); 5637 } 5638 5639 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5640 /// array for the given ObjCEncodeExpr node. 5641 ConstantAddress 5642 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5643 std::string Str; 5644 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5645 5646 return GetAddrOfConstantCString(Str); 5647 } 5648 5649 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5650 /// the literal and a terminating '\0' character. 5651 /// The result has pointer to array type. 5652 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5653 const std::string &Str, const char *GlobalName) { 5654 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5655 CharUnits Alignment = 5656 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5657 5658 llvm::Constant *C = 5659 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5660 5661 // Don't share any string literals if strings aren't constant. 5662 llvm::GlobalVariable **Entry = nullptr; 5663 if (!LangOpts.WritableStrings) { 5664 Entry = &ConstantStringMap[C]; 5665 if (auto GV = *Entry) { 5666 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5667 GV->setAlignment(Alignment.getAsAlign()); 5668 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5669 GV->getValueType(), Alignment); 5670 } 5671 } 5672 5673 // Get the default prefix if a name wasn't specified. 5674 if (!GlobalName) 5675 GlobalName = ".str"; 5676 // Create a global variable for this. 5677 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5678 GlobalName, Alignment); 5679 if (Entry) 5680 *Entry = GV; 5681 5682 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5683 GV->getValueType(), Alignment); 5684 } 5685 5686 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5687 const MaterializeTemporaryExpr *E, const Expr *Init) { 5688 assert((E->getStorageDuration() == SD_Static || 5689 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5690 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5691 5692 // If we're not materializing a subobject of the temporary, keep the 5693 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5694 QualType MaterializedType = Init->getType(); 5695 if (Init == E->getSubExpr()) 5696 MaterializedType = E->getType(); 5697 5698 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5699 5700 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5701 if (!InsertResult.second) { 5702 // We've seen this before: either we already created it or we're in the 5703 // process of doing so. 5704 if (!InsertResult.first->second) { 5705 // We recursively re-entered this function, probably during emission of 5706 // the initializer. Create a placeholder. We'll clean this up in the 5707 // outer call, at the end of this function. 5708 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5709 InsertResult.first->second = new llvm::GlobalVariable( 5710 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5711 nullptr); 5712 } 5713 return ConstantAddress(InsertResult.first->second, 5714 llvm::cast<llvm::GlobalVariable>( 5715 InsertResult.first->second->stripPointerCasts()) 5716 ->getValueType(), 5717 Align); 5718 } 5719 5720 // FIXME: If an externally-visible declaration extends multiple temporaries, 5721 // we need to give each temporary the same name in every translation unit (and 5722 // we also need to make the temporaries externally-visible). 5723 SmallString<256> Name; 5724 llvm::raw_svector_ostream Out(Name); 5725 getCXXABI().getMangleContext().mangleReferenceTemporary( 5726 VD, E->getManglingNumber(), Out); 5727 5728 APValue *Value = nullptr; 5729 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5730 // If the initializer of the extending declaration is a constant 5731 // initializer, we should have a cached constant initializer for this 5732 // temporary. Note that this might have a different value from the value 5733 // computed by evaluating the initializer if the surrounding constant 5734 // expression modifies the temporary. 5735 Value = E->getOrCreateValue(false); 5736 } 5737 5738 // Try evaluating it now, it might have a constant initializer. 5739 Expr::EvalResult EvalResult; 5740 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5741 !EvalResult.hasSideEffects()) 5742 Value = &EvalResult.Val; 5743 5744 LangAS AddrSpace = 5745 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5746 5747 Optional<ConstantEmitter> emitter; 5748 llvm::Constant *InitialValue = nullptr; 5749 bool Constant = false; 5750 llvm::Type *Type; 5751 if (Value) { 5752 // The temporary has a constant initializer, use it. 5753 emitter.emplace(*this); 5754 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5755 MaterializedType); 5756 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5757 Type = InitialValue->getType(); 5758 } else { 5759 // No initializer, the initialization will be provided when we 5760 // initialize the declaration which performed lifetime extension. 5761 Type = getTypes().ConvertTypeForMem(MaterializedType); 5762 } 5763 5764 // Create a global variable for this lifetime-extended temporary. 