xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision afd0e6d06ba05cf3cd8b0bb91b6506242de78a4d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::le32:
120     return createPNaClTargetCodeGenInfo(CGM);
121   case llvm::Triple::m68k:
122     return createM68kTargetCodeGenInfo(CGM);
123   case llvm::Triple::mips:
124   case llvm::Triple::mipsel:
125     if (Triple.getOS() == llvm::Triple::NaCl)
126       return createPNaClTargetCodeGenInfo(CGM);
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
128 
129   case llvm::Triple::mips64:
130   case llvm::Triple::mips64el:
131     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
132 
133   case llvm::Triple::avr: {
134     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135     // on avrtiny. For passing return value, R18~R25 are used on avr, and
136     // R22~R25 are used on avrtiny.
137     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
138     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
139     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
140   }
141 
142   case llvm::Triple::aarch64:
143   case llvm::Triple::aarch64_32:
144   case llvm::Triple::aarch64_be: {
145     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
146     if (Target.getABI() == "darwinpcs")
147       Kind = AArch64ABIKind::DarwinPCS;
148     else if (Triple.isOSWindows())
149       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
150     else if (Target.getABI() == "aapcs-soft")
151       Kind = AArch64ABIKind::AAPCSSoft;
152 
153     return createAArch64TargetCodeGenInfo(CGM, Kind);
154   }
155 
156   case llvm::Triple::wasm32:
157   case llvm::Triple::wasm64: {
158     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
159     if (Target.getABI() == "experimental-mv")
160       Kind = WebAssemblyABIKind::ExperimentalMV;
161     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
162   }
163 
164   case llvm::Triple::arm:
165   case llvm::Triple::armeb:
166   case llvm::Triple::thumb:
167   case llvm::Triple::thumbeb: {
168     if (Triple.getOS() == llvm::Triple::Win32)
169       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
170 
171     ARMABIKind Kind = ARMABIKind::AAPCS;
172     StringRef ABIStr = Target.getABI();
173     if (ABIStr == "apcs-gnu")
174       Kind = ARMABIKind::APCS;
175     else if (ABIStr == "aapcs16")
176       Kind = ARMABIKind::AAPCS16_VFP;
177     else if (CodeGenOpts.FloatABI == "hard" ||
178              (CodeGenOpts.FloatABI != "soft" &&
179               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
180                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
181                Triple.getEnvironment() == llvm::Triple::EABIHF)))
182       Kind = ARMABIKind::AAPCS_VFP;
183 
184     return createARMTargetCodeGenInfo(CGM, Kind);
185   }
186 
187   case llvm::Triple::ppc: {
188     if (Triple.isOSAIX())
189       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
190 
191     bool IsSoftFloat =
192         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
193     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
194   }
195   case llvm::Triple::ppcle: {
196     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
197     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
198   }
199   case llvm::Triple::ppc64:
200     if (Triple.isOSAIX())
201       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
202 
203     if (Triple.isOSBinFormatELF()) {
204       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
205       if (Target.getABI() == "elfv2")
206         Kind = PPC64_SVR4_ABIKind::ELFv2;
207       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
208 
209       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
210     }
211     return createPPC64TargetCodeGenInfo(CGM);
212   case llvm::Triple::ppc64le: {
213     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
214     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
215     if (Target.getABI() == "elfv1")
216       Kind = PPC64_SVR4_ABIKind::ELFv1;
217     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
218 
219     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
220   }
221 
222   case llvm::Triple::nvptx:
223   case llvm::Triple::nvptx64:
224     return createNVPTXTargetCodeGenInfo(CGM);
225 
226   case llvm::Triple::msp430:
227     return createMSP430TargetCodeGenInfo(CGM);
228 
229   case llvm::Triple::riscv32:
230   case llvm::Triple::riscv64: {
231     StringRef ABIStr = Target.getABI();
232     unsigned XLen = Target.getPointerWidth(LangAS::Default);
233     unsigned ABIFLen = 0;
234     if (ABIStr.ends_with("f"))
235       ABIFLen = 32;
236     else if (ABIStr.ends_with("d"))
237       ABIFLen = 64;
238     bool EABI = ABIStr.ends_with("e");
239     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
240   }
241 
242   case llvm::Triple::systemz: {
243     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
244     bool HasVector = !SoftFloat && Target.getABI() == "vector";
245     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
246   }
247 
248   case llvm::Triple::tce:
249   case llvm::Triple::tcele:
250     return createTCETargetCodeGenInfo(CGM);
251 
252   case llvm::Triple::x86: {
253     bool IsDarwinVectorABI = Triple.isOSDarwin();
254     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
255 
256     if (Triple.getOS() == llvm::Triple::Win32) {
257       return createWinX86_32TargetCodeGenInfo(
258           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
259           CodeGenOpts.NumRegisterParameters);
260     }
261     return createX86_32TargetCodeGenInfo(
262         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
263         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
264   }
265 
266   case llvm::Triple::x86_64: {
267     StringRef ABI = Target.getABI();
268     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
269                                : ABI == "avx"  ? X86AVXABILevel::AVX
270                                                : X86AVXABILevel::None);
271 
272     switch (Triple.getOS()) {
273     case llvm::Triple::Win32:
274       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
275     default:
276       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
277     }
278   }
279   case llvm::Triple::hexagon:
280     return createHexagonTargetCodeGenInfo(CGM);
281   case llvm::Triple::lanai:
282     return createLanaiTargetCodeGenInfo(CGM);
283   case llvm::Triple::r600:
284     return createAMDGPUTargetCodeGenInfo(CGM);
285   case llvm::Triple::amdgcn:
286     return createAMDGPUTargetCodeGenInfo(CGM);
287   case llvm::Triple::sparc:
288     return createSparcV8TargetCodeGenInfo(CGM);
289   case llvm::Triple::sparcv9:
290     return createSparcV9TargetCodeGenInfo(CGM);
291   case llvm::Triple::xcore:
292     return createXCoreTargetCodeGenInfo(CGM);
293   case llvm::Triple::arc:
294     return createARCTargetCodeGenInfo(CGM);
295   case llvm::Triple::spir:
296   case llvm::Triple::spir64:
297     return createCommonSPIRTargetCodeGenInfo(CGM);
298   case llvm::Triple::spirv32:
299   case llvm::Triple::spirv64:
300     return createSPIRVTargetCodeGenInfo(CGM);
301   case llvm::Triple::ve:
302     return createVETargetCodeGenInfo(CGM);
303   case llvm::Triple::csky: {
304     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
305     bool hasFP64 =
306         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
307     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
308                                             : hasFP64   ? 64
309                                                         : 32);
310   }
311   case llvm::Triple::bpfeb:
312   case llvm::Triple::bpfel:
313     return createBPFTargetCodeGenInfo(CGM);
314   case llvm::Triple::loongarch32:
315   case llvm::Triple::loongarch64: {
316     StringRef ABIStr = Target.getABI();
317     unsigned ABIFRLen = 0;
318     if (ABIStr.ends_with("f"))
319       ABIFRLen = 32;
320     else if (ABIStr.ends_with("d"))
321       ABIFRLen = 64;
322     return createLoongArchTargetCodeGenInfo(
323         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
324   }
325   }
326 }
327 
328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
329   if (!TheTargetCodeGenInfo)
330     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
331   return *TheTargetCodeGenInfo;
332 }
333 
334 CodeGenModule::CodeGenModule(ASTContext &C,
335                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
336                              const HeaderSearchOptions &HSO,
337                              const PreprocessorOptions &PPO,
338                              const CodeGenOptions &CGO, llvm::Module &M,
339                              DiagnosticsEngine &diags,
340                              CoverageSourceInfo *CoverageInfo)
341     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
342       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
343       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
344       VMContext(M.getContext()), Types(*this), VTables(*this),
345       SanitizerMD(new SanitizerMetadata(*this)) {
346 
347   // Initialize the type cache.
348   llvm::LLVMContext &LLVMContext = M.getContext();
349   VoidTy = llvm::Type::getVoidTy(LLVMContext);
350   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
351   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
352   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
353   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
354   HalfTy = llvm::Type::getHalfTy(LLVMContext);
355   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
356   FloatTy = llvm::Type::getFloatTy(LLVMContext);
357   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
358   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
359   PointerAlignInBytes =
360       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
361           .getQuantity();
362   SizeSizeInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
364   IntAlignInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
366   CharTy =
367     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
368   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
369   IntPtrTy = llvm::IntegerType::get(LLVMContext,
370     C.getTargetInfo().getMaxPointerWidth());
371   Int8PtrTy = llvm::PointerType::get(LLVMContext,
372                                      C.getTargetAddressSpace(LangAS::Default));
373   const llvm::DataLayout &DL = M.getDataLayout();
374   AllocaInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
376   GlobalsInt8PtrTy =
377       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
378   ConstGlobalsPtrTy = llvm::PointerType::get(
379       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
380   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
381 
382   // Build C++20 Module initializers.
383   // TODO: Add Microsoft here once we know the mangling required for the
384   // initializers.
385   CXX20ModuleInits =
386       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
387                                        ItaniumMangleContext::MK_Itanium;
388 
389   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
390 
391   if (LangOpts.ObjC)
392     createObjCRuntime();
393   if (LangOpts.OpenCL)
394     createOpenCLRuntime();
395   if (LangOpts.OpenMP)
396     createOpenMPRuntime();
397   if (LangOpts.CUDA)
398     createCUDARuntime();
399   if (LangOpts.HLSL)
400     createHLSLRuntime();
401 
402   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
403   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
404       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
405     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
406                                getLangOpts(), getCXXABI().getMangleContext()));
407 
408   // If debug info or coverage generation is enabled, create the CGDebugInfo
409   // object.
410   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
411       CodeGenOpts.CoverageNotesFile.size() ||
412       CodeGenOpts.CoverageDataFile.size())
413     DebugInfo.reset(new CGDebugInfo(*this));
414 
415   Block.GlobalUniqueCount = 0;
416 
417   if (C.getLangOpts().ObjC)
418     ObjCData.reset(new ObjCEntrypoints());
419 
420   if (CodeGenOpts.hasProfileClangUse()) {
421     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
422         CodeGenOpts.ProfileInstrumentUsePath, *FS,
423         CodeGenOpts.ProfileRemappingFile);
424     // We're checking for profile read errors in CompilerInvocation, so if
425     // there was an error it should've already been caught. If it hasn't been
426     // somehow, trip an assertion.
427     assert(ReaderOrErr);
428     PGOReader = std::move(ReaderOrErr.get());
429   }
430 
431   // If coverage mapping generation is enabled, create the
432   // CoverageMappingModuleGen object.
433   if (CodeGenOpts.CoverageMapping)
434     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
435 
436   // Generate the module name hash here if needed.
437   if (CodeGenOpts.UniqueInternalLinkageNames &&
438       !getModule().getSourceFileName().empty()) {
439     std::string Path = getModule().getSourceFileName();
440     // Check if a path substitution is needed from the MacroPrefixMap.
441     for (const auto &Entry : LangOpts.MacroPrefixMap)
442       if (Path.rfind(Entry.first, 0) != std::string::npos) {
443         Path = Entry.second + Path.substr(Entry.first.size());
444         break;
445       }
446     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
447   }
448 
449   // Record mregparm value now so it is visible through all of codegen.
450   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
451     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
452                               CodeGenOpts.NumRegisterParameters);
453 }
454 
455 CodeGenModule::~CodeGenModule() {}
456 
457 void CodeGenModule::createObjCRuntime() {
458   // This is just isGNUFamily(), but we want to force implementors of
459   // new ABIs to decide how best to do this.
460   switch (LangOpts.ObjCRuntime.getKind()) {
461   case ObjCRuntime::GNUstep:
462   case ObjCRuntime::GCC:
463   case ObjCRuntime::ObjFW:
464     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
465     return;
466 
467   case ObjCRuntime::FragileMacOSX:
468   case ObjCRuntime::MacOSX:
469   case ObjCRuntime::iOS:
470   case ObjCRuntime::WatchOS:
471     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
472     return;
473   }
474   llvm_unreachable("bad runtime kind");
475 }
476 
477 void CodeGenModule::createOpenCLRuntime() {
478   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
479 }
480 
481 void CodeGenModule::createOpenMPRuntime() {
482   // Select a specialized code generation class based on the target, if any.
483   // If it does not exist use the default implementation.
484   switch (getTriple().getArch()) {
485   case llvm::Triple::nvptx:
486   case llvm::Triple::nvptx64:
487   case llvm::Triple::amdgcn:
488     assert(getLangOpts().OpenMPIsTargetDevice &&
489            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
490     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
491     break;
492   default:
493     if (LangOpts.OpenMPSimd)
494       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
495     else
496       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
497     break;
498   }
499 }
500 
501 void CodeGenModule::createCUDARuntime() {
502   CUDARuntime.reset(CreateNVCUDARuntime(*this));
503 }
504 
505 void CodeGenModule::createHLSLRuntime() {
506   HLSLRuntime.reset(new CGHLSLRuntime(*this));
507 }
508 
509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
510   Replacements[Name] = C;
511 }
512 
513 void CodeGenModule::applyReplacements() {
514   for (auto &I : Replacements) {
515     StringRef MangledName = I.first;
516     llvm::Constant *Replacement = I.second;
517     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
518     if (!Entry)
519       continue;
520     auto *OldF = cast<llvm::Function>(Entry);
521     auto *NewF = dyn_cast<llvm::Function>(Replacement);
522     if (!NewF) {
523       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
524         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
525       } else {
526         auto *CE = cast<llvm::ConstantExpr>(Replacement);
527         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
528                CE->getOpcode() == llvm::Instruction::GetElementPtr);
529         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
530       }
531     }
532 
533     // Replace old with new, but keep the old order.
534     OldF->replaceAllUsesWith(Replacement);
535     if (NewF) {
536       NewF->removeFromParent();
537       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
538                                                        NewF);
539     }
540     OldF->eraseFromParent();
541   }
542 }
543 
544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
545   GlobalValReplacements.push_back(std::make_pair(GV, C));
546 }
547 
548 void CodeGenModule::applyGlobalValReplacements() {
549   for (auto &I : GlobalValReplacements) {
550     llvm::GlobalValue *GV = I.first;
551     llvm::Constant *C = I.second;
552 
553     GV->replaceAllUsesWith(C);
554     GV->eraseFromParent();
555   }
556 }
557 
558 // This is only used in aliases that we created and we know they have a
559 // linear structure.
560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
561   const llvm::Constant *C;
562   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
563     C = GA->getAliasee();
564   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
565     C = GI->getResolver();
566   else
567     return GV;
568 
569   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
570   if (!AliaseeGV)
571     return nullptr;
572 
573   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
574   if (FinalGV == GV)
575     return nullptr;
576 
577   return FinalGV;
578 }
579 
580 static bool checkAliasedGlobal(
581     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
582     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
583     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
584     SourceRange AliasRange) {
585   GV = getAliasedGlobal(Alias);
586   if (!GV) {
587     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
588     return false;
589   }
590 
591   if (GV->hasCommonLinkage()) {
592     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
593     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
594       Diags.Report(Location, diag::err_alias_to_common);
595       return false;
596     }
597   }
598 
599   if (GV->isDeclaration()) {
600     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
601     Diags.Report(Location, diag::note_alias_requires_mangled_name)
602         << IsIFunc << IsIFunc;
603     // Provide a note if the given function is not found and exists as a
604     // mangled name.
605     for (const auto &[Decl, Name] : MangledDeclNames) {
606       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
607         if (ND->getName() == GV->getName()) {
608           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
609               << Name
610               << FixItHint::CreateReplacement(
611                      AliasRange,
612                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
613                          .str());
614         }
615       }
616     }
617     return false;
618   }
619 
620   if (IsIFunc) {
621     // Check resolver function type.
622     const auto *F = dyn_cast<llvm::Function>(GV);
623     if (!F) {
624       Diags.Report(Location, diag::err_alias_to_undefined)
625           << IsIFunc << IsIFunc;
626       return false;
627     }
628 
629     llvm::FunctionType *FTy = F->getFunctionType();
630     if (!FTy->getReturnType()->isPointerTy()) {
631       Diags.Report(Location, diag::err_ifunc_resolver_return);
632       return false;
633     }
634   }
635 
636   return true;
637 }
638 
639 // Emit a warning if toc-data attribute is requested for global variables that
640 // have aliases and remove the toc-data attribute.
641 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
642                                  const CodeGenOptions &CodeGenOpts,
643                                  DiagnosticsEngine &Diags,
644                                  SourceLocation Location) {
645   if (GVar->hasAttribute("toc-data")) {
646     auto GVId = GVar->getName();
647     // Is this a global variable specified by the user as local?
648     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
649       Diags.Report(Location, diag::warn_toc_unsupported_type)
650           << GVId << "the variable has an alias";
651     }
652     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
653     llvm::AttributeSet NewAttributes =
654         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
655     GVar->setAttributes(NewAttributes);
656   }
657 }
658 
659 void CodeGenModule::checkAliases() {
660   // Check if the constructed aliases are well formed. It is really unfortunate
661   // that we have to do this in CodeGen, but we only construct mangled names
662   // and aliases during codegen.
663   bool Error = false;
664   DiagnosticsEngine &Diags = getDiags();
665   for (const GlobalDecl &GD : Aliases) {
666     const auto *D = cast<ValueDecl>(GD.getDecl());
667     SourceLocation Location;
668     SourceRange Range;
669     bool IsIFunc = D->hasAttr<IFuncAttr>();
670     if (const Attr *A = D->getDefiningAttr()) {
671       Location = A->getLocation();
672       Range = A->getRange();
673     } else
674       llvm_unreachable("Not an alias or ifunc?");
675 
676     StringRef MangledName = getMangledName(GD);
677     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
678     const llvm::GlobalValue *GV = nullptr;
679     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
680                             MangledDeclNames, Range)) {
681       Error = true;
682       continue;
683     }
684 
685     if (getContext().getTargetInfo().getTriple().isOSAIX())
686       if (const llvm::GlobalVariable *GVar =
687               dyn_cast<const llvm::GlobalVariable>(GV))
688         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
689                              getCodeGenOpts(), Diags, Location);
690 
691     llvm::Constant *Aliasee =
692         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
693                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
694 
695     llvm::GlobalValue *AliaseeGV;
696     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
697       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
698     else
699       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
700 
701     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
702       StringRef AliasSection = SA->getName();
703       if (AliasSection != AliaseeGV->getSection())
704         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
705             << AliasSection << IsIFunc << IsIFunc;
706     }
707 
708     // We have to handle alias to weak aliases in here. LLVM itself disallows
709     // this since the object semantics would not match the IL one. For
710     // compatibility with gcc we implement it by just pointing the alias
711     // to its aliasee's aliasee. We also warn, since the user is probably
712     // expecting the link to be weak.
713     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
714       if (GA->isInterposable()) {
715         Diags.Report(Location, diag::warn_alias_to_weak_alias)
716             << GV->getName() << GA->getName() << IsIFunc;
717         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
718             GA->getAliasee(), Alias->getType());
719 
720         if (IsIFunc)
721           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
722         else
723           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
724       }
725     }
726   }
727   if (!Error)
728     return;
729 
730   for (const GlobalDecl &GD : Aliases) {
731     StringRef MangledName = getMangledName(GD);
732     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
733     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
734     Alias->eraseFromParent();
735   }
736 }
737 
738 void CodeGenModule::clear() {
739   DeferredDeclsToEmit.clear();
740   EmittedDeferredDecls.clear();
741   DeferredAnnotations.clear();
742   if (OpenMPRuntime)
743     OpenMPRuntime->clear();
744 }
745 
746 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
747                                        StringRef MainFile) {
748   if (!hasDiagnostics())
749     return;
750   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
751     if (MainFile.empty())
752       MainFile = "<stdin>";
753     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
754   } else {
755     if (Mismatched > 0)
756       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
757 
758     if (Missing > 0)
759       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
760   }
761 }
762 
763 static std::optional<llvm::GlobalValue::VisibilityTypes>
764 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
765   // Map to LLVM visibility.
766   switch (K) {
767   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
768     return std::nullopt;
769   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
770     return llvm::GlobalValue::DefaultVisibility;
771   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
772     return llvm::GlobalValue::HiddenVisibility;
773   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
774     return llvm::GlobalValue::ProtectedVisibility;
775   }
776   llvm_unreachable("unknown option value!");
777 }
778 
779 void setLLVMVisibility(llvm::GlobalValue &GV,
780                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
781   if (!V)
782     return;
783 
784   // Reset DSO locality before setting the visibility. This removes
785   // any effects that visibility options and annotations may have
786   // had on the DSO locality. Setting the visibility will implicitly set
787   // appropriate globals to DSO Local; however, this will be pessimistic
788   // w.r.t. to the normal compiler IRGen.
789   GV.setDSOLocal(false);
790   GV.setVisibility(*V);
791 }
792 
793 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
794                                              llvm::Module &M) {
795   if (!LO.VisibilityFromDLLStorageClass)
796     return;
797 
798   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
799       getLLVMVisibility(LO.getDLLExportVisibility());
800 
801   std::optional<llvm::GlobalValue::VisibilityTypes>
802       NoDLLStorageClassVisibility =
803           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
804 
805   std::optional<llvm::GlobalValue::VisibilityTypes>
806       ExternDeclDLLImportVisibility =
807           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
808 
809   std::optional<llvm::GlobalValue::VisibilityTypes>
810       ExternDeclNoDLLStorageClassVisibility =
811           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
812 
813   for (llvm::GlobalValue &GV : M.global_values()) {
814     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
815       continue;
816 
817     if (GV.isDeclarationForLinker())
818       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
819                                     llvm::GlobalValue::DLLImportStorageClass
820                                 ? ExternDeclDLLImportVisibility
821                                 : ExternDeclNoDLLStorageClassVisibility);
822     else
823       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
824                                     llvm::GlobalValue::DLLExportStorageClass
825                                 ? DLLExportVisibility
826                                 : NoDLLStorageClassVisibility);
827 
828     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
829   }
830 }
831 
832 static bool isStackProtectorOn(const LangOptions &LangOpts,
833                                const llvm::Triple &Triple,
834                                clang::LangOptions::StackProtectorMode Mode) {
835   if (Triple.isAMDGPU() || Triple.isNVPTX())
836     return false;
837   return LangOpts.getStackProtector() == Mode;
838 }
839 
840 void CodeGenModule::Release() {
841   Module *Primary = getContext().getCurrentNamedModule();
842   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
843     EmitModuleInitializers(Primary);
844   EmitDeferred();
845   DeferredDecls.insert(EmittedDeferredDecls.begin(),
846                        EmittedDeferredDecls.end());
847   EmittedDeferredDecls.clear();
848   EmitVTablesOpportunistically();
849   applyGlobalValReplacements();
850   applyReplacements();
851   emitMultiVersionFunctions();
852 
853   if (Context.getLangOpts().IncrementalExtensions &&
854       GlobalTopLevelStmtBlockInFlight.first) {
855     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
856     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
857     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
858   }
859 
860   // Module implementations are initialized the same way as a regular TU that
861   // imports one or more modules.
862   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
863     EmitCXXModuleInitFunc(Primary);
864   else
865     EmitCXXGlobalInitFunc();
866   EmitCXXGlobalCleanUpFunc();
867   registerGlobalDtorsWithAtExit();
868   EmitCXXThreadLocalInitFunc();
869   if (ObjCRuntime)
870     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
871       AddGlobalCtor(ObjCInitFunction);
872   if (Context.getLangOpts().CUDA && CUDARuntime) {
873     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
874       AddGlobalCtor(CudaCtorFunction);
875   }
876   if (OpenMPRuntime) {
877     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
878     OpenMPRuntime->clear();
879   }
880   if (PGOReader) {
881     getModule().setProfileSummary(
882         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
883         llvm::ProfileSummary::PSK_Instr);
884     if (PGOStats.hasDiagnostics())
885       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
886   }
887   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
888     return L.LexOrder < R.LexOrder;
889   });
890   EmitCtorList(GlobalCtors, "llvm.global_ctors");
891   EmitCtorList(GlobalDtors, "llvm.global_dtors");
892   EmitGlobalAnnotations();
893   EmitStaticExternCAliases();
894   checkAliases();
895   EmitDeferredUnusedCoverageMappings();
896   CodeGenPGO(*this).setValueProfilingFlag(getModule());
897   CodeGenPGO(*this).setProfileVersion(getModule());
898   if (CoverageMapping)
899     CoverageMapping->emit();
900   if (CodeGenOpts.SanitizeCfiCrossDso) {
901     CodeGenFunction(*this).EmitCfiCheckFail();
902     CodeGenFunction(*this).EmitCfiCheckStub();
903   }
904   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
905     finalizeKCFITypes();
906   emitAtAvailableLinkGuard();
907   if (Context.getTargetInfo().getTriple().isWasm())
908     EmitMainVoidAlias();
909 
910   if (getTriple().isAMDGPU() ||
911       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
912     // Emit amdhsa_code_object_version module flag, which is code object version
913     // times 100.
914     if (getTarget().getTargetOpts().CodeObjectVersion !=
915         llvm::CodeObjectVersionKind::COV_None) {
916       getModule().addModuleFlag(llvm::Module::Error,
917                                 "amdhsa_code_object_version",
918                                 getTarget().getTargetOpts().CodeObjectVersion);
919     }
920 
921     // Currently, "-mprintf-kind" option is only supported for HIP
922     if (LangOpts.HIP) {
923       auto *MDStr = llvm::MDString::get(
924           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
925                              TargetOptions::AMDGPUPrintfKind::Hostcall)
926                                 ? "hostcall"
927                                 : "buffered");
928       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
929                                 MDStr);
930     }
931   }
932 
933   // Emit a global array containing all external kernels or device variables
934   // used by host functions and mark it as used for CUDA/HIP. This is necessary
935   // to get kernels or device variables in archives linked in even if these
936   // kernels or device variables are only used in host functions.
937   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
938     SmallVector<llvm::Constant *, 8> UsedArray;
939     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
940       GlobalDecl GD;
941       if (auto *FD = dyn_cast<FunctionDecl>(D))
942         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
943       else
944         GD = GlobalDecl(D);
945       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
946           GetAddrOfGlobal(GD), Int8PtrTy));
947     }
948 
949     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
950 
951     auto *GV = new llvm::GlobalVariable(
952         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
953         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
954     addCompilerUsedGlobal(GV);
955   }
956   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
957     // Emit a unique ID so that host and device binaries from the same
958     // compilation unit can be associated.
959     auto *GV = new llvm::GlobalVariable(
960         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
961         llvm::Constant::getNullValue(Int8Ty),
962         "__hip_cuid_" + getContext().getCUIDHash());
963     addCompilerUsedGlobal(GV);
964   }
965   emitLLVMUsed();
966   if (SanStats)
967     SanStats->finish();
968 
969   if (CodeGenOpts.Autolink &&
970       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
971     EmitModuleLinkOptions();
972   }
973 
974   // On ELF we pass the dependent library specifiers directly to the linker
975   // without manipulating them. This is in contrast to other platforms where
976   // they are mapped to a specific linker option by the compiler. This
977   // difference is a result of the greater variety of ELF linkers and the fact
978   // that ELF linkers tend to handle libraries in a more complicated fashion
979   // than on other platforms. This forces us to defer handling the dependent
980   // libs to the linker.
981   //
982   // CUDA/HIP device and host libraries are different. Currently there is no
983   // way to differentiate dependent libraries for host or device. Existing
984   // usage of #pragma comment(lib, *) is intended for host libraries on
985   // Windows. Therefore emit llvm.dependent-libraries only for host.
986   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
987     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
988     for (auto *MD : ELFDependentLibraries)
989       NMD->addOperand(MD);
990   }
991 
992   if (CodeGenOpts.DwarfVersion) {
993     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
994                               CodeGenOpts.DwarfVersion);
995   }
996 
997   if (CodeGenOpts.Dwarf64)
998     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
999 
1000   if (Context.getLangOpts().SemanticInterposition)
1001     // Require various optimization to respect semantic interposition.
1002     getModule().setSemanticInterposition(true);
1003 
1004   if (CodeGenOpts.EmitCodeView) {
1005     // Indicate that we want CodeView in the metadata.
1006     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1007   }
1008   if (CodeGenOpts.CodeViewGHash) {
1009     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1010   }
1011   if (CodeGenOpts.ControlFlowGuard) {
1012     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1013     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1014   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1015     // Function ID tables for Control Flow Guard (cfguard=1).
1016     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1017   }
1018   if (CodeGenOpts.EHContGuard) {
1019     // Function ID tables for EH Continuation Guard.
1020     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1021   }
1022   if (Context.getLangOpts().Kernel) {
1023     // Note if we are compiling with /kernel.
1024     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1025   }
1026   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1027     // We don't support LTO with 2 with different StrictVTablePointers
1028     // FIXME: we could support it by stripping all the information introduced
1029     // by StrictVTablePointers.
1030 
1031     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1032 
1033     llvm::Metadata *Ops[2] = {
1034               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1035               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1036                   llvm::Type::getInt32Ty(VMContext), 1))};
1037 
1038     getModule().addModuleFlag(llvm::Module::Require,
1039                               "StrictVTablePointersRequirement",
1040                               llvm::MDNode::get(VMContext, Ops));
1041   }
1042   if (getModuleDebugInfo())
1043     // We support a single version in the linked module. The LLVM
1044     // parser will drop debug info with a different version number
1045     // (and warn about it, too).
1046     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1047                               llvm::DEBUG_METADATA_VERSION);
1048 
1049   // We need to record the widths of enums and wchar_t, so that we can generate
1050   // the correct build attributes in the ARM backend. wchar_size is also used by
1051   // TargetLibraryInfo.
1052   uint64_t WCharWidth =
1053       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1054   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1055 
1056   if (getTriple().isOSzOS()) {
1057     getModule().addModuleFlag(llvm::Module::Warning,
1058                               "zos_product_major_version",
1059                               uint32_t(CLANG_VERSION_MAJOR));
1060     getModule().addModuleFlag(llvm::Module::Warning,
1061                               "zos_product_minor_version",
1062                               uint32_t(CLANG_VERSION_MINOR));
1063     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1064                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1065     std::string ProductId = getClangVendor() + "clang";
1066     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1067                               llvm::MDString::get(VMContext, ProductId));
1068 
1069     // Record the language because we need it for the PPA2.
