1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::GenericMIPS: 69 case TargetCXXABI::GenericItanium: 70 case TargetCXXABI::WebAssembly: 71 return CreateItaniumCXXABI(CGM); 72 case TargetCXXABI::Microsoft: 73 return CreateMicrosoftCXXABI(CGM); 74 } 75 76 llvm_unreachable("invalid C++ ABI kind"); 77 } 78 79 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 80 const PreprocessorOptions &PPO, 81 const CodeGenOptions &CGO, llvm::Module &M, 82 DiagnosticsEngine &diags, 83 CoverageSourceInfo *CoverageInfo) 84 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 85 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 86 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 87 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 88 Types(*this), VTables(*this), ObjCRuntime(nullptr), 89 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 90 DebugInfo(nullptr), ARCData(nullptr), 91 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 92 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 93 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 94 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 95 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 96 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 97 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 IntAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 113 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 114 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 115 Int8PtrTy = Int8Ty->getPointerTo(0); 116 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 117 118 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 119 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 120 121 if (LangOpts.ObjC1) 122 createObjCRuntime(); 123 if (LangOpts.OpenCL) 124 createOpenCLRuntime(); 125 if (LangOpts.OpenMP) 126 createOpenMPRuntime(); 127 if (LangOpts.CUDA) 128 createCUDARuntime(); 129 130 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 131 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 132 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 133 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 134 getCXXABI().getMangleContext()); 135 136 // If debug info or coverage generation is enabled, create the CGDebugInfo 137 // object. 138 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 139 CodeGenOpts.EmitGcovArcs || 140 CodeGenOpts.EmitGcovNotes) 141 DebugInfo = new CGDebugInfo(*this); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjCAutoRefCount) 146 ARCData = new ARCEntrypoints(); 147 RRData = new RREntrypoints(); 148 149 if (!CodeGenOpts.InstrProfileInput.empty()) { 150 auto ReaderOrErr = 151 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 152 if (std::error_code EC = ReaderOrErr.getError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 156 << EC.message(); 157 } else 158 PGOReader = std::move(ReaderOrErr.get()); 159 } 160 161 // If coverage mapping generation is enabled, create the 162 // CoverageMappingModuleGen object. 163 if (CodeGenOpts.CoverageMapping) 164 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 165 } 166 167 CodeGenModule::~CodeGenModule() { 168 delete ObjCRuntime; 169 delete OpenCLRuntime; 170 delete OpenMPRuntime; 171 delete CUDARuntime; 172 delete TheTargetCodeGenInfo; 173 delete TBAA; 174 delete DebugInfo; 175 delete ARCData; 176 delete RRData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 ObjCRuntime = CreateMacObjCRuntime(*this); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime = new CGOpenCLRuntime(*this); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 OpenMPRuntime = new CGOpenMPRuntime(*this); 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime = CreateNVCUDARuntime(*this); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 239 } 240 OldF->eraseFromParent(); 241 } 242 } 243 244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 245 GlobalValReplacements.push_back(std::make_pair(GV, C)); 246 } 247 248 void CodeGenModule::applyGlobalValReplacements() { 249 for (auto &I : GlobalValReplacements) { 250 llvm::GlobalValue *GV = I.first; 251 llvm::Constant *C = I.second; 252 253 GV->replaceAllUsesWith(C); 254 GV->eraseFromParent(); 255 } 256 } 257 258 // This is only used in aliases that we created and we know they have a 259 // linear structure. 260 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 261 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 262 const llvm::Constant *C = &GA; 263 for (;;) { 264 C = C->stripPointerCasts(); 265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 266 return GO; 267 // stripPointerCasts will not walk over weak aliases. 268 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 269 if (!GA2) 270 return nullptr; 271 if (!Visited.insert(GA2).second) 272 return nullptr; 273 C = GA2->getAliasee(); 274 } 275 } 276 277 void CodeGenModule::checkAliases() { 278 // Check if the constructed aliases are well formed. It is really unfortunate 279 // that we have to do this in CodeGen, but we only construct mangled names 280 // and aliases during codegen. 281 bool Error = false; 282 DiagnosticsEngine &Diags = getDiags(); 283 for (const GlobalDecl &GD : Aliases) { 284 const auto *D = cast<ValueDecl>(GD.getDecl()); 285 const AliasAttr *AA = D->getAttr<AliasAttr>(); 286 StringRef MangledName = getMangledName(GD); 287 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 288 auto *Alias = cast<llvm::GlobalAlias>(Entry); 289 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 290 if (!GV) { 291 Error = true; 292 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 293 } else if (GV->isDeclaration()) { 294 Error = true; 295 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 296 } 297 298 llvm::Constant *Aliasee = Alias->getAliasee(); 299 llvm::GlobalValue *AliaseeGV; 300 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 301 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 302 else 303 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 304 305 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 306 StringRef AliasSection = SA->getName(); 307 if (AliasSection != AliaseeGV->getSection()) 308 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 309 << AliasSection; 310 } 311 312 // We have to handle alias to weak aliases in here. LLVM itself disallows 313 // this since the object semantics would not match the IL one. For 314 // compatibility with gcc we implement it by just pointing the alias 315 // to its aliasee's aliasee. We also warn, since the user is probably 316 // expecting the link to be weak. 317 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 318 if (GA->mayBeOverridden()) { 319 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 320 << GV->getName() << GA->getName(); 321 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 322 GA->getAliasee(), Alias->getType()); 323 Alias->setAliasee(Aliasee); 324 } 325 } 326 } 327 if (!Error) 328 return; 329 330 for (const GlobalDecl &GD : Aliases) { 331 StringRef MangledName = getMangledName(GD); 332 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 333 auto *Alias = cast<llvm::GlobalAlias>(Entry); 334 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 335 Alias->eraseFromParent(); 336 } 337 } 338 339 void CodeGenModule::clear() { 340 DeferredDeclsToEmit.clear(); 341 if (OpenMPRuntime) 342 OpenMPRuntime->clear(); 343 } 344 345 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 346 StringRef MainFile) { 347 if (!hasDiagnostics()) 348 return; 349 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 350 if (MainFile.empty()) 351 MainFile = "<stdin>"; 352 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 353 } else 354 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 355 << Mismatched; 356 } 357 358 void CodeGenModule::Release() { 359 EmitDeferred(); 360 applyGlobalValReplacements(); 361 applyReplacements(); 362 checkAliases(); 363 EmitCXXGlobalInitFunc(); 364 EmitCXXGlobalDtorFunc(); 365 EmitCXXThreadLocalInitFunc(); 366 if (ObjCRuntime) 367 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 368 AddGlobalCtor(ObjCInitFunction); 369 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 370 CUDARuntime) { 371 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 372 AddGlobalCtor(CudaCtorFunction); 373 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 374 AddGlobalDtor(CudaDtorFunction); 375 } 376 if (PGOReader && PGOStats.hasDiagnostics()) 377 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 378 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 379 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 380 EmitGlobalAnnotations(); 381 EmitStaticExternCAliases(); 382 EmitDeferredUnusedCoverageMappings(); 383 if (CoverageMapping) 384 CoverageMapping->emit(); 385 emitLLVMUsed(); 386 387 if (CodeGenOpts.Autolink && 388 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 389 EmitModuleLinkOptions(); 390 } 391 if (CodeGenOpts.DwarfVersion) { 392 // We actually want the latest version when there are conflicts. 393 // We can change from Warning to Latest if such mode is supported. 394 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 395 CodeGenOpts.DwarfVersion); 396 } 397 if (CodeGenOpts.EmitCodeView) { 398 // Indicate that we want CodeView in the metadata. 399 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 400 } 401 if (DebugInfo) 402 // We support a single version in the linked module. The LLVM 403 // parser will drop debug info with a different version number 404 // (and warn about it, too). 405 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 406 llvm::DEBUG_METADATA_VERSION); 407 408 // We need to record the widths of enums and wchar_t, so that we can generate 409 // the correct build attributes in the ARM backend. 410 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 411 if ( Arch == llvm::Triple::arm 412 || Arch == llvm::Triple::armeb 413 || Arch == llvm::Triple::thumb 414 || Arch == llvm::Triple::thumbeb) { 415 // Width of wchar_t in bytes 416 uint64_t WCharWidth = 417 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 418 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 419 420 // The minimum width of an enum in bytes 421 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 422 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 423 } 424 425 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 426 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 427 switch (PLevel) { 428 case 0: break; 429 case 1: PL = llvm::PICLevel::Small; break; 430 case 2: PL = llvm::PICLevel::Large; break; 431 default: llvm_unreachable("Invalid PIC Level"); 432 } 433 434 getModule().setPICLevel(PL); 435 } 436 437 SimplifyPersonality(); 438 439 if (getCodeGenOpts().EmitDeclMetadata) 440 EmitDeclMetadata(); 441 442 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 443 EmitCoverageFile(); 444 445 if (DebugInfo) 446 DebugInfo->finalize(); 447 448 EmitVersionIdentMetadata(); 449 450 EmitTargetMetadata(); 451 452 RewriteAlwaysInlineFunctions(); 453 } 454 455 void CodeGenModule::AddAlwaysInlineFunction(llvm::Function *Fn) { 456 AlwaysInlineFunctions.push_back(Fn); 457 } 458 459 /// Find all uses of GV that are not direct calls or invokes. 460 static void FindNonDirectCallUses(llvm::GlobalValue *GV, 461 llvm::SmallVectorImpl<llvm::Use *> *Uses) { 462 llvm::GlobalValue::use_iterator UI = GV->use_begin(), E = GV->use_end(); 463 for (; UI != E;) { 464 llvm::Use &U = *UI; 465 ++UI; 466 467 llvm::CallSite CS(U.getUser()); 468 bool isDirectCall = (CS.isCall() || CS.isInvoke()) && CS.isCallee(&U); 469 if (!isDirectCall) 470 Uses->push_back(&U); 471 } 472 } 473 474 /// Replace a list of uses. 475 static void ReplaceUsesWith(const llvm::SmallVectorImpl<llvm::Use *> &Uses, 476 llvm::GlobalValue *V, 477 llvm::GlobalValue *Replacement) { 478 for (llvm::Use *U : Uses) { 479 auto *C = dyn_cast<llvm::Constant>(U->getUser()); 480 if (C && !isa<llvm::GlobalValue>(C)) 481 C->handleOperandChange(V, Replacement, U); 482 else 483 U->set(Replacement); 484 } 485 } 486 487 void CodeGenModule::RewriteAlwaysInlineFunction(llvm::Function *Fn) { 488 std::string Name = Fn->getName(); 489 std::string InlineName = Name + ".alwaysinline"; 490 Fn->setName(InlineName); 491 492 llvm::SmallVector<llvm::Use *, 8> NonDirectCallUses; 493 Fn->removeDeadConstantUsers(); 494 FindNonDirectCallUses(Fn, &NonDirectCallUses); 495 // Do not create the wrapper if there are no non-direct call uses, and we are 496 // not required to emit an external definition. 497 if (NonDirectCallUses.empty() && Fn->isDiscardableIfUnused()) { 498 // An always inline function with no wrapper cannot legitimately use the 499 // function's COMDAT symbol. 500 Fn->setComdat(nullptr); 501 return; 502 } 503 504 llvm::FunctionType *FT = Fn->getFunctionType(); 505 llvm::LLVMContext &Ctx = getModule().getContext(); 506 llvm::Function *StubFn = 507 llvm::Function::Create(FT, Fn->getLinkage(), Name, &getModule()); 508 assert(StubFn->getName() == Name && "name was uniqued!"); 509 510 // Insert the stub immediately after the original function. Helps with the 511 // fragile tests, among other things. 512 StubFn->removeFromParent(); 513 TheModule.getFunctionList().insertAfter(Fn, StubFn); 514 515 StubFn->copyAttributesFrom(Fn); 516 StubFn->setPersonalityFn(nullptr); 517 518 // AvailableExternally functions are replaced with a declaration. 519 // Everyone else gets a wrapper that musttail-calls the original function. 520 if (Fn->hasAvailableExternallyLinkage()) { 521 StubFn->setLinkage(llvm::GlobalValue::ExternalLinkage); 522 } else { 523 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", StubFn); 524 std::vector<llvm::Value *> Args; 525 for (llvm::Function::arg_iterator ai = StubFn->arg_begin(); 526 ai != StubFn->arg_end(); ++ai) 527 Args.push_back(&*ai); 528 llvm::CallInst *CI = llvm::CallInst::Create(Fn, Args, "", BB); 529 CI->setCallingConv(Fn->getCallingConv()); 530 CI->setTailCallKind(llvm::CallInst::TCK_MustTail); 531 CI->setAttributes(Fn->getAttributes()); 532 if (FT->getReturnType()->isVoidTy()) 533 llvm::ReturnInst::Create(Ctx, BB); 534 else 535 llvm::ReturnInst::Create(Ctx, CI, BB); 536 } 537 538 if (Fn->hasComdat()) 539 StubFn->setComdat(Fn->getComdat()); 540 541 ReplaceUsesWith(NonDirectCallUses, Fn, StubFn); 542 543 // Replace all metadata uses with the stub. This is primarily to reattach 544 // DISubprogram metadata to the stub, because that's what will be emitted in 545 // the object file. 546 if (Fn->isUsedByMetadata()) 547 llvm::ValueAsMetadata::handleRAUW(Fn, StubFn); 548 } 549 550 void CodeGenModule::RewriteAlwaysInlineFunctions() { 551 for (llvm::Function *Fn : AlwaysInlineFunctions) { 552 RewriteAlwaysInlineFunction(Fn); 553 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 554 Fn->addFnAttr(llvm::Attribute::AlwaysInline); 555 Fn->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 556 Fn->setVisibility(llvm::GlobalValue::DefaultVisibility); 557 } 558 } 559 560 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 561 // Make sure that this type is translated. 562 Types.UpdateCompletedType(TD); 563 } 564 565 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 566 if (!TBAA) 567 return nullptr; 568 return TBAA->getTBAAInfo(QTy); 569 } 570 571 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 572 if (!TBAA) 573 return nullptr; 574 return TBAA->getTBAAInfoForVTablePtr(); 575 } 576 577 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 578 if (!TBAA) 579 return nullptr; 580 return TBAA->getTBAAStructInfo(QTy); 581 } 582 583 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 584 if (!TBAA) 585 return nullptr; 586 return TBAA->getTBAAStructTypeInfo(QTy); 587 } 588 589 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 590 llvm::MDNode *AccessN, 591 uint64_t O) { 592 if (!TBAA) 593 return nullptr; 594 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 595 } 596 597 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 598 /// and struct-path aware TBAA, the tag has the same format: 599 /// base type, access type and offset. 600 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 601 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 602 llvm::MDNode *TBAAInfo, 603 bool ConvertTypeToTag) { 604 if (ConvertTypeToTag && TBAA) 605 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 606 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 607 else 608 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 609 } 610 611 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 612 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 613 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 614 } 615 616 /// ErrorUnsupported - Print out an error that codegen doesn't support the 617 /// specified stmt yet. 618 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 619 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 620 "cannot compile this %0 yet"); 621 std::string Msg = Type; 622 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 623 << Msg << S->getSourceRange(); 624 } 625 626 /// ErrorUnsupported - Print out an error that codegen doesn't support the 627 /// specified decl yet. 628 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 629 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 630 "cannot compile this %0 yet"); 631 std::string Msg = Type; 632 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 633 } 634 635 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 636 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 637 } 638 639 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 640 const NamedDecl *D) const { 641 // Internal definitions always have default visibility. 