5765 llvm::GlobalValue::LinkageTypes Linkage = 5766 getLLVMLinkageVarDefinition(VD, Constant); 5767 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5768 const VarDecl *InitVD; 5769 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5770 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5771 // Temporaries defined inside a class get linkonce_odr linkage because the 5772 // class can be defined in multiple translation units. 5773 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5774 } else { 5775 // There is no need for this temporary to have external linkage if the 5776 // VarDecl has external linkage. 5777 Linkage = llvm::GlobalVariable::InternalLinkage; 5778 } 5779 } 5780 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5781 auto *GV = new llvm::GlobalVariable( 5782 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5783 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5784 if (emitter) emitter->finalize(GV); 5785 setGVProperties(GV, VD); 5786 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5787 // The reference temporary should never be dllexport. 5788 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5789 GV->setAlignment(Align.getAsAlign()); 5790 if (supportsCOMDAT() && GV->isWeakForLinker()) 5791 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5792 if (VD->getTLSKind()) 5793 setTLSMode(GV, *VD); 5794 llvm::Constant *CV = GV; 5795 if (AddrSpace != LangAS::Default) 5796 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5797 *this, GV, AddrSpace, LangAS::Default, 5798 Type->getPointerTo( 5799 getContext().getTargetAddressSpace(LangAS::Default))); 5800 5801 // Update the map with the new temporary. If we created a placeholder above, 5802 // replace it with the new global now. 5803 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5804 if (Entry) { 5805 Entry->replaceAllUsesWith( 5806 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5807 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5808 } 5809 Entry = CV; 5810 5811 return ConstantAddress(CV, Type, Align); 5812 } 5813 5814 /// EmitObjCPropertyImplementations - Emit information for synthesized 5815 /// properties for an implementation. 5816 void CodeGenModule::EmitObjCPropertyImplementations(const 5817 ObjCImplementationDecl *D) { 5818 for (const auto *PID : D->property_impls()) { 5819 // Dynamic is just for type-checking. 5820 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5821 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5822 5823 // Determine which methods need to be implemented, some may have 5824 // been overridden. Note that ::isPropertyAccessor is not the method 5825 // we want, that just indicates if the decl came from a 5826 // property. What we want to know is if the method is defined in 5827 // this implementation. 5828 auto *Getter = PID->getGetterMethodDecl(); 5829 if (!Getter || Getter->isSynthesizedAccessorStub()) 5830 CodeGenFunction(*this).GenerateObjCGetter( 5831 const_cast<ObjCImplementationDecl *>(D), PID); 5832 auto *Setter = PID->getSetterMethodDecl(); 5833 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5834 CodeGenFunction(*this).GenerateObjCSetter( 5835 const_cast<ObjCImplementationDecl *>(D), PID); 5836 } 5837 } 5838 } 5839 5840 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5841 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5842 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5843 ivar; ivar = ivar->getNextIvar()) 5844 if (ivar->getType().isDestructedType()) 5845 return true; 5846 5847 return false; 5848 } 5849 5850 static bool AllTrivialInitializers(CodeGenModule &CGM, 5851 ObjCImplementationDecl *D) { 5852 CodeGenFunction CGF(CGM); 5853 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5854 E = D->init_end(); B != E; ++B) { 5855 CXXCtorInitializer *CtorInitExp = *B; 5856 Expr *Init = CtorInitExp->getInit(); 5857 if (!CGF.isTrivialInitializer(Init)) 5858 return false; 5859 } 5860 return true; 5861 } 5862 5863 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5864 /// for an implementation. 5865 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5866 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5867 if (needsDestructMethod(D)) { 5868 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5869 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5870 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5871 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5872 getContext().VoidTy, nullptr, D, 5873 /*isInstance=*/true, /*isVariadic=*/false, 5874 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5875 /*isImplicitlyDeclared=*/true, 5876 /*isDefined=*/false, ObjCMethodDecl::Required); 5877 D->addInstanceMethod(DTORMethod); 5878 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5879 D->setHasDestructors(true); 5880 } 5881 5882 // If the implementation doesn't have any ivar initializers, we don't need 5883 // a .cxx_construct. 5884 if (D->getNumIvarInitializers() == 0 || 5885 AllTrivialInitializers(*this, D)) 5886 return; 5887 5888 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5889 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5890 // The constructor returns 'self'. 