1070     StringRef lang_str = languageToString(
1071         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1072     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1073                               llvm::MDString::get(VMContext, lang_str));
1074 
1075     time_t TT = PreprocessorOpts.SourceDateEpoch
1076                     ? *PreprocessorOpts.SourceDateEpoch
1077                     : std::time(nullptr);
1078     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1079                               static_cast<uint64_t>(TT));
1080 
1081     // Multiple modes will be supported here.
1082     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1083                               llvm::MDString::get(VMContext, "ascii"));
1084   }
1085 
1086   llvm::Triple T = Context.getTargetInfo().getTriple();
1087   if (T.isARM() || T.isThumb()) {
1088     // The minimum width of an enum in bytes
1089     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1090     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1091   }
1092 
1093   if (T.isRISCV()) {
1094     StringRef ABIStr = Target.getABI();
1095     llvm::LLVMContext &Ctx = TheModule.getContext();
1096     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1097                               llvm::MDString::get(Ctx, ABIStr));
1098 
1099     // Add the canonical ISA string as metadata so the backend can set the ELF
1100     // attributes correctly. We use AppendUnique so LTO will keep all of the
1101     // unique ISA strings that were linked together.
1102     const std::vector<std::string> &Features =
1103         getTarget().getTargetOpts().Features;
1104     auto ParseResult =
1105         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1106     if (!errorToBool(ParseResult.takeError()))
1107       getModule().addModuleFlag(
1108           llvm::Module::AppendUnique, "riscv-isa",
1109           llvm::MDNode::get(
1110               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1111   }
1112 
1113   if (CodeGenOpts.SanitizeCfiCrossDso) {
1114     // Indicate that we want cross-DSO control flow integrity checks.
1115     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1116   }
1117 
1118   if (CodeGenOpts.WholeProgramVTables) {
1119     // Indicate whether VFE was enabled for this module, so that the
1120     // vcall_visibility metadata added under whole program vtables is handled
1121     // appropriately in the optimizer.
1122     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1123                               CodeGenOpts.VirtualFunctionElimination);
1124   }
1125 
1126   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1127     getModule().addModuleFlag(llvm::Module::Override,
1128                               "CFI Canonical Jump Tables",
1129                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1130   }
1131 
1132   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1133     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1134     // KCFI assumes patchable-function-prefix is the same for all indirectly
1135     // called functions. Store the expected offset for code generation.
1136     if (CodeGenOpts.PatchableFunctionEntryOffset)
1137       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1138                                 CodeGenOpts.PatchableFunctionEntryOffset);
1139   }
1140 
1141   if (CodeGenOpts.CFProtectionReturn &&
1142       Target.checkCFProtectionReturnSupported(getDiags())) {
1143     // Indicate that we want to instrument return control flow protection.
1144     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1145                               1);
1146   }
1147 
1148   if (CodeGenOpts.CFProtectionBranch &&
1149       Target.checkCFProtectionBranchSupported(getDiags())) {
1150     // Indicate that we want to instrument branch control flow protection.
1151     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1152                               1);
1153   }
1154 
1155   if (CodeGenOpts.FunctionReturnThunks)
1156     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1157 
1158   if (CodeGenOpts.IndirectBranchCSPrefix)
1159     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1160 
1161   // Add module metadata for return address signing (ignoring
1162   // non-leaf/all) and stack tagging. These are actually turned on by function
1163   // attributes, but we use module metadata to emit build attributes. This is
1164   // needed for LTO, where the function attributes are inside bitcode
1165   // serialised into a global variable by the time build attributes are
1166   // emitted, so we can't access them. LTO objects could be compiled with
1167   // different flags therefore module flags are set to "Min" behavior to achieve
1168   // the same end result of the normal build where e.g BTI is off if any object
1169   // doesn't support it.
1170   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1171       LangOpts.getSignReturnAddressScope() !=
1172           LangOptions::SignReturnAddressScopeKind::None)
1173     getModule().addModuleFlag(llvm::Module::Override,
1174                               "sign-return-address-buildattr", 1);
1175   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1176     getModule().addModuleFlag(llvm::Module::Override,
1177                               "tag-stack-memory-buildattr", 1);
1178 
1179   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1180     if (LangOpts.BranchTargetEnforcement)
1181       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1182                                 1);
1183     if (LangOpts.BranchProtectionPAuthLR)
1184       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1185                                 1);
1186     if (LangOpts.GuardedControlStack)
1187       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1188     if (LangOpts.hasSignReturnAddress())
1189       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1190     if (LangOpts.isSignReturnAddressScopeAll())
1191       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1192                                 1);
1193     if (!LangOpts.isSignReturnAddressWithAKey())
1194       getModule().addModuleFlag(llvm::Module::Min,
1195                                 "sign-return-address-with-bkey", 1);
1196 
1197     if (getTriple().isOSLinux()) {
1198       assert(getTriple().isOSBinFormatELF());
1199       using namespace llvm::ELF;
1200       uint64_t PAuthABIVersion =
1201           (LangOpts.PointerAuthIntrinsics
1202            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1203           (LangOpts.PointerAuthCalls
1204            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1205           (LangOpts.PointerAuthReturns
1206            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1207           (LangOpts.PointerAuthAuthTraps
1208            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1209           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1210            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1211           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1212            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1213           (LangOpts.PointerAuthInitFini
1214            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI);
1215       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
1216                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1217                     "Update when new enum items are defined");
1218       if (PAuthABIVersion != 0) {
1219         getModule().addModuleFlag(llvm::Module::Error,
1220                                   "aarch64-elf-pauthabi-platform",
1221                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1222         getModule().addModuleFlag(llvm::Module::Error,
1223                                   "aarch64-elf-pauthabi-version",
1224                                   PAuthABIVersion);
1225       }
1226     }
1227   }
1228 
1229   if (CodeGenOpts.StackClashProtector)
1230     getModule().addModuleFlag(
1231         llvm::Module::Override, "probe-stack",
1232         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1233 
1234   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1235     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1236                               CodeGenOpts.StackProbeSize);
1237 
1238   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1239     llvm::LLVMContext &Ctx = TheModule.getContext();
1240     getModule().addModuleFlag(
1241         llvm::Module::Error, "MemProfProfileFilename",
1242         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1243   }
1244 
1245   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1246     // Indicate whether __nvvm_reflect should be configured to flush denormal
1247     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1248     // property.)
1249     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1250                               CodeGenOpts.FP32DenormalMode.Output !=
1251                                   llvm::DenormalMode::IEEE);
1252   }
1253 
1254   if (LangOpts.EHAsynch)
1255     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1256 
1257   // Indicate whether this Module was compiled with -fopenmp
1258   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1259     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1260   if (getLangOpts().OpenMPIsTargetDevice)
1261     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1262                               LangOpts.OpenMP);
1263 
1264   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1265   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1266     EmitOpenCLMetadata();
1267     // Emit SPIR version.
1268     if (getTriple().isSPIR()) {
1269       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1270       // opencl.spir.version named metadata.
1271       // C++ for OpenCL has a distinct mapping for version compatibility with
1272       // OpenCL.
1273       auto Version = LangOpts.getOpenCLCompatibleVersion();
1274       llvm::Metadata *SPIRVerElts[] = {
1275           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1276               Int32Ty, Version / 100)),
1277           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1278               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1279       llvm::NamedMDNode *SPIRVerMD =
1280           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1281       llvm::LLVMContext &Ctx = TheModule.getContext();
1282       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1283     }
1284   }
1285 
1286   // HLSL related end of code gen work items.
1287   if (LangOpts.HLSL)
1288     getHLSLRuntime().finishCodeGen();
1289 
1290   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1291     assert(PLevel < 3 && "Invalid PIC Level");
1292     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1293     if (Context.getLangOpts().PIE)
1294       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1295   }
1296 
1297   if (getCodeGenOpts().CodeModel.size() > 0) {
1298     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1299                   .Case("tiny", llvm::CodeModel::Tiny)
1300                   .Case("small", llvm::CodeModel::Small)
1301                   .Case("kernel", llvm::CodeModel::Kernel)
1302                   .Case("medium", llvm::CodeModel::Medium)
1303                   .Case("large", llvm::CodeModel::Large)
1304                   .Default(~0u);
1305     if (CM != ~0u) {
1306       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1307       getModule().setCodeModel(codeModel);
1308 
1309       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1310           Context.getTargetInfo().getTriple().getArch() ==
1311               llvm::Triple::x86_64) {
1312         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1313       }
1314     }
1315   }
1316 
1317   if (CodeGenOpts.NoPLT)
1318     getModule().setRtLibUseGOT();
1319   if (getTriple().isOSBinFormatELF() &&
1320       CodeGenOpts.DirectAccessExternalData !=
1321           getModule().getDirectAccessExternalData()) {
1322     getModule().setDirectAccessExternalData(
1323         CodeGenOpts.DirectAccessExternalData);
1324   }
1325   if (CodeGenOpts.UnwindTables)
1326     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1327 
1328   switch (CodeGenOpts.getFramePointer()) {
1329   case CodeGenOptions::FramePointerKind::None:
1330     // 0 ("none") is the default.
1331     break;
1332   case CodeGenOptions::FramePointerKind::Reserved:
1333     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1334     break;
1335   case CodeGenOptions::FramePointerKind::NonLeaf:
1336     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1337     break;
1338   case CodeGenOptions::FramePointerKind::All:
1339     getModule().setFramePointer(llvm::FramePointerKind::All);
1340     break;
1341   }
1342 
1343   SimplifyPersonality();
1344 
1345   if (getCodeGenOpts().EmitDeclMetadata)
1346     EmitDeclMetadata();
1347 
1348   if (getCodeGenOpts().CoverageNotesFile.size() ||
1349       getCodeGenOpts().CoverageDataFile.size())
1350     EmitCoverageFile();
1351 
1352   if (CGDebugInfo *DI = getModuleDebugInfo())
1353     DI->finalize();
1354 
1355   if (getCodeGenOpts().EmitVersionIdentMetadata)
1356     EmitVersionIdentMetadata();
1357 
1358   if (!getCodeGenOpts().RecordCommandLine.empty())
1359     EmitCommandLineMetadata();
1360 
1361   if (!getCodeGenOpts().StackProtectorGuard.empty())
1362     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1363   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1364     getModule().setStackProtectorGuardReg(
1365         getCodeGenOpts().StackProtectorGuardReg);
1366   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1367     getModule().setStackProtectorGuardSymbol(
1368         getCodeGenOpts().StackProtectorGuardSymbol);
1369   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1370     getModule().setStackProtectorGuardOffset(
1371         getCodeGenOpts().StackProtectorGuardOffset);
1372   if (getCodeGenOpts().StackAlignment)
1373     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1374   if (getCodeGenOpts().SkipRaxSetup)
1375     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1376   if (getLangOpts().RegCall4)
1377     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1378 
1379   if (getContext().getTargetInfo().getMaxTLSAlign())
1380     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1381                               getContext().getTargetInfo().getMaxTLSAlign());
1382 
1383   getTargetCodeGenInfo().emitTargetGlobals(*this);
1384 
1385   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1386 
1387   EmitBackendOptionsMetadata(getCodeGenOpts());
1388 
1389   // If there is device offloading code embed it in the host now.
1390   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1391 
1392   // Set visibility from DLL storage class
1393   // We do this at the end of LLVM IR generation; after any operation
1394   // that might affect the DLL storage class or the visibility, and
1395   // before anything that might act on these.
1396   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1397 
1398   // Check the tail call symbols are truly undefined.
1399   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1400     for (auto &I : MustTailCallUndefinedGlobals) {
1401       if (!I.first->isDefined())
1402         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1403       else {
1404         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1405         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1406         if (!Entry || Entry->isWeakForLinker() ||
1407             Entry->isDeclarationForLinker())
1408           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1409       }
1410     }
1411   }
1412 }
1413 
1414 void CodeGenModule::EmitOpenCLMetadata() {
1415   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1416   // opencl.ocl.version named metadata node.
1417   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1418   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1419 
1420   auto EmitVersion = [this](StringRef MDName, int Version) {
1421     llvm::Metadata *OCLVerElts[] = {
1422         llvm::ConstantAsMetadata::get(
1423             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1424         llvm::ConstantAsMetadata::get(
1425             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1426     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1427     llvm::LLVMContext &Ctx = TheModule.getContext();
1428     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1429   };
1430 
1431   EmitVersion("opencl.ocl.version", CLVersion);
1432   if (LangOpts.OpenCLCPlusPlus) {
1433     // In addition to the OpenCL compatible version, emit the C++ version.
1434     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1435   }
1436 }
1437 
1438 void CodeGenModule::EmitBackendOptionsMetadata(
1439     const CodeGenOptions &CodeGenOpts) {
1440   if (getTriple().isRISCV()) {
1441     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1442                               CodeGenOpts.SmallDataLimit);
1443   }
1444 }
1445 
1446 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1447   // Make sure that this type is translated.
1448   Types.UpdateCompletedType(TD);
1449 }
1450 
1451 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1452   // Make sure that this type is translated.
1453   Types.RefreshTypeCacheForClass(RD);
1454 }
1455 
1456 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1457   if (!TBAA)
1458     return nullptr;
1459   return TBAA->getTypeInfo(QTy);
1460 }
1461 
1462 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1463   if (!TBAA)
1464     return TBAAAccessInfo();
1465   if (getLangOpts().CUDAIsDevice) {
1466     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1467     // access info.
1468     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1469       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1470           nullptr)
1471         return TBAAAccessInfo();
1472     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1473       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1474           nullptr)
1475         return TBAAAccessInfo();
1476     }
1477   }
1478   return TBAA->getAccessInfo(AccessType);
1479 }
1480 
1481 TBAAAccessInfo
1482 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1483   if (!TBAA)
1484     return TBAAAccessInfo();
1485   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1486 }
1487 
1488 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1489   if (!TBAA)
1490     return nullptr;
1491   return TBAA->getTBAAStructInfo(QTy);
1492 }
1493 
1494 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1495   if (!TBAA)
1496     return nullptr;
1497   return TBAA->getBaseTypeInfo(QTy);
1498 }
1499 
1500 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1501   if (!TBAA)
1502     return nullptr;
1503   return TBAA->getAccessTagInfo(Info);
1504 }
1505 
1506 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1507                                                    TBAAAccessInfo TargetInfo) {
1508   if (!TBAA)
1509     return TBAAAccessInfo();
1510   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1511 }
1512 
1513 TBAAAccessInfo
1514 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1515                                                    TBAAAccessInfo InfoB) {
1516   if (!TBAA)
1517     return TBAAAccessInfo();
1518   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1519 }
1520 
1521 TBAAAccessInfo
1522 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1523                                               TBAAAccessInfo SrcInfo) {
1524   if (!TBAA)
1525     return TBAAAccessInfo();
1526   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1527 }
1528 
1529 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1530                                                 TBAAAccessInfo TBAAInfo) {
1531   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1532     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1533 }
1534 
1535 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1536     llvm::Instruction *I, const CXXRecordDecl *RD) {
1537   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1538                  llvm::MDNode::get(getLLVMContext(), {}));
1539 }
1540 
1541 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1542   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1543   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1544 }
1545 
1546 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1547 /// specified stmt yet.
1548 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1549   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1550                                                "cannot compile this %0 yet");
1551   std::string Msg = Type;
1552   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1553       << Msg << S->getSourceRange();
1554 }
1555 
1556 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1557 /// specified decl yet.
1558 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1559   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1560                                                "cannot compile this %0 yet");
1561   std::string Msg = Type;
1562   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1563 }
1564 
1565 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1566   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1567 }
1568 
1569 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1570                                         const NamedDecl *D) const {
1571   // Internal definitions always have default visibility.
1572   if (GV->hasLocalLinkage()) {
1573     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1574     return;
1575   }
1576   if (!D)
1577     return;
1578 
1579   // Set visibility for definitions, and for declarations if requested globally
1580   // or set explicitly.
1581   LinkageInfo LV = D->getLinkageAndVisibility();
1582 
1583   // OpenMP declare target variables must be visible to the host so they can
1584   // be registered. We require protected visibility unless the variable has
1585   // the DT_nohost modifier and does not need to be registered.
1586   if (Context.getLangOpts().OpenMP &&
1587       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1588       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1589       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1590           OMPDeclareTargetDeclAttr::DT_NoHost &&
1591       LV.getVisibility() == HiddenVisibility) {
1592     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1593     return;
1594   }
1595 
1596   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1597     // Reject incompatible dlllstorage and visibility annotations.
1598     if (!LV.isVisibilityExplicit())
1599       return;
1600     if (GV->hasDLLExportStorageClass()) {
1601       if (LV.getVisibility() == HiddenVisibility)
1602         getDiags().Report(D->getLocation(),
1603                           diag::err_hidden_visibility_dllexport);
1604     } else if (LV.getVisibility() != DefaultVisibility) {
1605       getDiags().Report(D->getLocation(),
1606                         diag::err_non_default_visibility_dllimport);
1607     }
1608     return;
1609   }
1610 
1611   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1612       !GV->isDeclarationForLinker())
1613     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1614 }
1615 
1616 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1617                                  llvm::GlobalValue *GV) {
1618   if (GV->hasLocalLinkage())
1619     return true;
1620 
1621   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1622     return true;
1623 
1624   // DLLImport explicitly marks the GV as external.
1625   if (GV->hasDLLImportStorageClass())
1626     return false;
1627 
1628   const llvm::Triple &TT = CGM.getTriple();
1629   const auto &CGOpts = CGM.getCodeGenOpts();
1630   if (TT.isWindowsGNUEnvironment()) {
1631     // In MinGW, variables without DLLImport can still be automatically
1632     // imported from a DLL by the linker; don't mark variables that
1633     // potentially could come from another DLL as DSO local.
1634 
1635     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1636     // (and this actually happens in the public interface of libstdc++), so
1637     // such variables can't be marked as DSO local. (Native TLS variables
1638     // can't be dllimported at all, though.)
1639     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1640         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1641         CGOpts.AutoImport)
1642       return false;
1643   }
1644 
1645   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1646   // remain unresolved in the link, they can be resolved to zero, which is
1647   // outside the current DSO.
1648   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1649     return false;
1650 
1651   // Every other GV is local on COFF.
1652   // Make an exception for windows OS in the triple: Some firmware builds use
1653   // *-win32-macho triples. This (accidentally?) produced windows relocations
1654   // without GOT tables in older clang versions; Keep this behaviour.
1655   // FIXME: even thread local variables?
1656   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1657     return true;
1658 
1659   // Only handle COFF and ELF for now.
1660   if (!TT.isOSBinFormatELF())
1661     return false;
1662 
1663   // If this is not an executable, don't assume anything is local.
1664   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1665   const auto &LOpts = CGM.getLangOpts();
1666   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1667     // On ELF, if -fno-semantic-interposition is specified and the target
1668     // supports local aliases, there will be neither CC1
1669     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1670     // dso_local on the function if using a local alias is preferable (can avoid
1671     // PLT indirection).
1672     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1673       return false;
1674     return !(CGM.getLangOpts().SemanticInterposition ||
1675              CGM.getLangOpts().HalfNoSemanticInterposition);
1676   }
1677 
1678   // A definition cannot be preempted from an executable.
1679   if (!GV->isDeclarationForLinker())
1680     return true;
1681 
1682   // Most PIC code sequences that assume that a symbol is local cannot produce a
1683   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1684   // depended, it seems worth it to handle it here.
1685   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1686     return false;
1687 
1688   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1689   if (TT.isPPC64())
1690     return false;
1691 
1692   if (CGOpts.DirectAccessExternalData) {
1693     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1694     // for non-thread-local variables. If the symbol is not defined in the
1695     // executable, a copy relocation will be needed at link time. dso_local is
1696     // excluded for thread-local variables because they generally don't support
1697     // copy relocations.
1698     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1699       if (!Var->isThreadLocal())
1700         return true;
1701 
1702     // -fno-pic sets dso_local on a function declaration to allow direct
1703     // accesses when taking its address (similar to a data symbol). If the
1704     // function is not defined in the executable, a canonical PLT entry will be
1705     // needed at link time. -fno-direct-access-external-data can avoid the
1706     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1707     // it could just cause trouble without providing perceptible benefits.
1708     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1709       return true;
1710   }
1711 
1712   // If we can use copy relocations we can assume it is local.
1713 
1714   // Otherwise don't assume it is local.
1715   return false;
1716 }
1717 
1718 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1719   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1720 }
1721 
1722 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1723                                           GlobalDecl GD) const {
1724   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1725   // C++ destructors have a few C++ ABI specific special cases.
1726   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1727     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1728     return;
1729   }
1730   setDLLImportDLLExport(GV, D);
1731 }
1732 
1733 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1734                                           const NamedDecl *D) const {
1735   if (D && D->isExternallyVisible()) {
1736     if (D->hasAttr<DLLImportAttr>())
1737       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1738     else if ((D->hasAttr<DLLExportAttr>() ||
1739               shouldMapVisibilityToDLLExport(D)) &&
1740              !GV->isDeclarationForLinker())
1741       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1742   }
1743 }
1744 
1745 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1746                                     GlobalDecl GD) const {
1747   setDLLImportDLLExport(GV, GD);
1748   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1749 }
1750 
1751 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1752                                     const NamedDecl *D) const {
1753   setDLLImportDLLExport(GV, D);
1754   setGVPropertiesAux(GV, D);
1755 }
1756 
1757 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1758                                        const NamedDecl *D) const {
1759   setGlobalVisibility(GV, D);
1760   setDSOLocal(GV);
1761   GV->setPartition(CodeGenOpts.SymbolPartition);
1762 }
1763 
1764 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1765   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1766       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1767       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1768       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1769       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1770 }
1771 
1772 llvm::GlobalVariable::ThreadLocalMode
1773 CodeGenModule::GetDefaultLLVMTLSModel() const {
1774   switch (CodeGenOpts.getDefaultTLSModel()) {
1775   case CodeGenOptions::GeneralDynamicTLSModel:
1776     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1777   case CodeGenOptions::LocalDynamicTLSModel:
1778     return llvm::GlobalVariable::LocalDynamicTLSModel;
1779   case CodeGenOptions::InitialExecTLSModel:
1780     return llvm::GlobalVariable::InitialExecTLSModel;
1781   case CodeGenOptions::LocalExecTLSModel:
1782     return llvm::GlobalVariable::LocalExecTLSModel;
1783   }
1784   llvm_unreachable("Invalid TLS model!");
1785 }
1786 
1787 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1788   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1789 
1790   llvm::GlobalValue::ThreadLocalMode TLM;
1791   TLM = GetDefaultLLVMTLSModel();
1792 
1793   // Override the TLS model if it is explicitly specified.
1794   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1795     TLM = GetLLVMTLSModel(Attr->getModel());
1796   }
1797 
1798   GV->setThreadLocalMode(TLM);
1799 }
1800 
1801 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1802                                           StringRef Name) {
1803   const TargetInfo &Target = CGM.getTarget();
1804   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1805 }
1806 
1807 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1808                                                  const CPUSpecificAttr *Attr,
1809                                                  unsigned CPUIndex,
1810                                                  raw_ostream &Out) {
1811   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1812   // supported.
1813   if (Attr)
1814     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1815   else if (CGM.getTarget().supportsIFunc())
1816     Out << ".resolver";
1817 }
1818 
1819 // Returns true if GD is a function decl with internal linkage and
1820 // needs a unique suffix after the mangled name.
1821 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1822                                         CodeGenModule &CGM) {
1823   const Decl *D = GD.getDecl();
1824   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1825          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1826 }
1827 
1828 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1829                                       const NamedDecl *ND,
1830                                       bool OmitMultiVersionMangling = false) {
1831   SmallString<256> Buffer;
1832   llvm::raw_svector_ostream Out(Buffer);
1833   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1834   if (!CGM.getModuleNameHash().empty())
1835     MC.needsUniqueInternalLinkageNames();
1836   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1837   if (ShouldMangle)
1838     MC.mangleName(GD.getWithDecl(ND), Out);
1839   else {
1840     IdentifierInfo *II = ND->getIdentifier();
1841     assert(II && "Attempt to mangle unnamed decl.");
1842     const auto *FD = dyn_cast<FunctionDecl>(ND);
1843 
1844     if (FD &&
1845         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1846       if (CGM.getLangOpts().RegCall4)
1847         Out << "__regcall4__" << II->getName();
1848       else
1849         Out << "__regcall3__" << II->getName();
1850     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1851                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1852       Out << "__device_stub__" << II->getName();
1853     } else {
1854       Out << II->getName();
1855     }
1856   }
1857 
1858   // Check if the module name hash should be appended for internal linkage
1859   // symbols.   This should come before multi-version target suffixes are
1860   // appended. This is to keep the name and module hash suffix of the
1861   // internal linkage function together.  The unique suffix should only be
1862   // added when name mangling is done to make sure that the final name can
1863   // be properly demangled.  For example, for C functions without prototypes,
1864   // name mangling is not done and the unique suffix should not be appeneded
1865   // then.
1866   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1867     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1868            "Hash computed when not explicitly requested");
1869     Out << CGM.getModuleNameHash();
1870   }
1871 
1872   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1873     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1874       switch (FD->getMultiVersionKind()) {
1875       case MultiVersionKind::CPUDispatch:
1876       case MultiVersionKind::CPUSpecific:
1877         AppendCPUSpecificCPUDispatchMangling(CGM,
1878                                              FD->getAttr<CPUSpecificAttr>(),
1879                                              GD.getMultiVersionIndex(), Out);
1880         break;
1881       case MultiVersionKind::Target: {
1882         auto *Attr = FD->getAttr<TargetAttr>();
1883         assert(Attr && "Expected TargetAttr to be present "
1884                        "for attribute mangling");
1885         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1886         Info.appendAttributeMangling(Attr, Out);
1887         break;
1888       }
1889       case MultiVersionKind::TargetVersion: {
1890         auto *Attr = FD->getAttr<TargetVersionAttr>();
1891         assert(Attr && "Expected TargetVersionAttr to be present "
1892                        "for attribute mangling");
1893         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1894         Info.appendAttributeMangling(Attr, Out);
1895         break;
1896       }
1897       case MultiVersionKind::TargetClones: {
1898         auto *Attr = FD->getAttr<TargetClonesAttr>();
1899         assert(Attr && "Expected TargetClonesAttr to be present "
1900                        "for attribute mangling");
1901         unsigned Index = GD.getMultiVersionIndex();
1902         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1903         Info.appendAttributeMangling(Attr, Index, Out);
1904         break;
1905       }
1906       case MultiVersionKind::None:
1907         llvm_unreachable("None multiversion type isn't valid here");
1908       }
1909     }
1910 
1911   // Make unique name for device side static file-scope variable for HIP.
1912   if (CGM.getContext().shouldExternalize(ND) &&
1913       CGM.getLangOpts().GPURelocatableDeviceCode &&
1914       CGM.getLangOpts().CUDAIsDevice)
1915     CGM.printPostfixForExternalizedDecl(Out, ND);
1916 
1917   return std::string(Out.str());
1918 }
1919 
1920 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1921                                             const FunctionDecl *FD,
1922                                             StringRef &CurName) {
1923   if (!FD->isMultiVersion())
1924     return;
1925 
1926   // Get the name of what this would be without the 'target' attribute.  This
1927   // allows us to lookup the version that was emitted when this wasn't a
1928   // multiversion function.
1929   std::string NonTargetName =
1930       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1931   GlobalDecl OtherGD;
1932   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1933     assert(OtherGD.getCanonicalDecl()
1934                .getDecl()
1935                ->getAsFunction()
1936                ->isMultiVersion() &&
1937            "Other GD should now be a multiversioned function");
1938     // OtherFD is the version of this function that was mangled BEFORE
1939     // becoming a MultiVersion function.  It potentially needs to be updated.
1940     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1941                                       .getDecl()
1942                                       ->getAsFunction()
1943                                       ->getMostRecentDecl();
1944     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1945     // This is so that if the initial version was already the 'default'
1946     // version, we don't try to update it.
1947     if (OtherName != NonTargetName) {
1948       // Remove instead of erase, since others may have stored the StringRef
1949       // to this.
1950       const auto ExistingRecord = Manglings.find(NonTargetName);
1951       if (ExistingRecord != std::end(Manglings))
1952         Manglings.remove(&(*ExistingRecord));
1953       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1954       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1955           Result.first->first();
1956       // If this is the current decl is being created, make sure we update the name.
1957       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1958         CurName = OtherNameRef;
1959       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1960         Entry->setName(OtherName);
1961     }
1962   }
1963 }
1964 
1965 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1966   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1967 
1968   // Some ABIs don't have constructor variants.  Make sure that base and
1969   // complete constructors get mangled the same.
1970   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1971     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1972       CXXCtorType OrigCtorType = GD.getCtorType();
1973       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1974       if (OrigCtorType == Ctor_Base)
1975         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1976     }
1977   }
1978 
1979   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1980   // static device variable depends on whether the variable is referenced by
1981   // a host or device host function. Therefore the mangled name cannot be
1982   // cached.
1983   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1984     auto FoundName = MangledDeclNames.find(CanonicalGD);
1985     if (FoundName != MangledDeclNames.end())
1986       return FoundName->second;
1987   }
1988 
1989   // Keep the first result in the case of a mangling collision.
1990   const auto *ND = cast<NamedDecl>(GD.getDecl());
1991   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1992 
1993   // Ensure either we have different ABIs between host and device compilations,
1994   // says host compilation following MSVC ABI but device compilation follows
1995   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1996   // mangling should be the same after name stubbing. The later checking is
1997   // very important as the device kernel name being mangled in host-compilation
1998   // is used to resolve the device binaries to be executed. Inconsistent naming
1999   // result in undefined behavior. Even though we cannot check that naming
2000   // directly between host- and device-compilations, the host- and
2001   // device-mangling in host compilation could help catching certain ones.