642 if (GV->hasLocalLinkage()) { 643 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 644 return; 645 } 646 647 // Set visibility for definitions. 648 LinkageInfo LV = D->getLinkageAndVisibility(); 649 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 650 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 651 } 652 653 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 654 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 655 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 656 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 657 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 658 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 659 } 660 661 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 662 CodeGenOptions::TLSModel M) { 663 switch (M) { 664 case CodeGenOptions::GeneralDynamicTLSModel: 665 return llvm::GlobalVariable::GeneralDynamicTLSModel; 666 case CodeGenOptions::LocalDynamicTLSModel: 667 return llvm::GlobalVariable::LocalDynamicTLSModel; 668 case CodeGenOptions::InitialExecTLSModel: 669 return llvm::GlobalVariable::InitialExecTLSModel; 670 case CodeGenOptions::LocalExecTLSModel: 671 return llvm::GlobalVariable::LocalExecTLSModel; 672 } 673 llvm_unreachable("Invalid TLS model!"); 674 } 675 676 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 677 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 678 679 llvm::GlobalValue::ThreadLocalMode TLM; 680 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 681 682 // Override the TLS model if it is explicitly specified. 683 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 684 TLM = GetLLVMTLSModel(Attr->getModel()); 685 } 686 687 GV->setThreadLocalMode(TLM); 688 } 689 690 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 691 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 692 if (!FoundStr.empty()) 693 return FoundStr; 694 695 const auto *ND = cast<NamedDecl>(GD.getDecl()); 696 SmallString<256> Buffer; 697 StringRef Str; 698 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 699 llvm::raw_svector_ostream Out(Buffer); 700 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 701 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 702 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 703 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 704 else 705 getCXXABI().getMangleContext().mangleName(ND, Out); 706 Str = Out.str(); 707 } else { 708 IdentifierInfo *II = ND->getIdentifier(); 709 assert(II && "Attempt to mangle unnamed decl."); 710 Str = II->getName(); 711 } 712 713 // Keep the first result in the case of a mangling collision. 714 auto Result = Manglings.insert(std::make_pair(Str, GD)); 715 return FoundStr = Result.first->first(); 716 } 717 718 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 719 const BlockDecl *BD) { 720 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 721 const Decl *D = GD.getDecl(); 722 723 SmallString<256> Buffer; 724 llvm::raw_svector_ostream Out(Buffer); 725 if (!D) 726 MangleCtx.mangleGlobalBlock(BD, 727 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 728 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 729 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 730 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 731 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 732 else 733 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 734 735 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 736 return Result.first->first(); 737 } 738 739 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 740 return getModule().getNamedValue(Name); 741 } 742 743 /// AddGlobalCtor - Add a function to the list that will be called before 744 /// main() runs. 745 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 746 llvm::Constant *AssociatedData) { 747 // FIXME: Type coercion of void()* types. 748 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 749 } 750 751 /// AddGlobalDtor - Add a function to the list that will be called 752 /// when the module is unloaded. 753 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 754 // FIXME: Type coercion of void()* types. 755 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 756 } 757 758 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 759 // Ctor function type is void()*. 760 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 761 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 762 763 // Get the type of a ctor entry, { i32, void ()*, i8* }. 764 llvm::StructType *CtorStructTy = llvm::StructType::get( 765 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 766 767 // Construct the constructor and destructor arrays. 768 SmallVector<llvm::Constant *, 8> Ctors; 769 for (const auto &I : Fns) { 770 llvm::Constant *S[] = { 771 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 772 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 773 (I.AssociatedData 774 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 775 : llvm::Constant::getNullValue(VoidPtrTy))}; 776 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 777 } 778 779 if (!Ctors.empty()) { 780 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 781 new llvm::GlobalVariable(TheModule, AT, false, 782 llvm::GlobalValue::AppendingLinkage, 783 llvm::ConstantArray::get(AT, Ctors), 784 GlobalName); 785 } 786 } 787 788 llvm::GlobalValue::LinkageTypes 789 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 790 const auto *D = cast<FunctionDecl>(GD.getDecl()); 791 792 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 793 794 if (isa<CXXDestructorDecl>(D) && 795 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 796 GD.getDtorType())) { 797 // Destructor variants in the Microsoft C++ ABI are always internal or 798 // linkonce_odr thunks emitted on an as-needed basis. 799 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 800 : llvm::GlobalValue::LinkOnceODRLinkage; 801 } 802 803 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 804 } 805 806 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 807 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 808 809 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 810 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 811 // Don't dllexport/import destructor thunks. 812 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 813 return; 814 } 815 } 816 817 if (FD->hasAttr<DLLImportAttr>()) 818 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 819 else if (FD->hasAttr<DLLExportAttr>()) 820 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 821 else 822 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 823 } 824 825 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 826 llvm::Function *F) { 827 setNonAliasAttributes(D, F); 828 } 829 830 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 831 const CGFunctionInfo &Info, 832 llvm::Function *F) { 833 unsigned CallingConv; 834 AttributeListType AttributeList; 835 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 836 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 837 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 838 } 839 840 /// Determines whether the language options require us to model 841 /// unwind exceptions. We treat -fexceptions as mandating this 842 /// except under the fragile ObjC ABI with only ObjC exceptions 843 /// enabled. This means, for example, that C with -fexceptions 844 /// enables this. 845 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 846 // If exceptions are completely disabled, obviously this is false. 847 if (!LangOpts.Exceptions) return false; 848 849 // If C++ exceptions are enabled, this is true. 850 if (LangOpts.CXXExceptions) return true; 851 852 // If ObjC exceptions are enabled, this depends on the ABI. 853 if (LangOpts.ObjCExceptions) { 854 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 855 } 856 857 return true; 858 } 859 860 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 861 llvm::Function *F) { 862 llvm::AttrBuilder B; 863 864 if (CodeGenOpts.UnwindTables) 865 B.addAttribute(llvm::Attribute::UWTable); 866 867 if (!hasUnwindExceptions(LangOpts)) 868 B.addAttribute(llvm::Attribute::NoUnwind); 869 870 if (D->hasAttr<NakedAttr>()) { 871 // Naked implies noinline: we should not be inlining such functions. 872 B.addAttribute(llvm::Attribute::Naked); 873 B.addAttribute(llvm::Attribute::NoInline); 874 } else if (D->hasAttr<NoDuplicateAttr>()) { 875 B.addAttribute(llvm::Attribute::NoDuplicate); 876 } else if (D->hasAttr<NoInlineAttr>()) { 877 B.addAttribute(llvm::Attribute::NoInline); 878 } else if (D->hasAttr<AlwaysInlineAttr>() && 879 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 880 llvm::Attribute::NoInline)) { 881 // (noinline wins over always_inline, and we can't specify both in IR) 882 AddAlwaysInlineFunction(F); 883 } 884 885 if (D->hasAttr<ColdAttr>()) { 886 if (!D->hasAttr<OptimizeNoneAttr>()) 887 B.addAttribute(llvm::Attribute::OptimizeForSize); 888 B.addAttribute(llvm::Attribute::Cold); 889 } 890 891 if (D->hasAttr<MinSizeAttr>()) 892 B.addAttribute(llvm::Attribute::MinSize); 893 894 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 895 B.addAttribute(llvm::Attribute::StackProtect); 896 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 897 B.addAttribute(llvm::Attribute::StackProtectStrong); 898 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 899 B.addAttribute(llvm::Attribute::StackProtectReq); 900 901 F->addAttributes(llvm::AttributeSet::FunctionIndex, 902 llvm::AttributeSet::get( 903 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 904 905 if (D->hasAttr<OptimizeNoneAttr>()) { 906 // OptimizeNone implies noinline; we should not be inlining such functions. 907 F->addFnAttr(llvm::Attribute::OptimizeNone); 908 F->addFnAttr(llvm::Attribute::NoInline); 909 910 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 911 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 912 "OptimizeNone and OptimizeForSize on same function!"); 913 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 914 "OptimizeNone and MinSize on same function!"); 915 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 916 "OptimizeNone and AlwaysInline on same function!"); 917 918 // Attribute 'inlinehint' has no effect on 'optnone' functions. 919 // Explicitly remove it from the set of function attributes. 920 F->removeFnAttr(llvm::Attribute::InlineHint); 921 } 922 923 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 924 F->setUnnamedAddr(true); 925 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 926 if (MD->isVirtual()) 927 F->setUnnamedAddr(true); 928 929 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 930 if (alignment) 931 F->setAlignment(alignment); 932 933 // Some C++ ABIs require 2-byte alignment for member functions, in order to 934 // reserve a bit for differentiating between virtual and non-virtual member 935 // functions. If the current target's C++ ABI requires this and this is a 936 // member function, set its alignment accordingly. 937 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 938 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 939 F->setAlignment(2); 940 } 941 } 942 943 void CodeGenModule::SetCommonAttributes(const Decl *D, 944 llvm::GlobalValue *GV) { 945 if (const auto *ND = dyn_cast<NamedDecl>(D)) 946 setGlobalVisibility(GV, ND); 947 else 948 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 949 950 if (D->hasAttr<UsedAttr>()) 951 addUsedGlobal(GV); 952 } 953 954 void CodeGenModule::setAliasAttributes(const Decl *D, 955 llvm::GlobalValue *GV) { 956 SetCommonAttributes(D, GV); 957 958 // Process the dllexport attribute based on whether the original definition 959 // (not necessarily the aliasee) was exported. 960 if (D->hasAttr<DLLExportAttr>()) 961 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 962 } 963 964 void CodeGenModule::setNonAliasAttributes(const Decl *D, 965 llvm::GlobalObject *GO) { 966 SetCommonAttributes(D, GO); 967 968 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 969 GO->setSection(SA->getName()); 970 971 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 972 } 973 974 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 975 llvm::Function *F, 976 const CGFunctionInfo &FI) { 977 SetLLVMFunctionAttributes(D, FI, F); 978 SetLLVMFunctionAttributesForDefinition(D, F); 979 980 F->setLinkage(llvm::Function::InternalLinkage); 981 982 setNonAliasAttributes(D, F); 983 } 984 985 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 986 const NamedDecl *ND) { 987 // Set linkage and visibility in case we never see a definition. 988 LinkageInfo LV = ND->getLinkageAndVisibility(); 989 if (LV.getLinkage() != ExternalLinkage) { 990 // Don't set internal linkage on declarations. 991 } else { 992 if (ND->hasAttr<DLLImportAttr>()) { 993 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 994 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 995 } else if (ND->hasAttr<DLLExportAttr>()) { 996 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 997 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 998 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 999 // "extern_weak" is overloaded in LLVM; we probably should have 1000 // separate linkage types for this. 1001 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1002 } 1003 1004 // Set visibility on a declaration only if it's explicit. 1005 if (LV.isVisibilityExplicit()) 1006 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1007 } 1008 } 1009 1010 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1011 bool IsIncompleteFunction, 1012 bool IsThunk) { 1013 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1014 // If this is an intrinsic function, set the function's attributes 1015 // to the intrinsic's attributes. 1016 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1017 return; 1018 } 1019 1020 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1021 1022 if (!IsIncompleteFunction) 1023 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1024 1025 // Add the Returned attribute for "this", except for iOS 5 and earlier 1026 // where substantial code, including the libstdc++ dylib, was compiled with 1027 // GCC and does not actually return "this". 1028 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1029 !(getTarget().getTriple().isiOS() && 1030 getTarget().getTriple().isOSVersionLT(6))) { 1031 assert(!F->arg_empty() && 1032 F->arg_begin()->getType() 1033 ->canLosslesslyBitCastTo(F->getReturnType()) && 1034 "unexpected this return"); 1035 F->addAttribute(1, llvm::Attribute::Returned); 1036 } 1037 1038 // Only a few attributes are set on declarations; these may later be 1039 // overridden by a definition. 1040 1041 setLinkageAndVisibilityForGV(F, FD); 1042 1043 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1044 F->setSection(SA->getName()); 1045 1046 // A replaceable global allocation function does not act like a builtin by 1047 // default, only if it is invoked by a new-expression or delete-expression. 1048 if (FD->isReplaceableGlobalAllocationFunction()) 1049 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1050 llvm::Attribute::NoBuiltin); 1051 1052 // If we are checking indirect calls and this is not a non-static member 1053 // function, emit a bit set entry for the function type. 1054 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) && 1055 !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) { 1056 llvm::NamedMDNode *BitsetsMD = 1057 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 1058 1059 llvm::Metadata *BitsetOps[] = { 1060 CreateMetadataIdentifierForType(FD->getType()), 1061 llvm::ConstantAsMetadata::get(F), 1062 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 1063 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 1064 } 1065 } 1066 1067 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1068 assert(!GV->isDeclaration() && 1069 "Only globals with definition can force usage."); 1070 LLVMUsed.emplace_back(GV); 1071 } 1072 1073 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1074 assert(!GV->isDeclaration() && 1075 "Only globals with definition can force usage."); 1076 LLVMCompilerUsed.emplace_back(GV); 1077 } 1078 1079 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1080 std::vector<llvm::WeakVH> &List) { 1081 // Don't create llvm.used if there is no need. 1082 if (List.empty()) 1083 return; 1084 1085 // Convert List to what ConstantArray needs. 