5891 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5892 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5893 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5894 /*isVariadic=*/false, 5895 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5896 /*isImplicitlyDeclared=*/true, 5897 /*isDefined=*/false, ObjCMethodDecl::Required); 5898 D->addInstanceMethod(CTORMethod); 5899 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5900 D->setHasNonZeroConstructors(true); 5901 } 5902 5903 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5904 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5905 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5906 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5907 ErrorUnsupported(LSD, "linkage spec"); 5908 return; 5909 } 5910 5911 EmitDeclContext(LSD); 5912 } 5913 5914 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5915 for (auto *I : DC->decls()) { 5916 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5917 // are themselves considered "top-level", so EmitTopLevelDecl on an 5918 // ObjCImplDecl does not recursively visit them. We need to do that in 5919 // case they're nested inside another construct (LinkageSpecDecl / 5920 // ExportDecl) that does stop them from being considered "top-level". 5921 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5922 for (auto *M : OID->methods()) 5923 EmitTopLevelDecl(M); 5924 } 5925 5926 EmitTopLevelDecl(I); 5927 } 5928 } 5929 5930 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5931 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5932 // Ignore dependent declarations. 5933 if (D->isTemplated()) 5934 return; 5935 5936 // Consteval function shouldn't be emitted. 5937 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5938 if (FD->isConsteval()) 5939 return; 5940 5941 switch (D->getKind()) { 5942 case Decl::CXXConversion: 5943 case Decl::CXXMethod: 5944 case Decl::Function: 5945 EmitGlobal(cast<FunctionDecl>(D)); 5946 // Always provide some coverage mapping 5947 // even for the functions that aren't emitted. 5948 AddDeferredUnusedCoverageMapping(D); 5949 break; 5950 5951 case Decl::CXXDeductionGuide: 5952 // Function-like, but does not result in code emission. 5953 break; 5954 5955 case Decl::Var: 5956 case Decl::Decomposition: 5957 case Decl::VarTemplateSpecialization: 5958 EmitGlobal(cast<VarDecl>(D)); 5959 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5960 for (auto *B : DD->bindings()) 5961 if (auto *HD = B->getHoldingVar()) 5962 EmitGlobal(HD); 5963 break; 5964 5965 // Indirect fields from global anonymous structs and unions can be 5966 // ignored; only the actual variable requires IR gen support. 5967 case Decl::IndirectField: 5968 break; 5969 5970 // C++ Decls 5971 case Decl::Namespace: 5972 EmitDeclContext(cast<NamespaceDecl>(D)); 5973 break; 5974 case Decl::ClassTemplateSpecialization: { 5975 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5976 if (CGDebugInfo *DI = getModuleDebugInfo()) 5977 if (Spec->getSpecializationKind() == 5978 TSK_ExplicitInstantiationDefinition && 5979 Spec->hasDefinition()) 5980 DI->completeTemplateDefinition(*Spec); 5981 } LLVM_FALLTHROUGH; 5982 case Decl::CXXRecord: { 5983 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5984 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5985 if (CRD->hasDefinition()) 5986 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5987 if (auto *ES = D->getASTContext().getExternalSource()) 5988 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5989 DI->completeUnusedClass(*CRD); 5990 } 5991 // Emit any static data members, they may be definitions. 5992 for (auto *I : CRD->decls()) 5993 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5994 EmitTopLevelDecl(I); 5995 break; 5996 } 5997 // No code generation needed. 5998 case Decl::UsingShadow: 5999 case Decl::ClassTemplate: 6000 case Decl::VarTemplate: 6001 case Decl::Concept: 6002 case Decl::VarTemplatePartialSpecialization: 6003 case Decl::FunctionTemplate: 6004 case Decl::TypeAliasTemplate: 6005 case Decl::Block: 6006 case Decl::Empty: 6007 case Decl::Binding: 6008 break; 6009 case Decl::Using: // using X; [C++] 6010 if (CGDebugInfo *DI = getModuleDebugInfo()) 6011 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6012 break; 6013 case Decl::UsingEnum: // using enum X; [C++] 6014 if (CGDebugInfo *DI = getModuleDebugInfo()) 6015 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6016 break; 6017 case Decl::NamespaceAlias: 6018 if (CGDebugInfo *DI = getModuleDebugInfo()) 6019 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6020 break; 6021 case Decl::UsingDirective: // using namespace X; [C++] 6022 if (CGDebugInfo *DI = getModuleDebugInfo()) 6023 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6024 break; 6025 case Decl::CXXConstructor: 6026 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6027 break; 6028 case Decl::CXXDestructor: 6029 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6030 break; 6031 6032 case Decl::StaticAssert: 6033 // Nothing to do. 6034 break; 6035 6036 // Objective-C Decls 6037 6038 // Forward declarations, no (immediate) code generation. 