2002   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2003          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2004          (getContext().getAuxTargetInfo() &&
2005           (getContext().getAuxTargetInfo()->getCXXABI() !=
2006            getContext().getTargetInfo().getCXXABI())) ||
2007          getCUDARuntime().getDeviceSideName(ND) ==
2008              getMangledNameImpl(
2009                  *this,
2010                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2011                  ND));
2012 
2013   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2014   return MangledDeclNames[CanonicalGD] = Result.first->first();
2015 }
2016 
2017 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2018                                              const BlockDecl *BD) {
2019   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2020   const Decl *D = GD.getDecl();
2021 
2022   SmallString<256> Buffer;
2023   llvm::raw_svector_ostream Out(Buffer);
2024   if (!D)
2025     MangleCtx.mangleGlobalBlock(BD,
2026       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2027   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2028     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2029   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2030     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2031   else
2032     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2033 
2034   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2035   return Result.first->first();
2036 }
2037 
2038 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2039   auto it = MangledDeclNames.begin();
2040   while (it != MangledDeclNames.end()) {
2041     if (it->second == Name)
2042       return it->first;
2043     it++;
2044   }
2045   return GlobalDecl();
2046 }
2047 
2048 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2049   return getModule().getNamedValue(Name);
2050 }
2051 
2052 /// AddGlobalCtor - Add a function to the list that will be called before
2053 /// main() runs.
2054 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2055                                   unsigned LexOrder,
2056                                   llvm::Constant *AssociatedData) {
2057   // FIXME: Type coercion of void()* types.
2058   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2059 }
2060 
2061 /// AddGlobalDtor - Add a function to the list that will be called
2062 /// when the module is unloaded.
2063 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2064                                   bool IsDtorAttrFunc) {
2065   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2066       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2067     DtorsUsingAtExit[Priority].push_back(Dtor);
2068     return;
2069   }
2070 
2071   // FIXME: Type coercion of void()* types.
2072   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2073 }
2074 
2075 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2076   if (Fns.empty()) return;
2077 
2078   // Ctor function type is void()*.
2079   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2080   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2081       TheModule.getDataLayout().getProgramAddressSpace());
2082 
2083   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2084   llvm::StructType *CtorStructTy = llvm::StructType::get(
2085       Int32Ty, CtorPFTy, VoidPtrTy);
2086 
2087   // Construct the constructor and destructor arrays.
2088   ConstantInitBuilder builder(*this);
2089   auto ctors = builder.beginArray(CtorStructTy);
2090   for (const auto &I : Fns) {
2091     auto ctor = ctors.beginStruct(CtorStructTy);
2092     ctor.addInt(Int32Ty, I.Priority);
2093     ctor.add(I.Initializer);
2094     if (I.AssociatedData)
2095       ctor.add(I.AssociatedData);
2096     else
2097       ctor.addNullPointer(VoidPtrTy);
2098     ctor.finishAndAddTo(ctors);
2099   }
2100 
2101   auto list =
2102     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2103                                 /*constant*/ false,
2104                                 llvm::GlobalValue::AppendingLinkage);
2105 
2106   // The LTO linker doesn't seem to like it when we set an alignment
2107   // on appending variables.  Take it off as a workaround.
2108   list->setAlignment(std::nullopt);
2109 
2110   Fns.clear();
2111 }
2112 
2113 llvm::GlobalValue::LinkageTypes
2114 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2115   const auto *D = cast<FunctionDecl>(GD.getDecl());
2116 
2117   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2118 
2119   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2120     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2121 
2122   return getLLVMLinkageForDeclarator(D, Linkage);
2123 }
2124 
2125 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2126   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2127   if (!MDS) return nullptr;
2128 
2129   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2130 }
2131 
2132 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2133   if (auto *FnType = T->getAs<FunctionProtoType>())
2134     T = getContext().getFunctionType(
2135         FnType->getReturnType(), FnType->getParamTypes(),
2136         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2137 
2138   std::string OutName;
2139   llvm::raw_string_ostream Out(OutName);
2140   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2141       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2142 
2143   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2144     Out << ".normalized";
2145 
2146   return llvm::ConstantInt::get(Int32Ty,
2147                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2148 }
2149 
2150 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2151                                               const CGFunctionInfo &Info,
2152                                               llvm::Function *F, bool IsThunk) {
2153   unsigned CallingConv;
2154   llvm::AttributeList PAL;
2155   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2156                          /*AttrOnCallSite=*/false, IsThunk);
2157   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2158       getTarget().getTriple().isWindowsArm64EC()) {
2159     SourceLocation Loc;
2160     if (const Decl *D = GD.getDecl())
2161       Loc = D->getLocation();
2162 
2163     Error(Loc, "__vectorcall calling convention is not currently supported");
2164   }
2165   F->setAttributes(PAL);
2166   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2167 }
2168 
2169 static void removeImageAccessQualifier(std::string& TyName) {
2170   std::string ReadOnlyQual("__read_only");
2171   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2172   if (ReadOnlyPos != std::string::npos)
2173     // "+ 1" for the space after access qualifier.
2174     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2175   else {
2176     std::string WriteOnlyQual("__write_only");
2177     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2178     if (WriteOnlyPos != std::string::npos)
2179       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2180     else {
2181       std::string ReadWriteQual("__read_write");
2182       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2183       if (ReadWritePos != std::string::npos)
2184         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2185     }
2186   }
2187 }
2188 
2189 // Returns the address space id that should be produced to the
2190 // kernel_arg_addr_space metadata. This is always fixed to the ids
2191 // as specified in the SPIR 2.0 specification in order to differentiate
2192 // for example in clGetKernelArgInfo() implementation between the address
2193 // spaces with targets without unique mapping to the OpenCL address spaces
2194 // (basically all single AS CPUs).
2195 static unsigned ArgInfoAddressSpace(LangAS AS) {
2196   switch (AS) {
2197   case LangAS::opencl_global:
2198     return 1;
2199   case LangAS::opencl_constant:
2200     return 2;
2201   case LangAS::opencl_local:
2202     return 3;
2203   case LangAS::opencl_generic:
2204     return 4; // Not in SPIR 2.0 specs.
2205   case LangAS::opencl_global_device:
2206     return 5;
2207   case LangAS::opencl_global_host:
2208     return 6;
2209   default:
2210     return 0; // Assume private.
2211   }
2212 }
2213 
2214 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2215                                          const FunctionDecl *FD,
2216                                          CodeGenFunction *CGF) {
2217   assert(((FD && CGF) || (!FD && !CGF)) &&
2218          "Incorrect use - FD and CGF should either be both null or not!");
2219   // Create MDNodes that represent the kernel arg metadata.
2220   // Each MDNode is a list in the form of "key", N number of values which is
2221   // the same number of values as their are kernel arguments.
2222 
2223   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2224 
2225   // MDNode for the kernel argument address space qualifiers.
2226   SmallVector<llvm::Metadata *, 8> addressQuals;
2227 
2228   // MDNode for the kernel argument access qualifiers (images only).
2229   SmallVector<llvm::Metadata *, 8> accessQuals;
2230 
2231   // MDNode for the kernel argument type names.
2232   SmallVector<llvm::Metadata *, 8> argTypeNames;
2233 
2234   // MDNode for the kernel argument base type names.
2235   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2236 
2237   // MDNode for the kernel argument type qualifiers.
2238   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2239 
2240   // MDNode for the kernel argument names.
2241   SmallVector<llvm::Metadata *, 8> argNames;
2242 
2243   if (FD && CGF)
2244     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2245       const ParmVarDecl *parm = FD->getParamDecl(i);
2246       // Get argument name.
2247       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2248 
2249       if (!getLangOpts().OpenCL)
2250         continue;
2251       QualType ty = parm->getType();
2252       std::string typeQuals;
2253 
2254       // Get image and pipe access qualifier:
2255       if (ty->isImageType() || ty->isPipeType()) {
2256         const Decl *PDecl = parm;
2257         if (const auto *TD = ty->getAs<TypedefType>())
2258           PDecl = TD->getDecl();
2259         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2260         if (A && A->isWriteOnly())
2261           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2262         else if (A && A->isReadWrite())
2263           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2264         else
2265           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2266       } else
2267         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2268 
2269       auto getTypeSpelling = [&](QualType Ty) {
2270         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2271 
2272         if (Ty.isCanonical()) {
2273           StringRef typeNameRef = typeName;
2274           // Turn "unsigned type" to "utype"
2275           if (typeNameRef.consume_front("unsigned "))
2276             return std::string("u") + typeNameRef.str();
2277           if (typeNameRef.consume_front("signed "))
2278             return typeNameRef.str();
2279         }
2280 
2281         return typeName;
2282       };
2283 
2284       if (ty->isPointerType()) {
2285         QualType pointeeTy = ty->getPointeeType();
2286 
2287         // Get address qualifier.
2288         addressQuals.push_back(
2289             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2290                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2291 
2292         // Get argument type name.
2293         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2294         std::string baseTypeName =
2295             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2296         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2297         argBaseTypeNames.push_back(
2298             llvm::MDString::get(VMContext, baseTypeName));
2299 
2300         // Get argument type qualifiers:
2301         if (ty.isRestrictQualified())
2302           typeQuals = "restrict";
2303         if (pointeeTy.isConstQualified() ||
2304             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2305           typeQuals += typeQuals.empty() ? "const" : " const";
2306         if (pointeeTy.isVolatileQualified())
2307           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2308       } else {
2309         uint32_t AddrSpc = 0;
2310         bool isPipe = ty->isPipeType();
2311         if (ty->isImageType() || isPipe)
2312           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2313 
2314         addressQuals.push_back(
2315             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2316 
2317         // Get argument type name.
2318         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2319         std::string typeName = getTypeSpelling(ty);
2320         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2321 
2322         // Remove access qualifiers on images
2323         // (as they are inseparable from type in clang implementation,
2324         // but OpenCL spec provides a special query to get access qualifier
2325         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2326         if (ty->isImageType()) {
2327           removeImageAccessQualifier(typeName);
2328           removeImageAccessQualifier(baseTypeName);
2329         }
2330 
2331         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2332         argBaseTypeNames.push_back(
2333             llvm::MDString::get(VMContext, baseTypeName));
2334 
2335         if (isPipe)
2336           typeQuals = "pipe";
2337       }
2338       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2339     }
2340 
2341   if (getLangOpts().OpenCL) {
2342     Fn->setMetadata("kernel_arg_addr_space",
2343                     llvm::MDNode::get(VMContext, addressQuals));
2344     Fn->setMetadata("kernel_arg_access_qual",
2345                     llvm::MDNode::get(VMContext, accessQuals));
2346     Fn->setMetadata("kernel_arg_type",
2347                     llvm::MDNode::get(VMContext, argTypeNames));
2348     Fn->setMetadata("kernel_arg_base_type",
2349                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2350     Fn->setMetadata("kernel_arg_type_qual",
2351                     llvm::MDNode::get(VMContext, argTypeQuals));
2352   }
2353   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2354       getCodeGenOpts().HIPSaveKernelArgName)
2355     Fn->setMetadata("kernel_arg_name",
2356                     llvm::MDNode::get(VMContext, argNames));
2357 }
2358 
2359 /// Determines whether the language options require us to model
2360 /// unwind exceptions.  We treat -fexceptions as mandating this
2361 /// except under the fragile ObjC ABI with only ObjC exceptions
2362 /// enabled.  This means, for example, that C with -fexceptions
2363 /// enables this.
2364 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2365   // If exceptions are completely disabled, obviously this is false.
2366   if (!LangOpts.Exceptions) return false;
2367 
2368   // If C++ exceptions are enabled, this is true.
2369   if (LangOpts.CXXExceptions) return true;
2370 
2371   // If ObjC exceptions are enabled, this depends on the ABI.
2372   if (LangOpts.ObjCExceptions) {
2373     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2374   }
2375 
2376   return true;
2377 }
2378 
2379 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2380                                                       const CXXMethodDecl *MD) {
2381   // Check that the type metadata can ever actually be used by a call.
2382   if (!CGM.getCodeGenOpts().LTOUnit ||
2383       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2384     return false;
2385 
2386   // Only functions whose address can be taken with a member function pointer
2387   // need this sort of type metadata.
2388   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2389          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2390 }
2391 
2392 SmallVector<const CXXRecordDecl *, 0>
2393 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2394   llvm::SetVector<const CXXRecordDecl *> MostBases;
2395 
2396   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2397   CollectMostBases = [&](const CXXRecordDecl *RD) {
2398     if (RD->getNumBases() == 0)
2399       MostBases.insert(RD);
2400     for (const CXXBaseSpecifier &B : RD->bases())
2401       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2402   };
2403   CollectMostBases(RD);
2404   return MostBases.takeVector();
2405 }
2406 
2407 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2408                                                            llvm::Function *F) {
2409   llvm::AttrBuilder B(F->getContext());
2410 
2411   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2412     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2413 
2414   if (CodeGenOpts.StackClashProtector)
2415     B.addAttribute("probe-stack", "inline-asm");
2416 
2417   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2418     B.addAttribute("stack-probe-size",
2419                    std::to_string(CodeGenOpts.StackProbeSize));
2420 
2421   if (!hasUnwindExceptions(LangOpts))
2422     B.addAttribute(llvm::Attribute::NoUnwind);
2423 
2424   if (D && D->hasAttr<NoStackProtectorAttr>())
2425     ; // Do nothing.
2426   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2427            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2428     B.addAttribute(llvm::Attribute::StackProtectStrong);
2429   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2430     B.addAttribute(llvm::Attribute::StackProtect);
2431   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2432     B.addAttribute(llvm::Attribute::StackProtectStrong);
2433   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2434     B.addAttribute(llvm::Attribute::StackProtectReq);
2435 
2436   if (!D) {
2437     // If we don't have a declaration to control inlining, the function isn't
2438     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2439     // disabled, mark the function as noinline.
2440     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2441         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2442       B.addAttribute(llvm::Attribute::NoInline);
2443 
2444     F->addFnAttrs(B);
2445     return;
2446   }
2447 
2448   // Handle SME attributes that apply to function definitions,
2449   // rather than to function prototypes.
2450   if (D->hasAttr<ArmLocallyStreamingAttr>())
2451     B.addAttribute("aarch64_pstate_sm_body");
2452 
2453   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2454     if (Attr->isNewZA())
2455       B.addAttribute("aarch64_new_za");
2456     if (Attr->isNewZT0())
2457       B.addAttribute("aarch64_new_zt0");
2458   }
2459 
2460   // Track whether we need to add the optnone LLVM attribute,
2461   // starting with the default for this optimization level.
2462   bool ShouldAddOptNone =
2463       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2464   // We can't add optnone in the following cases, it won't pass the verifier.
2465   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2466   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2467 
2468   // Add optnone, but do so only if the function isn't always_inline.
2469   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2470       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2471     B.addAttribute(llvm::Attribute::OptimizeNone);
2472 
2473     // OptimizeNone implies noinline; we should not be inlining such functions.
2474     B.addAttribute(llvm::Attribute::NoInline);
2475 
2476     // We still need to handle naked functions even though optnone subsumes
2477     // much of their semantics.
2478     if (D->hasAttr<NakedAttr>())
2479       B.addAttribute(llvm::Attribute::Naked);
2480 
2481     // OptimizeNone wins over OptimizeForSize and MinSize.
2482     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2483     F->removeFnAttr(llvm::Attribute::MinSize);
2484   } else if (D->hasAttr<NakedAttr>()) {
2485     // Naked implies noinline: we should not be inlining such functions.
2486     B.addAttribute(llvm::Attribute::Naked);
2487     B.addAttribute(llvm::Attribute::NoInline);
2488   } else if (D->hasAttr<NoDuplicateAttr>()) {
2489     B.addAttribute(llvm::Attribute::NoDuplicate);
2490   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2491     // Add noinline if the function isn't always_inline.
2492     B.addAttribute(llvm::Attribute::NoInline);
2493   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2494              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2495     // (noinline wins over always_inline, and we can't specify both in IR)
2496     B.addAttribute(llvm::Attribute::AlwaysInline);
2497   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2498     // If we're not inlining, then force everything that isn't always_inline to
2499     // carry an explicit noinline attribute.
2500     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2501       B.addAttribute(llvm::Attribute::NoInline);
2502   } else {
2503     // Otherwise, propagate the inline hint attribute and potentially use its
2504     // absence to mark things as noinline.
2505     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2506       // Search function and template pattern redeclarations for inline.
2507       auto CheckForInline = [](const FunctionDecl *FD) {
2508         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2509           return Redecl->isInlineSpecified();
2510         };
2511         if (any_of(FD->redecls(), CheckRedeclForInline))
2512           return true;
2513         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2514         if (!Pattern)
2515           return false;
2516         return any_of(Pattern->redecls(), CheckRedeclForInline);
2517       };
2518       if (CheckForInline(FD)) {
2519         B.addAttribute(llvm::Attribute::InlineHint);
2520       } else if (CodeGenOpts.getInlining() ==
2521                      CodeGenOptions::OnlyHintInlining &&
2522                  !FD->isInlined() &&
2523                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2524         B.addAttribute(llvm::Attribute::NoInline);
2525       }
2526     }
2527   }
2528 
2529   // Add other optimization related attributes if we are optimizing this
2530   // function.
2531   if (!D->hasAttr<OptimizeNoneAttr>()) {
2532     if (D->hasAttr<ColdAttr>()) {
2533       if (!ShouldAddOptNone)
2534         B.addAttribute(llvm::Attribute::OptimizeForSize);
2535       B.addAttribute(llvm::Attribute::Cold);
2536     }
2537     if (D->hasAttr<HotAttr>())
2538       B.addAttribute(llvm::Attribute::Hot);
2539     if (D->hasAttr<MinSizeAttr>())
2540       B.addAttribute(llvm::Attribute::MinSize);
2541   }
2542 
2543   F->addFnAttrs(B);
2544 
2545   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2546   if (alignment)
2547     F->setAlignment(llvm::Align(alignment));
2548 
2549   if (!D->hasAttr<AlignedAttr>())
2550     if (LangOpts.FunctionAlignment)
2551       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2552 
2553   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2554   // reserve a bit for differentiating between virtual and non-virtual member
2555   // functions. If the current target's C++ ABI requires this and this is a
2556   // member function, set its alignment accordingly.
2557   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2558     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2559       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2560   }
2561 
2562   // In the cross-dso CFI mode with canonical jump tables, we want !type
2563   // attributes on definitions only.
2564   if (CodeGenOpts.SanitizeCfiCrossDso &&
2565       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2566     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2567       // Skip available_externally functions. They won't be codegen'ed in the
2568       // current module anyway.
2569       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2570         CreateFunctionTypeMetadataForIcall(FD, F);
2571     }
2572   }
2573 
2574   // Emit type metadata on member functions for member function pointer checks.
2575   // These are only ever necessary on definitions; we're guaranteed that the
2576   // definition will be present in the LTO unit as a result of LTO visibility.
2577   auto *MD = dyn_cast<CXXMethodDecl>(D);
2578   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2579     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2580       llvm::Metadata *Id =
2581           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2582               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2583       F->addTypeMetadata(0, Id);
2584     }
2585   }
2586 }
2587 
2588 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2589   const Decl *D = GD.getDecl();
2590   if (isa_and_nonnull<NamedDecl>(D))
2591     setGVProperties(GV, GD);
2592   else
2593     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2594 
2595   if (D && D->hasAttr<UsedAttr>())
2596     addUsedOrCompilerUsedGlobal(GV);
2597 
2598   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2599       VD &&
2600       ((CodeGenOpts.KeepPersistentStorageVariables &&
2601         (VD->getStorageDuration() == SD_Static ||
2602          VD->getStorageDuration() == SD_Thread)) ||
2603        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2604         VD->getType().isConstQualified())))
2605     addUsedOrCompilerUsedGlobal(GV);
2606 }
2607 
2608 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2609                                                 llvm::AttrBuilder &Attrs,
2610                                                 bool SetTargetFeatures) {
2611   // Add target-cpu and target-features attributes to functions. If
2612   // we have a decl for the function and it has a target attribute then
2613   // parse that and add it to the feature set.
2614   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2615   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2616   std::vector<std::string> Features;
2617   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2618   FD = FD ? FD->getMostRecentDecl() : FD;
2619   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2620   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2621   assert((!TD || !TV) && "both target_version and target specified");
2622   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2623   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2624   bool AddedAttr = false;
2625   if (TD || TV || SD || TC) {
2626     llvm::StringMap<bool> FeatureMap;
2627     getContext().getFunctionFeatureMap(FeatureMap, GD);
2628 
2629     // Produce the canonical string for this set of features.
2630     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2631       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2632 
2633     // Now add the target-cpu and target-features to the function.
2634     // While we populated the feature map above, we still need to
2635     // get and parse the target attribute so we can get the cpu for
2636     // the function.
2637     if (TD) {
2638       ParsedTargetAttr ParsedAttr =
2639           Target.parseTargetAttr(TD->getFeaturesStr());
2640       if (!ParsedAttr.CPU.empty() &&
2641           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2642         TargetCPU = ParsedAttr.CPU;
2643         TuneCPU = ""; // Clear the tune CPU.
2644       }
2645       if (!ParsedAttr.Tune.empty() &&
2646           getTarget().isValidCPUName(ParsedAttr.Tune))
2647         TuneCPU = ParsedAttr.Tune;
2648     }
2649 
2650     if (SD) {
2651       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2652       // favor this processor.
2653       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2654     }
2655   } else {
2656     // Otherwise just add the existing target cpu and target features to the
2657     // function.
2658     Features = getTarget().getTargetOpts().Features;
2659   }
2660 
2661   if (!TargetCPU.empty()) {
2662     Attrs.addAttribute("target-cpu", TargetCPU);
2663     AddedAttr = true;
2664   }
2665   if (!TuneCPU.empty()) {
2666     Attrs.addAttribute("tune-cpu", TuneCPU);
2667     AddedAttr = true;
2668   }
2669   if (!Features.empty() && SetTargetFeatures) {
2670     llvm::erase_if(Features, [&](const std::string& F) {
2671        return getTarget().isReadOnlyFeature(F.substr(1));
2672     });
2673     llvm::sort(Features);
2674     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2675     AddedAttr = true;
2676   }
2677 
2678   return AddedAttr;
2679 }
2680 
2681 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2682                                           llvm::GlobalObject *GO) {
2683   const Decl *D = GD.getDecl();
2684   SetCommonAttributes(GD, GO);
2685 
2686   if (D) {
2687     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2688       if (D->hasAttr<RetainAttr>())
2689         addUsedGlobal(GV);
2690       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2691         GV->addAttribute("bss-section", SA->getName());
2692       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2693         GV->addAttribute("data-section", SA->getName());
2694       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2695         GV->addAttribute("rodata-section", SA->getName());
2696       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2697         GV->addAttribute("relro-section", SA->getName());
2698     }
2699 
2700     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2701       if (D->hasAttr<RetainAttr>())
2702         addUsedGlobal(F);
2703       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2704         if (!D->getAttr<SectionAttr>())
2705           F->setSection(SA->getName());
2706 
2707       llvm::AttrBuilder Attrs(F->getContext());
2708       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2709         // We know that GetCPUAndFeaturesAttributes will always have the
2710         // newest set, since it has the newest possible FunctionDecl, so the
2711         // new ones should replace the old.
2712         llvm::AttributeMask RemoveAttrs;
2713         RemoveAttrs.addAttribute("target-cpu");
2714         RemoveAttrs.addAttribute("target-features");
2715         RemoveAttrs.addAttribute("tune-cpu");
2716         F->removeFnAttrs(RemoveAttrs);
2717         F->addFnAttrs(Attrs);
2718       }
2719     }
2720 
2721     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2722       GO->setSection(CSA->getName());
2723     else if (const auto *SA = D->getAttr<SectionAttr>())
2724       GO->setSection(SA->getName());
2725   }
2726 
2727   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2728 }
2729 
2730 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2731                                                   llvm::Function *F,
2732                                                   const CGFunctionInfo &FI) {
2733   const Decl *D = GD.getDecl();
2734   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2735   SetLLVMFunctionAttributesForDefinition(D, F);
2736 
2737   F->setLinkage(llvm::Function::InternalLinkage);
2738 
2739   setNonAliasAttributes(GD, F);
2740 }
2741 
2742 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2743   // Set linkage and visibility in case we never see a definition.
2744   LinkageInfo LV = ND->getLinkageAndVisibility();
2745   // Don't set internal linkage on declarations.
2746   // "extern_weak" is overloaded in LLVM; we probably should have
2747   // separate linkage types for this.
2748   if (isExternallyVisible(LV.getLinkage()) &&
2749       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2750     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2751 }
2752 
2753 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2754                                                        llvm::Function *F) {
2755   // Only if we are checking indirect calls.
2756   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2757     return;
2758 
2759   // Non-static class methods are handled via vtable or member function pointer
2760   // checks elsewhere.
2761   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2762     return;
2763 
2764   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2765   F->addTypeMetadata(0, MD);
2766   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2767 
2768   // Emit a hash-based bit set entry for cross-DSO calls.
2769   if (CodeGenOpts.SanitizeCfiCrossDso)
2770     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2771       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2772 }
2773 
2774 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2775   llvm::LLVMContext &Ctx = F->getContext();
2776   llvm::MDBuilder MDB(Ctx);
2777   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2778                  llvm::MDNode::get(
2779                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2780 }
2781 
2782 static bool allowKCFIIdentifier(StringRef Name) {
2783   // KCFI type identifier constants are only necessary for external assembly
2784   // functions, which means it's safe to skip unusual names. Subset of
2785   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2786   return llvm::all_of(Name, [](const char &C) {
2787     return llvm::isAlnum(C) || C == '_' || C == '.';
2788   });
2789 }
2790 
2791 void CodeGenModule::finalizeKCFITypes() {
2792   llvm::Module &M = getModule();
2793   for (auto &F : M.functions()) {
2794     // Remove KCFI type metadata from non-address-taken local functions.
2795     bool AddressTaken = F.hasAddressTaken();
2796     if (!AddressTaken && F.hasLocalLinkage())
2797       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2798 
2799     // Generate a constant with the expected KCFI type identifier for all
2800     // address-taken function declarations to support annotating indirectly
2801     // called assembly functions.
2802     if (!AddressTaken || !F.isDeclaration())
2803       continue;
2804 
2805     const llvm::ConstantInt *Type;
2806     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2807       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2808     else
2809       continue;
2810 
2811     StringRef Name = F.getName();
2812     if (!allowKCFIIdentifier(Name))
2813       continue;
2814 
2815     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2816                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2817                           .str();
2818     M.appendModuleInlineAsm(Asm);
2819   }
2820 }
2821 
2822 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2823                                           bool IsIncompleteFunction,
2824                                           bool IsThunk) {
2825 
2826   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2827     // If this is an intrinsic function, set the function's attributes
2828     // to the intrinsic's attributes.
2829     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2830     return;
2831   }
2832 
2833   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2834 
2835   if (!IsIncompleteFunction)
2836     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2837                               IsThunk);
2838 
2839   // Add the Returned attribute for "this", except for iOS 5 and earlier
2840   // where substantial code, including the libstdc++ dylib, was compiled with
2841   // GCC and does not actually return "this".
2842   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2843       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2844     assert(!F->arg_empty() &&
2845            F->arg_begin()->getType()
2846              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2847            "unexpected this return");
2848     F->addParamAttr(0, llvm::Attribute::Returned);
2849   }
2850 
2851   // Only a few attributes are set on declarations; these may later be
2852   // overridden by a definition.
2853 
2854   setLinkageForGV(F, FD);
2855   setGVProperties(F, FD);
2856 
2857   // Setup target-specific attributes.
2858   if (!IsIncompleteFunction && F->isDeclaration())
2859     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2860 
2861   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2862     F->setSection(CSA->getName());
2863   else if (const auto *SA = FD->getAttr<SectionAttr>())
2864      F->setSection(SA->getName());
2865 
2866   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2867     if (EA->isError())
2868       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2869     else if (EA->isWarning())
2870       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2871   }
2872 
2873   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2874   if (FD->isInlineBuiltinDeclaration()) {
2875     const FunctionDecl *FDBody;
2876     bool HasBody = FD->hasBody(FDBody);
2877     (void)HasBody;
2878     assert(HasBody && "Inline builtin declarations should always have an "
2879                       "available body!");
2880     if (shouldEmitFunction(FDBody))
2881       F->addFnAttr(llvm::Attribute::NoBuiltin);
2882   }
2883 
2884   if (FD->isReplaceableGlobalAllocationFunction()) {
2885     // A replaceable global allocation function does not act like a builtin by
2886     // default, only if it is invoked by a new-expression or delete-expression.
2887     F->addFnAttr(llvm::Attribute::NoBuiltin);
2888   }
2889 
2890   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2891     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2892   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2893     if (MD->isVirtual())
2894       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2895 
2896   // Don't emit entries for function declarations in the cross-DSO mode. This
2897   // is handled with better precision by the receiving DSO. But if jump tables
2898   // are non-canonical then we need type metadata in order to produce the local
2899   // jump table.
2900   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2901       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2902     CreateFunctionTypeMetadataForIcall(FD, F);
2903 
2904   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2905     setKCFIType(FD, F);
2906 
2907   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2908     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2909 
2910   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2911     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2912 
2913   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2914     // Annotate the callback behavior as metadata:
2915     //  - The callback callee (as argument number).
2916     //  - The callback payloads (as argument numbers).
2917     llvm::LLVMContext &Ctx = F->getContext();
2918     llvm::MDBuilder MDB(Ctx);
2919 
2920     // The payload indices are all but the first one in the encoding. The first
2921     // identifies the callback callee.
2922     int CalleeIdx = *CB->encoding_begin();
2923     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2924     F->addMetadata(llvm::LLVMContext::MD_callback,
2925                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2926                                                CalleeIdx, PayloadIndices,
2927                                                /* VarArgsArePassed */ false)}));
2928   }
2929 }
2930 
2931 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2932   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2933          "Only globals with definition can force usage.");
2934   LLVMUsed.emplace_back(GV);
2935 }
2936 
2937 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2938   assert(!GV->isDeclaration() &&
2939          "Only globals with definition can force usage.");
2940   LLVMCompilerUsed.emplace_back(GV);
2941 }
2942 
2943 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2944   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2945          "Only globals with definition can force usage.");
2946   if (getTriple().isOSBinFormatELF())
2947     LLVMCompilerUsed.emplace_back(GV);
2948   else
2949     LLVMUsed.emplace_back(GV);
2950 }
2951 
2952 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2953                      std::vector<llvm::WeakTrackingVH> &List) {
2954   // Don't create llvm.used if there is no need.