1086 SmallVector<llvm::Constant*, 8> UsedArray; 1087 UsedArray.resize(List.size()); 1088 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1089 UsedArray[i] = 1090 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1091 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1092 } 1093 1094 if (UsedArray.empty()) 1095 return; 1096 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1097 1098 auto *GV = new llvm::GlobalVariable( 1099 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1100 llvm::ConstantArray::get(ATy, UsedArray), Name); 1101 1102 GV->setSection("llvm.metadata"); 1103 } 1104 1105 void CodeGenModule::emitLLVMUsed() { 1106 emitUsed(*this, "llvm.used", LLVMUsed); 1107 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1108 } 1109 1110 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1111 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1112 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1113 } 1114 1115 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1116 llvm::SmallString<32> Opt; 1117 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1118 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1119 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1120 } 1121 1122 void CodeGenModule::AddDependentLib(StringRef Lib) { 1123 llvm::SmallString<24> Opt; 1124 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1125 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1126 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1127 } 1128 1129 /// \brief Add link options implied by the given module, including modules 1130 /// it depends on, using a postorder walk. 1131 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1132 SmallVectorImpl<llvm::Metadata *> &Metadata, 1133 llvm::SmallPtrSet<Module *, 16> &Visited) { 1134 // Import this module's parent. 1135 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1136 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1137 } 1138 1139 // Import this module's dependencies. 1140 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1141 if (Visited.insert(Mod->Imports[I - 1]).second) 1142 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1143 } 1144 1145 // Add linker options to link against the libraries/frameworks 1146 // described by this module. 1147 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1148 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1149 // Link against a framework. Frameworks are currently Darwin only, so we 1150 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1151 if (Mod->LinkLibraries[I-1].IsFramework) { 1152 llvm::Metadata *Args[2] = { 1153 llvm::MDString::get(Context, "-framework"), 1154 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1155 1156 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1157 continue; 1158 } 1159 1160 // Link against a library. 1161 llvm::SmallString<24> Opt; 1162 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1163 Mod->LinkLibraries[I-1].Library, Opt); 1164 auto *OptString = llvm::MDString::get(Context, Opt); 1165 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1166 } 1167 } 1168 1169 void CodeGenModule::EmitModuleLinkOptions() { 1170 // Collect the set of all of the modules we want to visit to emit link 1171 // options, which is essentially the imported modules and all of their 1172 // non-explicit child modules. 1173 llvm::SetVector<clang::Module *> LinkModules; 1174 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1175 SmallVector<clang::Module *, 16> Stack; 1176 1177 // Seed the stack with imported modules. 1178 for (Module *M : ImportedModules) 1179 if (Visited.insert(M).second) 1180 Stack.push_back(M); 1181 1182 // Find all of the modules to import, making a little effort to prune 1183 // non-leaf modules. 1184 while (!Stack.empty()) { 1185 clang::Module *Mod = Stack.pop_back_val(); 1186 1187 bool AnyChildren = false; 1188 1189 // Visit the submodules of this module. 1190 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1191 SubEnd = Mod->submodule_end(); 1192 Sub != SubEnd; ++Sub) { 1193 // Skip explicit children; they need to be explicitly imported to be 1194 // linked against. 1195 if ((*Sub)->IsExplicit) 1196 continue; 1197 1198 if (Visited.insert(*Sub).second) { 1199 Stack.push_back(*Sub); 1200 AnyChildren = true; 1201 } 1202 } 1203 1204 // We didn't find any children, so add this module to the list of 1205 // modules to link against. 1206 if (!AnyChildren) { 1207 LinkModules.insert(Mod); 1208 } 1209 } 1210 1211 // Add link options for all of the imported modules in reverse topological 1212 // order. We don't do anything to try to order import link flags with respect 1213 // to linker options inserted by things like #pragma comment(). 1214 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1215 Visited.clear(); 1216 for (Module *M : LinkModules) 1217 if (Visited.insert(M).second) 1218 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1219 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1220 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1221 1222 // Add the linker options metadata flag. 1223 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1224 llvm::MDNode::get(getLLVMContext(), 1225 LinkerOptionsMetadata)); 1226 } 1227 1228 void CodeGenModule::EmitDeferred() { 1229 // Emit code for any potentially referenced deferred decls. Since a 1230 // previously unused static decl may become used during the generation of code 1231 // for a static function, iterate until no changes are made. 1232 1233 if (!DeferredVTables.empty()) { 1234 EmitDeferredVTables(); 1235 1236 // Emitting a v-table doesn't directly cause more v-tables to 1237 // become deferred, although it can cause functions to be 1238 // emitted that then need those v-tables. 1239 assert(DeferredVTables.empty()); 1240 } 1241 1242 // Stop if we're out of both deferred v-tables and deferred declarations. 1243 if (DeferredDeclsToEmit.empty()) 1244 return; 1245 1246 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1247 // work, it will not interfere with this. 1248 std::vector<DeferredGlobal> CurDeclsToEmit; 1249 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1250 1251 for (DeferredGlobal &G : CurDeclsToEmit) { 1252 GlobalDecl D = G.GD; 1253 llvm::GlobalValue *GV = G.GV; 1254 G.GV = nullptr; 1255 1256 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1257 // to get GlobalValue with exactly the type we need, not something that 1258 // might had been created for another decl with the same mangled name but 1259 // different type. 1260 // FIXME: Support for variables is not implemented yet. 1261 if (isa<FunctionDecl>(D.getDecl())) 1262 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1263 else 1264 if (!GV) 1265 GV = GetGlobalValue(getMangledName(D)); 1266 1267 // Check to see if we've already emitted this. This is necessary 1268 // for a couple of reasons: first, decls can end up in the 1269 // deferred-decls queue multiple times, and second, decls can end 1270 // up with definitions in unusual ways (e.g. by an extern inline 1271 // function acquiring a strong function redefinition). Just 1272 // ignore these cases. 1273 if (GV && !GV->isDeclaration()) 1274 continue; 1275 1276 // Otherwise, emit the definition and move on to the next one. 1277 EmitGlobalDefinition(D, GV); 1278 1279 // If we found out that we need to emit more decls, do that recursively. 1280 // This has the advantage that the decls are emitted in a DFS and related 1281 // ones are close together, which is convenient for testing. 1282 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1283 EmitDeferred(); 1284 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1285 } 1286 } 1287 } 1288 1289 void CodeGenModule::EmitGlobalAnnotations() { 1290 if (Annotations.empty()) 1291 return; 1292 1293 // Create a new global variable for the ConstantStruct in the Module. 1294 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1295 Annotations[0]->getType(), Annotations.size()), Annotations); 1296 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1297 llvm::GlobalValue::AppendingLinkage, 1298 Array, "llvm.global.annotations"); 1299 gv->setSection(AnnotationSection); 1300 } 1301 1302 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1303 llvm::Constant *&AStr = AnnotationStrings[Str]; 1304 if (AStr) 1305 return AStr; 1306 1307 // Not found yet, create a new global. 1308 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1309 auto *gv = 1310 new llvm::GlobalVariable(getModule(), s->getType(), true, 1311 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1312 gv->setSection(AnnotationSection); 1313 gv->setUnnamedAddr(true); 1314 AStr = gv; 1315 return gv; 1316 } 1317 1318 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1319 SourceManager &SM = getContext().getSourceManager(); 1320 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1321 if (PLoc.isValid()) 1322 return EmitAnnotationString(PLoc.getFilename()); 1323 return EmitAnnotationString(SM.getBufferName(Loc)); 1324 } 1325 1326 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1327 SourceManager &SM = getContext().getSourceManager(); 1328 PresumedLoc PLoc = SM.getPresumedLoc(L); 1329 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1330 SM.getExpansionLineNumber(L); 1331 return llvm::ConstantInt::get(Int32Ty, LineNo); 1332 } 1333 1334 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1335 const AnnotateAttr *AA, 1336 SourceLocation L) { 1337 // Get the globals for file name, annotation, and the line number. 1338 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1339 *UnitGV = EmitAnnotationUnit(L), 1340 *LineNoCst = EmitAnnotationLineNo(L); 1341 1342 // Create the ConstantStruct for the global annotation. 1343 llvm::Constant *Fields[4] = { 1344 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1345 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1346 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1347 LineNoCst 1348 }; 1349 return llvm::ConstantStruct::getAnon(Fields); 1350 } 1351 1352 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1353 llvm::GlobalValue *GV) { 1354 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1355 // Get the struct elements for these annotations. 1356 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1357 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1358 } 1359 1360 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1361 SourceLocation Loc) const { 1362 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1363 // Blacklist by function name. 1364 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1365 return true; 1366 // Blacklist by location. 1367 if (!Loc.isInvalid()) 1368 return SanitizerBL.isBlacklistedLocation(Loc); 1369 // If location is unknown, this may be a compiler-generated function. Assume 1370 // it's located in the main file. 1371 auto &SM = Context.getSourceManager(); 1372 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1373 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1374 } 1375 return false; 1376 } 1377 1378 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1379 SourceLocation Loc, QualType Ty, 1380 StringRef Category) const { 1381 // For now globals can be blacklisted only in ASan and KASan. 1382 if (!LangOpts.Sanitize.hasOneOf( 1383 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1384 return false; 1385 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1386 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1387 return true; 1388 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1389 return true; 1390 // Check global type. 1391 if (!Ty.isNull()) { 1392 // Drill down the array types: if global variable of a fixed type is 1393 // blacklisted, we also don't instrument arrays of them. 1394 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1395 Ty = AT->getElementType(); 1396 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1397 // We allow to blacklist only record types (classes, structs etc.) 1398 if (Ty->isRecordType()) { 1399 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1400 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1401 return true; 1402 } 1403 } 1404 return false; 1405 } 1406 1407 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1408 // Never defer when EmitAllDecls is specified. 1409 if (LangOpts.EmitAllDecls) 1410 return true; 1411 1412 return getContext().DeclMustBeEmitted(Global); 1413 } 1414 1415 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1416 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1417 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1418 // Implicit template instantiations may change linkage if they are later 1419 // explicitly instantiated, so they should not be emitted eagerly. 1420 return false; 1421 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1422 // codegen for global variables, because they may be marked as threadprivate. 1423 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1424 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1425 return false; 1426 1427 return true; 1428 } 1429 1430 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1431 const CXXUuidofExpr* E) { 1432 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1433 // well-formed. 1434 StringRef Uuid = E->getUuidAsStringRef(Context); 1435 std::string Name = "_GUID_" + Uuid.lower(); 1436 std::replace(Name.begin(), Name.end(), '-', '_'); 1437 1438 // Contains a 32-bit field. 1439 CharUnits Alignment = CharUnits::fromQuantity(4); 1440 1441 // Look for an existing global. 1442 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1443 return ConstantAddress(GV, Alignment); 1444 1445 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1446 assert(Init && "failed to initialize as constant"); 1447 1448 auto *GV = new llvm::GlobalVariable( 1449 getModule(), Init->getType(), 1450 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1451 if (supportsCOMDAT()) 1452 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1453 return ConstantAddress(GV, Alignment); 1454 } 1455 1456 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1457 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1458 assert(AA && "No alias?"); 1459 1460 CharUnits Alignment = getContext().getDeclAlign(VD); 1461 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1462 1463 // See if there is already something with the target's name in the module. 1464 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1465 if (Entry) { 1466 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1467 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1468 return ConstantAddress(Ptr, Alignment); 1469 } 1470 1471 llvm::Constant *Aliasee; 1472 if (isa<llvm::FunctionType>(DeclTy)) 1473 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1474 GlobalDecl(cast<FunctionDecl>(VD)), 1475 /*ForVTable=*/false); 1476 else 1477 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1478 llvm::PointerType::getUnqual(DeclTy), 1479 nullptr); 1480 1481 auto *F = cast<llvm::GlobalValue>(Aliasee); 1482 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1483 WeakRefReferences.insert(F); 1484 1485 return ConstantAddress(Aliasee, Alignment); 1486 } 1487 1488 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1489 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1490 1491 // Weak references don't produce any output by themselves. 1492 if (Global->hasAttr<WeakRefAttr>()) 1493 return; 1494 1495 // If this is an alias definition (which otherwise looks like a declaration) 1496 // emit it now. 1497 if (Global->hasAttr<AliasAttr>()) 1498 return EmitAliasDefinition(GD); 1499 1500 // If this is CUDA, be selective about which declarations we emit. 1501 if (LangOpts.CUDA) { 1502 if (LangOpts.CUDAIsDevice) { 1503 if (!Global->hasAttr<CUDADeviceAttr>() && 1504 !Global->hasAttr<CUDAGlobalAttr>() && 1505 !Global->hasAttr<CUDAConstantAttr>() && 1506 !Global->hasAttr<CUDASharedAttr>()) 1507 return; 1508 } else { 1509 if (!Global->hasAttr<CUDAHostAttr>() && ( 1510 Global->hasAttr<CUDADeviceAttr>() || 1511 Global->hasAttr<CUDAConstantAttr>() || 1512 Global->hasAttr<CUDASharedAttr>())) 1513 return; 1514 } 1515 } 1516 1517 // Ignore declarations, they will be emitted on their first use. 1518 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1519 // Forward declarations are emitted lazily on first use. 1520 if (!FD->doesThisDeclarationHaveABody()) { 1521 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1522 return; 1523 1524 StringRef MangledName = getMangledName(GD); 1525 1526 // Compute the function info and LLVM type. 1527 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1528 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1529 1530 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1531 /*DontDefer=*/false); 1532 return; 1533 } 1534 } else { 1535 const auto *VD = cast<VarDecl>(Global); 1536 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1537 1538 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1539 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1540 return; 1541 } 1542 1543 // Defer code generation to first use when possible, e.g. if this is an inline 1544 // function. If the global must always be emitted, do it eagerly if possible 1545 // to benefit from cache locality. 1546 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1547 // Emit the definition if it can't be deferred. 1548 EmitGlobalDefinition(GD); 1549 return; 1550 } 1551 1552 // If we're deferring emission of a C++ variable with an 1553 // initializer, remember the order in which it appeared in the file. 1554 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1555 cast<VarDecl>(Global)->hasInit()) { 1556 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1557 CXXGlobalInits.push_back(nullptr); 1558 } 1559 1560 StringRef MangledName = getMangledName(GD); 1561 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1562 // The value has already been used and should therefore be emitted. 1563 addDeferredDeclToEmit(GV, GD); 1564 } else if (MustBeEmitted(Global)) { 1565 // The value must be emitted, but cannot be emitted eagerly. 1566 assert(!MayBeEmittedEagerly(Global)); 1567 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1568 } else { 1569 // Otherwise, remember that we saw a deferred decl with this name. The 1570 // first use of the mangled name will cause it to move into 1571 // DeferredDeclsToEmit. 