6039 case Decl::ObjCInterface: 6040 case Decl::ObjCCategory: 6041 break; 6042 6043 case Decl::ObjCProtocol: { 6044 auto *Proto = cast<ObjCProtocolDecl>(D); 6045 if (Proto->isThisDeclarationADefinition()) 6046 ObjCRuntime->GenerateProtocol(Proto); 6047 break; 6048 } 6049 6050 case Decl::ObjCCategoryImpl: 6051 // Categories have properties but don't support synthesize so we 6052 // can ignore them here. 6053 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6054 break; 6055 6056 case Decl::ObjCImplementation: { 6057 auto *OMD = cast<ObjCImplementationDecl>(D); 6058 EmitObjCPropertyImplementations(OMD); 6059 EmitObjCIvarInitializations(OMD); 6060 ObjCRuntime->GenerateClass(OMD); 6061 // Emit global variable debug information. 6062 if (CGDebugInfo *DI = getModuleDebugInfo()) 6063 if (getCodeGenOpts().hasReducedDebugInfo()) 6064 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6065 OMD->getClassInterface()), OMD->getLocation()); 6066 break; 6067 } 6068 case Decl::ObjCMethod: { 6069 auto *OMD = cast<ObjCMethodDecl>(D); 6070 // If this is not a prototype, emit the body. 6071 if (OMD->getBody()) 6072 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6073 break; 6074 } 6075 case Decl::ObjCCompatibleAlias: 6076 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6077 break; 6078 6079 case Decl::PragmaComment: { 6080 const auto *PCD = cast<PragmaCommentDecl>(D); 6081 switch (PCD->getCommentKind()) { 6082 case PCK_Unknown: 6083 llvm_unreachable("unexpected pragma comment kind"); 6084 case PCK_Linker: 6085 AppendLinkerOptions(PCD->getArg()); 6086 break; 6087 case PCK_Lib: 6088 AddDependentLib(PCD->getArg()); 6089 break; 6090 case PCK_Compiler: 6091 case PCK_ExeStr: 6092 case PCK_User: 6093 break; // We ignore all of these. 6094 } 6095 break; 6096 } 6097 6098 case Decl::PragmaDetectMismatch: { 6099 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6100 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6101 break; 6102 } 6103 6104 case Decl::LinkageSpec: 6105 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6106 break; 6107 6108 case Decl::FileScopeAsm: { 6109 // File-scope asm is ignored during device-side CUDA compilation. 6110 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6111 break; 6112 // File-scope asm is ignored during device-side OpenMP compilation. 6113 if (LangOpts.OpenMPIsDevice) 6114 break; 6115 // File-scope asm is ignored during device-side SYCL compilation. 6116 if (LangOpts.SYCLIsDevice) 6117 break; 6118 auto *AD = cast<FileScopeAsmDecl>(D); 6119 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6120 break; 6121 } 6122 6123 case Decl::Import: { 6124 auto *Import = cast<ImportDecl>(D); 6125 6126 // If we've already imported this module, we're done. 6127 if (!ImportedModules.insert(Import->getImportedModule())) 6128 break; 6129 6130 // Emit debug information for direct imports. 6131 if (!Import->getImportedOwningModule()) { 6132 if (CGDebugInfo *DI = getModuleDebugInfo()) 6133 DI->EmitImportDecl(*Import); 6134 } 6135 6136 // Find all of the submodules and emit the module initializers. 6137 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6138 SmallVector<clang::Module *, 16> Stack; 6139 Visited.insert(Import->getImportedModule()); 6140 Stack.push_back(Import->getImportedModule()); 6141 6142 while (!Stack.empty()) { 6143 clang::Module *Mod = Stack.pop_back_val(); 6144 if (!EmittedModuleInitializers.insert(Mod).second) 6145 continue; 6146 6147 for (auto *D : Context.getModuleInitializers(Mod)) 6148 EmitTopLevelDecl(D); 6149 6150 // Visit the submodules of this module. 6151 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6152 SubEnd = Mod->submodule_end(); 6153 Sub != SubEnd; ++Sub) { 6154 // Skip explicit children; they need to be explicitly imported to emit 6155 // the initializers. 6156 if ((*Sub)->IsExplicit) 6157 continue; 6158 6159 if (Visited.insert(*Sub).second) 6160 Stack.push_back(*Sub); 6161 } 6162 } 6163 break; 6164 } 6165 6166 case Decl::Export: 6167 EmitDeclContext(cast<ExportDecl>(D)); 6168 break; 6169 6170 case Decl::OMPThreadPrivate: 6171 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6172 break; 6173 6174 case Decl::OMPAllocate: 6175 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6176 break; 6177 6178 case Decl::OMPDeclareReduction: 6179 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6180 break; 6181 6182 case Decl::OMPDeclareMapper: 6183 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6184 break; 6185 6186 case Decl::OMPRequires: 6187 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6188 break; 6189 6190 case Decl::Typedef: 6191 case Decl::TypeAlias: // using foo = bar; [C++11] 6192 if (CGDebugInfo *DI = getModuleDebugInfo()) 6193 DI->EmitAndRetainType( 6194 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6195 break; 6196 6197 case Decl::Record: 6198 if (CGDebugInfo *DI = getModuleDebugInfo()) 6199 if (cast<RecordDecl>(D)->getDefinition()) 6200 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6201 break; 6202 6203 case Decl::Enum: 6204 if (CGDebugInfo *DI = getModuleDebugInfo()) 6205 if (cast<EnumDecl>(D)->getDefinition()) 6206 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6207 break; 6208 6209 default: 6210 // Make sure we handled everything we should, every other kind is a 6211 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6212 // function. Need to recode Decl::Kind to do that easily. 