2955   if (List.empty())
2956     return;
2957 
2958   // Convert List to what ConstantArray needs.
2959   SmallVector<llvm::Constant*, 8> UsedArray;
2960   UsedArray.resize(List.size());
2961   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2962     UsedArray[i] =
2963         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2964             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2965   }
2966 
2967   if (UsedArray.empty())
2968     return;
2969   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2970 
2971   auto *GV = new llvm::GlobalVariable(
2972       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2973       llvm::ConstantArray::get(ATy, UsedArray), Name);
2974 
2975   GV->setSection("llvm.metadata");
2976 }
2977 
2978 void CodeGenModule::emitLLVMUsed() {
2979   emitUsed(*this, "llvm.used", LLVMUsed);
2980   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2981 }
2982 
2983 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2984   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2985   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2986 }
2987 
2988 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2989   llvm::SmallString<32> Opt;
2990   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2991   if (Opt.empty())
2992     return;
2993   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2994   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2995 }
2996 
2997 void CodeGenModule::AddDependentLib(StringRef Lib) {
2998   auto &C = getLLVMContext();
2999   if (getTarget().getTriple().isOSBinFormatELF()) {
3000       ELFDependentLibraries.push_back(
3001         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3002     return;
3003   }
3004 
3005   llvm::SmallString<24> Opt;
3006   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3007   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3008   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3009 }
3010 
3011 /// Add link options implied by the given module, including modules
3012 /// it depends on, using a postorder walk.
3013 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3014                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3015                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3016   // Import this module's parent.
3017   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3018     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3019   }
3020 
3021   // Import this module's dependencies.
3022   for (Module *Import : llvm::reverse(Mod->Imports)) {
3023     if (Visited.insert(Import).second)
3024       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3025   }
3026 
3027   // Add linker options to link against the libraries/frameworks
3028   // described by this module.
3029   llvm::LLVMContext &Context = CGM.getLLVMContext();
3030   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3031 
3032   // For modules that use export_as for linking, use that module
3033   // name instead.
3034   if (Mod->UseExportAsModuleLinkName)
3035     return;
3036 
3037   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3038     // Link against a framework.  Frameworks are currently Darwin only, so we
3039     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3040     if (LL.IsFramework) {
3041       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3042                                  llvm::MDString::get(Context, LL.Library)};
3043 
3044       Metadata.push_back(llvm::MDNode::get(Context, Args));
3045       continue;
3046     }
3047 
3048     // Link against a library.
3049     if (IsELF) {
3050       llvm::Metadata *Args[2] = {
3051           llvm::MDString::get(Context, "lib"),
3052           llvm::MDString::get(Context, LL.Library),
3053       };
3054       Metadata.push_back(llvm::MDNode::get(Context, Args));
3055     } else {
3056       llvm::SmallString<24> Opt;
3057       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3058       auto *OptString = llvm::MDString::get(Context, Opt);
3059       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3060     }
3061   }
3062 }
3063 
3064 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3065   assert(Primary->isNamedModuleUnit() &&
3066          "We should only emit module initializers for named modules.");
3067 
3068   // Emit the initializers in the order that sub-modules appear in the
3069   // source, first Global Module Fragments, if present.
3070   if (auto GMF = Primary->getGlobalModuleFragment()) {
3071     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3072       if (isa<ImportDecl>(D))
3073         continue;
3074       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3075       EmitTopLevelDecl(D);
3076     }
3077   }
3078   // Second any associated with the module, itself.
3079   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3080     // Skip import decls, the inits for those are called explicitly.
3081     if (isa<ImportDecl>(D))
3082       continue;
3083     EmitTopLevelDecl(D);
3084   }
3085   // Third any associated with the Privat eMOdule Fragment, if present.
3086   if (auto PMF = Primary->getPrivateModuleFragment()) {
3087     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3088       // Skip import decls, the inits for those are called explicitly.
3089       if (isa<ImportDecl>(D))
3090         continue;
3091       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3092       EmitTopLevelDecl(D);
3093     }
3094   }
3095 }
3096 
3097 void CodeGenModule::EmitModuleLinkOptions() {
3098   // Collect the set of all of the modules we want to visit to emit link
3099   // options, which is essentially the imported modules and all of their
3100   // non-explicit child modules.
3101   llvm::SetVector<clang::Module *> LinkModules;
3102   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3103   SmallVector<clang::Module *, 16> Stack;
3104 
3105   // Seed the stack with imported modules.
3106   for (Module *M : ImportedModules) {
3107     // Do not add any link flags when an implementation TU of a module imports
3108     // a header of that same module.
3109     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3110         !getLangOpts().isCompilingModule())
3111       continue;
3112     if (Visited.insert(M).second)
3113       Stack.push_back(M);
3114   }
3115 
3116   // Find all of the modules to import, making a little effort to prune
3117   // non-leaf modules.
3118   while (!Stack.empty()) {
3119     clang::Module *Mod = Stack.pop_back_val();
3120 
3121     bool AnyChildren = false;
3122 
3123     // Visit the submodules of this module.
3124     for (const auto &SM : Mod->submodules()) {
3125       // Skip explicit children; they need to be explicitly imported to be
3126       // linked against.
3127       if (SM->IsExplicit)
3128         continue;
3129 
3130       if (Visited.insert(SM).second) {
3131         Stack.push_back(SM);
3132         AnyChildren = true;
3133       }
3134     }
3135 
3136     // We didn't find any children, so add this module to the list of
3137     // modules to link against.
3138     if (!AnyChildren) {
3139       LinkModules.insert(Mod);
3140     }
3141   }
3142 
3143   // Add link options for all of the imported modules in reverse topological
3144   // order.  We don't do anything to try to order import link flags with respect
3145   // to linker options inserted by things like #pragma comment().
3146   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3147   Visited.clear();
3148   for (Module *M : LinkModules)
3149     if (Visited.insert(M).second)
3150       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3151   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3152   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3153 
3154   // Add the linker options metadata flag.
3155   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3156   for (auto *MD : LinkerOptionsMetadata)
3157     NMD->addOperand(MD);
3158 }
3159 
3160 void CodeGenModule::EmitDeferred() {
3161   // Emit deferred declare target declarations.
3162   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3163     getOpenMPRuntime().emitDeferredTargetDecls();
3164 
3165   // Emit code for any potentially referenced deferred decls.  Since a
3166   // previously unused static decl may become used during the generation of code
3167   // for a static function, iterate until no changes are made.
3168 
3169   if (!DeferredVTables.empty()) {
3170     EmitDeferredVTables();
3171 
3172     // Emitting a vtable doesn't directly cause more vtables to
3173     // become deferred, although it can cause functions to be
3174     // emitted that then need those vtables.
3175     assert(DeferredVTables.empty());
3176   }
3177 
3178   // Emit CUDA/HIP static device variables referenced by host code only.
3179   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3180   // needed for further handling.
3181   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3182     llvm::append_range(DeferredDeclsToEmit,
3183                        getContext().CUDADeviceVarODRUsedByHost);
3184 
3185   // Stop if we're out of both deferred vtables and deferred declarations.
3186   if (DeferredDeclsToEmit.empty())
3187     return;
3188 
3189   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3190   // work, it will not interfere with this.
3191   std::vector<GlobalDecl> CurDeclsToEmit;
3192   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3193 
3194   for (GlobalDecl &D : CurDeclsToEmit) {
3195     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3196     // to get GlobalValue with exactly the type we need, not something that
3197     // might had been created for another decl with the same mangled name but
3198     // different type.
3199     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3200         GetAddrOfGlobal(D, ForDefinition));
3201 
3202     // In case of different address spaces, we may still get a cast, even with
3203     // IsForDefinition equal to true. Query mangled names table to get
3204     // GlobalValue.
3205     if (!GV)
3206       GV = GetGlobalValue(getMangledName(D));
3207 
3208     // Make sure GetGlobalValue returned non-null.
3209     assert(GV);
3210 
3211     // Check to see if we've already emitted this.  This is necessary
3212     // for a couple of reasons: first, decls can end up in the
3213     // deferred-decls queue multiple times, and second, decls can end
3214     // up with definitions in unusual ways (e.g. by an extern inline
3215     // function acquiring a strong function redefinition).  Just
3216     // ignore these cases.
3217     if (!GV->isDeclaration())
3218       continue;
3219 
3220     // If this is OpenMP, check if it is legal to emit this global normally.
3221     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3222       continue;
3223 
3224     // Otherwise, emit the definition and move on to the next one.
3225     EmitGlobalDefinition(D, GV);
3226 
3227     // If we found out that we need to emit more decls, do that recursively.
3228     // This has the advantage that the decls are emitted in a DFS and related
3229     // ones are close together, which is convenient for testing.
3230     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3231       EmitDeferred();
3232       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3233     }
3234   }
3235 }
3236 
3237 void CodeGenModule::EmitVTablesOpportunistically() {
3238   // Try to emit external vtables as available_externally if they have emitted
3239   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3240   // is not allowed to create new references to things that need to be emitted
3241   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3242 
3243   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3244          && "Only emit opportunistic vtables with optimizations");
3245 
3246   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3247     assert(getVTables().isVTableExternal(RD) &&
3248            "This queue should only contain external vtables");
3249     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3250       VTables.GenerateClassData(RD);
3251   }
3252   OpportunisticVTables.clear();
3253 }
3254 
3255 void CodeGenModule::EmitGlobalAnnotations() {
3256   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3257     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3258     if (GV)
3259       AddGlobalAnnotations(VD, GV);
3260   }
3261   DeferredAnnotations.clear();
3262 
3263   if (Annotations.empty())
3264     return;
3265 
3266   // Create a new global variable for the ConstantStruct in the Module.
3267   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3268     Annotations[0]->getType(), Annotations.size()), Annotations);
3269   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3270                                       llvm::GlobalValue::AppendingLinkage,
3271                                       Array, "llvm.global.annotations");
3272   gv->setSection(AnnotationSection);
3273 }
3274 
3275 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3276   llvm::Constant *&AStr = AnnotationStrings[Str];
3277   if (AStr)
3278     return AStr;
3279 
3280   // Not found yet, create a new global.
3281   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3282   auto *gv = new llvm::GlobalVariable(
3283       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3284       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3285       ConstGlobalsPtrTy->getAddressSpace());
3286   gv->setSection(AnnotationSection);
3287   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3288   AStr = gv;
3289   return gv;
3290 }
3291 
3292 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3293   SourceManager &SM = getContext().getSourceManager();
3294   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3295   if (PLoc.isValid())
3296     return EmitAnnotationString(PLoc.getFilename());
3297   return EmitAnnotationString(SM.getBufferName(Loc));
3298 }
3299 
3300 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3301   SourceManager &SM = getContext().getSourceManager();
3302   PresumedLoc PLoc = SM.getPresumedLoc(L);
3303   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3304     SM.getExpansionLineNumber(L);
3305   return llvm::ConstantInt::get(Int32Ty, LineNo);
3306 }
3307 
3308 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3309   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3310   if (Exprs.empty())
3311     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3312 
3313   llvm::FoldingSetNodeID ID;
3314   for (Expr *E : Exprs) {
3315     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3316   }
3317   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3318   if (Lookup)
3319     return Lookup;
3320 
3321   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3322   LLVMArgs.reserve(Exprs.size());
3323   ConstantEmitter ConstEmiter(*this);
3324   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3325     const auto *CE = cast<clang::ConstantExpr>(E);
3326     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3327                                     CE->getType());
3328   });
3329   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3330   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3331                                       llvm::GlobalValue::PrivateLinkage, Struct,
3332                                       ".args");
3333   GV->setSection(AnnotationSection);
3334   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3335 
3336   Lookup = GV;
3337   return GV;
3338 }
3339 
3340 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3341                                                 const AnnotateAttr *AA,
3342                                                 SourceLocation L) {
3343   // Get the globals for file name, annotation, and the line number.
3344   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3345                  *UnitGV = EmitAnnotationUnit(L),
3346                  *LineNoCst = EmitAnnotationLineNo(L),
3347                  *Args = EmitAnnotationArgs(AA);
3348 
3349   llvm::Constant *GVInGlobalsAS = GV;
3350   if (GV->getAddressSpace() !=
3351       getDataLayout().getDefaultGlobalsAddressSpace()) {
3352     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3353         GV,
3354         llvm::PointerType::get(
3355             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3356   }
3357 
3358   // Create the ConstantStruct for the global annotation.
3359   llvm::Constant *Fields[] = {
3360       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3361   };
3362   return llvm::ConstantStruct::getAnon(Fields);
3363 }
3364 
3365 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3366                                          llvm::GlobalValue *GV) {
3367   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3368   // Get the struct elements for these annotations.
3369   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3370     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3371 }
3372 
3373 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3374                                        SourceLocation Loc) const {
3375   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3376   // NoSanitize by function name.
3377   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3378     return true;
3379   // NoSanitize by location. Check "mainfile" prefix.
3380   auto &SM = Context.getSourceManager();
3381   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3382   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3383     return true;
3384 
3385   // Check "src" prefix.
3386   if (Loc.isValid())
3387     return NoSanitizeL.containsLocation(Kind, Loc);
3388   // If location is unknown, this may be a compiler-generated function. Assume
3389   // it's located in the main file.
3390   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3391 }
3392 
3393 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3394                                        llvm::GlobalVariable *GV,
3395                                        SourceLocation Loc, QualType Ty,
3396                                        StringRef Category) const {
3397   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3398   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3399     return true;
3400   auto &SM = Context.getSourceManager();
3401   if (NoSanitizeL.containsMainFile(
3402           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3403           Category))
3404     return true;
3405   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3406     return true;
3407 
3408   // Check global type.
3409   if (!Ty.isNull()) {
3410     // Drill down the array types: if global variable of a fixed type is
3411     // not sanitized, we also don't instrument arrays of them.
3412     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3413       Ty = AT->getElementType();
3414     Ty = Ty.getCanonicalType().getUnqualifiedType();
3415     // Only record types (classes, structs etc.) are ignored.
3416     if (Ty->isRecordType()) {
3417       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3418       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3419         return true;
3420     }
3421   }
3422   return false;
3423 }
3424 
3425 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3426                                    StringRef Category) const {
3427   const auto &XRayFilter = getContext().getXRayFilter();
3428   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3429   auto Attr = ImbueAttr::NONE;
3430   if (Loc.isValid())
3431     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3432   if (Attr == ImbueAttr::NONE)
3433     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3434   switch (Attr) {
3435   case ImbueAttr::NONE:
3436     return false;
3437   case ImbueAttr::ALWAYS:
3438     Fn->addFnAttr("function-instrument", "xray-always");
3439     break;
3440   case ImbueAttr::ALWAYS_ARG1:
3441     Fn->addFnAttr("function-instrument", "xray-always");
3442     Fn->addFnAttr("xray-log-args", "1");
3443     break;
3444   case ImbueAttr::NEVER:
3445     Fn->addFnAttr("function-instrument", "xray-never");
3446     break;
3447   }
3448   return true;
3449 }
3450 
3451 ProfileList::ExclusionType
3452 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3453                                               SourceLocation Loc) const {
3454   const auto &ProfileList = getContext().getProfileList();
3455   // If the profile list is empty, then instrument everything.
3456   if (ProfileList.isEmpty())
3457     return ProfileList::Allow;
3458   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3459   // First, check the function name.
3460   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3461     return *V;
3462   // Next, check the source location.
3463   if (Loc.isValid())
3464     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3465       return *V;
3466   // If location is unknown, this may be a compiler-generated function. Assume
3467   // it's located in the main file.
3468   auto &SM = Context.getSourceManager();
3469   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3470     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3471       return *V;
3472   return ProfileList.getDefault(Kind);
3473 }
3474 
3475 ProfileList::ExclusionType
3476 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3477                                                  SourceLocation Loc) const {
3478   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3479   if (V != ProfileList::Allow)
3480     return V;
3481 
3482   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3483   if (NumGroups > 1) {
3484     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3485     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3486       return ProfileList::Skip;
3487   }
3488   return ProfileList::Allow;
3489 }
3490 
3491 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3492   // Never defer when EmitAllDecls is specified.
3493   if (LangOpts.EmitAllDecls)
3494     return true;
3495 
3496   const auto *VD = dyn_cast<VarDecl>(Global);
3497   if (VD &&
3498       ((CodeGenOpts.KeepPersistentStorageVariables &&
3499         (VD->getStorageDuration() == SD_Static ||
3500          VD->getStorageDuration() == SD_Thread)) ||
3501        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3502         VD->getType().isConstQualified())))
3503     return true;
3504 
3505   return getContext().DeclMustBeEmitted(Global);
3506 }
3507 
3508 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3509   // In OpenMP 5.0 variables and function may be marked as
3510   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3511   // that they must be emitted on the host/device. To be sure we need to have
3512   // seen a declare target with an explicit mentioning of the function, we know
3513   // we have if the level of the declare target attribute is -1. Note that we
3514   // check somewhere else if we should emit this at all.
3515   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3516     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3517         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3518     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3519       return false;
3520   }
3521 
3522   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3523     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3524       // Implicit template instantiations may change linkage if they are later
3525       // explicitly instantiated, so they should not be emitted eagerly.
3526       return false;
3527     // Defer until all versions have been semantically checked.
3528     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3529       return false;
3530   }
3531   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3532     if (Context.getInlineVariableDefinitionKind(VD) ==
3533         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3534       // A definition of an inline constexpr static data member may change
3535       // linkage later if it's redeclared outside the class.
3536       return false;
3537     if (CXX20ModuleInits && VD->getOwningModule() &&
3538         !VD->getOwningModule()->isModuleMapModule()) {
3539       // For CXX20, module-owned initializers need to be deferred, since it is
3540       // not known at this point if they will be run for the current module or
3541       // as part of the initializer for an imported one.
3542       return false;
3543     }
3544   }
3545   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3546   // codegen for global variables, because they may be marked as threadprivate.
3547   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3548       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3549       !Global->getType().isConstantStorage(getContext(), false, false) &&
3550       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3551     return false;
3552 
3553   return true;
3554 }
3555 
3556 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3557   StringRef Name = getMangledName(GD);
3558 
3559   // The UUID descriptor should be pointer aligned.
3560   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3561 
3562   // Look for an existing global.
3563   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3564     return ConstantAddress(GV, GV->getValueType(), Alignment);
3565 
3566   ConstantEmitter Emitter(*this);
3567   llvm::Constant *Init;
3568 
3569   APValue &V = GD->getAsAPValue();
3570   if (!V.isAbsent()) {
3571     // If possible, emit the APValue version of the initializer. In particular,
3572     // this gets the type of the constant right.
3573     Init = Emitter.emitForInitializer(
3574         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3575   } else {
3576     // As a fallback, directly construct the constant.
3577     // FIXME: This may get padding wrong under esoteric struct layout rules.
3578     // MSVC appears to create a complete type 'struct __s_GUID' that it
3579     // presumably uses to represent these constants.
3580     MSGuidDecl::Parts Parts = GD->getParts();
3581     llvm::Constant *Fields[4] = {
3582         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3583         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3584         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3585         llvm::ConstantDataArray::getRaw(
3586             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3587             Int8Ty)};
3588     Init = llvm::ConstantStruct::getAnon(Fields);
3589   }
3590 
3591   auto *GV = new llvm::GlobalVariable(
3592       getModule(), Init->getType(),
3593       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3594   if (supportsCOMDAT())
3595     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3596   setDSOLocal(GV);
3597 
3598   if (!V.isAbsent()) {
3599     Emitter.finalize(GV);
3600     return ConstantAddress(GV, GV->getValueType(), Alignment);
3601   }
3602 
3603   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3604   return ConstantAddress(GV, Ty, Alignment);
3605 }
3606 
3607 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3608     const UnnamedGlobalConstantDecl *GCD) {
3609   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3610 
3611   llvm::GlobalVariable **Entry = nullptr;
3612   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3613   if (*Entry)
3614     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3615 
3616   ConstantEmitter Emitter(*this);
3617   llvm::Constant *Init;
3618 
3619   const APValue &V = GCD->getValue();
3620 
3621   assert(!V.isAbsent());
3622   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3623                                     GCD->getType());
3624 
3625   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3626                                       /*isConstant=*/true,
3627                                       llvm::GlobalValue::PrivateLinkage, Init,
3628                                       ".constant");
3629   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3630   GV->setAlignment(Alignment.getAsAlign());
3631 
3632   Emitter.finalize(GV);
3633 
3634   *Entry = GV;
3635   return ConstantAddress(GV, GV->getValueType(), Alignment);
3636 }
3637 
3638 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3639     const TemplateParamObjectDecl *TPO) {
3640   StringRef Name = getMangledName(TPO);
3641   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3642 
3643   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3644     return ConstantAddress(GV, GV->getValueType(), Alignment);
3645 
3646   ConstantEmitter Emitter(*this);
3647   llvm::Constant *Init = Emitter.emitForInitializer(
3648         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3649 
3650   if (!Init) {
3651     ErrorUnsupported(TPO, "template parameter object");
3652     return ConstantAddress::invalid();
3653   }
3654 
3655   llvm::GlobalValue::LinkageTypes Linkage =
3656       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3657           ? llvm::GlobalValue::LinkOnceODRLinkage
3658           : llvm::GlobalValue::InternalLinkage;
3659   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3660                                       /*isConstant=*/true, Linkage, Init, Name);
3661   setGVProperties(GV, TPO);
3662   if (supportsCOMDAT())
3663     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3664   Emitter.finalize(GV);
3665 
3666     return ConstantAddress(GV, GV->getValueType(), Alignment);
3667 }
3668 
3669 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3670   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3671   assert(AA && "No alias?");
3672 
3673   CharUnits Alignment = getContext().getDeclAlign(VD);
3674   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3675 
3676   // See if there is already something with the target's name in the module.
3677   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3678   if (Entry)
3679     return ConstantAddress(Entry, DeclTy, Alignment);
3680 
3681   llvm::Constant *Aliasee;
3682   if (isa<llvm::FunctionType>(DeclTy))
3683     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3684                                       GlobalDecl(cast<FunctionDecl>(VD)),
3685                                       /*ForVTable=*/false);
3686   else
3687     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3688                                     nullptr);
3689 
3690   auto *F = cast<llvm::GlobalValue>(Aliasee);
3691   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3692   WeakRefReferences.insert(F);
3693 
3694   return ConstantAddress(Aliasee, DeclTy, Alignment);
3695 }
3696 
3697 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3698   if (!D)
3699     return false;
3700   if (auto *A = D->getAttr<AttrT>())
3701     return A->isImplicit();
3702   return D->isImplicit();
3703 }
3704 
3705 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3706   const auto *Global = cast<ValueDecl>(GD.getDecl());
3707 
3708   // Weak references don't produce any output by themselves.
3709   if (Global->hasAttr<WeakRefAttr>())
3710     return;
3711 
3712   // If this is an alias definition (which otherwise looks like a declaration)
3713   // emit it now.
3714   if (Global->hasAttr<AliasAttr>())
3715     return EmitAliasDefinition(GD);
3716 
3717   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3718   if (Global->hasAttr<IFuncAttr>())
3719     return emitIFuncDefinition(GD);
3720 
3721   // If this is a cpu_dispatch multiversion function, emit the resolver.
3722   if (Global->hasAttr<CPUDispatchAttr>())
3723     return emitCPUDispatchDefinition(GD);
3724 
3725   // If this is CUDA, be selective about which declarations we emit.
3726   // Non-constexpr non-lambda implicit host device functions are not emitted
3727   // unless they are used on device side.
3728   if (LangOpts.CUDA) {
3729     if (LangOpts.CUDAIsDevice) {
3730       const auto *FD = dyn_cast<FunctionDecl>(Global);
3731       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3732            (LangOpts.OffloadImplicitHostDeviceTemplates && FD &&
3733             hasImplicitAttr<CUDAHostAttr>(FD) &&
3734             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3735             !isLambdaCallOperator(FD) &&
3736             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3737           !Global->hasAttr<CUDAGlobalAttr>() &&
3738           !Global->hasAttr<CUDAConstantAttr>() &&
3739           !Global->hasAttr<CUDASharedAttr>() &&
3740           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3741           !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3742           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3743             !Global->hasAttr<CUDAHostAttr>()))
3744         return;
3745     } else {
3746       // We need to emit host-side 'shadows' for all global
3747       // device-side variables because the CUDA runtime needs their
3748       // size and host-side address in order to provide access to
3749       // their device-side incarnations.
3750 
3751       // So device-only functions are the only things we skip.
3752       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3753           Global->hasAttr<CUDADeviceAttr>())
3754         return;
3755 
3756       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3757              "Expected Variable or Function");
3758     }
3759   }
3760 
3761   if (LangOpts.OpenMP) {
3762     // If this is OpenMP, check if it is legal to emit this global normally.
3763     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3764       return;
3765     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3766       if (MustBeEmitted(Global))
3767         EmitOMPDeclareReduction(DRD);
3768       return;
3769     }
3770     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3771       if (MustBeEmitted(Global))
3772         EmitOMPDeclareMapper(DMD);
3773       return;
3774     }
3775   }
3776 
3777   // Ignore declarations, they will be emitted on their first use.
3778   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3779     // Update deferred annotations with the latest declaration if the function
3780     // function was already used or defined.
3781     if (FD->hasAttr<AnnotateAttr>()) {
3782       StringRef MangledName = getMangledName(GD);
3783       if (GetGlobalValue(MangledName))
3784         DeferredAnnotations[MangledName] = FD;
3785     }
3786 
3787     // Forward declarations are emitted lazily on first use.
3788     if (!FD->doesThisDeclarationHaveABody()) {
3789       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3790           (!FD->isMultiVersion() ||
3791            !FD->getASTContext().getTargetInfo().getTriple().isAArch64()))
3792         return;
3793 
3794       StringRef MangledName = getMangledName(GD);
3795 
3796       // Compute the function info and LLVM type.
3797       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3798       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3799 
3800       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3801                               /*DontDefer=*/false);
3802       return;
3803     }
3804   } else {
3805     const auto *VD = cast<VarDecl>(Global);
3806     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3807     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3808         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3809       if (LangOpts.OpenMP) {
3810         // Emit declaration of the must-be-emitted declare target variable.
3811         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3812                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3813 
3814           // If this variable has external storage and doesn't require special
3815           // link handling we defer to its canonical definition.
3816           if (VD->hasExternalStorage() &&
3817               Res != OMPDeclareTargetDeclAttr::MT_Link)
3818             return;
3819 
3820           bool UnifiedMemoryEnabled =
3821               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3822           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3823                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3824               !UnifiedMemoryEnabled) {
3825             (void)GetAddrOfGlobalVar(VD);
3826           } else {
3827             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3828                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3829                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3830                      UnifiedMemoryEnabled)) &&
3831                    "Link clause or to clause with unified memory expected.");
3832             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3833           }
3834 
3835           return;
3836         }
3837       }
3838       // If this declaration may have caused an inline variable definition to
3839       // change linkage, make sure that it's emitted.
3840       if (Context.getInlineVariableDefinitionKind(VD) ==
3841           ASTContext::InlineVariableDefinitionKind::Strong)
3842         GetAddrOfGlobalVar(VD);
3843       return;
3844     }
3845   }
3846 
3847   // Defer code generation to first use when possible, e.g. if this is an inline
3848   // function. If the global must always be emitted, do it eagerly if possible
3849   // to benefit from cache locality.
3850   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3851     // Emit the definition if it can't be deferred.
3852     EmitGlobalDefinition(GD);
3853     addEmittedDeferredDecl(GD);
3854     return;
3855   }
3856 
3857   // If we're deferring emission of a C++ variable with an
3858   // initializer, remember the order in which it appeared in the file.
3859   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3860       cast<VarDecl>(Global)->hasInit()) {
3861     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3862     CXXGlobalInits.push_back(nullptr);
3863   }
3864 
3865   StringRef MangledName = getMangledName(GD);
3866   if (GetGlobalValue(MangledName) != nullptr) {
3867     // The value has already been used and should therefore be emitted.
3868     addDeferredDeclToEmit(GD);
3869   } else if (MustBeEmitted(Global)) {
3870     // The value must be emitted, but cannot be emitted eagerly.
3871     assert(!MayBeEmittedEagerly(Global));
3872     addDeferredDeclToEmit(GD);
3873   } else {
3874     // Otherwise, remember that we saw a deferred decl with this name.  The
3875     // first use of the mangled name will cause it to move into
3876     // DeferredDeclsToEmit.
3877     DeferredDecls[MangledName] = GD;
3878   }
3879 }
3880 
3881 // Check if T is a class type with a destructor that's not dllimport.
3882 static bool HasNonDllImportDtor(QualType T) {
3883   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3884     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3885       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3886         return true;
3887 
3888   return false;
3889 }
3890 
3891 namespace {
3892   struct FunctionIsDirectlyRecursive
3893       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3894     const StringRef Name;
3895     const Builtin::Context &BI;
3896     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3897         : Name(N), BI(C) {}
3898 
3899     bool VisitCallExpr(const CallExpr *E) {
3900       const FunctionDecl *FD = E->getDirectCallee();
3901       if (!FD)
3902         return false;
3903       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3904       if (Attr && Name == Attr->getLabel())
3905         return true;
3906       unsigned BuiltinID = FD->getBuiltinID();
3907       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3908         return false;
3909       StringRef BuiltinName = BI.getName(BuiltinID);
3910       if (BuiltinName.starts_with("__builtin_") &&
3911           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3912         return true;
3913       }
3914       return false;
3915     }
3916 
3917     bool VisitStmt(const Stmt *S) {
3918       for (const Stmt *Child : S->children())
3919         if (Child && this->Visit(Child))
3920           return true;
3921       return false;
3922     }
3923   };
3924 
3925   // Make sure we're not referencing non-imported vars or functions.
3926   struct DLLImportFunctionVisitor
3927       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3928     bool SafeToInline = true;
3929 
3930     bool shouldVisitImplicitCode() const { return true; }
3931 
3932     bool VisitVarDecl(VarDecl *VD) {
3933       if (VD->getTLSKind()) {
3934         // A thread-local variable cannot be imported.