1572 DeferredDecls[MangledName] = GD; 1573 } 1574 } 1575 1576 namespace { 1577 struct FunctionIsDirectlyRecursive : 1578 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1579 const StringRef Name; 1580 const Builtin::Context &BI; 1581 bool Result; 1582 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1583 Name(N), BI(C), Result(false) { 1584 } 1585 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1586 1587 bool TraverseCallExpr(CallExpr *E) { 1588 const FunctionDecl *FD = E->getDirectCallee(); 1589 if (!FD) 1590 return true; 1591 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1592 if (Attr && Name == Attr->getLabel()) { 1593 Result = true; 1594 return false; 1595 } 1596 unsigned BuiltinID = FD->getBuiltinID(); 1597 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1598 return true; 1599 StringRef BuiltinName = BI.getName(BuiltinID); 1600 if (BuiltinName.startswith("__builtin_") && 1601 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1602 Result = true; 1603 return false; 1604 } 1605 return true; 1606 } 1607 }; 1608 1609 struct DLLImportFunctionVisitor 1610 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1611 bool SafeToInline = true; 1612 1613 bool VisitVarDecl(VarDecl *VD) { 1614 // A thread-local variable cannot be imported. 1615 SafeToInline = !VD->getTLSKind(); 1616 return SafeToInline; 1617 } 1618 1619 // Make sure we're not referencing non-imported vars or functions. 1620 bool VisitDeclRefExpr(DeclRefExpr *E) { 1621 ValueDecl *VD = E->getDecl(); 1622 if (isa<FunctionDecl>(VD)) 1623 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1624 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1625 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1626 return SafeToInline; 1627 } 1628 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1629 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1630 return SafeToInline; 1631 } 1632 bool VisitCXXNewExpr(CXXNewExpr *E) { 1633 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1634 return SafeToInline; 1635 } 1636 }; 1637 } 1638 1639 // isTriviallyRecursive - Check if this function calls another 1640 // decl that, because of the asm attribute or the other decl being a builtin, 1641 // ends up pointing to itself. 1642 bool 1643 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1644 StringRef Name; 1645 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1646 // asm labels are a special kind of mangling we have to support. 1647 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1648 if (!Attr) 1649 return false; 1650 Name = Attr->getLabel(); 1651 } else { 1652 Name = FD->getName(); 1653 } 1654 1655 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1656 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1657 return Walker.Result; 1658 } 1659 1660 bool 1661 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1662 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1663 return true; 1664 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1665 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1666 return false; 1667 1668 if (F->hasAttr<DLLImportAttr>()) { 1669 // Check whether it would be safe to inline this dllimport function. 1670 DLLImportFunctionVisitor Visitor; 1671 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1672 if (!Visitor.SafeToInline) 1673 return false; 1674 } 1675 1676 // PR9614. Avoid cases where the source code is lying to us. An available 1677 // externally function should have an equivalent function somewhere else, 1678 // but a function that calls itself is clearly not equivalent to the real 1679 // implementation. 1680 // This happens in glibc's btowc and in some configure checks. 1681 return !isTriviallyRecursive(F); 1682 } 1683 1684 /// If the type for the method's class was generated by 1685 /// CGDebugInfo::createContextChain(), the cache contains only a 1686 /// limited DIType without any declarations. Since EmitFunctionStart() 1687 /// needs to find the canonical declaration for each method, we need 1688 /// to construct the complete type prior to emitting the method. 1689 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1690 if (!D->isInstance()) 1691 return; 1692 1693 if (CGDebugInfo *DI = getModuleDebugInfo()) 1694 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1695 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1696 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1697 } 1698 } 1699 1700 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1701 const auto *D = cast<ValueDecl>(GD.getDecl()); 1702 1703 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1704 Context.getSourceManager(), 1705 "Generating code for declaration"); 1706 1707 if (isa<FunctionDecl>(D)) { 1708 // At -O0, don't generate IR for functions with available_externally 1709 // linkage. 1710 if (!shouldEmitFunction(GD)) 1711 return; 1712 1713 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1714 CompleteDIClassType(Method); 1715 // Make sure to emit the definition(s) before we emit the thunks. 1716 // This is necessary for the generation of certain thunks. 1717 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1718 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1719 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1720 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1721 else 1722 EmitGlobalFunctionDefinition(GD, GV); 1723 1724 if (Method->isVirtual()) 1725 getVTables().EmitThunks(GD); 1726 1727 return; 1728 } 1729 1730 return EmitGlobalFunctionDefinition(GD, GV); 1731 } 1732 1733 if (const auto *VD = dyn_cast<VarDecl>(D)) 1734 return EmitGlobalVarDefinition(VD); 1735 1736 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1737 } 1738 1739 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1740 llvm::Function *NewFn); 1741 1742 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1743 /// module, create and return an llvm Function with the specified type. If there 1744 /// is something in the module with the specified name, return it potentially 1745 /// bitcasted to the right type. 1746 /// 1747 /// If D is non-null, it specifies a decl that correspond to this. This is used 1748 /// to set the attributes on the function when it is first created. 1749 llvm::Constant * 1750 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1751 llvm::Type *Ty, 1752 GlobalDecl GD, bool ForVTable, 1753 bool DontDefer, bool IsThunk, 1754 llvm::AttributeSet ExtraAttrs, 1755 bool IsForDefinition) { 1756 const Decl *D = GD.getDecl(); 1757 1758 // Lookup the entry, lazily creating it if necessary. 1759 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1760 if (Entry) { 1761 if (WeakRefReferences.erase(Entry)) { 1762 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1763 if (FD && !FD->hasAttr<WeakAttr>()) 1764 Entry->setLinkage(llvm::Function::ExternalLinkage); 1765 } 1766 1767 // Handle dropped DLL attributes. 1768 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1769 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1770 1771 // If there are two attempts to define the same mangled name, issue an 1772 // error. 1773 if (IsForDefinition && !Entry->isDeclaration()) { 1774 GlobalDecl OtherGD; 1775 // Check that GD is not yet in ExplicitDefinitions is required to make 1776 // sure that we issue an error only once. 1777 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1778 (GD.getCanonicalDecl().getDecl() != 1779 OtherGD.getCanonicalDecl().getDecl()) && 1780 DiagnosedConflictingDefinitions.insert(GD).second) { 1781 getDiags().Report(D->getLocation(), 1782 diag::err_duplicate_mangled_name); 1783 getDiags().Report(OtherGD.getDecl()->getLocation(), 1784 diag::note_previous_definition); 1785 } 1786 } 1787 1788 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1789 (Entry->getType()->getElementType() == Ty)) { 1790 return Entry; 1791 } 1792 1793 // Make sure the result is of the correct type. 1794 // (If function is requested for a definition, we always need to create a new 1795 // function, not just return a bitcast.) 1796 if (!IsForDefinition) 1797 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1798 } 1799 1800 // This function doesn't have a complete type (for example, the return 1801 // type is an incomplete struct). Use a fake type instead, and make 1802 // sure not to try to set attributes. 1803 bool IsIncompleteFunction = false; 1804 1805 llvm::FunctionType *FTy; 1806 if (isa<llvm::FunctionType>(Ty)) { 1807 FTy = cast<llvm::FunctionType>(Ty); 1808 } else { 1809 FTy = llvm::FunctionType::get(VoidTy, false); 1810 IsIncompleteFunction = true; 1811 } 1812 1813 llvm::Function *F = 1814 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1815 Entry ? StringRef() : MangledName, &getModule()); 1816 1817 // If we already created a function with the same mangled name (but different 1818 // type) before, take its name and add it to the list of functions to be 1819 // replaced with F at the end of CodeGen. 1820 // 1821 // This happens if there is a prototype for a function (e.g. "int f()") and 1822 // then a definition of a different type (e.g. "int f(int x)"). 1823 if (Entry) { 1824 F->takeName(Entry); 1825 1826 // This might be an implementation of a function without a prototype, in 1827 // which case, try to do special replacement of calls which match the new 1828 // prototype. The really key thing here is that we also potentially drop 1829 // arguments from the call site so as to make a direct call, which makes the 1830 // inliner happier and suppresses a number of optimizer warnings (!) about 1831 // dropping arguments. 1832 if (!Entry->use_empty()) { 1833 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1834 Entry->removeDeadConstantUsers(); 1835 } 1836 1837 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1838 F, Entry->getType()->getElementType()->getPointerTo()); 1839 addGlobalValReplacement(Entry, BC); 1840 } 1841 1842 assert(F->getName() == MangledName && "name was uniqued!"); 1843 if (D) 1844 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1845 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1846 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1847 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1848 llvm::AttributeSet::get(VMContext, 1849 llvm::AttributeSet::FunctionIndex, 1850 B)); 1851 } 1852 1853 if (!DontDefer) { 1854 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1855 // each other bottoming out with the base dtor. Therefore we emit non-base 1856 // dtors on usage, even if there is no dtor definition in the TU. 1857 if (D && isa<CXXDestructorDecl>(D) && 1858 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1859 GD.getDtorType())) 1860 addDeferredDeclToEmit(F, GD); 1861 1862 // This is the first use or definition of a mangled name. If there is a 1863 // deferred decl with this name, remember that we need to emit it at the end 1864 // of the file. 1865 auto DDI = DeferredDecls.find(MangledName); 1866 if (DDI != DeferredDecls.end()) { 1867 // Move the potentially referenced deferred decl to the 1868 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1869 // don't need it anymore). 1870 addDeferredDeclToEmit(F, DDI->second); 1871 DeferredDecls.erase(DDI); 1872 1873 // Otherwise, there are cases we have to worry about where we're 1874 // using a declaration for which we must emit a definition but where 1875 // we might not find a top-level definition: 1876 // - member functions defined inline in their classes 1877 // - friend functions defined inline in some class 1878 // - special member functions with implicit definitions 1879 // If we ever change our AST traversal to walk into class methods, 1880 // this will be unnecessary. 1881 // 1882 // We also don't emit a definition for a function if it's going to be an 1883 // entry in a vtable, unless it's already marked as used. 1884 } else if (getLangOpts().CPlusPlus && D) { 1885 // Look for a declaration that's lexically in a record. 1886 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1887 FD = FD->getPreviousDecl()) { 1888 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1889 if (FD->doesThisDeclarationHaveABody()) { 1890 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1891 break; 1892 } 1893 } 1894 } 1895 } 1896 } 1897 1898 // Make sure the result is of the requested type. 1899 if (!IsIncompleteFunction) { 1900 assert(F->getType()->getElementType() == Ty); 1901 return F; 1902 } 1903 1904 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1905 return llvm::ConstantExpr::getBitCast(F, PTy); 1906 } 1907 1908 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1909 /// non-null, then this function will use the specified type if it has to 1910 /// create it (this occurs when we see a definition of the function). 1911 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1912 llvm::Type *Ty, 1913 bool ForVTable, 1914 bool DontDefer, 1915 bool IsForDefinition) { 1916 // If there was no specific requested type, just convert it now. 1917 if (!Ty) 1918 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1919 1920 StringRef MangledName = getMangledName(GD); 1921 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1922 /*IsThunk=*/false, llvm::AttributeSet(), 1923 IsForDefinition); 1924 } 1925 1926 /// CreateRuntimeFunction - Create a new runtime function with the specified 1927 /// type and name. 1928 llvm::Constant * 1929 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1930 StringRef Name, 1931 llvm::AttributeSet ExtraAttrs) { 1932 llvm::Constant *C = 1933 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1934 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1935 if (auto *F = dyn_cast<llvm::Function>(C)) 1936 if (F->empty()) 1937 F->setCallingConv(getRuntimeCC()); 1938 return C; 1939 } 1940 1941 /// CreateBuiltinFunction - Create a new builtin function with the specified 1942 /// type and name. 1943 llvm::Constant * 1944 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1945 StringRef Name, 1946 llvm::AttributeSet ExtraAttrs) { 1947 llvm::Constant *C = 1948 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1949 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1950 if (auto *F = dyn_cast<llvm::Function>(C)) 1951 if (F->empty()) 1952 F->setCallingConv(getBuiltinCC()); 1953 return C; 1954 } 1955 1956 /// isTypeConstant - Determine whether an object of this type can be emitted 1957 /// as a constant. 1958 /// 1959 /// If ExcludeCtor is true, the duration when the object's constructor runs 1960 /// will not be considered. The caller will need to verify that the object is 1961 /// not written to during its construction. 1962 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1963 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1964 return false; 1965 1966 if (Context.getLangOpts().CPlusPlus) { 1967 if (const CXXRecordDecl *Record 1968 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1969 return ExcludeCtor && !Record->hasMutableFields() && 1970 Record->hasTrivialDestructor(); 1971 } 1972 1973 return true; 1974 } 1975 1976 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1977 /// create and return an llvm GlobalVariable with the specified type. If there 1978 /// is something in the module with the specified name, return it potentially 1979 /// bitcasted to the right type. 1980 /// 1981 /// If D is non-null, it specifies a decl that correspond to this. This is used 1982 /// to set the attributes on the global when it is first created. 1983 llvm::Constant * 1984 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1985 llvm::PointerType *Ty, 1986 const VarDecl *D) { 1987 // Lookup the entry, lazily creating it if necessary. 1988 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1989 if (Entry) { 1990 if (WeakRefReferences.erase(Entry)) { 1991 if (D && !D->hasAttr<WeakAttr>()) 1992 Entry->setLinkage(llvm::Function::ExternalLinkage); 1993 } 1994 1995 // Handle dropped DLL attributes. 1996 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1997 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1998 1999 if (Entry->getType() == Ty) 2000 return Entry; 2001 2002 // Make sure the result is of the correct type. 2003 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2004 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2005 2006 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2007 } 2008 2009 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2010 auto *GV = new llvm::GlobalVariable( 2011 getModule(), Ty->getElementType(), false, 2012 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2013 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2014 2015 // This is the first use or definition of a mangled name. If there is a 2016 // deferred decl with this name, remember that we need to emit it at the end 2017 // of the file. 2018 auto DDI = DeferredDecls.find(MangledName); 2019 if (DDI != DeferredDecls.end()) { 2020 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2021 // list, and remove it from DeferredDecls (since we don't need it anymore). 2022 addDeferredDeclToEmit(GV, DDI->second); 2023 DeferredDecls.erase(DDI); 2024 } 2025 2026 // Handle things which are present even on external declarations. 2027 if (D) { 2028 // FIXME: This code is overly simple and should be merged with other global 2029 // handling. 