6213 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6214 break; 6215 } 6216 } 6217 6218 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6219 // Do we need to generate coverage mapping? 6220 if (!CodeGenOpts.CoverageMapping) 6221 return; 6222 switch (D->getKind()) { 6223 case Decl::CXXConversion: 6224 case Decl::CXXMethod: 6225 case Decl::Function: 6226 case Decl::ObjCMethod: 6227 case Decl::CXXConstructor: 6228 case Decl::CXXDestructor: { 6229 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6230 break; 6231 SourceManager &SM = getContext().getSourceManager(); 6232 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6233 break; 6234 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6235 if (I == DeferredEmptyCoverageMappingDecls.end()) 6236 DeferredEmptyCoverageMappingDecls[D] = true; 6237 break; 6238 } 6239 default: 6240 break; 6241 }; 6242 } 6243 6244 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6245 // Do we need to generate coverage mapping? 6246 if (!CodeGenOpts.CoverageMapping) 6247 return; 6248 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6249 if (Fn->isTemplateInstantiation()) 6250 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6251 } 6252 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6253 if (I == DeferredEmptyCoverageMappingDecls.end()) 6254 DeferredEmptyCoverageMappingDecls[D] = false; 6255 else 6256 I->second = false; 6257 } 6258 6259 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6260 // We call takeVector() here to avoid use-after-free. 6261 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6262 // we deserialize function bodies to emit coverage info for them, and that 6263 // deserializes more declarations. How should we handle that case? 6264 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6265 if (!Entry.second) 6266 continue; 6267 const Decl *D = Entry.first; 6268 switch (D->getKind()) { 6269 case Decl::CXXConversion: 6270 case Decl::CXXMethod: 6271 case Decl::Function: 6272 case Decl::ObjCMethod: { 6273 CodeGenPGO PGO(*this); 6274 GlobalDecl GD(cast<FunctionDecl>(D)); 6275 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6276 getFunctionLinkage(GD)); 6277 break; 6278 } 6279 case Decl::CXXConstructor: { 6280 CodeGenPGO PGO(*this); 6281 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6282 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6283 getFunctionLinkage(GD)); 6284 break; 6285 } 6286 case Decl::CXXDestructor: { 6287 CodeGenPGO PGO(*this); 6288 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6289 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6290 getFunctionLinkage(GD)); 6291 break; 6292 } 6293 default: 6294 break; 6295 }; 6296 } 6297 } 6298 6299 void CodeGenModule::EmitMainVoidAlias() { 6300 // In order to transition away from "__original_main" gracefully, emit an 6301 // alias for "main" in the no-argument case so that libc can detect when 6302 // new-style no-argument main is in used. 6303 if (llvm::Function *F = getModule().getFunction("main")) { 6304 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6305 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6306 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6307 } 6308 } 6309 6310 /// Turns the given pointer into a constant. 6311 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6312 const void *Ptr) { 6313 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6314 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6315 return llvm::ConstantInt::get(i64, PtrInt); 6316 } 6317 6318 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6319 llvm::NamedMDNode *&GlobalMetadata, 6320 GlobalDecl D, 6321 llvm::GlobalValue *Addr) { 6322 if (!GlobalMetadata) 6323 GlobalMetadata = 6324 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6325 6326 // TODO: should we report variant information for ctors/dtors? 6327 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6328 llvm::ConstantAsMetadata::get(GetPointerConstant( 6329 CGM.getLLVMContext(), D.getDecl()))}; 6330 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6331 } 6332 6333 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6334 llvm::GlobalValue *CppFunc) { 6335 // Store the list of ifuncs we need to replace uses in. 6336 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6337 // List of ConstantExprs that we should be able to delete when we're done 6338 // here. 6339 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6340 6341 // First make sure that all users of this are ifuncs (or ifuncs via a 6342 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6343 // later. 6344 for (llvm::User *User : Elem->users()) { 6345 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6346 // ifunc directly. In any other case, just give up, as we don't know what we 6347 // could break by changing those. 6348 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6349 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6350 return false; 6351 6352 for (llvm::User *CEUser : ConstExpr->users()) { 6353 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6354 IFuncs.push_back(IFunc); 6355 } else { 6356 return false; 6357 } 6358 } 6359 CEs.push_back(ConstExpr); 6360 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6361 IFuncs.push_back(IFunc); 6362 } else { 6363 // This user is one we don't know how to handle, so fail redirection. This 6364 // will result in an ifunc retaining a resolver name that will ultimately 6365 // fail to be resolved to a defined function. 