3935         SafeToInline = false;
3936         return SafeToInline;
3937       }
3938 
3939       // A variable definition might imply a destructor call.
3940       if (VD->isThisDeclarationADefinition())
3941         SafeToInline = !HasNonDllImportDtor(VD->getType());
3942 
3943       return SafeToInline;
3944     }
3945 
3946     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3947       if (const auto *D = E->getTemporary()->getDestructor())
3948         SafeToInline = D->hasAttr<DLLImportAttr>();
3949       return SafeToInline;
3950     }
3951 
3952     bool VisitDeclRefExpr(DeclRefExpr *E) {
3953       ValueDecl *VD = E->getDecl();
3954       if (isa<FunctionDecl>(VD))
3955         SafeToInline = VD->hasAttr<DLLImportAttr>();
3956       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3957         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3958       return SafeToInline;
3959     }
3960 
3961     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3962       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3963       return SafeToInline;
3964     }
3965 
3966     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3967       CXXMethodDecl *M = E->getMethodDecl();
3968       if (!M) {
3969         // Call through a pointer to member function. This is safe to inline.
3970         SafeToInline = true;
3971       } else {
3972         SafeToInline = M->hasAttr<DLLImportAttr>();
3973       }
3974       return SafeToInline;
3975     }
3976 
3977     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3978       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3979       return SafeToInline;
3980     }
3981 
3982     bool VisitCXXNewExpr(CXXNewExpr *E) {
3983       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3984       return SafeToInline;
3985     }
3986   };
3987 }
3988 
3989 // isTriviallyRecursive - Check if this function calls another
3990 // decl that, because of the asm attribute or the other decl being a builtin,
3991 // ends up pointing to itself.
3992 bool
3993 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3994   StringRef Name;
3995   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3996     // asm labels are a special kind of mangling we have to support.
3997     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3998     if (!Attr)
3999       return false;
4000     Name = Attr->getLabel();
4001   } else {
4002     Name = FD->getName();
4003   }
4004 
4005   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4006   const Stmt *Body = FD->getBody();
4007   return Body ? Walker.Visit(Body) : false;
4008 }
4009 
4010 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4011   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4012     return true;
4013 
4014   const auto *F = cast<FunctionDecl>(GD.getDecl());
4015   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4016     return false;
4017 
4018   // We don't import function bodies from other named module units since that
4019   // behavior may break ABI compatibility of the current unit.
4020   if (const Module *M = F->getOwningModule();
4021       M && M->getTopLevelModule()->isNamedModule() &&
4022       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4023     // There are practices to mark template member function as always-inline
4024     // and mark the template as extern explicit instantiation but not give
4025     // the definition for member function. So we have to emit the function
4026     // from explicitly instantiation with always-inline.
4027     //
4028     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4029     //
4030     // TODO: Maybe it is better to give it a warning if we call a non-inline
4031     // function from other module units which is marked as always-inline.
4032     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4033       return false;
4034     }
4035   }
4036 
4037   if (F->hasAttr<NoInlineAttr>())
4038     return false;
4039 
4040   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4041     // Check whether it would be safe to inline this dllimport function.
4042     DLLImportFunctionVisitor Visitor;
4043     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4044     if (!Visitor.SafeToInline)
4045       return false;
4046 
4047     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4048       // Implicit destructor invocations aren't captured in the AST, so the
4049       // check above can't see them. Check for them manually here.
4050       for (const Decl *Member : Dtor->getParent()->decls())
4051         if (isa<FieldDecl>(Member))
4052           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4053             return false;
4054       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4055         if (HasNonDllImportDtor(B.getType()))
4056           return false;
4057     }
4058   }
4059 
4060   // Inline builtins declaration must be emitted. They often are fortified
4061   // functions.
4062   if (F->isInlineBuiltinDeclaration())
4063     return true;
4064 
4065   // PR9614. Avoid cases where the source code is lying to us. An available
4066   // externally function should have an equivalent function somewhere else,
4067   // but a function that calls itself through asm label/`__builtin_` trickery is
4068   // clearly not equivalent to the real implementation.
4069   // This happens in glibc's btowc and in some configure checks.
4070   return !isTriviallyRecursive(F);
4071 }
4072 
4073 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4074   return CodeGenOpts.OptimizationLevel > 0;
4075 }
4076 
4077 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4078                                                        llvm::GlobalValue *GV) {
4079   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4080 
4081   if (FD->isCPUSpecificMultiVersion()) {
4082     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4083     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4084       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4085   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4086     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4087       // AArch64 favors the default target version over the clone if any.
4088       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4089           TC->isFirstOfVersion(I))
4090         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4091     // Ensure that the resolver function is also emitted.
4092     GetOrCreateMultiVersionResolver(GD);
4093   } else
4094     EmitGlobalFunctionDefinition(GD, GV);
4095 
4096   // Defer the resolver emission until we can reason whether the TU
4097   // contains a default target version implementation.
4098   if (FD->isTargetVersionMultiVersion())
4099     AddDeferredMultiVersionResolverToEmit(GD);
4100 }
4101 
4102 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4103   const auto *D = cast<ValueDecl>(GD.getDecl());
4104 
4105   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4106                                  Context.getSourceManager(),
4107                                  "Generating code for declaration");
4108 
4109   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4110     // At -O0, don't generate IR for functions with available_externally
4111     // linkage.
4112     if (!shouldEmitFunction(GD))
4113       return;
4114 
4115     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4116       std::string Name;
4117       llvm::raw_string_ostream OS(Name);
4118       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4119                                /*Qualified=*/true);
4120       return Name;
4121     });
4122 
4123     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4124       // Make sure to emit the definition(s) before we emit the thunks.
4125       // This is necessary for the generation of certain thunks.
4126       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4127         ABI->emitCXXStructor(GD);
4128       else if (FD->isMultiVersion())
4129         EmitMultiVersionFunctionDefinition(GD, GV);
4130       else
4131         EmitGlobalFunctionDefinition(GD, GV);
4132 
4133       if (Method->isVirtual())
4134         getVTables().EmitThunks(GD);
4135 
4136       return;
4137     }
4138 
4139     if (FD->isMultiVersion())
4140       return EmitMultiVersionFunctionDefinition(GD, GV);
4141     return EmitGlobalFunctionDefinition(GD, GV);
4142   }
4143 
4144   if (const auto *VD = dyn_cast<VarDecl>(D))
4145     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4146 
4147   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4148 }
4149 
4150 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4151                                                       llvm::Function *NewFn);
4152 
4153 static unsigned
4154 TargetMVPriority(const TargetInfo &TI,
4155                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4156   unsigned Priority = 0;
4157   unsigned NumFeatures = 0;
4158   for (StringRef Feat : RO.Conditions.Features) {
4159     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4160     NumFeatures++;
4161   }
4162 
4163   if (!RO.Conditions.Architecture.empty())
4164     Priority = std::max(
4165         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4166 
4167   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4168 
4169   return Priority;
4170 }
4171 
4172 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4173 // TU can forward declare the function without causing problems.  Particularly
4174 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4175 // work with internal linkage functions, so that the same function name can be
4176 // used with internal linkage in multiple TUs.
4177 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4178                                                        GlobalDecl GD) {
4179   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4180   if (FD->getFormalLinkage() == Linkage::Internal)
4181     return llvm::GlobalValue::InternalLinkage;
4182   return llvm::GlobalValue::WeakODRLinkage;
4183 }
4184 
4185 static FunctionDecl *createDefaultTargetVersionFrom(const FunctionDecl *FD) {
4186   auto *DeclCtx = const_cast<DeclContext *>(FD->getDeclContext());
4187   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4188   StorageClass SC = FD->getStorageClass();
4189   DeclarationName Name = FD->getNameInfo().getName();
4190 
4191   FunctionDecl *NewDecl =
4192       FunctionDecl::Create(FD->getASTContext(), DeclCtx, FD->getBeginLoc(),
4193                            FD->getEndLoc(), Name, TInfo->getType(), TInfo, SC);
4194 
4195   NewDecl->setIsMultiVersion();
4196   NewDecl->addAttr(TargetVersionAttr::CreateImplicit(
4197       NewDecl->getASTContext(), "default", NewDecl->getSourceRange()));
4198 
4199   return NewDecl;
4200 }
4201 
4202 void CodeGenModule::emitMultiVersionFunctions() {
4203   std::vector<GlobalDecl> MVFuncsToEmit;
4204   MultiVersionFuncs.swap(MVFuncsToEmit);
4205   for (GlobalDecl GD : MVFuncsToEmit) {
4206     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4207     assert(FD && "Expected a FunctionDecl");
4208 
4209     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4210       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4211       StringRef MangledName = getMangledName(CurGD);
4212       llvm::Constant *Func = GetGlobalValue(MangledName);
4213       if (!Func) {
4214         if (Decl->isDefined()) {
4215           EmitGlobalFunctionDefinition(CurGD, nullptr);
4216           Func = GetGlobalValue(MangledName);
4217         } else {
4218           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4219           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4220           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4221                                    /*DontDefer=*/false, ForDefinition);
4222         }
4223         assert(Func && "This should have just been created");
4224       }
4225       return cast<llvm::Function>(Func);
4226     };
4227 
4228     bool HasDefaultDecl = !FD->isTargetVersionMultiVersion();
4229     bool ShouldEmitResolver =
4230         !getContext().getTargetInfo().getTriple().isAArch64();
4231     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4232 
4233     getContext().forEachMultiversionedFunctionVersion(
4234         FD, [&](const FunctionDecl *CurFD) {
4235           llvm::SmallVector<StringRef, 8> Feats;
4236 
4237           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4238             TA->getAddedFeatures(Feats);
4239             llvm::Function *Func = createFunction(CurFD);
4240             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4241           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4242             bool HasDefaultDef = TVA->isDefaultVersion() &&
4243                                  CurFD->doesThisDeclarationHaveABody();
4244             HasDefaultDecl |= TVA->isDefaultVersion();
4245             ShouldEmitResolver |= (CurFD->isUsed() || HasDefaultDef);
4246             TVA->getFeatures(Feats);
4247             llvm::Function *Func = createFunction(CurFD);
4248             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4249           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4250             ShouldEmitResolver |= CurFD->doesThisDeclarationHaveABody();
4251             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4252               if (!TC->isFirstOfVersion(I))
4253                 continue;
4254 
4255               llvm::Function *Func = createFunction(CurFD, I);
4256               StringRef Architecture;
4257               Feats.clear();
4258               if (getTarget().getTriple().isAArch64())
4259                 TC->getFeatures(Feats, I);
4260               else {
4261                 StringRef Version = TC->getFeatureStr(I);
4262                 if (Version.starts_with("arch="))
4263                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4264                 else if (Version != "default")
4265                   Feats.push_back(Version);
4266               }
4267               Options.emplace_back(Func, Architecture, Feats);
4268             }
4269           } else
4270             llvm_unreachable("unexpected MultiVersionKind");
4271         });
4272 
4273     if (!ShouldEmitResolver)
4274       continue;
4275 
4276     if (!HasDefaultDecl) {
4277       FunctionDecl *NewFD = createDefaultTargetVersionFrom(FD);
4278       llvm::Function *Func = createFunction(NewFD);
4279       llvm::SmallVector<StringRef, 1> Feats;
4280       Options.emplace_back(Func, /*Architecture*/ "", Feats);
4281     }
4282 
4283     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4284     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4285       ResolverConstant = IFunc->getResolver();
4286       if (FD->isTargetClonesMultiVersion() &&
4287           !getTarget().getTriple().isAArch64()) {
4288         std::string MangledName = getMangledNameImpl(
4289             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4290         if (!GetGlobalValue(MangledName + ".ifunc")) {
4291           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4292           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4293           // In prior versions of Clang, the mangling for ifuncs incorrectly
4294           // included an .ifunc suffix. This alias is generated for backward
4295           // compatibility. It is deprecated, and may be removed in the future.
4296           auto *Alias = llvm::GlobalAlias::create(
4297               DeclTy, 0, getMultiversionLinkage(*this, GD),
4298               MangledName + ".ifunc", IFunc, &getModule());
4299           SetCommonAttributes(FD, Alias);
4300         }
4301       }
4302     }
4303     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4304 
4305     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4306 
4307     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4308       ResolverFunc->setComdat(
4309           getModule().getOrInsertComdat(ResolverFunc->getName()));
4310 
4311     const TargetInfo &TI = getTarget();
4312     llvm::stable_sort(
4313         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4314                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4315           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4316         });
4317     CodeGenFunction CGF(*this);
4318     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4319   }
4320 
4321   // Ensure that any additions to the deferred decls list caused by emitting a
4322   // variant are emitted.  This can happen when the variant itself is inline and
4323   // calls a function without linkage.
4324   if (!MVFuncsToEmit.empty())
4325     EmitDeferred();
4326 
4327   // Ensure that any additions to the multiversion funcs list from either the
4328   // deferred decls or the multiversion functions themselves are emitted.
4329   if (!MultiVersionFuncs.empty())
4330     emitMultiVersionFunctions();
4331 }
4332 
4333 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4334   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4335   assert(FD && "Not a FunctionDecl?");
4336   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4337   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4338   assert(DD && "Not a cpu_dispatch Function?");
4339 
4340   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4341   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4342 
4343   StringRef ResolverName = getMangledName(GD);
4344   UpdateMultiVersionNames(GD, FD, ResolverName);
4345 
4346   llvm::Type *ResolverType;
4347   GlobalDecl ResolverGD;
4348   if (getTarget().supportsIFunc()) {
4349     ResolverType = llvm::FunctionType::get(
4350         llvm::PointerType::get(DeclTy,
4351                                getTypes().getTargetAddressSpace(FD->getType())),
4352         false);
4353   }
4354   else {
4355     ResolverType = DeclTy;
4356     ResolverGD = GD;
4357   }
4358 
4359   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4360       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4361   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4362   if (supportsCOMDAT())
4363     ResolverFunc->setComdat(
4364         getModule().getOrInsertComdat(ResolverFunc->getName()));
4365 
4366   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4367   const TargetInfo &Target = getTarget();
4368   unsigned Index = 0;
4369   for (const IdentifierInfo *II : DD->cpus()) {
4370     // Get the name of the target function so we can look it up/create it.
4371     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4372                               getCPUSpecificMangling(*this, II->getName());
4373 
4374     llvm::Constant *Func = GetGlobalValue(MangledName);
4375 
4376     if (!Func) {
4377       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4378       if (ExistingDecl.getDecl() &&
4379           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4380         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4381         Func = GetGlobalValue(MangledName);
4382       } else {
4383         if (!ExistingDecl.getDecl())
4384           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4385 
4386       Func = GetOrCreateLLVMFunction(
4387           MangledName, DeclTy, ExistingDecl,
4388           /*ForVTable=*/false, /*DontDefer=*/true,
4389           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4390       }
4391     }
4392 
4393     llvm::SmallVector<StringRef, 32> Features;
4394     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4395     llvm::transform(Features, Features.begin(),
4396                     [](StringRef Str) { return Str.substr(1); });
4397     llvm::erase_if(Features, [&Target](StringRef Feat) {
4398       return !Target.validateCpuSupports(Feat);
4399     });
4400     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4401     ++Index;
4402   }
4403 
4404   llvm::stable_sort(
4405       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4406                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4407         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4408                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4409       });
4410 
4411   // If the list contains multiple 'default' versions, such as when it contains
4412   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4413   // always run on at least a 'pentium'). We do this by deleting the 'least
4414   // advanced' (read, lowest mangling letter).
4415   while (Options.size() > 1 &&
4416          llvm::all_of(llvm::X86::getCpuSupportsMask(
4417                           (Options.end() - 2)->Conditions.Features),
4418                       [](auto X) { return X == 0; })) {
4419     StringRef LHSName = (Options.end() - 2)->Function->getName();
4420     StringRef RHSName = (Options.end() - 1)->Function->getName();
4421     if (LHSName.compare(RHSName) < 0)
4422       Options.erase(Options.end() - 2);
4423     else
4424       Options.erase(Options.end() - 1);
4425   }
4426 
4427   CodeGenFunction CGF(*this);
4428   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4429 
4430   if (getTarget().supportsIFunc()) {
4431     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4432     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4433 
4434     // Fix up function declarations that were created for cpu_specific before
4435     // cpu_dispatch was known
4436     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4437       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4438       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4439                                            &getModule());
4440       GI->takeName(IFunc);
4441       IFunc->replaceAllUsesWith(GI);
4442       IFunc->eraseFromParent();
4443       IFunc = GI;
4444     }
4445 
4446     std::string AliasName = getMangledNameImpl(
4447         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4448     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4449     if (!AliasFunc) {
4450       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4451                                            &getModule());
4452       SetCommonAttributes(GD, GA);
4453     }
4454   }
4455 }
4456 
4457 /// Adds a declaration to the list of multi version functions if not present.
4458 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4459   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4460   assert(FD && "Not a FunctionDecl?");
4461 
4462   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4463     std::string MangledName =
4464         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4465     if (!DeferredResolversToEmit.insert(MangledName).second)
4466       return;
4467   }
4468   MultiVersionFuncs.push_back(GD);
4469 }
4470 
4471 /// If a dispatcher for the specified mangled name is not in the module, create
4472 /// and return an llvm Function with the specified type.
4473 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4474   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4475   assert(FD && "Not a FunctionDecl?");
4476 
4477   std::string MangledName =
4478       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4479 
4480   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4481   // a separate resolver).
4482   std::string ResolverName = MangledName;
4483   if (getTarget().supportsIFunc()) {
4484     switch (FD->getMultiVersionKind()) {
4485     case MultiVersionKind::None:
4486       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4487     case MultiVersionKind::Target:
4488     case MultiVersionKind::CPUSpecific:
4489     case MultiVersionKind::CPUDispatch:
4490       ResolverName += ".ifunc";
4491       break;
4492     case MultiVersionKind::TargetClones:
4493     case MultiVersionKind::TargetVersion:
4494       break;
4495     }
4496   } else if (FD->isTargetMultiVersion()) {
4497     ResolverName += ".resolver";
4498   }
4499 
4500   // If the resolver has already been created, just return it.
4501   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4502     return ResolverGV;
4503 
4504   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4505   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4506 
4507   // The resolver needs to be created. For target and target_clones, defer
4508   // creation until the end of the TU.
4509   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4510     AddDeferredMultiVersionResolverToEmit(GD);
4511 
4512   // For cpu_specific, don't create an ifunc yet because we don't know if the
4513   // cpu_dispatch will be emitted in this translation unit.
4514   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4515     llvm::Type *ResolverType = llvm::FunctionType::get(
4516         llvm::PointerType::get(DeclTy,
4517                                getTypes().getTargetAddressSpace(FD->getType())),
4518         false);
4519     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4520         MangledName + ".resolver", ResolverType, GlobalDecl{},
4521         /*ForVTable=*/false);
4522     llvm::GlobalIFunc *GIF =
4523         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4524                                   "", Resolver, &getModule());
4525     GIF->setName(ResolverName);
4526     SetCommonAttributes(FD, GIF);
4527 
4528     return GIF;
4529   }
4530 
4531   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4532       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4533   assert(isa<llvm::GlobalValue>(Resolver) &&
4534          "Resolver should be created for the first time");
4535   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4536   return Resolver;
4537 }
4538 
4539 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4540                                            const llvm::GlobalValue *GV) const {
4541   auto SC = GV->getDLLStorageClass();
4542   if (SC == llvm::GlobalValue::DefaultStorageClass)
4543     return false;
4544   const Decl *MRD = D->getMostRecentDecl();
4545   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4546             !MRD->hasAttr<DLLImportAttr>()) ||
4547            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4548             !MRD->hasAttr<DLLExportAttr>())) &&
4549           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4550 }
4551 
4552 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4553 /// module, create and return an llvm Function with the specified type. If there
4554 /// is something in the module with the specified name, return it potentially
4555 /// bitcasted to the right type.
4556 ///
4557 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4558 /// to set the attributes on the function when it is first created.
4559 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4560     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4561     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4562     ForDefinition_t IsForDefinition) {
4563   const Decl *D = GD.getDecl();
4564 
4565   // Any attempts to use a MultiVersion function should result in retrieving
4566   // the iFunc instead. Name Mangling will handle the rest of the changes.
4567   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4568     // For the device mark the function as one that should be emitted.
4569     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4570         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4571         !DontDefer && !IsForDefinition) {
4572       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4573         GlobalDecl GDDef;
4574         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4575           GDDef = GlobalDecl(CD, GD.getCtorType());
4576         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4577           GDDef = GlobalDecl(DD, GD.getDtorType());
4578         else
4579           GDDef = GlobalDecl(FDDef);
4580         EmitGlobal(GDDef);
4581       }
4582     }
4583 
4584     if (FD->isMultiVersion()) {
4585       UpdateMultiVersionNames(GD, FD, MangledName);
4586       if (FD->getASTContext().getTargetInfo().getTriple().isAArch64() &&
4587           !FD->isUsed())
4588         AddDeferredMultiVersionResolverToEmit(GD);
4589       else if (!IsForDefinition)
4590         return GetOrCreateMultiVersionResolver(GD);
4591     }
4592   }
4593 
4594   // Lookup the entry, lazily creating it if necessary.
4595   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4596   if (Entry) {
4597     if (WeakRefReferences.erase(Entry)) {
4598       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4599       if (FD && !FD->hasAttr<WeakAttr>())
4600         Entry->setLinkage(llvm::Function::ExternalLinkage);
4601     }
4602 
4603     // Handle dropped DLL attributes.
4604     if (D && shouldDropDLLAttribute(D, Entry)) {
4605       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4606       setDSOLocal(Entry);
4607     }
4608 
4609     // If there are two attempts to define the same mangled name, issue an
4610     // error.
4611     if (IsForDefinition && !Entry->isDeclaration()) {
4612       GlobalDecl OtherGD;
4613       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4614       // to make sure that we issue an error only once.
4615       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4616           (GD.getCanonicalDecl().getDecl() !=
4617            OtherGD.getCanonicalDecl().getDecl()) &&
4618           DiagnosedConflictingDefinitions.insert(GD).second) {
4619         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4620             << MangledName;
4621         getDiags().Report(OtherGD.getDecl()->getLocation(),
4622                           diag::note_previous_definition);
4623       }
4624     }
4625 
4626     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4627         (Entry->getValueType() == Ty)) {
4628       return Entry;
4629     }
4630 
4631     // Make sure the result is of the correct type.
4632     // (If function is requested for a definition, we always need to create a new
4633     // function, not just return a bitcast.)
4634     if (!IsForDefinition)
4635       return Entry;
4636   }
4637 
4638   // This function doesn't have a complete type (for example, the return
4639   // type is an incomplete struct). Use a fake type instead, and make
4640   // sure not to try to set attributes.
4641   bool IsIncompleteFunction = false;
4642 
4643   llvm::FunctionType *FTy;
4644   if (isa<llvm::FunctionType>(Ty)) {
4645     FTy = cast<llvm::FunctionType>(Ty);
4646   } else {
4647     FTy = llvm::FunctionType::get(VoidTy, false);
4648     IsIncompleteFunction = true;
4649   }
4650 
4651   llvm::Function *F =
4652       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4653                              Entry ? StringRef() : MangledName, &getModule());
4654 
4655   // Store the declaration associated with this function so it is potentially
4656   // updated by further declarations or definitions and emitted at the end.
4657   if (D && D->hasAttr<AnnotateAttr>())
4658     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4659 
4660   // If we already created a function with the same mangled name (but different
4661   // type) before, take its name and add it to the list of functions to be
4662   // replaced with F at the end of CodeGen.
4663   //
4664   // This happens if there is a prototype for a function (e.g. "int f()") and
4665   // then a definition of a different type (e.g. "int f(int x)").
4666   if (Entry) {
4667     F->takeName(Entry);
4668 
4669     // This might be an implementation of a function without a prototype, in
4670     // which case, try to do special replacement of calls which match the new
4671     // prototype.  The really key thing here is that we also potentially drop
4672     // arguments from the call site so as to make a direct call, which makes the
4673     // inliner happier and suppresses a number of optimizer warnings (!) about
4674     // dropping arguments.
4675     if (!Entry->use_empty()) {
4676       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4677       Entry->removeDeadConstantUsers();
4678     }
4679 
4680     addGlobalValReplacement(Entry, F);
4681   }
4682 
4683   assert(F->getName() == MangledName && "name was uniqued!");
4684   if (D)
4685     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4686   if (ExtraAttrs.hasFnAttrs()) {
4687     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4688     F->addFnAttrs(B);
4689   }
4690 
4691   if (!DontDefer) {
4692     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4693     // each other bottoming out with the base dtor.  Therefore we emit non-base
4694     // dtors on usage, even if there is no dtor definition in the TU.
4695     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4696         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4697                                            GD.getDtorType()))
4698       addDeferredDeclToEmit(GD);
4699 
4700     // This is the first use or definition of a mangled name.  If there is a
4701     // deferred decl with this name, remember that we need to emit it at the end
4702     // of the file.
4703     auto DDI = DeferredDecls.find(MangledName);
4704     if (DDI != DeferredDecls.end()) {
4705       // Move the potentially referenced deferred decl to the
4706       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4707       // don't need it anymore).
4708       addDeferredDeclToEmit(DDI->second);
4709       DeferredDecls.erase(DDI);
4710 
4711       // Otherwise, there are cases we have to worry about where we're
4712       // using a declaration for which we must emit a definition but where
4713       // we might not find a top-level definition:
4714       //   - member functions defined inline in their classes
4715       //   - friend functions defined inline in some class
4716       //   - special member functions with implicit definitions
4717       // If we ever change our AST traversal to walk into class methods,
4718       // this will be unnecessary.
4719       //
4720       // We also don't emit a definition for a function if it's going to be an
4721       // entry in a vtable, unless it's already marked as used.
4722     } else if (getLangOpts().CPlusPlus && D) {
4723       // Look for a declaration that's lexically in a record.
4724       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4725            FD = FD->getPreviousDecl()) {
4726         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4727           if (FD->doesThisDeclarationHaveABody()) {
4728             addDeferredDeclToEmit(GD.getWithDecl(FD));
4729             break;
4730           }
4731         }
4732       }
4733     }
4734   }
4735 
4736   // Make sure the result is of the requested type.
4737   if (!IsIncompleteFunction) {
4738     assert(F->getFunctionType() == Ty);
4739     return F;
4740   }
4741 
4742   return F;
4743 }
4744 
4745 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4746 /// non-null, then this function will use the specified type if it has to
4747 /// create it (this occurs when we see a definition of the function).
4748 llvm::Constant *
4749 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4750                                  bool DontDefer,
4751                                  ForDefinition_t IsForDefinition) {
4752   // If there was no specific requested type, just convert it now.
4753   if (!Ty) {
4754     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4755     Ty = getTypes().ConvertType(FD->getType());
4756   }
4757 
4758   // Devirtualized destructor calls may come through here instead of via
4759   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4760   // of the complete destructor when necessary.
4761   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4762     if (getTarget().getCXXABI().isMicrosoft() &&
4763         GD.getDtorType() == Dtor_Complete &&
4764         DD->getParent()->getNumVBases() == 0)
4765       GD = GlobalDecl(DD, Dtor_Base);
4766   }
4767 
4768   StringRef MangledName = getMangledName(GD);
4769   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4770                                     /*IsThunk=*/false, llvm::AttributeList(),
4771                                     IsForDefinition);
4772   // Returns kernel handle for HIP kernel stub function.
4773   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4774       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4775     auto *Handle = getCUDARuntime().getKernelHandle(
4776         cast<llvm::Function>(F->stripPointerCasts()), GD);
4777     if (IsForDefinition)
4778       return F;
4779     return Handle;
4780   }
4781   return F;
4782 }
4783 
4784 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4785   llvm::GlobalValue *F =
4786       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4787 
4788   return llvm::NoCFIValue::get(F);
4789 }
4790 
4791 static const FunctionDecl *
4792 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4793   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4794   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4795 
4796   IdentifierInfo &CII = C.Idents.get(Name);
4797   for (const auto *Result : DC->lookup(&CII))
4798     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4799       return FD;
4800 
4801   if (!C.getLangOpts().CPlusPlus)
4802     return nullptr;
4803 
4804   // Demangle the premangled name from getTerminateFn()
4805   IdentifierInfo &CXXII =
4806       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4807           ? C.Idents.get("terminate")
4808           : C.Idents.get(Name);
4809 
4810   for (const auto &N : {"__cxxabiv1", "std"}) {
4811     IdentifierInfo &NS = C.Idents.get(N);
4812     for (const auto *Result : DC->lookup(&NS)) {
4813       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4814       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4815         for (const auto *Result : LSD->lookup(&NS))
4816           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4817             break;
4818 
4819       if (ND)
4820         for (const auto *Result : ND->lookup(&CXXII))
4821           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4822             return FD;
4823     }
4824   }
4825 
4826   return nullptr;
4827 }
4828 
4829 /// CreateRuntimeFunction - Create a new runtime function with the specified
4830 /// type and name.
4831 llvm::FunctionCallee
4832 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4833                                      llvm::AttributeList ExtraAttrs, bool Local,
4834                                      bool AssumeConvergent) {
4835   if (AssumeConvergent) {
4836     ExtraAttrs =
4837         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4838   }
4839 
4840   llvm::Constant *C =
4841       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4842                               /*DontDefer=*/false, /*IsThunk=*/false,
4843                               ExtraAttrs);
4844 
4845   if (auto *F = dyn_cast<llvm::Function>(C)) {
4846     if (F->empty()) {
4847       F->setCallingConv(getRuntimeCC());
4848 
4849       // In Windows Itanium environments, try to mark runtime functions
4850       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4851       // will link their standard library statically or dynamically. Marking
4852       // functions imported when they are not imported can cause linker errors
4853       // and warnings.
4854       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4855           !getCodeGenOpts().LTOVisibilityPublicStd) {
4856         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4857         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4858           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4859           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4860         }
4861       }
4862       setDSOLocal(F);
4863       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4864       // of trying to approximate the attributes using the LLVM function
4865       // signature. This requires revising the API of CreateRuntimeFunction().