2030 GV->setConstant(isTypeConstant(D->getType(), false)); 2031 2032 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2033 2034 setLinkageAndVisibilityForGV(GV, D); 2035 2036 if (D->getTLSKind()) { 2037 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2038 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2039 setTLSMode(GV, *D); 2040 } 2041 2042 // If required by the ABI, treat declarations of static data members with 2043 // inline initializers as definitions. 2044 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2045 EmitGlobalVarDefinition(D); 2046 } 2047 2048 // Handle XCore specific ABI requirements. 2049 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2050 D->getLanguageLinkage() == CLanguageLinkage && 2051 D->getType().isConstant(Context) && 2052 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2053 GV->setSection(".cp.rodata"); 2054 } 2055 2056 if (AddrSpace != Ty->getAddressSpace()) 2057 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2058 2059 return GV; 2060 } 2061 2062 llvm::Constant * 2063 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2064 bool IsForDefinition) { 2065 if (isa<CXXConstructorDecl>(GD.getDecl())) 2066 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2067 getFromCtorType(GD.getCtorType()), 2068 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2069 /*DontDefer=*/false, IsForDefinition); 2070 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2071 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2072 getFromDtorType(GD.getDtorType()), 2073 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2074 /*DontDefer=*/false, IsForDefinition); 2075 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2076 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2077 cast<CXXMethodDecl>(GD.getDecl())); 2078 auto Ty = getTypes().GetFunctionType(*FInfo); 2079 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2080 IsForDefinition); 2081 } else if (isa<FunctionDecl>(GD.getDecl())) { 2082 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2083 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2084 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2085 IsForDefinition); 2086 } else 2087 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 2088 } 2089 2090 llvm::GlobalVariable * 2091 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2092 llvm::Type *Ty, 2093 llvm::GlobalValue::LinkageTypes Linkage) { 2094 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2095 llvm::GlobalVariable *OldGV = nullptr; 2096 2097 if (GV) { 2098 // Check if the variable has the right type. 2099 if (GV->getType()->getElementType() == Ty) 2100 return GV; 2101 2102 // Because C++ name mangling, the only way we can end up with an already 2103 // existing global with the same name is if it has been declared extern "C". 2104 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2105 OldGV = GV; 2106 } 2107 2108 // Create a new variable. 2109 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2110 Linkage, nullptr, Name); 2111 2112 if (OldGV) { 2113 // Replace occurrences of the old variable if needed. 2114 GV->takeName(OldGV); 2115 2116 if (!OldGV->use_empty()) { 2117 llvm::Constant *NewPtrForOldDecl = 2118 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2119 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2120 } 2121 2122 OldGV->eraseFromParent(); 2123 } 2124 2125 if (supportsCOMDAT() && GV->isWeakForLinker() && 2126 !GV->hasAvailableExternallyLinkage()) 2127 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2128 2129 return GV; 2130 } 2131 2132 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2133 /// given global variable. If Ty is non-null and if the global doesn't exist, 2134 /// then it will be created with the specified type instead of whatever the 2135 /// normal requested type would be. 2136 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2137 llvm::Type *Ty) { 2138 assert(D->hasGlobalStorage() && "Not a global variable"); 2139 QualType ASTTy = D->getType(); 2140 if (!Ty) 2141 Ty = getTypes().ConvertTypeForMem(ASTTy); 2142 2143 llvm::PointerType *PTy = 2144 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2145 2146 StringRef MangledName = getMangledName(D); 2147 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2148 } 2149 2150 /// CreateRuntimeVariable - Create a new runtime global variable with the 2151 /// specified type and name. 2152 llvm::Constant * 2153 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2154 StringRef Name) { 2155 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2156 } 2157 2158 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2159 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2160 2161 if (!MustBeEmitted(D)) { 2162 // If we have not seen a reference to this variable yet, place it 2163 // into the deferred declarations table to be emitted if needed 2164 // later. 2165 StringRef MangledName = getMangledName(D); 2166 if (!GetGlobalValue(MangledName)) { 2167 DeferredDecls[MangledName] = D; 2168 return; 2169 } 2170 } 2171 2172 // The tentative definition is the only definition. 2173 EmitGlobalVarDefinition(D); 2174 } 2175 2176 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2177 return Context.toCharUnitsFromBits( 2178 getDataLayout().getTypeStoreSizeInBits(Ty)); 2179 } 2180 2181 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2182 unsigned AddrSpace) { 2183 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2184 if (D->hasAttr<CUDAConstantAttr>()) 2185 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2186 else if (D->hasAttr<CUDASharedAttr>()) 2187 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2188 else 2189 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2190 } 2191 2192 return AddrSpace; 2193 } 2194 2195 template<typename SomeDecl> 2196 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2197 llvm::GlobalValue *GV) { 2198 if (!getLangOpts().CPlusPlus) 2199 return; 2200 2201 // Must have 'used' attribute, or else inline assembly can't rely on 2202 // the name existing. 2203 if (!D->template hasAttr<UsedAttr>()) 2204 return; 2205 2206 // Must have internal linkage and an ordinary name. 2207 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2208 return; 2209 2210 // Must be in an extern "C" context. Entities declared directly within 2211 // a record are not extern "C" even if the record is in such a context. 2212 const SomeDecl *First = D->getFirstDecl(); 2213 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2214 return; 2215 2216 // OK, this is an internal linkage entity inside an extern "C" linkage 2217 // specification. Make a note of that so we can give it the "expected" 2218 // mangled name if nothing else is using that name. 2219 std::pair<StaticExternCMap::iterator, bool> R = 2220 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2221 2222 // If we have multiple internal linkage entities with the same name 2223 // in extern "C" regions, none of them gets that name. 2224 if (!R.second) 2225 R.first->second = nullptr; 2226 } 2227 2228 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2229 if (!CGM.supportsCOMDAT()) 2230 return false; 2231 2232 if (D.hasAttr<SelectAnyAttr>()) 2233 return true; 2234 2235 GVALinkage Linkage; 2236 if (auto *VD = dyn_cast<VarDecl>(&D)) 2237 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2238 else 2239 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2240 2241 switch (Linkage) { 2242 case GVA_Internal: 2243 case GVA_AvailableExternally: 2244 case GVA_StrongExternal: 2245 return false; 2246 case GVA_DiscardableODR: 2247 case GVA_StrongODR: 2248 return true; 2249 } 2250 llvm_unreachable("No such linkage"); 2251 } 2252 2253 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2254 llvm::GlobalObject &GO) { 2255 if (!shouldBeInCOMDAT(*this, D)) 2256 return; 2257 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2258 } 2259 2260 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2261 llvm::Constant *Init = nullptr; 2262 QualType ASTTy = D->getType(); 2263 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2264 bool NeedsGlobalCtor = false; 2265 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2266 2267 const VarDecl *InitDecl; 2268 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2269 2270 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2271 // of their declaration." 2272 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2273 && D->hasAttr<CUDASharedAttr>()) { 2274 if (InitExpr) { 2275 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2276 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2277 Error(D->getLocation(), 2278 "__shared__ variable cannot have an initialization."); 2279 } 2280 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2281 } else if (!InitExpr) { 2282 // This is a tentative definition; tentative definitions are 2283 // implicitly initialized with { 0 }. 2284 // 2285 // Note that tentative definitions are only emitted at the end of 2286 // a translation unit, so they should never have incomplete 2287 // type. In addition, EmitTentativeDefinition makes sure that we 2288 // never attempt to emit a tentative definition if a real one 2289 // exists. A use may still exists, however, so we still may need 2290 // to do a RAUW. 2291 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2292 Init = EmitNullConstant(D->getType()); 2293 } else { 2294 initializedGlobalDecl = GlobalDecl(D); 2295 Init = EmitConstantInit(*InitDecl); 2296 2297 if (!Init) { 2298 QualType T = InitExpr->getType(); 2299 if (D->getType()->isReferenceType()) 2300 T = D->getType(); 2301 2302 if (getLangOpts().CPlusPlus) { 2303 Init = EmitNullConstant(T); 2304 NeedsGlobalCtor = true; 2305 } else { 2306 ErrorUnsupported(D, "static initializer"); 2307 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2308 } 2309 } else { 2310 // We don't need an initializer, so remove the entry for the delayed 2311 // initializer position (just in case this entry was delayed) if we 2312 // also don't need to register a destructor. 2313 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2314 DelayedCXXInitPosition.erase(D); 2315 } 2316 } 2317 2318 llvm::Type* InitType = Init->getType(); 2319 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2320 2321 // Strip off a bitcast if we got one back. 2322 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2323 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2324 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2325 // All zero index gep. 2326 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2327 Entry = CE->getOperand(0); 2328 } 2329 2330 // Entry is now either a Function or GlobalVariable. 2331 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2332 2333 // We have a definition after a declaration with the wrong type. 2334 // We must make a new GlobalVariable* and update everything that used OldGV 2335 // (a declaration or tentative definition) with the new GlobalVariable* 2336 // (which will be a definition). 2337 // 2338 // This happens if there is a prototype for a global (e.g. 2339 // "extern int x[];") and then a definition of a different type (e.g. 2340 // "int x[10];"). This also happens when an initializer has a different type 2341 // from the type of the global (this happens with unions). 2342 if (!GV || 2343 GV->getType()->getElementType() != InitType || 2344 GV->getType()->getAddressSpace() != 2345 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2346 2347 // Move the old entry aside so that we'll create a new one. 2348 Entry->setName(StringRef()); 2349 2350 // Make a new global with the correct type, this is now guaranteed to work. 2351 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2352 2353 // Replace all uses of the old global with the new global 2354 llvm::Constant *NewPtrForOldDecl = 2355 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2356 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2357 2358 // Erase the old global, since it is no longer used. 2359 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2360 } 2361 2362 MaybeHandleStaticInExternC(D, GV); 2363 2364 if (D->hasAttr<AnnotateAttr>()) 2365 AddGlobalAnnotations(D, GV); 2366 2367 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2368 // the device. [...]" 2369 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2370 // __device__, declares a variable that: [...] 2371 // Is accessible from all the threads within the grid and from the host 2372 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2373 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2374 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2375 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2376 GV->setExternallyInitialized(true); 2377 } 2378 GV->setInitializer(Init); 2379 2380 // If it is safe to mark the global 'constant', do so now. 2381 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2382 isTypeConstant(D->getType(), true)); 2383 2384 // If it is in a read-only section, mark it 'constant'. 2385 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2386 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2387 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2388 GV->setConstant(true); 2389 } 2390 2391 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2392 2393 // Set the llvm linkage type as appropriate. 2394 llvm::GlobalValue::LinkageTypes Linkage = 2395 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2396 2397 // On Darwin, the backing variable for a C++11 thread_local variable always 2398 // has internal linkage; all accesses should just be calls to the 2399 // Itanium-specified entry point, which has the normal linkage of the 2400 // variable. 2401 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2402 Context.getTargetInfo().getTriple().isMacOSX()) 2403 Linkage = llvm::GlobalValue::InternalLinkage; 2404 2405 GV->setLinkage(Linkage); 2406 if (D->hasAttr<DLLImportAttr>()) 2407 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2408 else if (D->hasAttr<DLLExportAttr>()) 2409 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2410 else 2411 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2412 2413 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2414 // common vars aren't constant even if declared const. 2415 GV->setConstant(false); 2416 2417 setNonAliasAttributes(D, GV); 2418 2419 if (D->getTLSKind() && !GV->isThreadLocal()) { 2420 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2421 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2422 setTLSMode(GV, *D); 2423 } 2424 2425 maybeSetTrivialComdat(*D, *GV); 2426 2427 // Emit the initializer function if necessary. 2428 if (NeedsGlobalCtor || NeedsGlobalDtor) 2429 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2430 2431 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2432 2433 // Emit global variable debug information. 2434 if (CGDebugInfo *DI = getModuleDebugInfo()) 2435 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2436 DI->EmitGlobalVariable(GV, D); 2437 } 2438 2439 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2440 CodeGenModule &CGM, const VarDecl *D, 2441 bool NoCommon) { 2442 // Don't give variables common linkage if -fno-common was specified unless it 2443 // was overridden by a NoCommon attribute. 2444 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2445 return true; 2446 2447 // C11 6.9.2/2: 2448 // A declaration of an identifier for an object that has file scope without 2449 // an initializer, and without a storage-class specifier or with the 2450 // storage-class specifier static, constitutes a tentative definition. 2451 if (D->getInit() || D->hasExternalStorage()) 2452 return true; 2453 2454 // A variable cannot be both common and exist in a section. 2455 if (D->hasAttr<SectionAttr>()) 2456 return true; 2457 2458 // Thread local vars aren't considered common linkage. 2459 if (D->getTLSKind()) 2460 return true; 2461 2462 // Tentative definitions marked with WeakImportAttr are true definitions. 2463 if (D->hasAttr<WeakImportAttr>()) 2464 return true; 2465 2466 // A variable cannot be both common and exist in a comdat. 2467 if (shouldBeInCOMDAT(CGM, *D)) 2468 return true; 2469 2470 // Declarations with a required alignment do not have common linakge in MSVC 2471 // mode. 2472 if (Context.getLangOpts().MSVCCompat) { 2473 if (D->hasAttr<AlignedAttr>()) 2474 return true; 2475 QualType VarType = D->getType(); 2476 if (Context.isAlignmentRequired(VarType)) 2477 return true; 2478 2479 if (const auto *RT = VarType->getAs<RecordType>()) { 2480 const RecordDecl *RD = RT->getDecl(); 2481 for (const FieldDecl *FD : RD->fields()) { 2482 if (FD->isBitField()) 2483 continue; 2484 if (FD->hasAttr<AlignedAttr>()) 2485 return true; 2486 if (Context.isAlignmentRequired(FD->getType())) 2487 return true; 2488 } 2489 } 2490 } 2491 2492 return false; 2493 } 2494 2495 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2496 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2497 if (Linkage == GVA_Internal) 2498 return llvm::Function::InternalLinkage; 2499 2500 if (D->hasAttr<WeakAttr>()) { 2501 if (IsConstantVariable) 2502 return llvm::GlobalVariable::WeakODRLinkage; 2503 else 2504 return llvm::GlobalVariable::WeakAnyLinkage; 2505 } 2506 2507 // We are guaranteed to have a strong definition somewhere else, 2508 // so we can use available_externally linkage. 