6366 return false; 6367 } 6368 } 6369 6370 // Now we know this is a valid case where we can do this alias replacement, we 6371 // need to remove all of the references to Elem (and the bitcasts!) so we can 6372 // delete it. 6373 for (llvm::GlobalIFunc *IFunc : IFuncs) 6374 IFunc->setResolver(nullptr); 6375 for (llvm::ConstantExpr *ConstExpr : CEs) 6376 ConstExpr->destroyConstant(); 6377 6378 // We should now be out of uses for the 'old' version of this function, so we 6379 // can erase it as well. 6380 Elem->eraseFromParent(); 6381 6382 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6383 // The type of the resolver is always just a function-type that returns the 6384 // type of the IFunc, so create that here. If the type of the actual 6385 // resolver doesn't match, it just gets bitcast to the right thing. 6386 auto *ResolverTy = 6387 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6388 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6389 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6390 IFunc->setResolver(Resolver); 6391 } 6392 return true; 6393 } 6394 6395 /// For each function which is declared within an extern "C" region and marked 6396 /// as 'used', but has internal linkage, create an alias from the unmangled 6397 /// name to the mangled name if possible. People expect to be able to refer 6398 /// to such functions with an unmangled name from inline assembly within the 6399 /// same translation unit. 6400 void CodeGenModule::EmitStaticExternCAliases() { 6401 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6402 return; 6403 for (auto &I : StaticExternCValues) { 6404 IdentifierInfo *Name = I.first; 6405 llvm::GlobalValue *Val = I.second; 6406 6407 // If Val is null, that implies there were multiple declarations that each 6408 // had a claim to the unmangled name. In this case, generation of the alias 6409 // is suppressed. See CodeGenModule::MaybeHandleStaticInExterC. 6410 if (!Val) 6411 break; 6412 6413 llvm::GlobalValue *ExistingElem = 6414 getModule().getNamedValue(Name->getName()); 6415 6416 // If there is either not something already by this name, or we were able to 6417 // replace all uses from IFuncs, create the alias. 6418 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6419 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6420 } 6421 } 6422 6423 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6424 GlobalDecl &Result) const { 6425 auto Res = Manglings.find(MangledName); 6426 if (Res == Manglings.end()) 6427 return false; 6428 Result = Res->getValue(); 6429 return true; 6430 } 6431 6432 /// Emits metadata nodes associating all the global values in the 6433 /// current module with the Decls they came from. This is useful for 6434 /// projects using IR gen as a subroutine. 6435 /// 6436 /// Since there's currently no way to associate an MDNode directly 6437 /// with an llvm::GlobalValue, we create a global named metadata 6438 /// with the name 'clang.global.decl.ptrs'. 6439 void CodeGenModule::EmitDeclMetadata() { 6440 llvm::NamedMDNode *GlobalMetadata = nullptr; 6441 6442 for (auto &I : MangledDeclNames) { 6443 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6444 // Some mangled names don't necessarily have an associated GlobalValue 6445 // in this module, e.g. if we mangled it for DebugInfo. 6446 if (Addr) 6447 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6448 } 6449 } 6450 6451 /// Emits metadata nodes for all the local variables in the current 6452 /// function. 6453 void CodeGenFunction::EmitDeclMetadata() { 6454 if (LocalDeclMap.empty()) return; 6455 6456 llvm::LLVMContext &Context = getLLVMContext(); 6457 6458 // Find the unique metadata ID for this name. 6459 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6460 6461 llvm::NamedMDNode *GlobalMetadata = nullptr; 6462 6463 for (auto &I : LocalDeclMap) { 6464 const Decl *D = I.first; 6465 llvm::Value *Addr = I.second.getPointer(); 6466 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6467 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6468 Alloca->setMetadata( 6469 DeclPtrKind, llvm::MDNode::get( 6470 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6471 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6472 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6473 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6474 } 6475 } 6476 } 6477 6478 void CodeGenModule::EmitVersionIdentMetadata() { 6479 llvm::NamedMDNode *IdentMetadata = 6480 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6481 std::string Version = getClangFullVersion(); 6482 llvm::LLVMContext &Ctx = TheModule.getContext(); 6483 6484 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6485 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6486 } 6487 6488 void CodeGenModule::EmitCommandLineMetadata() { 6489 llvm::NamedMDNode *CommandLineMetadata = 6490 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6491 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6492 llvm::LLVMContext &Ctx = TheModule.getContext(); 6493 6494 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6495 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6496 } 6497 6498 void CodeGenModule::EmitCoverageFile() { 6499 if (getCodeGenOpts().CoverageDataFile.empty() && 6500 getCodeGenOpts().CoverageNotesFile.empty()) 6501 return; 6502 6503 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6504 if (!CUNode) 6505 return; 6506 6507 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6508 llvm::LLVMContext &Ctx = TheModule.getContext(); 6509 auto *CoverageDataFile = 6510 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6511 auto *CoverageNotesFile = 6512 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6513 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6514 llvm::MDNode *CU = CUNode->getOperand(i); 6515 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6516 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6517 } 6518 } 6519 6520 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6521 bool ForEH) { 6522 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6523 // FIXME: should we even be calling this method if RTTI is disabled 6524 // and it's not for EH? 6525 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6526 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6527 getTriple().isNVPTX())) 6528 return llvm::Constant::getNullValue(Int8PtrTy); 6529 6530 if (ForEH && Ty->isObjCObjectPointerType() && 6531 LangOpts.ObjCRuntime.isGNUFamily()) 6532 return ObjCRuntime->GetEHType(Ty); 6533 6534 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6535 } 6536 6537 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6538 // Do not emit threadprivates in simd-only mode. 6539 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6540 return; 6541 for (auto RefExpr : D->varlists()) { 6542 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6543 bool PerformInit = 6544 VD->getAnyInitializer() && 6545 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6546 /*ForRef=*/false); 6547 6548 Address Addr(GetAddrOfGlobalVar(VD), 6549 getTypes().ConvertTypeForMem(VD->getType()), 6550 getContext().getDeclAlign(VD)); 6551 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6552 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6553 CXXGlobalInits.push_back(InitFunction); 6554 } 6555 } 6556 6557 llvm::Metadata * 6558 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6559 StringRef Suffix) { 6560 if (auto *FnType = T->getAs<FunctionProtoType>()) 6561 T = getContext().getFunctionType( 6562 FnType->getReturnType(), FnType->getParamTypes(), 6563 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6564 6565 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6566 if (InternalId) 6567 return InternalId; 6568 6569 if (isExternallyVisible(T->getLinkage())) { 6570 std::string OutName; 6571 llvm::raw_string_ostream Out(OutName); 6572 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6573 Out << Suffix; 6574 6575 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6576 } else { 6577 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6578 llvm::ArrayRef<llvm::Metadata *>()); 6579 } 6580 6581 return InternalId; 6582 } 6583 6584 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6585 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6586 } 6587 6588 llvm::Metadata * 6589 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6590 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6591 } 6592 6593 // Generalize pointer types to a void pointer with the qualifiers of the 6594 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6595 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6596 // 'void *'. 6597 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6598 if (!Ty->isPointerType()) 6599 return Ty; 6600 6601 return Ctx.getPointerType( 6602 QualType(Ctx.VoidTy).withCVRQualifiers( 6603 Ty->getPointeeType().getCVRQualifiers())); 6604 } 6605 6606 // Apply type generalization to a FunctionType's return and argument types 6607 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6608 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6609 SmallVector<QualType, 8> GeneralizedParams; 6610 for (auto &Param : FnType->param_types()) 6611 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6612 6613 return Ctx.getFunctionType( 6614 GeneralizeType(Ctx, FnType->getReturnType()), 6615 GeneralizedParams, FnType->getExtProtoInfo()); 6616 } 6617 6618 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6619 return Ctx.getFunctionNoProtoType( 6620 GeneralizeType(Ctx, FnType->getReturnType())); 6621 6622 llvm_unreachable("Encountered unknown FunctionType"); 6623 } 6624 6625 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6626 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6627 GeneralizedMetadataIdMap, ".generalized"); 6628 } 6629 6630 /// Returns whether this module needs the "all-vtables" type identifier. 