4866       markRegisterParameterAttributes(F);
4867     }
4868   }
4869 
4870   return {FTy, C};
4871 }
4872 
4873 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4874 /// create and return an llvm GlobalVariable with the specified type and address
4875 /// space. If there is something in the module with the specified name, return
4876 /// it potentially bitcasted to the right type.
4877 ///
4878 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4879 /// to set the attributes on the global when it is first created.
4880 ///
4881 /// If IsForDefinition is true, it is guaranteed that an actual global with
4882 /// type Ty will be returned, not conversion of a variable with the same
4883 /// mangled name but some other type.
4884 llvm::Constant *
4885 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4886                                      LangAS AddrSpace, const VarDecl *D,
4887                                      ForDefinition_t IsForDefinition) {
4888   // Lookup the entry, lazily creating it if necessary.
4889   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4890   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4891   if (Entry) {
4892     if (WeakRefReferences.erase(Entry)) {
4893       if (D && !D->hasAttr<WeakAttr>())
4894         Entry->setLinkage(llvm::Function::ExternalLinkage);
4895     }
4896 
4897     // Handle dropped DLL attributes.
4898     if (D && shouldDropDLLAttribute(D, Entry))
4899       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4900 
4901     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4902       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4903 
4904     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4905       return Entry;
4906 
4907     // If there are two attempts to define the same mangled name, issue an
4908     // error.
4909     if (IsForDefinition && !Entry->isDeclaration()) {
4910       GlobalDecl OtherGD;
4911       const VarDecl *OtherD;
4912 
4913       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4914       // to make sure that we issue an error only once.
4915       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4916           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4917           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4918           OtherD->hasInit() &&
4919           DiagnosedConflictingDefinitions.insert(D).second) {
4920         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4921             << MangledName;
4922         getDiags().Report(OtherGD.getDecl()->getLocation(),
4923                           diag::note_previous_definition);
4924       }
4925     }
4926 
4927     // Make sure the result is of the correct type.
4928     if (Entry->getType()->getAddressSpace() != TargetAS)
4929       return llvm::ConstantExpr::getAddrSpaceCast(
4930           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4931 
4932     // (If global is requested for a definition, we always need to create a new
4933     // global, not just return a bitcast.)
4934     if (!IsForDefinition)
4935       return Entry;
4936   }
4937 
4938   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4939 
4940   auto *GV = new llvm::GlobalVariable(
4941       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4942       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4943       getContext().getTargetAddressSpace(DAddrSpace));
4944 
4945   // If we already created a global with the same mangled name (but different
4946   // type) before, take its name and remove it from its parent.
4947   if (Entry) {
4948     GV->takeName(Entry);
4949 
4950     if (!Entry->use_empty()) {
4951       Entry->replaceAllUsesWith(GV);
4952     }
4953 
4954     Entry->eraseFromParent();
4955   }
4956 
4957   // This is the first use or definition of a mangled name.  If there is a
4958   // deferred decl with this name, remember that we need to emit it at the end
4959   // of the file.
4960   auto DDI = DeferredDecls.find(MangledName);
4961   if (DDI != DeferredDecls.end()) {
4962     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4963     // list, and remove it from DeferredDecls (since we don't need it anymore).
4964     addDeferredDeclToEmit(DDI->second);
4965     DeferredDecls.erase(DDI);
4966   }
4967 
4968   // Handle things which are present even on external declarations.
4969   if (D) {
4970     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4971       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4972 
4973     // FIXME: This code is overly simple and should be merged with other global
4974     // handling.
4975     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4976 
4977     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4978 
4979     setLinkageForGV(GV, D);
4980 
4981     if (D->getTLSKind()) {
4982       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4983         CXXThreadLocals.push_back(D);
4984       setTLSMode(GV, *D);
4985     }
4986 
4987     setGVProperties(GV, D);
4988 
4989     // If required by the ABI, treat declarations of static data members with
4990     // inline initializers as definitions.
4991     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4992       EmitGlobalVarDefinition(D);
4993     }
4994 
4995     // Emit section information for extern variables.
4996     if (D->hasExternalStorage()) {
4997       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4998         GV->setSection(SA->getName());
4999     }
5000 
5001     // Handle XCore specific ABI requirements.
5002     if (getTriple().getArch() == llvm::Triple::xcore &&
5003         D->getLanguageLinkage() == CLanguageLinkage &&
5004         D->getType().isConstant(Context) &&
5005         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5006       GV->setSection(".cp.rodata");
5007 
5008     // Handle code model attribute
5009     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5010       GV->setCodeModel(CMA->getModel());
5011 
5012     // Check if we a have a const declaration with an initializer, we may be
5013     // able to emit it as available_externally to expose it's value to the
5014     // optimizer.
5015     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5016         D->getType().isConstQualified() && !GV->hasInitializer() &&
5017         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5018       const auto *Record =
5019           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5020       bool HasMutableFields = Record && Record->hasMutableFields();
5021       if (!HasMutableFields) {
5022         const VarDecl *InitDecl;
5023         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5024         if (InitExpr) {
5025           ConstantEmitter emitter(*this);
5026           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5027           if (Init) {
5028             auto *InitType = Init->getType();
5029             if (GV->getValueType() != InitType) {
5030               // The type of the initializer does not match the definition.
5031               // This happens when an initializer has a different type from
5032               // the type of the global (because of padding at the end of a
5033               // structure for instance).
5034               GV->setName(StringRef());
5035               // Make a new global with the correct type, this is now guaranteed
5036               // to work.
5037               auto *NewGV = cast<llvm::GlobalVariable>(
5038                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5039                       ->stripPointerCasts());
5040 
5041               // Erase the old global, since it is no longer used.
5042               GV->eraseFromParent();
5043               GV = NewGV;
5044             } else {
5045               GV->setInitializer(Init);
5046               GV->setConstant(true);
5047               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5048             }
5049             emitter.finalize(GV);
5050           }
5051         }
5052       }
5053     }
5054   }
5055 
5056   if (D &&
5057       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5058     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5059     // External HIP managed variables needed to be recorded for transformation
5060     // in both device and host compilations.
5061     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5062         D->hasExternalStorage())
5063       getCUDARuntime().handleVarRegistration(D, *GV);
5064   }
5065 
5066   if (D)
5067     SanitizerMD->reportGlobal(GV, *D);
5068 
5069   LangAS ExpectedAS =
5070       D ? D->getType().getAddressSpace()
5071         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5072   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5073   if (DAddrSpace != ExpectedAS) {
5074     return getTargetCodeGenInfo().performAddrSpaceCast(
5075         *this, GV, DAddrSpace, ExpectedAS,
5076         llvm::PointerType::get(getLLVMContext(), TargetAS));
5077   }
5078 
5079   return GV;
5080 }
5081 
5082 llvm::Constant *
5083 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5084   const Decl *D = GD.getDecl();
5085 
5086   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5087     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5088                                 /*DontDefer=*/false, IsForDefinition);
5089 
5090   if (isa<CXXMethodDecl>(D)) {
5091     auto FInfo =
5092         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5093     auto Ty = getTypes().GetFunctionType(*FInfo);
5094     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5095                              IsForDefinition);
5096   }
5097 
5098   if (isa<FunctionDecl>(D)) {
5099     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5100     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5101     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5102                              IsForDefinition);
5103   }
5104 
5105   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5106 }
5107 
5108 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5109     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5110     llvm::Align Alignment) {
5111   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5112   llvm::GlobalVariable *OldGV = nullptr;
5113 
5114   if (GV) {
5115     // Check if the variable has the right type.
5116     if (GV->getValueType() == Ty)
5117       return GV;
5118 
5119     // Because C++ name mangling, the only way we can end up with an already
5120     // existing global with the same name is if it has been declared extern "C".
5121     assert(GV->isDeclaration() && "Declaration has wrong type!");
5122     OldGV = GV;
5123   }
5124 
5125   // Create a new variable.
5126   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5127                                 Linkage, nullptr, Name);
5128 
5129   if (OldGV) {
5130     // Replace occurrences of the old variable if needed.
5131     GV->takeName(OldGV);
5132 
5133     if (!OldGV->use_empty()) {
5134       OldGV->replaceAllUsesWith(GV);
5135     }
5136 
5137     OldGV->eraseFromParent();
5138   }
5139 
5140   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5141       !GV->hasAvailableExternallyLinkage())
5142     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5143 
5144   GV->setAlignment(Alignment);
5145 
5146   return GV;
5147 }
5148 
5149 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5150 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5151 /// then it will be created with the specified type instead of whatever the
5152 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5153 /// that an actual global with type Ty will be returned, not conversion of a
5154 /// variable with the same mangled name but some other type.
5155 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5156                                                   llvm::Type *Ty,
5157                                            ForDefinition_t IsForDefinition) {
5158   assert(D->hasGlobalStorage() && "Not a global variable");
5159   QualType ASTTy = D->getType();
5160   if (!Ty)
5161     Ty = getTypes().ConvertTypeForMem(ASTTy);
5162 
5163   StringRef MangledName = getMangledName(D);
5164   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5165                                IsForDefinition);
5166 }
5167 
5168 /// CreateRuntimeVariable - Create a new runtime global variable with the
5169 /// specified type and name.
5170 llvm::Constant *
5171 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5172                                      StringRef Name) {
5173   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5174                                                        : LangAS::Default;
5175   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5176   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5177   return Ret;
5178 }
5179 
5180 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5181   assert(!D->getInit() && "Cannot emit definite definitions here!");
5182 
5183   StringRef MangledName = getMangledName(D);
5184   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5185 
5186   // We already have a definition, not declaration, with the same mangled name.
5187   // Emitting of declaration is not required (and actually overwrites emitted
5188   // definition).
5189   if (GV && !GV->isDeclaration())
5190     return;
5191 
5192   // If we have not seen a reference to this variable yet, place it into the
5193   // deferred declarations table to be emitted if needed later.
5194   if (!MustBeEmitted(D) && !GV) {
5195       DeferredDecls[MangledName] = D;
5196       return;
5197   }
5198 
5199   // The tentative definition is the only definition.
5200   EmitGlobalVarDefinition(D);
5201 }
5202 
5203 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5204   if (auto const *V = dyn_cast<const VarDecl>(D))
5205     EmitExternalVarDeclaration(V);
5206   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5207     EmitExternalFunctionDeclaration(FD);
5208 }
5209 
5210 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5211   return Context.toCharUnitsFromBits(
5212       getDataLayout().getTypeStoreSizeInBits(Ty));
5213 }
5214 
5215 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5216   if (LangOpts.OpenCL) {
5217     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5218     assert(AS == LangAS::opencl_global ||
5219            AS == LangAS::opencl_global_device ||
5220            AS == LangAS::opencl_global_host ||
5221            AS == LangAS::opencl_constant ||
5222            AS == LangAS::opencl_local ||
5223            AS >= LangAS::FirstTargetAddressSpace);
5224     return AS;
5225   }
5226 
5227   if (LangOpts.SYCLIsDevice &&
5228       (!D || D->getType().getAddressSpace() == LangAS::Default))
5229     return LangAS::sycl_global;
5230 
5231   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5232     if (D) {
5233       if (D->hasAttr<CUDAConstantAttr>())
5234         return LangAS::cuda_constant;
5235       if (D->hasAttr<CUDASharedAttr>())
5236         return LangAS::cuda_shared;
5237       if (D->hasAttr<CUDADeviceAttr>())
5238         return LangAS::cuda_device;
5239       if (D->getType().isConstQualified())
5240         return LangAS::cuda_constant;
5241     }
5242     return LangAS::cuda_device;
5243   }
5244 
5245   if (LangOpts.OpenMP) {
5246     LangAS AS;
5247     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5248       return AS;
5249   }
5250   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5251 }
5252 
5253 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5254   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5255   if (LangOpts.OpenCL)
5256     return LangAS::opencl_constant;
5257   if (LangOpts.SYCLIsDevice)
5258     return LangAS::sycl_global;
5259   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5260     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5261     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5262     // with OpVariable instructions with Generic storage class which is not
5263     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5264     // UniformConstant storage class is not viable as pointers to it may not be
5265     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5266     return LangAS::cuda_device;
5267   if (auto AS = getTarget().getConstantAddressSpace())
5268     return *AS;
5269   return LangAS::Default;
5270 }
5271 
5272 // In address space agnostic languages, string literals are in default address
5273 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5274 // emitted in constant address space in LLVM IR. To be consistent with other
5275 // parts of AST, string literal global variables in constant address space
5276 // need to be casted to default address space before being put into address
5277 // map and referenced by other part of CodeGen.
5278 // In OpenCL, string literals are in constant address space in AST, therefore
5279 // they should not be casted to default address space.
5280 static llvm::Constant *
5281 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5282                                        llvm::GlobalVariable *GV) {
5283   llvm::Constant *Cast = GV;
5284   if (!CGM.getLangOpts().OpenCL) {
5285     auto AS = CGM.GetGlobalConstantAddressSpace();
5286     if (AS != LangAS::Default)
5287       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5288           CGM, GV, AS, LangAS::Default,
5289           llvm::PointerType::get(
5290               CGM.getLLVMContext(),
5291               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5292   }
5293   return Cast;
5294 }
5295 
5296 template<typename SomeDecl>
5297 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5298                                                llvm::GlobalValue *GV) {
5299   if (!getLangOpts().CPlusPlus)
5300     return;
5301 
5302   // Must have 'used' attribute, or else inline assembly can't rely on
5303   // the name existing.
5304   if (!D->template hasAttr<UsedAttr>())
5305     return;
5306 
5307   // Must have internal linkage and an ordinary name.
5308   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5309     return;
5310 
5311   // Must be in an extern "C" context. Entities declared directly within
5312   // a record are not extern "C" even if the record is in such a context.
5313   const SomeDecl *First = D->getFirstDecl();
5314   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5315     return;
5316 
5317   // OK, this is an internal linkage entity inside an extern "C" linkage
5318   // specification. Make a note of that so we can give it the "expected"
5319   // mangled name if nothing else is using that name.
5320   std::pair<StaticExternCMap::iterator, bool> R =
5321       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5322 
5323   // If we have multiple internal linkage entities with the same name
5324   // in extern "C" regions, none of them gets that name.
5325   if (!R.second)
5326     R.first->second = nullptr;
5327 }
5328 
5329 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5330   if (!CGM.supportsCOMDAT())
5331     return false;
5332 
5333   if (D.hasAttr<SelectAnyAttr>())
5334     return true;
5335 
5336   GVALinkage Linkage;
5337   if (auto *VD = dyn_cast<VarDecl>(&D))
5338     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5339   else
5340     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5341 
5342   switch (Linkage) {
5343   case GVA_Internal:
5344   case GVA_AvailableExternally:
5345   case GVA_StrongExternal:
5346     return false;
5347   case GVA_DiscardableODR:
5348   case GVA_StrongODR:
5349     return true;
5350   }
5351   llvm_unreachable("No such linkage");
5352 }
5353 
5354 bool CodeGenModule::supportsCOMDAT() const {
5355   return getTriple().supportsCOMDAT();
5356 }
5357 
5358 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5359                                           llvm::GlobalObject &GO) {
5360   if (!shouldBeInCOMDAT(*this, D))
5361     return;
5362   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5363 }
5364 
5365 /// Pass IsTentative as true if you want to create a tentative definition.
5366 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5367                                             bool IsTentative) {
5368   // OpenCL global variables of sampler type are translated to function calls,
5369   // therefore no need to be translated.
5370   QualType ASTTy = D->getType();
5371   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5372     return;
5373 
5374   // If this is OpenMP device, check if it is legal to emit this global
5375   // normally.
5376   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5377       OpenMPRuntime->emitTargetGlobalVariable(D))
5378     return;
5379 
5380   llvm::TrackingVH<llvm::Constant> Init;
5381   bool NeedsGlobalCtor = false;
5382   // Whether the definition of the variable is available externally.
5383   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5384   // since this is the job for its original source.
5385   bool IsDefinitionAvailableExternally =
5386       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5387   bool NeedsGlobalDtor =
5388       !IsDefinitionAvailableExternally &&
5389       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5390 
5391   // It is helpless to emit the definition for an available_externally variable
5392   // which can't be marked as const.
5393   // We don't need to check if it needs global ctor or dtor. See the above
5394   // comment for ideas.
5395   if (IsDefinitionAvailableExternally &&
5396       (!D->hasConstantInitialization() ||
5397        // TODO: Update this when we have interface to check constexpr
5398        // destructor.
5399        D->needsDestruction(getContext()) ||
5400        !D->getType().isConstantStorage(getContext(), true, true)))
5401     return;
5402 
5403   const VarDecl *InitDecl;
5404   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5405 
5406   std::optional<ConstantEmitter> emitter;
5407 
5408   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5409   // as part of their declaration."  Sema has already checked for
5410   // error cases, so we just need to set Init to UndefValue.
5411   bool IsCUDASharedVar =
5412       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5413   // Shadows of initialized device-side global variables are also left
5414   // undefined.
5415   // Managed Variables should be initialized on both host side and device side.
5416   bool IsCUDAShadowVar =
5417       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5418       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5419        D->hasAttr<CUDASharedAttr>());
5420   bool IsCUDADeviceShadowVar =
5421       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5422       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5423        D->getType()->isCUDADeviceBuiltinTextureType());
5424   if (getLangOpts().CUDA &&
5425       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5426     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5427   else if (D->hasAttr<LoaderUninitializedAttr>())
5428     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5429   else if (!InitExpr) {
5430     // This is a tentative definition; tentative definitions are
5431     // implicitly initialized with { 0 }.
5432     //
5433     // Note that tentative definitions are only emitted at the end of
5434     // a translation unit, so they should never have incomplete
5435     // type. In addition, EmitTentativeDefinition makes sure that we
5436     // never attempt to emit a tentative definition if a real one
5437     // exists. A use may still exists, however, so we still may need
5438     // to do a RAUW.
5439     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5440     Init = EmitNullConstant(D->getType());
5441   } else {
5442     initializedGlobalDecl = GlobalDecl(D);
5443     emitter.emplace(*this);
5444     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5445     if (!Initializer) {
5446       QualType T = InitExpr->getType();
5447       if (D->getType()->isReferenceType())
5448         T = D->getType();
5449 
5450       if (getLangOpts().CPlusPlus) {
5451         if (InitDecl->hasFlexibleArrayInit(getContext()))
5452           ErrorUnsupported(D, "flexible array initializer");
5453         Init = EmitNullConstant(T);
5454 
5455         if (!IsDefinitionAvailableExternally)
5456           NeedsGlobalCtor = true;
5457       } else {
5458         ErrorUnsupported(D, "static initializer");
5459         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5460       }
5461     } else {
5462       Init = Initializer;
5463       // We don't need an initializer, so remove the entry for the delayed
5464       // initializer position (just in case this entry was delayed) if we
5465       // also don't need to register a destructor.
5466       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5467         DelayedCXXInitPosition.erase(D);
5468 
5469 #ifndef NDEBUG
5470       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5471                           InitDecl->getFlexibleArrayInitChars(getContext());
5472       CharUnits CstSize = CharUnits::fromQuantity(
5473           getDataLayout().getTypeAllocSize(Init->getType()));
5474       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5475 #endif
5476     }
5477   }
5478 
5479   llvm::Type* InitType = Init->getType();
5480   llvm::Constant *Entry =
5481       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5482 
5483   // Strip off pointer casts if we got them.
5484   Entry = Entry->stripPointerCasts();
5485 
5486   // Entry is now either a Function or GlobalVariable.
5487   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5488 
5489   // We have a definition after a declaration with the wrong type.
5490   // We must make a new GlobalVariable* and update everything that used OldGV
5491   // (a declaration or tentative definition) with the new GlobalVariable*
5492   // (which will be a definition).
5493   //
5494   // This happens if there is a prototype for a global (e.g.
5495   // "extern int x[];") and then a definition of a different type (e.g.
5496   // "int x[10];"). This also happens when an initializer has a different type
5497   // from the type of the global (this happens with unions).
5498   if (!GV || GV->getValueType() != InitType ||
5499       GV->getType()->getAddressSpace() !=
5500           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5501 
5502     // Move the old entry aside so that we'll create a new one.
5503     Entry->setName(StringRef());
5504 
5505     // Make a new global with the correct type, this is now guaranteed to work.
5506     GV = cast<llvm::GlobalVariable>(
5507         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5508             ->stripPointerCasts());
5509 
5510     // Replace all uses of the old global with the new global
5511     llvm::Constant *NewPtrForOldDecl =
5512         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5513                                                              Entry->getType());
5514     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5515 
5516     // Erase the old global, since it is no longer used.
5517     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5518   }
5519 
5520   MaybeHandleStaticInExternC(D, GV);
5521 
5522   if (D->hasAttr<AnnotateAttr>())
5523     AddGlobalAnnotations(D, GV);
5524 
5525   // Set the llvm linkage type as appropriate.
5526   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5527 
5528   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5529   // the device. [...]"
5530   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5531   // __device__, declares a variable that: [...]
5532   // Is accessible from all the threads within the grid and from the host
5533   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5534   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5535   if (LangOpts.CUDA) {
5536     if (LangOpts.CUDAIsDevice) {
5537       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5538           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5539            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5540            D->getType()->isCUDADeviceBuiltinTextureType()))
5541         GV->setExternallyInitialized(true);
5542     } else {
5543       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5544     }
5545     getCUDARuntime().handleVarRegistration(D, *GV);
5546   }
5547 
5548   GV->setInitializer(Init);
5549   if (emitter)
5550     emitter->finalize(GV);
5551 
5552   // If it is safe to mark the global 'constant', do so now.
5553   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5554                   D->getType().isConstantStorage(getContext(), true, true));
5555 
5556   // If it is in a read-only section, mark it 'constant'.
5557   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5558     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5559     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5560       GV->setConstant(true);
5561   }
5562 
5563   CharUnits AlignVal = getContext().getDeclAlign(D);
5564   // Check for alignment specifed in an 'omp allocate' directive.
5565   if (std::optional<CharUnits> AlignValFromAllocate =
5566           getOMPAllocateAlignment(D))
5567     AlignVal = *AlignValFromAllocate;
5568   GV->setAlignment(AlignVal.getAsAlign());
5569 
5570   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5571   // function is only defined alongside the variable, not also alongside
5572   // callers. Normally, all accesses to a thread_local go through the
5573   // thread-wrapper in order to ensure initialization has occurred, underlying
5574   // variable will never be used other than the thread-wrapper, so it can be
5575   // converted to internal linkage.
5576   //
5577   // However, if the variable has the 'constinit' attribute, it _can_ be
5578   // referenced directly, without calling the thread-wrapper, so the linkage
5579   // must not be changed.
5580   //
5581   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5582   // weak or linkonce, the de-duplication semantics are important to preserve,
5583   // so we don't change the linkage.
5584   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5585       Linkage == llvm::GlobalValue::ExternalLinkage &&
5586       Context.getTargetInfo().getTriple().isOSDarwin() &&
5587       !D->hasAttr<ConstInitAttr>())
5588     Linkage = llvm::GlobalValue::InternalLinkage;
5589 
5590   GV->setLinkage(Linkage);
5591   if (D->hasAttr<DLLImportAttr>())
5592     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5593   else if (D->hasAttr<DLLExportAttr>())
5594     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5595   else
5596     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5597 
5598   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5599     // common vars aren't constant even if declared const.
5600     GV->setConstant(false);
5601     // Tentative definition of global variables may be initialized with
5602     // non-zero null pointers. In this case they should have weak linkage
5603     // since common linkage must have zero initializer and must not have
5604     // explicit section therefore cannot have non-zero initial value.
5605     if (!GV->getInitializer()->isNullValue())
5606       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5607   }
5608 
5609   setNonAliasAttributes(D, GV);
5610 
5611   if (D->getTLSKind() && !GV->isThreadLocal()) {
5612     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5613       CXXThreadLocals.push_back(D);
5614     setTLSMode(GV, *D);
5615   }
5616 
5617   maybeSetTrivialComdat(*D, *GV);
5618 
5619   // Emit the initializer function if necessary.
5620   if (NeedsGlobalCtor || NeedsGlobalDtor)
5621     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5622 
5623   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5624 
5625   // Emit global variable debug information.
5626   if (CGDebugInfo *DI = getModuleDebugInfo())
5627     if (getCodeGenOpts().hasReducedDebugInfo())
5628       DI->EmitGlobalVariable(GV, D);
5629 }
5630 
5631 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5632   if (CGDebugInfo *DI = getModuleDebugInfo())
5633     if (getCodeGenOpts().hasReducedDebugInfo()) {
5634       QualType ASTTy = D->getType();
5635       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5636       llvm::Constant *GV =
5637           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5638       DI->EmitExternalVariable(
5639           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5640     }
5641 }
5642 
5643 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5644   if (CGDebugInfo *DI = getModuleDebugInfo())
5645     if (getCodeGenOpts().hasReducedDebugInfo()) {
5646       auto *Ty = getTypes().ConvertType(FD->getType());
5647       StringRef MangledName = getMangledName(FD);
5648       auto *Fn = dyn_cast<llvm::Function>(
5649           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5650       if (!Fn->getSubprogram())
5651         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5652     }
5653 }
5654 
5655 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5656                                       CodeGenModule &CGM, const VarDecl *D,
5657                                       bool NoCommon) {
5658   // Don't give variables common linkage if -fno-common was specified unless it
5659   // was overridden by a NoCommon attribute.
5660   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5661     return true;
5662 
5663   // C11 6.9.2/2:
5664   //   A declaration of an identifier for an object that has file scope without
5665   //   an initializer, and without a storage-class specifier or with the
5666   //   storage-class specifier static, constitutes a tentative definition.
5667   if (D->getInit() || D->hasExternalStorage())
5668     return true;
5669 
5670   // A variable cannot be both common and exist in a section.
5671   if (D->hasAttr<SectionAttr>())
5672     return true;
5673 
5674   // A variable cannot be both common and exist in a section.
5675   // We don't try to determine which is the right section in the front-end.
5676   // If no specialized section name is applicable, it will resort to default.
5677   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5678       D->hasAttr<PragmaClangDataSectionAttr>() ||
5679       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5680       D->hasAttr<PragmaClangRodataSectionAttr>())
5681     return true;
5682 
5683   // Thread local vars aren't considered common linkage.
5684   if (D->getTLSKind())
5685     return true;
5686 
5687   // Tentative definitions marked with WeakImportAttr are true definitions.
5688   if (D->hasAttr<WeakImportAttr>())
5689     return true;
5690 
5691   // A variable cannot be both common and exist in a comdat.
5692   if (shouldBeInCOMDAT(CGM, *D))
5693     return true;
5694 
5695   // Declarations with a required alignment do not have common linkage in MSVC
5696   // mode.
5697   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5698     if (D->hasAttr<AlignedAttr>())
5699       return true;
5700     QualType VarType = D->getType();
5701     if (Context.isAlignmentRequired(VarType))
5702       return true;
5703 
5704     if (const auto *RT = VarType->getAs<RecordType>()) {
5705       const RecordDecl *RD = RT->getDecl();
5706       for (const FieldDecl *FD : RD->fields()) {
5707         if (FD->isBitField())
5708           continue;
5709         if (FD->hasAttr<AlignedAttr>())
5710           return true;
5711         if (Context.isAlignmentRequired(FD->getType()))
5712           return true;
5713       }
5714     }
5715   }
5716 
5717   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5718   // common symbols, so symbols with greater alignment requirements cannot be
5719   // common.
5720   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5721   // alignments for common symbols via the aligncomm directive, so this
5722   // restriction only applies to MSVC environments.
5723   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5724       Context.getTypeAlignIfKnown(D->getType()) >
5725           Context.toBits(CharUnits::fromQuantity(32)))
5726     return true;
5727 
5728   return false;
5729 }
5730 
5731 llvm::GlobalValue::LinkageTypes
5732 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5733                                            GVALinkage Linkage) {
5734   if (Linkage == GVA_Internal)
5735     return llvm::Function::InternalLinkage;
5736 
5737   if (D->hasAttr<WeakAttr>())
5738     return llvm::GlobalVariable::WeakAnyLinkage;
5739 
5740   if (const auto *FD = D->getAsFunction())
5741     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5742       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5743 
5744   // We are guaranteed to have a strong definition somewhere else,
5745   // so we can use available_externally linkage.
5746   if (Linkage == GVA_AvailableExternally)
5747     return llvm::GlobalValue::AvailableExternallyLinkage;
5748 
5749   // Note that Apple's kernel linker doesn't support symbol
5750   // coalescing, so we need to avoid linkonce and weak linkages there.
5751   // Normally, this means we just map to internal, but for explicit
5752   // instantiations we'll map to external.
5753 
5754   // In C++, the compiler has to emit a definition in every translation unit
5755   // that references the function.  We should use linkonce_odr because
5756   // a) if all references in this translation unit are optimized away, we
5757   // don't need to codegen it.  b) if the function persists, it needs to be
5758   // merged with other definitions. c) C++ has the ODR, so we know the
5759   // definition is dependable.
5760   if (Linkage == GVA_DiscardableODR)
5761     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5762                                             : llvm::Function::InternalLinkage;
5763 
5764   // An explicit instantiation of a template has weak linkage, since
5765   // explicit instantiations can occur in multiple translation units
5766   // and must all be equivalent. However, we are not allowed to
5767   // throw away these explicit instantiations.
5768   //
5769   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5770   // so say that CUDA templates are either external (for kernels) or internal.
5771   // This lets llvm perform aggressive inter-procedural optimizations. For
5772   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5773   // therefore we need to follow the normal linkage paradigm.
5774   if (Linkage == GVA_StrongODR) {
5775     if (getLangOpts().AppleKext)
5776       return llvm::Function::ExternalLinkage;
5777     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5778         !getLangOpts().GPURelocatableDeviceCode)
5779       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5780                                           : llvm::Function::InternalLinkage;
5781     return llvm::Function::WeakODRLinkage;
5782   }
5783 
5784   // C++ doesn't have tentative definitions and thus cannot have common
5785   // linkage.
5786   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5787       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5788                                  CodeGenOpts.NoCommon))
5789     return llvm::GlobalVariable::CommonLinkage;
5790 
5791   // selectany symbols are externally visible, so use weak instead of
5792   // linkonce.  MSVC optimizes away references to const selectany globals, so
5793   // all definitions should be the same and ODR linkage should be used.