2509 if (Linkage == GVA_AvailableExternally) 2510 return llvm::Function::AvailableExternallyLinkage; 2511 2512 // Note that Apple's kernel linker doesn't support symbol 2513 // coalescing, so we need to avoid linkonce and weak linkages there. 2514 // Normally, this means we just map to internal, but for explicit 2515 // instantiations we'll map to external. 2516 2517 // In C++, the compiler has to emit a definition in every translation unit 2518 // that references the function. We should use linkonce_odr because 2519 // a) if all references in this translation unit are optimized away, we 2520 // don't need to codegen it. b) if the function persists, it needs to be 2521 // merged with other definitions. c) C++ has the ODR, so we know the 2522 // definition is dependable. 2523 if (Linkage == GVA_DiscardableODR) 2524 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2525 : llvm::Function::InternalLinkage; 2526 2527 // An explicit instantiation of a template has weak linkage, since 2528 // explicit instantiations can occur in multiple translation units 2529 // and must all be equivalent. However, we are not allowed to 2530 // throw away these explicit instantiations. 2531 if (Linkage == GVA_StrongODR) 2532 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2533 : llvm::Function::ExternalLinkage; 2534 2535 // C++ doesn't have tentative definitions and thus cannot have common 2536 // linkage. 2537 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2538 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2539 CodeGenOpts.NoCommon)) 2540 return llvm::GlobalVariable::CommonLinkage; 2541 2542 // selectany symbols are externally visible, so use weak instead of 2543 // linkonce. MSVC optimizes away references to const selectany globals, so 2544 // all definitions should be the same and ODR linkage should be used. 2545 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2546 if (D->hasAttr<SelectAnyAttr>()) 2547 return llvm::GlobalVariable::WeakODRLinkage; 2548 2549 // Otherwise, we have strong external linkage. 2550 assert(Linkage == GVA_StrongExternal); 2551 return llvm::GlobalVariable::ExternalLinkage; 2552 } 2553 2554 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2555 const VarDecl *VD, bool IsConstant) { 2556 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2557 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2558 } 2559 2560 /// Replace the uses of a function that was declared with a non-proto type. 2561 /// We want to silently drop extra arguments from call sites 2562 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2563 llvm::Function *newFn) { 2564 // Fast path. 2565 if (old->use_empty()) return; 2566 2567 llvm::Type *newRetTy = newFn->getReturnType(); 2568 SmallVector<llvm::Value*, 4> newArgs; 2569 2570 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2571 ui != ue; ) { 2572 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2573 llvm::User *user = use->getUser(); 2574 2575 // Recognize and replace uses of bitcasts. Most calls to 2576 // unprototyped functions will use bitcasts. 2577 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2578 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2579 replaceUsesOfNonProtoConstant(bitcast, newFn); 2580 continue; 2581 } 2582 2583 // Recognize calls to the function. 2584 llvm::CallSite callSite(user); 2585 if (!callSite) continue; 2586 if (!callSite.isCallee(&*use)) continue; 2587 2588 // If the return types don't match exactly, then we can't 2589 // transform this call unless it's dead. 2590 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2591 continue; 2592 2593 // Get the call site's attribute list. 2594 SmallVector<llvm::AttributeSet, 8> newAttrs; 2595 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2596 2597 // Collect any return attributes from the call. 2598 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2599 newAttrs.push_back( 2600 llvm::AttributeSet::get(newFn->getContext(), 2601 oldAttrs.getRetAttributes())); 2602 2603 // If the function was passed too few arguments, don't transform. 2604 unsigned newNumArgs = newFn->arg_size(); 2605 if (callSite.arg_size() < newNumArgs) continue; 2606 2607 // If extra arguments were passed, we silently drop them. 2608 // If any of the types mismatch, we don't transform. 2609 unsigned argNo = 0; 2610 bool dontTransform = false; 2611 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2612 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2613 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2614 dontTransform = true; 2615 break; 2616 } 2617 2618 // Add any parameter attributes. 2619 if (oldAttrs.hasAttributes(argNo + 1)) 2620 newAttrs. 2621 push_back(llvm:: 2622 AttributeSet::get(newFn->getContext(), 2623 oldAttrs.getParamAttributes(argNo + 1))); 2624 } 2625 if (dontTransform) 2626 continue; 2627 2628 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2629 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2630 oldAttrs.getFnAttributes())); 2631 2632 // Okay, we can transform this. Create the new call instruction and copy 2633 // over the required information. 2634 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2635 2636 llvm::CallSite newCall; 2637 if (callSite.isCall()) { 2638 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2639 callSite.getInstruction()); 2640 } else { 2641 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2642 newCall = llvm::InvokeInst::Create(newFn, 2643 oldInvoke->getNormalDest(), 2644 oldInvoke->getUnwindDest(), 2645 newArgs, "", 2646 callSite.getInstruction()); 2647 } 2648 newArgs.clear(); // for the next iteration 2649 2650 if (!newCall->getType()->isVoidTy()) 2651 newCall->takeName(callSite.getInstruction()); 2652 newCall.setAttributes( 2653 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2654 newCall.setCallingConv(callSite.getCallingConv()); 2655 2656 // Finally, remove the old call, replacing any uses with the new one. 2657 if (!callSite->use_empty()) 2658 callSite->replaceAllUsesWith(newCall.getInstruction()); 2659 2660 // Copy debug location attached to CI. 2661 if (callSite->getDebugLoc()) 2662 newCall->setDebugLoc(callSite->getDebugLoc()); 2663 callSite->eraseFromParent(); 2664 } 2665 } 2666 2667 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2668 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2669 /// existing call uses of the old function in the module, this adjusts them to 2670 /// call the new function directly. 2671 /// 2672 /// This is not just a cleanup: the always_inline pass requires direct calls to 2673 /// functions to be able to inline them. If there is a bitcast in the way, it 2674 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2675 /// run at -O0. 2676 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2677 llvm::Function *NewFn) { 2678 // If we're redefining a global as a function, don't transform it. 2679 if (!isa<llvm::Function>(Old)) return; 2680 2681 replaceUsesOfNonProtoConstant(Old, NewFn); 2682 } 2683 2684 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2685 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2686 // If we have a definition, this might be a deferred decl. If the 2687 // instantiation is explicit, make sure we emit it at the end. 2688 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2689 GetAddrOfGlobalVar(VD); 2690 2691 EmitTopLevelDecl(VD); 2692 } 2693 2694 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2695 llvm::GlobalValue *GV) { 2696 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2697 2698 // Compute the function info and LLVM type. 2699 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2700 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2701 2702 // Get or create the prototype for the function. 2703 if (!GV || (GV->getType()->getElementType() != Ty)) 2704 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2705 /*DontDefer=*/true, 2706 /*IsForDefinition=*/true)); 2707 2708 // Already emitted. 2709 if (!GV->isDeclaration()) 2710 return; 2711 2712 // We need to set linkage and visibility on the function before 2713 // generating code for it because various parts of IR generation 2714 // want to propagate this information down (e.g. to local static 2715 // declarations). 2716 auto *Fn = cast<llvm::Function>(GV); 2717 setFunctionLinkage(GD, Fn); 2718 setFunctionDLLStorageClass(GD, Fn); 2719 2720 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2721 setGlobalVisibility(Fn, D); 2722 2723 MaybeHandleStaticInExternC(D, Fn); 2724 2725 maybeSetTrivialComdat(*D, *Fn); 2726 2727 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2728 2729 setFunctionDefinitionAttributes(D, Fn); 2730 SetLLVMFunctionAttributesForDefinition(D, Fn); 2731 2732 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2733 AddGlobalCtor(Fn, CA->getPriority()); 2734 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2735 AddGlobalDtor(Fn, DA->getPriority()); 2736 if (D->hasAttr<AnnotateAttr>()) 2737 AddGlobalAnnotations(D, Fn); 2738 } 2739 2740 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2741 const auto *D = cast<ValueDecl>(GD.getDecl()); 2742 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2743 assert(AA && "Not an alias?"); 2744 2745 StringRef MangledName = getMangledName(GD); 2746 2747 if (AA->getAliasee() == MangledName) { 2748 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2749 return; 2750 } 2751 2752 // If there is a definition in the module, then it wins over the alias. 2753 // This is dubious, but allow it to be safe. Just ignore the alias. 2754 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2755 if (Entry && !Entry->isDeclaration()) 2756 return; 2757 2758 Aliases.push_back(GD); 2759 2760 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2761 2762 // Create a reference to the named value. This ensures that it is emitted 2763 // if a deferred decl. 2764 llvm::Constant *Aliasee; 2765 if (isa<llvm::FunctionType>(DeclTy)) 2766 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2767 /*ForVTable=*/false); 2768 else 2769 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2770 llvm::PointerType::getUnqual(DeclTy), 2771 /*D=*/nullptr); 2772 2773 // Create the new alias itself, but don't set a name yet. 2774 auto *GA = llvm::GlobalAlias::create( 2775 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2776 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2777 2778 if (Entry) { 2779 if (GA->getAliasee() == Entry) { 2780 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2781 return; 2782 } 2783 2784 assert(Entry->isDeclaration()); 2785 2786 // If there is a declaration in the module, then we had an extern followed 2787 // by the alias, as in: 2788 // extern int test6(); 2789 // ... 2790 // int test6() __attribute__((alias("test7"))); 2791 // 2792 // Remove it and replace uses of it with the alias. 2793 GA->takeName(Entry); 2794 2795 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2796 Entry->getType())); 2797 Entry->eraseFromParent(); 2798 } else { 2799 GA->setName(MangledName); 2800 } 2801 2802 // Set attributes which are particular to an alias; this is a 2803 // specialization of the attributes which may be set on a global 2804 // variable/function. 2805 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2806 D->isWeakImported()) { 2807 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2808 } 2809 2810 if (const auto *VD = dyn_cast<VarDecl>(D)) 2811 if (VD->getTLSKind()) 2812 setTLSMode(GA, *VD); 2813 2814 setAliasAttributes(D, GA); 2815 } 2816 2817 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2818 ArrayRef<llvm::Type*> Tys) { 2819 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2820 Tys); 2821 } 2822 2823 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2824 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2825 const StringLiteral *Literal, bool TargetIsLSB, 2826 bool &IsUTF16, unsigned &StringLength) { 2827 StringRef String = Literal->getString(); 2828 unsigned NumBytes = String.size(); 2829 2830 // Check for simple case. 2831 if (!Literal->containsNonAsciiOrNull()) { 2832 StringLength = NumBytes; 2833 return *Map.insert(std::make_pair(String, nullptr)).first; 2834 } 2835 2836 // Otherwise, convert the UTF8 literals into a string of shorts. 2837 IsUTF16 = true; 2838 2839 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2840 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2841 UTF16 *ToPtr = &ToBuf[0]; 2842 2843 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2844 &ToPtr, ToPtr + NumBytes, 2845 strictConversion); 2846 2847 // ConvertUTF8toUTF16 returns the length in ToPtr. 2848 StringLength = ToPtr - &ToBuf[0]; 2849 2850 // Add an explicit null. 2851 *ToPtr = 0; 2852 return *Map.insert(std::make_pair( 2853 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2854 (StringLength + 1) * 2), 2855 nullptr)).first; 2856 } 2857 2858 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2859 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2860 const StringLiteral *Literal, unsigned &StringLength) { 2861 StringRef String = Literal->getString(); 2862 StringLength = String.size(); 2863 return *Map.insert(std::make_pair(String, nullptr)).first; 2864 } 2865 2866 ConstantAddress 2867 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2868 unsigned StringLength = 0; 2869 bool isUTF16 = false; 2870 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2871 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2872 getDataLayout().isLittleEndian(), isUTF16, 2873 StringLength); 2874 2875 if (auto *C = Entry.second) 2876 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2877 2878 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2879 llvm::Constant *Zeros[] = { Zero, Zero }; 2880 llvm::Value *V; 2881 2882 // If we don't already have it, get __CFConstantStringClassReference. 2883 if (!CFConstantStringClassRef) { 2884 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2885 Ty = llvm::ArrayType::get(Ty, 0); 2886 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2887 "__CFConstantStringClassReference"); 2888 // Decay array -> ptr 2889 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2890 CFConstantStringClassRef = V; 2891 } 2892 else 2893 V = CFConstantStringClassRef; 2894 2895 QualType CFTy = getContext().getCFConstantStringType(); 2896 2897 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2898 2899 llvm::Constant *Fields[4]; 2900 2901 // Class pointer. 2902 Fields[0] = cast<llvm::ConstantExpr>(V); 2903 2904 // Flags. 2905 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2906 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2907 llvm::ConstantInt::get(Ty, 0x07C8); 2908 2909 // String pointer. 2910 llvm::Constant *C = nullptr; 2911 if (isUTF16) { 2912 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2913 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2914 Entry.first().size() / 2); 2915 C = llvm::ConstantDataArray::get(VMContext, Arr); 2916 } else { 2917 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2918 } 2919 2920 // Note: -fwritable-strings doesn't make the backing store strings of 2921 // CFStrings writable. (See <rdar://problem/10657500>) 2922 auto *GV = 2923 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2924 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2925 GV->setUnnamedAddr(true); 2926 // Don't enforce the target's minimum global alignment, since the only use 2927 // of the string is via this class initializer. 2928 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2929 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2930 // that changes the section it ends in, which surprises ld64. 2931 if (isUTF16) { 2932 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2933 GV->setAlignment(Align.getQuantity()); 2934 GV->setSection("__TEXT,__ustring"); 2935 } else { 2936 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2937 GV->setAlignment(Align.getQuantity()); 2938 GV->setSection("__TEXT,__cstring,cstring_literals"); 2939 } 2940 2941 // String. 2942 Fields[2] = 2943 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2944 2945 if (isUTF16) 2946 // Cast the UTF16 string to the correct type. 2947 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2948 2949 // String length. 2950 Ty = getTypes().ConvertType(getContext().LongTy); 2951 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2952 2953 CharUnits Alignment = getPointerAlign(); 2954 2955 // The struct. 2956 C = llvm::ConstantStruct::get(STy, Fields); 2957 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2958 llvm::GlobalVariable::PrivateLinkage, C, 2959 "_unnamed_cfstring_"); 2960 GV->setSection("__DATA,__cfstring"); 2961 GV->setAlignment(Alignment.getQuantity()); 2962 Entry.second = GV; 2963 2964 return ConstantAddress(GV, Alignment); 2965 } 2966 2967 ConstantAddress 2968 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2969 unsigned StringLength = 0; 2970 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2971 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2972 2973 if (auto *C = Entry.second) 2974 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2975 2976 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2977 llvm::Constant *Zeros[] = { Zero, Zero }; 2978 llvm::Value *V; 2979 // If we don't already have it, get _NSConstantStringClassReference. 