6631 bool CodeGenModule::NeedAllVtablesTypeId() const { 6632 // Returns true if at least one of vtable-based CFI checkers is enabled and 6633 // is not in the trapping mode. 6634 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6635 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6636 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6637 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6638 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6639 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6640 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6641 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6642 } 6643 6644 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6645 CharUnits Offset, 6646 const CXXRecordDecl *RD) { 6647 llvm::Metadata *MD = 6648 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6649 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6650 6651 if (CodeGenOpts.SanitizeCfiCrossDso) 6652 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6653 VTable->addTypeMetadata(Offset.getQuantity(), 6654 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6655 6656 if (NeedAllVtablesTypeId()) { 6657 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6658 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6659 } 6660 } 6661 6662 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6663 if (!SanStats) 6664 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6665 6666 return *SanStats; 6667 } 6668 6669 llvm::Value * 6670 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6671 CodeGenFunction &CGF) { 6672 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6673 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6674 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6675 auto *Call = CGF.EmitRuntimeCall( 6676 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6677 return Call; 6678 } 6679 6680 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6681 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6682 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6683 /* forPointeeType= */ true); 6684 } 6685 6686 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6687 LValueBaseInfo *BaseInfo, 6688 TBAAAccessInfo *TBAAInfo, 6689 bool forPointeeType) { 6690 if (TBAAInfo) 6691 *TBAAInfo = getTBAAAccessInfo(T); 6692 6693 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6694 // that doesn't return the information we need to compute BaseInfo. 6695 6696 // Honor alignment typedef attributes even on incomplete types. 6697 // We also honor them straight for C++ class types, even as pointees; 6698 // there's an expressivity gap here. 6699 if (auto TT = T->getAs<TypedefType>()) { 6700 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6701 if (BaseInfo) 6702 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6703 return getContext().toCharUnitsFromBits(Align); 6704 } 6705 } 6706 6707 bool AlignForArray = T->isArrayType(); 6708 6709 // Analyze the base element type, so we don't get confused by incomplete 6710 // array types. 6711 T = getContext().getBaseElementType(T); 6712 6713 if (T->isIncompleteType()) { 6714 // We could try to replicate the logic from 6715 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6716 // type is incomplete, so it's impossible to test. We could try to reuse 6717 // getTypeAlignIfKnown, but that doesn't return the information we need 6718 // to set BaseInfo. So just ignore the possibility that the alignment is 6719 // greater than one. 6720 if (BaseInfo) 6721 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6722 return CharUnits::One(); 6723 } 6724 6725 if (BaseInfo) 6726 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6727 6728 CharUnits Alignment; 6729 const CXXRecordDecl *RD; 6730 if (T.getQualifiers().hasUnaligned()) { 6731 Alignment = CharUnits::One(); 6732 } else if (forPointeeType && !AlignForArray && 6733 (RD = T->getAsCXXRecordDecl())) { 6734 // For C++ class pointees, we don't know whether we're pointing at a 6735 // base or a complete object, so we generally need to use the 6736 // non-virtual alignment. 6737 Alignment = getClassPointerAlignment(RD); 6738 } else { 6739 Alignment = getContext().getTypeAlignInChars(T); 6740 } 6741 6742 // Cap to the global maximum type alignment unless the alignment 6743 // was somehow explicit on the type. 6744 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6745 if (Alignment.getQuantity() > MaxAlign && 6746 !getContext().isAlignmentRequired(T)) 6747 Alignment = CharUnits::fromQuantity(MaxAlign); 6748 } 6749 return Alignment; 6750 } 6751 6752 bool CodeGenModule::stopAutoInit() { 6753 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6754 if (StopAfter) { 6755 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6756 // used 6757 if (NumAutoVarInit >= StopAfter) { 6758 return true; 6759 } 6760 if (!NumAutoVarInit) { 6761 unsigned DiagID = getDiags().getCustomDiagID( 6762 DiagnosticsEngine::Warning, 6763 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6764 "number of times ftrivial-auto-var-init=%1 gets applied."); 6765 getDiags().Report(DiagID) 6766 << StopAfter 6767 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6768 LangOptions::TrivialAutoVarInitKind::Zero 6769 ? "zero" 6770 : "pattern"); 6771 } 6772 ++NumAutoVarInit; 6773 } 6774 return false; 6775 } 6776 6777 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 6778 const Decl *D) const { 6779 OS << (isa<VarDecl>(D) ? "__static__" : ".anon.") 6780 << getContext().getCUIDHash(); 6781 } 6782