5794   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5795   if (D->hasAttr<SelectAnyAttr>())
5796     return llvm::GlobalVariable::WeakODRLinkage;
5797 
5798   // Otherwise, we have strong external linkage.
5799   assert(Linkage == GVA_StrongExternal);
5800   return llvm::GlobalVariable::ExternalLinkage;
5801 }
5802 
5803 llvm::GlobalValue::LinkageTypes
5804 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5805   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5806   return getLLVMLinkageForDeclarator(VD, Linkage);
5807 }
5808 
5809 /// Replace the uses of a function that was declared with a non-proto type.
5810 /// We want to silently drop extra arguments from call sites
5811 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5812                                           llvm::Function *newFn) {
5813   // Fast path.
5814   if (old->use_empty())
5815     return;
5816 
5817   llvm::Type *newRetTy = newFn->getReturnType();
5818   SmallVector<llvm::Value *, 4> newArgs;
5819 
5820   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5821 
5822   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5823        ui != ue; ui++) {
5824     llvm::User *user = ui->getUser();
5825 
5826     // Recognize and replace uses of bitcasts.  Most calls to
5827     // unprototyped functions will use bitcasts.
5828     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5829       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5830         replaceUsesOfNonProtoConstant(bitcast, newFn);
5831       continue;
5832     }
5833 
5834     // Recognize calls to the function.
5835     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5836     if (!callSite)
5837       continue;
5838     if (!callSite->isCallee(&*ui))
5839       continue;
5840 
5841     // If the return types don't match exactly, then we can't
5842     // transform this call unless it's dead.
5843     if (callSite->getType() != newRetTy && !callSite->use_empty())
5844       continue;
5845 
5846     // Get the call site's attribute list.
5847     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5848     llvm::AttributeList oldAttrs = callSite->getAttributes();
5849 
5850     // If the function was passed too few arguments, don't transform.
5851     unsigned newNumArgs = newFn->arg_size();
5852     if (callSite->arg_size() < newNumArgs)
5853       continue;
5854 
5855     // If extra arguments were passed, we silently drop them.
5856     // If any of the types mismatch, we don't transform.
5857     unsigned argNo = 0;
5858     bool dontTransform = false;
5859     for (llvm::Argument &A : newFn->args()) {
5860       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5861         dontTransform = true;
5862         break;
5863       }
5864 
5865       // Add any parameter attributes.
5866       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5867       argNo++;
5868     }
5869     if (dontTransform)
5870       continue;
5871 
5872     // Okay, we can transform this.  Create the new call instruction and copy
5873     // over the required information.
5874     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5875 
5876     // Copy over any operand bundles.
5877     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5878     callSite->getOperandBundlesAsDefs(newBundles);
5879 
5880     llvm::CallBase *newCall;
5881     if (isa<llvm::CallInst>(callSite)) {
5882       newCall =
5883           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5884     } else {
5885       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5886       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5887                                          oldInvoke->getUnwindDest(), newArgs,
5888                                          newBundles, "", callSite);
5889     }
5890     newArgs.clear(); // for the next iteration
5891 
5892     if (!newCall->getType()->isVoidTy())
5893       newCall->takeName(callSite);
5894     newCall->setAttributes(
5895         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5896                                  oldAttrs.getRetAttrs(), newArgAttrs));
5897     newCall->setCallingConv(callSite->getCallingConv());
5898 
5899     // Finally, remove the old call, replacing any uses with the new one.
5900     if (!callSite->use_empty())
5901       callSite->replaceAllUsesWith(newCall);
5902 
5903     // Copy debug location attached to CI.
5904     if (callSite->getDebugLoc())
5905       newCall->setDebugLoc(callSite->getDebugLoc());
5906 
5907     callSitesToBeRemovedFromParent.push_back(callSite);
5908   }
5909 
5910   for (auto *callSite : callSitesToBeRemovedFromParent) {
5911     callSite->eraseFromParent();
5912   }
5913 }
5914 
5915 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5916 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5917 /// existing call uses of the old function in the module, this adjusts them to
5918 /// call the new function directly.
5919 ///
5920 /// This is not just a cleanup: the always_inline pass requires direct calls to
5921 /// functions to be able to inline them.  If there is a bitcast in the way, it
5922 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5923 /// run at -O0.
5924 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5925                                                       llvm::Function *NewFn) {
5926   // If we're redefining a global as a function, don't transform it.
5927   if (!isa<llvm::Function>(Old)) return;
5928 
5929   replaceUsesOfNonProtoConstant(Old, NewFn);
5930 }
5931 
5932 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5933   auto DK = VD->isThisDeclarationADefinition();
5934   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5935     return;
5936 
5937   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5938   // If we have a definition, this might be a deferred decl. If the
5939   // instantiation is explicit, make sure we emit it at the end.
5940   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5941     GetAddrOfGlobalVar(VD);
5942 
5943   EmitTopLevelDecl(VD);
5944 }
5945 
5946 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5947                                                  llvm::GlobalValue *GV) {
5948   const auto *D = cast<FunctionDecl>(GD.getDecl());
5949 
5950   // Compute the function info and LLVM type.
5951   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5952   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5953 
5954   // Get or create the prototype for the function.
5955   if (!GV || (GV->getValueType() != Ty))
5956     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5957                                                    /*DontDefer=*/true,
5958                                                    ForDefinition));
5959 
5960   // Already emitted.
5961   if (!GV->isDeclaration())
5962     return;
5963 
5964   // We need to set linkage and visibility on the function before
5965   // generating code for it because various parts of IR generation
5966   // want to propagate this information down (e.g. to local static
5967   // declarations).
5968   auto *Fn = cast<llvm::Function>(GV);
5969   setFunctionLinkage(GD, Fn);
5970 
5971   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5972   setGVProperties(Fn, GD);
5973 
5974   MaybeHandleStaticInExternC(D, Fn);
5975 
5976   maybeSetTrivialComdat(*D, *Fn);
5977 
5978   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5979 
5980   setNonAliasAttributes(GD, Fn);
5981   SetLLVMFunctionAttributesForDefinition(D, Fn);
5982 
5983   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5984     AddGlobalCtor(Fn, CA->getPriority());
5985   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5986     AddGlobalDtor(Fn, DA->getPriority(), true);
5987   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5988     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5989 }
5990 
5991 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5992   const auto *D = cast<ValueDecl>(GD.getDecl());
5993   const AliasAttr *AA = D->getAttr<AliasAttr>();
5994   assert(AA && "Not an alias?");
5995 
5996   StringRef MangledName = getMangledName(GD);
5997 
5998   if (AA->getAliasee() == MangledName) {
5999     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6000     return;
6001   }
6002 
6003   // If there is a definition in the module, then it wins over the alias.
6004   // This is dubious, but allow it to be safe.  Just ignore the alias.
6005   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6006   if (Entry && !Entry->isDeclaration())
6007     return;
6008 
6009   Aliases.push_back(GD);
6010 
6011   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6012 
6013   // Create a reference to the named value.  This ensures that it is emitted
6014   // if a deferred decl.
6015   llvm::Constant *Aliasee;
6016   llvm::GlobalValue::LinkageTypes LT;
6017   if (isa<llvm::FunctionType>(DeclTy)) {
6018     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6019                                       /*ForVTable=*/false);
6020     LT = getFunctionLinkage(GD);
6021   } else {
6022     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6023                                     /*D=*/nullptr);
6024     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6025       LT = getLLVMLinkageVarDefinition(VD);
6026     else
6027       LT = getFunctionLinkage(GD);
6028   }
6029 
6030   // Create the new alias itself, but don't set a name yet.
6031   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6032   auto *GA =
6033       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6034 
6035   if (Entry) {
6036     if (GA->getAliasee() == Entry) {
6037       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6038       return;
6039     }
6040 
6041     assert(Entry->isDeclaration());
6042 
6043     // If there is a declaration in the module, then we had an extern followed
6044     // by the alias, as in:
6045     //   extern int test6();
6046     //   ...
6047     //   int test6() __attribute__((alias("test7")));
6048     //
6049     // Remove it and replace uses of it with the alias.
6050     GA->takeName(Entry);
6051 
6052     Entry->replaceAllUsesWith(GA);
6053     Entry->eraseFromParent();
6054   } else {
6055     GA->setName(MangledName);
6056   }
6057 
6058   // Set attributes which are particular to an alias; this is a
6059   // specialization of the attributes which may be set on a global
6060   // variable/function.
6061   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6062       D->isWeakImported()) {
6063     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6064   }
6065 
6066   if (const auto *VD = dyn_cast<VarDecl>(D))
6067     if (VD->getTLSKind())
6068       setTLSMode(GA, *VD);
6069 
6070   SetCommonAttributes(GD, GA);
6071 
6072   // Emit global alias debug information.
6073   if (isa<VarDecl>(D))
6074     if (CGDebugInfo *DI = getModuleDebugInfo())
6075       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6076 }
6077 
6078 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6079   const auto *D = cast<ValueDecl>(GD.getDecl());
6080   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6081   assert(IFA && "Not an ifunc?");
6082 
6083   StringRef MangledName = getMangledName(GD);
6084 
6085   if (IFA->getResolver() == MangledName) {
6086     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6087     return;
6088   }
6089 
6090   // Report an error if some definition overrides ifunc.
6091   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6092   if (Entry && !Entry->isDeclaration()) {
6093     GlobalDecl OtherGD;
6094     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6095         DiagnosedConflictingDefinitions.insert(GD).second) {
6096       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6097           << MangledName;
6098       Diags.Report(OtherGD.getDecl()->getLocation(),
6099                    diag::note_previous_definition);
6100     }
6101     return;
6102   }
6103 
6104   Aliases.push_back(GD);
6105 
6106   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6107   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
6108   llvm::Constant *Resolver =
6109       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
6110                               /*ForVTable=*/false);
6111   llvm::GlobalIFunc *GIF =
6112       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6113                                 "", Resolver, &getModule());
6114   if (Entry) {
6115     if (GIF->getResolver() == Entry) {
6116       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6117       return;
6118     }
6119     assert(Entry->isDeclaration());
6120 
6121     // If there is a declaration in the module, then we had an extern followed
6122     // by the ifunc, as in:
6123     //   extern int test();
6124     //   ...
6125     //   int test() __attribute__((ifunc("resolver")));
6126     //
6127     // Remove it and replace uses of it with the ifunc.
6128     GIF->takeName(Entry);
6129 
6130     Entry->replaceAllUsesWith(GIF);
6131     Entry->eraseFromParent();
6132   } else
6133     GIF->setName(MangledName);
6134   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
6135     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
6136   }
6137   SetCommonAttributes(GD, GIF);
6138 }
6139 
6140 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6141                                             ArrayRef<llvm::Type*> Tys) {
6142   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6143                                          Tys);
6144 }
6145 
6146 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6147 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6148                          const StringLiteral *Literal, bool TargetIsLSB,
6149                          bool &IsUTF16, unsigned &StringLength) {
6150   StringRef String = Literal->getString();
6151   unsigned NumBytes = String.size();
6152 
6153   // Check for simple case.
6154   if (!Literal->containsNonAsciiOrNull()) {
6155     StringLength = NumBytes;
6156     return *Map.insert(std::make_pair(String, nullptr)).first;
6157   }
6158 
6159   // Otherwise, convert the UTF8 literals into a string of shorts.
6160   IsUTF16 = true;
6161 
6162   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6163   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6164   llvm::UTF16 *ToPtr = &ToBuf[0];
6165 
6166   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6167                                  ToPtr + NumBytes, llvm::strictConversion);
6168 
6169   // ConvertUTF8toUTF16 returns the length in ToPtr.
6170   StringLength = ToPtr - &ToBuf[0];
6171 
6172   // Add an explicit null.
6173   *ToPtr = 0;
6174   return *Map.insert(std::make_pair(
6175                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6176                                    (StringLength + 1) * 2),
6177                          nullptr)).first;
6178 }
6179 
6180 ConstantAddress
6181 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6182   unsigned StringLength = 0;
6183   bool isUTF16 = false;
6184   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6185       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6186                                getDataLayout().isLittleEndian(), isUTF16,
6187                                StringLength);
6188 
6189   if (auto *C = Entry.second)
6190     return ConstantAddress(
6191         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6192 
6193   const ASTContext &Context = getContext();
6194   const llvm::Triple &Triple = getTriple();
6195 
6196   const auto CFRuntime = getLangOpts().CFRuntime;
6197   const bool IsSwiftABI =
6198       static_cast<unsigned>(CFRuntime) >=
6199       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6200   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6201 
6202   // If we don't already have it, get __CFConstantStringClassReference.
6203   if (!CFConstantStringClassRef) {
6204     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6205     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6206     Ty = llvm::ArrayType::get(Ty, 0);
6207 
6208     switch (CFRuntime) {
6209     default: break;
6210     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6211     case LangOptions::CoreFoundationABI::Swift5_0:
6212       CFConstantStringClassName =
6213           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6214                               : "$s10Foundation19_NSCFConstantStringCN";
6215       Ty = IntPtrTy;
6216       break;
6217     case LangOptions::CoreFoundationABI::Swift4_2:
6218       CFConstantStringClassName =
6219           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6220                               : "$S10Foundation19_NSCFConstantStringCN";
6221       Ty = IntPtrTy;
6222       break;
6223     case LangOptions::CoreFoundationABI::Swift4_1:
6224       CFConstantStringClassName =
6225           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6226                               : "__T010Foundation19_NSCFConstantStringCN";
6227       Ty = IntPtrTy;
6228       break;
6229     }
6230 
6231     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6232 
6233     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6234       llvm::GlobalValue *GV = nullptr;
6235 
6236       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6237         IdentifierInfo &II = Context.Idents.get(GV->getName());
6238         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6239         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6240 
6241         const VarDecl *VD = nullptr;
6242         for (const auto *Result : DC->lookup(&II))
6243           if ((VD = dyn_cast<VarDecl>(Result)))
6244             break;
6245 
6246         if (Triple.isOSBinFormatELF()) {
6247           if (!VD)
6248             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6249         } else {
6250           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6251           if (!VD || !VD->hasAttr<DLLExportAttr>())
6252             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6253           else
6254             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6255         }
6256 
6257         setDSOLocal(GV);
6258       }
6259     }
6260 
6261     // Decay array -> ptr
6262     CFConstantStringClassRef =
6263         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6264   }
6265 
6266   QualType CFTy = Context.getCFConstantStringType();
6267 
6268   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6269 
6270   ConstantInitBuilder Builder(*this);
6271   auto Fields = Builder.beginStruct(STy);
6272 
6273   // Class pointer.
6274   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6275 
6276   // Flags.
6277   if (IsSwiftABI) {
6278     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6279     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6280   } else {
6281     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6282   }
6283 
6284   // String pointer.
6285   llvm::Constant *C = nullptr;
6286   if (isUTF16) {
6287     auto Arr = llvm::ArrayRef(
6288         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6289         Entry.first().size() / 2);
6290     C = llvm::ConstantDataArray::get(VMContext, Arr);
6291   } else {
6292     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6293   }
6294 
6295   // Note: -fwritable-strings doesn't make the backing store strings of
6296   // CFStrings writable.
6297   auto *GV =
6298       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6299                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6300   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6301   // Don't enforce the target's minimum global alignment, since the only use
6302   // of the string is via this class initializer.
6303   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6304                             : Context.getTypeAlignInChars(Context.CharTy);
6305   GV->setAlignment(Align.getAsAlign());
6306 
6307   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6308   // Without it LLVM can merge the string with a non unnamed_addr one during
6309   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6310   if (Triple.isOSBinFormatMachO())
6311     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6312                            : "__TEXT,__cstring,cstring_literals");
6313   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6314   // the static linker to adjust permissions to read-only later on.
6315   else if (Triple.isOSBinFormatELF())
6316     GV->setSection(".rodata");
6317 
6318   // String.
6319   Fields.add(GV);
6320 
6321   // String length.
6322   llvm::IntegerType *LengthTy =
6323       llvm::IntegerType::get(getModule().getContext(),
6324                              Context.getTargetInfo().getLongWidth());
6325   if (IsSwiftABI) {
6326     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6327         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6328       LengthTy = Int32Ty;
6329     else
6330       LengthTy = IntPtrTy;
6331   }
6332   Fields.addInt(LengthTy, StringLength);
6333 
6334   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6335   // properly aligned on 32-bit platforms.
6336   CharUnits Alignment =
6337       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6338 
6339   // The struct.
6340   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6341                                     /*isConstant=*/false,
6342                                     llvm::GlobalVariable::PrivateLinkage);
6343   GV->addAttribute("objc_arc_inert");
6344   switch (Triple.getObjectFormat()) {
6345   case llvm::Triple::UnknownObjectFormat:
6346     llvm_unreachable("unknown file format");
6347   case llvm::Triple::DXContainer:
6348   case llvm::Triple::GOFF:
6349   case llvm::Triple::SPIRV:
6350   case llvm::Triple::XCOFF:
6351     llvm_unreachable("unimplemented");
6352   case llvm::Triple::COFF:
6353   case llvm::Triple::ELF:
6354   case llvm::Triple::Wasm:
6355     GV->setSection("cfstring");
6356     break;
6357   case llvm::Triple::MachO:
6358     GV->setSection("__DATA,__cfstring");
6359     break;
6360   }
6361   Entry.second = GV;
6362 
6363   return ConstantAddress(GV, GV->getValueType(), Alignment);
6364 }
6365 
6366 bool CodeGenModule::getExpressionLocationsEnabled() const {
6367   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6368 }
6369 
6370 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6371   if (ObjCFastEnumerationStateType.isNull()) {
6372     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6373     D->startDefinition();
6374 
6375     QualType FieldTypes[] = {
6376         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6377         Context.getPointerType(Context.UnsignedLongTy),
6378         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6379                                      nullptr, ArraySizeModifier::Normal, 0)};
6380 
6381     for (size_t i = 0; i < 4; ++i) {
6382       FieldDecl *Field = FieldDecl::Create(Context,
6383                                            D,
6384                                            SourceLocation(),
6385                                            SourceLocation(), nullptr,
6386                                            FieldTypes[i], /*TInfo=*/nullptr,
6387                                            /*BitWidth=*/nullptr,
6388                                            /*Mutable=*/false,
6389                                            ICIS_NoInit);
6390       Field->setAccess(AS_public);
6391       D->addDecl(Field);
6392     }
6393 
6394     D->completeDefinition();
6395     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6396   }
6397 
6398   return ObjCFastEnumerationStateType;
6399 }
6400 
6401 llvm::Constant *
6402 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6403   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6404 
6405   // Don't emit it as the address of the string, emit the string data itself
6406   // as an inline array.
6407   if (E->getCharByteWidth() == 1) {
6408     SmallString<64> Str(E->getString());
6409 
6410     // Resize the string to the right size, which is indicated by its type.
6411     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6412     assert(CAT && "String literal not of constant array type!");
6413     Str.resize(CAT->getZExtSize());
6414     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6415   }
6416 
6417   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6418   llvm::Type *ElemTy = AType->getElementType();
6419   unsigned NumElements = AType->getNumElements();
6420 
6421   // Wide strings have either 2-byte or 4-byte elements.
6422   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6423     SmallVector<uint16_t, 32> Elements;
6424     Elements.reserve(NumElements);
6425 
6426     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6427       Elements.push_back(E->getCodeUnit(i));
6428     Elements.resize(NumElements);
6429     return llvm::ConstantDataArray::get(VMContext, Elements);
6430   }
6431 
6432   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6433   SmallVector<uint32_t, 32> Elements;
6434   Elements.reserve(NumElements);
6435 
6436   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6437     Elements.push_back(E->getCodeUnit(i));
6438   Elements.resize(NumElements);
6439   return llvm::ConstantDataArray::get(VMContext, Elements);
6440 }
6441 
6442 static llvm::GlobalVariable *
6443 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6444                       CodeGenModule &CGM, StringRef GlobalName,
6445                       CharUnits Alignment) {
6446   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6447       CGM.GetGlobalConstantAddressSpace());
6448 
6449   llvm::Module &M = CGM.getModule();
6450   // Create a global variable for this string
6451   auto *GV = new llvm::GlobalVariable(
6452       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6453       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6454   GV->setAlignment(Alignment.getAsAlign());
6455   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6456   if (GV->isWeakForLinker()) {
6457     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6458     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6459   }
6460   CGM.setDSOLocal(GV);
6461 
6462   return GV;
6463 }
6464 
6465 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6466 /// constant array for the given string literal.
6467 ConstantAddress
6468 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6469                                                   StringRef Name) {
6470   CharUnits Alignment =
6471       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6472 
6473   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6474   llvm::GlobalVariable **Entry = nullptr;
6475   if (!LangOpts.WritableStrings) {
6476     Entry = &ConstantStringMap[C];
6477     if (auto GV = *Entry) {
6478       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6479         GV->setAlignment(Alignment.getAsAlign());
6480       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6481                              GV->getValueType(), Alignment);
6482     }
6483   }
6484 
6485   SmallString<256> MangledNameBuffer;
6486   StringRef GlobalVariableName;
6487   llvm::GlobalValue::LinkageTypes LT;
6488 
6489   // Mangle the string literal if that's how the ABI merges duplicate strings.
6490   // Don't do it if they are writable, since we don't want writes in one TU to
6491   // affect strings in another.
6492   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6493       !LangOpts.WritableStrings) {
6494     llvm::raw_svector_ostream Out(MangledNameBuffer);
6495     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6496     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6497     GlobalVariableName = MangledNameBuffer;
6498   } else {
6499     LT = llvm::GlobalValue::PrivateLinkage;
6500     GlobalVariableName = Name;
6501   }
6502 
6503   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6504 
6505   CGDebugInfo *DI = getModuleDebugInfo();
6506   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6507     DI->AddStringLiteralDebugInfo(GV, S);
6508 
6509   if (Entry)
6510     *Entry = GV;
6511 
6512   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6513 
6514   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6515                          GV->getValueType(), Alignment);
6516 }
6517 
6518 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6519 /// array for the given ObjCEncodeExpr node.
6520 ConstantAddress
6521 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6522   std::string Str;
6523   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6524 
6525   return GetAddrOfConstantCString(Str);
6526 }
6527 
6528 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6529 /// the literal and a terminating '\0' character.
6530 /// The result has pointer to array type.
6531 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6532     const std::string &Str, const char *GlobalName) {
6533   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6534   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6535       getContext().CharTy, /*VD=*/nullptr);
6536 
6537   llvm::Constant *C =
6538       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6539 
6540   // Don't share any string literals if strings aren't constant.
6541   llvm::GlobalVariable **Entry = nullptr;
6542   if (!LangOpts.WritableStrings) {
6543     Entry = &ConstantStringMap[C];
6544     if (auto GV = *Entry) {
6545       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6546         GV->setAlignment(Alignment.getAsAlign());
6547       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6548                              GV->getValueType(), Alignment);
6549     }
6550   }
6551 
6552   // Get the default prefix if a name wasn't specified.
6553   if (!GlobalName)
6554     GlobalName = ".str";
6555   // Create a global variable for this.
6556   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6557                                   GlobalName, Alignment);
6558   if (Entry)
6559     *Entry = GV;
6560 
6561   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6562                          GV->getValueType(), Alignment);
6563 }
6564 
6565 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6566     const MaterializeTemporaryExpr *E, const Expr *Init) {
6567   assert((E->getStorageDuration() == SD_Static ||
6568           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6569   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6570 
6571   // If we're not materializing a subobject of the temporary, keep the
6572   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6573   QualType MaterializedType = Init->getType();
6574   if (Init == E->getSubExpr())
6575     MaterializedType = E->getType();
6576 
6577   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6578 
6579   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6580   if (!InsertResult.second) {
6581     // We've seen this before: either we already created it or we're in the
6582     // process of doing so.
6583     if (!InsertResult.first->second) {
6584       // We recursively re-entered this function, probably during emission of
6585       // the initializer. Create a placeholder. We'll clean this up in the
6586       // outer call, at the end of this function.
6587       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6588       InsertResult.first->second = new llvm::GlobalVariable(
6589           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6590           nullptr);
6591     }
6592     return ConstantAddress(InsertResult.first->second,
6593                            llvm::cast<llvm::GlobalVariable>(
6594                                InsertResult.first->second->stripPointerCasts())
6595                                ->getValueType(),
6596                            Align);
6597   }
6598 
6599   // FIXME: If an externally-visible declaration extends multiple temporaries,
6600   // we need to give each temporary the same name in every translation unit (and
6601   // we also need to make the temporaries externally-visible).
6602   SmallString<256> Name;
6603   llvm::raw_svector_ostream Out(Name);
6604   getCXXABI().getMangleContext().mangleReferenceTemporary(
6605       VD, E->getManglingNumber(), Out);
6606 
6607   APValue *Value = nullptr;
6608   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6609     // If the initializer of the extending declaration is a constant
6610     // initializer, we should have a cached constant initializer for this
6611     // temporary. Note that this might have a different value from the value
6612     // computed by evaluating the initializer if the surrounding constant
6613     // expression modifies the temporary.
6614     Value = E->getOrCreateValue(false);
6615   }
6616 
6617   // Try evaluating it now, it might have a constant initializer.
6618   Expr::EvalResult EvalResult;
6619   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6620       !EvalResult.hasSideEffects())
6621     Value = &EvalResult.Val;
6622 
6623   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6624 
6625   std::optional<ConstantEmitter> emitter;
6626   llvm::Constant *InitialValue = nullptr;
6627   bool Constant = false;
6628   llvm::Type *Type;
6629   if (Value) {
6630     // The temporary has a constant initializer, use it.
6631     emitter.emplace(*this);
6632     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6633                                                MaterializedType);
6634     Constant =
6635         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6636                                            /*ExcludeDtor*/ false);
6637     Type = InitialValue->getType();
6638   } else {
6639     // No initializer, the initialization will be provided when we
6640     // initialize the declaration which performed lifetime extension.
6641     Type = getTypes().ConvertTypeForMem(MaterializedType);
6642   }
6643 
6644   // Create a global variable for this lifetime-extended temporary.
6645   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6646   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6647     const VarDecl *InitVD;
6648     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6649         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6650       // Temporaries defined inside a class get linkonce_odr linkage because the
6651       // class can be defined in multiple translation units.
6652       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6653     } else {
6654       // There is no need for this temporary to have external linkage if the
6655       // VarDecl has external linkage.
6656       Linkage = llvm::GlobalVariable::InternalLinkage;
6657     }
6658   }
6659   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6660   auto *GV = new llvm::GlobalVariable(
6661       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6662       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6663   if (emitter) emitter->finalize(GV);
6664   // Don't assign dllimport or dllexport to local linkage globals.
6665   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6666     setGVProperties(GV, VD);
6667     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6668       // The reference temporary should never be dllexport.
6669       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6670   }
6671   GV->setAlignment(Align.getAsAlign());
6672   if (supportsCOMDAT() && GV->isWeakForLinker())
6673     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6674   if (VD->getTLSKind())
6675     setTLSMode(GV, *VD);
6676   llvm::Constant *CV = GV;
6677   if (AddrSpace != LangAS::Default)
6678     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6679         *this, GV, AddrSpace, LangAS::Default,
6680         llvm::PointerType::get(
6681             getLLVMContext(),
6682             getContext().getTargetAddressSpace(LangAS::Default)));
6683 
6684   // Update the map with the new temporary. If we created a placeholder above,
6685   // replace it with the new global now.
6686   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6687   if (Entry) {
6688     Entry->replaceAllUsesWith(CV);
6689     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6690   }
6691   Entry = CV;
6692 
6693   return ConstantAddress(CV, Type, Align);
6694 }
6695 
6696 /// EmitObjCPropertyImplementations - Emit information for synthesized
6697 /// properties for an implementation.
6698 void CodeGenModule::EmitObjCPropertyImplementations(const
6699                                                     ObjCImplementationDecl *D) {
6700   for (const auto *PID : D->property_impls()) {
6701     // Dynamic is just for type-checking.
6702     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6703       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6704 
6705       // Determine which methods need to be implemented, some may have
6706       // been overridden. Note that ::isPropertyAccessor is not the method
6707       // we want, that just indicates if the decl came from a
6708       // property. What we want to know is if the method is defined in
6709       // this implementation.
6710       auto *Getter = PID->getGetterMethodDecl();
6711       if (!Getter || Getter->isSynthesizedAccessorStub())
6712         CodeGenFunction(*this).GenerateObjCGetter(
6713             const_cast<ObjCImplementationDecl *>(D), PID);
6714       auto *Setter = PID->getSetterMethodDecl();
6715       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6716         CodeGenFunction(*this).GenerateObjCSetter(
6717                                  const_cast<ObjCImplementationDecl *>(D), PID);
6718     }
6719   }
6720 }
6721 
6722 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6723   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6724   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6725        ivar; ivar = ivar->getNextIvar())
6726     if (ivar->getType().isDestructedType())
6727       return true;
6728 
6729   return false;
6730 }
6731 
6732 static bool AllTrivialInitializers(CodeGenModule &CGM,
6733                                    ObjCImplementationDecl *D) {
6734   CodeGenFunction CGF(CGM);
6735   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6736        E = D->init_end(); B != E; ++B) {
6737     CXXCtorInitializer *CtorInitExp = *B;
6738     Expr *Init = CtorInitExp->getInit();
6739     if (!CGF.isTrivialInitializer(Init))
6740       return false;
6741   }
6742   return true;
6743 }
6744 
6745 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6746 /// for an implementation.
6747 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6748   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6749   if (needsDestructMethod(D)) {
6750     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6751     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6752     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6753         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6754         getContext().VoidTy, nullptr, D,
6755         /*isInstance=*/true, /*isVariadic=*/false,
6756         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6757         /*isImplicitlyDeclared=*/true,
6758         /*isDefined=*/false, ObjCImplementationControl::Required);
6759     D->addInstanceMethod(DTORMethod);
6760     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6761     D->setHasDestructors(true);
6762   }
6763 
6764   // If the implementation doesn't have any ivar initializers, we don't need
6765   // a .cxx_construct.
6766   if (D->getNumIvarInitializers() == 0 ||
6767       AllTrivialInitializers(*this, D))
6768     return;
6769 
6770   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6771   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6772   // The constructor returns 'self'.