2980 if (!ConstantStringClassRef) { 2981 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2982 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2983 llvm::Constant *GV; 2984 if (LangOpts.ObjCRuntime.isNonFragile()) { 2985 std::string str = 2986 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2987 : "OBJC_CLASS_$_" + StringClass; 2988 GV = getObjCRuntime().GetClassGlobal(str); 2989 // Make sure the result is of the correct type. 2990 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2991 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2992 ConstantStringClassRef = V; 2993 } else { 2994 std::string str = 2995 StringClass.empty() ? "_NSConstantStringClassReference" 2996 : "_" + StringClass + "ClassReference"; 2997 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2998 GV = CreateRuntimeVariable(PTy, str); 2999 // Decay array -> ptr 3000 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3001 ConstantStringClassRef = V; 3002 } 3003 } else 3004 V = ConstantStringClassRef; 3005 3006 if (!NSConstantStringType) { 3007 // Construct the type for a constant NSString. 3008 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3009 D->startDefinition(); 3010 3011 QualType FieldTypes[3]; 3012 3013 // const int *isa; 3014 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3015 // const char *str; 3016 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3017 // unsigned int length; 3018 FieldTypes[2] = Context.UnsignedIntTy; 3019 3020 // Create fields 3021 for (unsigned i = 0; i < 3; ++i) { 3022 FieldDecl *Field = FieldDecl::Create(Context, D, 3023 SourceLocation(), 3024 SourceLocation(), nullptr, 3025 FieldTypes[i], /*TInfo=*/nullptr, 3026 /*BitWidth=*/nullptr, 3027 /*Mutable=*/false, 3028 ICIS_NoInit); 3029 Field->setAccess(AS_public); 3030 D->addDecl(Field); 3031 } 3032 3033 D->completeDefinition(); 3034 QualType NSTy = Context.getTagDeclType(D); 3035 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3036 } 3037 3038 llvm::Constant *Fields[3]; 3039 3040 // Class pointer. 3041 Fields[0] = cast<llvm::ConstantExpr>(V); 3042 3043 // String pointer. 3044 llvm::Constant *C = 3045 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3046 3047 llvm::GlobalValue::LinkageTypes Linkage; 3048 bool isConstant; 3049 Linkage = llvm::GlobalValue::PrivateLinkage; 3050 isConstant = !LangOpts.WritableStrings; 3051 3052 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3053 Linkage, C, ".str"); 3054 GV->setUnnamedAddr(true); 3055 // Don't enforce the target's minimum global alignment, since the only use 3056 // of the string is via this class initializer. 3057 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3058 GV->setAlignment(Align.getQuantity()); 3059 Fields[1] = 3060 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3061 3062 // String length. 3063 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3064 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3065 3066 // The struct. 3067 CharUnits Alignment = getPointerAlign(); 3068 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3069 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3070 llvm::GlobalVariable::PrivateLinkage, C, 3071 "_unnamed_nsstring_"); 3072 GV->setAlignment(Alignment.getQuantity()); 3073 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3074 const char *NSStringNonFragileABISection = 3075 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3076 // FIXME. Fix section. 3077 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3078 ? NSStringNonFragileABISection 3079 : NSStringSection); 3080 Entry.second = GV; 3081 3082 return ConstantAddress(GV, Alignment); 3083 } 3084 3085 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3086 if (ObjCFastEnumerationStateType.isNull()) { 3087 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3088 D->startDefinition(); 3089 3090 QualType FieldTypes[] = { 3091 Context.UnsignedLongTy, 3092 Context.getPointerType(Context.getObjCIdType()), 3093 Context.getPointerType(Context.UnsignedLongTy), 3094 Context.getConstantArrayType(Context.UnsignedLongTy, 3095 llvm::APInt(32, 5), ArrayType::Normal, 0) 3096 }; 3097 3098 for (size_t i = 0; i < 4; ++i) { 3099 FieldDecl *Field = FieldDecl::Create(Context, 3100 D, 3101 SourceLocation(), 3102 SourceLocation(), nullptr, 3103 FieldTypes[i], /*TInfo=*/nullptr, 3104 /*BitWidth=*/nullptr, 3105 /*Mutable=*/false, 3106 ICIS_NoInit); 3107 Field->setAccess(AS_public); 3108 D->addDecl(Field); 3109 } 3110 3111 D->completeDefinition(); 3112 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3113 } 3114 3115 return ObjCFastEnumerationStateType; 3116 } 3117 3118 llvm::Constant * 3119 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3120 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3121 3122 // Don't emit it as the address of the string, emit the string data itself 3123 // as an inline array. 3124 if (E->getCharByteWidth() == 1) { 3125 SmallString<64> Str(E->getString()); 3126 3127 // Resize the string to the right size, which is indicated by its type. 3128 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3129 Str.resize(CAT->getSize().getZExtValue()); 3130 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3131 } 3132 3133 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3134 llvm::Type *ElemTy = AType->getElementType(); 3135 unsigned NumElements = AType->getNumElements(); 3136 3137 // Wide strings have either 2-byte or 4-byte elements. 3138 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3139 SmallVector<uint16_t, 32> Elements; 3140 Elements.reserve(NumElements); 3141 3142 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3143 Elements.push_back(E->getCodeUnit(i)); 3144 Elements.resize(NumElements); 3145 return llvm::ConstantDataArray::get(VMContext, Elements); 3146 } 3147 3148 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3149 SmallVector<uint32_t, 32> Elements; 3150 Elements.reserve(NumElements); 3151 3152 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3153 Elements.push_back(E->getCodeUnit(i)); 3154 Elements.resize(NumElements); 3155 return llvm::ConstantDataArray::get(VMContext, Elements); 3156 } 3157 3158 static llvm::GlobalVariable * 3159 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3160 CodeGenModule &CGM, StringRef GlobalName, 3161 CharUnits Alignment) { 3162 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3163 unsigned AddrSpace = 0; 3164 if (CGM.getLangOpts().OpenCL) 3165 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3166 3167 llvm::Module &M = CGM.getModule(); 3168 // Create a global variable for this string 3169 auto *GV = new llvm::GlobalVariable( 3170 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3171 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3172 GV->setAlignment(Alignment.getQuantity()); 3173 GV->setUnnamedAddr(true); 3174 if (GV->isWeakForLinker()) { 3175 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3176 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3177 } 3178 3179 return GV; 3180 } 3181 3182 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3183 /// constant array for the given string literal. 3184 ConstantAddress 3185 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3186 StringRef Name) { 3187 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3188 3189 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3190 llvm::GlobalVariable **Entry = nullptr; 3191 if (!LangOpts.WritableStrings) { 3192 Entry = &ConstantStringMap[C]; 3193 if (auto GV = *Entry) { 3194 if (Alignment.getQuantity() > GV->getAlignment()) 3195 GV->setAlignment(Alignment.getQuantity()); 3196 return ConstantAddress(GV, Alignment); 3197 } 3198 } 3199 3200 SmallString<256> MangledNameBuffer; 3201 StringRef GlobalVariableName; 3202 llvm::GlobalValue::LinkageTypes LT; 3203 3204 // Mangle the string literal if the ABI allows for it. However, we cannot 3205 // do this if we are compiling with ASan or -fwritable-strings because they 3206 // rely on strings having normal linkage. 3207 if (!LangOpts.WritableStrings && 3208 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3209 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3210 llvm::raw_svector_ostream Out(MangledNameBuffer); 3211 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3212 3213 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3214 GlobalVariableName = MangledNameBuffer; 3215 } else { 3216 LT = llvm::GlobalValue::PrivateLinkage; 3217 GlobalVariableName = Name; 3218 } 3219 3220 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3221 if (Entry) 3222 *Entry = GV; 3223 3224 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3225 QualType()); 3226 return ConstantAddress(GV, Alignment); 3227 } 3228 3229 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3230 /// array for the given ObjCEncodeExpr node. 3231 ConstantAddress 3232 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3233 std::string Str; 3234 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3235 3236 return GetAddrOfConstantCString(Str); 3237 } 3238 3239 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3240 /// the literal and a terminating '\0' character. 3241 /// The result has pointer to array type. 3242 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3243 const std::string &Str, const char *GlobalName) { 3244 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3245 CharUnits Alignment = 3246 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3247 3248 llvm::Constant *C = 3249 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3250 3251 // Don't share any string literals if strings aren't constant. 3252 llvm::GlobalVariable **Entry = nullptr; 3253 if (!LangOpts.WritableStrings) { 3254 Entry = &ConstantStringMap[C]; 3255 if (auto GV = *Entry) { 3256 if (Alignment.getQuantity() > GV->getAlignment()) 3257 GV->setAlignment(Alignment.getQuantity()); 3258 return ConstantAddress(GV, Alignment); 3259 } 3260 } 3261 3262 // Get the default prefix if a name wasn't specified. 3263 if (!GlobalName) 3264 GlobalName = ".str"; 3265 // Create a global variable for this. 3266 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3267 GlobalName, Alignment); 3268 if (Entry) 3269 *Entry = GV; 3270 return ConstantAddress(GV, Alignment); 3271 } 3272 3273 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3274 const MaterializeTemporaryExpr *E, const Expr *Init) { 3275 assert((E->getStorageDuration() == SD_Static || 3276 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3277 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3278 3279 // If we're not materializing a subobject of the temporary, keep the 3280 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3281 QualType MaterializedType = Init->getType(); 3282 if (Init == E->GetTemporaryExpr()) 3283 MaterializedType = E->getType(); 3284 3285 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3286 3287 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3288 return ConstantAddress(Slot, Align); 3289 3290 // FIXME: If an externally-visible declaration extends multiple temporaries, 3291 // we need to give each temporary the same name in every translation unit (and 3292 // we also need to make the temporaries externally-visible). 3293 SmallString<256> Name; 3294 llvm::raw_svector_ostream Out(Name); 3295 getCXXABI().getMangleContext().mangleReferenceTemporary( 3296 VD, E->getManglingNumber(), Out); 3297 3298 APValue *Value = nullptr; 3299 if (E->getStorageDuration() == SD_Static) { 3300 // We might have a cached constant initializer for this temporary. Note 3301 // that this might have a different value from the value computed by 3302 // evaluating the initializer if the surrounding constant expression 3303 // modifies the temporary. 3304 Value = getContext().getMaterializedTemporaryValue(E, false); 3305 if (Value && Value->isUninit()) 3306 Value = nullptr; 3307 } 3308 3309 // Try evaluating it now, it might have a constant initializer. 3310 Expr::EvalResult EvalResult; 3311 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3312 !EvalResult.hasSideEffects()) 3313 Value = &EvalResult.Val; 3314 3315 llvm::Constant *InitialValue = nullptr; 3316 bool Constant = false; 3317 llvm::Type *Type; 3318 if (Value) { 3319 // The temporary has a constant initializer, use it. 3320 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3321 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3322 Type = InitialValue->getType(); 3323 } else { 3324 // No initializer, the initialization will be provided when we 3325 // initialize the declaration which performed lifetime extension. 3326 Type = getTypes().ConvertTypeForMem(MaterializedType); 3327 } 3328 3329 // Create a global variable for this lifetime-extended temporary. 3330 llvm::GlobalValue::LinkageTypes Linkage = 3331 getLLVMLinkageVarDefinition(VD, Constant); 3332 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3333 const VarDecl *InitVD; 3334 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3335 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3336 // Temporaries defined inside a class get linkonce_odr linkage because the 3337 // class can be defined in multipe translation units. 3338 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3339 } else { 3340 // There is no need for this temporary to have external linkage if the 3341 // VarDecl has external linkage. 3342 Linkage = llvm::GlobalVariable::InternalLinkage; 3343 } 3344 } 3345 unsigned AddrSpace = GetGlobalVarAddressSpace( 3346 VD, getContext().getTargetAddressSpace(MaterializedType)); 3347 auto *GV = new llvm::GlobalVariable( 3348 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3349 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3350 AddrSpace); 3351 setGlobalVisibility(GV, VD); 3352 GV->setAlignment(Align.getQuantity()); 3353 if (supportsCOMDAT() && GV->isWeakForLinker()) 3354 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3355 if (VD->getTLSKind()) 3356 setTLSMode(GV, *VD); 3357 MaterializedGlobalTemporaryMap[E] = GV; 3358 return ConstantAddress(GV, Align); 3359 } 3360 3361 /// EmitObjCPropertyImplementations - Emit information for synthesized 3362 /// properties for an implementation. 3363 void CodeGenModule::EmitObjCPropertyImplementations(const 3364 ObjCImplementationDecl *D) { 3365 for (const auto *PID : D->property_impls()) { 3366 // Dynamic is just for type-checking. 3367 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3368 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3369 3370 // Determine which methods need to be implemented, some may have 3371 // been overridden. Note that ::isPropertyAccessor is not the method 3372 // we want, that just indicates if the decl came from a 3373 // property. What we want to know is if the method is defined in 3374 // this implementation. 3375 if (!D->getInstanceMethod(PD->getGetterName())) 3376 CodeGenFunction(*this).GenerateObjCGetter( 3377 const_cast<ObjCImplementationDecl *>(D), PID); 3378 if (!PD->isReadOnly() && 3379 !D->getInstanceMethod(PD->getSetterName())) 3380 CodeGenFunction(*this).GenerateObjCSetter( 3381 const_cast<ObjCImplementationDecl *>(D), PID); 3382 } 3383 } 3384 } 3385 3386 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3387 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3388 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3389 ivar; ivar = ivar->getNextIvar()) 3390 if (ivar->getType().isDestructedType()) 3391 return true; 3392 3393 return false; 3394 } 3395 3396 static bool AllTrivialInitializers(CodeGenModule &CGM, 3397 ObjCImplementationDecl *D) { 3398 CodeGenFunction CGF(CGM); 3399 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3400 E = D->init_end(); B != E; ++B) { 3401 CXXCtorInitializer *CtorInitExp = *B; 3402 Expr *Init = CtorInitExp->getInit(); 3403 if (!CGF.isTrivialInitializer(Init)) 3404 return false; 3405 } 3406 return true; 3407 } 3408 3409 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3410 /// for an implementation. 3411 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3412 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3413 if (needsDestructMethod(D)) { 3414 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3415 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3416 ObjCMethodDecl *DTORMethod = 3417 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3418 cxxSelector, getContext().VoidTy, nullptr, D, 3419 /*isInstance=*/true, /*isVariadic=*/false, 3420 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3421 /*isDefined=*/false, ObjCMethodDecl::Required); 3422 D->addInstanceMethod(DTORMethod); 3423 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3424 D->setHasDestructors(true); 3425 } 3426 3427 // If the implementation doesn't have any ivar initializers, we don't need 3428 // a .cxx_construct. 3429 if (D->getNumIvarInitializers() == 0 || 3430 AllTrivialInitializers(*this, D)) 3431 return; 3432 3433 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3434 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3435 // The constructor returns 'self'. 3436 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3437 D->getLocation(), 3438 D->getLocation(), 3439 cxxSelector, 3440 getContext().getObjCIdType(), 3441 nullptr, D, /*isInstance=*/true, 3442 /*isVariadic=*/false, 3443 /*isPropertyAccessor=*/true, 3444 /*isImplicitlyDeclared=*/true, 3445 /*isDefined=*/false, 3446 ObjCMethodDecl::Required); 3447 D->addInstanceMethod(CTORMethod); 3448 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3449 D->setHasNonZeroConstructors(true); 3450 } 3451 3452 /// EmitNamespace - Emit all declarations in a namespace. 3453 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3454 for (auto *I : ND->decls()) { 3455 if (const auto *VD = dyn_cast<VarDecl>(I)) 3456 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3457 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3458 continue; 3459 EmitTopLevelDecl(I); 3460 } 3461 } 3462 3463 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3464 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3465 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3466 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3467 ErrorUnsupported(LSD, "linkage spec"); 3468 return; 3469 } 3470 3471 for (auto *I : LSD->decls()) { 3472 // Meta-data for ObjC class includes references to implemented methods. 3473 // Generate class's method definitions first. 3474 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3475 for (auto *M : OID->methods()) 3476 EmitTopLevelDecl(M); 3477 } 3478 EmitTopLevelDecl(I); 3479 } 3480 } 3481 3482 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3483 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3484 // Ignore dependent declarations. 3485 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3486 return; 3487 3488 switch (D->getKind()) { 3489 case Decl::CXXConversion: 3490 case Decl::CXXMethod: 3491 case Decl::Function: 3492 // Skip function templates 3493 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3494 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3495 return; 3496 3497 EmitGlobal(cast<FunctionDecl>(D)); 3498 // Always provide some coverage mapping 3499 // even for the functions that aren't emitted. 3500 AddDeferredUnusedCoverageMapping(D); 3501 break; 3502 3503 case Decl::Var: 3504 // Skip variable templates 3505 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3506 return; 3507 case Decl::VarTemplateSpecialization: 3508 EmitGlobal(cast<VarDecl>(D)); 3509 break; 3510 3511 // Indirect fields from global anonymous structs and unions can be 3512 // ignored; only the actual variable requires IR gen support. 3513 case Decl::IndirectField: 3514 break; 3515 3516 // C++ Decls 3517 case Decl::Namespace: 3518 EmitNamespace(cast<NamespaceDecl>(D)); 3519 break; 3520 // No code generation needed. 3521 case Decl::UsingShadow: 3522 case Decl::ClassTemplate: 3523 case Decl::VarTemplate: 3524 case Decl::VarTemplatePartialSpecialization: 3525 case Decl::FunctionTemplate: 3526 case Decl::TypeAliasTemplate: 3527 case Decl::Block: 3528 case Decl::Empty: 3529 break; 3530 case Decl::Using: // using X; [C++] 3531 if (CGDebugInfo *DI = getModuleDebugInfo()) 3532 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3533 return; 3534 case Decl::NamespaceAlias: 3535 if (CGDebugInfo *DI = getModuleDebugInfo()) 3536 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3537 return; 3538 case Decl::UsingDirective: // using namespace X; [C++] 3539 if (CGDebugInfo *DI = getModuleDebugInfo()) 3540 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3541 return; 3542 case Decl::CXXConstructor: 3543 // Skip function templates 3544 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3545 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3546 return; 3547 3548 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3549 break; 3550 case Decl::CXXDestructor: 3551 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3552 return; 3553 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3554 break; 3555 3556 case Decl::StaticAssert: 3557 // Nothing to do. 3558 break; 3559 3560 // Objective-C Decls 3561 3562 // Forward declarations, no (immediate) code generation. 3563 case Decl::ObjCInterface: 3564 case Decl::ObjCCategory: 3565 break; 3566 3567 case Decl::ObjCProtocol: { 3568 auto *Proto = cast<ObjCProtocolDecl>(D); 3569 if (Proto->isThisDeclarationADefinition()) 3570 ObjCRuntime->GenerateProtocol(Proto); 3571 break; 3572 } 3573 3574 case Decl::ObjCCategoryImpl: 3575 // Categories have properties but don't support synthesize so we 3576 // can ignore them here. 3577 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3578 break; 3579 3580 case Decl::ObjCImplementation: { 3581 auto *OMD = cast<ObjCImplementationDecl>(D); 3582 EmitObjCPropertyImplementations(OMD); 3583 EmitObjCIvarInitializations(OMD); 3584 ObjCRuntime->GenerateClass(OMD); 3585 // Emit global variable debug information. 3586 if (CGDebugInfo *DI = getModuleDebugInfo()) 3587 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3588 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3589 OMD->getClassInterface()), OMD->getLocation()); 3590 break; 3591 } 3592 case Decl::ObjCMethod: { 3593 auto *OMD = cast<ObjCMethodDecl>(D); 3594 // If this is not a prototype, emit the body. 3595 if (OMD->getBody()) 3596 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3597 break; 3598 } 3599 case Decl::ObjCCompatibleAlias: 3600 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3601 break; 3602 3603 case Decl::LinkageSpec: 3604 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3605 break; 3606 3607 case Decl::FileScopeAsm: { 3608 // File-scope asm is ignored during device-side CUDA compilation. 3609 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3610 break; 3611 auto *AD = cast<FileScopeAsmDecl>(D); 3612 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3613 break; 3614 } 3615 3616 case Decl::Import: { 3617 auto *Import = cast<ImportDecl>(D); 3618 3619 // Ignore import declarations that come from imported modules. 3620 if (Import->getImportedOwningModule()) 3621 break; 3622 if (CGDebugInfo *DI = getModuleDebugInfo()) 3623 DI->EmitImportDecl(*Import); 3624 3625 ImportedModules.insert(Import->getImportedModule()); 3626 break; 3627 } 3628 3629 case Decl::OMPThreadPrivate: 3630 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3631 break; 3632 3633 case Decl::ClassTemplateSpecialization: { 3634 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3635 if (DebugInfo && 3636 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3637 Spec->hasDefinition()) 3638 DebugInfo->completeTemplateDefinition(*Spec); 3639 break; 3640 } 3641 3642 default: 3643 // Make sure we handled everything we should, every other kind is a 3644 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3645 // function. Need to recode Decl::Kind to do that easily. 3646 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3647 break; 3648 } 3649 } 3650 3651 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3652 // Do we need to generate coverage mapping? 3653 if (!CodeGenOpts.CoverageMapping) 3654 return; 3655 switch (D->getKind()) { 3656 case Decl::CXXConversion: 3657 case Decl::CXXMethod: 3658 case Decl::Function: 3659 case Decl::ObjCMethod: 3660 case Decl::CXXConstructor: 3661 case Decl::CXXDestructor: { 3662 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3663 return; 3664 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3665 if (I == DeferredEmptyCoverageMappingDecls.end()) 3666 DeferredEmptyCoverageMappingDecls[D] = true; 3667 break; 3668 } 3669 default: 3670 break; 3671 }; 3672 } 3673 3674 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3675 // Do we need to generate coverage mapping? 3676 if (!CodeGenOpts.CoverageMapping) 3677 return; 3678 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3679 if (Fn->isTemplateInstantiation()) 3680 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3681 } 3682 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3683 if (I == DeferredEmptyCoverageMappingDecls.end()) 3684 DeferredEmptyCoverageMappingDecls[D] = false; 3685 else 3686 I->second = false; 3687 } 3688 3689 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3690 std::vector<const Decl *> DeferredDecls; 3691 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3692 if (!I.second) 3693 continue; 3694 DeferredDecls.push_back(I.first); 3695 } 3696 // Sort the declarations by their location to make sure that the tests get a 3697 // predictable order for the coverage mapping for the unused declarations. 3698 if (CodeGenOpts.DumpCoverageMapping) 3699 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3700 [] (const Decl *LHS, const Decl *RHS) { 3701 return LHS->getLocStart() < RHS->getLocStart(); 3702 }); 3703 for (const auto *D : DeferredDecls) { 3704 switch (D->getKind()) { 3705 case Decl::CXXConversion: 3706 case Decl::CXXMethod: 3707 case Decl::Function: 3708 case Decl::ObjCMethod: { 3709 CodeGenPGO PGO(*this); 3710 GlobalDecl GD(cast<FunctionDecl>(D)); 3711 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3712 getFunctionLinkage(GD)); 3713 break; 3714 } 3715 case Decl::CXXConstructor: { 3716 CodeGenPGO PGO(*this); 3717 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3718 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3719 getFunctionLinkage(GD)); 3720 break; 3721 } 3722 case Decl::CXXDestructor: { 3723 CodeGenPGO PGO(*this); 3724 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3725 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3726 getFunctionLinkage(GD)); 3727 break; 3728 } 3729 default: 3730 break; 3731 }; 3732 } 3733 } 3734 3735 /// Turns the given pointer into a constant. 3736 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3737 const void *Ptr) { 3738 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3739 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3740 return llvm::ConstantInt::get(i64, PtrInt); 3741 } 3742 3743 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3744 llvm::NamedMDNode *&GlobalMetadata, 3745 GlobalDecl D, 3746 llvm::GlobalValue *Addr) { 3747 if (!GlobalMetadata) 3748 GlobalMetadata = 3749 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3750 3751 // TODO: should we report variant information for ctors/dtors? 3752 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3753 llvm::ConstantAsMetadata::get(GetPointerConstant( 3754 CGM.getLLVMContext(), D.getDecl()))}; 3755 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3756 } 3757 3758 /// For each function which is declared within an extern "C" region and marked 3759 /// as 'used', but has internal linkage, create an alias from the unmangled 3760 /// name to the mangled name if possible. People expect to be able to refer 3761 /// to such functions with an unmangled name from inline assembly within the 3762 /// same translation unit. 3763 void CodeGenModule::EmitStaticExternCAliases() { 3764 for (auto &I : StaticExternCValues) { 3765 IdentifierInfo *Name = I.first; 3766 llvm::GlobalValue *Val = I.second; 3767 if (Val && !getModule().getNamedValue(Name->getName())) 3768 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3769 } 3770 } 3771 3772 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3773 GlobalDecl &Result) const { 3774 auto Res = Manglings.find(MangledName); 3775 if (Res == Manglings.end()) 3776 return false; 3777 Result = Res->getValue(); 3778 return true; 3779 } 3780 3781 /// Emits metadata nodes associating all the global values in the 3782 /// current module with the Decls they came from. This is useful for 3783 /// projects using IR gen as a subroutine. 3784 /// 3785 /// Since there's currently no way to associate an MDNode directly 3786 /// with an llvm::GlobalValue, we create a global named metadata 3787 /// with the name 'clang.global.decl.ptrs'. 3788 void CodeGenModule::EmitDeclMetadata() { 3789 llvm::NamedMDNode *GlobalMetadata = nullptr; 3790 3791 // StaticLocalDeclMap 3792 for (auto &I : MangledDeclNames) { 3793 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3794 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3795 } 3796 } 3797 3798 /// Emits metadata nodes for all the local variables in the current 3799 /// function. 3800 void CodeGenFunction::EmitDeclMetadata() { 3801 if (LocalDeclMap.empty()) return; 3802 3803 llvm::LLVMContext &Context = getLLVMContext(); 3804 3805 // Find the unique metadata ID for this name. 3806 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3807 3808 llvm::NamedMDNode *GlobalMetadata = nullptr; 3809 3810 for (auto &I : LocalDeclMap) { 3811 const Decl *D = I.first; 3812 llvm::Value *Addr = I.second.getPointer(); 3813 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3814 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3815 Alloca->setMetadata( 3816 DeclPtrKind, llvm::MDNode::get( 3817 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3818 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3819 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3820 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3821 } 3822 } 3823 } 3824 3825 void CodeGenModule::EmitVersionIdentMetadata() { 3826 llvm::NamedMDNode *IdentMetadata = 3827 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3828 std::string Version = getClangFullVersion(); 3829 llvm::LLVMContext &Ctx = TheModule.getContext(); 3830 3831 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3832 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3833 } 3834 3835 void CodeGenModule::EmitTargetMetadata() { 3836 // Warning, new MangledDeclNames may be appended within this loop. 3837 // We rely on MapVector insertions adding new elements to the end 3838 // of the container. 3839 // FIXME: Move this loop into the one target that needs it, and only 3840 // loop over those declarations for which we couldn't emit the target 3841 // metadata when we emitted the declaration. 3842 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3843 auto Val = *(MangledDeclNames.begin() + I); 3844 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3845 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3846 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3847 } 3848 } 3849 3850 void CodeGenModule::EmitCoverageFile() { 3851 if (!getCodeGenOpts().CoverageFile.empty()) { 3852 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3853 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3854 llvm::LLVMContext &Ctx = TheModule.getContext(); 3855 llvm::MDString *CoverageFile = 3856 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3857 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3858 llvm::MDNode *CU = CUNode->getOperand(i); 3859 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3860 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3861 } 3862 } 3863 } 3864 } 3865 3866 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3867 // Sema has checked that all uuid strings are of the form 3868 // "12345678-1234-1234-1234-1234567890ab". 3869 assert(Uuid.size() == 36); 3870 for (unsigned i = 0; i < 36; ++i) { 3871 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3872 else assert(isHexDigit(Uuid[i])); 3873 } 3874 3875 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3876 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3877 3878 llvm::Constant *Field3[8]; 3879 for (unsigned Idx = 0; Idx < 8; ++Idx) 3880 Field3[Idx] = llvm::ConstantInt::get( 3881 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3882 3883 llvm::Constant *Fields[4] = { 3884 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3885 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3886 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3887 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3888 }; 3889 3890 return llvm::ConstantStruct::getAnon(Fields); 3891 } 3892 3893 llvm::Constant * 3894 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3895 QualType CatchHandlerType) { 3896 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3897 } 3898 3899 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3900 bool ForEH) { 3901 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3902 // FIXME: should we even be calling this method if RTTI is disabled 3903 // and it's not for EH? 3904 if (!ForEH && !getLangOpts().RTTI) 3905 return llvm::Constant::getNullValue(Int8PtrTy); 3906 3907 if (ForEH && Ty->isObjCObjectPointerType() && 3908 LangOpts.ObjCRuntime.isGNUFamily()) 3909 return ObjCRuntime->GetEHType(Ty); 3910 3911 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3912 } 3913 3914 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3915 for (auto RefExpr : D->varlists()) { 3916 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3917 bool PerformInit = 3918 VD->getAnyInitializer() && 3919 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3920 /*ForRef=*/false); 3921 3922 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3923 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3924 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3925 CXXGlobalInits.push_back(InitFunction); 3926 } 3927 } 3928 3929 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3930 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3931 if (InternalId) 3932 return InternalId; 3933 3934 if (isExternallyVisible(T->getLinkage())) { 3935 std::string OutName; 3936 llvm::raw_string_ostream Out(OutName); 3937 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3938 3939 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3940 } else { 3941 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3942 llvm::ArrayRef<llvm::Metadata *>()); 3943 } 3944 3945 return InternalId; 3946 } 3947 3948 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3949 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3950 llvm::Metadata *BitsetOps[] = { 3951 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)), 3952 llvm::ConstantAsMetadata::get(VTable), 3953 llvm::ConstantAsMetadata::get( 3954 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3955 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3956 } 3957