6773   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6774       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6775       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6776       /*isVariadic=*/false,
6777       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6778       /*isImplicitlyDeclared=*/true,
6779       /*isDefined=*/false, ObjCImplementationControl::Required);
6780   D->addInstanceMethod(CTORMethod);
6781   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6782   D->setHasNonZeroConstructors(true);
6783 }
6784 
6785 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6786 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6787   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6788       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6789     ErrorUnsupported(LSD, "linkage spec");
6790     return;
6791   }
6792 
6793   EmitDeclContext(LSD);
6794 }
6795 
6796 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6797   // Device code should not be at top level.
6798   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6799     return;
6800 
6801   std::unique_ptr<CodeGenFunction> &CurCGF =
6802       GlobalTopLevelStmtBlockInFlight.first;
6803 
6804   // We emitted a top-level stmt but after it there is initialization.
6805   // Stop squashing the top-level stmts into a single function.
6806   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6807     CurCGF->FinishFunction(D->getEndLoc());
6808     CurCGF = nullptr;
6809   }
6810 
6811   if (!CurCGF) {
6812     // void __stmts__N(void)
6813     // FIXME: Ask the ABI name mangler to pick a name.
6814     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6815     FunctionArgList Args;
6816     QualType RetTy = getContext().VoidTy;
6817     const CGFunctionInfo &FnInfo =
6818         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6819     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6820     llvm::Function *Fn = llvm::Function::Create(
6821         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6822 
6823     CurCGF.reset(new CodeGenFunction(*this));
6824     GlobalTopLevelStmtBlockInFlight.second = D;
6825     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6826                           D->getBeginLoc(), D->getBeginLoc());
6827     CXXGlobalInits.push_back(Fn);
6828   }
6829 
6830   CurCGF->EmitStmt(D->getStmt());
6831 }
6832 
6833 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6834   for (auto *I : DC->decls()) {
6835     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6836     // are themselves considered "top-level", so EmitTopLevelDecl on an
6837     // ObjCImplDecl does not recursively visit them. We need to do that in
6838     // case they're nested inside another construct (LinkageSpecDecl /
6839     // ExportDecl) that does stop them from being considered "top-level".
6840     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6841       for (auto *M : OID->methods())
6842         EmitTopLevelDecl(M);
6843     }
6844 
6845     EmitTopLevelDecl(I);
6846   }
6847 }
6848 
6849 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6850 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6851   // Ignore dependent declarations.
6852   if (D->isTemplated())
6853     return;
6854 
6855   // Consteval function shouldn't be emitted.
6856   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6857     return;
6858 
6859   switch (D->getKind()) {
6860   case Decl::CXXConversion:
6861   case Decl::CXXMethod:
6862   case Decl::Function:
6863     EmitGlobal(cast<FunctionDecl>(D));
6864     // Always provide some coverage mapping
6865     // even for the functions that aren't emitted.
6866     AddDeferredUnusedCoverageMapping(D);
6867     break;
6868 
6869   case Decl::CXXDeductionGuide:
6870     // Function-like, but does not result in code emission.
6871     break;
6872 
6873   case Decl::Var:
6874   case Decl::Decomposition:
6875   case Decl::VarTemplateSpecialization:
6876     EmitGlobal(cast<VarDecl>(D));
6877     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6878       for (auto *B : DD->bindings())
6879         if (auto *HD = B->getHoldingVar())
6880           EmitGlobal(HD);
6881     break;
6882 
6883   // Indirect fields from global anonymous structs and unions can be
6884   // ignored; only the actual variable requires IR gen support.
6885   case Decl::IndirectField:
6886     break;
6887 
6888   // C++ Decls
6889   case Decl::Namespace:
6890     EmitDeclContext(cast<NamespaceDecl>(D));
6891     break;
6892   case Decl::ClassTemplateSpecialization: {
6893     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6894     if (CGDebugInfo *DI = getModuleDebugInfo())
6895       if (Spec->getSpecializationKind() ==
6896               TSK_ExplicitInstantiationDefinition &&
6897           Spec->hasDefinition())
6898         DI->completeTemplateDefinition(*Spec);
6899   } [[fallthrough]];
6900   case Decl::CXXRecord: {
6901     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6902     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6903       if (CRD->hasDefinition())
6904         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6905       if (auto *ES = D->getASTContext().getExternalSource())
6906         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6907           DI->completeUnusedClass(*CRD);
6908     }
6909     // Emit any static data members, they may be definitions.
6910     for (auto *I : CRD->decls())
6911       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6912         EmitTopLevelDecl(I);
6913     break;
6914   }
6915     // No code generation needed.
6916   case Decl::UsingShadow:
6917   case Decl::ClassTemplate:
6918   case Decl::VarTemplate:
6919   case Decl::Concept:
6920   case Decl::VarTemplatePartialSpecialization:
6921   case Decl::FunctionTemplate:
6922   case Decl::TypeAliasTemplate:
6923   case Decl::Block:
6924   case Decl::Empty:
6925   case Decl::Binding:
6926     break;
6927   case Decl::Using:          // using X; [C++]
6928     if (CGDebugInfo *DI = getModuleDebugInfo())
6929         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6930     break;
6931   case Decl::UsingEnum: // using enum X; [C++]
6932     if (CGDebugInfo *DI = getModuleDebugInfo())
6933       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6934     break;
6935   case Decl::NamespaceAlias:
6936     if (CGDebugInfo *DI = getModuleDebugInfo())
6937         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6938     break;
6939   case Decl::UsingDirective: // using namespace X; [C++]
6940     if (CGDebugInfo *DI = getModuleDebugInfo())
6941       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6942     break;
6943   case Decl::CXXConstructor:
6944     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6945     break;
6946   case Decl::CXXDestructor:
6947     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6948     break;
6949 
6950   case Decl::StaticAssert:
6951     // Nothing to do.
6952     break;
6953 
6954   // Objective-C Decls
6955 
6956   // Forward declarations, no (immediate) code generation.
6957   case Decl::ObjCInterface:
6958   case Decl::ObjCCategory:
6959     break;
6960 
6961   case Decl::ObjCProtocol: {
6962     auto *Proto = cast<ObjCProtocolDecl>(D);
6963     if (Proto->isThisDeclarationADefinition())
6964       ObjCRuntime->GenerateProtocol(Proto);
6965     break;
6966   }
6967 
6968   case Decl::ObjCCategoryImpl:
6969     // Categories have properties but don't support synthesize so we
6970     // can ignore them here.
6971     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6972     break;
6973 
6974   case Decl::ObjCImplementation: {
6975     auto *OMD = cast<ObjCImplementationDecl>(D);
6976     EmitObjCPropertyImplementations(OMD);
6977     EmitObjCIvarInitializations(OMD);
6978     ObjCRuntime->GenerateClass(OMD);
6979     // Emit global variable debug information.
6980     if (CGDebugInfo *DI = getModuleDebugInfo())
6981       if (getCodeGenOpts().hasReducedDebugInfo())
6982         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6983             OMD->getClassInterface()), OMD->getLocation());
6984     break;
6985   }
6986   case Decl::ObjCMethod: {
6987     auto *OMD = cast<ObjCMethodDecl>(D);
6988     // If this is not a prototype, emit the body.
6989     if (OMD->getBody())
6990       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6991     break;
6992   }
6993   case Decl::ObjCCompatibleAlias:
6994     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6995     break;
6996 
6997   case Decl::PragmaComment: {
6998     const auto *PCD = cast<PragmaCommentDecl>(D);
6999     switch (PCD->getCommentKind()) {
7000     case PCK_Unknown:
7001       llvm_unreachable("unexpected pragma comment kind");
7002     case PCK_Linker:
7003       AppendLinkerOptions(PCD->getArg());
7004       break;
7005     case PCK_Lib:
7006         AddDependentLib(PCD->getArg());
7007       break;
7008     case PCK_Compiler:
7009     case PCK_ExeStr:
7010     case PCK_User:
7011       break; // We ignore all of these.
7012     }
7013     break;
7014   }
7015 
7016   case Decl::PragmaDetectMismatch: {
7017     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7018     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7019     break;
7020   }
7021 
7022   case Decl::LinkageSpec:
7023     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7024     break;
7025 
7026   case Decl::FileScopeAsm: {
7027     // File-scope asm is ignored during device-side CUDA compilation.
7028     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7029       break;
7030     // File-scope asm is ignored during device-side OpenMP compilation.
7031     if (LangOpts.OpenMPIsTargetDevice)
7032       break;
7033     // File-scope asm is ignored during device-side SYCL compilation.
7034     if (LangOpts.SYCLIsDevice)
7035       break;
7036     auto *AD = cast<FileScopeAsmDecl>(D);
7037     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7038     break;
7039   }
7040 
7041   case Decl::TopLevelStmt:
7042     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7043     break;
7044 
7045   case Decl::Import: {
7046     auto *Import = cast<ImportDecl>(D);
7047 
7048     // If we've already imported this module, we're done.
7049     if (!ImportedModules.insert(Import->getImportedModule()))
7050       break;
7051 
7052     // Emit debug information for direct imports.
7053     if (!Import->getImportedOwningModule()) {
7054       if (CGDebugInfo *DI = getModuleDebugInfo())
7055         DI->EmitImportDecl(*Import);
7056     }
7057 
7058     // For C++ standard modules we are done - we will call the module
7059     // initializer for imported modules, and that will likewise call those for
7060     // any imports it has.
7061     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7062         !Import->getImportedOwningModule()->isModuleMapModule())
7063       break;
7064 
7065     // For clang C++ module map modules the initializers for sub-modules are
7066     // emitted here.
7067 
7068     // Find all of the submodules and emit the module initializers.
7069     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7070     SmallVector<clang::Module *, 16> Stack;
7071     Visited.insert(Import->getImportedModule());
7072     Stack.push_back(Import->getImportedModule());
7073 
7074     while (!Stack.empty()) {
7075       clang::Module *Mod = Stack.pop_back_val();
7076       if (!EmittedModuleInitializers.insert(Mod).second)
7077         continue;
7078 
7079       for (auto *D : Context.getModuleInitializers(Mod))
7080         EmitTopLevelDecl(D);
7081 
7082       // Visit the submodules of this module.
7083       for (auto *Submodule : Mod->submodules()) {
7084         // Skip explicit children; they need to be explicitly imported to emit
7085         // the initializers.
7086         if (Submodule->IsExplicit)
7087           continue;
7088 
7089         if (Visited.insert(Submodule).second)
7090           Stack.push_back(Submodule);
7091       }
7092     }
7093     break;
7094   }
7095 
7096   case Decl::Export:
7097     EmitDeclContext(cast<ExportDecl>(D));
7098     break;
7099 
7100   case Decl::OMPThreadPrivate:
7101     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7102     break;
7103 
7104   case Decl::OMPAllocate:
7105     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7106     break;
7107 
7108   case Decl::OMPDeclareReduction:
7109     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7110     break;
7111 
7112   case Decl::OMPDeclareMapper:
7113     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7114     break;
7115 
7116   case Decl::OMPRequires:
7117     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7118     break;
7119 
7120   case Decl::Typedef:
7121   case Decl::TypeAlias: // using foo = bar; [C++11]
7122     if (CGDebugInfo *DI = getModuleDebugInfo())
7123       DI->EmitAndRetainType(
7124           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7125     break;
7126 
7127   case Decl::Record:
7128     if (CGDebugInfo *DI = getModuleDebugInfo())
7129       if (cast<RecordDecl>(D)->getDefinition())
7130         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7131     break;
7132 
7133   case Decl::Enum:
7134     if (CGDebugInfo *DI = getModuleDebugInfo())
7135       if (cast<EnumDecl>(D)->getDefinition())
7136         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7137     break;
7138 
7139   case Decl::HLSLBuffer:
7140     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7141     break;
7142 
7143   default:
7144     // Make sure we handled everything we should, every other kind is a
7145     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7146     // function. Need to recode Decl::Kind to do that easily.
7147     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7148     break;
7149   }
7150 }
7151 
7152 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7153   // Do we need to generate coverage mapping?
7154   if (!CodeGenOpts.CoverageMapping)
7155     return;
7156   switch (D->getKind()) {
7157   case Decl::CXXConversion:
7158   case Decl::CXXMethod:
7159   case Decl::Function:
7160   case Decl::ObjCMethod:
7161   case Decl::CXXConstructor:
7162   case Decl::CXXDestructor: {
7163     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7164       break;
7165     SourceManager &SM = getContext().getSourceManager();
7166     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7167       break;
7168     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7169     break;
7170   }
7171   default:
7172     break;
7173   };
7174 }
7175 
7176 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7177   // Do we need to generate coverage mapping?
7178   if (!CodeGenOpts.CoverageMapping)
7179     return;
7180   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7181     if (Fn->isTemplateInstantiation())
7182       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7183   }
7184   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7185 }
7186 
7187 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7188   // We call takeVector() here to avoid use-after-free.
7189   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7190   // we deserialize function bodies to emit coverage info for them, and that
7191   // deserializes more declarations. How should we handle that case?
7192   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7193     if (!Entry.second)
7194       continue;
7195     const Decl *D = Entry.first;
7196     switch (D->getKind()) {
7197     case Decl::CXXConversion:
7198     case Decl::CXXMethod:
7199     case Decl::Function:
7200     case Decl::ObjCMethod: {
7201       CodeGenPGO PGO(*this);
7202       GlobalDecl GD(cast<FunctionDecl>(D));
7203       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7204                                   getFunctionLinkage(GD));
7205       break;
7206     }
7207     case Decl::CXXConstructor: {
7208       CodeGenPGO PGO(*this);
7209       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7210       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7211                                   getFunctionLinkage(GD));
7212       break;
7213     }
7214     case Decl::CXXDestructor: {
7215       CodeGenPGO PGO(*this);
7216       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7217       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7218                                   getFunctionLinkage(GD));
7219       break;
7220     }
7221     default:
7222       break;
7223     };
7224   }
7225 }
7226 
7227 void CodeGenModule::EmitMainVoidAlias() {
7228   // In order to transition away from "__original_main" gracefully, emit an
7229   // alias for "main" in the no-argument case so that libc can detect when
7230   // new-style no-argument main is in used.
7231   if (llvm::Function *F = getModule().getFunction("main")) {
7232     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7233         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7234       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7235       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7236     }
7237   }
7238 }
7239 
7240 /// Turns the given pointer into a constant.
7241 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7242                                           const void *Ptr) {
7243   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7244   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7245   return llvm::ConstantInt::get(i64, PtrInt);
7246 }
7247 
7248 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7249                                    llvm::NamedMDNode *&GlobalMetadata,
7250                                    GlobalDecl D,
7251                                    llvm::GlobalValue *Addr) {
7252   if (!GlobalMetadata)
7253     GlobalMetadata =
7254       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7255 
7256   // TODO: should we report variant information for ctors/dtors?
7257   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7258                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7259                                CGM.getLLVMContext(), D.getDecl()))};
7260   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7261 }
7262 
7263 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7264                                                  llvm::GlobalValue *CppFunc) {
7265   // Store the list of ifuncs we need to replace uses in.
7266   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7267   // List of ConstantExprs that we should be able to delete when we're done
7268   // here.
7269   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7270 
7271   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7272   if (Elem == CppFunc)
7273     return false;
7274 
7275   // First make sure that all users of this are ifuncs (or ifuncs via a
7276   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7277   // later.
7278   for (llvm::User *User : Elem->users()) {
7279     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7280     // ifunc directly. In any other case, just give up, as we don't know what we
7281     // could break by changing those.
7282     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7283       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7284         return false;
7285 
7286       for (llvm::User *CEUser : ConstExpr->users()) {
7287         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7288           IFuncs.push_back(IFunc);
7289         } else {
7290           return false;
7291         }
7292       }
7293       CEs.push_back(ConstExpr);
7294     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7295       IFuncs.push_back(IFunc);
7296     } else {
7297       // This user is one we don't know how to handle, so fail redirection. This
7298       // will result in an ifunc retaining a resolver name that will ultimately
7299       // fail to be resolved to a defined function.
7300       return false;
7301     }
7302   }
7303 
7304   // Now we know this is a valid case where we can do this alias replacement, we
7305   // need to remove all of the references to Elem (and the bitcasts!) so we can
7306   // delete it.
7307   for (llvm::GlobalIFunc *IFunc : IFuncs)
7308     IFunc->setResolver(nullptr);
7309   for (llvm::ConstantExpr *ConstExpr : CEs)
7310     ConstExpr->destroyConstant();
7311 
7312   // We should now be out of uses for the 'old' version of this function, so we
7313   // can erase it as well.
7314   Elem->eraseFromParent();
7315 
7316   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7317     // The type of the resolver is always just a function-type that returns the
7318     // type of the IFunc, so create that here. If the type of the actual
7319     // resolver doesn't match, it just gets bitcast to the right thing.
7320     auto *ResolverTy =
7321         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7322     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7323         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7324     IFunc->setResolver(Resolver);
7325   }
7326   return true;
7327 }
7328 
7329 /// For each function which is declared within an extern "C" region and marked
7330 /// as 'used', but has internal linkage, create an alias from the unmangled
7331 /// name to the mangled name if possible. People expect to be able to refer
7332 /// to such functions with an unmangled name from inline assembly within the
7333 /// same translation unit.
7334 void CodeGenModule::EmitStaticExternCAliases() {
7335   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7336     return;
7337   for (auto &I : StaticExternCValues) {
7338     const IdentifierInfo *Name = I.first;
7339     llvm::GlobalValue *Val = I.second;
7340 
7341     // If Val is null, that implies there were multiple declarations that each
7342     // had a claim to the unmangled name. In this case, generation of the alias
7343     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7344     if (!Val)
7345       break;
7346 
7347     llvm::GlobalValue *ExistingElem =
7348         getModule().getNamedValue(Name->getName());
7349 
7350     // If there is either not something already by this name, or we were able to
7351     // replace all uses from IFuncs, create the alias.
7352     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7353       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7354   }
7355 }
7356 
7357 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7358                                              GlobalDecl &Result) const {
7359   auto Res = Manglings.find(MangledName);
7360   if (Res == Manglings.end())
7361     return false;
7362   Result = Res->getValue();
7363   return true;
7364 }
7365 
7366 /// Emits metadata nodes associating all the global values in the
7367 /// current module with the Decls they came from.  This is useful for
7368 /// projects using IR gen as a subroutine.
7369 ///
7370 /// Since there's currently no way to associate an MDNode directly
7371 /// with an llvm::GlobalValue, we create a global named metadata
7372 /// with the name 'clang.global.decl.ptrs'.
7373 void CodeGenModule::EmitDeclMetadata() {
7374   llvm::NamedMDNode *GlobalMetadata = nullptr;
7375 
7376   for (auto &I : MangledDeclNames) {
7377     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7378     // Some mangled names don't necessarily have an associated GlobalValue
7379     // in this module, e.g. if we mangled it for DebugInfo.
7380     if (Addr)
7381       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7382   }
7383 }
7384 
7385 /// Emits metadata nodes for all the local variables in the current
7386 /// function.
7387 void CodeGenFunction::EmitDeclMetadata() {
7388   if (LocalDeclMap.empty()) return;
7389 
7390   llvm::LLVMContext &Context = getLLVMContext();
7391 
7392   // Find the unique metadata ID for this name.
7393   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7394 
7395   llvm::NamedMDNode *GlobalMetadata = nullptr;
7396 
7397   for (auto &I : LocalDeclMap) {
7398     const Decl *D = I.first;
7399     llvm::Value *Addr = I.second.emitRawPointer(*this);
7400     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7401       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7402       Alloca->setMetadata(
7403           DeclPtrKind, llvm::MDNode::get(
7404                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7405     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7406       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7407       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7408     }
7409   }
7410 }
7411 
7412 void CodeGenModule::EmitVersionIdentMetadata() {
7413   llvm::NamedMDNode *IdentMetadata =
7414     TheModule.getOrInsertNamedMetadata("llvm.ident");
7415   std::string Version = getClangFullVersion();
7416   llvm::LLVMContext &Ctx = TheModule.getContext();
7417 
7418   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7419   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7420 }
7421 
7422 void CodeGenModule::EmitCommandLineMetadata() {
7423   llvm::NamedMDNode *CommandLineMetadata =
7424     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7425   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7426   llvm::LLVMContext &Ctx = TheModule.getContext();
7427 
7428   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7429   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7430 }
7431 
7432 void CodeGenModule::EmitCoverageFile() {
7433   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7434   if (!CUNode)
7435     return;
7436 
7437   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7438   llvm::LLVMContext &Ctx = TheModule.getContext();
7439   auto *CoverageDataFile =
7440       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7441   auto *CoverageNotesFile =
7442       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7443   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7444     llvm::MDNode *CU = CUNode->getOperand(i);
7445     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7446     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7447   }
7448 }
7449 
7450 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7451                                                        bool ForEH) {
7452   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7453   // FIXME: should we even be calling this method if RTTI is disabled
7454   // and it's not for EH?
7455   if (!shouldEmitRTTI(ForEH))
7456     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7457 
7458   if (ForEH && Ty->isObjCObjectPointerType() &&
7459       LangOpts.ObjCRuntime.isGNUFamily())
7460     return ObjCRuntime->GetEHType(Ty);
7461 
7462   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7463 }
7464 
7465 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7466   // Do not emit threadprivates in simd-only mode.
7467   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7468     return;
7469   for (auto RefExpr : D->varlists()) {
7470     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7471     bool PerformInit =
7472         VD->getAnyInitializer() &&
7473         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7474                                                         /*ForRef=*/false);
7475 
7476     Address Addr(GetAddrOfGlobalVar(VD),
7477                  getTypes().ConvertTypeForMem(VD->getType()),
7478                  getContext().getDeclAlign(VD));
7479     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7480             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7481       CXXGlobalInits.push_back(InitFunction);
7482   }
7483 }
7484 
7485 llvm::Metadata *
7486 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7487                                             StringRef Suffix) {
7488   if (auto *FnType = T->getAs<FunctionProtoType>())
7489     T = getContext().getFunctionType(
7490         FnType->getReturnType(), FnType->getParamTypes(),
7491         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7492 
7493   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7494   if (InternalId)
7495     return InternalId;
7496 
7497   if (isExternallyVisible(T->getLinkage())) {
7498     std::string OutName;
7499     llvm::raw_string_ostream Out(OutName);
7500     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7501         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7502 
7503     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7504       Out << ".normalized";
7505 
7506     Out << Suffix;
7507 
7508     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7509   } else {
7510     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7511                                            llvm::ArrayRef<llvm::Metadata *>());
7512   }
7513 
7514   return InternalId;
7515 }
7516 
7517 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7518   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7519 }
7520 
7521 llvm::Metadata *
7522 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7523   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7524 }
7525 
7526 // Generalize pointer types to a void pointer with the qualifiers of the
7527 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7528 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7529 // 'void *'.
7530 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7531   if (!Ty->isPointerType())
7532     return Ty;
7533 
7534   return Ctx.getPointerType(
7535       QualType(Ctx.VoidTy).withCVRQualifiers(
7536           Ty->getPointeeType().getCVRQualifiers()));
7537 }
7538 
7539 // Apply type generalization to a FunctionType's return and argument types
7540 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7541   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7542     SmallVector<QualType, 8> GeneralizedParams;
7543     for (auto &Param : FnType->param_types())
7544       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7545 
7546     return Ctx.getFunctionType(
7547         GeneralizeType(Ctx, FnType->getReturnType()),
7548         GeneralizedParams, FnType->getExtProtoInfo());
7549   }
7550 
7551   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7552     return Ctx.getFunctionNoProtoType(
7553         GeneralizeType(Ctx, FnType->getReturnType()));
7554 
7555   llvm_unreachable("Encountered unknown FunctionType");
7556 }
7557 
7558 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7559   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7560                                       GeneralizedMetadataIdMap, ".generalized");
7561 }
7562 
7563 /// Returns whether this module needs the "all-vtables" type identifier.
7564 bool CodeGenModule::NeedAllVtablesTypeId() const {
7565   // Returns true if at least one of vtable-based CFI checkers is enabled and
7566   // is not in the trapping mode.
7567   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7568            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7569           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7570            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7571           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7572            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7573           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7574            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7575 }
7576 
7577 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7578                                           CharUnits Offset,
7579                                           const CXXRecordDecl *RD) {
7580   llvm::Metadata *MD =
7581       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7582   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7583 
7584   if (CodeGenOpts.SanitizeCfiCrossDso)
7585     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7586       VTable->addTypeMetadata(Offset.getQuantity(),
7587                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7588 
7589   if (NeedAllVtablesTypeId()) {
7590     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7591     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7592   }
7593 }
7594 
7595 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7596   if (!SanStats)
7597     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7598 
7599   return *SanStats;
7600 }
7601 
7602 llvm::Value *
7603 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7604                                                   CodeGenFunction &CGF) {
7605   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7606   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7607   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7608   auto *Call = CGF.EmitRuntimeCall(
7609       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7610   return Call;
7611 }
7612 
7613 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7614     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7615   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7616                                  /* forPointeeType= */ true);
7617 }
7618 
7619 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7620                                                  LValueBaseInfo *BaseInfo,
7621                                                  TBAAAccessInfo *TBAAInfo,
7622                                                  bool forPointeeType) {
7623   if (TBAAInfo)
7624     *TBAAInfo = getTBAAAccessInfo(T);
7625 
7626   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7627   // that doesn't return the information we need to compute BaseInfo.
7628 
7629   // Honor alignment typedef attributes even on incomplete types.
7630   // We also honor them straight for C++ class types, even as pointees;
7631   // there's an expressivity gap here.
7632   if (auto TT = T->getAs<TypedefType>()) {
7633     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7634       if (BaseInfo)
7635         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7636       return getContext().toCharUnitsFromBits(Align);
7637     }
7638   }
7639 
7640   bool AlignForArray = T->isArrayType();
7641 
7642   // Analyze the base element type, so we don't get confused by incomplete
7643   // array types.
7644   T = getContext().getBaseElementType(T);
7645 
7646   if (T->isIncompleteType()) {
7647     // We could try to replicate the logic from
7648     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7649     // type is incomplete, so it's impossible to test. We could try to reuse
7650     // getTypeAlignIfKnown, but that doesn't return the information we need
7651     // to set BaseInfo.  So just ignore the possibility that the alignment is
7652     // greater than one.
7653     if (BaseInfo)
7654       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7655     return CharUnits::One();
7656   }
7657 
7658   if (BaseInfo)
7659     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7660 
7661   CharUnits Alignment;
7662   const CXXRecordDecl *RD;
7663   if (T.getQualifiers().hasUnaligned()) {
7664     Alignment = CharUnits::One();
7665   } else if (forPointeeType && !AlignForArray &&
7666              (RD = T->getAsCXXRecordDecl())) {
7667     // For C++ class pointees, we don't know whether we're pointing at a
7668     // base or a complete object, so we generally need to use the
7669     // non-virtual alignment.
7670     Alignment = getClassPointerAlignment(RD);
7671   } else {
7672     Alignment = getContext().getTypeAlignInChars(T);
7673   }
7674 
7675   // Cap to the global maximum type alignment unless the alignment
7676   // was somehow explicit on the type.
7677   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7678     if (Alignment.getQuantity() > MaxAlign &&
7679         !getContext().isAlignmentRequired(T))
7680       Alignment = CharUnits::fromQuantity(MaxAlign);
7681   }
7682   return Alignment;
7683 }
7684 
7685 bool CodeGenModule::stopAutoInit() {
7686   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7687   if (StopAfter) {
7688     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7689     // used
7690     if (NumAutoVarInit >= StopAfter) {
7691       return true;
7692     }
7693     if (!NumAutoVarInit) {
7694       unsigned DiagID = getDiags().getCustomDiagID(
7695           DiagnosticsEngine::Warning,
7696           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7697           "number of times ftrivial-auto-var-init=%1 gets applied.");
7698       getDiags().Report(DiagID)
7699           << StopAfter
7700           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7701                       LangOptions::TrivialAutoVarInitKind::Zero
7702                   ? "zero"
7703                   : "pattern");
7704     }
7705     ++NumAutoVarInit;
7706   }
7707   return false;
7708 }
7709 
7710 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7711                                                     const Decl *D) const {
7712   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7713   // postfix beginning with '.' since the symbol name can be demangled.
7714   if (LangOpts.HIP)
7715     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7716   else
7717     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7718 
7719   // If the CUID is not specified we try to generate a unique postfix.
7720   if (getLangOpts().CUID.empty()) {
7721     SourceManager &SM = getContext().getSourceManager();
7722     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7723     assert(PLoc.isValid() && "Source location is expected to be valid.");
7724 
7725     // Get the hash of the user defined macros.
7726     llvm::MD5 Hash;
7727     llvm::MD5::MD5Result Result;
7728     for (const auto &Arg : PreprocessorOpts.Macros)
7729       Hash.update(Arg.first);
7730     Hash.final(Result);
7731 
7732     // Get the UniqueID for the file containing the decl.
7733     llvm::sys::fs::UniqueID ID;
7734     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7735       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7736       assert(PLoc.isValid() && "Source location is expected to be valid.");
7737       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7738         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7739             << PLoc.getFilename() << EC.message();
7740     }
7741     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7742        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7743   } else {
7744     OS << getContext().getCUIDHash();
7745   }
7746 }
7747 
7748 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7749   assert(DeferredDeclsToEmit.empty() &&
7750          "Should have emitted all decls deferred to emit.");
7751   assert(NewBuilder->DeferredDecls.empty() &&
7752          "Newly created module should not have deferred decls");
7753   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7754   assert(EmittedDeferredDecls.empty() &&
7755          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7756 
7757   assert(NewBuilder->DeferredVTables.empty() &&
7758          "Newly created module should not have deferred vtables");
7759   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7760 
7761   assert(NewBuilder->MangledDeclNames.empty() &&
7762          "Newly created module should not have mangled decl names");
7763   assert(NewBuilder->Manglings.empty() &&
7764          "Newly created module should not have manglings");
7765   NewBuilder->Manglings = std::move(Manglings);
7766 
7767   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7768 
7769   NewBuilder->TBAA = std::move(TBAA);
7770 
7771   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7772 }
7773